Sample records for k-edge fine structure

  1. Sulfur K-edge extended X-ray absorption fine structure spectroscopy of homoleptic thiolato complexes with Zn(II) and Cd(II).

    PubMed

    Matsunaga, Yuki; Fujisawa, Kiyoshi; Ibi, Naoko; Fujita, Mitsuharu; Ohashi, Tetuya; Amir, Nagina; Miyashita, Yoshitaro; Aika, Ken-Ichi; Izumi, Yasuo; Okamoto, Ken-Ichi

    2006-02-01

    The sulfur K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to homoleptic thiolato complexes with Zn(II) and Cd(II), (Et(4)N)[Zn(SAd)(3)] (1), (Et(4)N)(2)[{Zn(ScHex)(2)}(2)(mu-ScHex)(2)] (2), (Et(4)N)(2)[{Cd(ScHex)(2)}(2)(mu-ScHex)(2)] (3), (Et(4)N)(2)[{Cd(ScHex)}(4)(mu-ScHex)(6)] (4), [Zn(mu-SAd)(2)](n) (5), and [Cd(mu-SAd)(2)](n) (6) (HSAd=1-adamantanethiol, HScHex=cyclohexanethiol). The EXAFS results are consistent with the X-ray crystal data of 1-4. The structures of 5 and 6, which have not been determined by X-ray crystallography, are proposed to be polynuclear structures on the basis of the sulfur K-edge EXAFS, far-IR spectra, and elemental analysis. Clear evidences of the S...S interactions (between bridging atoms or neighboring sulfur atoms) and the S...C(far) interactions (in which C(far) atom is next to carbon atom directly bonded to sulfur atom) were observed in the EXAFS data for all complexes and thus lead to the reliable determination of the structures of 5 and 6 in combination with conventional zinc K-edge EXAFS analysis for 5. This new methodology, sulfur K-edge EXAFS, could be applied for the structural determination of in vivo metalloproteins as well as inorganic compounds.

  2. Electron-beam induced amorphization of stishovite: Silicon-coordination change observed using Si K-edge extended electron energy-loss fine structure

    NASA Astrophysics Data System (ADS)

    van Aken, P. A.; Sharp, T. G.; Seifert, F.

    The analysis of the extended energy-loss fine structure (EXELFS) of the Si K-edge for sixfold-coordinated Si in synthetic stishovite and fourfold-coordinated Si in natural α-quartz is reported by using electron energy-loss spectroscopy (EELS) in combination with transmission electron microscopy (TEM). The stishovite Si K-edge EXELFS spectra were measured as a time-dependent series to document irradiation-induced amorphization. The amorphization was also investigated through the change in Si K- and O K-edge energy-loss near edge structure (ELNES). For α-quartz, in contrast to stishovite, electron irradiation-induced vitrification, verified by selected area electron diffraction (SAED), produced no detectable changes of the EXELFS. The Si K-edge EXELFS were analysed with the classical extended X-ray absorption fine structure (EXAFS) treatment and compared to ab initio curve-waved multiple-scattering (MS) calculations of EXAFS spectra for stishovite and α-quartz. Highly accurate information on the local atomic environment of the silicon atoms during the irradiation-induced amorphization of stishovite is obtained from the EXELFS structure parameters (Si-O bond distances, coordination numbers and Debye-Waller factors). The mean Si-O bond distance R and mean Si coordination number N changes from R=0.1775 nm and N=6 for stishovite through a disordered intermediate state (R 0.172 nm and N 5) to R 0.167 nm and N 4.5 for a nearly amorphous state similar to α-quartz (R=0.1609 nm and N=4). During the amorphization process, the Debye-Waller factor (DWF) passes through a maximum value of as it changes from for sixfold to for fourfold coordination of Si. This increase in Debye-Waller factor indicates an increase in mean-square relative displacement (MSRD) between the central silicon atom and its oxygen neighbours that is consistent with the presence of an intermediate structural state with fivefold coordination of Si. The distribution of coordination states can be estimated by

  3. InAs Band-Edge Exciton Fine Structure

    DTIC Science & Technology

    2015-07-29

    Chapter 1 InAs Band-Edge Exciton Fine Structure 1.1 Contributions This work was carried out in collaboration with Oscar Sandoval, a summer student at...diffusion,1,2 charg- ing,2,3 and excitonic fine structure.1,3–9 While spectral diffusion and charging are most likely photoinduced effects and thus can be...unavoidable. A complete understanding of the excitonic 1 Distribution A: Public Release energy landscape enables us to determine dephasing rates

  4. Effect of aluminum on the local structure of silicon in zeolites as studied by Si K edge X-ray absorption near-edge fine structure: spectra simulation with a non-muffin tin atomic background.

    PubMed

    Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V

    2009-04-09

    Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.

  5. A high pressure La K-edge X-ray absorption fine structure spectroscopy investigation of La1/3NbO3

    NASA Astrophysics Data System (ADS)

    Marini, C.; Joseph, B.; Noked, O.; Shuker, R.; Kennedy, B. J.; Mathon, O.; Pascarelli, S.; Sterer, E.

    2018-01-01

    La K-edge X-ray absorption spectroscopy has been used to elucidate the changes in the local electronic and lattice structure that occur in the A-site deficient double perovskite La?NbO? up to 6 GPa. The pressure evolution of the oxygen dodecahedrum around the A-site has been examined. XANES (X-ray absorption near edge structure) data show modifications ascribed to the increase of bands overlapping as a consequence of the bond distance contraction, which has been directly probed by EXAFS (extended x-ray absorption fine structure) spectra. The La-O Debye Waller factors (DWFs) tend to increase whereas the La-Nb bond DWFs show only a tendency to decrease indicating the robustness of the crystal lattice structure, even in presence of the oxygen disordering. This permits the system to reverse back to its original conditions in this pressure range as evident from the measurements upon pressure release. The present results have been interpreted in the light of charge transfer related to the two-step reduction mechanism acting at the Nb site (with niobium ions passing from Nb? to Nb?) which also results in the elongation of the Nb-O bond distances in the octahedra, in agreement with the Nb K-edge results reported earlier.

  6. Identification of B-K near edge x-ray absorption fine structure peaks of boron nitride thin films prepared by sputtering deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niibe, Masahito; Miyamoto, Kazuyoshi; Mitamura, Tohru

    2010-09-15

    Four {pi}{sup *} resonance peaks were observed in the B-K near edge x-ray absorption fine structure spectra of boron nitride thin films prepared by magnetron sputtering. In the past, these peaks have been explained as the K-absorption of boron atoms, which are present in environment containing nitrogen vacancies, the number of which is 1-3 corresponding to the three peaks at higher photon energy. However, the authors found that there was a strong correlation between the intensities of these three peaks and that of O-K absorption after wide range scanning and simultaneous measurement of nitrogen and oxygen K-absorptions of the BNmore » films. Therefore, the authors conclude that these three peaks at the higher energy side correspond to boron atoms bound to one-to-three oxygen atoms instead of three nitrogen atoms surrounding the boron atom in the h-BN structure. The result of the first-principles calculation with a simple cluster model supported the validity of this explanation.« less

  7. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantouvalou, I., E-mail: ioanna.mantouvalou@tu-berlin.de; Witte, K.; Martyanov, W.

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns.more » Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.« less

  8. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K -edge XANES data

    NASA Astrophysics Data System (ADS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D. D.

    2005-11-01

    Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K -edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K -edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.

  9. Low-temperature adsorption of H2S on Ni(001) studied by near-edge- and surface-extended-x-ray-absorption fine structure

    NASA Astrophysics Data System (ADS)

    McGrath, R.; MacDowell, A. A.; Hashizume, T.; Sette, F.; Citrin, P. H.

    1989-11-01

    The adsorption of H2S on Ni(001) has been studied with surface-extended x-ray-absorption fine structure and near-edge x-ray-absorption fine structure (NEXAFS) using the AT&T Bell Laboratories X15B beamline at the National Synchrotron Light Source. At 95 K and full saturation coverage, ~0.45 monolayer (ML) of S atoms in fourfold-hollow sites are produced, characteristic of room-temperature adsorption, accompanied by ~0.05 ML of oriented molecular H2S. Both these atomic and molecular chemisorbed species are buried under ~0.9 ML of disordered physisorbed H2S. No evidence for HS is found. Above 190 K the two molecular H2S phases desorb, leaving only dissociated S. These findings differ from previously reported interpretations of data obtained with high-resolution electron-energy-loss spectroscopy. They also exemplify the utility of NEXAFS for identifying and quantifying atomic and molecular surface species even when their difference involves only H and the two species coexist.

  10. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2015-05-01

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  11. Substitution behavior of x(Na0.5K0.5)NbO3-(1 - x)BaTiO3 ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-01

    The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.

  12. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Hiroyuki, E-mail: hshimada@cc.tuat.ac.jp; Minami, Hirotake; Okuizumi, Naoto

    2015-05-07

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations.more » This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.« less

  13. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  14. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühl, Frank-Christian, E-mail: Frank-christian.kuehl@mail.de; Müller, Matthias, E-mail: matthias.mueller@llg-ev.de; Schellhorn, Meike

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well asmore » at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.« less

  15. Ge K-Edge Extended X-Ray Absorption Fine Structure Study of the Local Structure of Amorphous GeTe and the Crystallization

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshihito; Wakagi, Masatoshi

    1991-01-01

    The local structure and crystallization of amorphous GeTe (a-GeTe) were examined by means of Ge K-edge EXAFS. In a-GeTe, both Ge-Ge and Ge-Te bonds were observed to exist in nearest neighbors of Ge. The average coordination number around Ge is 3.7, which is close to the tetrahedral structure. A random covalent network (RCN) model seems to be suitable for the local Structure. After a-GeTe crystallizes at 129°C, the Ge-Ge bond disappears and the Ge-Te bond length increases considerably. As temperature rises, in a-GeTe the Debye-Waller factor of the Ge-Te bond increases greatly, while that of the Ge-Ge bond increases only slightly. At the crystallization, it is found that the fluctuation of the Ge-Te bond length plays a major role in the change of the local structure and bonding state around Ge.

  16. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less

  17. Silicon K-edge XANES spectra of silicate minerals

    NASA Astrophysics Data System (ADS)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  18. On the Structure of the Iron K-Edge

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is shown that the commonly held view of a sharp Fe K edge must be modified if the decay pathways of the series of resonances converging to the K thresholds are adequately taken into account. These resonances display damped Lorentzian profiles of nearly constant widths that are smeared to impose continuity across the threshold. By modeling the effects of K damping on opacities, it is found that the broadening of the K edge grows with the ionization level of the plasma, and the appearance at high ionization of a localized absorption feature at 7.2 keV is identified as the Kbeta unresolved transition array.

  19. X-ray Absorption and Emission Spectroscopy of CrIII (Hydr)Oxides: Analysis of the K-Pre-Edge Region

    NASA Astrophysics Data System (ADS)

    Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben

    2009-10-01

    Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.

  20. Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.

    PubMed

    Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R

    2018-03-01

    P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

  1. Investigating the interstellar dust through the Fe K-edge

    NASA Astrophysics Data System (ADS)

    Rogantini, D.; Costantini, E.; Zeegers, S. T.; de Vries, C. P.; Bras, W.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.

    2018-01-01

    Context. The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm-2). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. Aims: In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. Methods: In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. Results: From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust. The absorption, scattering, and extinction cross sections of the compounds are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A22

  2. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.

    PubMed

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  3. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  4. Determination of the fine structure constant using helium fine structure.

    PubMed

    Smiciklas, Marc; Shiner, David

    2010-09-17

    We measure 31,908,131.25(30) kHz for the 2(3)}P J=0 to 2 fine structure interval in helium. The difference between this and theory to order mα7 (20 Hz numerical uncertainty) implies 0.22(30) kHz for uncalculated terms. The measurement is performed by using atomic beam and electro-optic laser techniques. Various checks include a 3He 2{3}S hyperfine measurement. We can obtain an independent value for the fine structure constant α with a 5 ppb experimental uncertainty. However, dominant mα8 terms (potentially 1.2 kHz) limit the overall uncertainty to a less competitive 20 ppb in α.

  5. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less

  6. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    NASA Astrophysics Data System (ADS)

    Manghnani, M. H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-01

    We report NiK -edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90° with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth’s core.

  7. Large local disorder in superconducting K(0.8)Fe(1.6)Se2 studied by extended x-ray absorption fine structure.

    PubMed

    Iadecola, A; Joseph, B; Simonelli, L; Puri, A; Mizuguchi, Y; Takeya, H; Takano, Y; Saini, N L

    2012-03-21

    We have measured the local structure of superconducting K(0.8)Fe(1.6)Se(2) chalcogenide (T(c) = 31.8 K) by temperature dependent polarized extended x-ray absorption fine structure (EXAFS) at the Fe and Se K-edges. We find that the system is characterized by a large local disorder. The Fe-Se and Fe-Fe distances are found to be shorter than the distances measured by diffraction, while the corresponding mean square relative displacements reveal large Fe-site disorder and relatively large c-axis disorder. The local force constant for the Fe-Se bondlength (k ~ 5.8 eV Å(-2)) is similar to the one found in the binary FeSe superconductor, however, the Fe-Fe bondlength appears to be flexible (k ~ 2.1 eV Å(-2)) in comparison to the binary FeSe (k ~ 3.5 eV Å(-2)), an indication of partly relaxed Fe-Fe networks in K(0.8)Fe(1.6)Se(2). The results suggest a glassy nature for the title system, with the superconductivity being similar to that in the granular materials. © 2012 IOP Publishing Ltd

  8. Strong excitonic interactions in the oxygen K-edge of perovskite oxides.

    PubMed

    Tomita, Kota; Miyata, Tomohiro; Olovsson, Weine; Mizoguchi, Teruyasu

    2017-07-01

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO 3 , SrTiO 3 , and BaTiO 3 , together with reference oxides, MgO, CaO, SrO, BaO, and TiO 2 , were investigated using a first-principles Bethe-Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti-O-Ti bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    PubMed

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

  10. Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses

    DOE PAGES

    Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.; ...

    2017-01-26

    Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less

  11. The use of C-near edge X-ray absorption fine structure spectroscopy for the elaboration of chemistry in lignocellulosics

    Treesearch

    Lucian A. Lucia; Hiroki Nanko; Alan W. Rudie; Doug G. Mancosky; Sue Wirick

    2006-01-01

    The research presented elucidates the oxidation chemistry occurring in hydrogen peroxide bleached kraft pulp fibers by employing carbon near edge x-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft x-ray technique that selectively interrogates atomic moieties using photoelectrons (Xrays) of variable energies. The X1A beam line at the National...

  12. Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy

    Treesearch

    Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun

    2005-01-01

    The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...

  13. Complex polarization propagator approach in the restricted open-shell, self-consistent field approximation: the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine.

    PubMed

    Linares, Mathieu; Stafström, Sven; Rinkevicius, Zilvinas; Ågren, Hans; Norman, Patrick

    2011-05-12

    A presentation of the complex polarization propagator in the restricted open-shell self-consistent field approximation is given. It rests on a formulation of a resonant-convergent, first-order polarization propagator approach that makes it possible to directly calculate the X-ray absorption cross section at a particular frequency without explicitly addressing the excited states. The quality of the predicted X-ray spectra relates only to the type of density functional applied without any separate treatment of dynamical relaxation effects. The method is applied to the calculation of the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine. Comparison is made between the spectra of the radicals and those of the corresponding cations and anions to assess the effect of the increase of electron charge in the frontier orbital. The method offers the possibility for unique assignment of symmetry-independent atoms. The overall excellent spectral agreement motivates the application of the method as a routine precise tool for analyzing X-ray absorption of large systems of technological interest.

  14. Fabrication of ultra-fine nanostructures using edge transfer printing.

    PubMed

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  15. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  16. Application of x-ray absorption fine structure (XAFS) to local-order analysis in Fe-Cr maghemite-like materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Fuentes-Cobas, L. E.; Macías-Ríos, E.

    2015-07-23

    The maghemite-like oxide system γ-Fe{sub 2-x}Cr{sub x}O{sub 3} (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by “normal” (absence of “anomalous scattering”) diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-rangemore » structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO{sub 3})« less

  17. First-Principles Predictions of Near-Edge X-ray Absorption Fine Structure Spectra of Semiconducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gregory M.; Patel, Shrayesh N.; Pemmaraju, C. D.

    The electronic structure and molecular orientation of semiconducting polymers in thin films determine their ability to transport charge. Methods based on near-edge X-ray absorption fine structure (NEXAFS) spectroscopy can be used to probe both the electronic structure and microstructure of semiconducting polymers in both crystalline and amorphous films. However, it can be challenging to interpret NEXAFS spectra on the basis of experimental data alone, and accurate, predictive calculations are needed to complement experiments. Here, we show that first-principles density functional theory (DFT) can be used to model NEXAFS spectra of semiconducting polymers and to identify the nature of transitions inmore » complicated NEXAFS spectra. Core-level X-ray absorption spectra of a set of semiconducting polymers were calculated using the excited electron and core-hole (XCH) approach based on constrained-occupancy DFT. A comparison of calculations on model oligomers and periodic structures with experimental data revealed the requirements for accurate prediction of NEXAFS spectra of both conjugated homopolymers and donor–acceptor polymers. The NEXAFS spectra predicted by the XCH approach were applied to study molecular orientation in donor–acceptor polymers using experimental spectra and revealed the complexity of using carbon edge spectra in systems with large monomeric units. The XCH approach has sufficient accuracy in predicting experimental NEXAFS spectra of polymers that it should be considered for design and analysis of measurements using soft X-ray techniques, such as resonant soft X-ray scattering and scanning transmission X-ray microscopy.« less

  18. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    NASA Astrophysics Data System (ADS)

    Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.

    1995-05-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.

  19. Local structure and polarization resistance of Ce doped SrMnO{sub 3} using extended x-ray fine structure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jiseung; Lee, Heesoo, E-mail: heesoo@pusan.ac.kr

    2014-09-15

    Changes to the local structure of Sr and Mn atoms in Sr{sub 1−x}Ce{sub x}MnO{sub 3} (SCM) according to increasing Ce content and the effect of the structural change on the polarization resistance of SCM were investigated. The reduction of manganese was confirmed by the absorption edge shift of the Mn K-edge toward lower energies. The noise of oscillation in extended X-ray absorption fine structure k{sup 3}χ data at Mn K-edge reveals the distortion of the local structure of Mn atoms, and the peak that indicates the bonding length of Mn-O, Sr/Ce, and -Mn decreased with the addition of Ce contentmore » in Fourier transformations of the Mn K-edge. The distortion of the local structure at Mn atoms was affected by the reduced manganese ions having larger ionic radii than Mn{sup 4+}. Meanwhile, few distortions of local atomic structures of Sr atoms occurred, and the average nearest neighboring distances of Sr-O and Sr-Mn are ∼2.13 Å and ∼2.95 Å, respectively. The average bonding lengths of the Ce-O and Ce-Mn increased because the ionic radius of substituted Ce ion with 12 coordination number is smaller than that of Sr ion, which leads the reduction of Mn ions and the distortion of local structure at the substituted A-site. Therefore, we reasoned that the distortion of the local atomic structure at Mn atoms in MnO{sub 6} and Ce atoms in A-site is one of the causes for interrupting oxygen ion transfers as a geometric factor, which results in an increase in the polarization resistance of SCM within the Ce composition range from 10 mol. % to 30 mol. %.« less

  20. Magnesium K-Edge NEXAFS Spectroscopy of Chlorophyll a in Solution.

    PubMed

    Witte, Katharina; Streeck, Cornelia; Mantouvalou, Ioanna; Suchkova, Svetlana A; Lokstein, Heiko; Grötzsch, Daniel; Martyanov, Wjatscheslav; Weser, Jan; Kanngießer, Birgit; Beckhoff, Burkhard; Stiel, Holger

    2016-11-17

    The interaction of the central magnesium atom of chlorophyll a (Chl a) with the carbon and nitrogen backbone was investigated by magnesium K near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in fluorescence detection mode. A crude extract of Chl a was measured as a 1 × 10 -2 mol/L ethanol solution (which represents an upper limit of concentration without aggregation) and as dried droplets. For the first time, the investigation of Mg bound to Chl a in a liquid environment by means of X-ray absorption spectroscopy is demonstrated. A pre-edge feature in the dissolved as well as in dried Chl a NEXFAS spectra has been identified as a characteristic transition originating from Mg in the Chl a molecule. This result is confirmed by theoretical DFT calculations leading to molecular orbitals (MO) which are mainly situated on the magnesium atom and nitrogen and carbon atoms from the pyrrole rings. The description is the first referring to the MO distribution with respect to the central Mg ion of Chl a and the surrounding atoms. On this basis, new approaches for the investigations of dynamic processes of molecules in solution and structure-function relationships of photosynthetic pigments and pigment-protein complexes in their native environment can be developed.

  1. Borosilicate glass structure: An investigation of high resolution B K-edge XANES

    NASA Astrophysics Data System (ADS)

    Dong, S.; Henderson, G. S.; Galoisy, L.; Calas, G.

    2009-05-01

    The Alkali-borosilicate glasses in the systems Na2O-B2O3-SiO2 and K2O- B2O3-SiO2 have been prepared by melting/quenching in air and studied using synchrotron radiation B K-edge XANES to estimate the evolution of boron coordination as a function of composition. The ratio of alkali/B2O3 (R) and SiO2/B2O3 (K) in the glasses are respectively between 0.5 to 2.0 and 0.5 to 7.0. The edge features of trigonal B ([3]B) and tetrahedral B ([4]B) in B K-edge XANES spectra have been interpreted carefully from B standards such as (B2O3 and BPO4), as well as, a wide range of borate minerals. We find that the proportion of tetrahedral B in glass is increasing as a function of both R and K, similar to previous studies. Contributions of the [3]B and [4]B features to the B K-edge XANES is complex with 6-7 individual transitions contributing to the overall spectral envelope. Many of these transitions are common to both B coordination states making extraction of quantitative [4]B numbers difficult. However, we can calculate the proportion of tetrahedral B accurately by appropriate curve- fitting.

  2. Full-Field Calcium K-Edge X-ray Absorption Near-Edge Structure Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation.

    PubMed

    Hesse, Bernhard; Salome, Murielle; Castillo-Michel, Hiram; Cotte, Marine; Fayard, Barbara; Sahle, Christoph J; De Nolf, Wout; Hradilova, Jana; Masic, Admir; Kanngießer, Birgit; Bohner, Marc; Varga, Peter; Raum, Kay; Schrof, Susanne

    2016-04-05

    Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.

  3. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  4. Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Morris; Li, Hong; Li, Liyu

    Gadolinium can be dissolved in sodium-alumino-borosilicate glasses up to 47 wt% in a baseline borosilicate glass (mol%) 20 B2O3, 5 Al2O3, 60 SiO2,and 20 Na2O. Understanding of Gd dissolution in borosilicate melts is important in glass formulation optimization. Electron energy loss fine structure (ELFS) spectroscopy is chosen, which provides well resolved local atomic structure information for both amorphous and crystalline materials with high sensitivity to low Z elements such as Al, B, Na, O, and Si where the x-ray absorption fine structure (XAFS) technique faces experimental difficulty. In this study, we report our results of boron K-edge ELFS study. Twomore » borosilicate glass samples with 30 and 47 mass% Gd2O3, B20Gd30 and B20Gd47were chosen for B K-edge ELFS study. EEL spectra were acquired on a Philips 430 TEM equipped with Gatan PEELS system 666 and EL/P 2.1 software with Custom function AcqLong. The ELFS data analysis was performed using UWELFS, UWXAFS and FEFF software. From our Gd solubility study, the local structure of Gd in the borate environment possibly resembles double chain structure found in crystalline Gd(BO2)3 as proposed by Chakraborty et al. The B/Gd ratio's in both glasses are smaller then 3, which means the excess Gd atoms in the Si-sites would be 17 and 60 mol% of the total Gd atoms, respectively according to the model, yet the local environment of borate sites saturated with Gd should be remained. To verity above hypothesis, the double chain structure model was applied to fit boron K-edge. The model was shown to well fit experimental boron K-edge EELS spectra for both glasses with some degree of distance distortion which is understandable in amorphous structure. Therefore, it is very likely that Gd stabilized in borate sites has a local structure resembling the double chain Gd(BO2)3 structure as proposed by our solubility study and literature.« less

  5. Chemical kinetics of Cs species in an alkali-activated municipal solid waste incineration fly ash and pyrophyllite-based system using Cs K-edge in situ X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Nitta, Kiyofumi; Oshita, Kazuyuki; Fujimori, Takashi; Ina, Toshiaki

    2017-05-01

    We conducted in situ X-ray absorption fine structure (in situ XAFS) analysis at the Cs K-edge to investigate the chemical kinetics of Cs species during reaction in an alkali-activated municipal solid waste incineration fly ash (MSWIFA) and pyrophyllite-based system. Understanding the kinetics of Cs is essential to the design of appropriate conditions for Cs stabilization. In situ XAFS analysis of four pastes, prepared from NaOHaq, sodium silicate solution, pyrophyllite, and MSWIFA with the addition of CsCl, was conducted in custom-built reaction cells at four curing temperatures (room temperature, 60 °C, 80 °C, 105 °C) for approximately 34 h. The results indicated that the change in Cs species during reaction at room temperature was small, while changes at higher temperatures were faster and more extreme, with the fastest conversion to pollucite occurring at 105 °C. Further analysis using a leaching test and a simple reaction model for Cs species during reaction showed that the pollucite formation rate was dependent on the curing temperature and had a significant negative correlation with Cs leaching. The activation energy of pollucite formation was estimated to be 31.5 kJ/mol. These results revealed that an important change in the chemical state of Cs occurs during reaction in the system.

  6. Structure formation in organic thin films observed in real time by energy dispersive near-edge x-ray absorption fine-structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Scholz, M.; Sauer, C.; Wiessner, M.; Nguyen, N.; Schöll, A.; Reinert, F.

    2013-08-01

    We study the structure formation of 1,4,5,8-naphthalene-tetracarboxylicacid-dianhydride (NTCDA) multilayer films on Ag(111) surfaces by energy dispersive near-edge x-ray absorption fine-structure spectroscopy (NEXAFS) and photoelectron spectroscopy. The time resolution of seconds of the method allows us to identify several sub-processes, which occur during the post-growth three-dimensional structural ordering, as well as their characteristic time scales. After deposition at low temperature the NTCDA molecules are preferentially flat lying and the films exhibit no long-range order. Upon annealing the molecules flip into an upright orientation followed by an aggregation in a transient phase which exists for several minutes. Finally, three-dimensional islands are established with bulk-crystalline structure involving substantial mass transport on the surface and morphological roughening. By applying the Kolmogorov-Johnson-Mehl-Avrami model the activation energies of the temperature-driven sub-processes can be derived from the time evolution of the NEXAFS signal.

  7. [Study on the fine structure of K-feldspar of Qichun granite].

    PubMed

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration.

  8. Interaction of Nanostructured Calcium Silicate Hydrate with Ibuprofen Drug Molecules: X-ray Absorption Near Edge Structure (XANES) Study at the Ca, Si and O K-edge

    NASA Astrophysics Data System (ADS)

    Guo, X. X.; Sham, T. K.; Zhu, Y. J.; Hu, Y. F.

    2013-04-01

    Mesoporous calcium silicate hydrate (CSH) nanostructure has been proven to be bioactive and biocompatible, and has a bright future in the application of bone treatment among other applications. X-ray absorption near edge structure (XANES) is a powerful tool for the study of the interactions of calcium silicate hydrates with drug molecules because it is element specific and it probes the unoccupied electronic states. Herein, we report the use of the calcium, silicon and oxygen K-edge XANES spectroscopy to identify how drug molecules interact with different groups in calcium silicate hydrate mesoporous nano-carriers with different morphologies. Significant changes are observed in XANES spectra after drug loading into the calcium silicate hydrate system, especially at the Si and O K-edge. The implications of these findings are discussed.

  9. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    NASA Astrophysics Data System (ADS)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-01

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  10. Photoionization of the Fe lons: Structure of the K-Edge

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray absorption and emission features arising from the inner-shell transitions in iron are of practical importance in astrophysics due to the Fe cosmic abundance and to the absence of traits from other elements in the nearby spectrum. As a result, the strengths and energies of such features can constrain the ionization stage, elemental abundance, and column density of the gas in the vicinity of the exotic cosmic objects, e.g. active galactic nuclei (AGN) and galactic black hole candidates. Although the observational technology in X-ray astronomy is still evolving and currently lacks high spectroscopic resolution, the astrophysical models have been based on atomic calculations that predict a sudden and high step-like increase of the cross section at the K-shell threshold (see for instance. New Breit-Pauli R-matrix calculations of the photoionization cross section of the ground states of Fe XVII in the region near the K threshold are presented. They strongly support the view that the previously assumed sharp edge behaviour is not correct. The latter has been caused by the neglect of spectator Auger channels in the decay of the resonances converging to the K threshold. These decay channels include the dominant KLL channels and give rise to constant widths (independent of n). As a consequence, these series display damped Lorentzian components that rapidly blend to impose continuity at threshold, thus reformatting the previously held picture of the edge. Apparent broadened iron edges detected in the spectra of AGN and galactic black hole candidates seem to indicate that these quantum effects may be at least partially responsible for the observed broadening.

  11. Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine structure study

    NASA Astrophysics Data System (ADS)

    Dähn, Rainer; Scheidegger, André M.; Manceau, Alain; Schlegel, Michel L.; Baeyens, Bart; Bradbury, Michael H.; Chateigner, Daniel

    The nature of surface complexes formed on Ni uptake onto montmorillonite (a dioctahedral smectite) has been investigated over an extended time period by polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Self-supporting films of Ni-sorbed montmorillonite were prepared by contacting Ni and montmorillonite at pH 7.2, high ionic strength (0.3 M NaClO 4), and low Ni concentration ([Ni] initial = 19.9 μM) for 14- and 360-d reaction time. The resulting Ni concentration on the clay varied from 4 to 7 μmol/g. Quantitative texture analysis indicates that the montmorillonite particles were well orientated with respect to the plane of the film. The full width at half maximum of the orientation distribution of the c* axes of individual clay platelets about the normal to the film plane was 44.3° (14-d reaction time) and 47.1° (360-d reaction time). These values were used to correct the coordination numbers determined by P-EXAFS for texture effects. Ni K-edge P-EXAFS spectra were recorded at angles between the incident beam and the film normal equal to 10, 35, 55, and 80°. Spectral analysis led to the identification of three nearest cationic subshells containing 2.0 ± 0.5 Al at 3.0 Å and 2.0 ± 0.5 Si at 3.12 Å and 4.0 ± 0.5 Si at 3.26 Å. These distances are characteristic of edge-sharing linkages between Al and Ni octahedra and of corner-sharing linkages between Ni octahedra and Si tetrahedra, as in clay structures. The angular dependence of the Ni-Al and Ni-Si contributions indicates that Ni-Al pairs are oriented parallel to the film plane, whereas Ni-Si pairs are not. The study reveals the formation of Ni inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and thus that heavy metals binding to edge sites is a possible sorption mechanism for dioctahedral smectites. Data analysis further suggests that either the number of neighboring Al atoms slightly increases from 1.6 to 2 or that the structural order

  12. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    PubMed Central

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  13. Monte Carlo Simulations of Electron Energy-Loss Spectra with the Addition of Fine Structure from Density Functional Theory Calculations.

    PubMed

    Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald

    2016-02-01

    A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.

  14. Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle.

    PubMed

    Klein, Robert J; Fischer, Daniel A; Lenhart, Joseph L

    2008-08-05

    The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double O=C bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 +/- 2 degrees , due primarily to chemical heterogeneity. Annealing above T(g) allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.

  15. X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems

    PubMed Central

    Sarangi, Ritimukta

    2012-01-01

    Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal–O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal–O2 systems. PMID:23525635

  16. Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems

    DOE PAGES

    Martin-Diaconescu, Vlad; Gennari, Marcello; Gerey, Bertrand; ...

    2014-12-10

    Calcium K-edge pre-edges coupled with TD-DFT theoretical calculation of spectra provide a powerful approach for the characterization of complex calcium centers in inorganic and bioinorganic chemistry. Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodologymore » to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed.« less

  17. Investigation of Prussian Blue Analogs by XMCD at the K-edge of transition metals

    NASA Astrophysics Data System (ADS)

    Bordage, A.; Nataf, L.; Baudelet, F.; Bleuzen, A.

    2016-05-01

    Despite transition metal (TM) K-edge x-ray magnetic circular dichroism (XMCD) seems an interesting tool to get magnetic and structural information at the atomic scale, the effects originating this signal are still poorly understood. We thus initiated a deep investigation of the TM K-edge XMCD using Prussian Blue analogs (PBA) as model-compounds. In a recent study of the NiFe PBA family, we demonstrated that the XMCD signals at the TM K-edges strongly vary with external (mechanical) or internal (chemical) pressure and so that they are highly sensitive to small structural distortions. Following these first results, we extended this approach to the MnFe and CoFe families to evaluate the effect of electronic parameters (number of unpaired electrons of the M II TM) on the XMCD signal. All the results set milestones in the disentanglement of the components originating the XMCD signals at the K-edge of TM and will eventually help in a better understanding of the photomagnetic properties of PBAs.

  18. Mn K-Edge X-ray Absorption Studies of Oxo- and Hydroxo-manganese(IV) Complexes: Experimental and Theoretical Insights into Pre-Edge Properties

    PubMed Central

    2015-01-01

    Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [MnII(Cl)2(Me2EBC)], [MnIV(OH)2(Me2EBC)]2+, and [MnIV(O)(OH)(Me2EBC)]+, which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [MnIV(O)(OH)(Me2EBC)]+ revealed Mn–O scatterers at 1.71 and 1.84 Å and Mn–N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [MnII(Cl)2(Me2EBC)] and [MnIV(OH)2(Me2EBC)]2+ are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn–O(H) distances and pre-edge peak areas of MnIV=O and MnIV–OH complexes, but this trend was strongly modulated by the MnIV coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn–O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal MnIV=O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn=O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn=O σ* molecular orbital (MO) but also show intense transitions to 3dx2–y2 and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal MnIV=O adducts. These results underscore the importance of reporting experimental pre-edge areas

  19. Mn K-edge X-ray absorption studies of oxo- and hydroxo-manganese(IV) complexes: experimental and theoretical insights into pre-edge properties.

    PubMed

    Leto, Domenick F; Jackson, Timothy A

    2014-06-16

    Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [Mn(II)(Cl)2(Me2EBC)], [Mn(IV)(OH)2(Me2EBC)](2+), and [Mn(IV)(O)(OH)(Me2EBC)](+), which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [Mn(IV)(O)(OH)(Me2EBC)](+) revealed Mn-O scatterers at 1.71 and 1.84 Å and Mn-N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [Mn(II)(Cl)2(Me2EBC)] and [Mn(IV)(OH)2(Me2EBC)](2+) are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn-O(H) distances and pre-edge peak areas of Mn(IV)═O and Mn(IV)-OH complexes, but this trend was strongly modulated by the Mn(IV) coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn-O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal Mn(IV)═O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn═O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn═O σ* molecular orbital (MO) but also show intense transitions to 3dx(2)-y(2) and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal Mn(IV)═O adducts. These results underscore the importance of

  20. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  1. Atomic multiplets at the L2,3 edge of 3d transition metals and the ligand K edge in x-ray absorption spectroscopy of ionic systems

    NASA Astrophysics Data System (ADS)

    Olalde-Velasco, P.; Jiménez-Mier, J.; Denlinger, J.; Yang, W.-L.

    2013-06-01

    Experimental X-ray absorption spectra at the fluorine K and transition metal L2,3 absorption edges of the MF2 (M=Cr-Ni) family are presented. Ligand field calculations in D4h symmetry show very good agreement with the transition metal L2,3 XAS spectra. To successfully explain nominal Cr2+ L2,3 XAS spectrum in CrF2, the inclusion of Cr+ and Cr3+ was needed implying the presence of a disproportionation reaction. The multiplet calculations were then modified to remove the structure of the 2p hole in the calculated M 2p→3d absorption spectra. These results for the 3dn+1 states are in one to one correspondence with the leading edge structures found at the fluorine K edge. A direct comparison with the metal L2,3 edges also indicates that there is evidence of the metal multiplet at the fluorine K pre-edge structures.

  2. Temperature and radiation effects at the fluorine K-edge in LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan

    Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less

  3. Temperature and radiation effects at the fluorine K-edge in LiF

    DOE PAGES

    Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan; ...

    2017-05-30

    Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less

  4. Changes in the near edge X-ray absorption fine structure of hybrid organic-inorganic resists upon exposure.

    PubMed

    Fallica, Roberto; Watts, Benjamin; Roesner, Benedikt; Della Giustina, Gioia; Brigo, Laura; Brusatin, Giovanna; Ekinci, Yasin

    2018-06-14

    We report on the near edge X-ray absorption fine structure (NEXAFS) spectroscopy of hybrid organic-inorganic resists. These materials are nonchemically amplified systems based on Si, Zr, and Ti oxides, synthesized from organically modified precursors and transition metal alkoxides by a sol-gel route and designed for ultraviolet, extreme ultraviolet and electron beam lithography. The experiments were conducted using a scanning transmission X-ray microscope (STXM) which combines high spatial-resolution microscopy and NEXAFS spectroscopy. The absorption spectra were collected in the proximity of the carbon edge (~ 290 eV) before and after in situ exposure, enabling the measurement of a significant photo-induced degradation of the organic group (phenyl or methyl methacrylate, respectively), the degree of which depends on the configuration of the ligand. Photo-induced degradation was more efficient in the resist synthesized with pendant phenyl substituents than it was in the case of systems based on bridging phenyl groups. The degradation of the methyl methacrylate group was relatively efficient, with about half of the initial ligands dissociated upon exposure. Our data reveal that the such dissociation can produce different outcomes, depending on the structural configuration. While all the organic groups were expected to detach and desorb from the resist in their entirety, a sizeable amount of them remain and form undesired byproducts such as alkene chains. In the framework of the materials synthesis and engineering through specific building blocks, these results provide a deeper insight into the photochemistry of resists, in particular for extreme ultraviolet lithography. © 2018 IOP Publishing Ltd.

  5. Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K- and L-edge X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent

    1999-11-01

    Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.

  6. Resonant inelastic x-ray scattering on iso-C₂H₂Cl₂ around the chlorine K-edge: structural and dynamical aspects.

    PubMed

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  7. Phosphorus K-edge XANES spectroscopy of mineral standards

    PubMed Central

    Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul

    2011-01-01

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905

  8. Magnesium K-edge XANES spectroscopy of geological standards.

    PubMed

    Yoshimura, Toshihiro; Tamenori, Yusuke; Iwasaki, Nozomu; Hasegawa, Hiroshi; Suzuki, Atsushi; Kawahata, Hodaka

    2013-09-01

    Magnesium K-edge X-ray absorption near-edge structure (XANES) spectra have been investigated to develop a systematic understanding of a suite of Mg-bearing geological materials such as silicate and carbonate minerals, sediments, rocks and chemical reagents. For the model compounds the Mg XANES was found to vary widely between compounds and to provide a fingerprint for the form of Mg involved in geologic materials. The energy positions and resonance features obtained from these spectra can be used to specify the dominant molecular host site of Mg, thus shedding light on Mg partitioning and isotope fractionation in geologic materials and providing a valuable complement to existing knowledge of Mg geochemistry.

  9. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arber, J.M.; de Boer, E.; Garner, C.D.

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure datamore » confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.« less

  10. Full multiple-scattering calculations on silicates and oxides at the Al K edge

    NASA Astrophysics Data System (ADS)

    Cabaret, Delphine; Sainctavit, Philippe; Ildefonse, Philippe; Flank, Anne-Marie

    1996-05-01

    We present full multiple-scattering calculations at the aluminium K edge that we compare with experiments for four crystalline silicates and oxide minerals. In the different minerals aluminium atoms are either fourfold or sixfold coordinated to oxygen atoms in Al sites that are poorly symmetric. The calculations are based on different choices of one-electron potentials according to aluminium coordinations and crystallographic structures of the compounds. Hence it is possible to determine how the near-edge spectral features are a sensitive probe of the effective potential seen by the photoelectron in the molecular environment. The purpose of this work is to determine on the one hand the relation between Al K-edge spectral features and the geometrical arrangements around the aluminium sites, and on the other hand the electronic structure of the compounds.

  11. Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients

    NASA Astrophysics Data System (ADS)

    Chenlemuge, Tselmeg; Dulamsuren, Choimaa; Hertel, Dietrich; Schuldt, Bernhard; Leuschner, Christoph; Hauck, Markus

    2015-02-01

    At its southernmost distribution limit in Inner Asia, the boreal forest disintegrates into forest fragments on moist sites (e.g. north-facing slopes), which are embedded in grasslands. This landscape mosaic is characterized by a much higher forest edge-to-interior ratio than in closed boreal forests. Earlier work in the forest-steppe ecotone of Mongolia has shown that Larix sibirica trees at forest edges grow faster than in the forest interior, as the more xeric environment at the edge promotes self-thinning and edges are preferentially targeted by selective logging and livestock grazing. Lowered stand density reduces competition for water in these semi-arid forests, where productivity is usually limited by summer drought. We studied how branch and coarse root hydraulic architecture and xylem conductivity, fine root biomass and necromass, and fine root morphology of L. sibirica respond to sites differing in water availability. Studying forest edge-interior gradients in two regions of western Mongolia, we found a significant reduction of branch theoretical (Kp) and empirical conductivity (Ks) in the putatively more drought-affected forest interior in the Mongolian Altai (mean precipitation: 120 mm yr-1), while no branch xylem modification occurred in the moister Khangai Mountains (215 mm yr-1). Kp and Ks were several times larger in roots than in branches, but root hydraulics were not influenced by stand density or mean annual precipitation. Very low fine root biomass: necromass ratios at all sites, and in the forest interior in particular, suggest that L. sibirica seeks to maintain a relatively high root conductivity by producing large conduits, which results in high root mortality due to embolism during drought. Our results suggest that L. sibirica is adapted to the semi-arid climate at its southernmost distribution limit by considerable plasticity of the branch hydraulic system and a small but apparently dynamic fine root system.

  12. SR high-speed K-edge subtraction angiography in the small animal (abstract)

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Akisada, M.; Nakajima, T.; Anno, I.; Ueda, K.; Umetani, K.; Yamaguchi, C.

    1989-07-01

    To assess the ability of the high-speed K-edge energy subtraction system which was made at beamline 8C of Photon Factory, Tsukuba, we performed an animal experiment. Rabbits were used for the intravenous K-edge subtraction angiography. In this paper, the actual images of the artery obtained by this system, are demonstrated. The high-speed K-edge subtraction system consisted of movable silicon (111) monocrystals, II-ITV, and digital memory system. Image processing was performed by 68000-IP computer. The monochromatic x-ray beam size was 50×60 mm. Photon energy above and below iodine K edge was changed within 16 ms and 32 frames of images were obtained sequentially. The rabbits were anaesthetized by phenobarbital and a 5F catheter was inserted into inferior vena cava via the femoral vein. 1.5 ml/kg of contrast material (Conlaxin H) was injected at the rate of 0.5 ml/kg/s. TV images were obtained 3 s after the starting point of injection. By using this system, the clear K-edge subtracted images were obtained sequentially as a conventional DSA system. The quality of the images were better than that obtained by DSA. The dynamical blood flow was analyzed, and the best arterial image could be selected from the sequential images. The structures of aortic arch, common carotid arteries, right subclavian artery, and internal thoracic artery were obtained at the chest. Both common carotid arteries and vertebral arteries were recorded at the neck. The diameter of about 0.3-0.4 mm artery could be clearly revealed. The high-speed K-edge subtraction system demonstrates the very sharp arterial images clearly and dynamically.

  13. Core level electron energy-loss spectra of minerals: pre-edge fine structures at the oxygen K-edge . Comment on ``Water in minerals detectable by electron energy-loss spectroscopy EELS'' by R. Wirth, Phys Chem Minerals (1997) 24:561-568

    NASA Astrophysics Data System (ADS)

    van Aken, P. A.; Liebscher, B.; Styrsa, V. J.

    In a recent paper entitled ``Water in minerals detectable by electron energy-loss spectroscopy EELS'' by R. Wirth, it has been claimed that OH-- and H2O-bearing minerals exhibit a characteristic peak in the ELNES spectra at about 528 eV prior to the onset of the O K-edge at 532 eV, which could be used for (semi-)quantitative determination of water- or OH-contents on a nanometer scale. It is shown here by parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM) that O K-pre-edge peaks with very high intensities may also exist in water-free compounds and minerals, in particular when they contain transition metals. These spectral features arise from covalent mixing of the metal and oxygen states, which introduces oxygen p character in unoccupied states of mainly metal character. The point is illustrated by the comparison of hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) O K-edge PEELS spectra which exhibit similar intensities of the pre-edge peak, despite of their grossly different OH- contents. As a consequence, the general validity of the method proposed by Wirth is questioned.

  14. Carbon K-edge spectra of carbonate minerals.

    PubMed

    Brandes, Jay A; Wirick, Sue; Jacobsen, Chris

    2010-09-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  15. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  16. Orientational behavior of thin films of poly(3-methylthiophene) on platinium: A FTIR and near edge x-ray absorption fine structure (NEXAFS) study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.Q.; Chen, J.; Hale, P.D.

    1988-01-01

    Near edge x-ray absorption fine structure (NEXAFS) and infrared reflection-absorption spectroscopy (IRRAS) have been used to study the orientational behavior of thin films of poly(3-methylthiophene) electrochemically polymerized on a platinum surface. Clear orientational effects, with the thiophene rings predominantly oriented parallel to the platinum surface, were observed when the thickness of the polymer films were within a few hundred /angstrom/A. It was found that more highly ordered films were produced at lower polymerization potential (1.4V vs SCE) than at higher potential (1.8V vs SCE). 5 refs., 4 figs., 2 tabs.

  17. 4d Electronic structure analysis of ruthenium in the perovskite oxides by Ru K- and L-edge XAS.

    PubMed

    Kim, J Y; Hwang, S H; Kim, S J; Demazeau, G; Choy, J H; Shimada, H

    2001-03-01

    The 4d electronic structure of ruthenium in the perovskite oxides, La2MRuIVO6 (M = Zn, Mg, and Li) and Ba2YRuVO6, has been investigated by the Ru K-and L-edge XANES and EXAFS analyses. Such X-ray absorption spectroscopic results clarify that the RuIV (d4) and RuV (d3) ions are stabilized in nearly regular Oh site. Comparing the Ru L-edge XANES spectra of perovskites containing isovalent ruthenium, it has been found that the t2g state is mainly influenced by A site cation, whereas the eg is mainly affected by neighboring B site cation. The experimental EXAFS spectra in the range of R < or = approximately 4.5 A are well reproduced by ab-initio calculation based on crystallographic data, which supports the long-range structure presented by Rietveld refinement.

  18. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassi, Michel; Pearce, Carolyn I.; Bagus, Paul S.

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectramore » of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.« less

  19. Experimental and theoretical studies of dipole and quadrupole contributions to the vanadium K-edge XANES for VOPO4.2H2O xerogel

    NASA Astrophysics Data System (ADS)

    Poumellec, B.; Kraizman, V.; Aifa, Y.; Cortès, R.; Novakovich, A.; Vedrinskii, R.

    1998-09-01

    Angular dependence of the vanadium K-edge x-ray appearance near-edge structure (XANES) for the VOPO4.2H2O xerogel is thoroughly studied both experimentally and theoretically. The main attention is paid to the pre-edge fine structure (PEFS) of the spectra which was shown earlier to be a useful tool for the atomic short order investigations. Good quantitative agreement between theory and experiment obtained for both dipole and quadrupole contributions to the spectra proves validity of the calculation method developed and enables us to ascertain the nature of all the features in the PEFS's. The p-d mixture effect due to distortion of the central coordination octahedron and the quadrupole transitions are proved to be the only mechanisms responsible for the PEFS formation in the case considered. We show that in order to achieve quantitative agreement between experimental and theoretical spectra, it is necessary to include the effect of atomic vibrations, which makes the forbidden transitions to molecular orbitals of the central octahedron (MOCO's) dipole allowed, and to take into account deviation of the crystal layers from the substrate plane, which is not a single crystal but a texture.

  20. On the Electronic Structure of Cu Chlorophyllin and Its Breakdown Products: A Carbon K-Edge X-ray Absorption Spectroscopy Study.

    PubMed

    Witte, Katharina; Mantouvalou, Ioanna; Sánchez-de-Armas, Rocío; Lokstein, Heiko; Lebendig-Kuhla, Janina; Jonas, Adrian; Roth, Friedrich; Kanngießer, Birgit; Stiel, Holger

    2018-02-15

    Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.

  1. Spectral K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Samadi, N.; Martinson, M.; Bassey, B.; Wei, Z.; Belev, G.; Chapman, D.

    2014-05-01

    We describe a spectral x-ray transmission method to provide images of independent material components of an object using a synchrotron x-ray source. The imaging system and process is similar to K-edge subtraction (KES) imaging where two imaging energies are prepared above and below the K-absorption edge of a contrast element and a quantifiable image of the contrast element and a water equivalent image are obtained. The spectral method, termed ‘spectral-KES’ employs a continuous spectrum encompassing an absorption edge of an element within the object. The spectrum is prepared by a bent Laue monochromator with good focal and energy dispersive properties. The monochromator focuses the spectral beam at the object location, which then diverges onto an area detector such that one dimension in the detector is an energy axis. A least-squares method is used to interpret the transmitted spectral data with fits to either measured and/or calculated absorption of the contrast and matrix material-water. The spectral-KES system is very simple to implement and is comprised of a bent Laue monochromator, a stage for sample manipulation for projection and computed tomography imaging, and a pixelated area detector. The imaging system and examples of its applications to biological imaging are presented. The system is particularly well suited for a synchrotron bend magnet beamline with white beam access.

  2. The P K-near edge absorption spectra of phosphates

    NASA Astrophysics Data System (ADS)

    Franke, R.; Hormes, J.

    1995-12-01

    The X-ray absorption near edge structure (XANES) at the P K-edge in several orthophosphates with various cations, in condensed, and in substituted sodium phosphates have been measured using synchrotron radiation from the ELSA storage ring at the University of Bonn. The measured spectra demonstrate that chemical changes beyond the PO 4- tetrahedra are reflected by energy shifts of the pre-edge and continuum resonances, by the presence of characteristic shoulders and new peaks and by differences in the intensity of the white line. We discuss the energy differences between the white line positions and the corresponding P ls binding energies as a measure of half of the energy gap. The corresponding values correlate with the valence of the cations and the intensity of the white lines. The energy positions of the continuum resonances are discussed on the basis of an empirical bond-length correlation supporting a 1/ r2 - dependence.

  3. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Astrophysics Data System (ADS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-10-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced by NASA's Kepler observatory. Component (b) consists of variations over a range of timescales, in the manner of a "1/f" random process. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the stochastic process (b). The data can be found at the National Solar Observatory web site http://nsosp.nso.edu/data/cak_mon.html, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  4. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less

  5. Formation of fine {gamma} grain structure through fine {alpha}{sub 2}/{gamma} lamellar structure in Ti-rich TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, T.; Abe, E.; Nakamura, M.

    1997-12-31

    Microstructural development of an extremely fine {alpha}{sub 2}-Ti{sub 32}Al/{gamma}-TiAl lamellar structure, which was formed by ice water quenching after solution-treatment in a high-temperature {alpha}-Ti phase field for a long period of time, was examined during isothermal treatment. In an as-quenched Ti-48at.%Al alloy, the massively transformed {gamma} ({gamma}{sub m}) and untransformed (meaning massively untransformed) fine {alpha}{sub 2}/{gamma} lamellar regions were observed. Fine {gamma} grains, which were similar to {gamma}{sub m}, were generated both within the fine {alpha}{sub 2}/{gamma} lamellae and at the boundary area between the {gamma}{sub m} and the fine {alpha}{sub 2}/{gamma} lamellar regions by aging at low-temperature (1,173 K)more » for a short time (180s). Further aging (1.8ks) caused the coarsening of these newly generated fine {gamma} grains. On the other hand, the coarsening of the {gamma} grains occurred by a high-temperature (1,323 K) aging treatment even for 180s. Fine {alpha}{sub 2} plates and particles, which were aligned to a particular direction, were observed in the {gamma} grain interiors, indicating that the newly generated {gamma} grains grew at the expense of the fine {alpha}{sub 2}/{gamma} lamellae. It can be considered that the {gamma} grain formation through the fine {alpha}{sub 2}/{gamma} lamellae is closely related to the {alpha}{sub 2}{yields}{gamma} reaction of the {alpha}{sub 2} plates sandwiched by the {gamma} plates, and needs the fast heating rate enough to overcome the {alpha}{sub 2}/{gamma}{yields}{gamma}/{gamma} lamellae reaction.« less

  6. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    PubMed

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  7. X ray absorption fine structure of systems in the anharmonic limit

    NASA Astrophysics Data System (ADS)

    Mustredeleon, J.; Conradson, S. D.; Batistic, I.; Bishop, A. R.; Raistrick, I.; Jackson, W. E.; Brown, G. E.

    A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion Hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allows the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca3Fe2Si3O12) and magnesiowustite (Mg(0.9)Fe(0.1)O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe2SiO4). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa2Cu3O7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and Tc. The relation of the observed lattice distortion to mechanisms of superconductivity is discussed.

  8. Vanadium fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser–solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-09-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less

  9. Extended X-ray Absorption Fine Structure (EXAFS) Analysis of Vitreous Rare Earth Sodium Phosphates

    NASA Astrophysics Data System (ADS)

    Yoo, Changhyeon; Marasinghe, Kanishka; Segre, Carlo; Shibata, Tomohiro

    2015-03-01

    The local structure around rare-earth ions (RE3+) in rare-earth ultraphosphate (REUP) glasses has been studied using RE LIII edge (RE = Nd, Er, Dy, and Eu) and K edge (RE = Nd, Pr, Dy, and Eu) extended X-ray absorption fine structure (EXAFS) spectroscopy. (RE2O3)x (Na2O)y(P2O5) 1 - x - y glasses in the compositional range 0 <= x <= 0.14 and x + y = 0.3 and 0.4 were studied. RE-oxygen (RE-O) coordination number decreases from ~ 10 to ~ 7.5 with increasing RE-content for Nd, Pr, Eu, and Dy. For Er, RE-O coordination number increases from ~ 8.7 to ~ 10 with increasing RE-content. For the first oxygen shell, the RE-O distance ranges between 2.41-2.43 Å, 2.44-2.46 Å, 2.24-2.26 Å, 2.28-2.32 Å, and 2.32-2.36 Å for Nd, Pr, Er, Dy, and EU glasses, respectively. Second shell around RE ions consists of phosphorus atoms, with RE-P distance about 3.0-3.5 Å and coordination number ranging from 1 to 3. The third shell primarily contains oxygen and is at a distance about 4.0-4.1 Å from RE ions.

  10. Two-peak structure in the K-edge RIXS spectra of a spatially frustrated Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Datta, Trinanjan; Luo, Cheng; Yao, Dao-Xin

    2014-03-01

    Quantum fluctuations due to spatial anisotropy and strong magnetic frustration lead to the formation of a two-peak structure in the K-edge bimagnon RIXS intensity spectra of a Jx-Jy-J2 Heisenberg model on a square lattice. We compute the RIXS intensity, including up to first order 1/S spin wave expansion correction, using the Bethe-Salpeter equation within the ladder approximation scheme. The two-peak feature occurs in both the antiferromagnetic phase and the collinear antiferromagnetic phase. A knowledge of the peak splitting energy from both magnetically ordered regime can provide experimentalists with an alternative means to measure and study the effects of local microscopic exchange constants. Cottrell Research Corporation, NSFC-11074310, NSFC-11275279, Specialized Research Fund for the Doctoral Program of Higher Education.

  11. Structural Characterization of Poorly-Crystalline Scorodite, Iron (III)-arsenate Co-precipitates and Uranium Millneutralized Raffinate Solids using X-ray Absorption Fine Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, N.; Jiang, D; Cutler, J

    X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Femore » K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 {+-} 0.02 A and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 {+-} 0.02 A and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 {+-} 0.03 A and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 {+-} 0.03 A and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 {+-} 0.03 A and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic

  12. Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution 27Al NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul

    2012-03-01

    The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution 27Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the 27Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.

  13. Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.

    PubMed

    Atak, Haluk; Shikhaliev, Polad M

    2016-03-01

    In photon counting (PC) x-ray imaging and computed tomography (CT), the broad x-ray spectrum can be split into two parts using an x-ray filter with appropriate K-edge energy, which can improve material decomposition. Recent experimental study has demonstrated substantial improvement in material decomposition with PC CT when K-edge filtered x-rays were used. The purpose of the current work was to conduct further investigations of the K-edge filtration method using comprehensive simulation studies. The study was performed in the following aspects: (1) optimization of the K-edge filter for a particular imaging configuration, (2) effects of the K-edge filter parameters on material decomposition, (3) trade-off between the energy bin separation, tube load, and beam quality with K-edge filter, (4) image quality of general (unsubtracted) images when a K-edge filter is used to improve dual energy (DE) subtracted images, and (5) improvements with K-edge filtered x-rays when PC detector has limited energy resolution. The PC x-ray images of soft tissue phantoms with 15 and 30 cm thicknesses including iodine, CaCO3, and soft tissue contrast materials, were simulated. The signal to noise ratio (SNR) of the contrast elements was determined in general and material-decomposed images using K-edge filters with different atomic numbers and thicknesses. The effect of the filter atomic number and filter thickness on energy separation factor and SNR was determined. The boundary conditions for the tube load and halfvalue layer were determined when the K-edge filters are used. The material-decomposed images were also simulated using PC detector with limited energy resolution, and improvements with K-edge filtered x-rays were quantified. The K-edge filters with atomic numbers from 56 to 71 and K-edge energies 37.4-63.4 keV, respectively, can be used for tube voltages from 60 to 150 kVp, respectively. For a particular tube voltage of 120 kVp, the Gd and Ho were the optimal filter materials

  14. Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.

    PubMed

    Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred

    2016-03-22

    We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.

  15. Long- and Short-Range Structure of Ferrimagnetic Iron-Chromium Maghemites.

    PubMed

    García-Guaderrama, Marco; Montero-Cabrera, María E; Morán, Emilio; Alario-Franco, Miguel A; Fuentes-Cobas, Luis E; Macías-Ríos, Edgar; Esparza-Ponce, Hilda E; Fuentes-Montero, María E

    2015-12-07

    Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).

  16. Copper fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser-solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-03-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less

  17. Time dependent density functional theory study of the near-edge x-ray absorption fine structure of benzene in gas phase and on metal surfaces.

    PubMed

    Asmuruf, Frans A; Besley, Nicholas A

    2008-08-14

    The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.

  18. The NaK 1 1,3delta states: theoretical and experimental studies of fine and hyperfine structure of rovibrational levels near the dissociation limit.

    PubMed

    Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P

    2005-09-22

    Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

  19. A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses

    NASA Astrophysics Data System (ADS)

    Chalmin, E.; Farges, F.; Brown, G. E.

    2009-01-01

    High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses.

  20. Resonant inelastic x-ray scattering on iso-C2H2Cl2 around the chlorine K-edge: Structural and dynamical aspects

    NASA Astrophysics Data System (ADS)

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc

    2014-10-01

    We report a theoretical and experimental study of the high resolution resonant Kα X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the Kα emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  1. High-resolution Measurement of Contact Ion-pair Structures in Aqueous RbCl Solutions from the Simultaneous Corefinement of their Rb and Cl K-edge XAFS and XRD Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Van-Thai; Fulton, John L.

    2016-06-21

    In concentrated solutions of aqueous RbCl, all of the Rb+ and Cl- ions exist as contact ion pairs. This full structural assessment is derived from the refinement of three independent experimental measurements: the Rb and Cl K-edge x-ray absorption fine structure (XAFS) and the x-ray diffraction spectra (XRD). This simultaneous refinement of the XAFS and XRD data provides high accuracy since each method probes the structure of different local regions about the ions with high sensitivity. At high RbCl concentration (6 m (mol/kg )) the solution is dominated by Rb+ - Cl- contact ion pairs yielding an average of 1.5more » pairs at an Rb-Cl distance of 3.24 Å. Upon formation of these ion pairs, approximately 1.1 waters molecules are displaced from the Rb+ and 1.4 water molecules from Cl-. The hydration shells about both the cation and anion are also determined. These results greatly improve the understanding of monovalent ions and provide a basis for testing the Rb+-Cl- interaction potentials used in molecular dynamics (MD) simulation. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less

  2. Resonant inelastic x-ray scattering on iso-C{sub 2}H{sub 2}Cl{sub 2} around the chlorine K-edge: Structural and dynamical aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawerk, Elie, E-mail: eliekawerk@hotmail.com, E-mail: ekawerk@units.it; Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris; Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise, 90656 Jdeidet el Metn, Liban

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  3. Kα X-Ray Emission Spectra and K X-Ray Absorption-Edge Structures of Fluorine in 3d Transition-Metal Difluorides

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1991-08-01

    The fluorine Kα emission spectra in fluorescence from a series of 3d transition-metal difluorides MF2 (M=Mn, Fe, Co, Ni, Cu and Zn) have been measured with a high-resolution two-crystal vacuum spectrometer. It is shown that the observed FWHM of the Kα1,2 emission band is closely related to the difference in the electronegativity between the metal and fluorine atoms. The measured emission spectra are presented along with the UPS or XPS spectra of the valence bands and the fluorine K absorption spectra of the metal difluorides, reported previously. The structures at the fluorine K absorption edges are interpreted in terms of a molecular orbital (MO) model.

  4. Characterization of local atomic structure in Co/Zn based ZIFs by XAFS

    NASA Astrophysics Data System (ADS)

    Podkovyrina, Yulia; Butova, Vera; Bulanova, Elena; Budnyk, Andriy; Kremennaya, Maria; Soldatov, Alexander; Lamberti, Carlo

    2018-03-01

    The local atomic structure in bimetallic Co/Zn zeolitic imidazolate frameworks (ZIFs) was studied using X-ray Absorption Fine Structure (XAFS) spectroscopy and theoretical calculations. The experimental Co K-edge and Zn K-edge XANES (X-ray Absorption Near Edge Structure) spectra of Zn1-xCoxC8H10N4 samples (x = 0.05, 0.25, 0.75) synthesized by microwave synthesis were compared with the data for the ZIF-67 (x=1) and ZIF-8 (x=0). Theoretical XANES spectra for the bimetallic ZIFs were calculated. It was shown that in bimetallic ZIFs the Co and Zn atoms have the similar local environment.

  5. Fine structure of heliumlike ions and determination of the fine structure constant.

    PubMed

    Pachucki, Krzysztof; Yerokhin, Vladimir A

    2010-02-19

    We report a calculation of the fine-structure splitting in light heliumlike atoms, which accounts for all quantum electrodynamical effects up to order alpha{5} Ry. For the helium atom, we resolve the previously reported disagreement between theory and experiment and determine the fine-structure constant with an accuracy of 31 ppb. The calculational results are extensively checked by comparison with the experimental data for different nuclear charges and by evaluation of the hydrogenic limit of individual corrections.

  6. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect.

    PubMed

    Napolitano, Mary E; Trueblood, Jon H; Hertel, Nolan E; David, George

    2002-09-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within +/-1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  7. Image reconstruction for x-ray K-edge imaging with a photon counting detector

    NASA Astrophysics Data System (ADS)

    Meng, Bo; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2014-09-01

    Contrast agents with high-Z elements have K-absorption edges which significantly change X-ray attenuation coefficients. The K-edge characteristics is different for various kinds of contrast agents, which offers opportunities for material decomposition in biomedical applications. In this paper, we propose a new K-edge imaging method, which not only quantifies a distribution of a contrast agent but also provides an optimized contrast ratio. Our numerical simulation tests demonstrate the feasibility and merits of the proposed methodology.

  8. Characterization of extracellular polymeric substances in the biofilms of typical bacteria by the sulfur K-edge XANES spectroscopy.

    PubMed

    Lin, Huirong; Ye, Chengsong; Lv, Lu; Zheng, Clark Renjun; Zhang, Shenghua; Zheng, Lei; Zhao, Yidong; Yu, Xin

    2014-08-01

    A combined approach of physicochemical extraction and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to characterize the extracellular polymeric substances (EPS) of typical bacterial biofilms in this study. Physicochemical analysis showed variation of the contents of DNA, polysaccharide and protein in different fractions of EPS in different mediums. The sulfur K-edge XANES analysis yielded a variety of spectra. Spectral fitting of the XANES spectra utilizing a large set of model compounds showed that there was more reduced sulfur in both LB-EPS (loosely bound EPS) and TB-EPS (tightly bound EPS) of all the biofilms in LB medium than in R2A medium. More oxidized sulfur was identified in LB-EPS than that in TB-EPS, suggesting different niches and physiological heterogeneity in the biofilms. Our results suggested that the sulfur K-edge XANES can be a useful tool to analyze the sulfur speciation in EPS of biofilms. Copyright © 2014. Published by Elsevier B.V.

  9. X-ray K-edge absorption spectra of Fe minerals and model compounds: II. EXAFS

    NASA Astrophysics Data System (ADS)

    Waychunas, Glenn A.; Brown, Gordon E.; Apted, Michael J.

    1986-01-01

    K-edge extended X-ray absorption fine structure (EXAFS) spectra of Fe in varying environments in a suite of well-characterized silicate and oxide minerals were collected using synchrotron radiation and analyzed using single scattering approximation theory to yield nearest neighbor Fe-O distances and coordination numbers. The partial inverse character of synthetic hercynite spinal was verified in this way. Comparison of the results from all samples with structural data from X-ray diffraction crystal structure refinements indicates that EXAFS-derived first neighbor distances are generally accurate to ±0.02 Å using only theoretically generated phase information, and may be improved over this if similar model compounds are used to determine EXAFS phase functions. Coordination numbers are accurate to ±20 percent and can be similarly improved using model compound EXAFS amplitude information. However, in particular cases the EXAFS-derived distances may be shortened, and the coordination number reduced, by the effects of static and thermal disorder or by partial overlap of the longer Fe-O first neighbor distances with second neighbor distances in the EXAFS structure function. In the former case the total information available in the EXAFS is limited by the disorder, while in the latter case more accurate results can in principle be obtained by multiple neighbor EXAFS analysis. The EXAFS and XANES spectra of Fe in Nain, Labrador osumulite and Lakeview, Oregon plagioclase are also analyzed as an example of the application of X-ray absorption spectroscopy to metal ion site occupation determination in minerals.

  10. Structural characterization of poorly-crystalline scorodite, iron(III)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, N; Jiang, D T; Cutler, J

    X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Femore » K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 ± 0.02 Å and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 ± 0.02 Å and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 ± 0.03 Å and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 ± 0.03 Å and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 ± 0.03 Å and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic

  11. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  12. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE PAGES

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.; ...

    2017-06-22

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  13. Spin and orbital states in single-layered La2-xCaxCoO4 studied by doping- and temperature-dependent near-edge x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Merz, M.; Fuchs, D.; Assmann, A.; Uebe, S.; v. Löhneysen, H.; Nagel, P.; Schuppler, S.

    2011-07-01

    The doping-dependent valence, orbital, and spin-state configurations of single-layered La2-xCaxCoO4 (x=0, 0.5, 1, and 1.5) were investigated with temperature-dependent near-edge x-ray absorption fine structure at the Co L2,3 and O K edges. The spectra show that in La2CoO4, the superexchange between neighboring Co2+ HS states is responsible for the strong antiferromagnetism. With increasing hole doping, the superexchange interactions between Co2+ HS ions are rapidly reduced by interlaced nonmagnetic Co3+ LS. For La1.5Ca0.5CoO4, the low Néel temperature of the samples together with the 50% Co2+ HS and 50% Co3+ LS configuration suggests a checkerboard arrangement of these ions. The spin blockade resulting from this arrangement naturally explains the high resistivity of La1.5Ca0.5CoO4. Upon further doping, Co2+ HS ions are replaced by Co3+ HS, and for LaCaCoO4 a mixture of Co3+ LS and Co3+ HS occurs. Superexchange via configuration fluctuation processes between these two species seems to induce long-range ferromagnetism, while the superexchange between adjacent Co3+ HS neighbors may lead to a competing antiferromagnetic exchange. For a doping content beyond x=1, Co4+ HS is introduced to the system at the expense of Co3+ LS, and a t2g double exchange between Co3+ HS and Co4+ HS is established, which further enhances ferromagnetic interactions and reduces resistivity. No indications for a Co3+ IS state are found throughout the La2-xCaxCoO4 doping series.

  14. Temperature dependence of pre-edge features in Ti K-edge XANES spectra for ATiO₃ (A = Ca and Sr), A₂TiO₄ (A = Mg and Fe), TiO₂ rutile and TiO₂ anatase.

    PubMed

    Hiratoko, Tatsuya; Yoshiasa, Akira; Nakatani, Tomotaka; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2013-07-01

    XANES (X-ray absorption near-edge structure) spectra of the Ti K-edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20-900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre-edge and post-edge. After the AIIP, amplitudes damped due to Debye-Waller factor effects with temperature. Amplitudes in the pre-edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre-edge peaks in various titanium compounds over a wide temperature range.

  15. K-shell photoabsorption edge of strongly coupled aluminum driven by laser-converted radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Zhiyu; Qing, Bo; Yang, Jiamin; Zhang, Jiyan; Wei, Minxi; Yang, Guohong; Song, Tianming; Xiong, Gang; Lv, Min; Hu, Zhimin; Deng, Bo; Hu, Xin; Zhang, Wenhai; Shang, Wanli; Hou, Lifei; Du, Huabing; Zhan, Xiayu; Yu, Ruizhen

    2017-03-01

    The first observation of the K-shell photoabsorption edge of strongly coupled aluminum generated by intense x-ray radiation-driven shocks is reported. By using a “dog bone” gold hohlraum as an x-ray converter, colliding shocks compression and preheating shielding are achieved to generate an unexplored state with a density of 5.5 g/cm3 and temperature of 0.43 eV (the ion-ion coupling parameter Γii is around 240). The time-resolved K-shell photoabsorption edges are measured with a crystal spectrometer using a short x-ray backlighter. The broadenings and redshifts of the edges are studied by using the slope fitting of the edge and quantum molecular dynamics calculations. This work shows that the K-edge of aluminum driven by laser-converted radiation provides a novel capability to probe WDM at extended conditions.

  16. Electronic structure study of Ce1-xAxO2 (A = Zr & Hf) nanoparticles: NEXAFS and EXAFS investigations.

    PubMed

    Sharma, Aditya; Varshney, Mayora; Shin, Hyun-Joon; Park, Yong Jun; Kim, Min-Gyu; Ha, Tae-Kyun; Chae, Keun Hwa; Gautam, Sanjeev

    2014-10-07

    Single phase nanoparticles (NPs) of CeO2, Ce0.5Zr0.5O2, Ce0.5Hf0.5O2 and Ce0.5Hf0.25Zr0.25O2 were successfully synthesized by co-precipitation method at constant pH and temperature. The X-ray diffraction results revealed that the additive atoms did not segregate to form secondary phases but led to grain size variation in the NPs. The 10 Dq values in the near edge X-ray absorption fine structure (NEXAFS) spectra at the O K-edge did not vary in the same way as the average grain size was changed for the doped CeO2 NPs. The deconvolution of Ce M5-edge and detailed analysis of O K pre-edge peak have shown the higher Ce(+3)/(Ce(+3) + Ce(+4)) ratio in the Zr- and Hf-doped samples. The local atomic structure around the Ce, Zr and Hf atoms was investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy at Ce K-edge, Zr K-edge and Hf L3-edge, respectively, and the EXAFS data were fitted with the theoretical calculations. The 4f occupancy, Ce(+3)/(Ce(+3) + Ce(+4)) ratio of Ce ions, coordination number of Ce and Ce-Ce/Ce-O bond distances were sensitive to the additive atoms but not explicitly changed according to the grain size variation in the NPs.

  17. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    PubMed

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  18. X-Ray Absorption Near Edge Structure And Extended X-Ray Absorption Fine Structure Analysis of Standards And Biological Samples Containing Mixed Oxidation States of Chromium(III) And Chromium(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.

    For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less

  19. Analysis of the detailed configuration of hydrated lanthanoid(III) ions in aqueous solution and crystalline salts by using K- and L(3)-edge XANES spectroscopy.

    PubMed

    D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Persson, Ingmar

    2010-01-11

    The structural properties of the hydrated lanthanoid(III) ions in aqueous solution and in the isostructural trifluoromethanesulfonate salts have been investigated by a quantitative analysis of the X-ray absorption near-edge structure (XANES) spectra at the K- and L(3)-edges. The XANES analysis has provided a clear description of the variation of lanthanoid(III) hydration properties across the series. It was found that all of the lanthanoid(III) hydration complexes retain a tricapped trigonal prism (TTP) geometry, and along the series two of the capping water molecules become less and less strongly bound, before finally, on average, one of them leaves the hydration cluster. This gives rise to an eight-coordinated distorted bicapped trigonal prism with two different Ln--O capping distances for the smallest lanthanoid(III) ions. This systematic study has shown that for lanthanoid compounds more accurate structural information is obtained from the analysis of the L(3)-edge than from K-edge XANES data. Moreover, whereas the second hydration shells provide a detectable contribution to the L(3)-edge XANES spectra of the lighter lanthanoid ions, the K-edge spectra are insensitive to the more distant coordination spheres.

  20. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    NASA Astrophysics Data System (ADS)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  1. Collisional excitation of CH2 rotational/fine-structure levels by helium

    NASA Astrophysics Data System (ADS)

    Dagdigian, P. J.; Lique, F.

    2018-02-01

    Accurate determination of the abundance of CH2 in interstellar media relies on both radiative and collisional rate coefficients. We investigate here the rotational/fine-structure excitation of CH2 induced by collisions with He. We employ a recoupling technique to generate fine-structure-resolved cross-sections and rate coefficients from close coupling spin-free scattering calculations. The calculations are based on a recent, high-accuracy CH2-He potential energy surface computed at the coupled clusters level of theory. The collisional cross-section calculations are performed for all fine-structure transitions among the first 22 and 24 energy levels of ortho- and para-CH2, respectively, and for temperatures up to 300 K. As a first application, we simulate the excitation of CH2 in typical molecular clouds. The excitation temperatures of the CH2 lines are found to be small at typical densities of molecular clouds, showing that the non-local thermodynamic equilibrium approach has to be used to analyse interstellar spectra. We also found that the fine-structure lines connected with the 404 - 313 and 505 - 414 rotational transitions show possible maser emissions so that they can be easily seen in emission. These calculations show that CH2 may have to be detected mainly through absorption spectra.

  2. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  3. Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-edge X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang; Cui, Shengsheng; Sun, Zijun

    Developing efficient water oxidation catalysts made of earth-abundant elements is a demanding challenge that should be met to fulfill the promise of water splitting for clean energy. Herein we report an annealing approach to synthesize binder-free, self-supported heterogeneous copper oxide (CuO) on conductive electrodes for oxygen evolution reaction (OER), producing electrodes with excellent electrocatalytic properties such as high efficiency, low overpotential, and good stability. The catalysts were grown in situ on fluorine-doped tin oxide (FTO) by electrodeposition from a simple Cu(II) salt solution, followed by annealing at a high temperature. Under optimal conditions, the CuO-based OER catalyst shows an onsetmore » potential of <0.58 V (vs Ag/AgCl) in 1.0 M KOH at pH 13.6. From the Tafel plot, the required overpotentials for current densities of 0.1 and 1.0 mA/cm2 are only 360 and 430 mV, respectively. The structure and the presence of a CuO motif in the catalyst have been identified by high-energy X-ray diffraction (HE-XRD), Cu K-edge X-ray absorption (XAS) spectra including X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS). To the best of our knowledge, this represents the best catalytic activity for CuO-based OER catalysts to date.« less

  4. Insight into the biological effects of acupuncture points by X-ray absorption fine structure.

    PubMed

    Liu, Chenglin; Liu, Qinghua; Zhang, Dongming; Liu, Wei; Yan, Xiaohui; Zhang, Xinyi; Oyanagi, Hiroyuki; Pan, Zhiyun; Hu, Fengchun; Wei, Shiqiang

    2018-06-02

    Exploration of the biological effects of transition metal ions in acupuncture points is essential to clarify the functional mechanism of acupuncture treatment. Here we show that in the SP6 acupuncture point (Sanyinjiao) the Fe ions are in a high-spin state of approximately t 2g 4.5 e g 1.5 in an Fe-N(O) octahedral crystal field. The Fe K-edge synchrotron radiation X-ray absorption fine structure results reveal that the Fe-N and Fe-O bond lengths in the SP6 acupuncture point are 2.05 and 2.13 Å, respectively, and are 0.05-0.10 Å longer than those in the surrounding tissue. The distorted atomic structure reduces the octahedral symmetry and weakens the crystal field around the Fe ions by approximately 0.3 eV, leading to the high-spin configuration of the Fe ions, which is favorable for strengthening the magnetotransport and oxygen transportation properties in the acupuncture point by the enhanced spin coherence. This finding might provide some insight into the microscopic effect of the atomic and electronic interactions of transition metal ions in the acupuncture point. Graphical Abstract ᅟ.

  5. Influence of point defects on the near edge structure of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  6. Temperature dependence of interfacial structures and acidity of clay edge surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Cheng, Jun; Sprik, Michiel; Wang, Rucheng

    2015-07-01

    In the pursuit of a microscopic understanding of the effects of temperature on the surface reactivity of clay minerals, we conducted first principles molecular dynamics (FPMD) simulations to study the interfacial structures and acidity of clay edge surfaces at elevated temperatures. The common edge surfaces ((0 1 0) and (1 1 0) types) of phyllosilicates were investigated at 348 K and 423 K, and the results were compared with those previously derived at ambient conditions. We found that the stable surface sites are the same as at ambient conditions, including tbnd Al(OH2)2 (6-fold Al), tbnd Al(OH2) (5-fold Al) and tbnd Si(OH) on the (0 1 0) facet, and tbnd Al(OH2), tbnd Al(OH)Sitbnd and tbnd Si(OH) on the (1 1 0) surface. The FPMD-based vertical energy gap technique was applied to compute the acidity constants of edge sites and the resulting pKa values show a decreasing trend with temperature. The results demonstrate that although changes in the point of zero charge of the entire material are insignificant up to 348 K, the decrease in surface pKa can be 3 pKa units, while it can be as large as 6 pKa units up to 423 K. The derived interface structures and pKa values can be used in future experimental and modeling research, e.g., in interpreting experiments and predicting the surface complexation of metal cations and organics. This study therefore provides a physical basis for investigating the interfacial processes of clay minerals in environments that experience elevated P-T conditions, such as sedimentary basins and geological nuclear waste repositories.

  7. Effective Collision Strengths for Fine-structure Transitions in Si VII

    NASA Astrophysics Data System (ADS)

    Sossah, A. M.; Tayal, S. S.

    2014-05-01

    The effective collision strengths for electron-impact excitation of fine-structure transitions in Si VII are calculated as a function of electron temperature in the range 5000-2,000,000 K. The B-spline Breit-Pauli R-matrix method has been used to calculate collision strengths by electron impact. The target wave functions have been obtained using the multi-configuration Hartree-Fock method with term-dependent non-orthogonal orbitals. The 92 fine-structure levels belonging to the 46 LS states of 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, 2s 22p 33d, and 2s2p 43s configurations are included in our calculations of oscillator strengths and collision strengths. There are 4186 possible fine-structure allowed and forbidden transitions among the 92 levels. The present excitation energies, oscillator strengths, and collision strengths have been compared with previous theoretical results and available experimental data. Generally, a good agreement is found with the 6 LS-state close-coupling approximation results of Butler & Zeippen and the 44 LS-state distorted wave calculation of Bhatia & Landi.

  8. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    PubMed

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Effective collision strengths for fine-structure forbidden transitions among the 3s^23p^3 levels of K V

    NASA Astrophysics Data System (ADS)

    Bell, Kenneth; Wilson, Nigel

    2001-05-01

    Electron temperatures and densities are difficult to determine in many astrophysical plasmas. However, it is well known that diagnostics on forbidden line intensity ratios for ions in the phosphorous isoelectronic sequence are of great importance in astrophysics, particularly for nebulae. A key element in the analysis is highly accurate atomic data. In this work we extend the earlier calculations of Butler, Zeippen and Le Bourlot (Astron. Astrophys. 203 189 (1988)) on electron scattering by K v. We have obtained effective collision strengths for a wide range of electron temperatures using the R-matrix method. Twenty-two LS target eigenstates are included in the expansion of the total wavefunction, consisting of the seven n=3 states with configuration 3s^23p^3 and 3s3p^4, twelve n=3 states with configuration 3s^23p^23d, and three n=4 states with configuration 3s^23p^24s. The fine-structure collision strengths have been obtained by transforming to a jj-coupling scheme using the JAJOM program of Saraph (Comp. Phys. Commun. 15 247 (1978)) and have been determined at a sufficiently fine energy mesh to delineate properly the resonance structure. Results for both collision strengths and for effective collision strengths will be presented at the conference and comparison will be made with the earlier work.

  10. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  11. Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment

    ERIC Educational Resources Information Center

    Nayak, S. V.; Badiger, N. M.

    2007-01-01

    We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…

  12. Asymptotically-Equal-To 10 eV ionization shift in Ir K{alpha}{sub 2} from a near-coincident Lu K-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, N. R.; Weber, B. V.; Phipps, D.

    Close to an x-ray filter's K-edge the transmission depends strongly on the photon energy. For a few atom pairs, the K-edge of one is only a few tens of eV higher than a K-line energy of another, so that a small change in the line's energy becomes a measurable change in intensity behind such a matching filter. Lutetium's K-edge is Asymptotically-Equal-To 27 eV above iridium's K{alpha}{sub 2} line, Asymptotically-Equal-To 63.287 keV for cold Ir. A Lu filter reduces this line's intensity by Asymptotically-Equal-To 10 % when it is emitted by a plasma, indicating an ionization shift {Delta}E Asymptotically-Equal-To 10{+-}1 eV.

  13. Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.

    The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.

  14. Simulation studies of structure and edge tension of lipid bilayer edges: effects of tail structure and force-field.

    PubMed

    West, Ana; Ma, Kevin; Chung, Jonathan L; Kindt, James T

    2013-08-15

    Molecular dynamics simulations of lipid bilayer ribbons have been performed to investigate the structures and line tensions associated with free bilayer edges. Simulations carried out for dioleoyl phosphatidylcholine with three different force-field parameter sets yielded edge line tensions of 45 ± 2 pN, over 50% greater than the most recently reported experimentally determined value for this lipid. Edge tensions obtained from simulations of a series of phosphatidylcholine lipid bilayer ribbons with saturated acyl tails of length 12-16 carbons and with monounsaturated acyl tails of length 14-18 carbons could be correlated with the excess area associated with forming the edge, through a two-parameter fit. Saturated-tail lipids underwent local thickening near the edge, producing denser packing that correlated with lower line tensions, while unsaturated-tail lipids showed little or no local thickening. In a dipalmitoyl phosphatidylcholine ribbon initiated in a tilted gel-phase structure, lipid headgroups tended to tilt toward the nearer edge producing a herringbone pattern, an accommodation that may account for the reported edge-induced stabilization of an ordered structure at temperatures near a lipid gel-fluid phase transition.

  15. Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Myers, E. G.; Thompson, J. K.; Silver, J. D.

    1998-05-01

    With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.

  16. Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Newton, Aric G.

    2016-10-01

    The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities

  17. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  18. Laser Spectroscopy of the Fine-Structure Splitting in the 2^{3}P_{J} Levels of ^{4}He.

    PubMed

    Zheng, X; Sun, Y R; Chen, J-J; Jiang, W; Pachucki, K; Hu, S-M

    2017-02-10

    The fine-structure splitting in the 2^{3}P_{J} (J=0, 1, 2) levels of ^{4}He is of great interest for tests of quantum electrodynamics and for the determination of the fine-structure constant α. The 2^{3}P_{0}-2^{3}P_{2} and 2^{3}P_{1}-2^{3}P_{2} intervals are measured by laser spectroscopy of the ^{3}P_{J}-2^{3}S_{1} transitions at 1083 nm in an atomic beam, and are determined to be 31 908 130.98±0.13  kHz and 2 291 177.56±0.19  kHz, respectively. Compared with calculations, which include terms up to α^{5}Ry, the deviation for the α-sensitive interval 2^{3}P_{0}-2^{3}P_{2} is only 0.22 kHz. It opens the window for further improvement of theoretical predictions and an independent determination of the fine-structure constant α with a precision of 2×10^{-9}.

  19. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds

    NASA Astrophysics Data System (ADS)

    Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D.

    2004-05-01

    X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca 2Ge 0.8Cr 0.2O 4, Ba 2Ge 0.1Cr 0.9O 4, Sr 2CrO 4, Ca 2(PO 4) x(CrO 4) 1- xCl ( x=0.25,0.5), Ca 5(CrO 4) 3Cl, CrO 3, the octahedrally coordinated compounds Cr(II)-acetate, CrCl 3, CrF 3, Cr 2O 3, KCr(SO 4) 2 · 12H 2O, CrO 2 and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code.

  20. Electronic and chemical state of aluminum from the single- (K) and double-electron excitation (KL II&III, KL I) x-ray absorption near-edge spectra of α-alumina, sodium aluminate, aqueous Al³⁺•(H₂O)₆, and aqueous Al(OH)₄⁻

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John L.; Govind, Niranjan; Huthwelker, Thomas

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KL II&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KL II&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂Omore » the KL II&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KL II&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KL II&III and KL I onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL

  1. Ramp-edge structured tunneling devices using ferromagnet electrodes

    DOEpatents

    Kwon, Chuhee [Long Beach, CA; Jia, Quanxi [Los Alamos, NM

    2002-09-03

    The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La.sub.0.7 Sr.sub.0.3) MnO.sub.3, ferromagnetic electrodes and a SrTiO.sub.3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.

  2. Effect of Fe-substitution on the structure and magnetism of single crystals Mn2-xFexBO4

    NASA Astrophysics Data System (ADS)

    Platunov, M. S.; Kazak, N. V.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Moshkina, E. M.; Trigub, A. L.; Veligzhanin, A. A.; Zubavichus, Y. V.; Solovyov, L. A.; Velikanov, D. A.; Ovchinnikov, S. G.

    2017-10-01

    Single crystalline Mn2-xFexBO4 with x = 0.3, 0.5, 0.7 grown by the flux method have been studied by means of X-ray diffraction and X-ray absorption spectroscopy at both Mn and Fe K edges. The compounds were found to crystallize in an orthorhombic warwickite structure (sp. gr. Pnam). The lattice parameters change linearly with x thus obeying the Vegard's law. The Fe3+ substitution for Mn3+ has been deduced from the X-ray absorption near-edge structure (XANES) spectra. Two energy positions of the absorption edges have been observed in Mn K-edge XANES spectra indicating the presence of manganese in two different oxidation states. Extended X-ray absorption fine structure (EXAFS) analysis has shown the reduction of local structural distortions upon Fe substitution. The magnetization data have revealed a spin-glass transition at TSG = 11, 14 and 18 K for x = 0.3, 0.5 and 0.7, respectively.

  3. X-ray K-edge analysis of drain lines in Wilhelm Hall, Ames Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, T.; Whitmore, C.

    1999-01-05

    From August 12--27, 1998 X-ray K-edge measurements were made on drain lines in seven rooms in Wilhelm Hall, Ames Laboratory. The purpose of these measurements was to determine the extent of thorium (and other heavy metal) contamination inside these pipes. The K-edge method is a noninvasive inspection technique that can provide accurate quantification of heavy metal contamination interior to an object. Of the seven drain lines inspected, one was found to have no significant contamination, three showed significant thorium deposits, two showed mercury contamination, and one line was found to contain mercury, thorium and uranium. The K-edge measurements were foundmore » to be consistent with readings from hand-held survey meters, and provided much greater detail on the location and amount of heavy metal contamination.« less

  4. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging

    PubMed Central

    Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H

    2013-01-01

    Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964

  5. High temperature extended x-ray absorption fine structure study of multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Raghavendra Reddy, V.; Meneghini, Carlo; Kothari, Deepti; Gupta, Ajay; Aquilanti, Giuliana

    2012-08-01

    Local atomic structure modifications around Fe atoms in polycrystalline multiferroic BiFeO3 are studied by Fe K edge x-ray absorption spectroscopy as a function of temperature across the Néel temperature (TN = 643 K) in order to reveal local structure modifications related to the magnetic transition. This work demonstrates that on crossing TN the local structure around Fe shows peculiar changes: the Fe-O bond lengths get shorter, the ligand symmetry increases and the Fe-O bond length disorder (σ2) deviates from Debye behaviour. These results suggest that the structural transition at the ferroelectric Curie temperature (TC = 1103 K) is anticipated by early local rearrangement of the structure starting already at TN.

  6. Strain-Dependent Edge Structures in MoS2 Layers.

    PubMed

    Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia

    2017-11-08

    Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

  7. The protonation states of oxo-bridged Mn(IV) dimers resolved by experimental and computational Mn K pre-edge X-ray absorption spectroscopy.

    PubMed

    Krewald, Vera; Lassalle-Kaiser, Benedikt; Boron, Thaddeus T; Pollock, Christopher J; Kern, Jan; Beckwith, Martha A; Yachandra, Vittal K; Pecoraro, Vincent L; Yano, Junko; Neese, Frank; DeBeer, Serena

    2013-11-18

    In nature, the protonation of oxo bridges is a commonly encountered mechanism for fine-tuning chemical properties and reaction pathways. Often, however, the protonation states are difficult to establish experimentally. This is of particular importance in the oxygen evolving complex of photosystem II, where identification of the bridging oxo protonation states is one of the essential requirements toward unraveling the mechanism. In order to establish a combined experimental and theoretical protocol for the determination of protonation states, we have systematically investigated a series of Mn model complexes by Mn K pre-edge X-ray absorption spectroscopy. An ideal test case for selective bis-μ-oxo-bridge protonation in a Mn dimer is represented by the system [Mn(IV)2(salpn)2(μ-OHn)2](n+). Although the three species [Mn(IV)2(salpn)2(μ-O)2], [Mn(IV)2(salpn)2(μ-O)(μ-OH)](+) and [Mn(IV)2(salpn)2(μ-OH)2](2+) differ only in the protonation of the oxo bridges, they exhibit distinct differences in the pre-edge region while maintaining the same edge energy. The experimental spectra are correlated in detail to theoretically calculated spectra. A time-dependent density functional theory approach for calculating the pre-edge spectra of molecules with multiple metal centers is presented, using both high spin (HS) and broken symmetry (BS) electronic structure solutions. The most intense pre-edge transitions correspond to an excitation of the Mn 1s core electrons into the unoccupied orbitals of local e(g) character (d(z)(2) and d(xy) based in the chosen coordinate system). The lowest energy experimental feature is dominated by excitations of 1s-α electrons, and the second observed feature is primarily attributed to 1s-β electron excitations. The observed energetic separation is due to spin polarization effects in spin-unrestricted density functional theory and models final state multiplet effects. The effects of spin polarization on the calculated Mn K pre-edge spectra, in

  8. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets

    NASA Astrophysics Data System (ADS)

    Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung

    2018-04-01

    Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.

  9. Atomic Fine-Structure Diagnostic and Cooling Transitions for Far Infrared and Submillimeter Observations

    NASA Astrophysics Data System (ADS)

    Balance, Connor

    Some of the strongest emission lines observed from a variety of astronomical sources originate from transitions between fine-structure levels in the ground term of neutral atoms and lowly-charged ions. These fine-structure levels are populated due to collisions with -, H+, H, He, and/or H2 depending on the temperature and ionization fraction of e the environment. As fine-structure excitation measurements are rare, modeling applications depend on theoretically determined rate coefficients. However, for many ions electron collision studies have not been performed for a decade or more, while over that time period the theoretical/computational methodology has significantly advanced. For heavy-particle collisions, very few systems have been studied. As a result, most models rely on estimates or on low-quality collisional data for fine-structure excitation. To significantly advance the state of fine-structure data for astrophysical models, we propose a collaborative effort in electron collisions, heavy-particle collisions, and quantum chemistry. Using the R-matrix method, fine-structure excitation due to electron collisions will be investigated for C, O, Ne^+, Ne^2+, Ar^+, Ar^2+, Fe, Fe^+, and Fe^2+. Fine-structure excitation due to heavy-particle collisions will be studied with a fully quantum molecular-orbital approach using potential energy surfaces computed with a multireference configuration-interaction method. The systems to be studied include: C/H^+, C/H2, O/H^+, O/H2, Ne^+/H, Ne^+/H2, Ne^2+/H, Ne^2+/H2, Fe/H^+, Fe^+/H, and Fe^2+/H. 2D rigid-rotor surfaces will be constructed for H2 collisions, internuclear distance dependent spin-orbit coupling will be computed in some cases, and all rate coefficients will be obtained for the temperature range 10-2000 K. The availability the proposed fine-structure excitation data will lead to deeper examination and understanding of the properties of many astrophysical environments, including young stellar objects, protoplanetary

  10. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    PubMed

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments.

  11. Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces

    NASA Astrophysics Data System (ADS)

    Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott

    2014-03-01

    Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.

  12. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  13. Spectral K-edge subtraction imaging of experimental non-radioactive barium uptake in bone.

    PubMed

    Panahifar, Arash; Samadi, Nazanin; Swanston, Treena M; Chapman, L Dean; Cooper, David M L

    2016-12-01

    To evaluate the feasibility of using non-radioactive barium as a bone tracer for detection with synchrotron spectral K-edge subtraction (SKES) technique. Male rats of 1-month old (i.e., developing skeleton) and 8-month old (i.e., skeletally mature) were orally dosed with low dose of barium chloride (33mg/kg/day Ba 2+ ) for 4weeks. The fore and hind limbs were dissected for imaging in projection and computed tomography modes at 100μm and 52μm pixel sizes. The SKES method utilizes a single bent Laue monochromator to prepare a 550eV energy spectrum to encompass the K-edge of barium (37.441keV), for collecting both 'above' and 'below' the K-edge data sets in a single scan. The SKES has a very good focal size, thus limits the 'crossover' and motion artifacts. In juvenile rats, barium was mostly incorporated in the areas of high bone turnover such as at the growth plate and the trabecular surfaces, but also in the cortical bone as the animals were growing at the time of tracer administration. However, the adults incorporated approximately half the concentration and mainly in the areas where bone remodeling was predominant and occasionally in the periosteal and endosteal layers of the diaphyseal cortical bone. The presented methodology is simple to implement and provides both structural and functional information, after labeling with barium, on bone micro-architecture and thus has great potential for in vivo imaging of pre-clinical animal models of musculoskeletal diseases to better understand their mechanisms and to evaluate the efficacy of pharmaceuticals. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  15. Bond-length relaxation in crystalline Si1-xGex alloys: An extended x-ray-absorption fine-structure study

    NASA Astrophysics Data System (ADS)

    Kajiyama, Hiroshi; Muramatsu, Shin-Ichi; Shimada, Toshikazu; Nishino, Yoichi

    1992-06-01

    Extended x-ray-absorption fine-structure spectra for crystalline Si1-xGex alloys, measured at the K edge of Ge at room temperature, are analyzed with a curve-fitting method based on the spherical-wave approximation. The Ge-Ge and Ge-Si bond lengths, coordination numbers of Ge and Si atoms around a Ge atom, and Debye-Waller factors of Ge and Si atoms are obtained. It is shown that Ge-Ge and Ge-Si bonds relax completely, for all Ge concentrations of their study, while the lattice constant varies monotonically, following Vegard's law. As noted by Bragg and later by Pauling and Huggins, the Ge-Ge and Ge-Si bond lengths are close to the sum of their constituent-element atomic radii: nearly 2.45 Å for Ge-Ge bonds and 2.40 Å for Ge-Si bonds. A study on the coordination around a Ge atom in the alloys revealed that Ge and Si atoms mix randomly throughout the compositional range studied.

  16. Edge of polar cap patches

    NASA Astrophysics Data System (ADS)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  17. Full-potential theoretical investigations of electron inelastic mean free paths and extended x-ray absorption fine structure in molybdenum.

    PubMed

    Chantler, C T; Bourke, J D

    2014-04-09

    X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.

  18. Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector.

    PubMed

    Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung

    2016-01-21

    K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD.

  19. Photoabsorption study of Bacillus megaterium, DNA and Related Biological Materials in the Phosphorus K-edge Region

    NASA Technical Reports Server (NTRS)

    Frigo, Sean P.; McNulty,Ian; Richmond, Robert C.; Ehret, Charles F.

    2003-01-01

    We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include red phosphorus, hydrated sodium phosphate (Na3PO4 12 H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position, where each is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B.meguterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition, the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.

  20. Photoabsorption Study of Bacillus megaterium, DNA and Related Biological Materials in the Phosphorus K-edge Region

    NASA Technical Reports Server (NTRS)

    Frigo, Sean P.; McNulty, Ian; Richmond, Robert C.; Ehret, Charles F.

    2002-01-01

    We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include elemental red phosphorus, hydrated sodium phosphate (Na3PO4.12H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Elemental red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position. Each spectrum for these substances is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for elemental red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B. megaterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition,the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.

  1. Assignment of Pre-edge Features in the Ru K-edge X-ray Absorption Spectra of Organometallic Ruthenium Complexes

    PubMed Central

    Getty, Kendra; Delgado-Jaime, Mario Ulises

    2010-01-01

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030

  2. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, J.M.; Krest, C.M.; Jiang, W.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of themore » protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.« less

  3. Local structural effects in Sr 3NiRhO 6 across magnetic transitions

    DOE PAGES

    Singh, Navneet; Khalid, S.; Bindu, R.

    2016-04-06

    Here, we investigate the temperature dependence of the structural parameters of quasi-one-dimensional Sr 3NiRhO 6 across the region of magnetic phase transitions using Ni K-edge and Sr K-edge x-ray absorption spectroscopy (XAS). The features in the x-ray absorption near-edge region are identified using multiple scattering calculations. The temperature-dependent extended x-ray absorption fine structure (EXAFS) studies show that the setting of the intra-chain super exchange interaction starts at ~200 K, which is well above the first transition temperature (45 K) revealed by magnetic susceptibility studies. The onset of the inter-chain super–super exchange interaction appears to be at ~125 K. Interestingly, themore » role played by direct exchange interaction between the Ni 3d and Rh 4d states in stabilising the magnetic interaction is less significant. The present results shed light on the generic features exhibited by isostructural compounds and may help in identifying the magnetic exchange pathways useful for understanding the unusual properties exhibited by such compounds.« less

  4. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.

    2014-11-01

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  5. Model and reconstruction of a K-edge contrast agent distribution with an X-ray photon-counting detector

    PubMed Central

    Meng, Bo; Cong, Wenxiang; Xi, Yan; De Man, Bruno; Yang, Jian; Wang, Ge

    2017-01-01

    Contrast-enhanced computed tomography (CECT) helps enhance the visibility for tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray photoelectric absorption would experience a sudden increment, resulting in a significant difference of the X-ray transmission intensity between the left and right energy windows of the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right windows of the K-edge can be measured simultaneously. The differential information of the two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge differences between various matters allow opportunities for the identification of contrast agents in biomedical applications. In this paper, a general radon transform is established to link the contrast-agent concentration to X-ray intensity measurement data. An iterative algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation background simultaneously. Comprehensive numerical simulations are performed to demonstrate the merits of the proposed method over the existing K-edge imaging methods. Our results show that the proposed method accurately quantifies a distribution of a contrast agent, optimizing the contrast-to-noise ratio at a high dose efficiency. PMID:28437900

  6. K-Shell Photoabsorption Edge of Strongly Coupled Matter Driven by Laser-Converted Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Jiamin; Zhang, Jiyan; Yang, Guohong; Wei, Minxi; Xiong, Gang; Song, Tianming; Zhang, Zhiyu; Bao, Lihua; Deng, Bo; Li, Yukun; He, Xiaoan; Li, Chaoguang; Mei, Yu; Yu, Ruizhen; Jiang, Shaoen; Liu, Shenye; Ding, Yongkun; Zhang, Baohan

    2013-10-01

    The first observation of the K-shell photoabsorption edge of strongly coupled matter with an ion-ion coupling parameter of about 65 generated by intense x-ray radiation-driven shocks is reported. The soft x-ray radiation generated by laser interaction with a “dog bone” high-Z hohlraum is used to ablate two thick CH layers, which cover a KCl sample, to create symmetrical inward shocks. While the two shocks impact at the central KCl sample, a highly compressed KCl is obtained with a density of 3-5 times solid density and a temperature of about 2-4 eV. The photoabsorption spectra of chlorine near the K-shell edge are measured with a crystal spectrometer using a short x-ray backlighter. The redshift of the K edge up to 11.7 eV and broadening of 15.2 eV are obtained for the maximum compression. A comparison of the measured redshifts and broadenings with dense plasma calculations are made, and it indicates potential improvements in the theoretical description.

  7. Fine structure of the red luminescence band in undoped GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshchikov, M. A., E-mail: mreshchi@vcu.edu; Usikov, A.; Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy Ave., 197101 Saint Petersburg

    2014-01-20

    Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RLmore » band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.« less

  8. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.

    PubMed

    Charnukha, A; Evtushinsky, D V; Matt, C E; Xu, N; Shi, M; Büchner, B; Zhigadlo, N D; Batlogg, B; Borisenko, S V

    2015-12-18

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  9. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    NASA Astrophysics Data System (ADS)

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-12-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  10. Magnetism of Nanographene-Based Microporous Carbon and Its Applications: Interplay of Edge Geometry and Chemistry Details in the Edge State

    NASA Astrophysics Data System (ADS)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Nanographenes have important edge geometry dependence in their electronic structures. In armchair edges, electron wave interference works to contribute to energetic stability. Meanwhile, zigzag edges possess an edge-localized and spin-polarized nonbonding edge state, which causes electronic, magnetic, and chemical activities. In addition to the geometry dependence, the electronic structures are seriously affected by edge chemistry details. The edge chemistry dependence together with edge geometries on the electronic structures are discussed with samples of randomly networked nanographenes (microporous activated carbon fibers) in pristine state and under high-temperature annealing. In the pristine sample with the edges oxidized in ambient atmospheric conditions, the edge state, which is otherwise unstable, can be stabilized because of the charge transfer from nanographene to terminating oxygen. Nanographene, whose edges consist of a combination of magnetic zigzag edges and nonmagnetic armchair edges, is found to be ferrimagnetic with a nonzero net magnetic moment created under the interplay between a strong intrazigzag-edge ferromagnetic interaction and intermediate-strength interzigzag-edge antiferromagnetic-ferromagnetic interaction. At heat-treatment temperatures just below the fusion start (approximately 1500 K), the edge-terminating structure is changed from oxygen-containing groups to hydrogen in the nanographene network. Additionally, hydrogen-terminated zigzag edges, which are present as the majority and chemically unstable, play a triggering role in fusion above 1500 K. The fusion start brings about an insulator-to-metal transition at TI -M˜1500 K . Local fusions taking place percolatively between nanographenes work to expand the π -bond network, eventually resulting in the development of antiferromagnetic short-range order toward spin glass in the

  11. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Tiamiyu, A. A.; Szpunar, J. A.; Odeshi, A. G.; Oguocha, I.; Eskandari, M.

    2017-12-01

    Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α'-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α'-martensite to γ-austenite in the steel was estimated to be 80 kJ mol-1. TiC precipitates and unreversed triple junction α'-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

  12. Acoustic fine structure may encode biologically relevant information for zebra finches.

    PubMed

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  13. Fine structure transitions in Fe XIV

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2013-07-01

    Results are reported for Fe XIV energy levels and transitions obtained from the ab initio relativistic Breit-Pauli R-matrix (BPRM) method. BPRM method developed under the Iron Project is capable of calculating very large number of fine structure energy levels and corresponding transitions. However, unlike in the atomic structure calculations, where levels are identified spectroscopically based on the leading percentage contributions of configurations, BPRM is incapable of such identification of the levels and hence the transitions. The main reason for it is that the percentage contributions can not be determined exactly from the large number of channels in the R-matrix space. The present report describes an identification method that uses considerations of quantum defects of channels, contributions of channel from outer regions, Hund's rule, and angular momenta algebra for addition and completeness of fine structure components. The present calculations are carried out using a close coupling wave function expansion that included 26 core excitations from configurations 2s22p63s2, 2s22p63s3p,2s22p63p2,2s22p63s3d, and 2s22p63p3d. A total of 1002 fine structure levels with n ⩽ 10, l⩽9, and 0.5 ⩽J⩽ 9.5 with even and odd parities and the corresponding 130,520 electric dipole allowed (E1) fine structure transitions, a most complete set for astrophysical modelings of spectral analysis and opacities, is presented. Large number of new energy levels are found and identified. The energies agree very well, mostly in less than 1% with the highest being 1.9%, with the 68 observed fine structure levels. While the high lying levels may have some uncertainty, an overall accuracy of energy levels should be within 10%. BPRM transitions have been benchmarked with the existing most accurate calculated transition probabilities with very good agreement for most cases. Based on the accuracy of the method and comparisons, most of the transitions can be rated with A (⩽10%) to C (

  14. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    DOE PAGES

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; ...

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge E r. We observe fine-scale spatial structures in the edge E r well with a wave number k rρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-modemore » transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less

  15. Structural and Dynamical Properties of 2:1 Phyllosilicates Edges and Nanoparticles

    NASA Astrophysics Data System (ADS)

    Newton, A. G.; Sposito, G.

    2012-12-01

    Classical mechanics simulations of bulk 2:1 phyllosilicate minerals provide atomic scale perspectives of the macroscopic sorption and diffusion phenomena in interlayer nanopores. An equivalent perspective of these interfacial phenomena in macropores bounded by the edges of stacked phyllosilicate particles is not possible due to the absence of a forcefield for the edges of phyllosilicate minerals. A valid forcefield to describe the phyllosilicate edge is essential to link the quantum and continuum mechanical models. The inherently disordered edge of 2:1 phyllosilicate minerals and rarity of well-crystallized samples further complicates the task of validating a forcefield for the phyllosilicate edge. Periodic bond chain theory identifies three tetrahedral-octahedral-tetrahedral (TOT) structures that parallel the edge faces of pseudohexagonal phyllosilicate particles. These TOT structures are the basis of atomistic models of the dominant edge interface and nanoparticles. The CLAYFF forcefield describes all pairwise atomic interactions with only minimal partial charge adjustments to maintain model neutrality, where necessary. Atomistic simulations in the isobaric-isothermal ensemble at nanosecond timescales predict equilibrium edge structures and dynamical properties of the aqueous interface. The CLAYFF forcefield and the limited adjustments to parameters predict edge and particle structures that are consistent with the results of ab initio MD simulations, support macroscopic observations of phyllosilicate reactivity, and provide legitimacy for disordered models of 2:1 phyllosilicates. The heterogeneous edge structures can be explained by the chemistry of the octahedral cation and surface charge anisotropy. In the plane of the octahedral sheet, the cations of the octahedral layer can assume four-, five-, and six-coordinate polyhedral geometries at the edge interface. These disordered edge structures create alternate alignments in the tetrahedral sheet. The structural

  16. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    PubMed

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  17. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Mackay, Duncan H.

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique tomore » consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.« less

  18. Electronic and atomic structures of Ti{sub 1-x}Al{sub x}N thin films related to their damage behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.

    2008-04-15

    Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grainmore » boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.« less

  19. Effects of Edge Directions on the Structural Controllability of Complex Networks.

    PubMed

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.

  20. Identification of F impurities in F-doped ZnO by synchrotron X-ray absorption near edge structures

    NASA Astrophysics Data System (ADS)

    Na-Phattalung, Sutassana; Limpijumnong, Sukit; Min, Chul-Hee; Cho, Deok-Yong; Lee, Seung-Ran; Char, Kookrin; Yu, Jaejun

    2018-04-01

    Synchrotron X-ray absorption near edge structure (XANES) measurements of F K-edge in conjunction with first-principles calculations are used to identify the local structure of the fluorine (F) atom in F-doped ZnO. The ZnO film was grown by pulsed laser deposition with an Nd:YAG laser, and an oxyfluoridation method was used to introduce F ions into the ZnO films. The measured XANES spectrum of the sample was compared against the first-principles XANES calculations based on various models for local atomic structures surrounding F atoms. The observed spectral features are attributed to ZnF2 and FO defects in wurtzite bulk ZnO.

  1. Vanadium K-edge XAS studies on the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis.

    PubMed

    Renirie, Rokus; Charnock, John M; Garner, C David; Wever, Ron

    2010-06-01

    Vanadium K-edge X-ray Absorption Spectra have been recorded for the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis at pH 6.0. The Extended X-ray Absorption Fine Structure (EXAFS) regions provide a refinement of previously reported crystallographic data; one short V=O bond (1.54A) is present in both forms. For the native enzyme, the vanadium is coordinated to two other oxygen atoms at 1.69A, another oxygen atom at 1.93A and the nitrogen of an imidazole group at 2.02A. In the peroxo-form, the vanadium is coordinated to two other oxygen atoms at 1.67A, another oxygen atom at 1.88A and the nitrogen of an imidazole group at 1.93A. When combined with the available crystallographic and kinetic data, a likely interpretation of the EXAFS distances is a side-on bound peroxide involving V-O bonds of 1.67 and 1.88A; thus, the latter oxygen would be 'activated' for transfer. The shorter V-N bond observed in the peroxo-form is in line with the previously reported stronger binding of the cofactor in this form of the enzyme. Reduction of the enzyme with dithionite has a clear influence on the spectrum, showing a change from vanadium(V) to vanadium(IV).

  2. One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization.

    PubMed

    Ozaki, Kyohei; Kawasumi, Katsuaki; Shibata, Mari; Ito, Hideto; Itami, Kenichiro

    2015-02-16

    The optoelectronic nature of two-dimensional sheets of sp(2)-hydridized carbons (for example, graphenes and nanographenes) can be dramatically altered and tuned by altering the degree of π-extension, shape, width and edge topology. Among various approaches to synthesize nanographenes with atom-by-atom precision, one-shot annulative π-extension (APEX) reactions of polycyclic aromatic hydrocarbons hold significant potential not only to achieve a 'growth from template' synthesis of nanographenes, but also to fine-tune the properties of nanographenes. Here we describe one-shot APEX reactions that occur at the K-region (convex armchair edge) of polycyclic aromatic hydrocarbons by the Pd(CH3CN)4(SbF6)2/o-chloranil catalytic system with silicon-bridged aromatics as π-extending agents. Density functional theory calculations suggest that the complete K-region selectivity stems from the olefinic (decreased aromatic) character of the K-region. The protocol is applicable to multiple APEX and sequential APEX reactions, to construct various nanographene structures in a rapid and programmable manner.

  3. Fine-scale structure in the far-infrared Milky-Way

    NASA Technical Reports Server (NTRS)

    Waller, William H.; Wall, William F.; Reach, William T.; Varosi, Frank; Ebert, Rick; Laughlin, Gaylin; Boulanger, Francois

    1995-01-01

    This final report summarizes the work performed and which falls into five broad categories: (1) generation of a new data product (mosaics of the far-infrared emission in the Milky Way); (2) acquisition of associated data products at other wavelengths; (3) spatial filtering of the far-infrared mosaics and resulting images of the FIR fine-scale structure; (4) evaluation of the spatially filtered data; (5) characterization of the FIR fine-scale structure in terms of its spatial statistics; and (6) identification of interstellar counterparts to the FIR fine-scale structure.

  4. Effects of Edge Directions on the Structural Controllability of Complex Networks

    PubMed Central

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks. PMID:26281042

  5. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    NASA Astrophysics Data System (ADS)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  6. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM).

    PubMed

    Liu, Airong; Zhang, Wei-xian

    2014-09-21

    An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.

  7. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  8. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite I: X-ray absorption extended fine structure spectroscopy analysis

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.

    2002-01-01

    "Two-line" ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10-5 to 10-3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(0.2) A?? and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) A?? and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) A?? in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further

  9. Statistical Fine Structure of Inhomogeneously Broadened Absorption Lines.

    DTIC Science & Technology

    1987-07-31

    inhomogeneously broadened optical absorption of pentacene n p-terphenyl at liquid helium temperatures... SFS is the actual frequency- ependent, time...statistical fine structure (SFS) in the inhomogeneously broadened optical absorption of pentacene in p-terphenyl at liquid helium temperatures. SFS is the...quite difficult . -2- We have observed for the first time statistical fine structure in the inhomogeneously broadened optical absorption of pentacene

  10. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications

  11. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement

    PubMed Central

    Sasaki, Atsuo T.; Chun, Cheryl; Takeda, Kosuke; Firtel, Richard A.

    2004-01-01

    During chemotaxis, receptors and heterotrimeric G-protein subunits are distributed and activated almost uniformly along the cell membrane, whereas PI(3,4,5)P3, the product of phosphatidylinositol 3-kinase (PI3K), accumulates locally at the leading edge. The key intermediate event that creates this strong PI(3,4,5)P3 asymmetry remains unclear. Here, we show that Ras is rapidly and transiently activated in response to chemoattractant stimulation and regulates PI3K activity. Ras activation occurs at the leading edge of chemotaxing cells, and this local activation is independent of the F-actin cytoskeleton, whereas PI3K localization is dependent on F-actin polymerization. Inhibition of Ras results in severe defects in directional movement, indicating that Ras is an upstream component of the cell's compass. These results support a mechanism by which localized Ras activation mediates leading edge formation through activation of basal PI3K present on the plasma membrane and other Ras effectors required for chemotaxis. A feedback loop, mediated through localized F-actin polymerization, recruits cytosolic PI3K to the leading edge to amplify the signal. PMID:15534002

  12. Bimagnon studies in cuprates with resonant inelastic x-ray scattering at the O K edge. I. Assessment on La2CuO4 and comparison with the excitation at Cu L3 and Cu K edges

    NASA Astrophysics Data System (ADS)

    Bisogni, V.; Simonelli, L.; Ament, L. J. P.; Forte, F.; Moretti Sala, M.; Minola, M.; Huotari, S.; van den Brink, J.; Ghiringhelli, G.; Brookes, N. B.; Braicovich, L.

    2012-06-01

    We assess the capabilities of magnetic resonant inelastic x-ray scattering (RIXS) at the O K edge in undoped cuprates by taking La2CuO4 as a benchmark case, based on a series of RIXS measurements that we present here. By combining the experimental results with basic theory we point out the fingerprints of bimagnon excitation in the O K edge RIXS spectra. These are a dominant peak around 450 meV, the almost complete absence of dispersion both with π and σ polarization, and the almost constant intensity vs the transferred momentum with σ polarization. This behavior is quite different from Cu L3 edge RIXS giving a strongly dispersing bimagnon tending to zero at the center of the Brillouin zone. This is clearly shown by RIXS measurements at the Cu L3 edge that we present. The Cu L3 bimagnon spectra and those at the Cu K edge—both from the literature and from our data—however, have the same shape. These similarities and differences are understood in terms of different sampling of the bimagnon continuum. This panorama points out the unique possibilities offered by O K RIXS in the study of magnetic excitations in cuprates near the center of the BZ.

  13. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    PubMed

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less

  15. Studying the local structures of novel materials using the Extended X-ray Absorption Fine Structure technique

    NASA Astrophysics Data System (ADS)

    Jiang, Yu

    2009-12-01

    In this dissertation, investigations on the local lattice structures for a variety of novel materials using Extended X-ray Absorption Fine Structure (EXAFS) technique are presented. Different experiment schemes were applied to obtain EXAFS data with high quality, and some interesting results were obtained by careful analysis. The power of the EXAFS technique was once again proved. In Chapter 1, I first briefly introduce the EXAFS theory and experiments, then give readers who are not familiar with this technique a short introduction on data reduction and analysis, and finally discuss some problems that are easily ignored in the interpretation of the experiment results. In Chapter 2, a temperature-dependent EXAFS investigation of La 1-xCaxMnO 3 is presented for the concentration range that spans the ferromagnetic-insulator (FMI) to ferromagnetic-metal (FMM) transition region, x = 0.16, 0.18, 0.20, and 0.22; the titrated hole concentrations are slightly higher y = 0.2, 0.22, 0.24, and 0.25 respectively. In Chapter 3, I report EXAFS studies of n- and p-type Ba8Ga 16Ge30 samples (type I clathrate) at the Ga, Ge, and Ba K-edges, to probe the local structure, particularly around the Ba atoms located inside 20- and 24-atom cages (Ba1 and Ba2 sites respectively) formed of Ga/Ge atoms. In agreement with diffraction analysis we find Ba2 is off-center, with a component in the bc plane (0.15 A) comparable to that found in diffraction; however, under the assumption of a stiff cage we also require a significant a component. This suggests a coupling or attraction between the Ba2 atoms and the hexagonal rings at the top or bottom of the cage that encloses the Ba2 site. In Chapter 4, I report detailed degradation and rejuvenation studies for AC electro-luminescence (EL) devices made using the phosphor ZnS:Cu,CI. We find that the AC EL emission spectra vary considerably with AC driving frequency but all spectra can be fit to a sum of four Gaussians. The combined experiments place

  16. Exploring the fine structure at the limb in coronal holes

    NASA Technical Reports Server (NTRS)

    Karovska, Magarita; Blundell, Solon F.; Habbal, Shadia Rifai

    1994-01-01

    The fine structure of the solar limb in coronal holes is explored at temperatures ranging from 10(exp 4) to 10(exp 6) K. An image enhancement algorithm orignally developed for solar eclipse observations is applied to a number of simultaneous multiwavelength observations made with the Harvard Extreme Ultraviolet Spectrometer experiment on Skylab. The enhanced images reveal the presence of filamentary structures above the limb with a characteristic separation of approximately 10 to 15 sec . Some of the structures extend from the solar limb into the corona to at least 4 min above the solar limb. The brightness of these structures changes as a function of height above the limb. The brightest emission is associated with spiculelike structures in the proximity of the limb. The emission characteristic of high-temperature plasma is not cospatial with the emission at lower temperatures, indicating the presence of different temperature plasmas in the field of view.

  17. Development of the surface-sensitive soft x-ray absorption fine structure measurement technique for the bulk insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonemura, Takumi, E-mail: yonemura-takumi@sei.co.jp; Iihara, Junji; Uemura, Shigeaki

    We have succeeded in measuring X-ray absorption fine structure (TEY-XAFS) spectra of insulating plate samples by total electron yield. The biggest problem is how to suppress the charge-up. We have attempted to deposit a gold stripe electrode on the surface and obtained a TEY-XAFS spectrum. This indicates that the metal stripe electrode is very useful in the TEY-XAFS measurement of the insulating plate samples. In the detailed analysis, we have found that the effective area for suppressing charge-up was approximately 120 μm from the edge of the electrode.

  18. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    PubMed

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  19. Edge detection based on computational ghost imaging with structured illuminations

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  20. A New Physical Meaning of Sommerfeld Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    2015-04-01

    Identifying physical space or Casimir vacuum as a compressible tachyon fluid, Planck compressible ether, leads to stochastic definitions of Planck h = mk <λk > c and Boltzmann k = mk <νk > c constants, finite photon mass mk = (hk/c3)1/2 , amu = mk c2 = (hkc)1/2 , and modified Avogadro-Loschmidt number No = 1/(hkc)1/2 = 6.03766 x1023 mole-1 . Thus, Lorentz-FitzGerald contractions now result from compressibility of physical space and become causal (Pauli) in accordance with Poincaré-Lorentz dynamic theory of relativity as opposed to Einstein kinematic theory of relativity. At thermodynamic equilibrium he = me <λe > ve = hk = mk <λk > c = h, Compton wavelength can be expressed as λc = h/me c = (ve /c)h <λe > /(me <λe > ve) = αλe . Hence, Sommerfeld fine structure constant α is identified as the ratio of electron to photon speeds α = e2/(2ɛo hc) = ve/c = 1/137.036. The mean thermal speed of electron at equilibrium with photon gas is ve = 2.187640x106 m/s and its de Broglie wavelength is λe = 3.3250x10-10 m. Also, electron kinetic energy for oscillations in two directions < x + > and < x- > or ɛe = hνe = me ve2= kTe results in electron temperature Te = 3.15690x105 K.

  1. STM/STS investigation of edge structure in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Ridene, M.; Girard, J. C.; Travers, L.; David, C.; Ouerghi, A.

    2012-08-01

    In this paper, we have used low temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) to study zigzag or armchair edges of epitaxial graphene on 6H-SiC (0001). The monolayer carbon structures exhibit occasionally one-dimensional ridge (1D) in close vicinity to step edge. This ridge exhibits different edges orientations in armchair-zigzag transition which give rise to different local density of states (LDOS) along this 1D structure. This ridge formation is likely explained by residual compressive in-plane stresses.

  2. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation.

    PubMed

    Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru

    2013-03-10

    Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Dynamic study of sub-micro sized LiFePO4 cathodes by in-situ tender X-ray absorption near edge structure

    NASA Astrophysics Data System (ADS)

    Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong

    2016-01-01

    Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.

  4. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    NASA Astrophysics Data System (ADS)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  5. Near-edge X-ray absorption spectra for metallic Cu and Mn

    NASA Astrophysics Data System (ADS)

    Greaves, G. N.; Durham, P. J.; Diakun, G.; Quinn, P.

    1981-11-01

    The measurement of X-ray absorption fine structure of metals- both in the extended region (EXAFS) as well as in the near edge region (XANES)-has been widely discussed (see refs 1-6 for Cu and refs 7-9 for Mn). The recent availability of intense X-ray fluxes from storage rings has usually been exploited for EXAFS leaving the XANES often with poorer resolution than earlier work performed on conventional sources (for example, compare the near edge structure for copper in ref. 1 with refs 3 or 6). In addition, whilst the theory and analysis of EXAFS is relatively well-established2,10, a theory for the strong scattering regime near to the absorption edge has only recently been developed11. We report here the first high resolution XANES spectra for Cu and Mn which were performed at the SRS storage ring at Daresbury. Although both metals have close-packed structures consisting of atoms of similar size their local atomic structure is different in detail. Significant differences are found in their respective XANES reflecting the senstivity of this region of the X-ray absorption fine structure to the local atomic structure. Spectra for the two metals have been analysed using the new multiple scattering formalism. This is a real space calculation and unlike a conventional band structure approach it does not require structural periodicity but works from the local arrangement of atoms.

  6. Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.

    2017-07-01

    The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.

  7. Application of an oscillation-type linear cadmium telluride detector to enhanced gadolinium K-edge computed tomography

    NASA Astrophysics Data System (ADS)

    Matsukiyo, Hiroshi; Sato, Eiichi; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-03-01

    A linear cadmium telluride (CdTe) detector is useful for carrying out energy-discrimination X-ray imaging, including computed tomography (CT). To perform enhanced gadolinium K-edge CT, we used an oscillation-type linear CdTe detector with an energy resolution of 1.2 keV. CT is performed by repeating the linear scan and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, tube voltage and current were 80 kV and 20 μA, respectively, and X-ray intensity was 1.55 μGy/s at 1.0 m from the source at a tube voltage of 80 kV. Demonstration of enhanced gadolinium K-edge X-ray CT was carried out by selecting photons with energies just beyond gadolinium K-edge energy of 50.3 keV.

  8. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering.

    PubMed

    Liu, X; Dean, M P M; Liu, J; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Yin, W G; Rayan Serrao, C; Ramesh, R; Ding, H; Hill, J P

    2015-05-27

    Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr2IrO4, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor.

  9. Synchrotron-based XAS on structure investigation of La0.99-xSrx(Na, K, Ba)0.01MnO3 nanoparticles: Evidence of magnetic properties

    NASA Astrophysics Data System (ADS)

    Daengsakul, Sujittra; Saengplot, Saowalak; Kidkhunthod, Pinit; Pimsawat, Adulphan; Maensiri, Santi

    2018-04-01

    This work presents the structural study of La0.99-xSrx(Na, K, Ba)0.01MnO3 or LSAM nanoparticles synthesized using thermal-hydro decomposition method where A denotes Na, K, Sr and Ba, respectively. The effect of ionic radii size of A dopants or rA from the substitution of A for La and Sr on the MnO6 octrahedral structure, where the average size of the cations occupying in A-site or 〈rA〉 is fixed at ∼ 1.24 Å, is focused. The LSAM nanoparticles are carefully studied using X-ray diffraction (XRD) including Rietveld refinement and X-ray Absorption Spectroscopy (XAS) including X-ray Absorption Near edge Structure (XANES) and X-ray Absorption Fine Structure (EXAFS). The Rietveld refinement shows all nano-powder samples have rhombohedral structure. By XANES technique we found that the effect of A substitutions at A-site causes a slight change of mean oxidation state of Mn between 3.54 and 3.60. Furthermore, the structural distortion of MnO6 octrahedral in samples is analysed and obtained from EXAFS. The observed trend of ferromagnetism for all LSAM samples can be clearly explained by evidences of A-site doping, structural distortion around Mn atoms and mixing Mn3+/Mn4+ valence states.

  10. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    PubMed

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  11. Role of defects in BiFeO₃ multiferroic films and their local electronic structure by x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravalia, Ashish; Vagadia, Megha; Solanki, P. S.

    2014-10-21

    Present study reports the role of defects in the electrical transport in BiFeO₃ (BFO) multiferroic films and its local electronic structure investigated by near-edge X-ray absorption fine structure. Defects created by high energy 200 MeV Ag⁺¹⁵ ion irradiation with a fluence of ∼5 × 10¹¹ ions/cm² results in the increase in structural strain and reduction in the mobility of charge carriers and enhancement in resistive (I-V) and polarization (P-E) switching behaviour. At higher fluence of ∼5 × 10¹² ions/cm², there is a release in the structural strain due to local annealing effect, resulting in an increase in the mobility of charge carriers, which are releasedmore » from oxygen vacancies and hence suppression in resistive and polarization switching. Near-edge X-ray absorption fine structure studies at Fe L₃,₂- and O K-edges show a significant change in the spectral features suggesting the modifications in the local electronic structure responsible for changes in the intrinsic magnetic moment and electrical transport properties of BFO.« less

  12. Oxygen K- and Mn L-Edges of La_xMn_yO_3-d Films

    NASA Astrophysics Data System (ADS)

    Deleon, Michael; Tyson, Trevor; Qian, Q.; Dubourdieu, C.; Senateur, J. P.; Bosak, A.; Arena, D. A.

    2003-03-01

    The La_xMn_yO_3-d system holds much interest due to it's wide range of magnetic and transport properties with varying compositions. Oxygen defects and lanthanum deficiencies in the parent compound LaMnO3 induce a mixture of valences at the Mn site which enables transitions to a ferromagnetic metallic state through double exchange [1-5]. We have measured the oxygen K-edges and Mn L-edges for La_xMn_yO_3-d films of varying x deposited on (100) SrTiO3 and x=0.8 on varying thickness deposited on (001) LaAlO_3. These results are interpreted by multiplet structure computations. In addition, band structure results will be used to track changes in unoccupied levels on the Mn and O sites. This work is supported by NSF Career Grant DMR-9733862 and DMR-0209243. [1]A. Gupta, T.R. McGuire, P.R. Duncombe, M. Rupp, J. Z. Sun, W. J. Gallagher, G. Xiao. Appl. Phys. Let. 67, 3494 (1995) [2]P. S. I. P. N. de Silva, F.M. Richards, L. F. Cohen, J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, K. A. Thomas, J. L. MacManus-Driscoll. J. A. Phys. 83, 3394(1998) [3] C. Chen, A. de Lozanne. A. Phys. Let. 73, 3950(1998) [4] S. J. Kim, C. S. Kim, S. Park, B. W. Lee. J. A. Phys. 89, 7416 (2001) [5] J. Topfer, J. B. Goodenough. Sol. St. Ionics 101, 1215 (1997)

  13. Fine Structure of Reovirus Type 2

    PubMed Central

    Loh, Philip C.; Hohl, H. R.; Soergel, M.

    1965-01-01

    Loh, Philip C. (University of Hawaii, Honolulu), H. R. Hohl, and M. Soergel. Fine structure of reovirus type 2. J. Bacteriol. 89:1140–1144. 1965.—The fine structure reovirus type 2 was studied by electron microscopy with the negative-staining method. The virus has a mean diameter of 772 A and shows evidence of icosahedral shape and 5:3:2 symmetry. The particle is composed of a core, an inner layer, and a capsid composed of 92 elongated hollow capsomeres. These capsomeres have mean dimensions of 116 A × 110 A and a central hole 48 A in diameter. In size and architecture, reovirus type 2 is very similar to the other members (reoviruses types 1 and 3) of this group of animal viruses. Images PMID:14276109

  14. Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling

    DOE PAGES

    Riddle, Catherine; Czerwinski, Kenneth; Kim, Eunja; ...

    2016-01-18

    We studied the speciation of pentavalent and hexavalent americium (Am) complexes in nitric acidicby X-ray absorption fine structure spectroscopy (XAFS), UV-visible spectroscopy, and density functional theory (DFT). Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) results were consistent with the presence of a mixture of AmO 2 + and AmO 2 2+ with only a small amount AmO 2 present. The resulting average bond distances we found were 1.71 Å for Am=O and 2.44 Å for Am-O. All-electron scalar relativistic calculations were also carried out using DFT to predict the equilibrium geometries and properties ofmore » the AmO 2 + and AmO 2 2+ aquo complexes. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and the computed energy gaps between frontier molecular orbitals suggest a slightly higher kinetic stability and chemical hardness of Am(VI) compared to Am(V).« less

  15. The two-dimensional tunnel structures of K3Sb5O14 and K2Sb4O11

    NASA Technical Reports Server (NTRS)

    Hong, H. Y.-P.

    1974-01-01

    The structures of K3Sb5O14 and K2Sb4O11 have been solved by the single-crystal X-ray direct method and the heavy-atom method, respectively. The structure of K3Sb5O14 is orthorhombic, with space group Pbam and cell parameters a = 24.247 (4), b = 7.157 (2), c = 7.334 (2) A, Z = 4. The structure of K2Sb4O11 is monoclinic, with space group C2/m and cell parameters a = 19.473 (4), b = 7.542 (1), c = 7.198 (1) A, beta = 94.82 (2) deg, Z = 4. A full-matrix least-squares refinement gave R = 0.072 and R = 0.067, respectively. In both structures, oxygen atoms form an octahedron around each Sb atom and an irregular polyhedron around each K atom. By sharing corners and edges, the octahedra form a skeleton network having intersecting b-axis and c-axis tunnels. The K(+) ions, which have more than ten oxygen near neighbors, are located in these tunnels. Evidence for K(+)-ion transport within and between tunnels comes from ion exchange of the alkali ions in molten salts and anisotropic temperature factors that are anomalously large in the direction of the tunnels.

  16. Fine structure in RF spectra of lightning return stroke wave forms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1988-01-01

    The power spectra of the wide-band (10 Hz to 100 kHz) magnetic-field signals for a number of lightning return strokes measured during a thunderstorm which occurred in Lindau in August, 1984 have been calculated. The RF magnetic field data are obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. Each return stroke data stream is passed through an adaptive filter designed to whiten its spectrum. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks in the spectra of many of the waveforms. A peak at f of about 60-70 kHz is often seen in the power spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  17. One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization

    NASA Astrophysics Data System (ADS)

    Ozaki, Kyohei; Kawasumi, Katsuaki; Shibata, Mari; Ito, Hideto; Itami, Kenichiro

    2015-02-01

    The optoelectronic nature of two-dimensional sheets of sp2-hydridized carbons (for example, graphenes and nanographenes) can be dramatically altered and tuned by altering the degree of π-extension, shape, width and edge topology. Among various approaches to synthesize nanographenes with atom-by-atom precision, one-shot annulative π-extension (APEX) reactions of polycyclic aromatic hydrocarbons hold significant potential not only to achieve a ‘growth from template’ synthesis of nanographenes, but also to fine-tune the properties of nanographenes. Here we describe one-shot APEX reactions that occur at the K-region (convex armchair edge) of polycyclic aromatic hydrocarbons by the Pd(CH3CN)4(SbF6)2/o-chloranil catalytic system with silicon-bridged aromatics as π-extending agents. Density functional theory calculations suggest that the complete K-region selectivity stems from the olefinic (decreased aromatic) character of the K-region. The protocol is applicable to multiple APEX and sequential APEX reactions, to construct various nanographene structures in a rapid and programmable manner.

  18. Persistent fine-scale fault structures control rupture development in Parkfield, CA.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2016-12-01

    We investigate the fine-scale geometry and structure of the San Andreas Fault (SAF) near Parkfield, CA, and their role in the development of the 1966 and 2004 M6 earthquakes. Both events broke the fault mainly unilaterally with similar length ( 30 km) but in opposite directions. Seismic slip occurred in a narrow zone between 5 and 10 km depth, as outlined by the concentration of aftershocks along the edge of the slip area. Across fault distribution of the 2004 aftershocks show a rapid decrease of event density away from the fault core. The damage zone is narrower in the Parkfield section (few 100 meters) than in the creeping section ( 1 km). We observe a similar but broader distribution during the interseismic periods. This implies that stress accumulates in a volume around the fault during interseismic periods, whereas coseismic deformation is more localized on the mature SAF. Large aftershocks are concentrated at both rupture tips, characterized by strong heterogeneities in the fault structure at the surface and at depth: i) in the south near Gold Hill-Cholame, a large releasing bend (>25°) separates the Parkfield section from the southern section of the SAF; ii) in the north at Middle Mountain, the surface fault trace goes through an ancient restraining step-over connecting the Parkfield and creeping sections. Fine-scale analysis of the 2004 aftershocks reveals a change in the fault dip and local variations of the fault strike (up to 25°) beneath Middle Mountain, in good agreement with focal mechanisms, which show oblique normal and reverse faulting. We observe these variations during the interseismic periods before and after the 2004 event, suggesting that the structural heterogeneities persisted through at least two earthquake cycles. These heterogeneities act as barriers to rupture propagation of moderate size earthquakes at Parkfield, but also as stress concentrations where rupture initiates.

  19. Spiky Fine Structure of Type III-like Radio Bursts in Absorption

    NASA Astrophysics Data System (ADS)

    Chernov, G. P.; Yan, Y. H.; Tan, C. M.; Chen, B.; Fu, Q. J.

    2010-03-01

    An uncommon fine structure in the radio spectrum consisting of bursts in absorption was observed with the Chinese Solar Broadband Radiospectrometer (SBRS) in the frequency range of 2.6 - 3.8 GHz during an X3.4/4B flare on 13 December 2006 in active region NOAA 10930 (S05W33). Usual fine structures in emission such as spikes, zebra stripes, and drifting fibers were observed at the peak of every new flare brightening. Within an hour at the decay phase of the event we observed bursts consisting of spikes in absorption, which pulsated periodically in frequency. Their instantaneous frequency bandwidths were found to be in the 75 MHz range. Moreover, in the strongest Type III-like bursts in absorption, the spikes showed stripes of the zebra-pattern (ZP) that drifted to higher frequencies. All spikes had the duration as short as down to the limit of the instrument resolution of ≈8 ms. The TRACE 195 Å images indicate that the magnetic reconnection at this moment occurred in the western edge of the flare loop arcade. Taking into account the presence of the reverse-drifting bursts in emission, in the course of the restoration of the magnetic structures in the corona, the acceleration of the beams of fast particles must have occurred both upward and downward at different heights. The upward beams will be captured by the magnetic trap, where the loss-cone distribution of fast particles (responsible for the emission of continuum and ZP) were formed. An additional injection of fast particles will fill the loss-cone later, breaking the loss-cone distribution. Therefore, the generation of continuum will be quenched at these moments, which was evidenced by the formation of bursts in absorption.

  20. Fine-scale genetic structure arises during range expansion of an invasive gecko.

    PubMed

    Short, Kristen Harfmann; Petren, Kenneth

    2011-01-01

    Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts.

  1. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites

    DOE PAGES

    Baker, Michael L.; Mara, Michael W.; Yan, James J.; ...

    2017-02-09

    Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as Kα resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3dmore » orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of σ and π donor bonding and π back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. Here, the application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.« less

  2. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Michael L.; Mara, Michael W.; Yan, James J.

    Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as Kα resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3dmore » orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of σ and π donor bonding and π back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. Here, the application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.« less

  3. Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.

    PubMed

    Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D

    2008-05-01

    The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.

  4. Blob structure and motion in the edge and SOL of NSTX

    DOE PAGES

    Zweben, S. J.; Myra, J. R.; Davis, W. M.; ...

    2016-01-28

    Here, the structure and motion of discrete plasma blobs (a.k.a. filaments) in the edge and scrape-off layer of NSTX is studied for representative Ohmic and H-mode discharges. Individual blobs were tracked in the 2D radial versus poloidal plane using data from the gas puff imaging diagnostic taken at 400 000 frames s -1. A database of blob amplitude, size, ellipticity, tilt, and velocity was obtained for ~45 000 individual blobs. Empirical relationships between various properties are described, e.g. blob speed versus amplitude and blob tilt versus ellipticity. The blob velocities are also compared with analytic models.

  5. Near- and Extended-Edge X-Ray-Absorption Fine-Structure Spectroscopy Using Ultrafast Coherent High-Order Harmonic Supercontinua

    NASA Astrophysics Data System (ADS)

    Popmintchev, Dimitar; Galloway, Benjamin R.; Chen, Ming-Chang; Dollar, Franklin; Mancuso, Christopher A.; Hankla, Amelia; Miaja-Avila, Luis; O'Neil, Galen; Shaw, Justin M.; Fan, Guangyu; Ališauskas, Skirmantas; Andriukaitis, Giedrius; Balčiunas, Tadas; Mücke, Oliver D.; Pugzlys, Audrius; Baltuška, Andrius; Kapteyn, Henry C.; Popmintchev, Tenio; Murnane, Margaret M.

    2018-03-01

    Recent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV . Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K - and L -absorption edges of solids at photon energies near 1 keV. We also report x-ray-absorption spectroscopy in the water window spectral region (284-543 eV) using a high flux high-order harmonic generation x-ray supercontinuum with 109 photons/s in 1% bandwidth, 3 orders of magnitude larger than has previously been possible using tabletop sources. Since this x-ray radiation emerges as a single attosecond-to-femtosecond pulse with peak brightness exceeding 1026 photons/s /mrad2/mm2/1 % bandwidth, these novel coherent x-ray sources are ideal for probing the fastest molecular and materials processes on femtosecond-to-attosecond time scales and picometer length scales.

  6. Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase.

    PubMed

    Silver, Sunshine C; Gardenghi, David J; Naik, Sunil G; Shepard, Eric M; Huynh, Boi Hanh; Szilagyi, Robert K; Broderick, Joan B

    2014-03-01

    Spore photoproduct lyase (SPL), a member of the radical S-adenosyl-L-methionine (SAM) superfamily, catalyzes the direct reversal of the spore photoproduct, a thymine dimer specific to bacterial spores, to two thymines. SPL requires SAM and a redox-active [4Fe-4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40 %) as [2Fe-2S](2+) clusters and a smaller amount (15 %) as [4Fe-4S](2+) clusters. On reduction, the cluster content changes to primarily (60 %) [4Fe-4S](+). The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (X-ray absorption near-edge structure, XANES) and geometric (extended X-ray absorption fine structure, EXAFS) structural features of the Fe-S clusters, and their interactions with SAM. The iron K-edge EXAFS data provide evidence for elongation of a [2Fe-2S] rhomb of the [4Fe-4S] cluster on binding SAM on the basis of an Fe···Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay one another, indicating that SAM is not undergoing reductive cleavage. The X-ray absorption spectroscopy data for SPL samples and data for model complexes from the literature allowed the deconvolution of contributions from [2Fe-2S] and [4Fe-4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe-S clusters as a function of the presence of SAM. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.

  7. MoS2 edges and heterophase interfaces: energy, structure and phase engineering

    NASA Astrophysics Data System (ADS)

    Zhou, Songsong; Han, Jian; Sun, Jianwei; Srolovitz, David J.

    2017-06-01

    The transition metal dichalcogenides exhibit polymorphism; i.e. both 2H and 1T‧ crystal structures, each with unique electronic properties. These two phases can coexist within the same monolayer microstructure, producing 2H/1T‧ interfaces. Here we report a systematic investigation of the energetics of the experimentally most important MoS2 heterophase interfaces and edges. The stable interface and edge structures change with chemical potential (these edges/interfaces are usually non-stoichiometric). Stable edges tend to be those of highest atomic density and the stable interfaces correspond to those with local atomic structure very similar to the 2H crystal. The interfacial energies are lower than those of the edges, and the 1T‧ edges have lower energy than the 2H edges. Because the 1T‧ edges have much lower energy than the 2H edges, a sufficiently narrow 1T‧ ribbon will be more stable than the corresponding 2H ribbon (this critical width is much larger in MoTe2 than in MoS2). Similarly, a large 2H flake have an equilibrium strip of 1T‧ along its edge (again this effect is much larger in MoTe2 than in MoS2). Application of tensile strains can increase the width of the stable 1T‧ strip or the critical thickness below which a ribbon favors the 1T‧ structure. These effects provide a means to phase engineer transition metal dichalcogenide microstructures.

  8. The symmetries of the fine gradings of sl(n{sup k},C) associated with direct product of Pauli groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Gang

    2010-09-15

    A grading of a Lie algebra is called fine if it could not be further refined. For a fine grading of a simple Lie algebra, we define its Weyl group to describe the symmetry of this grading. It is already known that the Weyl group of the fine grading of sl(n,C) induced by the action of the group {Pi}{sub n} of the generalized Pauli matrices of rank n is SL(2,Z{sub n}), where Z{sub n} is the cyclic group of order n. In this paper, we consider the fine grading of sl(n{sup k},C) induced by the action of the group ofmore » k-fold tensor product of the generalized Pauli matrices of rank n. We prove that its Weyl group is Sp(2k,Z{sub n}) and is generated by transvections; therefore, this generalizes the previous result.« less

  9. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.

    PubMed

    Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland

    2011-09-01

    The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of

  10. Extended x-ray absorption fine structure study of phase transitions in the piezoelectric perovskite K0.5Na0.5NbO3

    NASA Astrophysics Data System (ADS)

    Kodre, A.; Tellier, J.; Arčon, I.; Malič, B.; Kosec, M.

    2009-06-01

    Following an x-ray diffraction study of phase transitions of the piezoelectric perovskite K0.5Na0.5NbO3 the structural changes of the material are studied using extended x-ray absorption fine structure analysis, whereby the neighborhood of Nb atom is determined in the temperature range of monoclinic, tetragonal, and cubic phases. Within the entire range Nb atom is displaced from the center of the octahedron of its immediate oxygen neighbors, as witnessed by the splitting of Nb-O distance. The model shows high prevalence of the displacement in the (111) crystallographic direction of the simple perovskite cell. The corresponding splitting of the Nb-Nb distance is negligible. There is no observable disalignment of the linear Nb-O-Nb bonds from the ideal cubic arrangement, judging from the intensity of the focusing of the photoelectron wave on the Nb-Nb scattering path by the interposed oxygen atom. As a general result, the phase transitions are found as an effect of the long-range order, while the placement of the atoms in the immediate vicinity remains largely unaffected.

  11. Assignment of polarization-dependent peaks in carbon K-edge spectra from biogenic and geologic aragonite.

    PubMed

    Zhou, Dong; Metzler, Rebecca A; Tyliszczak, Tolek; Guo, Jinghua; Abrecht, Mike; Coppersmith, Susan N; Gilbert, P U P A

    2008-10-16

    Many biominerals, including mollusk and echinoderm shells, avian eggshells, modern and fossil bacterial sediments, planktonic coccolithophores, and foraminifera, contain carbonates in the form of biogenic aragonite or calcite. Here we analyze biogenic and geologic aragonite using different kinds of surface- and bulk-sensitive X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge, as well as high-resolution scanning transmission X-ray microscopy (STXM). Besides the well-known main pi* and sigma* carbonate peaks, we observed and fully characterized four minor peaks, at energies between the main pi* and sigma* peaks. As expected, the main peaks are similar in geologic and biogenic aragonite, while the minor peaks differ in relative intensity. In this and previous work, the minor peaks appear to be the ones most affected in biomineralization processes, hence the interest in characterizing them. Peak assignment was achieved by correlation of polarization-dependent behavior of the minor peaks with that of the main pi* and sigma* peaks. The present characterization provides the background for future studies of aragonitic biominerals.

  12. Structural design of morphing trailing edge actuated by SMA

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Zhiwei; Zhu, Qian

    2013-09-01

    In this paper, the morphing trailing edge is designed to achieve the up and down deflection under the aerodynamic load. After a detailed and accurate computational analysis to determine the SMA specifications and layout programs, a solid model is created in CATIA and the structures of the morphing wing trailing edge are produced by CNC machining. A set of DSP measurement and control system is designed to accomplish the controlling experiment of the morphing wing trailing edge. At last, via the force analysis, the trailing edge is fabricated with four sections of aluminum alloy, and the arrangement scheme of SMA wires is determined. Experiment of precise control integral has been performed to survey the control effect. The experiment consists of deflection angle tests of the third joint and the integral structure. Primarily, the ultimate deflection angle is tested in these two experiments. Therefore, the controlling experiment of different angles could be performed within this range. The results show that the deflection error is less than 4%and response time is less than 6.7 s, the precise controlling of the morphing trailing edge is preliminary realized.

  13. Two-Photon Absorption of Soft X-Ray Free Electron Laser Radiation by Graphite Near the Carbon K-Absorption Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Steven T; Lam, Royce K.; Raj, Sumana L.

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ~308 and ~260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ~284.2 eV. The measured two-photon absorption cross section at 284.18 eV (~6 x 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atomsmore » - a result of resonance effects.« less

  14. Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Raj, Sumana L.; Pascal, Tod A.; Pemmaraju, C. D.; Foglia, Laura; Simoncig, Alberto; Fabris, Nicola; Miotti, Paolo; Hull, Christopher J.; Rizzuto, Anthony M.; Smith, Jacob W.; Mincigrucci, Riccardo; Masciovecchio, Claudio; Gessini, Alessandro; De Ninno, Giovanni; Diviacco, Bruno; Roussel, Eleonore; Spampinati, Simone; Penco, Giuseppe; Di Mitri, Simone; Trovò, Mauro; Danailov, Miltcho B.; Christensen, Steven T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Coreno, Marcello; Poletto, Luca; Drisdell, Walter S.; Prendergast, David; Giannessi, Luca; Principi, Emiliano; Nordlund, Dennis; Saykally, Richard J.; Schwartz, Craig P.

    2018-07-01

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ∼308 and ∼260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ∼284.2 eV. The measured two-photon absorption cross section at 284.18 eV (∼6 × 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atoms - a result of resonance effects.

  15. Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra

    2018-05-01

    Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.

  16. Heat treatment effect on the electronic and magnetic structures of nanographene sheets investigated through electron spectroscopy and conductance measurements.

    PubMed

    Takashiro, Jun-ichi; Kudo, Yasuhiko; Kaneko, Satoshi; Takai, Kazuyuki; Ishii, Takafumi; Kyotani, Takashi; Enoki, Toshiaki; Kiguchi, Manabu

    2014-04-28

    The heat treatment effect on the electronic and magnetic structures of a disordered network of nanographene sheets has been investigated by in situ measurements of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure (NEXAFS), and electrical conductance, together with temperature-programmed desorption measurements. Oxygen-containing functional groups bonded to nanographene edges in the pristine sample are almost completely decomposed under heat treatment up to 1300-1500 K, resulting in the formation of edges primarily terminated by hydrogen. The removal of the oxygen-containing groups enhances the conductance owing to the decrease in the electron transport barriers between nanographene sheets. Heat treatment above 1500 K removes also the hydrogen atoms from the edges, promoting the successive fusion of nanographene sheets at the expense of edges. The decrease in the π* peak width in NEXAFS indicates the progress of the fusion reaction, that is, the extension of the π-conjugation, which agrees with the increase in the orbital susceptibility previously reported. The fusion leads to the formation of local π/sp(2) bridges between nanographene sheets and brings about an insulator-to-metal transition at 1500-1600 K, at which the bridge network becomes infinite. As for the magnetism, the intensity of the edge state peak in NEXAFS, which corresponds to the number of the spin-polarized edge states, decreases above 1500 K, though the effective edge-state spin density per edge state starts decreasing at approximately 200 K lower than the temperature of the edge state peak change. This disagreement indicates the development of antiferromagnetic short range ordering as a precursor of a spin glass state near the insulator-metal transition, at which the random network of inter-nanographene-sheet exchange interactions strengthened with the formation of the π/sp(2) bridges becomes infinite.

  17. Picosecond sulfur K-edge X-ray absorption spectroscopy with applications to excited state proton transfer

    DOE PAGES

    Van Kuiken, Benjamin E.; Ross, Matthew R.; Strader, Matthew L.; ...

    2017-05-08

    Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (~2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps)more » and decays within 6 ns. The second transient species forms on a timescale of ~400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowestlying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.« less

  18. An edge-directed interpolation method for fetal spine MR images.

    PubMed

    Yu, Shaode; Zhang, Rui; Wu, Shibin; Hu, Jiani; Xie, Yaoqin

    2013-10-10

    better consistency in edge structures with the original images. The proposed method classifies edge orientations into four categories and well preserves structures. It generates convincing HR images with fine details and is suitable in real-time situations. Iterative curvature-based interpolation (ICBI) method may result in crisper edges, while the other three methods are sensitive to noise and artifacts.

  19. Spin fine structure of optically excited quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  20. Imaging the atomic structure and local chemistry of platelets in natural type Ia diamond

    NASA Astrophysics Data System (ADS)

    Olivier, E. J.; Neethling, J. H.; Kroon, R. E.; Naidoo, S. R.; Allen, C. S.; Sawada, H.; van Aken, P. A.; Kirkland, A. I.

    2018-03-01

    In the past decades, many efforts have been devoted to characterizing {001} platelet defects in type Ia diamond. It is known that N is concentrated at the defect core. However, an accurate description of the atomic structure of the defect and the role that N plays in it is still unknown. Here, by using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy we have determined the atomic arrangement within platelet defects in a natural type Ia diamond and matched it to a prevalent theoretical model. The platelet has an anisotropic atomic structure with a zigzag ordering of defect pairs along the defect line. The electron energy-loss near-edge fine structure of both carbon K- and nitrogen K-edges obtained from the platelet core is consistent with a trigonal bonding arrangement at interstitial sites. The experimental observations support an interstitial aggregate mode of formation for platelet defects in natural diamond.

  1. Imaging the atomic structure and local chemistry of platelets in natural type Ia diamond.

    PubMed

    Olivier, E J; Neethling, J H; Kroon, R E; Naidoo, S R; Allen, C S; Sawada, H; van Aken, P A; Kirkland, A I

    2018-03-01

    In the past decades, many efforts have been devoted to characterizing {001} platelet defects in type Ia diamond. It is known that N is concentrated at the defect core. However, an accurate description of the atomic structure of the defect and the role that N plays in it is still unknown. Here, by using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy we have determined the atomic arrangement within platelet defects in a natural type Ia diamond and matched it to a prevalent theoretical model. The platelet has an anisotropic atomic structure with a zigzag ordering of defect pairs along the defect line. The electron energy-loss near-edge fine structure of both carbon K- and nitrogen K-edges obtained from the platelet core is consistent with a trigonal bonding arrangement at interstitial sites. The experimental observations support an interstitial aggregate mode of formation for platelet defects in natural diamond.

  2. Experimental and theoretical comparison of the O K-edge nonresonant inelastic X-ray scattering and X-ray absorption spectra of NaReO4.

    PubMed

    Bradley, Joseph A; Yang, Ping; Batista, Enrique R; Boland, Kevin S; Burns, Carol J; Clark, David L; Conradson, Steven D; Kozimor, Stosh A; Martin, Richard L; Seidler, Gerald T; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Wolfsberg, Laura E

    2010-10-06

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.

  3. Wrinkling reduction of membrane structure by trimming edges

    NASA Astrophysics Data System (ADS)

    Liu, Mingjun; Huang, Jin; Liu, Mingyue

    2017-05-01

    Thin membranes have negligible bending stiffness, compressive stresses inevitably lead to wrinkling. Therefore, it is important to keep the surface of membrane structures flat in order to guarantee high precision. Edge-trimming is an effective method to passively diminish wrinkles, however a key difficulty in this process is the determination of the optimal trimming level. In this paper, regular polygonal membrane structures subjected to equal radial forces were analyzed, and a new stress field distribution model for arc-edge square membrane structure was proposed to predict the optimal trimming level. This model is simple and applicable to any polygonal membrane structures. Comparison among the results of the finite element analysis, and the experimental and analytical results showed that the proposed model accurately described the stress field distribution and guaranteed that there are no wrinkles appear inside the effective inscribed circle region for the optimal trimming level.

  4. Electronic structure of nickel silicide in subhalf-micron lines and blanket films: An x-ray absorption fine structures study at the Ni and Si L3,2 edge

    NASA Astrophysics Data System (ADS)

    Naftel, S. J.; Coulthard, I.; Sham, T. K.; Xu, D.-X.; Erickson, L.; Das, S. R.

    1999-05-01

    We report a Ni and Si L3,2-edge x-ray absorption near edge structures (XANES) study of nickel-silicon interaction in submicron (0.15 and 0.2 μm) lines on a n-Si(100) wafer as well as a series of well characterized Ni-Si blanket films. XANES measurements recorded in both total electron yield and soft x-ray fluorescence yield indicate that under the selected silicidation conditions, the more desirable low resistivity phase, NiSi, is indeed the dominant phase in the subhalf-micron lines although the formation of this phase is less complete as the line becomes narrower and this is accompanied by a Ni rich surface.

  5. K-edge energy-based calibration method for photon counting detectors

    NASA Astrophysics Data System (ADS)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  6. Electronic structure and electric polarity of edge-functionalized graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Taira, Remi; Yamanaka, Ayaka; Okada, Susumu

    2017-08-01

    On the basis of the density functional theory combined with the effective screening medium method, we studied the electronic structure of graphene nanoribbons with zigzag edges, which are terminated by functional groups. The work function of the nanoribbons is sensitive to the functional groups. The edge state inherent in the zigzag edges is robust against edge functionalization. OH termination causes the injection of electrons into the nearly free electron states situated alongside the nanoribbons, resulting in the formation of free electron channels outside the nanoribbons. We also demonstrated that the polarity of zigzag graphene nanoribbons is controllable by the asymmetrical functionalization of their edges.

  7. Animal experiments by K-edge subtraction angiography by using SR (abstract)

    NASA Astrophysics Data System (ADS)

    Anno, I.; Akisada, M.; Takeda, T.; Sugishita, Y.; Kakihana, M.; Ohtsuka, S.; Nishimura, K.; Hasegawa, S.; Takenaka, E.; Hyodo, K.; Ando, M.

    1989-07-01

    Ischemic heart disease is one of the most popular and lethal diseases for aged peoples in the world, and is usually diagnosed by transarterial selective coronary arteriography. However, it is rather invasive and somewhat dangerous, so that the selective coronary arteriography is not feasible for prospective screening of coronary occlusive heart disease. Conventional digital subtraction angiography (DSA) is widely known as a relatively noninvasive and useful technique is making a diagnosis of arterial occlusive disease, especially in making the diagnosis of ischemic heart disease. Conventional intravenous subtraction angiography by temporal subtraction, however, has several problems when applying to the moving objects. Digital subtraction method using high-speed switching above and below the K edge could be the ideal approach to this solution. We intend to make a synchrotron radiation digital K-edge subtraction angiography in the above policy, and to apply it to the human coronary ischemic disease on an outpatient basis. The principles and experimental systems have already been described in detail by our coworkers. Our prototype experimental system is situated at the AR (accumulation ring) for TRISTAN project of high energy physics. The available beam size is 70 mm by 120 mm. The electron energy of AR is 6.5 GeV and average beam current is approximately 10 mA. This paper will show the animal experiments of our K-edge subtraction system, and discuss some problems and technical difficulties. Three dogs, weighing approximately 15 kg, were examined to evaluate the ability of our prototype synchrotron radiation DSA unit, that we are now constructing. The dogs were anaesthetized with pentobarbital sodium, intravenously (30 mg/kg). Six french-sized (1.52 mm i.d.) pigtail catheter with multiple side holes were introduced via the right femoral vein into the right atrium by the cutdown technique under conventional x-ray fluoroscopic control. Respiration of the dogs was

  8. Mn K-Edge XANES and Kβ XES Studies of Two Mn–Oxo Binuclear Complexes: Investigation of Three Different Oxidation States Relevant to the Oxygen-Evolving Complex of Photosystem II

    PubMed Central

    Visser, Hendrik; Anxolabéhère-Mallart, Elodie; Bergmann, Uwe; Glatzel, Pieter; Robblee, John H.; Cramer, Stephen P.; Girerd, Jean-Jacques; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.

    2014-01-01

    Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kβ X-ray emission spectroscopy (Kβ XES). The two manganese compounds are the di-μ-oxo compound [L′2MnIIIO2MnIVL′2](ClO4)3, where L′ is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623–6630) and the linear mono-μ-oxo compound [LMnIIIOMnIIIL](ClO4)2, where L− is the monoanionic N,N-bis(2-pyridylmethyl)-N′-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222–1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the MnIVMnIV species for the di-μ-oxo compound and the MnIIIMnIV and MnIVMnIV species for the mono-μ-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-μ-oxo and linear mono-μ-oxo Mn–Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kβ XES spectra show less dependence on ligand environment. The Kβ1,3 peak energies are comparable for the di-μ-oxo and mono

  9. Ti K-edge EXAFS and XANES study on tektites from different strewnfields

    NASA Astrophysics Data System (ADS)

    Wang, L.; Furuta, T.; Okube, M.; Yoshiasa, A.

    2011-12-01

    The concentration and local structure of each element may have various kinds of information about the asteroid impact and mass extinction. Farges and Brown have discussed about the Ti local structure by XANES, and concluded that Ti in tektite occupies 4-coordinated site. EXAFS can be analyzed to give precise information about the distance from Ti to near neighbors. The XAFS measurement of Ti local structure was preformed at the beamline 9C of the Photon Factory in KEK, Tsukuba, Japan. The specimens of tektites are from different strewnfields, they are: indochinite, bediasite, hainanite, philippinite, australite and moldavite. Sample for comparison are Libya desert glass and suevite. The k3χ(k) function was transformed into the radial structure function (RSF) for Ti K-edge of six tektites. The RSF for the Ti atom in indochinite and bediasite are similar; hainanite, australite and philippinite are similar; and moldavite is discriminated from others. It indicates that they have the same local atomic environmental around the Ti atoms and extended structure respectively. Coordination numbers and radial structure function are determined by EXAFS analyses (Table 1). We classified the tektites in three types: in indochinite and bediasite, Ti occupies 4-coordinated tetrahedral site and Ti-O distances are 1.84-1.81 Å; in hainanite, australite and philippinite, Ti occupies 5-coordinated trigonal bi-pyramidal or tetragonal pyramidal site and Ti-O distances are 1.92-1.87 Å; in moldavite, Ti occupies the 6-coordinated octahedral site and Ti-O distance is 2.00-1.96 Å. Formation of tektites is related to the impact process. It is generally recognized that tektites were formed under higher temperature and high pressure. But through this study, local structures of Ti are differing in three strewnfields and even different locations of the same strewnfield. What caused the various local structures will be another topic of tektite studies. Local structure of Ti may be changed in

  10. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study.

    PubMed

    Yao, Yin; Liu, Anping; Bai, Jianhui; Zhang, Xuanmei; Wang, Rui

    2016-12-01

    In this paper, we investigate the structural and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with edge-chemistry modified by H, F, OH, and O, using the ab initio density functional theory method and local spin-density approximation. Three kinds of spin polarized configurations are considered: nonspin polarization (NM), ferromagnetic spin coupling for all electrons (FM), ferromagnetic ordering along each edge, and antiparallel spin orientation between the two edges (AFM). The H, F, and OH groups modified 8-ZSiNRs have the AFM ground state. The directly edge oxidized (O1) ZSiNRs yield the same energy and band structure for NM, FM, and AFM configurations, owning to the same s p (2) hybridization. And replacing the Si atoms on the two edges with O atoms (O2) yields FM ground state. The edge-chemistry-modified ZSiNRs all exhibit metallic band structures. And the modifications introduce special edge state strongly localized at the Si atoms in the edge, except for the O1 form. The modification of the zigzag edges of silicene nanoribbons is a key issue to apply the silicene into the field effect transistors (FETs) and gives more necessity to better understand the experimental findings.

  11. First principles pseudopotential calculation of electron energy loss near edge structures of lattice imperfections.

    PubMed

    Mizoguchi, Teruyasu; Matsunaga, Katsuyuki; Tochigi, Eita; Ikuhara, Yuichi

    2012-01-01

    Theoretical calculations of electron energy loss near edge structures (ELNES) of lattice imperfections, particularly a Ni(111)/ZrO₂(111) heterointerface and an Al₂O₃ stacking fault on the {1100} plane, are performed using a first principles pseudopotential method. The present calculation can qualitatively reproduce spectral features as well as chemical shifts in experiment by employing a special pseudopotential designed for the excited atom with a core-hole. From the calculation, spectral changes observed in O-K ELNES from a Ni/ZrO₂ interface can be attributable to interfacial oxygen-Ni interactions. In the O-K ELNES of Al₂O₃ stacking faults, theoretical calculation suggests that the spectral feature reflects coordination environment and chemical bonding. Powerful combinations of ELNES with a pseudopotential method used to investigate the atomic and electronic structures of lattice imperfections are demonstrated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Fine Structure of Dark Energy and New Physics

    DOE PAGES

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  13. Quantum-gravity predictions for the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron; Wetterich, Christof

    2018-07-01

    Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.

  14. NEXAFS and XPS characterization of molecular oxygen adsorbed on Ni(100) at 80 K

    NASA Astrophysics Data System (ADS)

    Kim, C. M.; Jeong, H. S.; Kim, E. H.

    2000-07-01

    X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS) and near edge extended X-ray absorption fine structure (NEXAFS) have been combined to investigate the adsorption of oxygen on Ni(100) at 80 K. Three O(1s) XPS features were observed at 530.0, 531.1 and 534.7 eV when the Ni(100) surface was exposed to 600 L of oxygen at 80 K. They are assigned as O 2-, O 1- and molecular oxygen species, respectively. The presence of molecular oxygen has been confirmed by TDS and NEXAFS. Molecular O 2 on Ni(100) is oriented perpendicular to the surface, and the OO bond length is estimated to be 1.24 Å, based on the NEXAFS σ ∗ resonance energy.

  15. Development of XAFS Into a Structure Determination Technique

    NASA Astrophysics Data System (ADS)

    Stern, E. A.

    After the detection of diffraction of x-rays by M. Laue in 1912, the technique was soon applied to structure determination by Bragg within a year. On the other hand, although the edge steps in X-Ray absorption were discovered even earlier by Barkla and both the near edge (XANES) and extended X-Ray fine structure (EXAFS) past the edge were detected by 1929, it still took over 40 years to realize the structure information contained in this X-Ray absorption fine structure (XAFS). To understand this delay a brief historical review of the development of the scientific ideas that transformed XAFS into the premiere technique for local structure determination is given. The development includes both advances in theoretical understanding and calculational capabilities, and in experimental facilities, especially synchrotron radiation sources. The present state of the XAFS technique and its capabilities are summarized.

  16. A New Look at the Structural and Magnetic Properties of Potassium Neptunate K2NpO4 Combining XRD, XANES Spectroscopy, and Low-Temperature Heat Capacity.

    PubMed

    Smith, Anna L; Colineau, Eric; Griveau, Jean-Christophe; Popa, Karin; Kauric, Guilhem; Martin, Philippe; Scheinost, Andreas C; Cheetham, Anthony K; Konings, Rudy J M

    2017-05-15

    The physicochemical properties of the potassium neptunate K 2 NpO 4 have been investigated in this work using X-ray diffraction, X-ray absorption near edge structure (XANES) spectroscopy at the Np-L 3 edge, and low-temperature heat capacity measurements. A Rietveld refinement of the crystal structure is reported for the first time. The Np(VI) valence state has been confirmed by the XANES data, and the absorption edge threshold of the XANES spectrum has been correlated to the Mössbauer isomer shift value reported in the literature. The standard entropy and heat capacity of K 2 NpO 4 have been derived at 298.15 K from the low-temperature heat capacity data. The latter suggest the existence of a magnetic ordering transition around 25.9 K, most probably of the ferromagnetic type.

  17. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages.

    PubMed

    Ziemba, Brian P; Falke, Joseph J

    2018-01-01

    The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors

  18. A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages

    PubMed Central

    Ziemba, Brian P.

    2018-01-01

    The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators—PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors—wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors—AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors

  19. Local atomic and electronic structures of epitaxial strained LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.

    2012-01-01

    We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.

  20. Edge-closed laminated structures for thin-film heads

    NASA Astrophysics Data System (ADS)

    Herman, D. A.; Argyle, B. E.; Lee, H.-P.; Trouilloud, P. O.; Petek, B.

    1991-04-01

    Magnetic film laminations containing nonmagnetic spacers have been explored with the hope of eliminating domain walls to diminish Barkhausen instabilities. Such laminates have limitations however, which originate in their ``edge-curling walls'' (ECWs).1 We have developed a new structure, free of ECWs, in which flux closure at opposing edges occurs via edge-shorting material added to circulate the easy-axis flux of the flat layers. We show experimentally with Kerr-effect imaging that (1) this edge-closed laminated (ECL) structure can support an (ECW-free) ``easy-axis'' (EA) magnetic state under conditions as modeled recently by Slonczewski,2 and (2) that this EA state is quite robust in the face of imperfect structure fabrication. This is, if the imperfections are not too severe, the resultant states depart minimally from the pure EA state and conduct hard-axis-driven flux nearly as well. Flat-film ECL elements in diamond, stripe, and recording-head-yoke shapes, plus experimental heads with ECL top yokes, were fabricated. Our domain images verify some key predictions from Slonczewski's static equilibrium modeling; additional results taken in applied magnetic fields extend the micromagnetic understanding. The sketch shows a typical domain pattem for a yoke-shaped element. The most stable state in the open portion of the yoke is the single domain shown. This remanent pattern was stable in the face of (slowly varying) external fields up to the 150 Oe that could be applied. The pole tip region contained a few 180° walls as indicated. On close inspection, these walls were seen to end in vestigial, nontouching, closure domains as predicted by the model when only partial flux closure occurs via the edge shorting material. The wall spacing in the tip varied somewhat following saturation-demagnetization cycles. The dynamic stability of this EA state was investigated in the experimental heads having ECL top yokes. The pseudodynamic LAMOM technique3 was applied using ``write

  1. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.

    PubMed

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao

    2006-01-01

    Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.

  2. Soft edges--organizational structure in dental education.

    PubMed

    Chambers, D W

    1995-03-01

    There is no one best organizational structure for dental schools or for their major subunits. The classical alternatives of functional and divisional organization are discussed in light of the rule that follows function, and the advantages and disadvantages of each are presented. Newer models--decentralization, matrix, and heterarchy--show how features of functional and divisional structure can be blended. Virtual organizations, systems theory, and networks are also considered as new expressions of classical structures. The principle of suboptimization (soft edges) is presented.

  3. Nickel L-edge and K-edge X-ray absorption spectroscopy of non-innocent Ni[S₂C₂(CF₃)₂]₂(n) series (n = -2, -1, 0): direct probe of nickel fractional oxidation state changes.

    PubMed

    Gu, Weiwei; Wang, Hongxin; Wang, Kun

    2014-05-07

    A series of nickel dithiolene complexes Ni[S2C2(CF3)2]2(n) (n = -2, -1, 0) has been investigated using Ni L- and K-edge X-ray absorption spectroscopy (XAS). The L3 centroid shifts about 0.3 eV for a change of one unit in the formal oxidation state (or 0.3 eV per oxi), corresponding to ~33% of the shift for Ni oxides or fluorides (about 0.9 eV per oxi). The K-edge XAS edge position shifts about 0.7 eV per oxi, corresponding to ~38% of that for Ni oxides (1.85 eV per oxi). In addition, Ni L sum rule analysis found the Ni(3d) ionicity in the frontier orbitals being 50.5%, 44.0% and 38.5% respectively (for n = -2, -1, 0), in comparison with their formal oxidation states (of Ni(II), Ni(III), and Ni(IV)). For the first time, direct and quantitative measurement of the Ni fractional oxidation state changes becomes possible for Ni dithiolene complexes, illustrating the power of L-edge XAS and L sum rule analysis in such a study. The Ni L-edge and K-edge XAS can be used in a complementary manner to better assess the oxidation states for Ni.

  4. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  5. Collision mechanics and the structure of planetary ring edges

    NASA Technical Reports Server (NTRS)

    Spaute, Dominique; Greenberg, Richard

    1987-01-01

    The present numerical simulation of collisional evolution, in the case of a hypothetical ring whose parameters are modeled after those of Saturn's rings, gives attention to changes in radial structure near the ring edges and notes that when random motion is in equilibrium, the rings tend to spread in order to conserve angular momentum while energy is dissipated in collisions. As long as random motion is damped, ring edges may contract rather than spread, producing a concentration of material at the ring edges. For isotropic scattering, damping dominates for a coefficient of restitution of velocity value of up to 0.83.

  6. Aluminium X-ray absorption Near Edge Structure in model compounds and Earth's surface minerals

    NASA Astrophysics Data System (ADS)

    Ildefonse, P.; Cabaret, D.; Sainctavit, P.; Calas, G.; Flank, A.-M.; Lagarde, P.

    Aluminium K-edge X-ray absorption near edge spectra (XANES) of a suite of silicate and oxides minerals consist of electronic excitations occurring in the edge region, and multiple scattering resonances at higher energies. The main XANES feature for four-fold Al is at around 2 eV lower energy than the main XANES feature for six-fold Al. This provides a useful probe for coordination numbers in clay minerals, gels, glasses or material with unknown Al-coordination number. Six-fold aluminium yields a large variety of XANES features which can be correlated with octahedral point symmetry, number of aluminium sites and distribution of Al-O distances. These three parameters may act together, and the quantitative interpretation of XANES spectra is difficult. For a low point symmetry (1), variations are mainly related to the number of Al sites and distribution of Al-O distances: pyrophyllite, one Al site, is clearly distinguished from kaolinite and gibbsite presenting two Al sites. For a given number of Al-site (1), variations are controlled by changes in point symmetry, the number of XANES features being increased as point symmetry decreases. For a given point symmetry (1) and a given number of Al site (1), variations are related to second nearest neighbours (gibbsite versus kaolinite). The amplitude of the XANES feature at about 1566 eV is a useful probe for the assessment of AlIV/Altotal ratios in 2/1 phyllosilicates. Al-K XANES has been performed on synthetic Al-bearing goethites which cannot be studied by 27Al NMR. At low Al content, Al-K XANES is very different from that of α-AlOOH but at the highest level, XANES spectrum tends to that of diaspore. Al-K XAS is thus a promising tool for the structural study of poorly ordered materials such as clay minerals and natural alumino-silicate gels together with Al-subsituted Fe-oxyhydroxides.

  7. Effective collision strengths for forbidden transitions among the 3s23p3 fine-structure levels of CL IIIIII

    NASA Astrophysics Data System (ADS)

    Ramsbottom, C. A.; Bell, K. L.; Keenan, F. P.

    1999-08-01

    Effective collision strengths for the 10 astrophysically important fine-structure forbidden transitions among the ^4S^o, ^2D^o and ^2P^o levels in the 3s^23p^3 configuration of Cliii are presented. The calculation employs the multichannel R-matrix method to compute the electron-impact excitation collision strengths in a close-coupling expansion, which incorporates the lowest 23 LS target eigenstates of Cliii. These states are formed from the 3s^23p^3, 3s3p^4, 3s^23p^23d and 3s^23p^24s configurations. The Maxwellian-averaged effective collision strengths are presented graphically for all 10 fine-structure transitions over a wide range of electron temperatures appropriate for astrophysical applications [logT(K)=3.3-logT(K)=5.9]. Comparisons are made with the earlier seven-state close-coupling calculation of Butler & Zeippen, and in general excellent agreement is found in the low-temperature region where a comparison is possible [logT(K)=3.3-logT(K)=4.7]. However, discrepancies of up to 30 per cent are found to occur for the forbidden transitions which involve the ^4S^o ground state level, particularly for the lowest temperatures considered. At the higher temperatures, the present data are the only reliable results currently available.

  8. Absorption and scattering by interstellar dust in the silicon K-edge of GX 5-1

    NASA Astrophysics Data System (ADS)

    Zeegers, S. T.; Costantini, E.; de Vries, C. P.; Tielens, A. G. G. M.; Chihara, H.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.; Zeidler, S.

    2017-03-01

    Context. We study the absorption and scattering of X-ray radiation by interstellar dust particles, which allows us to access the physical and chemical properties of dust. The interstellar dust composition is not well understood, especially on the densest sight lines of the Galactic plane. X-rays provide a powerful tool in this study. Aims: We present newly acquired laboratory measurements of silicate compounds taken at the Soleil synchrotron facility in Paris using the Lucia beamline. The dust absorption profiles resulting from this campaign were used in this pilot study to model the absorption by interstellar dust along the line of sight of the low-mass X-ray binary GX 5-1. Methods: The measured laboratory cross-sections were adapted for astrophysical data analysis and the resulting extinction profiles of the Si K-edge were implemented in the SPEX spectral fitting program. We derive the properties of the interstellar dust along the line of sight by fitting the Si K-edge seen in absorption in the spectrum of GX 5-1. Results: We measured the hydrogen column density towards GX 5-1 to be 3.40 ± 0.1 × 1022 cm-2. The best fit of the silicon edge in the spectrum of GX 5-1 is obtained by a mixture of olivine and pyroxene. In this study, our modeling is limited to Si absorption by silicates with different Mg:Fe ratios. We obtained an abundance of silicon in dust of 4.0 ± 0.3 × 10-5 per H atom and a lower limit for total abundance, considering both gas and dust of >4.4 × 10-5 per H atom, which leads to a gas to dust ratio of >0.22. Furthermore, an enhanced scattering feature in the Si K-edge may suggest the presence of large particles along the line of sight.

  9. CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco

    2015-01-01

    We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less

  10. First demonstration of 10 keV-width energy-discrimination K-edge radiography using a cadmium-telluride X-ray camera with a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    Energy-discrimination X-ray camera is useful to perform monochromatic radiography using polychromatic X-rays. This X-ray camera was developed to carry out K-edge radiography using cerium and gadolinium-based contrast media. In this camera, objects are irradiated by a cone beam from a tungsten-target X-ray generator, and penetrating X-ray photons are detected by a cadmium-telluride detector with amplifiers. Both optimal photon-energy level and energy width are selected using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x- y stage driven by a two-stage controller, and radiograms were shown on a personal computer monitor. In radiography, tube voltage and current were 90 kV and 5.8 μA, respectively, and the X-ray intensity was 0.61 μGy/s at 1.0 m from the X-ray source. The K-edge energies of cerium and gadolinium are 40.3 and 50.3 keV, respectively, and 10 keV-width enhanced K-edge radiography was performed using X-ray photons with energies just beyond K-edge energies of cerium and gadolinium. Thus, cerium K-edge radiography was carried out using X-ray photons with an energy range from 40.3 to 50. 3 keV, and gadolinium K-edge radiography was accomplished utilizing photon energies ranging from 50.3 to 60.3 keV.

  11. SU-C-207-06: In Vivo Quantification of Gold Nanoparticles Using K-Edge Imaging Via Spectrum Shaping by Gold Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Cormack, R; Bhagwat, M

    Purpose: Gold nanoparticles (AuNP) are multifunctional platforms ideal for drug delivery, targeted imaging and radiosensitization. We have investigated quantitative imaging of AuNPs using on board imager (OBI) cone beam computed tomography (CBCT). To this end, we also present, for the first time, a novel method for k-edge imaging of AuNP by filter-based spectral shaping. Methods: We used a digital 25 cm diameter water phantom, embedded with 3 cm spheres filled with AuNPs of different concentrations (0 mg/ml – 16 mg/ml). A poly-energetic X-ray spectrum of 140 kVp from a conventional X-ray tube is shaped by balanced K-edge filters to createmore » an excess of photons right above the K-edge of gold at 80.7 keV. The filters consist of gold, tin, copper and aluminum foils. The phantom with appropriately assigned attenuation coefficients is forward projected onto a detector for each energy bin and then integrated. FKD reconstruction is performed on the integrated projections. Scatter, detector efficiency and noise are included. Results: We found that subtracting the results of two filter sets (Filter A:127 µm gold foil with 254 µm tin, 330 µm copper and 1 mm aluminum, and Filter B: 635 µm tin with 264 µm copper and 1 mm aluminum), provides substantial image contrast. The resulting filtered spectra match well below 80.7 keV, while maintaining sufficient X-ray quanta just above that. Voxel intensities of AuNP containing spheres increase linearly with AuNP concentration. K-edge imaging provides 18% more sensitivity than the tin filter alone, and 38% more sensitivity than the gold filter alone. Conclusion: We have shown that it is feasible to quantitatively detect AuNP distributions in a patient-sized phantom using clinical CBCT and K-edge spectral shaping.« less

  12. Portable X-Ray, K-Edge Heavy Metal Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, V.

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precisemore » assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.« less

  13. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite.

    PubMed

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2012-02-15

    This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Panahifar, Arash; Swanston, Treena M.; Pushie, M. Jake; Belev, George; Chapman, Dean; Weber, Lynn; Cooper, David M. L.

    2016-07-01

    Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

  15. K-Partite RNA Secondary Structures

    NASA Astrophysics Data System (ADS)

    Jiang, Minghui; Tejada, Pedro J.; Lasisi, Ramoni O.; Cheng, Shanhong; Fechser, D. Scott

    RNA secondary structure prediction is a fundamental problem in structural bioinformatics. The prediction problem is difficult because RNA secondary structures may contain pseudoknots formed by crossing base pairs. We introduce k-partite secondary structures as a simple classification of RNA secondary structures with pseudoknots. An RNA secondary structure is k-partite if it is the union of k pseudoknot-free sub-structures. Most known RNA secondary structures are either bipartite or tripartite. We show that there exists a constant number k such that any secondary structure can be modified into a k-partite secondary structure with approximately the same free energy. This offers a partial explanation of the prevalence of k-partite secondary structures with small k. We give a complete characterization of the computational complexities of recognizing k-partite secondary structures for all k ≥ 2, and show that this recognition problem is essentially the same as the k-colorability problem on circle graphs. We present two simple heuristics, iterated peeling and first-fit packing, for finding k-partite RNA secondary structures. For maximizing the number of base pair stackings, our iterated peeling heuristic achieves a constant approximation ratio of at most k for 2 ≤ k ≤ 5, and at most frac6{1-(1-6/k)^k} le frac6{1-e^{-6}} < 6.01491 for k ≥ 6. Experiment on sequences from PseudoBase shows that our first-fit packing heuristic outperforms the leading method HotKnots in predicting RNA secondary structures with pseudoknots. Source code, data set, and experimental results are available at http://www.cs.usu.edu/ mjiang/rna/kpartite/.

  16. Fine-scale human genetic structure in Western France.

    PubMed

    Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael Gb; Dina, Christian

    2015-06-01

    The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses.

  17. Beyond edge effects: landscape controls on forest structure in the southeastern US

    NASA Astrophysics Data System (ADS)

    Fagan, M. E.; Morton, D. C.; Cook, B.; Masek, J. G.; Zhao, F. A.; Nelson, R.; Huang, C.

    2016-12-01

    The structure of forest canopies (i.e., their height and complexity) is known to be influenced by a variety of factors, including forest age, species composition, disturbance, edaphic and topographical conditions, and exposure to edge environments. The combined impact of each of these factors on canopy structure is not well characterized for most forest ecosystems, however, which limits our ability to predict the regional impacts of forest fragmentation. The objective of this study was to elucidate the main biophysical drivers of canopy structure across two dominant ecosystems in the southeastern U.S: natural mixed deciduous forests, and industrial conifer plantations. We analyzed spatial changes in canopy structure along aerial transects of LiDAR data ( 3,000 km in all). High-resolution (1 m) LiDAR data from Goddard's LiDAR, Hyperspectral, and Thermal Airborne Imager (G-LiHT) were combined with time series of Landsat imagery to quantify forest type, age, composition, and fragmentation. Forest structural metrics (height, gap fraction, and canopy roughness) were examined across forest types, ages, topography, and decreasing edge exposure. We hypothesized that 1) structural edge effects would be weak in both natural and plantation forest types, and 2) age, composition, and topography would be the dominant influences on natural forest structure. We analyzed all large (>4 ha) fragments from the 8562 distinct forests measured during G-LiHT data collections in 2011 across the southeastern U.S. In general, the relationship between forest structural metrics and edge exposure was highly variable in both natural forests and plantations. However, variability in all structural metrics decreased with distance from an edge. Forest age and topography were strong predictors of canopy structure in natural forests. However plantations tended to be located in sites with limited topographical variation, and thinning disturbances of conifer plantations decreased the strength of the age-structure

  18. Electronic structure and x-ray magnetic circular dichroism in Mn-doped topological insulators Bi2Se3 and Bi2Te3

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Bekenov, L. V.; Uba, S.; Ernst, A.

    2017-12-01

    We studied the structural, electronic, and magnetic properties of Mn-doped topological insulators Bi2Se3 and Bi2Te3 within the density-functional theory (DFT) using the generalized gradient approximation (GGA) in the framework of the fully relativistic spin-polarized Dirac linear muffin-tin orbital band-structure method. The x-ray absorption spectra (XAS) and x-ray magnetic circular dichroism at the Mn K and L2 ,3 edges were investigated theoretically from first principles. The calculated results are in good agreement with experimental data. The complex fine structure of the Mn L2 ,3 XAS in Mn-doped Bi2Se3 and Bi2Te3 was found to be not compatible with a pure Mn3 + valency state. Its interpretation demands mixed valent states. The theoretically calculated x-ray emission spectra at the Mn K and L2 ,3 edges are also presented and analyzed.

  19. Molecular Eigensolution Symmetry Analysis and Fine Structure

    PubMed Central

    Harter, William G.; Mitchell, Justin C.

    2013-01-01

    Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041

  20. Variations in the fine-structure constant constraining gravity theories

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.

    2016-08-01

    In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.

  1. Experimental evidence of edge intrinsic momentum source driven by kinetic ion loss and edge radial electric fields in tokamaks

    DOE PAGES

    Boedo, J. A.; deGrassie, J. S.; Grierson, B.; ...

    2016-09-21

    Here, bulk ion toroidal velocity profiles, V D+ ||, peaking at 40–60 km/s are observed with Mach probes in a narrow edge region of DIII-D discharges without external momentum input. This intrinsic rotation can be well reproduced by a first principle, collisionless kinetic loss model of thermal ion loss that predicts the existence of a loss-cone distribution in velocity space resulting in a co-Ip directed velocity. We consider two kinetic models, one of which includes turbulence-enhanced momentum transport, as well as the Pfirsch-Schluter (P-S) fluid mechanism. We measure a fine structure of the boundary radial electric field, Er, insofar ignored,more » featuring large (10–20 kV/m) positive peaks in the scrape off layer (SOL) at, or slightly inside, the last closed flux surface of these low power L- and H-mode discharges in DIII-D. The Er structure significantly affects the ion-loss model, extended to account for a non-uniform electric field. We also find that V D+ || is reduced when the magnetic topology is changed from lower single null to upper single null. The kinetic ion loss model containing turbulence-enhanced momentum transport can explain the reduction, as we find that the potential fluctuations decay with radius, while we need to invoke a topology-enhanced collisionality on the simpler kinetic model. The P-S mechanism fails to reproduce the damping. We show a clear correlation between the near core V C6+ || velocity and the peak edge V D+ || in discharges with no external torque, further supporting the hypothesis that ion loss is the source for intrinsic torque in the present tokamaks. However, we also show that when external torque is injected in the core, it can complete with, and eventually overwhelm, the edge source, thus determining the near SOL flows. Finally, we show some additional evidence that the ion/electron distribution in the SOL is non-Maxwellian.« less

  2. Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Beck, L.; Calas, G.; Flank, A.-M.; Van Bennekom, A. J.; Van Beusekom, J. E. E.

    2002-05-01

    We used X-ray absorption spectroscopy at the Al K-edge to investigate the atomic structure of biogenic silica and to assess the effect of Al on its crystal chemistry. Our study provides the first direct evidence for a structural association of Al and Si in biogenic silica. In samples of cultured diatoms, Al is present exclusively in fourfold coordination. The location and relative intensity of X-ray absorption near-edge structure (XANES) features suggests the structural insertion of tetrahedral Al inside the silica framework synthesized by the organism. In diatom samples collected in the marine environment, Al is present in mixed six- and fourfold coordination. The relative intensity of XANES structures indicates the coexistence of structural Al with a clay component, which most likely reflects sample contamination by adhering mineral particles. Extended X-ray absorption fine structure spectroscopy has been used to get Al-O distances in biogenic silica of cultured diatoms, confirming a tetrahedral coordination. Because of its effect on solubility and reaction kinetics of biogenic silica, the structural association between Al and biogenic silica at the stage of biosynthesis has consequences for the use of sedimentary biogenic silica as an indicator of past environmental conditions.

  3. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    NASA Astrophysics Data System (ADS)

    Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.

    2016-03-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.

  4. Oxidant K edge x-ray emission spectroscopy of UF 4 and UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, J. G.; Yu, S. -W.; Qiao, R.

    The K-Edge (1s) x-ray emission spectroscopy of uranium tetrafluoride and uranium dioxide were compared to each other and to the results of a pair of earlier cluster calculations. Here, using a very simplified approach, it is possible to qualitatively reconstruct the main features of the x-ray emission spectra from the cluster calculation state energies and 2p percentages.

  5. Oxidant K edge x-ray emission spectroscopy of UF 4 and UO 2

    DOE PAGES

    Tobin, J. G.; Yu, S. -W.; Qiao, R.; ...

    2018-01-31

    The K-Edge (1s) x-ray emission spectroscopy of uranium tetrafluoride and uranium dioxide were compared to each other and to the results of a pair of earlier cluster calculations. Here, using a very simplified approach, it is possible to qualitatively reconstruct the main features of the x-ray emission spectra from the cluster calculation state energies and 2p percentages.

  6. Evidence for Al/Si tetrahedral network in aluminosilicate glasses from Al K-edge x-ray-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Ziyu; Romano, C.; Marcelli, A.; Mottana, A.; Cibin, G.; della Ventura, G.; Giuli, G.; Courtial, P.; Dingwell, D. B.

    1999-10-01

    The structure of aluminosilicate melts and/or glasses plays a key role in the earth sciences for the understanding of rock-forming igneous processes, as well as in the materials sciences for their technical applications. In particular, the alkaline-earth aluminosilicate glasses are an extremely important group of materials, with a wide range of commercial application, as well as serving as an analog for natural basaltic melts. However, definition of their structure and properties is still controversial, and in particular the role and effect of Al has long been a subject of debate. Here we report a series of experimental x-ray absorption near-edge structure spectra at the Al K edge on a series of synthetic glasses of peralkaline composition in the CaO-Al2O3-SiO2 system, together with a general theoretical framework for data analysis based on an ab initio full multiple-scattering theory. We propose an Al/Si tetrahedral network model for aluminosilicate glasses based on distorted polyhedra, with varying both the T-O (T=Al or Si) bond lengths and the T-O-T angles, and with different Al/Si composition. This model achieves a significant agreement between experiments and simulations. In these glasses, experimental data and theoretical results concur to support a model in which Al is network former with a comparatively well ordered local medium-range order (up to 5 Å).

  7. [The role of temporal fine structure in tone recognition and music perception].

    PubMed

    Zhou, Q; Gu, X; Liu, B

    2017-11-07

    The sound signal can be decomposed into temporal envelope and temporal fine structure information. The temporal envelope information is crucial for speech perception in quiet environment, and the temporal fine structure information plays an important role in speech perception in noise, Mandarin tone recognition and music perception, especially the pitch and melody perception.

  8. Advanced leading edge thermal-structure concept. Direct bond reusable surface insulation to a composite structure

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.

    1984-01-01

    An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.

  9. Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.

    PubMed

    Dresp, Birgitta; Langley, Keith

    2006-03-01

    The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.

  10. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  11. The impact of cochlear fine structure on hearing thresholds and DPOAE levels

    NASA Astrophysics Data System (ADS)

    Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.

    2004-05-01

    Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.

  12. Diamond structure recovery during ion irradiation at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Deslandes, Alec; Guenette, Mathew C.; Belay, Kidane; Elliman, Robert G.; Karatchevtseva, Inna; Thomsen, Lars; Riley, Daniel P.; Lumpkin, Gregory R.

    2015-12-01

    CVD diamond is irradiated by 5 MeV carbon ions, with each sample held at a different temperature (300-873 K) during irradiations. The defect structures resulting from the irradiations are evident as vacancy, interstitial and amorphous carbon signals in Raman spectra. The observed variation of the full width at half maximum (FWHM) and peak position of the diamond peak suggests that disorder in the diamond lattice is reduced for high temperature irradiations. The dumbbell interstitial signal is reduced for irradiations at 873 K, which suggests this defect is unstable at these temperatures and that interstitials have migrated to crystal surfaces. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy results indicate that damage to the diamond structure at the surface has occurred for room temperature irradiations, however, this structure is at least partially recovered for irradiations performed at 473 K and above. The results suggest that, in a high temperature irradiation environment such as a nuclear fusion device, in situ annealing of radiation-created defects can maintain the diamond structure and prolong the lifetime of diamond components.

  13. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3.

    PubMed

    Marini, C; Noked, O; Kantor, I; Joseph, B; Mathon, O; Shuker, R; Kennedy, B J; Pascarelli, S; Sterer, E

    2016-02-03

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ∼14.5 GPa.

  14. a Measurement of the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Hensley, Joel M.; Wicht, Andreas; Sarajlic, Edina; Chu, Steven

    2002-06-01

    Using an atom interferometer method, we measure the recoil velocity of cesium due to the coherent scattering of a photon. This measurement is used to obtain a preliminary value of ħ/MCs and the fine structure constant, α, with an uncertainty Δα/α = 7.3 × 10-9.

  15. [Ultraviolet spectroscopic study on the fine structures in the solar polar hole].

    PubMed

    Zhang, Min; Wang, Dong; Liu, Guo-Hong

    2014-07-01

    Fine structures in the south solar polar coronal hole were observed by N IV line of SOHO/SUMER spectrograph. The scales of the fine structures range spatially range from 1 arcsec to several arcsecs, temporally from 1 min to several minutes, and parts of them are in strip shape along the slit direction. The line-of-sight velocity of them is up to tens of km x s(-1) with red and blue shift intercrossed occasionally, which appear periodically as long as 100 minutes in some regions. Part of the fine structures can be clearly observed at the Ne V III line with higher formation temperature in the same spectral window. The time and location of some fine structures with high velocity in the Ne V III spectrum are almost the same as that in N IV spectrum, but they are extended and diffused in the Ne V III spectrum. Some fine structures have non-Gaussian profiles with the line-of-sight Doppler velocities up to 150 km x s(-1) in the N IV blue/red wings, which is similar with the explosive events in the transition region. In the past, explosive events are small-scale dynamic phenomena often observed in the quiet-sun (QS) region, while their properties in coronal holes (CHs) remain unclear. Here, we find the EE-like events with strong dynamics in the south solar polar coronal hole by N IV line of SOHO/SUMER spectrograph.

  16. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    NASA Astrophysics Data System (ADS)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  17. The Effects of an Intervention on the Gross and Fine Motor Skills of Hispanic Pre-K Children from Low SES Backgrounds

    ERIC Educational Resources Information Center

    Hamilton, Michelle; Liu, Ting

    2018-01-01

    The purpose of this study was to examine the effects of a motor skill intervention on gross and fine motor skill performance of Hispanic pre-K children from low SES backgrounds. One hundred and forty-nine pre-K children were randomly assigned to an intervention group (n = 74) and control group (n = 75). All children were assessed on fine and gross…

  18. Local surrounding of Mn in LaMn 1-xCo xO 3 compounds by means of EXAFS on Mn-K

    NASA Astrophysics Data System (ADS)

    Procházka, Vít; Sikora, Marcin; Kapusta, Czeslaw; Štěpánková, Helena; Chlan, Vojtěch; Knížek, Karel; Jirák, Zdeněk

    2010-05-01

    A systematic study of LaMn 1-xCo xO 3 perovskite series by means of X-ray absorption spectroscopy in the extended X-ray absorption fine structure (EXAFS) range of the K-absorption edge of Mn is reported. The Mn-K edge absorption measurements in the EXAFS region were performed to study the local surrounding of Mn ions. Polycrystalline powder samples of LaMn 1-xCo xO 3 ( x=0, 0.02; 0.2; 0.4; 0.5; 0.6; 0.8) prepared by solid-state reaction were used. The EXAFS spectra were analyzed with the FEFF8 computer program. The Mn-O distances of Mn to the nearest oxygen surroundings were evaluated for the samples in the series and compared with the Co-O distances obtained by EXAFS in V. Procházka et al., JMMM 310 (2007) 197 and with results of X-ray powder diffraction in C. Autret, J. Phys. Condens. Matter 17 (2005) 1601.

  19. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.

    PubMed

    Yu, Z L; Wang, D; Zhu, Z; Zhang, Z H

    2015-10-07

    The electronic and magnetic structures of graphene nanoribbons (GNRs) with various edge structures passivated by P atoms are investigated systematically, and compared with H passivation as well. GNRs with the entire reconstructed Klein edge or armchair edge are found to be nonmagnetic regardless of P or H passivation. However, if the edge of GNRs is a mixture of zigzag edge and reconstructed Klein edge, they are nonmagnetic for H passivation but significantly magnetic for P passivation, which could be attributed to the "charge transfer doping" effect. And the corresponding magnetic device shows a noticeable negative differential resistance phenomenon and an excellent spin filtering effect under AP configuration, which originate from the special energy band structure. The GNRs with zigzag edge, reconstructed Klein edge, or mixed edge shapes are all metals in the nonmagnetic state regardless of the H or P atoms involved. The relationship between the energy gap and the width in armchair-edged GNRs by P passivation with a dimer structure also satisfies the 3p periodicity, but different in detail from the case of H passivation. The calculated edge formation energy indicates that P-passivated GNRs are energetically more favorable, suggesting that they can stably exist in the experiment.

  20. Fine-structure-resolution for Rovibrational Excitation of CN Due to H2

    NASA Astrophysics Data System (ADS)

    Byrd, Nat; Yang, Benhui H.; Stancil, Phillip C.

    2018-06-01

    Diatomic molecules can be readily excited in interstellar environments exposed to intense UV radiation, such as the inner rim of a protoplanetary disk. Non-thermal populations of excited rovibrational levels can result, for example, following decay from electronically excited states to the electronic ground state. Competition between radiative decay and collisional processes, mostly due to H2, determine the resulting rovibrational emission spectrum. For CN, and other open-shell molecules, the resulting spectrum will be complicated due to fine-structure splitting of the rotational levels. In some cases, fine-structure resolution has been previously computed for rotational transitions in atom- or diatom-diatom collisional processes. Here we present the first fine-structure resolution for vibrational deexcitation for CN colliding with H2. The collisional cross sections were computed using a 6D potential energy surface with a full close-coupling approach. Fine-structure resolution is obtained by adopting an angular momentum recoupling scheme to transform the scattering matrices to a recoupled basis. Here we present low-energy calculations for the v=1 to 0 transition.This work was supported by NASA Grant NNX16AF09G.

  1. g-Factor of heavy ions: a new access to the fine structure constant.

    PubMed

    Shabaev, V M; Glazov, D A; Oreshkina, N S; Volotka, A V; Plunien, G; Kluge, H-J; Quint, W

    2006-06-30

    A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the fine structure constant to an accuracy which is better than that of the currently accepted value. Further improvements of the experimental and theoretical accuracy could provide a value of the fine structure constant which is several times more precise than the currently accepted one.

  2. Many-particle-effects in the theory of the extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Tran Thoai, D. B.; Ekardt, W.

    1981-10-01

    The Lee-Beni-procedure for the calculation of the extended X-ray absorption fine structure (EXAFS) is extended so as to include the effects of the electronic charge density outside the localized muffin-tin potentials. In our scheme EXAFS is caused by back-scattering of an elementary excitation of a homogeneous electron gas by localized energy dependent many-particle muffin-tin potentials. The difference between the two schemes is negligible at large k's, as expected from physical grounds. However, at small and intermediate k-values the difference is quite large. The effect of the outer electrons as compared to the Lee-Beni-model is twofold. First, they renormalize the scattered electron in the usual way. Second, they are missing within the scattering muffin-tins. Hence, we avoid to count some of the electrons twice. Results are presented for Cu as an example.

  3. Fine structure of the copulatory apparatus of the tapeworm Tetrabothrius erostris (Cestoda: Tetrabothriidea).

    PubMed

    Korneva, Janetta V; Jones, Malcolm K; Kuklin, Vadim V

    2015-05-01

    The organization and fine structure of the complex copulatory apparatus of Tetrabothrius erostris (Tetrabothriidea) is investigated by light and transmission electron microscopy. A diversity of microstructures was found on the surface of genital ducts. The apical surfaces of male gonadoducts possess tubular and blade-like microtriches that have specific structure in each section of the duct. The apical part of the tubular microtriches contains numerous constrictions in the proximal section of the sperm duct; blade-like microtriches of cirrus possess longitudinal striation in the apical part, and their basal part is reinforced with electron-dense strands. Two types of microtriches occur on the surface of cirrus, and their presence may be considered as systematic features. Prostate glands containing granules of medium electron density (up to 130 nm diameter) are localized in the cirrus sac. The genital atrium contains numerous non-ciliated receptors. Paramyosin-like fibers (up to 200 nm) were found in the muscle fibers surrounding the male atrium canal. Microtriches on the surface of the distal region of the male atrial canal are covered by a glycocalyx. Electron-dense, membrane-like structures (up to 40 nm) lie under the apical membrane of the genital atrium and vagina. These structures do not form a continuous layer; its edges turn down and sink into the apical invaginations of epithelium. Hypotheses on the possible ways of copulation in T. erostris based on the observed ultrastructure are discussed.

  4. Genetic structure of tree and shrubby species among anthropogenic edges, natural edges, and interior of an atlantic forest fragment.

    PubMed

    Ramos, Flavio Nunes; de Lima, Paula Feliciano; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Solferini, Vera Nisaka

    2010-04-01

    Two species, Psychotria tenuinervis (shrub, Rubiaceae) and Guarea guidonia (tree, Meliaceae), were used as models to compare the genetic structure of tree and shrubby species among natural edges, anthropogenic edges, and a fragment interior. There were significant differences between two genetic markers. For isozymes, P. tenuinervis presented greater heterozygosity (expected and observed) and a higher percentage of polymorphic loci and median number of alleles than G. guidonia. For microsatellites, there was no difference in genetic variability between the species. Only P. tenuinervis, for isozymes, showed differences in genetic variability among the three habitats. There was no genetic structure (F (ST) < 0.05) among habitats in both plant species for both genetic markers. Isozymes showed great endogamy for both plant species, but not microsatellites. The forest fragmentation may have negative effects on both spatial (among edges and interior) and temporal genetic variability.

  5. Computing local edge probability in natural scenes from a population of oriented simple cells

    PubMed Central

    Ramachandra, Chaithanya A.; Mel, Bartlett W.

    2013-01-01

    A key computation in visual cortex is the extraction of object contours, where the first stage of processing is commonly attributed to V1 simple cells. The standard model of a simple cell—an oriented linear filter followed by a divisive normalization—fits a wide variety of physiological data, but is a poor performing local edge detector when applied to natural images. The brain's ability to finely discriminate edges from nonedges therefore likely depends on information encoded by local simple cell populations. To gain insight into the corresponding decoding problem, we used Bayes's rule to calculate edge probability at a given location/orientation in an image based on a surrounding filter population. Beginning with a set of ∼ 100 filters, we culled out a subset that were maximally informative about edges, and minimally correlated to allow factorization of the joint on- and off-edge likelihood functions. Key features of our approach include a new, efficient method for ground-truth edge labeling, an emphasis on achieving filter independence, including a focus on filters in the region orthogonal rather than tangential to an edge, and the use of a customized parametric model to represent the individual filter likelihood functions. The resulting population-based edge detector has zero parameters, calculates edge probability based on a sum of surrounding filter influences, is much more sharply tuned than the underlying linear filters, and effectively captures fine-scale edge structure in natural scenes. Our findings predict nonmonotonic interactions between cells in visual cortex, wherein a cell may for certain stimuli excite and for other stimuli inhibit the same neighboring cell, depending on the two cells' relative offsets in position and orientation, and their relative activation levels. PMID:24381295

  6. Counting individual sulfur atoms in a protein by ultrahighresolution Fourier transform ion cyclotron resonance mass spectrometry: Experimental resolution of isotopic fine structure in proteins

    PubMed Central

    Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.

    1998-01-01

    A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700

  7. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    of 0, 1,3, and 10% and annealed at 400, 600 and 800°C in air. XAFS spectra show that low dopant concentrations and low processing temperatures limit the amount of secondary phase formation. The nanopowders did not show roomtemperature ferromagnetism and increased secondary phase formation increases the paramagnetic character of the hysteresis curves at 5°K. Keywords: X-ray absorption fine structures (XAFS), X-ray absorption near-edge structures (XANES), extended X-ray absorption fine structure (EXAFS), X-ray absorption spectroscopy(XAS), X-ray excited optical luminescence (XEOL), time-resolved, II-VI semiconductors, nanostructure, nanomaterial, nanoribbon, nanowire, nanopartic1e, heterostructure, ZnO, ZnS, ZnO-ZnS, CdS, CdSe, CdSSe, ZnO:Mn, ZnO:Co, ZnS:Mn, dilute magnetic semiconductor (DMS), dilute magnetic oxide (DMO), spintronics, magnetism, paramagnetism, ferromagnetism.

  8. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  9. Structure of hydrated gibbsite and brucite edge surfaces: DFT results and further development of the ClayFF classical force field with metal–O–H angle bending terms

    DOE PAGES

    Pouvreau, Maxime; Greathouse, Jeffery A.; Cygan, Randall T.; ...

    2017-06-28

    Molecular scale understanding of the structure and properties of aqueous interfaces with clays, metal (oxy-) hydroxides, layered double hydroxides, and other inorganic phases is strongly affected by significant degrees of structural and compositional disorder of the interfaces. ClayFF was originally developed as a robust and flexible force field for classical molecular simulations of such systems. However, despite its success, multiple limitations have also become evident with its use. One of the most important limitations is the difficulty to accurately model the edges of finite size nanoparticles or pores rather than infinitely layered periodic structures. Here we propose a systematic approachmore » to solve this problem by developing specific metal–O–H (M–O–H) bending terms for ClayFF, E bend = k (θ – θ 0) 2 to better describe the structure and dynamics of singly protonated hydroxyl groups at mineral surfaces, particularly edge surfaces. On the basis of a series of DFT calculations, the optimal values of the Al–O–H and Mg–O–H parameters for Al and Mg in octahedral coordination are determined to be θ 0,AlOH = θ 0,MgOH = 110°, k AlOH = 15 kcal mol –1 rad –2 and k MgOH = 6 kcal mol –1 rad –2. Molecular dynamics simulations were performed for fully hydrated models of the basal and edge surfaces of gibbsite, Al(OH) 3, and brucite, Mg(OH) 2, at the DFT level of theory and at the classical level, using ClayFF with and without the M–O–H term. The addition of the new bending term leads to a much more accurate representation of the orientation of O–H groups at the basal and edge surfaces. Finally, the previously observed unrealistic desorption of OH 2 groups from the particle edges within the original ClayFF model is also strongly constrained by the new modification.« less

  10. Precision microwave measurement of the 2(3)P(1)-2(3)P(0) interval in atomic helium: a determination of the fine-structure constant.

    PubMed

    George, M C; Lombardi, L D; Hessels, E A

    2001-10-22

    The 2(3)P(1)-to- 2(3)P(0) interval in atomic helium is measured using a thermal beam of metastable helium atoms excited to the 2(3)P state using a 1.08-microm diode laser. The 2(3)P(1)-to- 2(3)P(0) transition is driven by 29.6-GHz microwaves in a rectangular waveguide cavity. Our result of 29,616,950.9+/-0.9 kHz is the most precise measurement of helium 2(3)P fine structure. When compared to precise theory for this interval, this measurement leads to a determination of the fine-structure constant of 1/137.0359864(31).

  11. First Order Statistics of Speckle around a Scatterer Volume Density Edge and Edge Detection in Ultrasound Images.

    NASA Astrophysics Data System (ADS)

    Li, Yue

    1990-01-01

    Ultrasonic imaging plays an important role in medical imaging. But the images exhibit a granular structure, commonly known as speckle. The speckle tends to mask the presence of low-contrast lesions and reduces the ability of a human observer to resolve fine details. Our interest in this research is to examine the problem of edge detection and come up with methods for improving the visualization of organ boundaries and tissue inhomogeneity edges. An edge in an image can be formed either by acoustic impedance change or by scatterer volume density change (or both). The echo produced from these two kinds of edges has different properties. In this work, it has been proved that the echo from a scatterer volume density edge is the Hilbert transform of the echo from a rough impedance boundary (except for a constant) under certain conditions. This result can be used for choosing the correct signal to transmit to optimize the performance of edge detectors and characterizing an edge. The signal to noise ratio of the echo produced by a scatterer volume density edge is also obtained. It is found that: (1) By transmitting a signal with high bandwidth ratio and low center frequency, one can obtain a higher signal to noise ratio. (2) For large area edges, the farther the transducer is from the edge, the larger is the signal to noise ratio. But for small area edges, the nearer the transducer is to the edge, the larger is the signal to noise ratio. These results enable us to maximize the signal to noise ratio by adjusting these parameters. (3) The signal to noise ratio is not only related to the ratio of scatterer volume densities at the edge, but also related to the absolute value of scatterer volume densities. Some of these results have been proved through simulation and experiment. Different edge detection methods have been used to detect simulated scatterer volume density edges to compare their performance. A so-called interlaced array method has been developed for speckle

  12. Homogeneity of Pb(Zr ,Ti)O3 thin films by chemical solution deposition: Extended x-ray absorption fine structure spectroscopy study of zirconium local environment

    NASA Astrophysics Data System (ADS)

    Malic, Barbara; Arcon, Iztok; Kodre, Alojz; Kosec, Marija

    2006-09-01

    Sols for Pb(Zr0.53Ti0.47)O3 (PZT) thin films were prepared by 2-methoxyethanol route from lead acetate, titanium n-propoxide, and zirconium n-propoxide, the latter either unmodified or modified with acetylacetone or acetic acid in a 2/1 molar ratio and deposited on sapphire (0001). By Zr K-edge extended x-ray absorption fine structure (EXAFS) spectroscopy, the structural changes in the Zr local environment, induced by the addition of the two modifiers, were followed from the synthesis of the PZT sol to the transition to the amorphous film. In the unmodified PZT sol segregation of Zr species occurs from the original dimers present in the Zr propoxide solution in 2-methoxyethanol. The immediate neighborhood of Zr atoms changes markedly at the transition from the sol to the amorphous film: the local structure around Zr atoms is similar to the one found in tetragonal zirconia particles. The modification of Zr propoxide with acetylacetone in 2-methoxyethanol results in Zr monomers. In PZT sol, clustering of Zr species is observed continuing into the amorphous film. By modification with acetic acid the original dimeric structure of the Zr precursor is retained in the PZT sol and further in the amorphous film. Selective modification of Zr propoxide with acetic acid therefore results in a more homogeneous distribution of Zr atoms in the PZT sol and amorphous film than in both as-received and acetylacetone-modified Zr propoxide.

  13. Structure of the manganese complex in photosystem II: insights from X-ray spectroscopy.

    PubMed Central

    Yachandra, Vittal K

    2002-01-01

    We have used Mn K-edge absorption and Kbeta emission spectroscopy to determine the oxidation states of the Mn complex in the various S states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy; this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, ca. 6550 eV) to obtain L-edge-like spectra (2p to 3d, ca. 650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained extended X-ray absorption fine structure data from the S(0) and S(3) states and observed heterogeneity in the Mn-Mn distances leading us to conclude that there may be three rather than two di-mu-oxo-bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca and Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn-Ca cluster. The possibility of three di-mu-oxo-bridged Mn-Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results. PMID:12437873

  14. Internal Fine Structure of Ellerman Bombs

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuki; Kitai, Reizaburo; Ichimoto, Kiyoshi; Ueno, Satoru; Nagata, Shin'ichi; Ishii, Takako T.; Hagino, Masaoki; Komori, Hiroyuki; Nishida, Keisuke; Matsumoto, Takuma; Otsuji, Kenichi; Nakamura, Tahei; Kawate, Tomoko; Watanabe, Hiroko; Shibata, Kazunari

    2010-08-01

    We conducted coordinated observations of Ellerman bombs (EBs) between Hinode Satellite and Hida Observatory (HOP12). CaII H broad-band filter images of NOAA 10966 on 2007 August 9 and 10 were obtained with the Solar Optical Telescope (SOT) aboard the Hinode Satellite, and many bright points were observed. We identified a total of 4 bright points as EBs, and studied the temporal variation of their morphological fine structures and spectroscopic characteristics. With high-resolution CaII H images of SOT, we found that the EBs, thus far thought of as single bright features, are composed of a few of fine subcomponents. Also, by using Stokes I/V filtergrams with Hinode/SOT, and CaII H spectroheliograms with Hida/Domeless Solar Telescope (DST), our observation showed: (1) The mean duration, the mean width, the mean length, and the mean aspect ratio of the subcomponents were 390 s, 170 km, 450 km, and 2.7, respectively. (2) Subcomponents started to appear on the magnetic neutral lines, and extended their lengths from the original locations. (3) When the CaII H line of EBs showed the characteristic blue asymmetry, they are associated with the appearance or re-brightening of subcomponents. Summarizing our results, we obtained an observational view that elementary magnetic reconnections take place one by one successively and intermittently in EBs, and that their manifestation is the fine subcomponents of the EB phenomena.

  15. Bayes-Turchin Analysis of Overlapping L-Edges EXAFS Data of Iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossner, H. H.; Schmitz, D.; Imperia, P.

    2007-02-02

    Spin polarized and spin averaged extended x-ray absorption fine structure ((M)EXAFS) data were measured at temperatures of 180 K and 296 K in the soft x-ray energy regime of the overlapping L-edges of an iron film grown on V(110). The absorption coefficients were analyzed with the Bayes-Turchin procedure. The analysis yields the correction function to the atomic-like background-absorption coefficient calculated by FEFF8 and reveals components of atomic EXAFS oscillations. The EXAFS Debye-Waller (DW) parameters were determined. Their split into a thermal and a structural contribution was not possible without theoretical input since the two temperatures in this experiment were notmore » sufficiently far apart from each other and the k range of the data was too small. The a priori values of the thermal contribution to the DW parameters were therefore derived from a force-field model with two spring constants. They were adjusted to DW parameters calculated from Born-von Karman force constants which had been obtained from inelastic neutron scattering. Those two spring constants also nicely reproduce the unprojected vibrational density of states deduced from phonon dispersion curves. The MEXAFS oscillations can be described by the rigid-band model and the L2- and L3-EXAFS components. A negative exchange-related energy is obtained by fitting the MEXAFS signal in the extended energy region. This is in contrast to the predictions of the Hedin-Lundquist functional and the Dirac-Hara functional used in the FEFF8 code.« less

  16. Discriminating the Drivers of Edge Effects on Nest Predation: Forest Edges Reduce Capture Rates of Ship Rats (Rattus rattus), a Globally Invasive Nest Predator, by Altering Vegetation Structure

    PubMed Central

    Ruffell, Jay; Didham, Raphael K.; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P.

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0–212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these ‘reverse’ edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches. PMID:25412340

  17. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus), a globally invasive nest predator, by altering vegetation structure.

    PubMed

    Ruffell, Jay; Didham, Raphael K; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.

  18. Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks

    PubMed Central

    Colon-Perez, Luis M.; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R.; Price, Catherine; Mareci, Thomas H.

    2015-01-01

    High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime. PMID:26173147

  19. Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks.

    PubMed

    Colon-Perez, Luis M; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R; Price, Catherine; Mareci, Thomas H

    2015-01-01

    High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime.

  20. Fine Structures of Solar Radio Type III Bursts and Their Possible Relationship with Coronal Density Turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Xingyao; Kontar, Eduard P.; Yu, Sijie; Yan, Yihua; Huang, Jing; Tan, Baolin

    2018-03-01

    Solar radio type III bursts are believed to be the most sensitive signatures of near-relativistic electron beam propagation in the corona. A solar radio type IIIb-III pair burst with fine frequency structures, observed by the Low Frequency Array (LOFAR) with high temporal (∼10 ms) and spectral (12.5 kHz) resolutions at 30–80 MHz, is presented. The observations show that the type III burst consists of many striae, which have a frequency scale of about 0.1 MHz in both the fundamental (plasma) and the harmonic (double plasma) emission. We investigate the effects of background density fluctuations based on the observation of striae structure to estimate the density perturbation in the solar corona. It is found that the spectral index of the density fluctuation spectrum is about ‑1.7, and the characteristic spatial scale of the density perturbation is around 700 km. This spectral index is very close to a Kolmogorov turbulence spectral index of ‑5/3, consistent with a turbulent cascade. This fact indicates that the coronal turbulence may play the important role of modulating the time structures of solar radio type III bursts, and the fine structure of radio type III bursts could provide a useful and unique tool to diagnose the turbulence in the solar corona.

  1. THE FINE STRUCTURE OF GREEN BACTERIA

    PubMed Central

    Cohen-Bazire, Germaine; Pfennig, Norbert; Kunisawa, Riyo

    1964-01-01

    The fine structure of several strains of green bacteria belonging to the genus Chlorobium has been studied in thin sections with the electron microscope. In addition to having general cytological features typical of Gram-negative bacteria, the cells of these organisms always contain membranous mesosomal elements, connected with the cytoplasmic membrane, and an elaborate system of isolated cortical vesicles, some 300 to 400 A wide and 1000 to 1500 A long. The latter structures, chlorobium vesicles, have been isolated in a partly purified state by differential centrifugation of cell-free extracts. They are associated with a centrifugal fraction that has a very high specific chlorophyll content. In all probability, therefore, the chlorobium vesicles are the site of the photosynthetic apparatus of green bacteria. PMID:14195611

  2. Edge profiles in K shell photoabsorption spectra of gaseous hydrides of 3p elements and homologues

    NASA Astrophysics Data System (ADS)

    Hauko, R.; Gomilšek, J. Padežnik; Kodre, A.; Arčon, I.; Aquilanti, G.

    2017-10-01

    Photoabsorption spectra of gaseous hydrides of 3p elements (PH3, H2S, HCl) are measured in the energy region of photoexcitations pertaining to K edge. The analysis of the edge profile is extended to hydrides of 4p series (GeH4, AsH3, H2Se, HBr) from an earlier experiment, and to published spectra of 2p hydrides (CH4, NH3, H2O, HF) and noble gases Ar, Kr and Ne and SiH4. The edge profiles are modelled with a linear combination of lorentzian components, describing excitations to individual bound states and to continuum. Transition energies and probabilities are also calculated in the non-relativistic molecular model of the ORCA code, in good agreement with the experiment. Edge profiles in the heavier homologues are closely similar, the symmetry of the molecule governs the transitions to the lowest unoccupied orbitals. In 2p series the effect of the strong nuclear potential prevails. Transitions to higher, atomic-like levels remain very much the same as in free atoms.

  3. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer.

    PubMed

    Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O

    2017-02-06

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II (itao)(SO 4 )(H 2 O) 0,1 ] (M = Co, Ni, Cu) and [Cu(Me 6 tren)(SO 4 )] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO 4 )] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4 )] but not of [Cu(Me 6 tren)(SO 4 )] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II (SO 4 )(H 2 O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which

  4. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer

    DOE PAGES

    Frank, Patrick; Szilagyi, Robert K.; Gramlich, Volker; ...

    2017-01-09

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II(itao)(SO 4)(H 2O) 0,1] (M = Co, Ni, Cu) and [Cu(Me 6tren)(SO 4)] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal–sulfur bond, while the XAS preedge of [Zn(itao)(SO 4)] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4)] but not of [Cu(Me 6tren)(SO 4)] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II(SO 4)(Hmore » 2O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5–2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal–absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which

  5. Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

    PubMed Central

    2015-01-01

    Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792

  6. Total edge irregularity strength of (n,t)-kite graph

    NASA Astrophysics Data System (ADS)

    Winarsih, Tri; Indriati, Diari

    2018-04-01

    Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .

  7. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  8. Temporal Fine Structure and Applications to Cochlear Implants

    ERIC Educational Resources Information Center

    Li, Xing

    2013-01-01

    Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…

  9. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS tomore » study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.« less

  10. MO-FG-CAMPUS-IeP1-01: Alternative K-Edge Filters for Low-Energy Image Acquisition in Contrast Enhanced Spectral Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: In Contrast Enhanced Spectral Mammography (CESM), Rh filter is often used during low-energy image acquisition. The potential for using Ag, In and Sn filters, which exhibit K-edge closer to, and just below that of Iodine, instead of the Rh filter, was investigated for the low-energy image acquisition. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for 50µm Rh were compared with other potential K-edge filters (Ag, In and Sn), all with K-absorption edge below that of Iodine. Two strategies were investigated: fixed kVp and filter thickness (50µm for all filters) resulting inmore » HVT variation, and fixed kVp and HVT resulting in variation in Ag, In and Sn thickness. Monte Carlo simulations (GEANT4) were conducted to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Rh and other K-edge filters. Results: Ag, In and Sn filters (50µm thick) increased photon fluence/mAs by 1.3–1.4, 1.8–2, and 1.7–2 at 28-32 kVp compared to 50µm Rh, which could decrease exposure time. Additionally, the fraction of spectra closer to and just below Iodine’s K-edge increased with these filters, which could improve post-subtraction image contrast. For HVT matched to 50µm Rh filtered spectra, the thickness range for Ag, In, and Sn were (41,44)µm, (49,55)µm and (45,53)µm, and increased photon fluence/mAs by 1.5–1.7, 1.6–2, and 1.6–2.2, respectively. Monte Carlo simulations showed that neither the SPR nor the scatter PSF of Ag, In and Sn differed from Rh, indicating no additional detriment due to x-ray scatter. Conclusion: The use of Ag, In and Sn filters for low-energy image acquisition in CESM is potentially feasible and could decrease exposure time and may improve post-subtraction image contrast. Effect of these filters on radiation dose, contrast, noise and associated metrics are being investigated. Funding Support

  11. Fine structures of wing scales in Sasakia charonda butterflies as photonic crystals.

    PubMed

    Matejková-Plskova, J; Shiojiri, S; Shiojiri, M

    2009-11-01

    We investigate the microstructure of scales in the wings of male Sasakia charonda charonda butterflies by scanning electron microscopy with the aid of optical microscopy. Six types of scales are identified: B1, W1 and R1 in brown background yellow spots and red spots, respectively; B2 in iridescent purple-blue and W2 in white pearl, both of which characterize the male and B3 in the wing edges. The B1, W1 and R1 scales are almost the same in structure and the B2 and W2 scales are almost the same. The difference among the B, W and R scales is in species and content of pigment. The B1, W1 and R1 scales have only two layers of cuticle lapped on the ridges. In contrast with them, the B2 and W2 scales have seven multilayers of cuticle piled on the ridge. The multiple interference of light that occurs among these cuticle layers, spaced with air layers, generates the significant iridescence of the B2 and W2 scales. Thus, the characteristic purple-blue of the male wings is ascribed to the combination of the structural and chemical colouration in the B2 scales with melanin. The photonic crystals of these scales may be applicable to fine light manipulators such as reflection elements in laser diodes. B3 has many holes between the ridges and no multilayers of cuticle on the ridges. These structures may play any role in aerodynamically easy flight and/or in drainage of wet wings.

  12. K-Ar dating of lunar fines - Apollo 12, Apollo 14, and Luna 16.

    NASA Technical Reports Server (NTRS)

    Pepin, R. O.; Bradley, J. G.; Dragon, J. C.; Nyquist, L. E.

    1972-01-01

    K-Ar ages were determined on a 6-in. double-focus mass spectrometer in fines of less than 1 mm from Apollo 14 and 16, and Luna 16 lunar soil samples. Age estimates of about 2.8 AE and about 4.0 AE are suggested for the two low-K components whose presence in the samples must be assumed to accommodate the age data. An average value of 0.1849 plus or minus 0.0008 was obtained for the Ar-18/Ar-36 ratio in the solar wind from ordinate intercept correlations for the Apollo 14 and Luna 16 samples. Cosmic ray exposure ages were close to 440 m.y. for both Apollo 14 samples and close to 840 m.y. for both Luna 16 samples.

  13. QED Based Calculation of the Fine Structure Constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestone, John Paul

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ 2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. Thismore » exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.« less

  14. Fine Structure and Dynamics of Sunspot Penumbra

    NASA Astrophysics Data System (ADS)

    Ryutova, M.; Berger, T.; Title, A.

    2007-08-01

    A mature sunspot is usually surrounded by a penumbra: strong vertical magnetic field in the umbra, the dark central region of sunspot, becomes more and more horizontal toward the periphery forming an ensemble of a thin magnetic filaments of varying inclinations. Recent high resolution observations with the 1-meter Swedish Solar Telescope (SST) on La Palma revealed a fine substructure of penumbral filaments and new regularities in their dynamics.1 These findings provide both the basis and constraints for an adequate model of the penumbra whose origin still remains enigmatic. We present results of recent observations obtained with the SST. Our data, taken simultaneously in 4305 Å G-band and 4396 Å continuum bandpasses and compiled in high cadence movies, confirm previous results and reveal new features of the penumbra. We find e.g. that individual filaments are cylindrical helices with a pitch/radius ratio providing their dynamic stability. We propose a mechanism that may explain the fine structure of penumbral filaments, the observed regularities, and their togetherness with sunspot formation. The mechanism is based on the anatomy of sunspots in which not only penumbra has a filamentary structure but umbra itself is a dense conglomerate of twisted interlaced flux tubes.

  15. The effective fine-structure constant of freestanding graphene measured in graphite.

    PubMed

    Reed, James P; Uchoa, Bruno; Joe, Young Il; Gan, Yu; Casa, Diego; Fradkin, Eduardo; Abbamonte, Peter

    2010-11-05

    Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, α(g)* (k,ω), the value of which approaches 0.14 ± 0.092 ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal α(g) = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed.

  16. The fine structure of Langmuir waves observed upstream of the bow shock at Venus

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Gurnett, D. A.; Kurth, W. S.; Kivelson, M. G.; Strangeway, R. J.; Bolton, S. J.

    1994-01-01

    Highly structured Langmuir waves, also known as electron plasma oscillations, have been observed in the foreshock of Venus using the plasma wave experiment on the Galileo spacecraft during the gravity assist flyby on February 10, 1990. The Galileo wideband sampling system provides digital electric field waveform measurements at sampling rates up to 201,600 samples per second, much higher than any previous instrument of this type. The main Langmuir wave emission band occurs near the local electron plasma frequency, which was approximately 43 kHz. The Langmuir waves are observed to shift above and below the plasma frequency, sometimes by as much as 20 kHz. The shifts in frequency are closely correlated with the downstream distance from the tangent field line, implying that the shifts are controlled by the electron beam velocity. Considerable fine structure is also evident, with time scales as short as 0.15 milliseconds, corresponding to spatial scales of a few tens of Debye lengths. The frequency spectrum often consists of beat-type waveforms, with beat frequencies ranging from 0.2 to 7 kHz, and in a few cases, isolated wavepackets. The peak electric field strengths are approximately 1 mV/m. These field strengths are too small for strongly nonlinear processes to be important. The beat-type waveforms are suggestive of a parametric decay process.

  17. The potential for neurovascular intravenous angiography using K-edge digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Schültke, E.; Fiedler, S.; Kelly, M.; Griebel, R.; Juurlink, B.; LeDuc, G.; Estève, F.; Le Bas, J.-F.; Renier, M.; Nemoz, C.; Meguro, K.

    2005-08-01

    Background: Catheterization of small-caliber blood vessels in the central nervous system can be extremely challenging. Alternatively, intravenous (i.v.) administration of contrast agent is minimally invasive and therefore carries a much lower risk for the patient. With conventional X-ray equipment, volumes of contrast agent that could be safely administered to the patient do not allow acquisition of high-quality images after i.v. injection, because the contrast bolus is extremely diluted by passage through the heart. However, synchrotron-based digital K-edge subtraction angiography does allow acquisition of high-quality images after i.v. administration of relatively small doses of contrast agent. Materials and methods: Eight adult male New Zealand rabbits were used for our experiments. Animals were submitted to both angiography with conventional X-ray equipment and synchrotron-based digital subtraction angiography. Results: With conventional X-ray equipment, no contrast was seen in either cerebral or spinal blood vessels after i.v. injection of iodinated contrast agent. However, using K-edge digital subtraction angiography, as little as 1 ml iodinated contrast agent, when administered as i.v. bolus, yielded images of small-caliber blood vessels in the central nervous system (both brain and spinal cord). Conclusions: If it would be possible to image blood vessels of the same diameter in the central nervous system of human patients, the synchrotron-based technique could yield high-quality images at a significantly lower risk for the patient than conventional X-ray imaging. Images could be acquired where catheterization of feeding blood vessels has proven impossible.

  18. X-Ray Absorption near Edge Structure Spectroscopy of Nanodiamonds from the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Hill, H.; Jacobsen, C.; Wirick, S.

    2000-01-01

    Carbon X-ray Absorption Near Edge Structure Spectroscopy shows Allende DM nanodiamonds have two pre-edge peaks, consistent with other small diamonds, but fail to show a diamond exciton which is seen in 3.6 nm diamond thin films.

  19. An action-based fine-grained access control mechanism for structured documents and its application.

    PubMed

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.

  20. THE FINE STRUCTURE OF Streptomyces coelicolor

    PubMed Central

    Hopwood, David A.; Glauert, Audrey M.

    1960-01-01

    Colonies and spore suspensions of Streptomyces coelicolor were fixed for electron microscopy by the method of Kellenberger, Ryter, and Séchaud (1958). In thin sections the nuclear regions have a lower average density than the cytoplasm and the outlines of these regions correspond well with the profiles of the chromatinic bodies observed with the light microscope. The nuclear regions contain fibrils, about 5 mµ in diameter. In contrast, after fixation by the method of Palade (1952) the nuclear material is coagulated into irregular dense masses and tubular structures about 20 mµ in diameter, lying in a nuclear "vacuole." The significance of these observations is discussed in relation to the observations of other workers on the fine structure of the nuclear material of other bacteria and the chromosomes of higher cells. PMID:13715794

  1. Statistical Fine Structure in the Inhomogeneously Broadened Electronic Origin of Pentacene in p-Terphenyl.

    DTIC Science & Technology

    1988-01-29

    Electronic Origin of Pentacene in p-Terphenyl by T. P. Carter, M. Manavi, and W. E. Moerner Prepared for Publication inDTIC Journal of Chemical Physics...Classification) Statistical Fine Structure in the Inhomogeneously Broadened Electronic Origin of Pentacene in p-Terphenyl 12. PERSONAL AUTHOR(S) T. P...of pentacene in p-terphenyl using laser FM spectroscopy. Statistical fine structure is time-independent structure on the inhomogeneous line caused by

  2. Recovering the fine structures in solar images

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.

    1994-01-01

    Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.

  3. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    NASA Astrophysics Data System (ADS)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  4. Formation of Fine B2/ β + O Structure and Enhancement of Hardness in the Aged Ti2AlNb-Based Alloys Prepared by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Li, Mengchen; Cai, Qi; Liu, Yongchang; Ma, Zongqing; Wang, Zumin; Huang, Yuan; Li, Huijun

    2017-09-01

    Ti2AlNb-based alloys synthesized at 1223 K (950 °C) by spark plasma sintering were aged at 973 K, 1023 K, 1073 K, and 1123 K (700 °C, 750 °C, 800 °C, and 850 °C), respectively. Phase composition, microstructure, and microhardness of the aged alloys were investigated in this study. Equiaxed O grains and Widmanstätten B2/ β + O laths were formed in the aged alloys, and the microhardness was improved in contrast with the spark plasma-sintered alloy without aging. The microhardness relies largely on the O-phase content, as well as the length and width of the O laths. In particular, complete Widmanstätten B2/ β + O laths, with locally finely dispersed β precipitates, were obtained in the alloy aged at 1073 K (800 °C), and the alloy exhibited the best microhardness performance. Such fine structure is due to the temperature-dependent transformations Oequiaxed→Oprimary + B2/ β primary, Oprimary→Osecondary + B2/ β secondary, and B2/ β primary→O.

  5. Fine Structure of Trious and Excitons in Single GaAs Quantum Dots

    DTIC Science & Technology

    2002-08-30

    RAPID COMMUNICATIONS PHYSICAL REVIEW B 66, 081310~R! ~2002!Fine structure of trions and excitons in single GaAs quantum dots J. G. Tischler, A. S ...fine structure of single localized excitons and trions. DOI: 10.1103/PhysRevB.66.081310 PACS number~ s !: 78.67.Hc, 73.21.2b, 71.35.2yAlthough the...AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Research Laboratory

  6. Electronic structure differences between H(2)-, Fe-, Co-, and Cu-phthalocyanine highly oriented thin films observed using NEXAFS spectroscopy.

    PubMed

    Willey, T M; Bagge-Hansen, M; Lee, J R I; Call, R; Landt, L; van Buuren, T; Colesniuc, C; Monton, C; Valmianski, I; Schuller, Ivan K

    2013-07-21

    Phthalocyanines, a class of macrocyclic, square planar molecules, are extensively studied as semiconductor materials for chemical sensors, dye-sensitized solar cells, and other applications. In this study, we use angular dependent near-edge x-ray absorption fine structure (NEXAFS) spectroscopy as a quantitative probe of the orientation and electronic structure of H2-, Fe-, Co-, and Cu-phthalocyanine molecular thin films. NEXAFS measurements at both the carbon and nitrogen K-edges reveal that phthalocyanine films deposited on sapphire have upright molecular orientations, while films up to 50 nm thick deposited on gold substrates contain prostrate molecules. Although great similarity is observed in the carbon and nitrogen K-edge NEXAFS spectra recorded for the films composed of prostrate molecules, the H2-phthalocyanine exhibits the cleanest angular dependence due to its purely out-of-plane π* resonances at the absorption onset. In contrast, organometallic-phthalocyanine nitrogen K-edges have a small in-plane resonance superimposed on this π* region that is due to a transition into molecular orbitals interacting with the 3dx(2)-y(2) empty state. NEXAFS spectra recorded at the metal L-edges for the prostrate films reveal dramatic variations in the angular dependence of specific resonances for the Cu-phthalocyanines compared with the Fe-, and Co-phthalocyanines. The Cu L3,2 edge exhibits a strong in-plane resonance, attributed to its b1g empty state with dx(2)-y(2) character at the Cu center. Conversely, the Fe- and Co- phthalocyanine L3,2 edges have strong out-of-plane resonances; these are attributed to transitions into not only b1g (dz(2)) but also eg states with dxz and dyz character at the metal center.

  7. Effects of interaural time differences in fine structure and envelope on lateral discrimination in electric hearing.

    PubMed

    Majdak, Piotr; Laback, Bernhard; Baumgartner, Wolf-Dieter

    2006-10-01

    Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.

  8. Local and electronic structure around manganese in Cd0.98Mn0.02Te0.97Se0.03 studied by XAFS

    NASA Astrophysics Data System (ADS)

    Radisavljević, I.; Novaković, N.; Romčević, N.; Ivanović, N.

    2013-04-01

    X-ray Absorption Fine Structure (XAFS) technique was employed to study local electronic and structural features of Mn ions incorporated in Cd0.98Mn0.02Te0.97Se0.03. XAFS measurements performed at Mn K edge revealed that manganese Mn(II) ions are well incorporated into the host CdTe lattice (cubic zinc-blende structure type) and their immediate surrounding is found to be composed exclusively of Te atoms. The observed preference of Mn ions distribution around Te opposes earlier observations on the similar systems, where preferential Mn-Se over Mn-Te paring was found.

  9. Shortcomings with Tree-Structured Edge Encodings for Neural Networks

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2004-01-01

    In evolutionary algorithms a common method for encoding neural networks is to use a tree structured assembly procedure for constructing them. Since node operators have difficulties in specifying edge weights and these operators are execution-order dependent, an alternative is to use edge operators. Here we identify three problems with edge operators: in the initialization phase most randomly created genotypes produce an incorrect number of inputs and outputs; variation operators can easily change the number of input/output (I/O) units; and units have a connectivity bias based on their order of creation. Instead of creating I/O nodes as part of the construction process we propose using parameterized operators to connect to preexisting I/O units. Results from experiments show that these parameterized operators greatly improve the probability of creating and maintaining networks with the correct number of I/O units, remove the connectivity bias with I/O units and produce better controllers for a goal-scoring task.

  10. Electronic structure and fundamental absorption edges of KPb2Br5, K0.5Rb0.5Pb2Br5, and RbPb2Br5 single crystals

    NASA Astrophysics Data System (ADS)

    Tarasova, A. Yu.; Isaenko, L. I.; Kesler, V. G.; Pashkov, V. M.; Yelisseyev, A. P.; Denysyuk, N. M.; Khyzhun, O. Yu.

    2012-05-01

    X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated (001) surfaces of KPb2Br5, K0.5Rb0.5Pb2Br5, and RbPb2Br5 single crystals grown by the Bridgman method have been measured and fundamental absorption edges of the ternary bromides have been recorded in the polarized light at 300 K and 80 K. The present X-ray photoelectron spectroscopy (XPS) results reveal high chemical stability of (001) surfaces of KxRb1-xPb2Br5 (x=0, 0.5, and 1.0) single crystals. Substitution of potassium for rubidium in KxRb1-xPb2Br5 does not cause any changes of binding energy values and shapes of the XPS constituent element core-level spectra. Measurements of the fundamental absorption edges indicate that band gap energy, Eg, increases by about 0.14 and 0.19 eV when temperature decreases from 300 K to 80 K in KPb2Br5 and RbPb2Br5, respectively. Furthermore, there is no dependence of the Eg value for KPb2Br5 upon the light polarization, whilst the band gap energy value for RbPb2Br5 is bigger by 0.03-0.05 eV in the case of E‖c compared to those in the cases of E‖a and E‖b.

  11. 3. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTHWEST. DUPLEXES (FEATURES 8 AND 9) ARE VISIBLE AT RIGHT EDGE OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV

  12. An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application

    PubMed Central

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651

  13. Strained spiral vortex model for turbulent fine structure

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  14. Local structure investigation of Ga and Yb dopants in Co 4 Sb 12 skutterudites

    DOE PAGES

    Hu, Yanyun; Chen, Ning; Clancy, J. P.; ...

    2017-12-29

    We report our x-ray absorption spectroscopy studies at both Ga K-edge and Yb L 2-edge to elucidate the local structure of Ga and Yb dopants in Yb xGa yCo 4Sb 12. Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24g site replacing Sb, and the other is the 2a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2a on-center site. At low concentrations of Yb,more » Ga 24g and Ga 2a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Mater. 23, 3194 (2013)]. The Ga 24g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24g site for the highest Yb concentration (x = 0.4). In addition to the local crystal structure evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K-edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga 2a to Ga 24g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co 4Sb 12 skutterudites is due to the increased Ga 24g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.« less

  15. Local structure investigation of Ga and Yb dopants in Co4Sb12 skutterudites

    NASA Astrophysics Data System (ADS)

    Hu, Yanyun; Chen, Ning; Clancy, J. P.; Salvador, James R.; Kim, Chang-Yong; Shi, Xiaoya; Li, Qiang; Kim, Young-June

    2017-12-01

    We report comprehensive x-ray absorption spectroscopy studies at both the Ga K edge and Yb L2 edge to elucidate the local structure of Ga and Yb dopants in YbxGayCo4Sb12 . Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24 g site replacing Sb, and the other is the 2 a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2 a on-center site. At low concentrations of Yb, Ga24 g and Ga2 a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Funct. Mater. 23, 3194 (2013), 10.1002/adfm.201202571]. The Ga24 g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24 g site for the highest Yb concentration studied (x =0.4 ). In addition to the local structural evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K -edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga2 a to Ga24 g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co4Sb12 skutterudites is due to the increased Ga24 g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.

  16. Local structure investigation of Ga and Yb dopants in Co 4 Sb 12 skutterudites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yanyun; Chen, Ning; Clancy, J. P.

    We report our x-ray absorption spectroscopy studies at both Ga K-edge and Yb L 2-edge to elucidate the local structure of Ga and Yb dopants in Yb xGa yCo 4Sb 12. Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24g site replacing Sb, and the other is the 2a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2a on-center site. At low concentrations of Yb,more » Ga 24g and Ga 2a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Mater. 23, 3194 (2013)]. The Ga 24g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24g site for the highest Yb concentration (x = 0.4). In addition to the local crystal structure evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K-edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga 2a to Ga 24g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co 4Sb 12 skutterudites is due to the increased Ga 24g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.« less

  17. An automatic optimum kernel-size selection technique for edge enhancement

    USGS Publications Warehouse

    Chavez, Pat S.; Bauer, Brian P.

    1982-01-01

    Edge enhancement is a technique that can be considered, to a first order, a correction for the modulation transfer function of an imaging system. Digital imaging systems sample a continuous function at discrete intervals so that high-frequency information cannot be recorded at the same precision as lower frequency data. Because of this, fine detail or edge information in digital images is lost. Spatial filtering techniques can be used to enhance the fine detail information that does exist in the digital image, but the filter size is dependent on the type of area being processed. A technique has been developed by the authors that uses the horizontal first difference to automatically select the optimum kernel-size that should be used to enhance the edges that are contained in the image. 

  18. New limits on variation of the fine-structure constant using atomic dysprosium.

    PubMed

    Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D

    2013-08-09

    We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17)  yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.

  19. On the Total Edge Irregularity Strength of Generalized Butterfly Graph

    NASA Astrophysics Data System (ADS)

    Dwi Wahyuna, Hafidhyah; Indriati, Diari

    2018-04-01

    Let G(V, E) be a connected, simple, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ: V(G) ∪ E(G) → {1, 2, …, k} of a graph G is a total k-labeling such that the weights calculated for all edges are distinct. The weight of an edge uv in G, denoted by wt(uv), is defined as the sum of the label of u, the label of v, and the label of uv. The total edge irregularity strength of G, denoted by tes(G), is the minimum value of the largest label k over all such edge irregular total k-labelings. A generalized butterfly graph, BFn , obtained by inserting vertices to every wing with assumption that sum of inserting vertices to every wing are same then it has 2n + 1 vertices and 4n ‑ 2 edges. In this paper, we investigate the total edge irregularity strength of generalized butterfly graph, BFn , for n > 2. The result is tes(B{F}n)=\\lceil \\frac{4n}{3}\\rceil .

  20. In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K-edge region.

    PubMed

    Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta

    2015-11-01

    Carbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10(-7) Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbon K-edge region (560-660 eV) was found to be a factor of 0.1-0.48 smaller than that of the gold-coated mirror.

  1. Initial Edge Stability Observations in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Battaglia, D. J.; Garstka, G. D.; Sontag, A. C.; Unterberg, E. A.

    2007-11-01

    Edge stability is an important consideration for design of fusion experiments, as transient heat loads generated by edge instabilities may damage the first wall. Such instabilities are now believed to include peeling (current driven) and ballooning (pressure driven) components. Peeling instability may be expected for high values of edge j||/B and low edge pressure gradient. This matches the operating space of Pegasus, with typical ˜100 kA/m^2, |B|˜ 0.01 T, and an L-mode edge. A new camera system has observed filamentary structures in the edge of nearly all ohmically-heated discharges. Ideal stability analysis of these discharges with DCON indicates marginal stability to resistive interchange for ψN>= 0.95. Modification of triangularity during startup is observed to delay instability onset. A plasma control system based on that used on DIII-D will allow study of the influence of plasma shaping on mode stability characteristics. An array of magnetic probes capable of insertion into the scrape-off layer and plasma edge is being developed to provide a local constraint on the edge current profile.

  2. Fine Structure of Plasmaspheric Hiss

    NASA Astrophysics Data System (ADS)

    Summers, D.; Omura, Y.; Nakamura, S.; Kletzing, C.

    2014-12-01

    Plasmaspheric hiss plays a key role in controlling the structure and dynamics of Earth's radiation belts.The quiet time slot region between the inner and outer belts can be explained as a steady-state balance between earthward radial diffusion and pitch-angle scattering loss of energetic electrons to the atmosphere induced by plasmaspheric hiss. Plasmaspheric hiss can also induce gradual precipitation loss of MeV electrons from the outer radiation belt. Plasmaspheric hiss has been widely regarded as a broadband,structureless,incoherent emission. Here, by examining burst-mode vector waveform data from the EMFISIS instrument on the Van Allen Probes mission,we show that plasmaspheric hiss is a coherent emission with complex fine structure. Specifically, plasmaspheric hiss appears as discrete rising tone and falling tone elements. By means of waveform analysis we identify typical amplitudes,phase profiles,and sweep rates of the rising and falling tone elements. The new observations reported here can be expected to fuel a re-examination of the properties of plasmaspheric hiss, including a further re-analysis of the generation mechanism for hiss.

  3. Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.

    PubMed

    Punys, Vytenis; Maknickas, Ramunas

    2011-01-01

    Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.

  4. Experimental observation of the shift and width of the aluminium K absorption edge in laser shock-compressed plasmas

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Al-Kuzee, J.; Benuzzi, A.; Koenig, M.; Krishnan, J.; Grandjouan, N.; Batani, D.; Bossi, S.; Nicolella, S.

    1998-03-01

    Experimental measurements of the shift and width of the aluminium K-absorption edge in laser shock-compressed plasma is presented. The spectrometer used in these experiments allows an accurate wavelength calibration and fiduciary and hence provides precise measurements of both the shift and the width of the absorption edge. Results have been obtained for compressions up to approximately ×2 and temperatures up to about 1.5 eV. The values of shift and width are compared with a new model with which there is very good agreement.

  5. A simulation for gravity fine structure recovery from high-low GRAVSAT SST data

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.

  6. KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge

    NASA Astrophysics Data System (ADS)

    Pecora, R.; Amoroso, F.; Magnifico, M.; Dimino, I.; Concilio, A.

    2016-04-01

    Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of "metamorphic" wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements.

  7. Simple Model with Time-Varying Fine-Structure ``Constant''

    NASA Astrophysics Data System (ADS)

    Berman, M. S.

    2009-10-01

    Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.

  8. Theory and X-ray Absorption Spectroscopy for Aluminum Coordination Complexes – Al K-Edge Studies of Charge and Bonding in (BDI)Al, (BDI)AlR2, and (BDI)AlX2 Complexes.

    PubMed

    Altman, Alison B; Pemmaraju, C D; Camp, Clément; Arnold, John; Minasian, Stefan G; Prendergast, David; Shuh, David K; Tyliszczak, Tolek

    2015-08-19

    Polarized aluminum K-edge X-ray absorption near edge structure (XANES) spectroscopy and first-principles calculations were used to probe electronic structure in a series of (BDI)Al, (BDI)AlX2, and (BDI)AlR2 coordination compounds (X = F, Cl, I; R = H, Me; BDI = 2,6-diisopropylphenyl-β-diketiminate). Spectral interpretations were guided by examination of the calculated transition energies and polarization-dependent oscillator strengths, which agreed well with the XANES spectroscopy measurements. Pre-edge features were assigned to transitions associated with the Al 3p orbitals involved in metal-ligand bonding. Qualitative trends in Al 1s core energy and valence orbital occupation were established through a systematic comparison of excited states derived from Al 3p orbitals with similar symmetries in a molecular orbital framework. These trends suggested that the higher transition energies observed for (BDI)AlX2 systems with more electronegative X(1-) ligands could be ascribed to a decrease in electron density around the aluminum atom, which causes an increase in the attractive potential of the Al nucleus and concomitant increase in the binding energy of the Al 1s core orbitals. For (BDI)Al and (BDI)AlH2 the experimental Al K-edge XANES spectra and spectra calculated using the eXcited electron and Core-Hole (XCH) approach had nearly identical energies for transitions to final state orbitals of similar composition and symmetry. These results implied that the charge distributions about the aluminum atoms in (BDI)Al and (BDI)AlH2 are similar relative to the (BDI)AlX2 and (BDI)AlMe2 compounds, despite having different formal oxidation states of +1 and +3, respectively. However, (BDI)Al was unique in that it exhibited a low-energy feature that was attributed to transitions into a low-lying p-orbital of b1 symmetry that is localized on Al and orthogonal to the (BDI)Al plane. The presence of this low-energy unoccupied molecular orbital on electron-rich (BDI)Al distinguishes

  9. Prediction of Iron K-Edge Absorption Spectra Using Time-Dependent Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, S.DeBeer; Petrenko, T.; Neese, F.

    2009-05-14

    Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O{sub h} to T{sub d} geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis setmore » on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed.« less

  10. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant.

    PubMed

    Schuttler, Stephanie G; Philbrick, Jessica A; Jeffery, Kathryn J; Eggert, Lori S

    2014-01-01

    Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r) tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r) tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines

  11. Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1994-01-01

    Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are

  12. Simulation design of high reverse blocking high-K/low-K compound passivation AlGaN/GaN Schottky barrier diode with gated edge termination

    NASA Astrophysics Data System (ADS)

    Bai, Zhiyuan; Du, Jiangfeng; Xin, Qi; Li, Ruonan; Yu, Qi

    2017-11-01

    In this paper, a novel high-K/low-K compound passivation AlGaN/GaN Schottky Barrier Diode (CPG-SBD) is proposed to improve the off-state characteristics of AlGaN/GaN schottky barrier diode with gated edge termination (GET-SBD) by adding low-K blocks in to the high-K passivation layer. The reverse leakage current of CPG-SBD can be reduced to 1.6 nA/mm by reducing the thickness of high-K dielectric under GET region to 5 nm, while the forward voltage and on-state resistance keep 1 V and 3.8 Ω mm, respectively. Breakdown voltage of CPG-SBDs can be improved by inducing discontinuity of the electric field at the high-K/low-K interface. The breakdown voltage of the optimized CPG-SBD with 4 blocks of low-K can reach 1084 V with anode to cathode distance of 5 μm yielding a high FOM of 5.9 GW/cm2. From the C-V simulation results, CPG-SBDs induce no parasitic capacitance by comparison of the GET-SBDs.

  13. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy.

    PubMed

    Spencer, Liam P; Yang, Ping; Minasian, Stefan G; Jilek, Robert E; Batista, Enrique R; Boland, Kevin S; Boncella, James M; Conradson, Steven D; Clark, David L; Hayton, Trevor W; Kozimor, Stosh A; Martin, Richard L; MacInnes, Molly M; Olson, Angela C; Scott, Brian L; Shuh, David K; Wilkerson, Marianne P

    2013-02-13

    Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.

  14. Development of a cyber physical apparatus for investigating fluid structure interaction on leading edge vortex evolution

    NASA Astrophysics Data System (ADS)

    Raghu Gowda, Belagumba Venkatachalaiah

    This dissertation examines how simple structural compliance impacts a specific transient vortex phenomenon that occurs on high angle of attack lifting surfaces termed dynamic stall. In many Fluid structure interaction (FSI) research efforts, a purely physical or purely computational approach is taken. In this work a low cost cyber-physical (CPFD) system is designed and developed for representing the FSI in the leading edge vortex (LEV) development problem. The leading edge compliance appears to be favorable in a specific spring constant range for a given wing. When the leading edge compliance prescribed via CPFD system is too low compared with the moment due to dynamic pressure or fluid unsteady effect, the LEV behavior is similar to that of a rigid wing system. When the leading edge compliance is too high, excessive compliance is introduced into the wing system and the leading edge vortex evolution is affected by the large change in wing angle. At moderate leading edge compliance, a balance appears to be achieved in which the leading edge vorticity shedding rate supports the long term evolution of the leading edge vortex. Further investigation is required to determine specific parameters governing these leading edge compliance ranges.

  15. Effective collision strengths for fine-structure forbidden transitions among the 3s^23p^3 levels of AR IV

    NASA Astrophysics Data System (ADS)

    Ramsbottom, C. A.; Bell, K. L.; Keenan, F. P.

    1997-01-01

    The multichannel R-matrix method is used to compute electron impact excitation collision strengths in Ar iv for all fine-structure transitions among the ^4S^o, ^2D^o and ^2P^o levels in the 3s^23p^3 ground configuration. Included in the expansion of the total wavefunction are the lowest 13 LS target eigenstates of Ar iv formed from the 3s^23p^3, 3s3p^4 and 3s^23p^23d configurations. The effective collision strengths, obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities, are presented for all 10 fine-structure transitions over a wide range of electron temperatures of astrophysical interest (T_e=2000-100 000K). Comparisons are made with an earlier 7-state close-coupling calculation by Zeippen, Butler & Le Bourlot, and significant differences are found to occur for many of the forbidden transitions considered, in particular those involving the ^4S^o ground state, where discrepancies of up to a factor of 3 are found in the low-temperature region.

  16. Mapping Catalytically Relevant Edge Electronic States of MoS2

    PubMed Central

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  17. Tuning conductivity in boron nanowire by edge geometry

    NASA Astrophysics Data System (ADS)

    Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Sonvane, Yogesh; Gajjar, P. N.

    2018-04-01

    In present study, we have investigated electronic and temperature dependent transport properties of carbyne like linear chain and ribbon like zigzag structures of Boron (B) nanowire. The linear chain structure showed higher electric and thermal conductivity, as it is sp-hybridized, than its counterpart ribbon (R) structure. However the conductivity of ribbon structure increases with increases in width due to edge geometry effect. The ribbon (3R) structure showed high electric and thermal conductivity of 8.0×1019 1/Ω m s and 0.59×1015 W/ m K respectively. Interestingly we have observed that B linear chain showed higher thermal conductivity of 0.23×1015 W/ m K than its ribbon R and 2R structure above 600K. Because of high Seebeck co-efficient of boron chain and ribbon (R) structures at low temperature, they could find applications in thermoelectric sensors. Our results show that tuning conductivity property of boron nanowire could be of great interest in research for future electric connector in nanodevices.

  18. The Influence of Mesh Density on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2004-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.

  19. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less

  20. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.

    2012-06-01

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  1. Tetrahedrally Coordinated Fe3+ in Silicate Glasses: A Mossbauer, Iron K-edge XANES and Raman Spectroscopies Study

    NASA Astrophysics Data System (ADS)

    Cochain, B.; Neuville, D. R.; McCammon, C.; Henderson, G. S.; de Ligny, D.; Pinet, O.; Richet, P.

    2009-05-01

    In natural or industrial glasses, iron is the most abundant transition metal. A good knowledge of its redox equilibrium is important to better understand the chemical and structural evolution of magmas (crystallization, viscosity), and also to optimize vitrification processes and properties of iron-bearing glasses. To study the role of iron in silicate glasses and melts, we have used in a consistent manner the Mössbauer, iron K-edge XANES and Raman spectroscopies to investigate several series of silicate glasses as a function of redox state. The samples were selected to cover a wide composition range and to investigate the interactions of iron with two network forming cations, namely, Al3+ and B3+. The glasses investigated were synthesized at high temperature under various conditions of oxygen fugacity to achieve different redox ratios for each composition. Therefore, the iron redox state was varied from the most oxidized to the most reduced. Iron redox ratios were first determined by wet chemical analysis and in some cases by room temperature Mossbauer spectroscopy. This experimental method was also used to determine the local structure of iron of some of the investigated glasses. These results where compared to iron K-edge XANES/EXAFS spectroscopy results, which lead to the iron redox state and indicate that Fe2+ is in octahedral coordination whereas Fe3+ is in tetrahedral coordination. In addition, Raman spectroscopy gave us information on the network polymerization of glasses. Clearly changes in Raman spectra are visible with the evolution of iron redox ratio. For a given composition, we observed systematically, in the 800-1200 cm-1 envelope, which is sensitive to the environment of tetrahedrally coordinated cations, the growth of a band with the iron content and the oxidation state of the sample. The peak area of this band, which we attribute to vibrational modes involving tetrahedrally coordinated Fe3+, increases with the oxidation of the sample. This

  2. Enhancing the thermoelectric performance of gamma-graphyne nanoribbons by introducing edge disorder.

    PubMed

    Cui, Xiao; Ouyang, Tao; Li, Jin; He, Chaoyu; Tang, Chao; Zhong, Jianxin

    2018-03-07

    Structure disorder especially edge disorder is unavoidable during the fabrication of nanomaterials. In this paper, using the non-equilibrium Green's function method, we investigate the influence of edge disorder on the thermoelectric performance of gamma(γ)-graphyne nanoribbons (GYNRs). Our results show that the high Seebeck coefficient in pristine γ-GYNR could still be preserved although edge disorder is introduced into the structure. Meanwhile, in these edge-disordered nanoribbons the suppression of thermal conductance including electronic and phononic contributions outweighs the reduction of electronic conductance. These two positive effects combine together, and finally boost the thermoelectric conversion efficiency of γ-GYNRs. The thermoelectric figure of merit ZT in the edge-disordered γ-GYNRs (the length and width are about 55.68 and 1.41 nm) could approach 2.5 at room temperature, and can even reach as high as 4.0 at 700 K, which is comparable to the efficiency of conventional energy conversion methods. The findings in this paper indicate that the edge-disordered γ-GYNRs are a promising candidate for efficient thermoelectric energy conversion and thermal management of nanodevices.

  3. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-24

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  4. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds.

    PubMed

    Akman, F; Durak, R; Turhan, M F; Kaçal, M R

    2015-07-01

    The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Shaping of Rack Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-05-01

    The design models and the process of shaping the cutting edges of the rack cutter for cutting fine-module ratchet teeth are considered in the article. The use of fine-module ratchet teeth can reduce the noise and impact loads during operation of the freewheel mechanisms. Mathematical dependencies for calculating the coordinates determining the geometric position of the points of the front and back edges of the cutting profile of the rack cutter, the workpiece angle of rotation during cutting the ratchet teeth were obtained. When applying the developed method, the initial data are: the radii of the workpiece circumferences passing through the dedendum of the external and internal cut teeth; gradient angles of the front and back edges of the rail.

  6. Theory of K-edge resonant inelastic x-ray scattering and its application for La0.5Sr1.5MnO4

    NASA Astrophysics Data System (ADS)

    Seman, T. F.; Liu, X.; Hill, J. P.; van Veenendaal, M.; Ahn, K. H.

    2013-03-01

    We present a formula based on tight-binding approach for the calculation of K-edge resonant inelastic x-ray scattering spectrum for transition metal oxides, by extending the previous result [K. H. Ahn, A. J. Fedro, and M. van Veenendaal, Phys. Rev. B 79, 045103 (2009).] to include explicit momentum dependence and a basis with multiple core hole sites. We apply this formula to layered charge, orbital, and spin ordered manganites, La0.5Sr1.5MnO4. The K-edge RIXS spectrum is found not periodic with respect to the actual reciprocal lattice, but approximately periodic with respect to the reciprocal lattice for the hypothetical unit cell with one core hole site. With experimental strcuture and reasonable tight-binding parameters, we obtain good agreement with experimental data, in particular, with regards to the large variation of the intensity with momentum. We find that the screening in La0.5Sr1.5MnO4 is highly localized around the core hole site and demonstrate the potential of K-edge RIXS as a probe for the screening dynamics in materials. Work supported by US.DOE Contr. DE-AC02-98CH10886 (X.L.,J.H.), US.DOE Award DE-FG02-03ER46097 (M.v.V.), CMCSN under Grants DE-FG02-08ER46540 & DE-SC0007091 (T.S.,K.A.,M.v.V.), Argonne XSD Visitor Prog.(K.A.), US.DOE Contr. DE-AC02-06CH11357 (X.L.,J.H).

  7. Iron phosphate glasses: Bulk properties and atomic scale structure

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  8. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING. II. PROMINENCE EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Mackay, Duncan H.

    2015-10-20

    We use the new three-dimensional (3D) whole-prominence fine structure model to study the evolution of prominences and their fine structures in response to changes in the underlying photospheric magnetic flux distribution. The applied model combines a detailed 3D prominence magnetic field configuration with a realistic description of the prominence plasma distributed along multiple fine structures. In addition, we utilize an approximate Hα visualization technique to study the evolution of the visible cool prominence plasma both in emission (prominence) and absorption (filament). We show that the initial magnetic field configuration of the modeled prominence is significantly disturbed by the changing positionmore » of a single polarity of a magnetic bipole as the bipole is advected toward the main body of the filament. This leads to the creation of a barb, which becomes the dominant feature visible in the synthetic Hα images of both the prominence and filament views. The evolution of the bipole also creates conditions that lead to the disappearance and reappearance of large portions of the main body. We also show that an arch-like region containing a dark void (a bubble) can be naturally produced in the synthetic prominence Hα images. While not visible in terms of the magnetic field lines, it is due to a lack of Hα emission from low-pressure, low-density plasma located in shallow magnetic dips lying along the lines of sight intersecting the dark void. In addition, a quasi-vertical small-scale feature consisting of short and deep dips, piled one above the other, is produced.« less

  9. Effect of molecular intercalation on the local structure of superconducting Nax(NH3)yMoSe2 system

    NASA Astrophysics Data System (ADS)

    Simonelli, L.; Paris, E.; Wakita, T.; Marini, C.; Terashima, K.; Miao, X.; Olszewski, W.; Ramanan, N.; Heinis, D.; Kubozono, Y.; Yokoya, T.; Saini, N. L.

    2017-12-01

    We have studied the local structure of layered Nax(NH3)yMoSe2 system by Mo K-edge extended X-ray absorption fine structure (EXAFS) measurements performed as a function of temperature. We find that molecular intercalation in MoSe2 largely affects the Mo-Se network while Mo-Mo seems to sustain small changes. The Einstein temperature (ΘE) of Mo-Mo distance hardly changes (∼264 K) indicating that bond strength of this distance remains unaffected by intercalation. On the other hand, Mo-Se distance suffers a softening, revealed by the decrease of ΘE from ∼364 K to ∼350 K. The results indicate that Na+ ion transported by NH3 molecules may enter between the two MoSe-layers resulting reduced Se-Se coupling. Therefore, increased hybridization between Se 4p and Mo 4d orbitals due to inter-layer disorder is the likely reason of metallicity in intercalated MoSe2 and superconductivity at low temperature.

  10. The existence of topological edge states in honeycomb plasmonic lattices

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhang, Ruo-Yang; Xiao, Meng; Han, Dezhuan; Chan, C. T.; Wen, Weijia

    2016-10-01

    In this paper, we investigate the band properties of 2D honeycomb plasmonic lattices consisting of metallic nanoparticles. By means of the coupled dipole method and quasi-static approximation, we theoretically analyze the band structures stemming from near-field interaction of localized surface plasmon polaritons for both the infinite lattice and ribbons. Naturally, the interaction of point dipoles decouples into independent out-of-plane and in-plane polarizations. For the out-of-plane modes, both the bulk spectrum and the range of the momentum k ∥ where edge states exist in ribbons are similar to the electronic bands in graphene. Nevertheless, the in-plane polarized modes show significant differences, which do not only possess additional non-flat edge states in ribbons, but also have different distributions of the flat edge states in reciprocal space. For in-plane polarized modes, we derived the bulk-edge correspondence, namely, the relation between the number of flat edge states at a fixed {k}\\parallel , Zak phases of the bulk bands and the winding number associated with the bulk Hamiltonian, and verified it through four typical ribbon boundaries, i.e. zigzag, bearded zigzag, armchair, and bearded armchair. Our approach gives a new topological understanding of edge states in such plasmonic systems, and may also apply to other 2D ‘vector wave’ systems.

  11. Precision measurement of the three 2(3)P(J) helium fine structure intervals.

    PubMed

    Zelevinsky, T; Farkas, D; Gabrielse, G

    2005-11-11

    The three 2(3)P fine structure intervals of 4H are measured at an improved accuracy that is sufficient to test two-electron QED theory and to determine the fine structure constant alpha to 14 parts in 10(9). The more accurate determination of alpha, to a precision higher than attained with the quantum Hall and Josephson effects, awaits the reconciliation of two inconsistent theoretical calculations now being compared term by term. A low pressure helium discharge presents experimental uncertainties quite different than for earlier measurements and allows direct measurements of light pressure shifts.

  12. Identification of jasmine flower (Jasminum sp.) based on the shape of the flower using sobel edge and k-nearest neighbour

    NASA Astrophysics Data System (ADS)

    Qur’ania, A.; Sarinah, I.

    2018-03-01

    People often wrong in knowing the type of jasmine by just looking at the white color of the jasmine, while not all white flowers including jasmine and not all jasmine flowers have white. There is a jasmine that is yellow and there is a jasmine that is white and purple.The aim of this research is to identify Jasmine flower (Jasminum sp.) based on the shape of the flower image-based using Sobel edge detection and k-Nearest Neighbor. Edge detection is used to detect the type of flower from the flower shape. Edge detection aims to improve the appearance of the border of a digital image. While k-Nearest Neighbor method is used to classify the classification of test objects into classes that have neighbouring properties closest to the object of training. The data used in this study are three types of jasmine namely jasmine white (Jasminum sambac), jasmine gambir (Jasminum pubescens), and jasmine japan (Pseuderanthemum reticulatum). Testing of jasmine flower image resized 50 × 50 pixels, 100 × 100 pixels, 150 × 150 pixels yields an accuracy of 84%. Tests on distance values of the k-NN method with spacing 5, 10 and 15 resulted in different accuracy rates for 5 and 10 closest distances yielding the same accuracy rate of 84%, for the 15 shortest distance resulted in a small accuracy of 65.2%.

  13. Reflectivity Around the Gold M-Edges of X-ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H

    NASA Technical Reports Server (NTRS)

    Kurashimaa, Sho; Furuzawa, Akihiro; Sato, Toshiki; Kikuchia, Naomichi; Nakaniwaa, Nozomi; Maeda, Yoshitomo; Ishida, Manabu; Izuka, Ryo; Okajima, Takashi; Mori, Hideyuki; hide

    2016-01-01

    The X-ray astronomy satellite ASTRO-H are equipped with two equivalent soft X-ray telescopes (SXT-I and SXT-S) which cover the energy band 0.3-12 keV. The X-ray reflectors of the SXTs are coated with a gold monolayer by means of the replication technique. A series of gold M absorption edges in the 2-4 keV band causes complex structures in the energy response of the SXTs. In the same band, there are astrophysically important emission lines from Si, Ar and S. Since the SXS has unprecedentedly high spectral resolution, we have measured the reflectivity around the gold M-edges in an extremely fine energy pitch at the synchrotron radiation facility KEK PF BL11-B, with the 2 eV pitch in 2100 eV to 4100 eV band that covers the entire series of the absorption edges (M-I through M-V) at grazing incident angles to the reflectors of 0.5, 0.8, 1.0, 1.2, 1.4 degree, and with a finer pitch of 0.25 eV in the 2200 eV to 2350 eV band where the two deepest M-IV and M-V edges are included. In the resultant reflectivity curves, we have clearly identified the fine structures associated with all the M-edges. Using these data, we calculated atomic scattering factor f1 as a function of X-ray energy, with which we have built the mirror response function which can be applied to the Suzaku spectra. As a result, we have found that discrepancy of the spectral model to the Suzaku data of 4U1630-472 (a black hole transient) and the Crab nebula around the M-edges are significantly reduced from those with the official Suzaku response.

  14. The effect of site geometry, Ti content and Ti oxidation state on the Ti K-edge XANES spectrum of synthetic hibonite

    NASA Astrophysics Data System (ADS)

    Doyle, P. M.; Berry, A. J.; Schofield, P. F.; Mosselmans, J. F. W.

    2016-08-01

    The Al-rich oxide hibonite (CaAl12O19) is modeled to be the second mineral to condense from a gas of solar composition and is found within calcium-aluminum-rich inclusions and the matrix of chondritic meteorites. Both Ti3+ and Ti4+ are reported in meteoritic hibonite, so hibonite has been proposed as a single mineral oxybarometer that could be used to elucidate conditions within the first 0.2 Myrs of the Solar System. Synthetic hibonites with Ti3+/(Ti3+ + Ti4+) (hereafter Ti3+/ΣTi) ranging between 0 and 1 were prepared as matrix-matched standards for meteoritic hibonite. The largest yield of both Ti-free and Ti-bearing hibonite at ∼1300 and ∼1400 °C was obtained by a single sinter under reducing conditions. In situ micro-beam Ti K-edge X-ray absorption near edge structure (XANES) spectra were recorded from the synthetic hibonites, as well as from terrestrial hibonite. Spectral features in the post-crest region were shown to correlate with the Ti4+ content. Furthermore, Ti4+ on the M2 trigonal bipyramidal and the adjoining M4 octahedral sites appears to cause variability in the post-crest region as a function of orientation. For this suite of synthetic hibonites it was observed that the pre-edge peak region is not influenced by orientation, but is controlled by Ti3+/ΣTi, site geometry and/or Ti concentration. In particular, the pre-edge peak intensities reflect Ti coordination environment and distortion of the M4 octahedral site. Therefore, although pre-edge peak intensities have previously been used to determine Ti3+/ΣTi in meteoritic minerals, we excluded use of the pre-edge peak intensities for quantifying Ti valence states in hibonite. The energy of the absorption edge at a normalized intensity of 0.8 (E0.8) and the energy of the minimum between the pre-edge region and the absorption edge (Em1) were found to vary systematically with Ti3+/ΣTi. Ti3+/ΣTi in hibonite as a function of Em1 was modeled by a quadratic function that may be used to quantify Ti3

  15. 5. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING NORTH-NORTHEAST. OFFICE/WAREHOUSE (FEATURE 23) SHOWN ON LEFT EDGE OF PHOTOGRAPH. HEADFRAME AND STORAGE TANKS (FEATURE 18) AND CRUSHING PLANT (FEATURE 19) VISIBLE IN BACKGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV

  16. Edge-based image restoration.

    PubMed

    Rareş, Andrei; Reinders, Marcel J T; Biemond, Jan

    2005-10-01

    In this paper, we propose a new image inpainting algorithm that relies on explicit edge information. The edge information is used both for the reconstruction of a skeleton image structure in the missing areas, as well as for guiding the interpolation that follows. The structure reconstruction part exploits different properties of the edges, such as the colors of the objects they separate, an estimate of how well one edge continues into another one, and the spatial order of the edges with respect to each other. In order to preserve both sharp and smooth edges, the areas delimited by the recovered structure are interpolated independently, and the process is guided by the direction of the nearby edges. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical interpretation of the sequential order of edges, as well as in the pixel filling method which takes into account the proximity and direction of edges. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to real world cases.

  17. Effect of edge defects on band structure of zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wadhwa, Payal; Kumar, Shailesh; Dhilip Kumar, T. J.; Shukla, Alok; Kumar, Rakesh

    2018-04-01

    In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp3 to sp2 hybridized carbon atoms. On the basis of theoretical analyses, bandgap values of ZGNRs are found to be strongly dependent on the relative arrangement of sp3 to sp2 hybridized carbon atoms at the edges for a defect concentration; so the findings would greatly help in understanding the bandgap of nanoribbons for their electronic applications.

  18. Enhanced sensitivity to the time variation of the fine-structure constant and m{p}/m{e} in diatomic molecules.

    PubMed

    Flambaum, V V; Kozlov, M G

    2007-10-12

    Sensitivity to temporal variation of the fundamental constants may be strongly enhanced in transitions between narrow close levels of different nature. This enhancement may be realized in a large number of molecules due to cancellation between the ground state fine-structure omega{f} and vibrational interval omega{v} [omega=omega{f}-nomega{v} approximately 0, delta omega/omega=K(2delta alpha/alpha+0.5 delta mu/mu), K>1, mu=m{p}/m{e}]. The intervals between the levels are conveniently located in microwave frequency range and the level widths are very small. Required accuracy of the shift measurements is about 0.01-1 Hz. As examples, we consider molecules Cl(+)(2), CuS, IrC, SiBr, and HfF(+).

  19. Oxygen K edge scattering from bulk comb diblock copolymer reveals extended, ordered backbones above lamellar order-disorder transition

    DOE PAGES

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; ...

    2016-12-14

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less

  20. Measuring the fine structure constant with Bragg diffraction and Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Parker, Richard; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger

    2017-04-01

    We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δÎ+/-/Î+/-=0.25ppb in the fine structure constant measurement, which gives over 10 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.

  1. Coupling fine-scale root and canopy structure using ground-based remote sensing

    Treesearch

    Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis

    2017-01-01

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...

  2. [Fine stereo structure for natural organic molecules, a preliminary study. II. Melting point influenced by structure factors].

    PubMed

    Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y

    1995-06-01

    Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.

  3. Orbital Ordering Transition in La_4Ru_2O_10 probed by O K-edge X-ray Absorption

    NASA Astrophysics Data System (ADS)

    Denlinger, J. D.; Rossnagel, Kai; Allen, J. W.; Khalifah, P.; Mandrus, D.; Cava, R. J.

    2004-03-01

    The layered ruthenate compound La_4Ru_2O_10 undergoes a first order monoclinic-to-triclinic structural phase transition at 160 K. An accompanying loss of the Ru local moment gives evidence for a full orbital ordering transition in which the Ru d_yz orbitals become completely unoccupied in the low temperature phase.(P. Khalifah et al.), Science 297, 2237 (2002). Via hybridization of Ru t_2g and O 2p orbitals this temperature-dependent Ru orbital ordering can be indirectly probed using polarized O K-edge x-ray absorption spectroscopy (XAS). O 1s core-level energy shifts allow O site-specific separation of Ru t_2g hybridizations. Identification of O sites is accomplished using polarized XAS angular dependence as well as by O 2p valence PDOS obtained from site-selective soft x-ray emission. Distinct XAS energy and intensity changes are observed upon cooling through the phase transition and are rationalized within the framework of the complete orbital ordering scenario. Supported by the U.S. NSF at U. Mich. (DMR-03-02825) and by the DOE at the Advanced Light Source (DE-AC03-76SF00098).

  4. Killing of Bacillus Megaterium Spores by X-rays at the Phosphorus K-edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10(exp 18) photons/sec/sq mm. The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140 eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  5. Killing of Bacillus Megaterium Spores by X-Rays at the Phosphorus K-Edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10 photons/sec/mm . The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  6. Rare variation facilitates inferences of fine-scale population structure in humans.

    PubMed

    O'Connor, Timothy D; Fu, Wenqing; Mychaleckyj, Josyf C; Logsdon, Benjamin; Auer, Paul; Carlson, Christopher S; Leal, Suzanne M; Smith, Joshua D; Rieder, Mark J; Bamshad, Michael J; Nickerson, Deborah A; Akey, Joshua M

    2015-03-01

    Understanding the genetic structure of human populations has important implications for the design and interpretation of disease mapping studies and reconstructing human evolutionary history. To date, inferences of human population structure have primarily been made with common variants. However, recent large-scale resequencing studies have shown an abundance of rare variation in humans, which may be particularly useful for making inferences of fine-scale population structure. To this end, we used an information theory framework and extensive coalescent simulations to rigorously quantify the informativeness of rare and common variation to detect signatures of fine-scale population structure. We show that rare variation affords unique insights into patterns of recent population structure. Furthermore, to empirically assess our theoretical findings, we analyzed high-coverage exome sequences in 6,515 European and African American individuals. As predicted, rare variants are more informative than common polymorphisms in revealing a distinct cluster of European-American individuals, and subsequent analyses demonstrate that these individuals are likely of Ashkenazi Jewish ancestry. Our results provide new insights into the population structure using rare variation, which will be an important factor to account for in rare variant association studies. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Multiple rare-earth ion environments in amorphous (Gd2O3 ) 0.230(P2O5) 0.770 revealed by gadolinium K -edge anomalous x-ray scattering

    NASA Astrophysics Data System (ADS)

    Cole, Jacqueline M.; Cramer, Alisha J.; Shastri, Sarvjit D.; Mukaddem, Karim T.; Newport, Robert J.

    2018-04-01

    A Gd K -edge anomalous x-ray scattering (AXS) study is performed on the rare-earth (R ) phosphate glass, (Gd2O3 ) 0.230(P2O5) 0.770 , in order to determine Gd ⋯Gd separations in its local structure. The minimum rare-earth separation is of particular interest given that the optical properties of these glasses can quench when rare-earth ions become too close to each other. To this end, a weak Gd ⋯Gd pairwise correlation is located at 4.2 (1 )Å , which is representative of a metaphosphate R ⋯R separation. More intense first-neighbor Gd ⋯Gd pairwise correlations are found at the larger radial distributions, 4.8(1), 5.1(1), and 5.4 (1 )Å . These reflect a mixed ultraphosphate and metaphosphate structural character, respectively. A second-neighbor Gd ⋯Gd pairwise correlation lies at 6.6 (1 )Å which is indicative of metaphosphate structures. Meta- and ultraphosphate classifications are made by comparing the R ⋯R separations against those of rare-earth phosphate crystal structures, R (PO3) 3 and R P5O14 , respectively, or difference pair-distribution function (Δ PDF ) features determined on similar glasses using difference neutron-scattering methods. The local structure of this glass is therefore found to display multiple rare-earth ion environments, presumably because its composition lies between these two stoichiometric formulae. These Gd ⋯Gd separations are well-resolved in Δ PDFs that represent the AXS signal. Indeed, the spatial resolution is so good that it also enables the identification of R ⋯X (X =R , P, O) pairwise correlations up to r ˜9 Å ; their average separations lie at r ˜7.1 (1 ) , 7.6(1), 7.9(1), 8.4(1), and 8.7 (1 )Å . This is a report of a Gd K -edge AXS study on an amorphous material. Its demonstrated ability to characterize the local structure of a glass up to such a long range of r heralds exciting prospects for AXS studies on other ternary noncrystalline materials. However, the technical

  8. Atomic Data for the K-vacancy States of Fe XXIV

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Mendoza, C.; Kallman, T. R.; Palmeri, P.

    2003-01-01

    As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.

  9. Atomic Data for the K-Vacancy States of Fe XXIV

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Mendoza, C.; Kallman, T. R.; Palmeri, P.

    2002-01-01

    As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.

  10. Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector.

    PubMed

    Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-07-01

    An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  11. Fine-structure excitation of Fe II and Fe III due to collisions with electrons

    NASA Astrophysics Data System (ADS)

    Wan, Yier; Qi, Yueying; Favreau, Connor; Loch, Stuart; Stancil, P.; Ballance, Connor; McLaughlin, Brendan

    2018-06-01

    Atomic data of iron peak elements are of great importance in astronomical observations. Among all the ionization stages of iron, Fe II and Fe III are of particular importance because of the high cosmic abundance, relatively low ionization potential and complex open d-shell atomic structure. Fe II and Fe III emission are observed from nearly all classes of astronomical objects over a wide spectral range from the infrared to the ultraviolet. To meaningfully interpret these spectra, astronomers have to employ highly complex modeling codes with reliable collision data to simulate the astrophysical observations. The major aim of this work is to provide reliable atomic data for diagnostics. We present new collision strengths and effective collisions for electron impact excitation of Fe II and Fe III for the forbidden transitions among the fine-structure levels of the ground terms. A very fine energy mesh is used for the collision strengths and the effective collision strengths are calculated over a wide range of electron temperatures of astrophysical importance (10-2000 K). The configuration interaction state wave functions are generated with a scaled Thomas-Fermi-Dirac-Amaldi (TFDA) potential, while the R-matrix plus intermediate coupling frame transformation (ICFT), Breit-Pauli R-matrix and Dirac R-matrix packages are used to obtain collision strengths. Influences of the different methods and configuration expansions on the collisional data are discussed. Comparison is made with earlier theoretical work and differences are found to occur at the low temperatures considered here.This work was funded by NASA grant NNX15AE47G.

  12. Effect of edge pruning on structural controllability and observability of complex networks

    PubMed Central

    Mengiste, Simachew Abebe; Aertsen, Ad; Kumar, Arvind

    2015-01-01

    Controllability and observability of complex systems are vital concepts in many fields of science. The network structure of the system plays a crucial role in determining its controllability and observability. Because most naturally occurring complex systems show dynamic changes in their network connectivity, it is important to understand how perturbations in the connectivity affect the controllability of the system. To this end, we studied the control structure of different types of artificial, social and biological neuronal networks (BNN) as their connections were progressively pruned using four different pruning strategies. We show that the BNNs are more similar to scale-free networks than to small-world networks, when comparing the robustness of their control structure to structural perturbations. We introduce a new graph descriptor, ‘the cardinality curve’, to quantify the robustness of the control structure of a network to progressive edge pruning. Knowing the susceptibility of control structures to different pruning methods could help design strategies to destroy the control structures of dangerous networks such as epidemic networks. On the other hand, it could help make useful networks more resistant to edge attacks. PMID:26674854

  13. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  14. Thermophysical properties of Apollo 12 fines.

    NASA Technical Reports Server (NTRS)

    Cremers, C. J.

    1973-01-01

    The vacuum thermal conductivity of the Apollo 12 fines is presented as a function of temperature for densities of 1300, 1640 and 1970 kg/cu m. It is found to vary from about .001 W/m-K at 100 K to about .003 W/m-K at 400 K. The conductivity of the fines is found to be close to that of terrestrial basalt both under vacuum and at higher pressures. The thermal diffusivity is calculated from conductivity and specific heat data. Average values of the thermal conductivity, thermal diffusivity and thermal parameter are also presented.

  15. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy.

    PubMed

    Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana

    2016-03-01

    Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.

  16. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.

    2006-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.

  17. Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant.

    PubMed

    Safronova, Marianna S; Porsev, Sergey G; Sanner, Christian; Ye, Jun

    2018-04-27

    We propose a new frequency standard based on a 4f^{14}6s6p ^{3}P_{0}-4f^{13}6s^{2}5d (J=2) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α. We find its dimensionless α-variation enhancement factor to be K=-15, in comparison to the most sensitive current clock (Yb^{+}  E3, K=-6), and it is 18 times larger than in any neutral-atomic clocks (Hg, K=0.8). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established ^{1}S_{0}-^{3}P_{0} transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.

  18. Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant

    NASA Astrophysics Data System (ADS)

    Safronova, Marianna S.; Porsev, Sergey G.; Sanner, Christian; Ye, Jun

    2018-04-01

    We propose a new frequency standard based on a 4 f146 s 6 p P0 3 -4 f136 s25 d (J =2 ) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α . We find its dimensionless α -variation enhancement factor to be K =-15 , in comparison to the most sensitive current clock (Yb+ E 3 , K =-6 ), and it is 18 times larger than in any neutral-atomic clocks (Hg, K =0.8 ). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established 1S0-3P0 transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.

  19. Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions

    NASA Astrophysics Data System (ADS)

    Dupont, Sylvain; Irvine, Mark R.; Bonnefond, Jean-Marc; Lamaud, Eric; Brunet, Yves

    2012-05-01

    Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.

  20. Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging

    DOE PAGES

    Chen, Yunyun; Sanchez, Carlos; Yue, Yuan; ...

    2016-03-25

    Background: The potential transfer of engineered nanoparticles (ENPs) from plants into the food chain has raised widespread concerns. In order to investigate the effects of ENPs on plants, young cabbage plants (Brassica oleracea) were exposed to a hydroponic system containing yttrium oxide (yttria) ENPs. The objective of this study was to reveal the impacts of NPs on plants by using K-edge subtraction imaging technique. Results: Using synchrotron dual-e nergy X-ray micro-tomography with K-edge subtraction technique, we studied the uptake, accumulation, distribution and concentration mapping of yttria ENPs in cabbage plants. It was found that yttria ENPs were uptaken by themore » cabbage roots but did not effectively transferred and mobilized through the cabbage stem and leaves. This could be due to the accumulation of yttria ENPs blocked at primary-lateral-root junction. Instead, non-yttria minerals were found in the xylem vessels of roots and stem. Conclusions: Synchrotron dual-energy X-ray micro-tomography is an effective method to observe yttria NPs inside the cabbage plants in both whole body and microscale level. Furthermore, the blockage of a plant's roots by nanoparticles is likely the first and potentially fatal environmental effect of such type of nanoparticles.« less

  1. DAVs: Red Edge and Outbursts

    NASA Astrophysics Data System (ADS)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500K< Teff < 10800K . Known as DAVs or ZZ Ceti stars, their oscillations are attributed to overstable g-modes excited by convective driving. The effective temperature at the blue edge of the instability strip is slightly lower than that at which a surface convection zone appears. The temperature at the red edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  2. Numerical analysis of the impact of permeability on trailing-edge noise

    NASA Astrophysics Data System (ADS)

    Koh, Seong Ryong; Meinke, Matthias; Schröder, Wolfgang

    2018-05-01

    The impact of porous surfaces on the near-wall turbulent structures and the generated trailing-edge noise is analyzed for several trailing-edge shapes of finite thickness using a high resolution large-eddy simulation (LES)/computational aeroacoustics (CAA) method. The porous surface of the trailing edge is defined by the porosity and the viscous permeability determined by the solution of a turbulent flat plate boundary layer at a Reynolds number 1280 based on the displacement thickness in the inflow cross section. The volume-averaged approach for the homogeneous porous medium shows that the porous impedance scales linearly with the porosity and exponentially with the mean structure size of a porous medium. The drag induced by the porous surface changes the friction velocity and the permeability Reynolds number ReK which determines the porous impedance Rs scaled by ReK-2/3. The trailing-edge noise is analyzed for three solid and three porous trailing edges. The effect of a finite span is investigated by the spanwise correlation model based on the measured coherence distribution. The acoustic prediction shows a good agreement with measurements of the broadband spectrum and the strong tone generated by a finite trailing-edge thickness. The pressure gradient inside the porous media is redistributed by the Darcy drag defined by the viscous permeability and the porosity. The mean pressure increases in the upstream direction inside the porous medium such that the flow acceleration involved in the acoustic generation is reduced inside the porous medium. The noise reduction by a porous medium reaches 11 dB for the trailing-edge shape which possesses a sharp corner for the solid surface. The porous surface applied to a semi-circular trailing edge achieves a 4 dB noise reduction. The directivity pattern for individual components of the acoustic spectrum shows that the massive noise reduction is determined at the tone. Enhanced wave diffraction by the thick flat plate changes

  3. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  4. Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi

    2017-04-01

    An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.

  5. Local atomic and electronic structures in ferromagnetic topological insulator Cr-doped (BixSb1-x) 2Te3 studied by XAFS and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wei, Xinyuan; Wang, Jiajia; Pan, Hong; Ji, Fuhao; Ye, Mao; Yang, Zhongqin; Qiao, Shan

    2015-09-01

    The local atomic and electronic structures around the dopants in Cr-doped (BixSb1 -x )2Te3 are studied by x-ray absorption fine structure (XAFS) measurements and first-principles calculations. Both Cr and Bi are confirmed substituting Sb sites (CrSb and BiSb). The six nearest Te atoms around Cr move towards Cr and shorten the Cr-Te bond lengths to 2.76 Å and 2.77 Å for x =0.1 and x =0.2 , respectively. Importantly, we reveal the hybridization between the Sb/Te p states and Cr d states by the presence of a pre-edge peak at Cr K -absorption edge, which is also supported by our ab initio calculations. These findings provide important clues to understand the mechanism of ferromagnetic order in this system with quantum anomalous Hall effect.

  6. Rotational and fine structure of open-shell molecules in nearly degenerate electronic states

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2018-03-01

    An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.

  7. Multiple rare-earth ion environments in amorphous ( G d 2 O 3 ) 0.230 ( P 2 O 5 ) 0.770 revealed by gadolinium K -edge anomalous x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Jacqueline M.; Cramer, Alisha J.; Shastri, Sarvjit D.

    A Gd K-edge anomalous X-ray scattering (AXS) study is performed on the rare-earth (R) phosphate glass, (Gd2O3)0.230(P2O5)0.770, in order to determine Gd…Gd separations in its local structure. The minimum rare-earth separation is of particular interest given that the optical properties of these glasses can quench when rare-earth ions become too close to each other. To this end, a weak Gd…Gd pairwise correlation is located at 4.2(1) Å which is representative of a meta-phosphate R…R separation. More intense first neighbor Gd…Gd pairwise correlations are found at the larger radial distributions, 4.8(1) Å, 5.1(1) Å and 5.4(1) Å. These reflect a mixedmore » ultra-phosphate and meta-phosphate structural character, respectively. A second neighbor Gd…Gd pairwise correlation lies at 6.6(1) Å which is indicative of meta-phosphate structures. Meta- and ultra-phosphate classifications are made by comparing the R…R separations against those of rare-earth phosphate crystal structures, R(PO3)3 and RP5O14 respectively, or difference pair distribution function (ΔPDF) features determined on similar glasses using difference neutron scattering methods. The local structure of this glass is therefore found to display multiple rare-earth ion environments, presumably because its composition lies between these two stoichiometric formulae. These Gd…Gd separations are well resolved in the ΔPDFs that represent the AXS signal. Indeed, the spatial resolution is so good that it also enables the identification of R…X (X = R, P, O) pairwise correlations up to r ~ 9 Å; their average separations lie at r ~ 7.1(1) Å, 7.6(1) Å 7.9(1) Å, 8.4(1) Å and 8.7(1) Å. This is the first report of a Gd K-edge AXS study on an amorphous material. Its demonstrated ability to characterize the local structure of a glass up to such a long-range of r, heralds exciting prospects for AXS studies on other ternary non-crystalline materials. However, the technical challenge of such an

  8. Removal of millimeter-scale rolled edges using bevel-cut-like tool influence function in magnetorheological jet polishing.

    PubMed

    Yang, Hao; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2018-05-01

    Subaperture polishing techniques usually produce rolled edges due to edge effect. The rolled edges, especially those in millimeter scale on small components, are difficult to eliminate using conventional polishing methods. Magnetorheological jet polishing (MJP) offers the possibility of the removal of these structures, owing to its small tool influence function (TIF) size. Hence, we investigate the removal characters of inclined MJP jetting models by means of computational fluid dynamics (CFD) simulations and polishing experiments. A discrete phase model (DPM) is introduced in the simulation to get the influence of abrasive particle concentration on the removal mechanism. Therefore, a more accurate model for MJP removal mechanisms is built. With several critical problems solved, a small bevel-cut-like TIF (B-TIF), which has fine acentric and unimodal characteristics, is obtained through inclined jetting. The B-TIF proves to have little edge effect and is applied in surface polishing of thin rolled edges. Finally, the RMS of the experimental section profile converges from 10.5 nm to 1.4 nm, and the rolled edges are successfully suppressed. Consequently, it is validated that the B-TIF has remarkable ability in the removal of millimeter-scale rolled edges.

  9. Development of a sub-cm high resolution ion Doppler tomography diagnostics for fine structure measurement of guide field reconnection in TS-U

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi

    2017-10-01

    A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  10. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  11. Fine structure in the transition region: reaction force analyses of water-assisted proton transfers.

    PubMed

    Yepes, Diana; Murray, Jane S; Santos, Juan C; Toro-Labbé, Alejandro; Politzer, Peter; Jaque, Pablo

    2013-07-01

    We have analyzed the variation of the reaction force F(ξ) and the reaction force constant κ(ξ) along the intrinsic reaction coordinates ξ of the water-assisted proton transfer reactions of HX-N = Y (X,Y = O,S). The profile of the force constant of the vibration associated with the reactive mode, k ξ (ξ), was also determined. We compare our results to the corresponding intramolecular proton transfers in the absence of a water molecule. The presence of water promotes the proton transfers, decreasing the energy barriers by about 12 - 15 kcal mol(-1). This is due in part to much smaller bond angle changes being needed than when water is absent. The κ(ξ) profiles along the intrinsic reaction coordinates for the water-assisted processes show striking and intriguing differences in the transition regions. For the HS-N = S and HO-N = S systems, two κ(ξ) minima are obtained, whereas for HO-N = O only one minimum is found. The k ξ (ξ) show similar behavior in the transition regions. We propose that this fine structure reflects the degree of synchronicity of the two proton migrations in each case.

  12. Physics based calculation of the fine structure constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestone, John Paul

    2009-01-01

    We assume that the coupling between particles and photons is defined by a surface area and a temperature, and that the square of the temperature is the inverse of the surface area ({Dirac_h}=c= 1). By making assumptions regarding stimulated emission and effects associated with the finite length of a string that forms the particle surface, the fine structure constant is calculated to be {approx}1/137.04. The corresponding calculated fundamental unit of charge is 1.6021 x 10{sup -19} C.

  13. Edge effects in game-theoretic dynamics of spatially structured tumours.

    PubMed

    Kaznatcheev, Artem; Scott, Jacob G; Basanta, David

    2015-07-06

    Cancer dynamics are an evolutionary game between cellular phenotypes. A typical assumption in this modelling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard for local neighbourhood structure. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go versus grow game. We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary--such as a blood vessel, organ capsule or basement membrane--we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (epithelial-mesenchymal transition-positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Our results caution that pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. Although we concentrate on applications in mathematical oncology, we expect our approach to extend to other evolutionary game models where interaction neighbourhoods change at fixed system boundaries. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1993-01-01

    Far-infrared spectroscopy of celestial objects will improve dramatically in the coming decade, allowing astronomers to use fine-structure line emission to probe photoionized regions obscured in the optical band by thick clouds of dust. The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H(beta) in luminosity. This paper shows how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of (Ne V) emission in particular will distinguish shrouded AGN's from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  15. The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.

    1994-01-01

    The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.

  16. Structure and magnetic properties of Nd2Fe14B fine particles produced by spark erosion

    NASA Astrophysics Data System (ADS)

    Wan, H.; Berkowitz, A. E.

    1994-11-01

    At present Nd2Fe14B is the best permanent magnet because of its extremely high coercivity and energy product. Optimum properties of Nd2Fe14B magnets can be attained by producing single domain particles, and then aligning and compacting them. Due to the reactivity of the Nd constitutent, it is challenging to produce and handle a large amount of fine particles of this material. We have prepared fine particles of Nd2Fe14B by spark erosion with various dielectric media. Yield, size, size distribution, structure, and magnetic properties are discussed. The Nd2Fe14B particles were made by the sharker pot spark erosion method. Relaxation oscillators or a pulse generator were used to power the park erosion. Commercial Neomax 35 was employed as the primary material. The dielectric media were liquid Ar, Ar gas, and hydrocarbons, which provided an oxygen free environment. Structure and size were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffraction. Magnetic properties were measured by vibrating sample magnetometer (VSM) with temperatures in range of 4.2-1200 K. The particles produced in these three different dielectric media had different microstructures and crystal structures. The particles made in Ar gas were pure Nd2Fe14B phase. The particles made in liquid Ar were a mixture of amorphous and crystalline Nd2Fe14B, because the liquid Ar provided a much higher quench rate than Ar gas, which produced some amorphous Nd2Fe14B. Upon annealing, the amorphous particles became crystalline. The fine particles produced in hydrocarbons, such as pentane and dodecane, had more complex mixed phases, since the rare earth reacted with the hydrocarbons during the sparking process. The phases were NdC2, alpha-Fe, and amorphous and crystalline Nd2Fe14B. The effects of power parameters, such as voltage and capacitance, on particle size were investigated. Particle sizes from 20 nm to 50 microns were obtained.

  17. Studies on the wintertime current structure and T-S fine-structure in the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Hu, Jianyu; Fu, Zilang; Wu, Lianxing

    1990-12-01

    A cruise through the western sea area of the Taiwan Strait was carried out by the R/V Dong Fang Hong in December, 1987. Eight anchored and 10 not anchored stations were set up. Over 25 time-series current observations were made at each station and CTD (Conductivity-temperature-depth) measurements were made at 5 anchored and 10 not anchored stations. Based on the measured data. fine-structures and step-like vertical structures of temperature and salinity were analysed and a tentative wintertime current structure in the Taiwan Strait was described.

  18. Fine-tuning of electronic properties in donor-acceptor conjugated polymers based on oligothiophenes

    NASA Astrophysics Data System (ADS)

    Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka

    2018-03-01

    A novel series of donor-acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.

  19. Bayes-Turchin analysis of x-ray absorption data above the Fe L{sub 2,3}-edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossner, H. H.; Schmitz, D.; Imperia, P.

    2006-10-01

    Extended x-ray absorption fine structure (EXAFS) data and magnetic EXAFS (MEXAFS) data were measured at two temperatures (180 and 296 K) in the energy region of the overlapping L-edges of bcc Fe grown on a V(110) crystal surface. In combination with a Bayes-Turchin data analysis procedure these measurements enable the exploration of local crystallographic and magnetic structures. The analysis determined the atomic-like background together with the EXAFS parameters which consisted of ten shell radii, the Debye-Waller parameters, separated into structural and vibrational components, and the third cumulant of the first scattering path. The vibrational components for 97 different scattering pathsmore » were determined by a two parameter force-field model using a priori values adjusted to Born-von Karman parameters of inelastic neutron scattering data. The investigations of the system Fe/V(110) demonstrate that the simultaneous fitting of atomic background parameters and EXAFS parameters can be performed reliably. Using the L{sub 2}- and L{sub 3}-components extracted from the EXAFS analysis and the rigid-band model, the MEXAFS oscillations can only be described when the sign of the exchange energy is changed compared to the predictions of the Hedin Lundquist exchange and correlation functional.« less

  20. Fe K-edge XANES of Maya blue pigment

    NASA Astrophysics Data System (ADS)

    Río, M. Sánchez del; Sodo, A.; Eeckhout, S. G.; Neisius, T.; Martinetto, P.; Dooryhée, E.; Reyes-Valerio, C.

    2005-08-01

    The utilization of techniques used in Materials Science for the characterization of artefacts of interest for cultural heritage is getting more and more attention nowadays. One of the products of the ancient Maya chemistry is the "Maya blue" pigment, made with natural indigo and palygorskite. This pigment is different from any other pigment used in other parts of the world. It is durable and acid-resistant, and still keeps many secrets to scientists even though it has been studied for more than 50 years. Although the pigment is basically made of palygorskite Si8(Mg2Al2)O20(OH)2(OH2)4.4H2O and an organic colourant (indigo: C16H10N2O2), a number of other compounds have been found in previous studies on archaeological samples, like other clays and minerals, iron nanoparticles, iron oxides, impurities of transition metals (Cr, Mn, Ti, V), etc. We measured at the ESRF ID26 beamline the Fe K-edge XANES spectra of the blue pigment in ancient samples. They are compared to XANES spectra of Maya blue samples synthesized under controlled conditions, and iron oxides usually employed as pigments (hematite and goethite). Our results show that the iron found in ancient Maya blue pigment is related to the Fe exchanged in the palygorskite clay. We did not find iron in metallic form or goethite in archaeological Maya blue.

  1. Characterization of process-induced damage in Cu/low-k interconnect structure by microscopic infrared spectroscopy with polarized infrared light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki; Ozaki, Yukihiro

    Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopicmore » IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.« less

  2. Edge transport and mode structure of a QCM-like fluctuation driven by the Shoelace antenna

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, T.; LaBombard, B.; Brunner, D.; Terry, J. L.; Baek, S. G.; Ennever, P.; Edlund, E.; Han, W.; Burke, W. M.; Wolfe, S. M.; Irby, J. H.; Hughes, J. W.; Fitzgerald, E. W.; Granetz, R. S.; Greenwald, M. J.; Leccacorvi, R.; Marmar, E. S.; Pierson, S. Z.; Porkolab, M.; Vieira, R. F.; Wukitch, S. J.; The Alcator C-Mod Team

    2018-05-01

    The Shoelace antenna was built to drive edge fluctuations in the Alcator C-Mod tokamak, matching the wavenumber (k\\perp≈1.5 cm‑1) and frequency (30≲ f ≲ 200 kHz) of the quasi-coherent mode (QCM), which is responsible for regulating transport across the plasma boundary in the steady-state, ELM-free Enhanced D α (EDA) H-mode. Initial experiments in 2012 demonstrated that the antenna drove a resonant response in the edge plasma in steady-state EDA and transient, non-ELMy H-modes, but transport measurements were unavailable. In 2016, the Shoelace antenna was relocated to enable direct measurements of driven transport by a reciprocating Mirror Langmuir Probe, while also making available gas puff imaging and reflectometer data to provide additional radial localization of the driven fluctuation. This new data suggests a  ∼4 mm-wide mode layer centered on or just outside the separatrix. Fluctuations coherent with the antenna produced a radial electron flux with {Γ_e}/{n_e}∼4 m s‑1 in EDA H-mode, smaller than but comparable to the QCM level. But in transient ELM-free H-mode, {Γ_e}/{n_e} was an order of magnitude smaller, and driven fluctuations reduced by a factor of ≳ 3. The driven mode is quantitatively similar to the intrinsic QCM across measured spectral quantities, except that it is more coherent and weaker. This work informs the prospect of achieving control of edge transport by direct coupling to edge modes, as well as the use of such active coupling for diagnostic purposes.

  3. Doppler-free spectroscopy of the atomic rubidium fine structure using ultrafast spatial coherent control method

    NASA Astrophysics Data System (ADS)

    Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2017-04-01

    Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].

  4. In situ XAFS and micro-XAFS studies on LiNi 0.8Co 0.15Al 0.05O 2 cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Okuda, C.; Seno, Y.; Nakano, H.; Koumoto, K.; Ukyo, Y.

    We have applied in situ X-ray absorption fine structure (XAFS) and in situ micro-XAFS techniques to study LiNi 0.8Co 0.15Al 0.05O 2 cathode materials in Li-ion coin cells that show various levels of capacity fading: fresh cell, cycle tested cell and aging tested cell. The change in the oxidation state and local structure of Ni and Co during charge has been investigated. Ni and Co K-edge X-ray absorption near edge structure (XANES) show that the Ni oxidation state is converted from Ni 3+ to Ni 4+ upon charging, whereas the Co oxidation state hardly changes. Ni K-edge extended X-ray absorption fine structure (EXAFS) reveals that the Jahn-Teller distorted NiO 6 octahedron turns into the symmetric octahedron upon charging, which is consistent with the change in the Ni oxidation state. Ni K-edge micro-XANES show that the oxidation of Ni proceeds homogeneously in a grain of LiNi 0.8Co 0.15Al 0.05O 2 within the special resolution of ∼2 μm, and proceeds independently of the grain size. All the behaviors of Ni and Co observed in these experiments for the fresh cell remain unchanged after the capacity fade is induced by cycle tests or aging tests, which demonstrates the considerable stability of the LiNi 0.8Co 0.15Al 0.05O 2 cathode material.

  5. Fischer-Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

    DOE PAGES

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; ...

    2016-07-23

    The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts ismore » explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.« less

  6. Investigation of a Spin Transition in a LaCoO3 Single Crystal by the Method of X-Ray Magnetic Circular Dichroism at the Cobalt K- and L 2,3-Edges

    NASA Astrophysics Data System (ADS)

    Sikolenko, V. V.; Troyanchuk, I. O.; Karpinsky, D. V.; Rogalev, A.; Wilhelm, F.; Rosenberg, R.; Prabhakaran, D.; Efimova, E. A.; Efimov, V. V.; Tiutiunnikov, S. I.; Bobrikov, I. A.

    2018-02-01

    Spin transitions of cobalt ions in LaCoO3 single crystals have been studied by the method of X-ray magnetic circular dichroism (XMCD) at the K- and L 2,3-edges of Co3+ ions. The orbital momentum of cobalt ions obtained for the K-edge at the 3 d level in the region of the spin transition in the temperature range from 25 to 120 K increases by a factor of approximately 1.6, whereas the slope of the magnetization curve value in the same temperature range and magnetic field increases by a factor of more than 10. XMCD experiments at the cobalt L 2,3-edges demonstrate gradual growth of the ratio of the orbital momentum to the spin one L/ S from 0.48 to 0.53 in the temperature range from 60 K to 120 K.

  7. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    PubMed

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  8. Mapping of the Resistance of a Superconducting Transition Edge Sensor as a Function of Temperature, Current, and Applied Magnetic Field

    NASA Technical Reports Server (NTRS)

    Zhang, Shou; Eckart, Megan E.; Jaeckel, Felix; Kripps, Kari L.; McCammon, Dan; Zhou, Yu; Morgan, Kelsey M.

    2017-01-01

    We have measured the resistance R (T, I, B(sub ext) of a superconducting transition edge sensor over the entire transition region on a fine scale, producing a four-dimensional map of the resistance surface. The dimensionless temperature and current sensitivities (alpha equivalence partial derivative log R/partial derivative log T|(sub I) and beta equivalence partial derivative log R/partial derivative log I|(sub T) of the TES resistance have been determined at each point. alpha and beta are closely related to the sensor performance, but show a great deal of complex, large amplitude fine structure over large portions of the surface that is sensitive to the applied magnetic field. We discuss the relation of this structure to the presence of Josephson weak link fringes.

  9. X-Ray Absorption Near-Edge Structure (XANES) Spectroscopy Study of the Interaction of Silver Ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli

    PubMed Central

    Zanzen, Ulrike; Krishna, Katla Sai; Hormes, Josef

    2013-01-01

    Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag+ treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and dl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted. PMID:23934494

  10. Improving the opto-microwave performance of SiGe/Si phototransistor through edge-illuminated structure

    NASA Astrophysics Data System (ADS)

    Tegegne, Z. G.; Viana, C.; Polleux, J. L.; Grzeskowiak, M.; Richalot, E.

    2016-03-01

    This paper demonstrates the experimental study of edge and top illuminated SiGe phototransistors (HPT) implemented using the existing industrial SiGe2RF Telefunken GmbH BiCMOS technology for opto-microwave (OM) applications using 850nm Multi-Mode Fibers (MMF). Its technology and structure are described. Two different optical window size HPTs with top illumination (5x5μm2, 10x10μm2) and an edge illuminated HPTs having 5μm x5μm size are presented and compared. A two-step post fabrication process was used to create an optical access on the edge of the HPT for lateral illumination with a lensed MMF through simple polishing and dicing techniques. We perform Opto-microwave Scanning Near-field Optical Microscopy (OM-SNOM) analysis on edge and top illuminated HPTs in order to observe the fastest and the highest sensitive regions of the HPTs. This analysis also allows understanding the parasitic effect from the substrate, and thus draws a conclusion on the design aspect of SiGe/Si HPT. A low frequency OM responsivity of 0.45A/W and a cutoff frequency, f-3dB, of 890MHz were measured for edge illuminated HPT. Compared to the top illuminated HPT of the same size, the edge illuminated HPT improves the f-3dB by a factor of more than two and also improves the low frequency responsivity by a factor of more than four. These results demonstrate that a simple etched HPT is still enough to achieve performance improvements compared to the top illuminated HPT without requiring a complex coupling structure. Indeed, it also proves the potential of edge coupled SiGe HPT in the ultra-low-cost silicon based optoelectronics circuits with a new approach of the optical packaging and system integration to 850nm MMF.

  11. Molecular simulations of lipid systems: Edge stability and structure in pure and mixed bilayers

    NASA Astrophysics Data System (ADS)

    Jiang, Yong

    2007-12-01

    Understanding the structural, mechanical and dynamical properties of lipid self-assembled systems is fundamental to understand the behavior of the cell membrane. This thesis has investigated the equilibrium properties of lipid systems with edge defects through various molecular simulation techniques. The overall goal of this study is to understand the free energy terms of the edges and to develop efficient methods to sample equilibrium distributions of mixed-lipid systems. In the first main part of my thesis, an atomistic molecular model is used to study lipid ribbon which has two edges on both sides. Details of the edge structures, such as area per lipid and tail torsional statistics are presented. Line tension, calculated from pressure tensor in MD simulation has good agreement with result from other sources. To further investigate edge properties on a longer timescale and larger length scale, we have applied a coarse-grained forcefield on mixed lipid systems and try to interpret the edge fluctuations in terms of free energy parameters such as line tension and bending modulus. We have identified two regimes with quite different edge behavior: a high line tension regime and a low line tension regime. The last part of this thesis focuses on a hybrid Molecular dynamics and Configurational-bias Monte Carlo (MCMD) simulation method in which molecules can change their type by growing and shrinking the terminal acyl united carbon atoms. A two-step extension of the MCMD method has been developed to allow for a larger difference in the components' tail lengths. Results agreed well with previous one-step mutation results for a mixture with a length difference of four carbons. The current method can efficiently sample mixtures with a length difference of eight carbons, with a small portion of lipids of intermediate tail length. Preliminary results are obtained for "bicelle"-type (DMPC/DHPC) ribbons.

  12. On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge

    NASA Astrophysics Data System (ADS)

    Chong, Tze Pei; Vathylakis, Alexandros

    2015-10-01

    Results of an experimental study on turbulent flow over a flat plate with a serrated sawtooth trailing edge are presented in this paper. After tripping the boundary layer to become turbulent, the broadband noise sources at the sawtooth serrated trailing edge is studied by several experimental techniques. Broadband noise reduction by the serrated sawtooth trailing edge can be realistically achieved in the flat plate configuration. The variations of wall pressure power spectral density and the spanwise coherence (which relates to the spanwise correlation length) in a sawtooth trailing edge play a minor role in the mechanisms underpinning the reduction of self noise radiation. Conditional-averaging technique was applied in the boundary layer data where a pair of pressure-driven oblique vortical structures near the sawtooth side edges is identified. In the current flat plate configuration, the interaction between the vortical structures and the local turbulent boundary layer results in a redistribution of the momentum transport and turbulent shear stress near the sawtooth side edges as well as the sawtooth tip, thus affecting the efficiency of self noise radiation.

  13. Molybdenum X-Ray Absorption Edges from 200 – 20,000 eV, The Benefits of Soft X-Ray Spectroscopy for Chemical Speciation

    PubMed Central

    George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.

    2009-01-01

    We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140

  14. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers

    PubMed Central

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666

  15. The Erdős-Rothschild problem on edge-colourings with forbidden monochromatic cliques

    NASA Astrophysics Data System (ADS)

    Pikhurko, Oleg; Staden, Katherine; Yilma, Zelealem B.

    2017-09-01

    Let $\\mathbf{k} := (k_1,\\dots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;\\mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,\\dots,s$ such that, for every $c \\in \\{1,\\dots,s\\}$, the edges of colour $c$ contain no clique of order $k_c$. Write $F(n;\\mathbf{k})$ to denote the maximum of $F(G;\\mathbf{k})$ over all graphs $G$ on $n$ vertices. This problem was first considered by Erd\\H{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. We prove that, for every $\\mathbf{k}$ and $n$, there is a complete multipartite graph $G$ on $n$ vertices with $F(G;\\mathbf{k}) = F(n;\\mathbf{k})$. Also, for every $\\mathbf{k}$ we construct a finite optimisation problem whose maximum is equal to the limit of $\\log_2 F(n;\\mathbf{k})/{n\\choose 2}$ as $n$ tends to infinity. Our final result is a stability theorem for complete multipartite graphs $G$, describing the asymptotic structure of such $G$ with $F(G;\\mathbf{k}) = F(n;\\mathbf{k}) \\cdot 2^{o(n^2)}$ in terms of solutions to the optimisation problem.

  16. Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan

    2004-01-01

    A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.

  17. DIAZOPHTHALOCYANINS AS REAGENTS FOR FINE STRUCTURAL CYTOCHEMISTRY

    PubMed Central

    Tice, Lois Withrow; Barrnett, Russell J.

    1965-01-01

    This paper reports the synthesis of 14 diazophthalocyanins containing Mg, Cu, or Pb as the chelated metal. To assess the usefulness of these compounds for fine structural cytochemistry, the relative coupling rates with naphthols were tested as well as the solubility of the resulting azo dyes. Three of the diazotates were reacted with tissue proteins in aldehyde-fixed material, and the density increases thus produced were compared in the electron microscope with those produced by staining similarly fixed material with the phthalocyanin dye, Alcian Blue. Finally, one of the diazotates was used as a capture reagent for the demonstration of the sites of acid phosphatase activity with the electron microscope. PMID:14283629

  18. Edge orientation signals in tactile afferents of macaques

    PubMed Central

    Suresh, Aneesha K.

    2016-01-01

    The orientation of edges indented into the skin has been shown to be encoded in the responses of neurons in primary somatosensory cortex in a manner that draws remarkable analogies to their counterparts in primary visual cortex. According to the classical view, orientation tuning arises from the integration of untuned input from thalamic neurons with aligned but spatially displaced receptive fields (RFs). In a recent microneurography study with human subjects, the precise temporal structure of the responses of individual mechanoreceptive afferents to scanned edges was found to carry information about their orientation. This putative mechanism could in principle contribute to or complement the classical rate-based code for orientation. In the present study, we further examine orientation information carried by mechanoreceptive afferents of Rhesus monkeys. To this end, we record the activity evoked in cutaneous mechanoreceptive afferents when edges are indented into or scanned across the skin. First, we confirm that information about the edge orientation can be extracted from the temporal patterning in afferent responses of monkeys, as is the case in humans. Second, we find that while the coarse temporal profile of the response can be predicted linearly from the layout of the RF, the fine temporal profile cannot. Finally, we show that orientation signals in tactile afferents are often highly dependent on stimulus features other than orientation, which complicates putative decoding strategies. We discuss the challenges associated with establishing a neural code at the somatosensory periphery, where afferents are exquisitely sensitive and nearly deterministic. PMID:27655968

  19. Effect of different thickness crystalline SiC buffer layers on the ordering of MgB{sub 2} films probed by extended x-ray absorption fine structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putri, W. B. K.; Tran, D. H.; Kang, B., E-mail: bwkang@chungbuk.ac.kr

    2014-03-07

    Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful method to investigate the local structure of thin films. Here, we have studied EXAFS of MgB{sub 2} films grown on SiC buffer layers. Crystalline SiC buffer layers with different thickness of 70, 100, and 130 nm were deposited on the Al{sub 2}O{sub 3} (0001) substrates by using a pulsed laser deposition method, and then MgB{sub 2} films were grown on the SiC buffer layer by using a hybrid physical-chemical vapor deposition technique. Transition temperature of MgB{sub 2} film decreased with increasing thickness of SiC buffer layer. However, the T{sub c} droppingmore » went no farther than 100 nm-thick-SiC. This uncommon behavior of transition temperature is likely to be created from electron-phonon interaction in MgB{sub 2} films, which is believed to be related to the ordering of MgB{sub 2} atomic bonds, especially in the ordering of Mg–Mg bonds. Analysis from Mg K-edge EXAFS measurements showed interesting ordering behavior of MgB{sub 2} films. It is noticeable that the ordering of Mg–B bonds is found to decrease monotonically with the increase in SiC thickness of the MgB{sub 2} films, while the opposite happens with the ordering in Mg–Mg bonds. Based on these results, crystalline SiC buffer layers in MgB{sub 2} films seemingly have evident effects on the alteration of the local structure of the MgB{sub 2} film.« less

  20. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    NASA Astrophysics Data System (ADS)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  1. Local structure and defects in ion irradiated KTaO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang; Xi, Jianqi; Zhang, Yanwen

    Here, the modification of the local structure in cubic perovskite KTaO 3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L 3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta–O bonds in the TaO 6 octahedra splits, which is attributed to the formation of Ta K antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFTmore » calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled Ta K-V O defects under subsequent irradiation with 1.1 GeV Au ions.« less

  2. Local structure and defects in ion irradiated KTaO3

    NASA Astrophysics Data System (ADS)

    Zhang, F. X.; Xi, J.; Zhang, Y.; Tong, Yang; Xue, H.; Huang, R.; Trautmann, C.; Weber, W. J.

    2018-04-01

    The modification of the local structure in cubic perovskite KTaO3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta-O bonds in the TaO6 octahedra splits, which is attributed to the formation of TaK antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFT calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled TaK-V O defects under subsequent irradiation with 1.1 GeV Au ions.

  3. Local structure and defects in ion irradiated KTaO 3

    DOE PAGES

    Zhang, Fuxiang; Xi, Jianqi; Zhang, Yanwen; ...

    2018-03-12

    Here, the modification of the local structure in cubic perovskite KTaO 3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L 3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta–O bonds in the TaO 6 octahedra splits, which is attributed to the formation of Ta K antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFTmore » calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled Ta K-V O defects under subsequent irradiation with 1.1 GeV Au ions.« less

  4. Structural and electrical properties of In-implanted Ge

    DOE PAGES

    Feng, R.; Kremer, F.; Sprouster, D. J.; ...

    2015-10-22

    Here, we report on the effects of dopant concentration on the structural and electrical properties of In-implanted Ge. For In concentrations of ≤ 0.2 at. %, extended x-ray absorption fine structure and x-ray absorption near-edge structure measurements demonstrate that all In atoms occupy a substitutional lattice site while metallic In precipitates are apparent in transmission electron micrographs for In concentrations ≥0.6 at. %. Evidence of the formation of In-vacancy complexes deduced from extended x-ray absorption fine structure measurements is complimented by density functional theory simulations. Hall effect measurements of the conductivity, carrier density, and carrier mobility are then correlated withmore » the substitutional In fraction.« less

  5. Anomalous structural disorder and distortion in metal-to-insulator-transition Ti{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, In-Hui; Jin, Zhenlan; Park, Chang-In

    2016-01-07

    Mott proposed that impurity bands in corundum-symmetry Ti{sub 2}O{sub 3} at high temperatures caused a collapse in the bandgap. However, the origin of the impurity bands has not yet been clarified. We examine the local structural properties of metal-to-insulator-transition Ti{sub 2}O{sub 3} using in-situ x-ray absorption fine structure (XAFS) measurements at the Ti K edge in the temperature range from 288 to 739 K. The Ti{sub 2}O{sub 3} powder is synthesized by using a chemical reaction method. X-ray diffraction (XRD) measurements from Ti{sub 2}O{sub 3} with a Rietveld refinement demonstrate a single-phased R-3c symmetry without additional distortion. Extended-XAFS combined with XRDmore » reveals a zigzag patterned Ti position and an anomalous structural disorder in Ti-Ti pairs, accompanied by a bond length expansion of the Ti-Ti pairs along the c-axis for T > 450 K. The local structural distortion and disorder of the Ti atoms would induce impurity levels in the band gap between the Ti 3d a{sub 1g} and e{sub g}{sup π} bands, resulting in a collapse of the band gap for T > 450 K.« less

  6. Fine morphology of the jaw apparatus of Puncturella noachina (Fissurellidae, Vetigastropoda).

    PubMed

    Vortsepneva, Elena; Ivanov, Dmitry; Purschke, Günter; Tzetlin, Alexander

    2014-07-01

    Jaws of various kinds occur in virtually all groups of Mollusca, except for Polyplacophora and Bivalvia. Molluscan jaws are formed by the buccal epithelium and either constitute a single plate, a paired formation or a serial structure. Buccal ectodermal structures in gastropods are rather different. They can be nonrenewable or having final growth, like the hooks in Clione (Gastropoda, Gymnosomata). In this case, they are formed by a single cell. Conversely, they can be renewable during the entire life span and in this case they are formed by a set of cells, like the formation of the radula. The fine structure of the jaws was studied in the gastropod Puncturella noachina. The jaw is situated in the buccal cavity and consists of paired elongated cuticular plates. On the anterior edge of each cuticular plate there are numerous longitudinally oriented rodlets disposed over the entire jaw surface and immersed into a cuticular matrix. The jaw can be divided into four zones situated successively toward the anterior edge: 1) the posterior area: the zone of formation of the thick cuticle covering the entire jaw and forming the electron-dense outer layer of the jaw plate; 2) the zone of rodlet formation; 3) the zone of rodlet arrangement; and 4) the anterior zone: the free scraping edge of the plate, or the erosion zone. In the general pattern of jaw formation, Puncturella noachina resembles Testudinalia tessulata (Patellogastropoda) studied previously. The basis of the jaw is a cuticular plate formed by the activity of the strongly developed microvillar apparatus of the gnathoepithelium. However, the mechanism of renewal of the jaw anterior part in P. noachina is much more complex as its scraping edge consists not just of a thick cuticular matrix rather than of a system of denticles being the projecting endings of rodlets. © 2014 Wiley Periodicals, Inc.

  7. Influence of musical training on sensitivity to temporal fine structure.

    PubMed

    Mishra, Srikanta K; Panda, Manasa R; Raj, Swapna

    2015-04-01

    The objective of this study was to extend the findings that temporal fine structure encoding is altered in musicians by examining sensitivity to temporal fine structure (TFS) in an alternative (non-Western) musician model that is rarely adopted--Indian classical music. The sensitivity to TFS was measured by the ability to discriminate two complex tones that differed in TFS but not in envelope repetition rate. Sixteen South Indian classical (Carnatic) musicians and 28 non-musicians with normal hearing participated in this study. Musicians have significantly lower relative frequency shift at threshold in the TFS task compared to non-musicians. A significant negative correlation was observed between years of musical experience and relative frequency shift at threshold in the TFS task. Test-retest repeatability of thresholds in the TFS tasks was similar for both musicians and non-musicians. The enhanced performance of the Carnatic-trained musicians suggests that the musician advantage for frequency and harmonicity discrimination is not restricted to training in Western classical music, on which much of the previous research on musical training has narrowly focused. The perceptual judgments obtained from non-musicians were as reliable as those of musicians.

  8. Solvation structure of the halides from x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antalek, Matthew; Hedman, Britt; Sarangi, Ritimukta, E-mail: ritis@slac.stanford.edu

    2016-07-28

    Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, andmore » a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (−0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.« less

  9. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Treesearch

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  10. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using X-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  11. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using x-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  12. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application

    NASA Astrophysics Data System (ADS)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu

    2017-12-01

    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  13. Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range

    NASA Astrophysics Data System (ADS)

    Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.

    2017-06-01

    Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.

  14. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  15. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  16. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less

  17. Electronic structure of transition metal-cysteine complexes from X-ray absorption spectroscopy.

    PubMed

    Leung, Bonnie O; Jalilehvand, Farideh; Szilagyi, Robert K

    2008-04-17

    The electronic structures of HgII, NiII, CrIII, and MoV complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.

  18. Origin of the magnetic transition at 100 K in ɛ-Fe2O3 nanoparticles studied by x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    López-Sánchez, J.; Muñoz-Noval, A.; Castellano, C.; Serrano, A.; del Campo, A.; Cabero, M.; Varela, M.; Abuín, M.; de la Figuera, J.; Marco, J. F.; Castro, G. R.; Rodríguez de la Fuente, O.; Carmona, N.

    2017-12-01

    The current study unveils the structural origin of the magnetic transition of the ɛ-Fe2O3 polymorph from an incommensurate magnetic order to a collinear ferrimagnetic state at low temperature. The high crystallinity of the samples and the absence of other iron oxide polymorphs have allowed us to carry out temperature-dependent x-ray absorption fine structure spectroscopy experiments out. The deformation of the structure is followed by the Debye-Waller factor for each selected Fe-O and Fe-Fe sub-shell. For nanoparticle sizes between 7 and 15 nm, the structural distortions between the Fete and Fe-D1oc sites are localized in a temperature range before the magnetic transition starts. On the contrary, the inherent interaction between the other sub-shells (named Fe-O1,2 and Fe-Fe1) provokes cooperative magneto-structural changes in the same temperature range. This means that the Fete with Fe-D1oc polyhedron interaction seems to be uncoupled with temperature dealing with these nanoparticle sizes wherein the structural distortions are likely moderate due to surface effects.

  19. Solar Prominence Fine Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    2014-01-01

    We review recent observational and theoretical results on the fine structure and dynamics of solar prominences, beginning with an overview of prominence classifications, the proposal of possible new ``funnel prominence'' classification, and a discussion of the recent ``solar tornado'' findings. We then focus on quiescent prominences to review formation, down-flow dynamics, and the ``prominence bubble'' phenomena. We show new observations of the prominence bubble Rayleigh-Taylor instability triggered by a Kelvin-Helmholtz shear flow instability occurring along the bubble boundary. Finally we review recent studies on plasma composition of bubbles, emphasizing that differential emission measure (DEM) analysis offers a more quantitative analysis than photometric comparisons. In conclusion, we discuss the relation of prominences to coronal magnetic flux ropes, proposing that prominences can be understood as partially ionized condensations of plasma forming the return flow of a general magneto-thermal convection in the corona.

  20. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less

  1. On Super Edge-magic Total Labeling of Modified Watermill Graph

    NASA Astrophysics Data System (ADS)

    Nurdin; Ungko, T. S.; Gormantara, J.; Abdullah, A.; Aulyah, S.; Nikita

    2018-03-01

    An edge-magic total labeling on a graph G is one-to-one map from V(G) ∪ E(G) onto the set of integers 1,2, ...,ν + e, where ν = |V(G)| and e = |E(G)|, with the property that, given any edge uv, f(u) + f(u, ν}) + f(ν) = k for every u,v ∈ V(G), and k is called magic valuation. An edge-magic total labeling f is called super edge-magic total if f(v(G)) = {1,2 ...,|V(G)|} and f(E(G)) = {|V(G)| + 1, |V(G)| + 2,... |V(G) + E(G)|}. In this paper we investigate edge-magic total labeling of a new graph called modified Watermill graph. Furthermore, the magic valuation of the modified Watermill graph WM(n) is k=\\frac{1}{2}(21n+3), for n odd, n ≥ 3.

  2. Hollow structure formation of intense ion beams with sharp edge in background plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhang-Hu; Wang, You-Nian, E-mail: ynwang@dlut.edu.cn

    The transport of intense ion beams with sharp radial beam edge in plasmas has been studied with two-dimensional electromagnetic particle simulations. The initial solid beam evolves into a hollow beam due to the nonlinear sharp transverse force peak in the regions of beam edge. The magnitude and nonlinearity of this peak are enhanced as the ion beam travels further into the plasma, due to the self-consistent interactions between the beam ions and the plasma electrons. This structure formation is shown to be independent on the beam radius.

  3. 21-cm radiation: a new probe of variation in the fine-structure constant.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2007-03-16

    We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.

  4. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study.

    PubMed

    Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander

    2018-04-01

    The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.

  5. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the NASA Gulfstream GIII test bed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight.

  6. Atomic and electronic structure of Pd40Ni40P20 bulk metallic glass from ab initio simulations

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Fujita, T.; Konno, K.; Matsuura, M.; Chen, M. W.; Inoue, A.; Kawazoe, Y.

    2011-10-01

    The atomic structure of Pd40Ni40P20 bulk metallic glass has been simulated using an ab initio molecular dynamics method with projector-augmented wave pseudopotentials for electron-ion interaction and generalized gradient approximation for exchange-correlation energy. The calculated extended x-ray absorption fine structure (EXAFS) spectra of Pd-K and Ni-K edges, the mass density, and the electronic structure agree remarkably well with the available experimental data and the EXAFS spectra measured at the SPring-8 synchrotron radiation facility. Our results show that the atomic structure can be described in terms of P-centered polyhedra. There are no two P atoms that are nearest neighbors at this composition, and this could be a reason for the observed optimal P concentration of about 20 at.%. The neighboring polyhedra share metal (M) atoms and form a polar covalently bonded random network of P-M-P favoring certain angles. The remaining M atoms act as metallic glue with a tendency of nanoscale clustering of Pd-Pd and Ni-Ni atoms.

  7. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires.

    PubMed

    Noori, Mohammed; Sadeghi, Hatef; Lambert, Colin J

    2017-04-20

    If high efficiency organic thermoelectric materials could be identified, then these would open the way to a range of energy harvesting technologies and Peltier coolers using flexible and transparent thin-film materials. We have compared the thermoelectric properties of three zinc porphyrin (ZnP) dimers and a ZnP monomer and found that the "edge-over-edge" dimer formed from stacked ZnP rings possesses a high electrical conductance, negligible phonon thermal conductance and a high Seebeck coefficient of the order of 300 μV K -1 . These combine to yield a predicted room-temperature figure of merit of ZT ≈ 4, which is the highest room-temperature ZT ever reported for a single organic molecule. This high value of ZT is a consequence of the low phonon thermal conductance arising from the stacked nature of the porphyrin rings, which hinders phonon transport through the edge-over-edge molecule and enhances the Seebeck coefficient.

  8. Magic Clusters of MoS2 by Edge S2 Interdimer Spacing Modulation.

    PubMed

    Ryou, Junga; Kim, Yong-Sung

    2018-05-17

    Edge atomic and electronic structures of S-saturated Mo-edge triangular MoS 2 nanoclusters are investigated using density functional theory calculations. The edge electrons described by the S 2 -p x p x π* (S 2 -Π x ) and Mo-d xy orbitals are found to interplay to pin the S 2 -Π x Fermi wavenumber at k F = 2/5 as the nanocluster size increases, and correspondingly, the ×5 Peierls edge S 2 interdimer spacing modulation is induced. For the particular sizes of N = 5 n - 2 and 5 n, where N is the number of Mo atoms at one edge representing the nanocluster size and n is a positive integer, the effective ×5 interdimer spacing modulation stabilizes the nanoclusters, which are identified here to be the magic S-saturated Mo-edge triangular MoS 2 nanoclusters. With the S 2 -Π x Peierls gap, the MoS 2 nanoclusters become far-edge S 2 -Π x semiconducting and subedge Mo-d xy metallic as N → ∞.

  9. Measuring the X-shaped structures in edge-on galaxies

    NASA Astrophysics Data System (ADS)

    Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.

    2017-11-01

    We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.

  10. Quantifying edge significance on maintaining global connectivity

    PubMed Central

    Qian, Yuhua; Li, Yebin; Zhang, Min; Ma, Guoshuai; Lu, Furong

    2017-01-01

    Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity. PMID:28349923

  11. FINE STRUCTURAL LOCALIZATION OF ACYLTRANSFERASES

    PubMed Central

    Higgins, Joan A.; Barrnett, Russell J.

    1971-01-01

    A study of the fine structural localization of the acyltransferases of the monoglyceride and α-glycerophosphate pathways for triglyceride synthesis in the intestinal absorptive cell is reported. Glutaraldehyde-fixed tissue was found to synthesize diglyceride and triglyceride from monopalmitin and palmityl CoA, and parallel morphological studies showed the appearance of lipid droplets in the smooth endoplasmic reticulum of the absorptive cell. Glutaraldehyde-fixed tissue also synthesized triglyceride from α-glycerophosphate, although this enzyme system was more susceptible to fixation than the monoglyceride pathway acyltransferases. Cytochemical methods for the localization of free CoA were based (a) on the formation of the insoluble lanthanium mercaptide of CoA and (b) on the reduction of ferricyanide by CoA to yield ferrocyanide which forms an insoluble precipitate with manganous ions. By these methods the monoglyceride pathway acyltransferases were found to be located mainly on the inner surface of the smooth endoplasmic reticulum. The α-glycerophosphate pathway acyltransferases were localized mainly on the rough endoplasmic reticulum. Activity limited to the outer cisternae of the Golgi membranes occurred with both pathways. The possible organization of triglyceride absorption and chylomicron synthesis is discussed in view of these results. PMID:5563442

  12. Self-irradiation damage to the local structure of plutonium and plutonium intermetallics

    NASA Astrophysics Data System (ADS)

    Booth, C. H.; Jiang, Yu; Medling, S. A.; Wang, D. L.; Costello, A. L.; Schwartz, D. S.; Mitchell, J. N.; Tobash, P. H.; Bauer, E. D.; McCall, S. K.; Wall, M. A.; Allen, P. G.

    2013-03-01

    The effect of self-irradiation damage on the local structure of δ-Pu, PuAl2, PuGa3, and other Pu intermetallics has been determined for samples stored at room temperature using the extended x-ray absorption fine-structure (EXAFS) technique. These measurements indicate that the intermetallic samples damage at a similar rate as indicated in previous studies of PuCoGa5. In contrast, δ-Pu data indicate a much slower damage accumulation rate. To explore the effect of storage temperature and possible room temperature annealing effects, we also collected EXAFS data on a δ-Pu sample that was held at less than 32 K for a two month period. This sample damaged much more quickly. In addition, the measurable damage was annealed out at above only 135 K. Data from samples of δ-Pu with different Ga concentrations and results on all samples collected from different absorption edges are also reported. These results are discussed in terms of the vibrational properties of the materials and the role of Ga in δ-Pu as a network former.

  13. Resistive foil edge grading for accelerator and other high voltage structures

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.

    2014-06-10

    In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.

  14. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  15. Urban, Forest, and Agricultural AIS Data: Fine Spectral Structure

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.

    1985-01-01

    Spectra acquired by the Airborne Imaging Spectrometer (AIS) near Lafayette, IN, Ely, MN, and over the Stanford University campus, CA were analyzed for fine spectral structure using two techniques: the ratio of radiance of a ground target to the radiance of a standard and also the correlation coefficient of radiances at adjacent wavelengths. The results show ramp like features in the ratios. These features are due to the biochemical composition of the leaf and to the optical scattering properties of its cuticle. The size and shape of the ramps vary with ground cover.

  16. New Tests for Variations of the Fine Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.

  17. Fine mapping and characterization of candidate genes that control resistance to Cercospora Sojina K. Hara in two soybean germplasm accessions

    USDA-ARS?s Scientific Manuscript database

    In order to fine map the novel FLS resistance gene(s) in two PIs, PI 594891 and PI 594774, F2:3 seeds from the crosses Blackhawk (FLS susceptible genotype) ×PI 594891, and Blackhawk ×PI 594774 were genotyped with KASP markers that were designed based on the SoySNP 50k Infinium Chip data to identi...

  18. Solution structure of lysine-free (K0) ubiquitin

    PubMed Central

    Huang, Tao; Li, Jess; Byrd, R Andrew

    2014-01-01

    Lysine-free ubiquitin (K0-Ub) is commonly used to study the ubiquitin-signaling pathway, where it is assumed to have the same structure and function as wild-type ubiquitin (wt-Ub). However, the K0-Ub 15N heteronuclear single quantum correlation NMR spectrum differs significantly from wt-Ub and the melting temperature is depressed by 19°C, raising the question of the structural integrity and equivalence to wt-Ub. The three-dimensional structure of K0-Ub was determined by solution NMR, using chemical shift and residual dipolar coupling data. K0-Ub adopts the same backbone structure as wt-Ub, and all significant chemical shifts can be related to interactions impacted by the K to R mutations. PMID:24591328

  19. Giant edge spin accumulation in a symmetric quantum well with two subbands

    NASA Astrophysics Data System (ADS)

    Khaetskii, Alexander; Egues, J. Carlos

    We have studied the edge spin accumulation due to an electric current in a high mobility two-dimensional electron gas formed in a symmetric well with two subbands. This study is strongly motivated by recent experiments which demonstrated the spin accumulation near the edges of a symmetric bilayer GaAs structure in contrast to no effect in a single-layer configuration. The intrinsic mechanism of the spin-orbit interaction we consider arises from the coupling between two subband states of opposite parities. Following the method developed in, we show that the presence of a gap in the system (i.e., the energy separation between the two subband bottoms) changes drastically the picture of the edge spin accumulation. We obtain a parametrically large magnitude of the edge spin density for a two-subband well as compared to the usual single-subband structure, and show that by changing the gap from zero up to 1 ÷2 K, the magnitude of the effect changes by three orders of magnitude. It opens up the possibility for the design of new interesting spintronic devices. We acknowledge financial support from FAPESP.

  20. Ti-doped ZnO Thin Films Prepared at Different Ambient Conditions: Electronic Structures and Magnetic Properties

    PubMed Central

    Yong, Zhihua; Liu, Tao; Uruga, Tomoya; Tanida, Hajime; Qi, Dongchen; Rusydi, Andrivo; Wee, Andrew T. S.

    2010-01-01

    We present a comprehensive study on Ti-doped ZnO thin films using X-ray Absorption Fine Structure (XAFS) spectroscopy. Ti K edge XAFS spectra were measured to study the electronic and chemical properties of Ti ions in the thin films grown under different ambient atmospheres. A strong dependence of Ti speciation, composition, and local structures upon the ambient conditions was observed. The XAFS results suggest a major tetrahedral coordination and a 4+ valence state. The sample grown in a mixture of 80% Ar and 20% O2 shows a portion of precipitates with higher coordination. A large distortion was observed by the Ti substitution in the ZnO lattice. Interestingly, the film prepared in 80% Ar, 20% O2 shows the largest saturation magnetic moment of 0.827 ± 0.013 µB/Ti.