On the Total Edge Irregularity Strength of Generalized Butterfly Graph
NASA Astrophysics Data System (ADS)
Dwi Wahyuna, Hafidhyah; Indriati, Diari
2018-04-01
Let G(V, E) be a connected, simple, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ: V(G) ∪ E(G) → {1, 2, …, k} of a graph G is a total k-labeling such that the weights calculated for all edges are distinct. The weight of an edge uv in G, denoted by wt(uv), is defined as the sum of the label of u, the label of v, and the label of uv. The total edge irregularity strength of G, denoted by tes(G), is the minimum value of the largest label k over all such edge irregular total k-labelings. A generalized butterfly graph, BFn , obtained by inserting vertices to every wing with assumption that sum of inserting vertices to every wing are same then it has 2n + 1 vertices and 4n ‑ 2 edges. In this paper, we investigate the total edge irregularity strength of generalized butterfly graph, BFn , for n > 2. The result is tes(B{F}n)=\\lceil \\frac{4n}{3}\\rceil .
Total edge irregularity strength of (n,t)-kite graph
NASA Astrophysics Data System (ADS)
Winarsih, Tri; Indriati, Diari
2018-04-01
Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .
Effect of reflection and refraction on NEXAFS spectra measured in TEY mode
2018-01-01
The evolution of near-edge X-ray absorption fine structure in the vicinity of the K-absorption edge of oxygen for HfO2 over a wide range of incidence angles is analyzed by simultaneous implementation of the total-electron-yield (TEY) method and X-ray reflection spectroscopy. It is established that the effect of refraction on the TEY spectrum is greater than that of reflection and extends into the angular region up to angles 2θc. Within angles that are less than the critical angle, both the reflection and refraction strongly distort the shape of the TEY spectrum. Limitations of the technique for the calculation of optical constants from the reflection spectra using the Kramers–Kronig relation in the limited energy region in the vicinity of thresholds are discussed in detail. PMID:29271772
On Super Edge-magic Total Labeling of Modified Watermill Graph
NASA Astrophysics Data System (ADS)
Nurdin; Ungko, T. S.; Gormantara, J.; Abdullah, A.; Aulyah, S.; Nikita
2018-03-01
An edge-magic total labeling on a graph G is one-to-one map from V(G) ∪ E(G) onto the set of integers 1,2, ...,ν + e, where ν = |V(G)| and e = |E(G)|, with the property that, given any edge uv, f(u) + f(u, ν}) + f(ν) = k for every u,v ∈ V(G), and k is called magic valuation. An edge-magic total labeling f is called super edge-magic total if f(v(G)) = {1,2 ...,|V(G)|} and f(E(G)) = {|V(G)| + 1, |V(G)| + 2,... |V(G) + E(G)|}. In this paper we investigate edge-magic total labeling of a new graph called modified Watermill graph. Furthermore, the magic valuation of the modified Watermill graph WM(n) is k=\\frac{1}{2}(21n+3), for n odd, n ≥ 3.
Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta
2015-11-01
Carbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10(-7) Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbon K-edge region (560-660 eV) was found to be a factor of 0.1-0.48 smaller than that of the gold-coated mirror.
Nonimaging optical illumination system
Winston, R.; Ries, H.
1996-12-17
A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source, a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference line as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line, and D is a distance from a point on the reference line to the reflection surface along the desired edge ray through the point. 35 figs.
Nonimaging optical illumination system
Winston, R.; Ries, H.
1998-10-06
A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference lines a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line, and D is a distance from a point on the reference line to the reflection surface along the desired edge ray through the point. 35 figs.
On the total irregularity strength of caterpillar with each internal vertex has degree three
NASA Astrophysics Data System (ADS)
Indriati, Diari; Rosyida, Isnaini; Widodo
2018-04-01
Let G be a simple, connected and undirected graph with vertex set V and edge set E. A total k-labeling f:V \\cup E\\to \\{1,2,\\ldots,k\\} is defined as totally irregular total k-labeling if the weights of any two different both vertices and edges are distinct. The weight of vertex x is defined as wt(x)=f(x)+{\\sum }xy\\in Ef(xy), while the weight of edge xy is wt(xy)=f(x)+f(xy)+f(y). A minimum k for which G has totally irregular total k-labeling is mentioned as total irregularity strength of G and denoted by ts(G). This paper contains investigation of totally irregular total k-labeling and determination of their total irregularity strengths for caterpillar graphs with each internal vertex between two stars has degree three. The results are ts({S}n,3,n)=\\lceil \\frac{2n}{2}\\rceil, ts({S}n,3,3,n)=\\lceil \\frac{2n+1}{2}\\rceil and ts({S}n,3,3,3,n)=\\lceil \\frac{2n+2}{2}\\rceil for n > 4:
Electric Field Magnitude and Radar Reflectivity as a Function of Distance from Cloud Edge
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.
2004-01-01
The results of analyses of data collected during a field investigation of thunderstorm anvil and debris clouds are reported. Statistics of the magnitude of the electric field are determined as a function of distance from cloud edge. Statistics of radar reflectivity near cloud edge are also determined. Both analyses use in-situ airborne field mill and cloud physics data coupled with ground-based radar measurements obtained in east-central Florida during the summer convective season. Electric fields outside of anvil and debris clouds averaged less than 3 kV/m. The average radar reflectivity at the cloud edge ranged between 0 and 5 dBZ.
Nonimaging optical illumination system
Winston, Roland; Ries, Harald
2000-01-01
A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.
Nonimaging optical illumination system
Winston, Roland; Ries, Harald
1998-01-01
A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.
Nonimaging optical illumination system
Winston, Roland; Ries, Harald
1996-01-01
A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.
Gabriel, Nicholas T; Kim, Sangho S; Talghader, Joseph J
2009-07-01
A mechanical design technique for optical coatings that simultaneously controls thermal deformation and optical reflectivity is reported. The method requires measurement of the refractive index and thermal stress of single films prior to the design. Atomic layer deposition was used for deposition because of the high repeatability of the film constants. An Al2O3/HfO2 distributed Bragg reflector was deposited with a predicted peak reflectivity of 87.9% at 542.4 nm and predicted edge deformation of -360 nm/K on a 10 cm silicon substrate. The measured peak reflectivity was 85.7% at 541.7 nm with an edge deformation of -346 nm/K.
Meng, Bo; Cong, Wenxiang; Xi, Yan; De Man, Bruno; Yang, Jian; Wang, Ge
2017-01-01
Contrast-enhanced computed tomography (CECT) helps enhance the visibility for tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray photoelectric absorption would experience a sudden increment, resulting in a significant difference of the X-ray transmission intensity between the left and right energy windows of the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right windows of the K-edge can be measured simultaneously. The differential information of the two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge differences between various matters allow opportunities for the identification of contrast agents in biomedical applications. In this paper, a general radon transform is established to link the contrast-agent concentration to X-ray intensity measurement data. An iterative algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation background simultaneously. Comprehensive numerical simulations are performed to demonstrate the merits of the proposed method over the existing K-edge imaging methods. Our results show that the proposed method accurately quantifies a distribution of a contrast agent, optimizing the contrast-to-noise ratio at a high dose efficiency. PMID:28437900
Sarangi, Ritimukta; York, John T.; Helton, Matthew E.; Fujisawa, Kiyoshi; Karlin, Kenneth D.; Tolman, William B.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.
2008-01-01
Cu K-, L- and S K-edge X-ray absorption spectroscopic (XAS) data have been combined with density functional theory (DFT) calculations on [{(TMPA)Cu}2S2](ClO4)2 (1), [{Cu[HB(3,5-Pri2pz)3]}2(S2)] (2) and [{(TMEDA)Cu}2(S2)2](OTf)2 (3) to obtain a quantitative description of their ground state wavefunctions. The Cu L-edge intensities give 63% and 37% Cu d-character in the ground state of 1 and 2, respectively while the S K-pre-edge intensities reflect 20% and 48% S character in their ground states. These data indicate a more than two-fold increase in the total disulfide bonding character in 2 relative to 1. The increase in the number of Cu-S bonds in 2 (µ-η2:η2 S22− bridge) compared to 1 ((µ-η1:η1 S22− bridge), dominantly determines the large increase in covalency and Cu-disulfide bond strength in 2. Cu K- and L- and S K-pre-edge energy positions directly demonstrate the CuII/(S2−)2 nature of 3. The two disulfide(•1−)’s in 3 undergo strong bonding interactions which destabilize the resultant filled antibonding π* orbitals of the (S2−)2 fragment relative to the Cu 3d levels. This leads to an inverted bonding scheme in 3 with dominantly ligand based holes in its ground state, consistent with its description as a dicopper(II)-bis-disulfide(•1−) complex. PMID:18076173
NASA Astrophysics Data System (ADS)
Wang, Hong; Li, Xiufeng; Ge, Peng
2017-02-01
We propose a design method of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. The TIR freeform surface controls the edge rays of the LED source. It totally reflects the edge rays and makes them emit from the top surface of the lens. And the middle rays of the LED source go through the refractive surface and reach the measured plane. We simulate the model by Monte Carlo method. Simulation results show that the front fog lamp system can satisfy the requirement of ECE R19 Rev7. The light control efficiency can reach up to 76%.
K-shell photoabsorption coefficients of O2, CO2, CO, and N2O
NASA Technical Reports Server (NTRS)
Barrus, D. M.; Blake, R. L.; Burek, A. J.; Chambers, K. C.; Pregenzer, A. L.
1979-01-01
The total photoabsorption coefficient has been measured from 500 to 600 eV around the K edge of oxygen in gases O2, CO2, CO, and N2O by means of a gold continuum source and crystal spectrometer with better than 1-eV resolution. The cross sections are dominated by discrete molecular-orbital transitions below the K-edge energy. A few Rydberg transitions were barely detectable. Broad shape resonances appear at or above the K edge. Additional broad, weak features above the K edge possibly arise from shake up. Quantitative results are given that have about 10% accuracy except on the very strong peaks. All the measured features are discussed in relation to other related measurements and theory.
Pharmaceutical Compounds Studied Using NEXAFS
NASA Astrophysics Data System (ADS)
Murray Booth, A.; Braun, Simon; Lonsbourough, Tom; Purton, John; Patel, Sunil; Schroeder, Sven L. M.
2007-02-01
Total Electron Yield (TEY) oxygen K-edge NEXAFS detects the presence of strongly adsorbed water molecules on poloxamer-coated pharmaceutical actives, which provides a useful spectroscopic indicator for bioavailability. The results are supported by complementary XPS measurements. Carbon K-edge spectra obtained in a high-pressure NEXAFS cell were used in situ to establish how a polymer coating spread on a drug surface by using humidity induced dispersion of the coating. Finally, we demonstrate how combined Carbon and Oxygen K-edge measurements can be used to characterize amorphous surface layers on micronised crystals of a drug compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, S; Vedantham, S; Karellas, A
Purpose: In digital breast tomosynthesis (DBT) systems capable of digital mammography (DM), Al filters are used during DBT and K-edge filters during DM. The potential for standardizing the x-ray filters with Al, instead of K-edge filters, was investigated with intent to reduce exposure duration and to promote a simpler system design. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for K-edge filters (50µm Rh; 50µm Ag) were compared with Al filters of varying thickness. Two strategies for matching the HVT from K-edge and Al filtered spectra were investigated: varying the kVp for fixedmore » Al thickness, or varying the Al thickness at matched kVp. For both strategies, Al filters were an order of magnitude thicker than K-edge filters. Hence, Monte Carlo simulations were conducted with the GEANT4 toolkit to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Al and K-edge filters. Results: Results show the potential for replacing currently used Kedge filters with Al. For fixed Al thickness (700µm), ±1 kVp and +(1–3) kVp change, matched HVT of Rh and Ag filtered spectra. At matched kVp, Al thickness range (650,750)µm and (750,860)µm matched the HVT from Rh and Ag filtered spectra. Photon fluence/mAs with Al filters were 1.5–2.5 times higher, depending on kVp and Al thickness, compared to K-edge filters. Although Al thickness was an order higher than K-edge filters, neither the SPR nor the scatter PSF differed from K-edge filters. Conclusion: The use of Al filters for digital mammography is potentially feasible. The increased fluence/mAs with Al could decrease exposure duration for the combined DBT+DM exam and simplify system design. Effect of x-ray spectrum change due to Al filtration on radiation dose, signal, noise, contrast and related metrics are being investigated. Funding support: Supported in part by NIH R21CA176470 and R01CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less
Ramadas, C; Hood, Avinash; Khan, Irfan; Balasubramaniam, Krishnan; Joshi, M
2013-03-01
Numerical simulations were carried out to quantify the reflection and transmission characteristics of the fundamental Lamb modes propagating in aluminium sub-plates, which are formed due to a semi-infinite horizontal crack. It was observed that, a Lamb mode propagating in a sub-plate when incident at the edge of a crack, undergoes reflection and transmits through the main plate, as well as the other sub-plate. The mode transmitted through the sub-plate has been termed the 'Turning Lamb Mode' (TLM). Furthermore, a mode converted mode also propagates along with the TLM. This mode has been termed the 'Mode Converted Turning Lamb Mode' (MCTLM). Reflection and transmission characteristics of the fundamental Lamb modes in aluminium sub-plates were studied at frequencies 150 kHz, 175 kHz, and 200 kHz. Experiments conducted to validate the observations made in numerical simulations, confirmed that the transmission and reflection characteristics depend on the thickness ratio. From this study it is surmised that when a Lamb mode propagates through a plate containing horizontal crack, the TLM and the MCTLM start propagating from one sub-plate to the other at the rear edge of the crack and amplitude of these modes depends on the location of the crack across the plate thickness. Copyright © 2012 Elsevier B.V. All rights reserved.
Photon cross sections in Cu, Pt, and Au at 81 keV
NASA Astrophysics Data System (ADS)
Seetharami Reddy, B.; Ramana Rao, P. V.; Premchand, K.; Parthasaradhi, K.
1987-02-01
Total photon cross sections in Cu, Pt, and Au are measured employing the doublet 79.623- and 80.999-keV γ's of 133Ba. A dilution of the cross section by about 12% is observed at the average energy of the doublet in Au due to K-edge falling in between these two energies. Scofield's theoretical value in this case is seen to be underestimated by about 75% due to the use of different K-edge energies in Au. However, an alternative but customarily followed procedure is to ignore the lower K-edge data of Scofield and extrapolate using upper-edge data which yield a value agreeing satisfactorily with the experimental value at 80.905 keV.
Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji
2017-05-09
An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Red edge spectral measurements from sugar maple leaves
NASA Technical Reports Server (NTRS)
Vogelmann, J. E.; Rock, B. N.; Moss, D. M.
1993-01-01
Many sugar maple stands in the northeastern United States experienced extensive insect damage during the 1988 growing season. Chlorophyll data and high spectral resolution spectrometer laboratory reflectance data were acquired for multiple collections of single detached sugar maple leaves variously affected by the insect over the 1988 growing season. Reflectance data indicated consistent and diagnostic differences in the red edge portion (680-750 nm) of the spectrum among the various samples and populations of leaves. These included differences in the red edge inflection point (REIP), a ratio of reflectance at 740-720 nm (RE3/RE2), and a ratio of first derivative values at 715-705 nm (D715/D705). All three red edge parameters were highly correlated with variation in total chlorophyll content. Other spectral measures, including the Normalized Difference Vegetation Index (NDVI) and the Simple Vegetation Index Ratio (VI), also varied among populations and over the growing season, but did not correlate well with total chlorophyll content. Leaf stacking studies on light and dark backgrounds indicated REIP, RE3/RE2 and D715/D705 to be much less influenced by differences in green leaf biomass and background condition than either NDVI or VI.
Influence of oxygen on growth of carbon thin films
NASA Astrophysics Data System (ADS)
Kumar, Prabhat; Gupta, Mukul; Phase, D. M.; Stahn, Jochen
2018-04-01
In this work we studied the influence of oxygen gas on growth of carbon thin films in a magnetron sputtering process. X-ray absorption spectroscopy (XAS), x-ray and neutron reflectivity techniques were used to probe carbon thin films deposited with and without oxygen at room temperature. XAS in particularly x-ray absorption near edge spectroscopy (XANES) is powerful technique to identify the nature of hybridization of carbon atoms with other elements. In a XANES pattern, presence of C=O and C-O bonds is generally observed in spite of the fact that oxygen has not been deliberately included in the growth process. In order to confirm the presence of such features, we introduced a small amount of oxygen at 1% during the growth of carbon thin films. Though such additions do not affect the number density as observed by x-ray and neutron reflectivity, they severally affect the C K-edge spectra as evidenced by an enhancement in carbon-oxygen hybridization. Observed results are helpful in analyzing the C K-edge spectra more confidently.
The P K-near edge absorption spectra of phosphates
NASA Astrophysics Data System (ADS)
Franke, R.; Hormes, J.
1995-12-01
The X-ray absorption near edge structure (XANES) at the P K-edge in several orthophosphates with various cations, in condensed, and in substituted sodium phosphates have been measured using synchrotron radiation from the ELSA storage ring at the University of Bonn. The measured spectra demonstrate that chemical changes beyond the PO 4- tetrahedra are reflected by energy shifts of the pre-edge and continuum resonances, by the presence of characteristic shoulders and new peaks and by differences in the intensity of the white line. We discuss the energy differences between the white line positions and the corresponding P ls binding energies as a measure of half of the energy gap. The corresponding values correlate with the valence of the cations and the intensity of the white lines. The energy positions of the continuum resonances are discussed on the basis of an empirical bond-length correlation supporting a 1/ r2 - dependence.
Electronic Structures and Optical Properties of α-Al2O3Nanowires
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Li, Chunlei; Liu, Lijia; Sham, Tsun-Kong
2013-04-01
The electronic structure and optical properties of α-Al2O3 nanowires (NWs) have been investigated using X-ray absorption near-edge structures (XANES) and X-ray excited optical luminescence (XEOL). The XANES were recorded in total electron yield (TEY) and total fluorescence yield (TFY) across the K- and L3,2-edges of aluminium and the K-edge of oxygen. The results indicate that the NWs are of a core/shell structure with a single-crystalline core and an amorphous shell. The XEOL spectra of the NWs show an intense peak at 404 nm, which comes from the F centre located in the amorphous shell of the NWs. The implication of these findings and the sensitivity of XEOL for defect detection are discussed.
NASA Astrophysics Data System (ADS)
Bubeck, Robert; Fang, Jun; Burghardt, Wesley; Burgard, Susan; Fischer, Daniel
2009-03-01
The influence of melt processing conditions upon mechanical properties and degrees of compound molecular orientation have been thoroughly studied for a series of well-defined injection molded samples fabricated from VECTRA (TM) A950 and 4,4'-dihydroxy-a-methylstilbene TLCPs. Fracture and tensile data were correlated with processing conditions, orientation, and molecular weight. Mechanical properties for both TLCPs were found to follow a ``universal'' Anisotropy Factor (AF) associated with the bimodal orientation states in the plaques determined from 2-D WAXS. Surface orientations were globally surveyed using Attenuated Total Reflectance -- Fourier Transform Infrared (ATR-FTIR) spectroscopy and C K edge Near-Edge X-ray Absorption Fine Structure (NEXAFS). The results derived from the two spectroscopy techniques confirmed each other well. These results along with those from 2-D WAXS in transmission were compared with the results of process modeling using a commercial program, MOLDFLOW(TM). The agreement between model predictions and the measured orientation states was gratifyingly good.
X-ray Raman scattering for structural investigation of silica/silicate minerals
NASA Astrophysics Data System (ADS)
Fukui, H.; Kanzaki, M.; Hiraoka, N.; Cai, Y. Q.
2009-03-01
We have performed X-ray Raman scattering (XRS) measurements on the oxygen K and silicon L absorption edges of four silica minerals: α-quartz, α-cristobalite, coesite, and stishovite. We have also calculated the partial electron densities of states (DOSs) and compared these with the XRS spectra. This study demonstrates that the short-range structure around the atom of interest strongly influences the XRS spectral features. Importantly, the oxygen K-edge XRS spectra are found to reflect the p-orbital DOS while the silicon L-edge spectra reflect the s- and d-orbital DOSs, even when a product of a momentum transfer and a mean radius of a electron orbit (1 s for oxygen and 2 p for silicon), Qr, is close to or larger than unity. Building on this, calculations of the partial DOSs for other silica phases are presented, including ultra-high-pressure phases, which provide a good reference for further XRS study of silica and silicate minerals. XRS measurements should be performed on not only either of oxygen or silicon but also on many kinds of constituent elements to reveal the structural change of glasses/melts of silicates under extreme conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helz, R. T.; Cottrell, E.; Brounce, M. N.
The 1959 summit eruption of Kmore » $$\\bar{i}$$lauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most K$$\\bar{i}$$lauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.« less
The Einstein objective grating spectrometer survey of galactic binary X-ray sources
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.
1991-01-01
The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.
Electric Fields, Cloud Microphysics, and Reflectivity in Anvils of Florida Thunderstorms
NASA Technical Reports Server (NTRS)
Dye, J. E.; Bateman, M. G.; Christian, H. J.; Grainger, C. A.; Hall, W. D.; Krider, E. P.; Lewis, S. A.; Mach, D. M.; Merceret, F. J.; Willett, J. C.;
2006-01-01
A coordinated aircraft - radar project that investigated the electric fields, cloud microphysics and radar reflectivity of thunderstorm anvils near Kennedy Space Center is described. Measurements from two cases illustrate the extensive nature of the microphysics and electric field observations. As the aircraft flew from the edges of anvils into the interior, electric fields very frequently increased abruptly from approx.1 to >10 kV/m even though the particle concentrations and radar reflectivity increased smoothly. The abrupt increase in field usually occurred when the aircraft entered regions with a reflectivity of 10 to 15 dBZ. It is suggested that the abrupt increase in electric field may be because the charge advection from the storm core did not occur across the entire breadth of the anvil and was not constant in time. Screening layers were not detected near the edges of the anvils. Some long-lived anvils showed subsequent enhancement of electric field and reflectivity and growth of particles, which if localized, might be a factor in explaining the abrupt change of field in some cases. Comparisons of electric field magnitude with particle concentration or reflectivity for a combined data set that included all anvil measurements showed a threshold behavior. When the average reflectivity, such as in a 3-km cube, was less than approximately 5 dBZ, the electric field magnitude was <3 kV/m. Based on these findings, the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) is now being used by NASA, the Air Force and Federal Aviation Administration in new Lightning Launch Commit Criteria as a diagnostic for high electric fields in anvils.
NASA Astrophysics Data System (ADS)
McAfee, Terry Richard
Due to the growing global need for cheap, flexible, and portable electronics, numerous research groups from mechanical and electrical engineering, material science, chemistry, and physics have increasingly turned to organic electronics research over the last ˜5--10 years. Largely, the focus of researchers in this growing field have sought to obtain the next record holding device, allowing a heuristic approach of trial and error to become dominant focus of research rather than a fundamental understanding. Rather than working with the latest high performance organic semiconducting materials and film processing techniques, I have chosen to investigate and control the fundamental self-assembly interactions of organic photovoltaic thin films using simplified systems. Specifically, I focus on organic photovoltaic research using two of the oldest and well studies semiconducting materials, namely "sphere-like" electron donor material Buckminsterfullerene C60 and "disklike" electron acceptor material Copper(II) Phthalocyanine. I manufactured samples using the well-known technique of physical vapor deposition using a high vacuum chamber that I designed and built to accommodate my need of precise material deposition control, with codeposition capability. Films were characterized using microscopy and spectroscopy techniques locally at NCSU, including Atomic Force Microscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy, and Ultraviolet-visible spectroscopy, as well as at National Laboratory based synchrotron x-ray techniques, including Carbon and Nitrogen k-edge Total Electron Yield and Transmission Near Edge X-ray absorption fine structure spectroscopy, Carbon k-edge Resonant Soft x-ray Microscopy, Resonant Soft x-ray reflectivity, and Grazing Incidence Wide-Angle X-ray scattering.
Teaching Strategic Processes in Reading. Second Edition
ERIC Educational Resources Information Center
Almasi, Janice F.; Fullerton, Susan King
2012-01-01
This accessible teacher resource and course text shows how to incorporate strategy instruction into the K-8 classroom every day. Cutting-edge theory and research are integrated with practical guidance and reflections from experienced teachers of novice and struggling readers. The book describes the nuts and bolts of creating classroom contexts…
Electric Fields, Cloud Microphysics, and Reflectivity in Anvils of Florida Thunderstorms
NASA Technical Reports Server (NTRS)
Dye, J. E.; Bateman, M. G.; Christian, H. J.; Defer, E.; Grainger, C. A.; Hall, W. D.; Krider, E. P.; Lewis, S. A.; Mach, D. M.; Merceret, F. J.;
2007-01-01
A coordinated aircraft - radar project that investigated the electric fields, cloud microphysics and radar reflectivity of thunderstorm anvils near Kennedy Space Center is described. Measurements from two cases illustrate the extensive nature of the microphysics and electric field observations. As the aircraft flew from the edges of anvils into the interior, electric fields very frequently increased abruptly from approximately 1 to more than 10 kV m(exp -1) even though the particle concentration and radar reflectivity increased smoothly. The abrupt increase in field usually occurred when the aircraft entered regions with a reflectivity of 10 to 15 dBZ. It is suggested that the abrupt increase in electric field may be because the charge advection from the storm core did not occur across the entire breadth of the anvil and was not constant in time. Screening layers were not detected near the edges of the anvils. Some long-lived anvils showed subsequent enhancement of electric field and reflectivity and growth of particles, which if localized, might be a factor in explaining the abrupt change of field in some cases. Comparisons of electric field magnitude with particle concentration or reflectivity for a combined data set that included all anvil measurements showed a threshold behavior. When the average reflectivity, such as in a 3-km cube, was less than approximately 5 dBZ, the electric field magnitude was les than kV m(exp -1). Based on these findings, the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) is now being used by NASA, the Air Force and Federal Aviation Administration in new Lightning Launch Commit Criteria as a diagnostic for high electric fields in anvils.
Investigating the interstellar dust through the Fe K-edge
NASA Astrophysics Data System (ADS)
Rogantini, D.; Costantini, E.; Zeegers, S. T.; de Vries, C. P.; Bras, W.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.
2018-01-01
Context. The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm-2). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. Aims: In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. Methods: In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. Results: From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust. The absorption, scattering, and extinction cross sections of the compounds are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A22
Akman, F; Durak, R; Turhan, M F; Kaçal, M R
2015-07-01
The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Uegaki, Shin; Yoshida, Akihiro; Hosoito, Nobuyoshi
2015-03-01
We investigated induced spin polarization of 4p conduction electrons in Cu layers of antiferromagnetically (AFM) and ferromagnetically (FM) coupled Co/Cu(111) metallic superlattices by resonant X-ray magnetic scattering at the Cu K absorption edge. Magnetic reflectivity profiles of the two superlattices were measured in the magnetic saturation state with circularly polarized synchrotron radiation X-rays at 8985 eV. Depth profiles of the resonant magnetic scattering length of Cu, which corresponds to the induced spin polarization of Cu, were evaluated in the two Co/Cu superlattices by analyzing the observed magnetic reflectivity profiles. We demonstrated that the spin polarization induced in the Cu layer was distributed around the Co/Cu interfaces with an attenuation length of several Å in both AFM and FM coupled superlattices. The uniform component, which exists in Au layers of Fe/Au(001) superlattices, was not found in the depth distribution of induced magnetic polarization in the Cu layers of Co/Cu(111) superlattices.
Reducing the substrate dependent scanner leveling effect in low-k1 contact printing
NASA Astrophysics Data System (ADS)
Chang, C. S.; Tseng, C. F.; Huang, C. H.; Yang, Elvis; Yang, T. H.; Chen, K. C.
2015-03-01
As the scaling down of design rule for high-density memory device, the small depth of focus (DoF) budget may be deteriorated by focus leveling errors, which arises in unpredicted reflectivity from multilayer structures on the topographic wafer. The leveling sensors of ASML scanner use near infrared (NIR) range wavelength which can penetrate through most of films using in semiconductor fabrication such as photo-resist, bottom anti reflective coating (BARC) and dielectric materials. Consequently, the reflected light from underlying substructures would disturb leveling sensors from accurate leveling. The different pattern densities and layout characteristics between array and periphery of a memory chip are expected to result in different leveling signals. Furthermore, the process dependent variations between wafer central and edge areas are also considered to yield different leveling performances during wafer exposure. In this study, lower blind contact immunity was observed for peripheral contacts comparing to the array contacts especially around wafer edge region. In order to overcome this problem, a series of investigations have been carried out. The wafer edge leveling optimization through circuit dependent focus edge clearance (CDFEC) option doesn't get improvement. Air gauge improved process leveling (AGILE) function of ASML immersion scanner doesn't show improved result either. The ILD uniformity improvement and step height treatments around wafer edge such as edge exclusion of film deposition and bevel etching are also ineffective to mitigate the blind contact problem of peripheral patterns. Altering the etch hard-mask stack is finally found to be an effective approach to alleviate the issue. For instance, through either containing high temperature deposition advanced patterning film (APF) in the hard-mask or inserting higher opaque film such as amorphous Si in between the hard-mask stack.
Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.; ...
2017-01-26
Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less
Bohannon, Kevin P; Holz, Ronald W; Axelrod, Daniel
2017-10-01
The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, S; Vedantham, S; Karellas, A
Purpose: In Contrast Enhanced Spectral Mammography (CESM), Rh filter is often used during low-energy image acquisition. The potential for using Ag, In and Sn filters, which exhibit K-edge closer to, and just below that of Iodine, instead of the Rh filter, was investigated for the low-energy image acquisition. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for 50µm Rh were compared with other potential K-edge filters (Ag, In and Sn), all with K-absorption edge below that of Iodine. Two strategies were investigated: fixed kVp and filter thickness (50µm for all filters) resulting inmore » HVT variation, and fixed kVp and HVT resulting in variation in Ag, In and Sn thickness. Monte Carlo simulations (GEANT4) were conducted to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Rh and other K-edge filters. Results: Ag, In and Sn filters (50µm thick) increased photon fluence/mAs by 1.3–1.4, 1.8–2, and 1.7–2 at 28-32 kVp compared to 50µm Rh, which could decrease exposure time. Additionally, the fraction of spectra closer to and just below Iodine’s K-edge increased with these filters, which could improve post-subtraction image contrast. For HVT matched to 50µm Rh filtered spectra, the thickness range for Ag, In, and Sn were (41,44)µm, (49,55)µm and (45,53)µm, and increased photon fluence/mAs by 1.5–1.7, 1.6–2, and 1.6–2.2, respectively. Monte Carlo simulations showed that neither the SPR nor the scatter PSF of Ag, In and Sn differed from Rh, indicating no additional detriment due to x-ray scatter. Conclusion: The use of Ag, In and Sn filters for low-energy image acquisition in CESM is potentially feasible and could decrease exposure time and may improve post-subtraction image contrast. Effect of these filters on radiation dose, contrast, noise and associated metrics are being investigated. Funding Support: Supported in part by NIH R01CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less
Atomic Scattering Factor of the ASTRO-H (Hitomi) SXT Reflector Around the Gold's L Edges
NASA Technical Reports Server (NTRS)
Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Maeda, Yoshitomo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsubishi, Ikuyuki; Saji, Shigetaka
2016-01-01
The atomic scattering factor in the energy range of 11.2 - 15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) is reported. The large effective area of the SXT makes use of photon spectra above 10 keV viable, unlike most other X-ray satellites with total-reflection mirror optics. Presence of gold's L-edges in the energy band is a major issue, as it complicates the function of the effective area. In order to model the area, the reflectivity measurements in the 11.2 - 15.4 keV band with the energy pitch of 0.4 - 0.7 eV were made in the synchrotron beam-line Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the L-I, II, and III transitions are identified, of which the depths are found to be roughly 60 shallower than those expected from the Henkes atomic scattering factor.
Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantouvalou, I., E-mail: ioanna.mantouvalou@tu-berlin.de; Witte, K.; Martyanov, W.
With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns.more » Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.« less
Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.
Atak, Haluk; Shikhaliev, Polad M
2016-03-01
In photon counting (PC) x-ray imaging and computed tomography (CT), the broad x-ray spectrum can be split into two parts using an x-ray filter with appropriate K-edge energy, which can improve material decomposition. Recent experimental study has demonstrated substantial improvement in material decomposition with PC CT when K-edge filtered x-rays were used. The purpose of the current work was to conduct further investigations of the K-edge filtration method using comprehensive simulation studies. The study was performed in the following aspects: (1) optimization of the K-edge filter for a particular imaging configuration, (2) effects of the K-edge filter parameters on material decomposition, (3) trade-off between the energy bin separation, tube load, and beam quality with K-edge filter, (4) image quality of general (unsubtracted) images when a K-edge filter is used to improve dual energy (DE) subtracted images, and (5) improvements with K-edge filtered x-rays when PC detector has limited energy resolution. The PC x-ray images of soft tissue phantoms with 15 and 30 cm thicknesses including iodine, CaCO3, and soft tissue contrast materials, were simulated. The signal to noise ratio (SNR) of the contrast elements was determined in general and material-decomposed images using K-edge filters with different atomic numbers and thicknesses. The effect of the filter atomic number and filter thickness on energy separation factor and SNR was determined. The boundary conditions for the tube load and halfvalue layer were determined when the K-edge filters are used. The material-decomposed images were also simulated using PC detector with limited energy resolution, and improvements with K-edge filtered x-rays were quantified. The K-edge filters with atomic numbers from 56 to 71 and K-edge energies 37.4-63.4 keV, respectively, can be used for tube voltages from 60 to 150 kVp, respectively. For a particular tube voltage of 120 kVp, the Gd and Ho were the optimal filter materials to achieve highest SNR. For a particular K-edge filter of Gd and tube voltage of 120 kVp, the filter thickness 0.6 mm provided maximum SNR for considered imaging applications. While K-edge filtration improved SNR of CaCO3 and iodine by 41% and 36%, respectively, in DE subtracted images, it did not deteriorate SNR in general images. For x-ray imaging with nonideal PC detector, the positive effect of the K-edge filter was increased when FWHM energy resolution was degraded, and maximum improvement was at 60% FWHM. This study has shown that K-edge filtered x-rays can provide substantial improvements of material selective PC x-ray and CT imaging for nearly all imaging applications using 60-150 kVp tube voltages. Potential limitations such as tube load, beam hardening, and availability of filter material were shown to not be critical.
Cone and trumpet concentrators in light of the general edge-ray theorem
NASA Astrophysics Data System (ADS)
Ries, Harald; Spirkl, Wolfgang; Winston, Roland
1995-08-01
Cone and trumpet are nonimaging concentrators which do not obey the traditional edge-ray principle. The latter states that edge rays from the source should be transferred to the edge of the target. These concentrators have traditionally been described in terms of the heuristic flow line principle. The edge-ray theorem has been generalized to include nonimaging reflectors with multiple reflections. One includes all multiply reflected rays as an auxiliary domain. The general edge-ray theorem then states that the edge rays to the union of source and auxiliary domain must be reflected to edge of the union of target and auxiliary domain by the first reflection. We show the setup for which cone and trumpet constitute perfect nonimaging concentrators in the light of the generalized edge-ray theorem. We discuss the cases where cones are very good approximations for the solutions of nonimaging problems.
Mizoguchi, Teruyasu; Matsunaga, Katsuyuki; Tochigi, Eita; Ikuhara, Yuichi
2012-01-01
Theoretical calculations of electron energy loss near edge structures (ELNES) of lattice imperfections, particularly a Ni(111)/ZrO₂(111) heterointerface and an Al₂O₃ stacking fault on the {1100} plane, are performed using a first principles pseudopotential method. The present calculation can qualitatively reproduce spectral features as well as chemical shifts in experiment by employing a special pseudopotential designed for the excited atom with a core-hole. From the calculation, spectral changes observed in O-K ELNES from a Ni/ZrO₂ interface can be attributable to interfacial oxygen-Ni interactions. In the O-K ELNES of Al₂O₃ stacking faults, theoretical calculation suggests that the spectral feature reflects coordination environment and chemical bonding. Powerful combinations of ELNES with a pseudopotential method used to investigate the atomic and electronic structures of lattice imperfections are demonstrated. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2
Yuan, R. H.; Dong, T.; Song, Y. J.; Zheng, P.; Chen, G. F.; Hu, J. P.; Li, J. Q.; Wang, N. L.
2012-01-01
We report an in-plane optical spectroscopy study on the iron-selenide superconductor K0.75Fe1.75Se2. The measurement revealed the development of a sharp reflectance edge below Tc at frequency much smaller than the superconducting energy gap on a relatively incoherent electronic background, a phenomenon which was not seen in any other Fe-based superconductors so far investigated. Furthermore, the feature could be noticeably suppressed and shifted to lower frequency by a moderate magnetic field. Our analysis indicates that this edge structure arises from the development of a Josephson-coupling plasmon in the superconducting condensate. Together with the transmission electron microscopy analysis, our study yields compelling evidence for the presence of nanoscale phase separation between superconductivity and magnetism. The results also enable us to understand various seemingly controversial experimental data probed from different techniques. PMID:22355735
Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung
2016-01-21
K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD.
Publications - GMC 207 | Alaska Division of Geological & Geophysical
DGGS GMC 207 Publication Details Title: Total organic carbon, rock-eval, and vitrinite reflectance data for more information. Bibliographic Reference Unknown, 1993, Total organic carbon, rock-eval, and Report Information gmc207.pdf (165.0 K) Keywords Total Organic Carbon; Vitrinite Reflectance Top of Page
Publications - GMC 60 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 60 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite , Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical data for the Nechelik (125.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of
Anomalous Rayleigh scattering with dilute concentrations of elements of biological importance
NASA Astrophysics Data System (ADS)
Hugtenburg, Richard P.; Bradley, David A.
2004-01-01
The anomalous scattering factor (ASF) correction to the relativistic form-factor approximation for Rayleigh scattering is examined in support of its utilization in radiographic imaging. ASF corrected total cross-section data have been generated for a low resolution grid for the Monte Carlo code EGS4 for the biologically important elements, K, Ca, Mn, Fe, Cu and Zn. Points in the fixed energy grid used by EGS4 as well as 8 other points in the vicinity of the K-edge have been chosen to achieve an uncertainty in the ASF component of 20% according to the Thomas-Reiche-Kuhn sum rule and an energy resolution of 20 eV. Such data is useful for analysis of imaging with a quasi-monoenergetic source. Corrections to the sampled distribution of outgoing photons, due to ASF, are given and new total cross-section data including that of the photoelectric effect have been computed using the Slater exchange self-consistent potential with the Latter tail. A measurement of Rayleigh scattering in a dilute aqueous solution of manganese (II) was performed, this system enabling determination of the absolute cross-section, although background subtraction was necessary to remove K β fluorescence and resonant Raman scattering occurring within several 100 eV of the edge. Measurements confirm the presence of below edge bound-bound structure and variation in the structure due to the ionic state that are not currently included in tabulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi
2007-10-19
We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less
NASA Astrophysics Data System (ADS)
Lu, Zhigang; Su, Zhicheng; Wei, Yanyu
2018-05-01
A double-ridge-loaded folded waveguide (DRL-FW) travelling wave tube (TWT) based on period-tapered structure is proposed. Through analysing the dispersion characteristics of the DRL-FW slow wave structure (SWS), the physical mechanism of the band-edge oscillation is obtained. Period-tapered SWS is proposed and analysed for verifying the feasibility in suppressing upper-band-edge oscillation and increasing the output power. Then the electromagnetic characteristics and the beam-wave interaction of TWT based on the period-tapered DRL-FW SWS are investigated. The calculation results predict that it potentially could provide continuous wave power over 600W from 29 GHz to 32 GHz without upper-band-edge oscillation. The bandwidth expands from 29-31GHz to 29-32GHz and electron efficiency is increased from more than 8.3% to more than 11%, while the range of operating voltage expands from 22kV-22.5kV to 22kV-24kV. The corresponding saturated gain can reach over 36.8 dB. In addition, we have carried out experimental tests on the transmission characteristics of period-tapered DRL-FW SWS. The cold test results show that the voltage stand-wave ratio (VSWR) is below 1.8 in the range of 29-32GHz. Good transmission characteristics greatly reduce the risk of reflection wave oscillation, thus improving the stability of DRL-FW TWT.
Silicon K-edge XANES spectra of silicate minerals
NASA Astrophysics Data System (ADS)
Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.
1995-03-01
Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.
Observation of wave refraction at an ice edge by synthetic aperture radar
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.
1991-01-01
In this note the refraction of waves at the ice edge is studied by using aircraft synthesis aperture radar (SAR). Penetration of a dominant swell from open ocean into the ice cover was observed by SAR during the Labrador Ice Margin Experiment (LIMEX), conducted on the marginal ice zone (MIZ) off the east coast of Newfoundland, Canada, in March 1987. At an ice edge with a large curvature, the dominant swell component disappeared locally in the SAR imagery. Six subscenes of waves in the MIZ from the SAR image have been processed, revealing total reflection, refraction, and energy reduction of the ocean waves by the ice cover. The observed variations of wave spectra from SAR near the ice edge are consistent with the model prediction of wave refraction at the ice edge due to the change of wave dispersion relation in ice developed by Liu and Mollo-Christensen (1988).
Schreck, Simon; Wernet, Philippe
2016-09-14
The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.
NASA Technical Reports Server (NTRS)
Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Witthoeft, M. C.; Kallman, T. R.
2016-01-01
Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars.Aims. The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements.Methods. Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the autostructure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential.Results. Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3< or = N< or = 11. The Na sequence (N=11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]) and those containing 3d orbitals, which will be crucial when considering sequences with N 11.Conclusions. It is found that the [2s/u] configurations must be included in the target representations of species with N> 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atsumi, H.; Tanabe, T.; Shikama, T.
Thermal desorption spectrometry (TDS) has been investigated to obtain fundamental information of tritium behavior in graphite and carbon materials especially at high temperatures. 29 brands of graphite, HOPG, glassy carbon and CFC materials charged with deuterium gas are tested up to the temperature of 1735 K with a heating rate of 0.1 K/s. TDS spectra have five peaks at 600-700 K, around 900 K, 1200 K, 1300-1450 K and 1600-1650 K. The amounts of released deuterium have been compared with crystallographic parameters derived from XRD analysis. The results can be summarized as follows. First, TDS spectra of deuterium were quitemore » varied among the samples tested, such as existence of peaks, peak temperatures and release amounts of deuterium. Secondly, TDS spectra may consist of five peaks, which are peak 1 (600-700 K), peak 2 (around 900 K), peak 3 (around 1200 K), peak 4 (1300-1450 K) and peak 5 (1600-1650 K). Thirdly, the correlations between the estimated surface area of edge surface and the total amount of released deuterium could be observed for peaks 4 and 5. Fourthly, high energy trapping site (peak 5) may exist even at edge surface or a near surface region, not only for intercalary. And fifth, in order to obtain the lower tritium retention for graphite and CFC materials, the material should be composed of a filler grain with a smaller crystallite size or having the smaller net edge surface in its structure. It is shown that heat treatment does not reduce originally existing trapping sites but trapping sites generated by neutron irradiation for instance can be reduced in some degree.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke
2016-03-07
Here, we evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathodematerials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi 0.5Mn 1.5O 4, the line shape of the Mn L 3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L 3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathodematerials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are usefulmore » enough for the Ni L edge which is far from the O K edge.« less
Incorporation of chromium into TiO{sub 2} nanopowders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollbek, Kamila, E-mail: biernack@agh.edu.pl; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow; Sikora, Marcin
2015-04-15
Highlights: • Nanopowders of TiO{sub 2}:Cr with different amount of Cr dopant were obtained by flame spray synthesis, FSS. • Increase in the optical absorption and a shift of the absorption edge were observed upon Cr doping. • HERFD-XANES measurements indicated that the average valence state of titanium ions was preserved. • Increasing magnetic susceptibility of a paramagnetic character was observed upon Cr doping. - Abstract: The paper reports on the results of a study of optical, electronic and magnetic properties of TiO{sub 2} nanopowders doped with Cr ions. Diffused reflectance spectra reveal an increase in the optical absorption andmore » a shift of the absorption edge towards lower energies upon Cr doping. Direct information on the Ti electronic state and the symmetry of its nearest environment is obtained from XANES Ti K-edge spectra. Magnetic behaviour is probed by means of the temperature dependence of DC magnetic susceptibility. Increasing magnetic susceptibility of a paramagnetic character is observed upon increasing chromium doping. The Curie constant of TiO{sub 2}:10 at.% Cr sample (0.12 emu K/mol Oe) is lower than that expected for Cr{sup 3+} (0.1875 emu K/mol Oe) possibly due to the appearance of Cr{sup 4+} or the presence of the orbital contribution to the magnetic moment.« less
Tachikawa, Hiroto; Shimizu, Akira
2005-07-14
Diffusion processes of the Li+ ion on a model surface of amorphous carbon (Li+C96H24 system) have been investigated by means of the direct molecular orbital (MO) dynamics method at the semiempirical AM1 level. The total energy and energy gradient on the full-dimensional AM1 potential energy surface were calculated at each time step in the dynamics calculation. The optimized structure, where Li+ is located in the center of the cluster, was used as the initial structure at time zero. The dynamics calculation was carried out in the temperature range 100-1000 K. The calculations showed that the Li+ ion vibrates around the equilibrium point below 200 K, while the Li+ ion moves on the surface above 250 K. At intermediate temperatures (300 K < T < 400 K), the ion moves on the surface and falls in the edge regions of the cluster. At higher temperatures (600 K < T), the Li+ ion transfers freely on the surface and edge regions. The diffusion pathway of the Li+ ion was discussed on the basis of theoretical results.
Strong excitonic interactions in the oxygen K-edge of perovskite oxides.
Tomita, Kota; Miyata, Tomohiro; Olovsson, Weine; Mizoguchi, Teruyasu
2017-07-01
Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO 3 , SrTiO 3 , and BaTiO 3 , together with reference oxides, MgO, CaO, SrO, BaO, and TiO 2 , were investigated using a first-principles Bethe-Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti-O-Ti bonds. Copyright © 2016 Elsevier B.V. All rights reserved.
Determining the Location of an Observer with Respect to Aerial Photographs
1988-12-01
at gradient-array (+ 1 j) (+ k I)) threshold) (mett (arot temp-array 1 k) O)M (cond (4- tarot temp-array I k) 1) Isetq sum (* sum tempt 2 (+ I (* 3 k)f...aetq num-edges (+ num-edges 1)))))) (setf taret unique-index-num-array j 1) sum) tsett tarot num-edges-array j 1) num-edges))))) 1 This function
1980-05-28
Total Deviation Angles and Measured Inlet Axial Velocity . . . . 55 ix LIST OF FIGURES (Continued) Figure Page 19 Points Defining Blade Sections of...distance from leading edge to point of maximum camber along chord line ar tip vortex core radius AVR axial velocity ratio (Vx /V x c chord length CL tip...yaw ceoefficient d longitudinal distance from leading edge to tip vortex calculation point G distance from chord line to maximum camber point K cascade
Marrero-Ponce, Yovani; Martínez-Albelo, Eugenio R; Casañola-Martín, Gerardo M; Castillo-Garit, Juan A; Echevería-Díaz, Yunaimy; Zaldivar, Vicente Romero; Tygat, Jan; Borges, José E Rodriguez; García-Domenech, Ramón; Torrens, Francisco; Pérez-Giménez, Facundo
2010-11-01
Novel bond-level molecular descriptors are proposed, based on linear maps similar to the ones defined in algebra theory. The kth edge-adjacency matrix (E(k)) denotes the matrix of bond linear indices (non-stochastic) with regard to canonical basis set. The kth stochastic edge-adjacency matrix, ES(k), is here proposed as a new molecular representation easily calculated from E(k). Then, the kth stochastic bond linear indices are calculated using ES(k) as operators of linear transformations. In both cases, the bond-type formalism is developed. The kth non-stochastic and stochastic total linear indices are calculated by adding the kth non-stochastic and stochastic bond linear indices, respectively, of all bonds in molecule. First, the new bond-based molecular descriptors (MDs) are tested for suitability, for the QSPRs, by analyzing regressions of novel indices for selected physicochemical properties of octane isomers (first round). General performance of the new descriptors in this QSPR studies is evaluated with regard to the well-known sets of 2D/3D MDs. From the analysis, we can conclude that the non-stochastic and stochastic bond-based linear indices have an overall good modeling capability proving their usefulness in QSPR studies. Later, the novel bond-level MDs are also used for the description and prediction of the boiling point of 28 alkyl-alcohols (second round), and to the modeling of the specific rate constant (log k), partition coefficient (log P), as well as the antibacterial activity of 34 derivatives of 2-furylethylenes (third round). The comparison with other approaches (edge- and vertices-based connectivity indices, total and local spectral moments, and quantum chemical descriptors as well as E-state/biomolecular encounter parameters) exposes a good behavior of our method in this QSPR studies. Finally, the approach described in this study appears to be a very promising structural invariant, useful not only for QSPR studies but also for similarity/diversity analysis and drug discovery protocols.
NASA Technical Reports Server (NTRS)
Beyer, A. D.; Kenyon, M. E.; Bumble, B.; Runyan, M. C.; Echternach, P. E.; Holmes, W. A.; Bock, J. J.; Bradford, C. M.
2013-01-01
We present measurements of the thermal conductance, G, and effective time constants, tau, of three transition-edge sensors (TESs) populated in arrays operated from 80-87mK with T(sub C) approximately 120mK. Our TES arrays include several variations of thermal architecture enabling determination of the architecture that demonstrates the minimum noise equivalent power (NEP), the lowest tau and the trade-offs among designs. The three TESs we report here have identical Mo/Cu bilayer thermistors and wiring structures, while the thermal architectures are: 1) a TES with straight support beams of 1mm length, 2) a TES with meander support beams of total length 2mm and with 2 phononfilter blocks per beam, and 3) a TES with meander support beams of total length 2mm and with 6 phonon-filter blocks per beam. Our wiring scheme aims to lower the thermistor normal state resistance R(sub N) and increase the sharpness of the transition alpha=dlogR/dlogT at the transition temperature T(sub C). We find an upper limit of given by (25+/-10), and G values of 200fW/K for 1), 15fW/K for 2), and 10fW/K for 3). The value of alpha can be improved by slightly increasing the length of our thermistors.
Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam
NASA Astrophysics Data System (ADS)
Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.
2018-06-01
We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.
Bradley, Joseph A; Yang, Ping; Batista, Enrique R; Boland, Kevin S; Burns, Carol J; Clark, David L; Conradson, Steven D; Kozimor, Stosh A; Martin, Richard L; Seidler, Gerald T; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Wolfsberg, Laura E
2010-10-06
Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.
Optical materials and films applied in industrial lasers
NASA Astrophysics Data System (ADS)
Zhang, Peng; Liu, Shengyong
1999-09-01
Optical materials and films are often used in industrial lasers. Most of industrial lasers work at visible spectrum and near-infrared spectrum. Only CO2 laser works at far- infrared region (10.6 micrometers ). The optical materials and films are categorized in this article, and the properties of the materials and films are related. From visible to infrared spectrum, many optical materials can be used: K9 glass, fused silica, germanium, gallium arsenide, zinc selenide, silicon, copper, and so on. Optical films for lasers include reflection coating, antireflection coating, edge filter, VRM (variable reflectance mirror) coating and polarizer. The characteristic and application of them will be introduced.
NASA Astrophysics Data System (ADS)
Singh, Shashi B.; Wang, Yu-Fu; Shao, Yu-Cheng; Lai, Hsuan-Yu; Hsieh, Shang-Hsien; Limaye, Mukta V.; Chuang, Chen-Hao; Hsueh, Hung-Chung; Wang, Hsaiotsu; Chiou, Jau-Wern; Tsai, Hung-Ming; Pao, Chih-Wen; Chen, Chia-Hao; Lin, Hong-Ji; Lee, Jyh-Fu; Wu, Chun-Te; Wu, Jih-Jen; Pong, Way-Faung; Ohigashi, Takuji; Kosugi, Nobuhiro; Wang, Jian; Zhou, Jigang; Regier, Tom; Sham, Tsun-Kong
2014-07-01
Efforts have been made to elucidate the origin of d0 magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO.Efforts have been made to elucidate the origin of d0 magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO. Electronic supplementary information (ESI) available: Scanning photoelectron microscopy (SPEM) results of ZnO NCs and NWs. Computational details and calculated total and partial density of states (PDOS) of bulk wurtzite ZnO with oxygen anion vacancies (VO). See DOI: 10.1039/c4nr01961j
Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D
2015-11-01
Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.
Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy
NASA Astrophysics Data System (ADS)
Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.
The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.
A cutting-edge solution for 1µm laser metal processing
NASA Astrophysics Data System (ADS)
Baumbach, N.; Kühl, P.; Karam, J.; Jonkers, J.; Villarreal-Saucedo, F.; Reyes, M.
2017-02-01
The recent 1μm-laser cutting market is dominated by fiber and disk lasers due to their excellent beam quality of below 4mm*mrad. Teradiode's 4kW direct diode laser source achieves similar beam quality while having a different beam shape and shorter wavelengths which are known for higher absorption rates at the inclined front of the cutting keyhole. Research projects, such as the HALO Project, have additionally shown that polarized radiation and beams with shapes different from the typical LG00 lead to improved cut quality for ferrous and non-ferrous metals. [1] Diode laser have the inherent property of not being sensitive to back reflection which brings advantages in cutting high-reflective materials. The II-VI HIGHYAG laser cutting head BIMO-FSC offers the unique feature of machine controlled and continuous adjustment of both the focus diameter and the focus position. This feature is proven to be beneficial for cutting and piercing with high speed and small hole diameters. In addition, the optics are designed for lowest focus shift. As a leading laser processing head manufacturer, II-VI HIGHYAG qualified its BIMO-FSC MZ (M=magnification, Z=focus position) cutting head for Teradiode's 4kW direct diode laser source to offer a cutting-edge solution for highpower laser cutting. Combining the magnification ability of the cutting head with this laser source, customers experience strong advantages in cutting metals in broad thickness ranges. Thicknesses up to 25mm mild steel can easily be cut with excellent edge quality. Furthermore, a new optical setup equivalent to an axicon with a variable axicon angle is demonstrated which generates variable sized ring spots. The setup provides new degrees of freedom to tailor the energy distribution for even higher productivity and quality.
Ultrasonic transducer with laminated coupling wedge
Karplus, Henry H. B.
1976-08-03
An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Maximov, M. V.
2015-11-01
The ways to optimize key parameters of active region and edge reflectivity of edge- emitting semiconductor quantum dot laser are provided. It is shown that in the case of optimal cavity length and sufficiently large dispersion lasing spectrum of a given width can be obtained at injection current up to an order of magnitude lower in comparison to non-optimized sample. The influence of internal loss and edge reflection is also studied in details.
Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants.
Seager, S; Turner, E L; Schafer, J; Ford, E B
2005-06-01
Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the "red edge," as a tool for astrobiology. We review the basic characteristics and physical origin of the red edge and summarize its use in astronomy: early spectroscopic efforts to search for vegetation on Mars and recent reports of detection of the red edge in the spectrum of Earthshine (i.e., the spatially integrated scattered light spectrum of Earth). We present Earthshine observations from Apache Point Observatory (New Mexico) to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial "light-harvesting organisms" have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet-characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths); if an extrasolar planet reflectance edge is detected care must be taken with its interpretation.
Image reconstruction for x-ray K-edge imaging with a photon counting detector
NASA Astrophysics Data System (ADS)
Meng, Bo; Cong, Wenxiang; Xi, Yan; Wang, Ge
2014-09-01
Contrast agents with high-Z elements have K-absorption edges which significantly change X-ray attenuation coefficients. The K-edge characteristics is different for various kinds of contrast agents, which offers opportunities for material decomposition in biomedical applications. In this paper, we propose a new K-edge imaging method, which not only quantifies a distribution of a contrast agent but also provides an optimized contrast ratio. Our numerical simulation tests demonstrate the feasibility and merits of the proposed methodology.
NASA Astrophysics Data System (ADS)
Zavada, Prokop; Schulmann, Karel; Lexa, Ondrej; Machek, Matej; Roxerova, Zuzana; Kusbach, Vladimir
2016-04-01
The AMS record and the halite fabrics on meso- and micro-scale were studied in detail on a well exposed salt extrusive body in Iran. In the Kuh-e-Namak (Dashti) mountain salt diapir, the deformation structures in colored salt are displayed along longitudinal profiles across the dome and two glaciers that extend from the NE and SW edge of the dome. The profiles from the dome to the frontal parts of the glaciers reveal a continuous strain gradient associated with transposition of the domal salt fabrics by axial fold cleavage development during flow of rock salt over the ridges in the channel. The extruded salt belongs to the Hormuz sequence of Neo-Proterozoic to Early Cambrian age. From central dome towards especially the northern namakier, structural record revealed zonation from; 1) gravitational collapse related recumbent isoclinal folds in the dome, 2) flat normal shears at the edge of the dome, 3) collapsed vertical layering into flat lying transpositional fabric at the toe of the dome, 4) penetrative fold cleavage transposition of earlier fabrics above the topographical ridge in the base of the flow, locally displaying strong transversal constrictional fabrics, 5) banded mylonites with isoclinal rootless folds in subhorizontally banded frontal and marginal domain of the glacier. The AMS fabric in the rock salt is generated primarily by hematite dispersed in the recrystallized halite. The AMS exhibits three main types of fabric symmetry from clustered all directions (K1,K2,K3, orthogonal fabric) to clustered K1 directions with girdle forming K2,K3 axes and clustered K3 directions with girdle of K1 and K2 directions. The AMS fabric clearly reflects the macroscopic fabric transpositions along the entire investigated strain gradient in the rock salt. Magnetic fabrics reveal continuous trends from bimodal to semi-girdle distribution of foliations in folded and cleavage present regions, to magnetic lineation clustering perpendicular to flow in completely refolded domains and to flat lying orthogonal fabric in mylonites at the frontal and marginal edges of the glacier.
Origin of the 1 eV-reflectivity edges in high-T c superconducting cuprates
NASA Astrophysics Data System (ADS)
Tajima, S.; Uchida, S.; Kaneko, T.; Tomeno, I.; Kosuge, M.; Yamauchi, H.; Koshizuka, N.
1992-05-01
The reflectivity edge commonly observed at around 1 eV in the optical spectrum is investigated for a number of high- Tc superconducting cuprates. We have found that the edge energy ( ωedge) is almost independent of doping concentration in each material but varies widely among the materials dependent on the average CuO 2-plane spacing d c. This is consistent with a view supposing that the observed reflectivity edge corresponds to the plasma edge associated with the renormalized two-dimensional band, which would be nearly half-filled and has been reconstructed on doping from the gap-separated states of the charge transfer insulator as a result of reduced renormalization. We could not find a universal correlation between Tc and ω'p2.
Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.
Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R
2018-03-01
P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, John L.; Govind, Niranjan; Huthwelker, Thomas
2015-07-02
We probe, at high energy resolution, the double electron excitation (KL II&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KL II&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂Omore » the KL II&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KL II&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KL II&III and KL I onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle under Contract # AC05-76RL01830.« less
NASA Astrophysics Data System (ADS)
Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.
2009-04-01
The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically reflected in particle morphology and SAED patterns. The P K-edge XANES spectra revealed that phosphate was bound to both Fe as well as Ca (if present). The Ca K-edge XANES spectra showed that the mode of Ca uptake by the Fe(III)-precipitates shifted from mainly adsorption at high Fe/P to coprecipitation at low Fe/P ratio. Despite oversaturation, neither calcite nor hydroxyapatite formed to a significant extent. The results from this study indicated that, depending on water composition, Fe(II) oxidation in natural waters leads to different types of short-range-ordered Fe(III)-phases. Since these phases are expected to differ in their effect on contaminant and nutrient dynamics, their specific physical and chemical properties warrant further research. Methodologically, this work demonstrated the usefulness of investigating the local structure of short-range-ordered precipitates along compositional gradients and by combining the element-selective information from different X-ray absorption edges.
NASA Technical Reports Server (NTRS)
Rock, B. N.; Hoshizaki, T.; Lichtenthaler, H.; Schmuck, G.
1986-01-01
Field analyses were conducted at spruce/fir sites in the U.S. and Germany undergoing forest decline. Data gathered from common branch samples included reflectance curves, fluorescence measurements, and pigment concentrations. Similar reflectance signatures are seen for specimens from all sites. Reflectance spectra from specimens collected from high damage sites in both countries show a characteristic reflectance drop in the near infrared and a shift (5 nm) of the red edge to shorter wavelengths. Fluorescence data suggest altered state of health of photosynthetic pigments only in specimens from German high damage sites, and pigment extraction and analysis indicate a reduction in total chlorophyll, a decrease in chlorophyll b when compared with chlorophyll a, and a relative increase in carotenoids.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu
2013-06-01
A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.
Edge resonant fluctuations and particle transport in a reversed-field pinch
NASA Astrophysics Data System (ADS)
Möller, A.
1998-12-01
Electrostatic fluctuations are measured in the Extrap T2 reversed-field pinch [J. R. Drake et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 2, pp. 193-199] using a Langmuir probe array. The electrostatic fluctuation, driven particle transport ΓnΦ is derived and found to constitute a large fraction of the total particle transport. The spectral density of all measured quantities exhibits a peak in the frequency range 100-250 kHz, which originates from fluctuations that are resonant close to the edge [n=-(40-80)]. This peak contains only about 10-20% of the total fluctuation power, but is shown to dominate ΓnΦ. The main reason for this is the high toroidal mode number as compared with internally resonant magnetohydrodynamic fluctuations. The edge resonant fluctuations also features a higher coherence (γ=0.5) and close to 90° phase shift between density and potential fluctuations.
Magnetic properties and microstructure of melt-spun Ce17Fe78-xB6Hfx (x = 0-1.0) alloys
NASA Astrophysics Data System (ADS)
Jiang, Qingzheng; Zhong, Minglong; Quan, Qichen; Lei, Weikai; Zeng, Qingwen; Hu, Yongfeng; Xu, Yaping; Hu, Xianjun; Zhang, Lili; Liu, Renhui; Ma, Shengcan; Zhong, Zhenchen
2017-12-01
Ce17Fe78-xB6Hfx (x = 0-1.0) alloys were fabricated by a melt-spinning technique in order to study their magnetic properties and microstructure. Magnetic investigations of Ce17Fe78-xB6Hfx (x = 0-1.0) alloys show that the room-temperature coercivity increases linearly from 352 kA/m at x = 0 to 420 kA/m at x = 1.0. The Curie temperature (Tc) decreases monotonically from 424.5 K to 409.1 K. The Ce L3-edge X-ray absorption near edge structure (XANES) spectrums reveal that there is more Ce4+ in ribbons under total electron yield (TEY) than fluorescence yield (FY). Hf addition has no effect on the weight of Ce3+ and Ce4+ in CeFeB-based alloys. The grain refinement and microstructure uniformity are essential for improving the magnetic properties of Hf-doped alloys. This paper may shed light on the further development of the Ce-based magnets and offer a feasible way for using the rare earth resources effectively.
Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong
Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less
Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces
Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong; ...
2017-09-26
Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less
Edge dislocations as sinks for sub-nanometric radiation induced defects in α-iron
NASA Astrophysics Data System (ADS)
Anento, N.; Malerba, L.; Serra, A.
2018-01-01
The role of edge dislocations as sinks for small radiation induced defects in bcc-Fe is investigated by means of atomistic computer simulation. In this work we investigate by Molecular Statics (T = 0K) the interaction between an immobile dislocation line and defect clusters of small sizes invisible experimentally. The study highlights in particular the anisotropy of the interaction and distinguishes between absorbed and trapped defects. When the considered defect intersects the dislocation glide plane and the distance from the dislocation line to the defect is on the range between 2 nm and 4 nm, either total or partial absorption of the cluster takes place leading to the formation of jogs. Residual defects produced during partial absorption pin the dislocation. By the calculation of stress-strain curves we have assessed the strength of those residues as obstacles for the motion of the dislocation, which is reflected on the unpinning stresses and the binding energies obtained. When the defect is outside this range, but on planes close to the dislocation glide plane, instead of absorption we have observed a capture process. Finally, with a view to introducing explicitly in kinetic Monte Carlo models a sink with the shape of a dislocation line, we have summarized our findings on a table presenting the most relevant parameters, which define the interaction of the dislocation with the defects considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, N. R.; Weber, B. V.; Phipps, D.
Close to an x-ray filter's K-edge the transmission depends strongly on the photon energy. For a few atom pairs, the K-edge of one is only a few tens of eV higher than a K-line energy of another, so that a small change in the line's energy becomes a measurable change in intensity behind such a matching filter. Lutetium's K-edge is Asymptotically-Equal-To 27 eV above iridium's K{alpha}{sub 2} line, Asymptotically-Equal-To 63.287 keV for cold Ir. A Lu filter reduces this line's intensity by Asymptotically-Equal-To 10 % when it is emitted by a plasma, indicating an ionization shift {Delta}E Asymptotically-Equal-To 10{+-}1 eV.
Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4
NASA Astrophysics Data System (ADS)
Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.
2013-04-01
Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].
Absorption and scattering by interstellar dust in the silicon K-edge of GX 5-1
NASA Astrophysics Data System (ADS)
Zeegers, S. T.; Costantini, E.; de Vries, C. P.; Tielens, A. G. G. M.; Chihara, H.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.; Zeidler, S.
2017-03-01
Context. We study the absorption and scattering of X-ray radiation by interstellar dust particles, which allows us to access the physical and chemical properties of dust. The interstellar dust composition is not well understood, especially on the densest sight lines of the Galactic plane. X-rays provide a powerful tool in this study. Aims: We present newly acquired laboratory measurements of silicate compounds taken at the Soleil synchrotron facility in Paris using the Lucia beamline. The dust absorption profiles resulting from this campaign were used in this pilot study to model the absorption by interstellar dust along the line of sight of the low-mass X-ray binary GX 5-1. Methods: The measured laboratory cross-sections were adapted for astrophysical data analysis and the resulting extinction profiles of the Si K-edge were implemented in the SPEX spectral fitting program. We derive the properties of the interstellar dust along the line of sight by fitting the Si K-edge seen in absorption in the spectrum of GX 5-1. Results: We measured the hydrogen column density towards GX 5-1 to be 3.40 ± 0.1 × 1022 cm-2. The best fit of the silicon edge in the spectrum of GX 5-1 is obtained by a mixture of olivine and pyroxene. In this study, our modeling is limited to Si absorption by silicates with different Mg:Fe ratios. We obtained an abundance of silicon in dust of 4.0 ± 0.3 × 10-5 per H atom and a lower limit for total abundance, considering both gas and dust of >4.4 × 10-5 per H atom, which leads to a gas to dust ratio of >0.22. Furthermore, an enhanced scattering feature in the Si K-edge may suggest the presence of large particles along the line of sight.
NASA Astrophysics Data System (ADS)
Huang, C.; Zhang, L.; Qiao, N.; Zhang, X.; Li, Y.
2015-12-01
Remotely sensed solar-induced chlorophyll fluorescence (SIF) has been considered an ideal probe in monitoring global vegetation photosynthesis. However, challenges in accurate estimate of faint SIF (less than 5% of the total reflected radiation in near infrared bands) from the observed apparent reflected radiation greatly limit its wide applications. Currently, the telluric O2-B (~688nm) and O2-A (~761nm) have been proved to be capable of SIF retrieval based on Fraunhofer line depth (FLD) principle. They may still work well even using conventional ground-based commercial spectrometers with typical spectral resolutions of 2~5 nm and high enough signal-to-noise ratio (e.g., the ASD spectrometer). Nevertheless, almost all current FLD based algorithms were mainly developed for O2-A, a few concentrating on the other SIF emission peak in O2-B. One of the critical reasons is that it is very difficult to model the sudden varying reflectance around O2-B band located in the red-edge spectral region (about 680-800 nm). This study investigates a new method by combining the established inverted Gaussian reflectance model (IGM) and FLD principle using diurnal canopy spectra with relative low spectral resolutions of 1 nm (FluorMOD simulations) and 3 nm (measured by ASD spectrometer) respectively. The IGM has been reported to be an objective and good method to characterize the entire vegetation red-edge reflectance. Consequently, the proposed SIF retrieval method (hereinafter called IGMFLD) could exploit all the spectral information along the whole red-edge (680-800 nm) to obtain more reasonable reflectance and fluorescence correction coefficients than traditional FLD methods such as the iFLD. Initial results show that the IGMFLD can better capture the spectrally non-linear characterization of the reflectance in 680-800 nm and thereby yields much more accurate SIFs in O2-B than typical FLD methods, including sFLD, 3FLD and iFLD (see figure 1). Finally, uncertainties and prospect of the IGM-FLD, in contrast with sFLD, 3FLD and iFLD, were discussed here. This study may provide a test-bed for developing more robust methods to retrieve SIF in O2-B from aircraft (e.g. AisaIBIS fluorescence imager) or satellite (FLEX-FLORIS) remote sensing measurements.
Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH 3NH 3SnI 3
NASA Astrophysics Data System (ADS)
Mitzi, D. B.; Feild, C. A.; Schlesinger, Z.; Laibowitz, R. B.
1995-01-01
A low-temperature ( T ≤ 100°C) solution technique is described for the preparation of polycrystalline and single crystal samples of the conducting halide perovskite, CH 3NH 3SnI 3. Transport, Hall effect, magnetic, and optical properties are examined over the temperature range 1.8-300 K, confirming that this unusual conducting halide perovskite is a low carrier density p-type metal with a Hall hole density, 1/ RHe ≃ 2 × 10 19 cm -3. The resistivity of pressed pellet samples decreases with decreasing temperature with resistivity ratio ρ(300 K)/ρ(2 K) ≃ 3 and room temperature resistivity ρ(300 K) ≃ 7 mΩ-cm. A free-carrier infrared reflectivity spectrum with a plasma edge observed at approximately 1600 cm -1 further attests to the metallic nature of this compound and suggests a small optical effective mass, m* ≃ 0.2.
NASA Astrophysics Data System (ADS)
Kwon, Kideok D.; Newton, Aric G.
2016-10-01
The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities regardless of the water chemical potential. The equilibrium morphology of pyrophyllite crystals is also expected to be dependent on these two environmental variables. Surface defects may impact the surface reactivity. We discuss the thermodynamic stability of a possible Si cation vacancy defect which provides additional hydroxyl group on the surface.
NASA Technical Reports Server (NTRS)
Boersma, J.; Rahmat-Samii, Y.
1980-01-01
The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.
Some constructions on total labelling of m triangles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voon, Chen Huey, E-mail: chenhv@utar.edu.my; Hui, Liew How, E-mail: liewhh@utar.edu.my; How, Yim Kheng, E-mail: tidusyimhome@hotmail.com
2016-06-02
Let mK{sub 3} = (V{sub m}, E{sub m}) be a finite disconnected graph consisting of m disjoint triangles K{sub 3}, where V{sub m} is the set of vertices, E{sub m} is the set of edges and both V{sub m} and E{sub m} are of the same size 3m. A total labelling of mK{sub 3} is a function f which maps the elements in V{sub m} and E{sub m} to positive integer values, i.e. f : V{sub m} ∪ E{sub m} → {1, 2, 3,···}. Let c be a positive integer. A triangle is said have a c-Erdősian triangle labelling ifmore » it is a total labelling f : V{sub m} ∪ E{sub m} → {c, c + 1, ···, c + 6m − 1} such that f (x) + f (y) = f (xy) for any x, y ∈ V{sub m} and an edge xy ∈ E{sub m} joining them. In order to find all the c-Erdősian triangle labelling, a straightforward is to use the exhaustive search. However, the exhaustive search is only able to find c-Erdősian triangle labelling for m ≤ 5 due to combinatorial explosion. By studying the constant sum of vertex labels, we propose a strong permutation approach, which allows us to generate a certain classes of c-Erdősian triangle labelling up until m = 8.« less
Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.
Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland
2011-09-01
The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of about two to three. The potentially very important impact of scattered X-ray radiation and pulse pile-up occurring at high photon rates on the sensitivity of the technique is qualitatively discussed.
NASA Astrophysics Data System (ADS)
Watanabe, Manabu; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-05-01
Energy-discrimination X-ray camera is useful to perform monochromatic radiography using polychromatic X-rays. This X-ray camera was developed to carry out K-edge radiography using cerium and gadolinium-based contrast media. In this camera, objects are irradiated by a cone beam from a tungsten-target X-ray generator, and penetrating X-ray photons are detected by a cadmium-telluride detector with amplifiers. Both optimal photon-energy level and energy width are selected using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x- y stage driven by a two-stage controller, and radiograms were shown on a personal computer monitor. In radiography, tube voltage and current were 90 kV and 5.8 μA, respectively, and the X-ray intensity was 0.61 μGy/s at 1.0 m from the X-ray source. The K-edge energies of cerium and gadolinium are 40.3 and 50.3 keV, respectively, and 10 keV-width enhanced K-edge radiography was performed using X-ray photons with energies just beyond K-edge energies of cerium and gadolinium. Thus, cerium K-edge radiography was carried out using X-ray photons with an energy range from 40.3 to 50. 3 keV, and gadolinium K-edge radiography was accomplished utilizing photon energies ranging from 50.3 to 60.3 keV.
Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect.
Napolitano, Mary E; Trueblood, Jon H; Hertel, Nolan E; David, George
2002-09-01
A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within +/-1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine appropriate exposure techniques for a series of end point energies from 25 to 35 kVp. The average difference between the kVp determination and the calibrated dial setting was 0.8 and 1.0 kV for a Senographe 600 T and a Senographe DMR, respectively. Since the k-edge absorption energies of the filter materials are well known, independent calibration or a series of calibration curves is not required.
Design of the optical structure of airfield in-pavement LED runway edge lights
NASA Astrophysics Data System (ADS)
Ma, Xiaodan; Yang, Jianhong; Peng, Jun; Li, Lei
2017-02-01
Airfield lighting system is an important aiding system of civil aviation airport that guarantees the taking off, landing, taxiing of airplanes at night, with low visibility, or under other complicated weather conditions. In-pavement LED runway edge lights, with the highest degree of light intensity, are the most important lights for safe civil aviation and are most difficult to design within airfield lighting system. With LED as the source of light and the secondary optical design as the core, in light of basic laws of Fresnel loss and total reflection and the principles of edge-ray etendue conservation and the conservation of energy to design major optical elements as lens, prism of the lamp, the in-pavement LED runway edge lights design successfully solves the designing problem of high-power, high-intensity LED airfield lights with narrow beam angle at closed environment. This success is of great significance for the improvement of LED airfield lighting system in China.
Nonimaging optics in luminescent solar concentration.
Markman, B D; Ranade, R R; Giebink, N C
2012-09-10
Light trapped within luminescent solar concentrators (LSCs) is naturally limited in angular extent by the total internal reflection critical angle, θcrit, and hence the principles of nonimaging optics can be leveraged to increase LSC concentration ratio by appropriately reshaping the edges. Here, we use rigorous ray-tracing simulations to explore the potential of this concept for realistic LSCs with compound parabolic concentrator (CPC)-tapered edges and show that, when applied to a single edge, the concentration ratio is increased by 23% while maintaining >90% of the original LSC optical efficiency. Importantly, we find that CPC-tapering all of the edges enables a significantly greater intensity enhancement up to 35% at >90% of the original optical efficiency, effectively enabling two-dimensional concentration through a cooperative, ray-recycling effect in which rays rejected by one CPC are accepted by another. These results open up a significant opportunity to improve LSC performance at virtually no added manufacturing cost by incorporating nonimaging optics into their design.
47 CFR 95.857 - Emission standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... frequency as close to the edge of the authorized frequency segment as the transmitter is designed to be... power shall be 100 Hz for measuring emissions up to and including 250 kHz from the edge of the authorized frequency segment, and 10 kHz for measuring emissions more than 250 kHz from the edge of the...
NASA Astrophysics Data System (ADS)
Farges, François; Brown, Gordon E.
1997-05-01
The coordination environment of Ti(IV) in seven natural and synthetic glasses of basaltic, trachytic, rhyolitic composition as well as four tektites has been studied using high-resolution Ti K-edge x-ray absorption near edge structure (XANES) spectroscopy at ambient temperature and pressure. Pre-edge features of Ti K-edge XANES spectra for these glasses suggest that [5]Ti is the dominant Ti coordination in all volcanic glasses. However, in the less polymerized glasses studied (basaltic and trachytic), [6]Ti is also important (30-50% of the total Ti) but [4]Ti was not detected. In contrast, [4]Ti is important in the most polymerized glasses (rhyolites and tektites) (from 30 to 60% of the total Ti depending on NBO/T) with [6]Ti below the detection level (≈10 at%). The local structure around Ti in the natural volcanic glasses is similar to that observed in compositionally similar synthetic silicate glasses and also in Ti-bearing silicate glass and melts with simpler compositions. The presence of F, Cl, and H 2O does not appear to affect the coordination of Ti, based on Ti K-edge XANES measurements of natural glasses bearing these volatile components. In contrast, the presence of nonbridging oxygens (produced by network modifiers) favors [5]Ti in these glass/melts. In parallel, [4]Ti is important when nonbridging oxygens are at small concentrations (NBO/T < 0.1). [6]Ti is detected (i.e., when present >10% of the total Ti) when alkaline-earths are dominant over alkalis, in agreement with bond-valence predictions for Ti-bearing silicate glass/melts below TiO 2 saturation. The abundance of [5]Ti in these silicate glasses (and presumably their melts) is in sharp contrast with the rarity of this Ti coordination state in common rock-forming minerals. Titanium cannot readily enter the structure of most rock-forming minerals, because it is present dominantly as titanyl-bearing ( [5]TiO) units in most natural magmas. In contrast, [6]Ti and [4]Ti (present, respectively, in basic and acidic magmas) are better able to enter inosilicates, but these coordination states represent only a fraction of the Ti in basalts, explaining the usually moderate level of incompatibility of Ti during magmatic differentiation. Finally, [5]Ti transforms to [6]Ti during crystallization of Ti-rich minerals (ilmenite, rutile, pyrochlore).
NASA Astrophysics Data System (ADS)
Olalde-Velasco, P.; Jiménez-Mier, J.; Denlinger, J.; Yang, W.-L.
2013-06-01
Experimental X-ray absorption spectra at the fluorine K and transition metal L2,3 absorption edges of the MF2 (M=Cr-Ni) family are presented. Ligand field calculations in D4h symmetry show very good agreement with the transition metal L2,3 XAS spectra. To successfully explain nominal Cr2+ L2,3 XAS spectrum in CrF2, the inclusion of Cr+ and Cr3+ was needed implying the presence of a disproportionation reaction. The multiplet calculations were then modified to remove the structure of the 2p hole in the calculated M 2p→3d absorption spectra. These results for the 3dn+1 states are in one to one correspondence with the leading edge structures found at the fluorine K edge. A direct comparison with the metal L2,3 edges also indicates that there is evidence of the metal multiplet at the fluorine K pre-edge structures.
Sarangi, Ritimukta; Aboelella, Nermeen; Fujisawa, Kiyoshi; Tolman, William B; Hedman, Britt; Hodgson, Keith O; Solomon, Edward I
2006-06-28
The geometric and electronic structures of two mononuclear CuO2 complexes, [Cu(O2){HB(3-Ad-5-(i)Prpz)3}] (1) and [Cu(O2)(beta-diketiminate)] (2), have been evaluated using Cu K- and L-edge X-ray absorption spectroscopy (XAS) studies in combination with valence bond configuration interaction (VBCI) simulations and spin-unrestricted broken symmetry density functional theory (DFT) calculations. Cu K- and L-edge XAS data indicate the Cu(II) and Cu(III) nature of 1 and 2, respectively. The total integrated intensity under the L-edges shows that the 's in 1 and 2 contain 20% and 28% Cu character, respectively, indicative of very covalent ground states in both complexes, although more so in 1. Two-state VBCI simulations also indicate that the ground state in 2 has more Cu (/3d8) character. DFT calculations show that the in both complexes is dominated by O2(n-) character, although the O2(n-) character is higher in 1. It is shown that the ligand L plays an important role in modulating Cu-O2 bonding in these LCuO2 systems and tunes the ground states of 1 and 2 to have dominant Cu(II)-superoxide-like and Cu(III)-peroxide-like character, respectively. The contributions of ligand field (LF) and the charge on the absorbing atom in the molecule (Q(mol)M) to L- and K-edge energy shifts are evaluated using DFT and time-dependent DFT calculations. It is found that LF makes a dominant contribution to the edge energy shift, while the effect of Q(mol)M is minor. The charge on the Cu in the Cu(III) complex is found to be similar to that in Cu(II) complexes, which indicates a much stronger interaction with the ligand, leading to extensive charge transfer.
Reflection by absorbing periodically stratified media
NASA Astrophysics Data System (ADS)
Lekner, John
2014-03-01
Existing theory gives the optical properties of a periodically stratified medium in terms of a two by two matrix. This theory is valid also for absorbing media, because the matrix remains unimodular. The main effect of absorption is that the reflection (of either polarization) becomes independent of the number of periods N, and of the substrate properties, provided N exceeds a certain value which depends on the absorption. The s and p reflections are then given by simple formulae. The stop-band structure, which gives total reflection in bands of frequency and angle of incidence in the non-absorbing case, remains influential in weakly absorbing media, causing strong variations in reflectivity. The theory is applied to the frequency dependence of the normal-incidence reflectivity of a quarter-wave stack in which the high-index and low-index layers both absorb weakly. Analytical expressions are obtained for the frequency at which the reflectivity is maximum, the maximum reflectivity, and also for the reflectivity at the band edges of the stop band of the non-absorbing stack.
K-shell photoabsorption edge of strongly coupled aluminum driven by laser-converted radiation
NASA Astrophysics Data System (ADS)
Zhao, Yang; Zhang, Zhiyu; Qing, Bo; Yang, Jiamin; Zhang, Jiyan; Wei, Minxi; Yang, Guohong; Song, Tianming; Xiong, Gang; Lv, Min; Hu, Zhimin; Deng, Bo; Hu, Xin; Zhang, Wenhai; Shang, Wanli; Hou, Lifei; Du, Huabing; Zhan, Xiayu; Yu, Ruizhen
2017-03-01
The first observation of the K-shell photoabsorption edge of strongly coupled aluminum generated by intense x-ray radiation-driven shocks is reported. By using a “dog bone” gold hohlraum as an x-ray converter, colliding shocks compression and preheating shielding are achieved to generate an unexplored state with a density of 5.5 g/cm3 and temperature of 0.43 eV (the ion-ion coupling parameter Γii is around 240). The time-resolved K-shell photoabsorption edges are measured with a crystal spectrometer using a short x-ray backlighter. The broadenings and redshifts of the edges are studied by using the slope fitting of the edge and quantum molecular dynamics calculations. This work shows that the K-edge of aluminum driven by laser-converted radiation provides a novel capability to probe WDM at extended conditions.
NASA Astrophysics Data System (ADS)
Ederer, D. L.; Ruzycki, N.; Schuler, T.; Zhang, G. P.; Callcott, T. A.; Nachimuthu, P.; Perera, R. C. C.
2002-03-01
Polarization Dependent X-ray Absorption Spectroscopy of the TiO2 Polymorphs Anatase (001) and Rutile (001) N. Ruzycki^a, T. Schuler^a, D.L. Ederer^a, T. A. Callcott^, G. P. Zhang^b, P. Nachimuthu^c,d, and R.C.C. Perera^c a-Tulane University, Department of Physics, New Orleans, LA, 70118 b- Univesity of Tennessee, Department of Physics and Astronomy, Knoxville, TN, 37996 c- Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, CA, d- Department of Chemistry, University of Nevada Las Vegas, Las Vegas NV, 89154 TiO2 is a useful industrial catalyst and has applications in gas sensing and photoelectric devices. All structures consist of octrahedrally-coordinated Ti atoms and three-fold coordinated O atoms. Anatase and rutile differ mainly in the amount of distortion in the octahedra. Because Soft X-ray Absorption Spectroscoy (SXAS) is sensitive to the ligand field, these small differences are reflected the spectra. In the experiment the electronic polarization vector was varied angulary along the equatorial and the longitudnal axes of the sixfold coordinated titanium atoms. This study showed a strong polarization dependence at the oxygen K-edge for rutile (001) and the anatase (001) in the t_2g and eg region for the equatorial bonds. The Titanium L-edge showed a smaller polarization dependence. There was no polarization dependence in the longitudinal direction for anatase (001) or rutile (001) in either the oxygen K-edge or the Ti-L edge. These data are compared with calculations of polarization-dependent matrix elements of the transitions.
Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong
2015-07-01
Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest in both bulk soil and clay-size soil fraction, and it was the most major forms in soil organic nitrogen functional groups. Compared with the FALL treatment, the relative proportion of amide/amine-N was lower whereas that of Pyrrole-N was higher in the CK treatment. In the treatments with combined chemical fertilizers and organic manure, the relative proportion of amide/amine-N decreased with increasing application rates of organic manure, while that of Pyrrole-N had an opposite trend. In bulk soil, the relative proportion of amide/amine-N was the highest for the NPKS treatment than for the other treatments. On the other hand, the relative proportion of nitrile/aromatic-N was the highest for the Fallow treatment than for the other treatments in clay-size soil fraction. It is feasible to use N K-edge XANES spectroscopy for characterizing in situ the changes of organic N functional groups in soil under different fertilization practices.
Xiong, Wenhui; Peng, Jian; Hu, Yongfeng
2012-02-15
This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.
Radiometric and Radiation Response of Visible FPAs
NASA Technical Reports Server (NTRS)
Hubbs, John
2007-01-01
The readout integrated circuit (ROIC) used in these devices was originally developed for use in space based infrared systems operating at deep cryogenic temperatures and was selected because of its proven tolerance to total ionizing radiation? The detectors are a 128 x 128 array of 60 pm x 60 pm pixel elements that have been anti-reflection (AR) coated to improve the response at very short wavelengths. These visible focal plane arrays were operated at -40 C (233 K). Two focal planes were characterized using cobalt-60 radiation to produce ionizing total dose damage in the VFPAs. Both operational and performance data were obtained as functions of total dose. The first device tested showed no appreciable change in responsivity or noise up to 300 krad(Si). However, at the next dose level of 600 krad(Si), the readout was non-operational due to failure in the digital circuitry. The second device was characterized to a total dose of 750 krad(Si) with no observed change in responsivity. An increase dark current was observed in both devices, and in the second device, the dark current caused an increase in noise at low irradiance at 400 krad(Si) and above. The increase in dark current was somewhat un-expected for visible PIN detectors. The median dark current increased more than two orders of magnitude at 300 krad(Si) for the first device and a factor of 350 at 750 krad(Si) for pixels near the edge for the second device. The dark current was found to be a strong function of detector bias, with pixels near the edge of the array showing a greater increase in dark current with bias than those near the center. Since the optical response was not a function of bias, it is hypothesized that the dark current is a surface effect and that the variation in dark current with location is due to a variation in pixel bias, caused by a voltage drop across the pixel common lead. As the total dose increased, the dark current and the voltage drop increased
Cation transport in intact erythrocytes of hyperthyroid patients: role of the NaK-ATPase pump.
Michels, R C; Ober, K P; Hennessy, J F
1981-11-01
Studies of erythrocyte (RBC) cation fluxes and concentrations in hyperthyroid subjects have recently been reported with the suggestion that Na-K ATPase activity was decreased. We have studied tha kinetics of total and ouabain-sensitive K+ uptake utilizing 86Rb as a tracer in the intact erythrocytes of 7 hyperthyroid subjects and compared the results of those of a healthy control population. We find total K+ transport is depressed in the RBC of hyperthyroid subjects. The Vmax for K+ transport for hyperthyroid subjects is 1.8 +/- 0.17 x 10(-4) mM K+/10(9) RBC/hour versus a control of 2.3 +/- 0.14 x 10(-4) mM K+/10(9) RBC/hour. This depression in Vmax is evident in spite of no significant differences in the Km for the system when hyperthyroid subjects (2.7 +/- 0.19 mM) are compared to controls (2.38 +/- 0.21 mM). Further, the depressed K+ transport appears to be the result of depressed ouabain--insensitive K+ transport. Although the percent of the ouabain-sensitive K+ transport is greater in the hyperthyroid subject (82.5%) versus controls (72.5%), this simply reflects a relative change in a system where total transport is dropping but the ouabain-sensitive component is remaining unchanged. None of these findings can be directly or indirectly related to thyroid hormone and it is suggested that the ion transport changes reflect factors independent of thyroid hormone.
Magneto-electronic properties of graphene nanoribbons in the spatially modulated electric field
NASA Astrophysics Data System (ADS)
Chen, S. C.; Wang, T. S.; Lee, C. H.; Lin, M. F.
2008-09-01
The Peierls tight-binding model with the nearest-neighbor interactions is used to calculate the magneto-electronic structure of graphene nanoribbons under a spatially modulated electric field along the y-axis. A uniform perpendicular magnetic field could make energy dispersions change into the quasi-Landau levels. Such levels are composed of the dispersionless and parabolic energy bands. A spatially modulated electric field would further induce a lot of oscillating parabolic bands with several band-edge states. It drastically modifies energy dispersions, alters subband spacings, destroys symmetry of energy spectrum about k=0, and changes features of band-edge states (number and energy). The above-mentioned magneto-electronic structures are directly reflected in density of states (DOS). The modulation effect changes shape, number, positions, and intensities of peaks in DOS. The predicted result could be tested by the optical measurements.
Calcium EXAFS Establishes the Mn-Ca Cluster in the Oxygen-Evolving Complex of Photosystem II†
Cinco, Roehl M.; Holman, Karen L. McFarlane; Robblee, John H.; Yano, Junko; Pizarro, Shelly A.; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K.
2014-01-01
The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared subsequent to Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 Å, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is ~ 3.5 Å distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster. PMID:12390018
Shrestha, Suman; Vedantham, Srinivasan; Karellas, Andrew
2017-01-01
In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50μm Rh; 50μm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700μm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37–57% reduction in exposure duration and with 2–20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700μm) and HVL matched by increasing the kV over [0,4] range, identical SDNR was achieved with 62–65% decrease in exposure duration and with 2–24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over [700,880]μm range, identical SDNR was achieved with 23–56% reduction in exposure duration and 2–20% reduction in MGD, depending on breast thickness. These simulations indicate that increased fluence with Al filter of fixed or variable thickness substantially decreases exposure duration while providing for similar image quality with moderate reduction in MGD. PMID:28075335
Paull, C.K.; Twichell, D.C.; Spiess, Fred N.; Curray, Joseph R.
1991-01-01
An unconformity of 100 m.yr magnitude continues to form on the western edge of the Florida-Bahama Platform, near 26??N, where distal Mississippi Fan sediments are progressively burying the Florida Escarpment. Multiple perspectives of the developing unconformity's morphology are revealed using available technologies including GLORIA images of the entire platform's edge, Seabeam bathymetric contours, and Deep-Tow's high resolution side-scan data calibrated with bottom photographs. The structure and stratigraphy of the buried escarpment and the associated unconformity are resolved by airgun, sparker, and Deep-Tow's 4 kHz seismic reflection data; we summarize the morphological data on the exposed part of the unconformity and the sedimentary deposits accumulating in the basin above the unconformity. The exposed cliff face is composed of a staircase of bedding-plane terraces which are developed along joint planes. The terraces extend 100-1000 m along the escarpment's face, and the intervening vertical walls are up to 100 m high. The jointed morphology of this Mesozoic limestone cliff apparently reflects erosional exposure of its interior anatomy rather than its accretionary shape. The change in slope between the platform face and the abyssal plain is very abrupt. In places along the contact between the escarpment and fan sediments, reduced chemical-charged brine seeps occur, which locally cause carbonate dissolution and precipitation, sulfide mineralization, and the deposition of a fossiliferous and organic carbon-rich lens associated with chemosynthetic communities. These seep deposits and escarpment-derived megabreccias intercalate with basinal sediments that overlie the unconformity. Because surface seismic reflection data do not produce images of the escarpment's face that closely reflect the exposed escarpment's morphology, they must also be of limited value in characterizing the surface of similar steeply dipping buried escarpments. Thus, the downslope extent of the heavily eroded platform edge is unclear.
Reflection symmetry detection using locally affine invariant edge correspondence.
Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao
2015-04-01
Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.
Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf
2012-01-30
The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)
2014-01-01
A method of measuring motion blur is disclosed comprising obtaining a moving edge temporal profile r(sub 1)(k) of an image of a high-contrast moving edge, calculating the masked local contrast m(sub1)(k) for r(sub 1)(k) and the masked local contrast m(sub 2)(k) for an ideal step edge waveform r(sub 2)(k) with the same amplitude as r(sub 1)(k), and calculating the measure or motion blur Psi as a difference function, The masked local contrasts are calculated using a set of convolution kernels scaled to simulate the performance of the human visual system, and Psi is measured in units of just-noticeable differences.
Reflection of Lamb waves obliquely incident on the free edge of a plate.
Santhanam, Sridhar; Demirli, Ramazan
2013-01-01
The reflection of obliquely incident symmetric and anti-symmetric Lamb wave modes at the edge of a plate is studied. Both in-plane and Shear-Horizontal (SH) reflected wave modes are spawned by an obliquely incident in-plane Lamb wave mode. Energy reflection coefficients are calculated for the reflected wave modes as a function of frequency and angle of incidence. This is done by using the method of orthogonal mode decomposition and by enforcing traction free conditions at the plate edge using the method of collocation. A PZT sensor network, affixed to an Aluminum plate, is used to experimentally verify the predictions of the analysis. Experimental results provide support for the analytically determined results. Copyright © 2012 Elsevier B.V. All rights reserved.
Investigation of Prussian Blue Analogs by XMCD at the K-edge of transition metals
NASA Astrophysics Data System (ADS)
Bordage, A.; Nataf, L.; Baudelet, F.; Bleuzen, A.
2016-05-01
Despite transition metal (TM) K-edge x-ray magnetic circular dichroism (XMCD) seems an interesting tool to get magnetic and structural information at the atomic scale, the effects originating this signal are still poorly understood. We thus initiated a deep investigation of the TM K-edge XMCD using Prussian Blue analogs (PBA) as model-compounds. In a recent study of the NiFe PBA family, we demonstrated that the XMCD signals at the TM K-edges strongly vary with external (mechanical) or internal (chemical) pressure and so that they are highly sensitive to small structural distortions. Following these first results, we extended this approach to the MnFe and CoFe families to evaluate the effect of electronic parameters (number of unpaired electrons of the M II TM) on the XMCD signal. All the results set milestones in the disentanglement of the components originating the XMCD signals at the K-edge of TM and will eventually help in a better understanding of the photomagnetic properties of PBAs.
Hiratoko, Tatsuya; Yoshiasa, Akira; Nakatani, Tomotaka; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa
2013-07-01
XANES (X-ray absorption near-edge structure) spectra of the Ti K-edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20-900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre-edge and post-edge. After the AIIP, amplitudes damped due to Debye-Waller factor effects with temperature. Amplitudes in the pre-edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre-edge peaks in various titanium compounds over a wide temperature range.
Publications - GMC 13 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 13 Publication Details Title: Total organic carbon, rock-eval pyrolysis and vitrinite information. Bibliographic Reference Phillips Petroleum Company, 1983, Total organic carbon, rock-eval K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page
Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H
2013-01-01
Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964
Do the Infrared Emission Features Need UV Excitation? The PAH Model in UV-poor Reflection Nebulae
NASA Astrophysics Data System (ADS)
Li, A.; Draine, B. T.
2001-12-01
One of the major challenges of identifying the 3.3, 6.2, 7.7, 8.6, and 11.3μ m interstellar infrared emission bands with polycyclic aromatic hydrocarbon (PAH) molecules has been the recent detection of these bands in regions with little ultraviolet (UV) illumination since small, neutral PAH molecules have little or no absorption at visible wavelengths and thus are excited primarily by UV photons. The ``astronomical'' PAH model (Li & Draine 2001), incorporating the experimental result that the visual absorption edge shifts to longer wavelength upon ionization and/or as the PAH size increases (Allamandola, Hudgins, & Sandford 1999), is shown to be able to closely reproduce the observed infrared emission bands of vdB 133, a UV-poor reflection nebula (Uchida, Sellgren, & Werner 1998) as well as the 6.2, 7.7, and 11.3μ m band ratios of the UV-deficient ring in the Andromeda galaxy M31 (Pagani et al. 1999). It is also shown that ``astronomical'' PAHs can be heated sufficiently by a T eff=3000 K black-body to emit at 6.2, 7.7, 8.6, and 11.3μ m. Illustrative mid-IR emission spectra are calculated for reflection nebulae illuminated by cool stars with T eff=3600, 4500, 5000 K. These will allow comparison with future Space Infrared Telescope Facility (SIRTF) observations of vdB 135 (T eff=3600 K), vdB 47 (T eff=4500 K), and vdB 101 (T eff=5000 K) (Houck 2001). This research was supported in part by NASA grant NAG5-7030 and NSF grant AST-9619429. { References:} Allamandola, L.J., Hudgins, D.M., & Sandford, S.A. 1999, ApJ, 511, L115 Houck, J.R. 2001, SIRTF Observations of the Mid IR Features in Reflection Nebulae, {\\sf http://sirtf.caltech.edu/ROC/pid19} Li, A., & Draine, B.T. 2001, ApJ, 554, 778 Pagani, L., et al. 1999, A&A, 351, 447 Uchida, K.I., Sellgren, K., & Werner, M.W. 1998, ApJ, 493, L109
Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J
2012-02-01
Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using monochromatic x-rays above and below the K-edge of selenium. The MTF is poorer above the K-edge by an amount consistent with theoretical expectations.
There is no bidirectional hot-spot in Sentinel-2 data
NASA Astrophysics Data System (ADS)
Li, Z.; Roy, D. P.; Zhang, H.
2017-12-01
The Sentinel-2 multi-spectral instrument (MSI) acquires reflective wavelength observations with directional effects due to surface reflectance anisotropy, often described by the bidirectional reflectance distribution function (BRDF). Recently, we quantified Sentinel-2A (S2A) BRDF effects for 20° × 10° of southern Africa sensed in January and in April 2016 and found maximum BRDF effects for the January data and at the western scan edge, i.e., in the back-scatter direction (Roy et al. 2017). The hot-spot is the term used to describe the increased directional reflectance that occurs over most surfaces when the solar and viewing directions coincide, and has been observed in wide-field of view data such as MODIS. Recently, we observed that Landsat data will not have a hot-spot because the global annual minimum solar zenith angle is more than twice the maximum view zenith angle (Zhang et al. 2016). This presentation examines if there is a S2A hot-spot which may be possible as it has a wider field of view (20.6°) and higher orbit (786 km) than Landsat. We examined a global year of S2A metadata extracted using the Committee on Earth Observation Satellite Visualization Environment (COVE) tool, computed the solar zenith angles in the acquisition corners, and ranked the acquisitions by the solar zenith angle in the back-scatter direction. The available image data for the 10 acquisitions with the smallest solar zenith angle over the year were ordered from the ESA and their geometries examined in detail. The acquisition closest to the hot-spot had a maximum scattering angle of 173.61° on its western edge (view zenith angle 11.91°, solar zenith angle 17.97°) and was acquired over 60.80°W 24.37°N on June 2nd 2016. Given that hot-spots are only apparent when the scattering angle is close to 180° we conclude from this global annual analysis that there is no hot-spot in Sentinel-2 data. Roy, D.P, Li, J., Zhang, H.K., Yan, L., Huang, H., Li, Z., 2017, Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance, RSE. 199, 25-38. Zhang, H. K., Roy, D.P., Kovalskyy, V., 2016, Optimal solar geometry definition for global long term Landsat time series bi-directional reflectance normalization, IEEE TGRS. 54(3), 1410-1418.
Karabudak, Engin; Kas, Recep; Ogieglo, Wojciech; Rafieian, Damon; Schlautmann, Stefan; Lammertink, R G H; Gardeniers, Han J G E; Mul, Guido
2013-01-02
Attenuated total reflection-infrared (ATR-IR) spectroscopy is increasingly used to characterize solids and liquids as well as (catalytic) chemical conversion. Here we demonstrate that a piece of silicon wafer cut by a dicing machine or cleaved manually can be used as disposable internal reflection element (IRE) without the need for polishing and laborious edge preparation. Technical aspects, fundamental differences, and pros and cons of these novel disposable IREs and commercial IREs are discussed. The use of a crystal (the Si wafer) in a disposable manner enables simultaneous preparation and analysis of substrates and application of ATR spectroscopy in high temperature processes that may lead to irreversible interaction between the crystal and the substrate. As representative application examples, the disposable IREs were used to study high temperature thermal decomposition and chemical changes of polyvinyl alcohol (PVA) in a titania (TiO(2)) matrix and assemblies of 65-450 nm thick polystyrene (PS) films.
NASA Technical Reports Server (NTRS)
Frigo, Sean P.; McNulty,Ian; Richmond, Robert C.; Ehret, Charles F.
2003-01-01
We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include red phosphorus, hydrated sodium phosphate (Na3PO4 12 H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position, where each is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B.meguterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition, the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.
NASA Technical Reports Server (NTRS)
Frigo, Sean P.; McNulty, Ian; Richmond, Robert C.; Ehret, Charles F.
2002-01-01
We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include elemental red phosphorus, hydrated sodium phosphate (Na3PO4.12H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Elemental red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position. Each spectrum for these substances is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for elemental red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B. megaterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition,the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.
Publications - GMC 137 | Alaska Division of Geological & Geophysical
DGGS GMC 137 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Report Report Information gmc137.pdf (47.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Publications - GMC 100 | Alaska Division of Geological & Geophysical
DGGS GMC 100 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc100.pdf (317.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 144 | Alaska Division of Geological & Geophysical
DGGS GMC 144 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite for more information. Bibliographic Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis gmc144.pdf (104.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite Reflectance
Publications - GMC 125 | Alaska Division of Geological & Geophysical
DGGS GMC 125 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Cunningham, K., and Shell Oil Company, 1989, Total organic carbon, rock-eval pyrolysis, and Pyrolysis; Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources, Division
Publications - GMC 141 | Alaska Division of Geological & Geophysical
DGGS GMC 141 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of Report Report Information gmc141.pdf (70.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Publications - GMC 101 | Alaska Division of Geological & Geophysical
DGGS GMC 101 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc101.pdf (201.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 19 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 19 Publication Details Title: Geochemical analysis (total organic carbon-rock-eval, vitrinite information. Bibliographic Reference Unknown, [n.d.], Geochemical analysis (total organic carbon-rock-eval K) Keywords Total Organic Carbon; Vitrinite Reflectance Top of Page Department of Natural Resources
Publications - GMC 103 | Alaska Division of Geological & Geophysical
DGGS GMC 103 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc103.pdf (57.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 23 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 23 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, [n.d.], Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance for Information gmc023.pdf (199.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 22 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 22 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, 1984, Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance for the gmc022.pdf (247.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 102 | Alaska Division of Geological & Geophysical
DGGS GMC 102 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch cuttings Information gmc102.pdf (81.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 124 | Alaska Division of Geological & Geophysical
DGGS GMC 124 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data from the Report Information gmc124.pdf (278.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 68 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 68 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1987, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance geochemical Report Report Information gmc068.pdf (48.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
NASA Astrophysics Data System (ADS)
Wu, Xiuju; Cheng, Qian
2010-11-01
The spectra of healthy leaves and leaves damaged by the rice brown planthopper (BPH, Nilaparvata lugens) were measured using a Spectroradiometer with spectral range of 350-1050 nm and resolution of 3 nm. The data was analyzed using the method of red edge methods. In the range of 430-530 nm and 560-730cnm, the band depth and slope were calculated. The damage degrees of rice plants caused by the BPH nymphae with different numbers were measured well by the spectral reflectance. The spectral characteristics of damaged rice under brown Planthopper, Nilaparvata lugenswere analyzed, and the reflectance was significantly negatively correlated with the number of BPHs. The red edge slope and edge area of the reflectance also significance correlated with the number of nymphae. The estimation models were constructed to estimate the BPHs using the spectral reflectance at the wavelengths of 550 nm and 760 nm and the red edge index. The results showed that accuracy of the estimation models were 66-81% and the spectral reflectance at R755 was efficient for estimating the number of BPHs.
NASA Astrophysics Data System (ADS)
Doyle, P. M.; Berry, A. J.; Schofield, P. F.; Mosselmans, J. F. W.
2016-08-01
The Al-rich oxide hibonite (CaAl12O19) is modeled to be the second mineral to condense from a gas of solar composition and is found within calcium-aluminum-rich inclusions and the matrix of chondritic meteorites. Both Ti3+ and Ti4+ are reported in meteoritic hibonite, so hibonite has been proposed as a single mineral oxybarometer that could be used to elucidate conditions within the first 0.2 Myrs of the Solar System. Synthetic hibonites with Ti3+/(Ti3+ + Ti4+) (hereafter Ti3+/ΣTi) ranging between 0 and 1 were prepared as matrix-matched standards for meteoritic hibonite. The largest yield of both Ti-free and Ti-bearing hibonite at ∼1300 and ∼1400 °C was obtained by a single sinter under reducing conditions. In situ micro-beam Ti K-edge X-ray absorption near edge structure (XANES) spectra were recorded from the synthetic hibonites, as well as from terrestrial hibonite. Spectral features in the post-crest region were shown to correlate with the Ti4+ content. Furthermore, Ti4+ on the M2 trigonal bipyramidal and the adjoining M4 octahedral sites appears to cause variability in the post-crest region as a function of orientation. For this suite of synthetic hibonites it was observed that the pre-edge peak region is not influenced by orientation, but is controlled by Ti3+/ΣTi, site geometry and/or Ti concentration. In particular, the pre-edge peak intensities reflect Ti coordination environment and distortion of the M4 octahedral site. Therefore, although pre-edge peak intensities have previously been used to determine Ti3+/ΣTi in meteoritic minerals, we excluded use of the pre-edge peak intensities for quantifying Ti valence states in hibonite. The energy of the absorption edge at a normalized intensity of 0.8 (E0.8) and the energy of the minimum between the pre-edge region and the absorption edge (Em1) were found to vary systematically with Ti3+/ΣTi. Ti3+/ΣTi in hibonite as a function of Em1 was modeled by a quadratic function that may be used to quantify Ti3+/ΣTi in meteoritic hibonite when the synthetic hibonite standards are crystal-chemically matched to the natural samples and are measured during the same analytical session as the meteoritic hibonites.
Nonimaging optics for nonuniform brightness distributions
NASA Astrophysics Data System (ADS)
Jenkins, David G.; Winston, Roland
1995-08-01
We present a general design method of nonimaging optics that obtains the highest possible concentration for a given absorber shape. This technique, which uses a complimentary edge ray to simplify the geometrical formulism, recovers familiar designs for flat phase space distributions, such as trumpets, and (theta) 1-(theta) 2 concentrators. This method is easy to use and handles diverse boundary conditions, such as reflection, satisfying total internal reflection or design within a material of graded index. Presented is a novel two-stage 2D solar collector with a fixed circular primary mirror and nonimaging secondary. This newly developed secondary gives a 25% improvement over conventional nonimaging concentrators.
X-ray Absorption and Emission Spectroscopy of CrIII (Hydr)Oxides: Analysis of the K-Pre-Edge Region
NASA Astrophysics Data System (ADS)
Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben
2009-10-01
Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.
NASA Astrophysics Data System (ADS)
Siritanasak, P.; Aleman, C.; Arnold, K.; Cukierman, A.; Hazumi, M.; Kazemzadeh, K.; Keating, B.; Matsumura, T.; Lee, A. T.; Lee, C.; Quealy, E.; Rosen, D.; Stebor, N.; Suzuki, A.
2016-08-01
Polarbear-2 (PB-2) is a next-generation receiver that is part of the Simons Array cosmic microwave background (CMB) polarization experiment which is located in the Atacama desert in Northern Chile. The primary scientific goals of the Simons Array are a deep search for the CMB B-mode signature of gravitational waves from inflation and the characterization of large-scale structure using its effect on CMB polarization. The PB-2 receiver will deploy with 1897 dual-polarization sinuous antenna-coupled pixels, each with a directly contacting extended hemispherical silicon lens. Every pixel has dual polarization sensitivity in two spectral bands centered at 95 and 150 GHz, for a total of 7588 transition edge sensor bolometers operating at 270 mK. To achieve the PB-2 detector requirements, we developed a broadband anti-reflection (AR) coating for the extended hemispherical lenses that uses two molds to apply two layers of epoxy, Stycast 1090 and Stycast 2850FT. Our measurements of the absorption loss from the AR coating on a flat surface at cryogenic temperatures show less than 1 % absorption, and the coating has survived multiple thermal cycles. We can control the diameter of the coating within 25 {\\upmu }m and translation errors are within 25 {\\upmu }m in all directions, which results in less than 1 % decrease in transmittance. We also find the performance of the AR-coated lens matches very well with simulations.
On the Structure of the Iron K-Edge
NASA Technical Reports Server (NTRS)
Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; White, Nicholas E. (Technical Monitor)
2002-01-01
It is shown that the commonly held view of a sharp Fe K edge must be modified if the decay pathways of the series of resonances converging to the K thresholds are adequately taken into account. These resonances display damped Lorentzian profiles of nearly constant widths that are smeared to impose continuity across the threshold. By modeling the effects of K damping on opacities, it is found that the broadening of the K edge grows with the ionization level of the plasma, and the appearance at high ionization of a localized absorption feature at 7.2 keV is identified as the Kbeta unresolved transition array.
The anti-intuitive visual system of the honey bee.
Horridge, A
2012-01-01
Because bees fly around, visit flowers and chase mates, we conclude intuitively that they see things as we do. But their vision is unexpectedly different, so we say it is anti-intuitive. Detailed tests have demonstrated separate detectors for modulation of blue and green receptors, edge orientation (green only), and areas of black. The edge detectors are about 3° across, independent, and not re-assembled to make lines, shapes or textures. Instead, the detectors of each type are summed quantitatively to form cues in each local region with an order of preference for learning the cues. Trained bees remember the positions of the total modulation (preferred), the average edge orientation, areas of black or colour, and positions of hubs of radial and circular edges in each local region, but not the original responses, so the pattern is lost. When presented with a yellow spot on a blue background with no UV reflected, the preferred cue is not the colour, but a measure of the modulation detected by the green and separately by the blue receptors.
Sarangi, Ritimukta; Gorelsky, Serge I.; Basumallick, Lipika; Hwang, Hee Jung; Pratt, Russell C.; Stack, T. Daniel P.; Lu, Yi; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.
2009-01-01
S K-edge X-ray absorption, UV–vis absorption, magnetic circular dichroism (MCD), and resonance Raman spectroscopies are used to investigate the electronic structure differences among WT, M121SeM, and C112SeC Pseudomonas aeruginosa (P.a) azurin. A comparison of S K-edge XAS of WT and M121SeM azurin and a CuII–thioether model complex shows that the 38% S character in the ground state wave function of the blue–copper (BC) sites solely reflects the Cu–SCys bond. Resonance Raman (rR) data on WT and C112SeC azurin give direct evidence for the kinematic coupling between the Cu–SCys stretch and the cysteine deformation modes in WT azurin, which leads to multiple features in the rR spectrum of the BC site. The UV–vis absorption and MCD data on WT, M121SeM, and C112SeC give very similar C0/D0 ratios, indicating that the C-term MCD intensity mechanism involves Cu-centered spin–orbit coupling (SOC). The spectroscopic data combined with density functional theory (DFT) calculations indicate that SCys and SeCys have similar covalent interactions with Cu at their respective bond lengths of 2.1 and 2.3 Å. This reflects the similar electronegativites of S and Se in the thiolate/selenolate ligand fragment and explains the strong spectroscopic similarities between WT and C112SeC azurin. PMID:18314977
SR high-speed K-edge subtraction angiography in the small animal (abstract)
NASA Astrophysics Data System (ADS)
Takeda, T.; Akisada, M.; Nakajima, T.; Anno, I.; Ueda, K.; Umetani, K.; Yamaguchi, C.
1989-07-01
To assess the ability of the high-speed K-edge energy subtraction system which was made at beamline 8C of Photon Factory, Tsukuba, we performed an animal experiment. Rabbits were used for the intravenous K-edge subtraction angiography. In this paper, the actual images of the artery obtained by this system, are demonstrated. The high-speed K-edge subtraction system consisted of movable silicon (111) monocrystals, II-ITV, and digital memory system. Image processing was performed by 68000-IP computer. The monochromatic x-ray beam size was 50×60 mm. Photon energy above and below iodine K edge was changed within 16 ms and 32 frames of images were obtained sequentially. The rabbits were anaesthetized by phenobarbital and a 5F catheter was inserted into inferior vena cava via the femoral vein. 1.5 ml/kg of contrast material (Conlaxin H) was injected at the rate of 0.5 ml/kg/s. TV images were obtained 3 s after the starting point of injection. By using this system, the clear K-edge subtracted images were obtained sequentially as a conventional DSA system. The quality of the images were better than that obtained by DSA. The dynamical blood flow was analyzed, and the best arterial image could be selected from the sequential images. The structures of aortic arch, common carotid arteries, right subclavian artery, and internal thoracic artery were obtained at the chest. Both common carotid arteries and vertebral arteries were recorded at the neck. The diameter of about 0.3-0.4 mm artery could be clearly revealed. The high-speed K-edge subtraction system demonstrates the very sharp arterial images clearly and dynamically.
Sasaki, Atsuo T.; Chun, Cheryl; Takeda, Kosuke; Firtel, Richard A.
2004-01-01
During chemotaxis, receptors and heterotrimeric G-protein subunits are distributed and activated almost uniformly along the cell membrane, whereas PI(3,4,5)P3, the product of phosphatidylinositol 3-kinase (PI3K), accumulates locally at the leading edge. The key intermediate event that creates this strong PI(3,4,5)P3 asymmetry remains unclear. Here, we show that Ras is rapidly and transiently activated in response to chemoattractant stimulation and regulates PI3K activity. Ras activation occurs at the leading edge of chemotaxing cells, and this local activation is independent of the F-actin cytoskeleton, whereas PI3K localization is dependent on F-actin polymerization. Inhibition of Ras results in severe defects in directional movement, indicating that Ras is an upstream component of the cell's compass. These results support a mechanism by which localized Ras activation mediates leading edge formation through activation of basal PI3K present on the plasma membrane and other Ras effectors required for chemotaxis. A feedback loop, mediated through localized F-actin polymerization, recruits cytosolic PI3K to the leading edge to amplify the signal. PMID:15534002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llave, Ezequiel de la; Herrera, Santiago E.; Adam, Catherine
The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and themore » LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.« less
NASA Astrophysics Data System (ADS)
Bisogni, V.; Simonelli, L.; Ament, L. J. P.; Forte, F.; Moretti Sala, M.; Minola, M.; Huotari, S.; van den Brink, J.; Ghiringhelli, G.; Brookes, N. B.; Braicovich, L.
2012-06-01
We assess the capabilities of magnetic resonant inelastic x-ray scattering (RIXS) at the O K edge in undoped cuprates by taking La2CuO4 as a benchmark case, based on a series of RIXS measurements that we present here. By combining the experimental results with basic theory we point out the fingerprints of bimagnon excitation in the O K edge RIXS spectra. These are a dominant peak around 450 meV, the almost complete absence of dispersion both with π and σ polarization, and the almost constant intensity vs the transferred momentum with σ polarization. This behavior is quite different from Cu L3 edge RIXS giving a strongly dispersing bimagnon tending to zero at the center of the Brillouin zone. This is clearly shown by RIXS measurements at the Cu L3 edge that we present. The Cu L3 bimagnon spectra and those at the Cu K edge—both from the literature and from our data—however, have the same shape. These similarities and differences are understood in terms of different sampling of the bimagnon continuum. This panorama points out the unique possibilities offered by O K RIXS in the study of magnetic excitations in cuprates near the center of the BZ.
A local search for a graph clustering problem
NASA Astrophysics Data System (ADS)
Navrotskaya, Anna; Il'ev, Victor
2016-10-01
In the clustering problems one has to partition a given set of objects (a data set) into some subsets (called clusters) taking into consideration only similarity of the objects. One of most visual formalizations of clustering is graph clustering, that is grouping the vertices of a graph into clusters taking into consideration the edge structure of the graph whose vertices are objects and edges represent similarities between the objects. In the graph k-clustering problem the number of clusters does not exceed k and the goal is to minimize the number of edges between clusters and the number of missing edges within clusters. This problem is NP-hard for any k ≥ 2. We propose a polynomial time (2k-1)-approximation algorithm for graph k-clustering. Then we apply a local search procedure to the feasible solution found by this algorithm and hold experimental research of obtained heuristics.
Temperature and radiation effects at the fluorine K-edge in LiF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan
Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less
Temperature and radiation effects at the fluorine K-edge in LiF
Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan; ...
2017-05-30
Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less
Kadota, Michio; Ago, Junya; Horiuchi, Hideya; Ikeura, Mamoru
2002-09-01
A shear horizontal (SH) wave has the characteristic of complete reflection at the free edges of a substrate with a large dielectric constant. A conventional surface acoustic wave (SAW) resonator filter requires reflectors consisting of numerous grating fingers on both sides of interdigital transducers (IDTs). On the contrary, it is considered that small-sized and low loss resonator filters without reflectors consisting of grating fingers can be realized by exploiting this characteristic of the SH wave or the Bleustein-Gulyaev-Shimizu (BGS) wave. There are two types of resonator filters: transversely coupled and longitudinally coupled. No transversely coupled filters (neither conventional nor edge-reflection) using the SH wave on a single-crystal substrate have been realized until now, because two transverse modes (symmetrical and asymmetrical modes) are not easily coupled. However, the authors have realized small low loss transversely coupled resonator filters in the range of 25 to 52 MHz using edge reflections of the BGS wave on piezoelectric ceramic (PZT: Pb(Zr,Ti)O3) substrates for the first time by developing methods by which the two transverse modes could be coupled. On the other hand, longitudinally coupled resonator filters using edge reflection of the SH or BGS wave always have large spurious responses because of the even modes in the out-of-band range, because the frequencies of even modes do not coincide with the nulls of the frequency spectra of the IDTs. Consequently, longitudinally coupled resonator filters using the edge reflection of the SH wave have not been realized. By developing a method of reducing the spurious responses without increasing of the insertion loss, the authors have realized small low loss longitudinally coupled resonator filters in the range of 40 to 190 MHz using edge reflection of BGS or SH waves on PZT or 36 degrees-rotated-Y X-propagation LiTaO3 substrates for the first time. Despite being intermediate frequency (IF) filters, their package (3 x 3 x 1.03 mm3) sizes are as small as those of radio frequency (RF) SAW filters.
NASA Astrophysics Data System (ADS)
Sikolenko, V. V.; Troyanchuk, I. O.; Karpinsky, D. V.; Rogalev, A.; Wilhelm, F.; Rosenberg, R.; Prabhakaran, D.; Efimova, E. A.; Efimov, V. V.; Tiutiunnikov, S. I.; Bobrikov, I. A.
2018-02-01
Spin transitions of cobalt ions in LaCoO3 single crystals have been studied by the method of X-ray magnetic circular dichroism (XMCD) at the K- and L 2,3-edges of Co3+ ions. The orbital momentum of cobalt ions obtained for the K-edge at the 3 d level in the region of the spin transition in the temperature range from 25 to 120 K increases by a factor of approximately 1.6, whereas the slope of the magnetization curve value in the same temperature range and magnetic field increases by a factor of more than 10. XMCD experiments at the cobalt L 2,3-edges demonstrate gradual growth of the ratio of the orbital momentum to the spin one L/ S from 0.48 to 0.53 in the temperature range from 60 K to 120 K.
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Raj, Sumana L.; Pascal, Tod A.; Pemmaraju, C. D.; Foglia, Laura; Simoncig, Alberto; Fabris, Nicola; Miotti, Paolo; Hull, Christopher J.; Rizzuto, Anthony M.; Smith, Jacob W.; Mincigrucci, Riccardo; Masciovecchio, Claudio; Gessini, Alessandro; De Ninno, Giovanni; Diviacco, Bruno; Roussel, Eleonore; Spampinati, Simone; Penco, Giuseppe; Di Mitri, Simone; Trovò, Mauro; Danailov, Miltcho B.; Christensen, Steven T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Coreno, Marcello; Poletto, Luca; Drisdell, Walter S.; Prendergast, David; Giannessi, Luca; Principi, Emiliano; Nordlund, Dennis; Saykally, Richard J.; Schwartz, Craig P.
2018-07-01
We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ∼308 and ∼260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ∼284.2 eV. The measured two-photon absorption cross section at 284.18 eV (∼6 × 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atoms - a result of resonance effects.
Ziemba, Brian P; Falke, Joseph J
2018-01-01
The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators-PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors-wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors-AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers.
Ziemba, Brian P.
2018-01-01
The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators—PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors—wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors—AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers. PMID:29715315
Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering.
Liu, X; Dean, M P M; Liu, J; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Yin, W G; Rayan Serrao, C; Ramesh, R; Ding, H; Hill, J P
2015-05-27
Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr2IrO4, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor.
XANES analysis of dried and calcined bones.
Rajendran, Jayapradhi; Gialanella, Stefano; Aswath, Pranesh B
2013-10-01
The structure of dried and calcined bones from chicken, bovine, deer, pig, sheep and chamois was examined using X-ray Absorption Near Edge Structure (XANES) spectroscopy. The oxygen K-edge absorption edge indicates that the surface of dried bone has a larger proportion of carbonate than the interior that is made up of phosphates. The phosphorus L and K edge clearly indicate that pyrophosphates, α-tricalcium phosphate (α-TCP) and hydrogen phosphates of Ca do not exist in either the dried bone or calcined bone and phosphorus exists as either β-tricalcium phosphate (β-TCP) or hydroxyapatite, both in the dried and calcined conditions. The Ca K-edge analysis indicates that β-TCP is the likely form of phosphate in both the dried and calcined conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Publications - GMC 136 | Alaska Division of Geological & Geophysical
DGGS GMC 136 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and some vitrinite Unknown, 1989, Total organic carbon, rock-eval pyrolysis, and some vitrinite reflectance data of cuttings Report Information gmc136.pdf (39.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Publications - GMC 99 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 99 Publication Details Title: Total organic carbon, rock-eval pyrolysis, and vitrinite Reference Unknown, 1988, Total organic carbon, rock-eval pyrolysis, and vitrinite reflectance data of ditch Report Report Information gmc099.pdf (383.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis; Total Organic
Publications - GMC 12 | Alaska Division of Geological & Geophysical Surveys
- 11,850 feet; total organic carbon, rock-eval pyrolysis and visual kerogen/vitrinite reflectance Authors River #1 well 10,255 - 11,850 feet; total organic carbon, rock-eval pyrolysis and visual kerogen gmc012.pdf (384.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon; Vitrinite
Publications - GMC 24 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 24 Publication Details Title: Total organic carbon, rock-eval pyrolysis, visual kerogen Unknown, [n.d.], Total organic carbon, rock-eval pyrolysis, visual kerogen/vitrinite reflectance of the Information gmc024.pdf (79.0 K) Keywords Kerogen; Pyrolysis; Rock-Eval Pyrolysis; Total Organic Carbon
Johnson, Heath E; Haugh, Jason M
2013-12-02
This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors. Copyright © 2013 John Wiley & Sons, Inc.
Gu, Weiwei; Wang, Hongxin; Wang, Kun
2014-05-07
A series of nickel dithiolene complexes Ni[S2C2(CF3)2]2(n) (n = -2, -1, 0) has been investigated using Ni L- and K-edge X-ray absorption spectroscopy (XAS). The L3 centroid shifts about 0.3 eV for a change of one unit in the formal oxidation state (or 0.3 eV per oxi), corresponding to ~33% of the shift for Ni oxides or fluorides (about 0.9 eV per oxi). The K-edge XAS edge position shifts about 0.7 eV per oxi, corresponding to ~38% of that for Ni oxides (1.85 eV per oxi). In addition, Ni L sum rule analysis found the Ni(3d) ionicity in the frontier orbitals being 50.5%, 44.0% and 38.5% respectively (for n = -2, -1, 0), in comparison with their formal oxidation states (of Ni(II), Ni(III), and Ni(IV)). For the first time, direct and quantitative measurement of the Ni fractional oxidation state changes becomes possible for Ni dithiolene complexes, illustrating the power of L-edge XAS and L sum rule analysis in such a study. The Ni L-edge and K-edge XAS can be used in a complementary manner to better assess the oxidation states for Ni.
Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems
Martin-Diaconescu, Vlad; Gennari, Marcello; Gerey, Bertrand; ...
2014-12-10
Calcium K-edge pre-edges coupled with TD-DFT theoretical calculation of spectra provide a powerful approach for the characterization of complex calcium centers in inorganic and bioinorganic chemistry. Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodologymore » to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed.« less
Lin, Huirong; Ye, Chengsong; Lv, Lu; Zheng, Clark Renjun; Zhang, Shenghua; Zheng, Lei; Zhao, Yidong; Yu, Xin
2014-08-01
A combined approach of physicochemical extraction and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to characterize the extracellular polymeric substances (EPS) of typical bacterial biofilms in this study. Physicochemical analysis showed variation of the contents of DNA, polysaccharide and protein in different fractions of EPS in different mediums. The sulfur K-edge XANES analysis yielded a variety of spectra. Spectral fitting of the XANES spectra utilizing a large set of model compounds showed that there was more reduced sulfur in both LB-EPS (loosely bound EPS) and TB-EPS (tightly bound EPS) of all the biofilms in LB medium than in R2A medium. More oxidized sulfur was identified in LB-EPS than that in TB-EPS, suggesting different niches and physiological heterogeneity in the biofilms. Our results suggested that the sulfur K-edge XANES can be a useful tool to analyze the sulfur speciation in EPS of biofilms. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Streli, C.; Pepponi, G.; Wobrauschek, P.; Jokubonis, C.; Falkenberg, G.; Záray, G.; Broekaert, J.; Fittschen, U.; Peschel, B.
2006-11-01
At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm 2 active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm 2 silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al 2O 3. No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are reported. Detection limits of 170 ng/l of As in xylem sap were achieved.
Reflections in computer modeling of rooms: Current approaches and possible extensions
NASA Astrophysics Data System (ADS)
Svensson, U. Peter
2005-09-01
Computer modeling of rooms is most commonly done by some calculation technique that is based on decomposing the sound field into separate reflection components. In a first step, a list of possible reflection paths is found and in a second step, an impulse response is constructed from the list of reflections. Alternatively, the list of reflections is used for generating a simpler echogram, the energy decay as function of time. A number of geometrical acoustics-based methods can handle specular reflections, diffuse reflections, edge diffraction, curved surfaces, and locally/non-locally reacting surfaces to various degrees. This presentation gives an overview of how reflections are handled in the image source method and variants of the ray-tracing methods, which are dominating today in commercial software, as well as in the radiosity method and edge diffraction methods. The use of the recently standardized scattering and diffusion coefficients of surfaces is discussed. Possibilities for combining edge diffraction, surface scattering, and impedance boundaries are demonstrated for an example surface. Finally, the number of reflection paths becomes prohibitively high when all such combinations are included as demonstrated for a simple concert hall model. [Work supported by the Acoustic Research Centre through NFR, Norway.
D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Persson, Ingmar
2010-01-11
The structural properties of the hydrated lanthanoid(III) ions in aqueous solution and in the isostructural trifluoromethanesulfonate salts have been investigated by a quantitative analysis of the X-ray absorption near-edge structure (XANES) spectra at the K- and L(3)-edges. The XANES analysis has provided a clear description of the variation of lanthanoid(III) hydration properties across the series. It was found that all of the lanthanoid(III) hydration complexes retain a tricapped trigonal prism (TTP) geometry, and along the series two of the capping water molecules become less and less strongly bound, before finally, on average, one of them leaves the hydration cluster. This gives rise to an eight-coordinated distorted bicapped trigonal prism with two different Ln--O capping distances for the smallest lanthanoid(III) ions. This systematic study has shown that for lanthanoid compounds more accurate structural information is obtained from the analysis of the L(3)-edge than from K-edge XANES data. Moreover, whereas the second hydration shells provide a detectable contribution to the L(3)-edge XANES spectra of the lighter lanthanoid ions, the K-edge spectra are insensitive to the more distant coordination spheres.
FTIR Study of ATP-Induced Changes in Na+/K+-ATPase from Duck Supraorbital Glands
Pratap, Promod R.; Dediu, Oana; Nienhaus, G. Ulrich
2003-01-01
The Na+/K+-ATPase uses energy from the hydrolysis of ATP to pump Na+ ions out of and K+ ions into the cell. ATP-induced conformational changes in the protein have been examined in the Na+/K+-ATPase isolated from duck supraorbital salt glands using Fourier transform infrared spectroscopy. Both standard transmission and attenuated total internal reflection sample geometries have been employed. Under transmission conditions, enzyme at 75 mg/ml was incubated with dimethoxybenzoin-caged ATP. ATP was released by flashing with a UV laser pulse at 355 nm, which resulted in a large change in the amide I band. The absorbance at 1659 cm−1 decreased with a concomitant increase in the absorbance at 1620 cm−1. These changes are consistent with a partial conversion of protein secondary structure from α-helix to β-sheet. The changes were ∼8% of the total absorbance, much larger than those seen with other P-type ATPases. Using attenuated total internal reflection Fourier transform infrared spectroscopy, the decrease in absorbance at ∼1650 cm−1 was titrated with ATP, and the titration midpoint K0.5 was determined under different ionic conditions. In the presence of metal ions (Na+, Na+ and K+, or Mg2+), K0.5 was on the order of a few μM. In the absence of these ions, K0.5 was an order of magnitude lower (0.1 μM), indicating a higher apparent affinity. This effect suggests that the equilibrium for the ATP-induced conformational changes is dependent on the presence of metal ions. PMID:14645062
Simultaneous X-ray and Far-Ultraviolet Spectra of AGN with ASCA and HUT
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.
1997-01-01
We obtained ASCA spectra of the Seyfert 1 galaxy NGC 3516 in March 1995. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low energy absorbing column is significantly less than previously seen. Prominent 0 VII and 0 VIII absorption edges are visible, but, consistent with the much lower total absorbing column, no Fe K absorption edge is detectable. A weak, narrow Fe K(alpha) emission line from cold material is present as well as a broad Fe K(alpha) line. These features are similar to those reported in other Seyfert 1 galaxies. A single warm absorber model provides only an imperfect description of the low energy absorption. In addition to a highly ionized absorber with ionization parameter U = 1.66 and a total column density of 1.4 x 10(exp 22)/sq cm, adding a lower ionization absorber with U = 0.32 and a total column of 6.9 x 10(exp 21)/sq cm significantly improves the fit. The contribution of resonant line scattering to our warm absorber models limits the Doppler parameter to less than 160 km/s at 90% confidence. Turbulence at the sound speed of the photoionized gas provides the best fit. None of the warm absorber models fit to the X-ray spectrum can match the observed equivalent widths of all the UV absorption lines. Accounting for the X-ray and UV absorption simultaneously requires an absorbing region with a broad range of ionization parameters and column densities.
Takashiro, Jun-ichi; Kudo, Yasuhiko; Kaneko, Satoshi; Takai, Kazuyuki; Ishii, Takafumi; Kyotani, Takashi; Enoki, Toshiaki; Kiguchi, Manabu
2014-04-28
The heat treatment effect on the electronic and magnetic structures of a disordered network of nanographene sheets has been investigated by in situ measurements of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure (NEXAFS), and electrical conductance, together with temperature-programmed desorption measurements. Oxygen-containing functional groups bonded to nanographene edges in the pristine sample are almost completely decomposed under heat treatment up to 1300-1500 K, resulting in the formation of edges primarily terminated by hydrogen. The removal of the oxygen-containing groups enhances the conductance owing to the decrease in the electron transport barriers between nanographene sheets. Heat treatment above 1500 K removes also the hydrogen atoms from the edges, promoting the successive fusion of nanographene sheets at the expense of edges. The decrease in the π* peak width in NEXAFS indicates the progress of the fusion reaction, that is, the extension of the π-conjugation, which agrees with the increase in the orbital susceptibility previously reported. The fusion leads to the formation of local π/sp(2) bridges between nanographene sheets and brings about an insulator-to-metal transition at 1500-1600 K, at which the bridge network becomes infinite. As for the magnetism, the intensity of the edge state peak in NEXAFS, which corresponds to the number of the spin-polarized edge states, decreases above 1500 K, though the effective edge-state spin density per edge state starts decreasing at approximately 200 K lower than the temperature of the edge state peak change. This disagreement indicates the development of antiferromagnetic short range ordering as a precursor of a spin glass state near the insulator-metal transition, at which the random network of inter-nanographene-sheet exchange interactions strengthened with the formation of the π/sp(2) bridges becomes infinite.
Distance Domination Number of Graphs Resulting from Edge Comb Product
NASA Astrophysics Data System (ADS)
Slamin; Dafik; Angger Waspodo, Gembong
2018-05-01
Let G be a simple, finite and connected graph with a vertex-set V (G) and an edge-set E(G). For an integer 1 ≤ k ≤ diam (G), a distance k-dominating set of a connected graph G is a set S of vertices of G such that every vertex of V (G)\\S is at distance at most k from some vertex of S. The k-domination number of G, denoted by γk (G), is the minimum cardinality of a k-dominating set of G. In this paper, we determine the exact value of k-domination number of graphs resulting from an edge comb product of two graphs G 1 and G 2, where G 1 is a wheel, a friendship graph, or a triangular book and G 2 is a cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.
Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Steven T; Lam, Royce K.; Raj, Sumana L.
We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ~308 and ~260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ~284.2 eV. The measured two-photon absorption cross section at 284.18 eV (~6 x 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atomsmore » - a result of resonance effects.« less
X-ray K-edge analysis of drain lines in Wilhelm Hall, Ames Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, T.; Whitmore, C.
1999-01-05
From August 12--27, 1998 X-ray K-edge measurements were made on drain lines in seven rooms in Wilhelm Hall, Ames Laboratory. The purpose of these measurements was to determine the extent of thorium (and other heavy metal) contamination inside these pipes. The K-edge method is a noninvasive inspection technique that can provide accurate quantification of heavy metal contamination interior to an object. Of the seven drain lines inspected, one was found to have no significant contamination, three showed significant thorium deposits, two showed mercury contamination, and one line was found to contain mercury, thorium and uranium. The K-edge measurements were foundmore » to be consistent with readings from hand-held survey meters, and provided much greater detail on the location and amount of heavy metal contamination.« less
Borosilicate glass structure: An investigation of high resolution B K-edge XANES
NASA Astrophysics Data System (ADS)
Dong, S.; Henderson, G. S.; Galoisy, L.; Calas, G.
2009-05-01
The Alkali-borosilicate glasses in the systems Na2O-B2O3-SiO2 and K2O- B2O3-SiO2 have been prepared by melting/quenching in air and studied using synchrotron radiation B K-edge XANES to estimate the evolution of boron coordination as a function of composition. The ratio of alkali/B2O3 (R) and SiO2/B2O3 (K) in the glasses are respectively between 0.5 to 2.0 and 0.5 to 7.0. The edge features of trigonal B ([3]B) and tetrahedral B ([4]B) in B K-edge XANES spectra have been interpreted carefully from B standards such as (B2O3 and BPO4), as well as, a wide range of borate minerals. We find that the proportion of tetrahedral B in glass is increasing as a function of both R and K, similar to previous studies. Contributions of the [3]B and [4]B features to the B K-edge XANES is complex with 6-7 individual transitions contributing to the overall spectral envelope. Many of these transitions are common to both B coordination states making extraction of quantitative [4]B numbers difficult. However, we can calculate the proportion of tetrahedral B accurately by appropriate curve- fitting.
2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong
2014-05-01
Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c
Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V; Fransson, Torsten H
2013-01-01
High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. In particular, the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer; therefore, for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at the trailing edge surface in-line with the ribs at the bottom surface, and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re k-ɛ model, realizable k-ɛ model, the RNG k-ω model, low-Re k-ω model, and SST k-ω models are compared, whereas for ribbed channel, low-Re k-ɛ model and SST k-ω models are compared. The results show that the low-Re k-ɛ model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to experimental data. Using the same turbulence model shows that the height of ribs used in the study is not suitable for inducing secondary flow. Also, the orthogonal rib does not strengthen the secondary flow rotational momentum. The comparison between the new designs for trailing edge shows that if pressure drop is acceptable, staggered arrangement is suitable for the outlet pass heat transfer. For the trailing edge wall, the thermal performance for the ribbed trailing edge only was found about 8% better than other configurations.
X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems
Sarangi, Ritimukta
2012-01-01
Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal–O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal–O2 systems. PMID:23525635
Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment
ERIC Educational Resources Information Center
Nayak, S. V.; Badiger, N. M.
2007-01-01
We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…
The SKED: speckle knife edge detector
NASA Astrophysics Data System (ADS)
Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.
2014-06-01
The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.
The Infrared Reflection Nebula Around the Protostellar System in S140
NASA Technical Reports Server (NTRS)
Harker, D.; Bregman, J.; Tielens, A. G. G. M.; Temi, P.; Rank, D.; Morrison, David (Technical Monitor)
1994-01-01
We have studied the protostellar system in S140 at 2.2, 3.1 and 3.45 microns using a 128x128 InSb array at the Lick Observatory 3m telescope. Besides the protostellar sources, the data reveal a bright infrared reflection nebula. We have developed a simple model of this region and derived the physical conditions. IRSI is surrounded by a dense dusty disk viewed almost edge-on. Photons leaking out through the poles illuminate almost directly north and south the inner edge of a surrounding shell of molecular gas, Analysis of the observed colors and intensities of the NIR light, using Mie scattering theory, reveal that the dust grains in the molecular cloud are somewhat larger than in the general diffuse interstellar medium. Moreover, the incident light has a "cool" color temperature, approximately equals 800K, and likely originates from a dust photosphere close to the protostar. Finally, we find little H2O ice associated with the dusty disk around IRSI. Most of the 3.1 micron ice extinction arises instead from cool intervening molecular cloud material. We have compared our infrared dust observations with millimeter and radio observations of molecular gas associated with this region. The large scale structure observable in the molecular gas is indicative of the interaction between the protostellar wind and the surrounding molecular cloud rather than the geometry of the protostellar disk. We conclude that S140 is a young blister formed by this outflow on the side of a molecular cloud and viewed edge-on.
Low-dose electron energy-loss spectroscopy using electron counting direct detectors.
Maigné, Alan; Wolf, Matthias
2018-03-01
Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.
Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto
2017-12-19
We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.
NASA Astrophysics Data System (ADS)
Jiang, Qingzheng; Zhong, Minglong; Lei, Weikai; Zeng, Qingwen; Hu, Yongfeng; Quan, Qichen; Xu, Yaping; Hu, Xianjun; Zhang, Lili; Liu, Renhui; Ma, Shengcan; Zhong, Zhenchen
2017-08-01
The Ce17Fe78-xB6Gax (x=0-1.0) ribbons were fabricated by a melt-spinning technique in order to study the mechanism of the valence variation of Ce and their magnetic properties as well as improve the thermal stability of Ce-based rare earth permanent magnets. The systematic investigations of the Ce17Fe78-xB6Gax (x=0-1.0) alloys show that the room-temperature coercivity increases significantly from 352 kA/m at x = 0 to 492 kA/m at x = 1.0. The Curie temperature (Tc) increases monotonically from 424.5 K to 433.6 K, and the temperature coefficients of remanence (α) and coercivity (β) of the ribbons are better off from -0.56 %/K, -0.75 %/K for x = 0 to -0.45 %/K, -0.65 %/K for x = 0.75 in the temperature range of 300-400 K, respectively. The Ce L3-edge X-ray absorption near edge structure (XANES) spectrums reveal that there is more Ce4+ in ribbons under total electron yield than fluorescence yield as Ce has a high affinity with oxygen. The weight of Ce3+ increases while the weight of Ce4+ decreases in Ga-added alloys. The refined grain size and a more uniform microstructure are mainly attributed to the improved magnetic properties and thermal stability with Ga doping. This paper may serve as a reference for further developing the so-called gap magnets and the effective utilization of the rare earth resources.
NASA Astrophysics Data System (ADS)
Dickinson, Alex; White, N. J.; Caulfield, C. P.
2017-12-01
Bright reflections are observed within the upper 1,000 m of the water column along a seismic reflection profile that traverses the northern margin of the Gulf of Mexico. Independent hydrographic calibration demonstrates that these reflections are primarily caused by temperature changes associated with different water masses that are entrained into the Gulf along the Loop Current. The internal wave field is analyzed by automatically tracking 1,171 reflections, each of which is greater than 2 km in length. Power spectra of the horizontal gradient of isopycnal displacement, ϕξx, are calculated from these tracked reflections. At low horizontal wave numbers (kx<10-2 cpm), ϕξx∝kx-0.2±0.6, in agreement with hydrographic observations of the internal wave field. The turbulent spectral subrange is rarely observed. Diapycnal diffusivity, K, is estimated from the observed internal wave spectral subrange of each tracked reflection using a fine-scale parametrization of turbulent mixing. Calculated values of K vary between 10-8 and 10-4 m2 s-1 with a mean value of K˜4×10-6 m2 s-1. The spatial distribution of turbulent mixing shows that K˜10-7 m2 s-1 away from the shelf edge in the upper 300 m where stratification is strong. Mixing is enhanced by up to 4 orders of magnitude adjacent to the shoaling bathymetry of the continental slope. This overall pattern matches that determined by analyzing nearby suites of CTD casts. However, the range of values recovered by spectral analysis of the seismic image is greater as a consequence of significantly better horizontal resolution.
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji
2015-05-01
X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Hiroyuki, E-mail: hshimada@cc.tuat.ac.jp; Minami, Hirotake; Okuizumi, Naoto
2015-05-07
X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations.more » This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.« less
NASA Astrophysics Data System (ADS)
Guo, X. X.; Sham, T. K.; Zhu, Y. J.; Hu, Y. F.
2013-04-01
Mesoporous calcium silicate hydrate (CSH) nanostructure has been proven to be bioactive and biocompatible, and has a bright future in the application of bone treatment among other applications. X-ray absorption near edge structure (XANES) is a powerful tool for the study of the interactions of calcium silicate hydrates with drug molecules because it is element specific and it probes the unoccupied electronic states. Herein, we report the use of the calcium, silicon and oxygen K-edge XANES spectroscopy to identify how drug molecules interact with different groups in calcium silicate hydrate mesoporous nano-carriers with different morphologies. Significant changes are observed in XANES spectra after drug loading into the calcium silicate hydrate system, especially at the Si and O K-edge. The implications of these findings are discussed.
Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.
Punys, Vytenis; Maknickas, Ramunas
2011-01-01
Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.
Jin, Qiu; Chen, Biaohua; Ren, Zhibo; ...
2018-02-10
In the present study, thiophene hydrodesulphurization (HDS) over the Mo-edge, the S-edge, and the Mo-S connection edge of MoS 2 catalyst with 50% sulfur coverage was studied using first-principles based microkinetic modeling. Two parallel HDS routes, i.e., direct desulfurization (DDS) and hydrogenation (HYD) were taken into account. It has been found that the major reaction route of thiophene HDS on the Mo- and the Mo-S edges is temperature dependent. In the low temperature range of 500–600 K, the HYD route is dominant, leading to the C 4H 8 formation. As the temperature increases, the DDS route becomes competitive with themore » HYD route. At the temperature above 650 K, the DDS route will be the dominant HDS reaction route on the Mo- and the Mo-S edges. The DDS route leading to the formation of C 4H 6 is the major thiophene HDS reaction route on the S-edge in the entire temperature range of 500–750 K. The microkinetic modeling results show the overall HDS activity on the S-edge is lower than it on the Mo- and the Mo-S edges. The Mo-S edge also provides a preferential reaction pathway, which facilitates 2-hydrothiophene migration from the Mo-edge to the S-edge, followed by remaining elementary steps with lower activation barriers in the DDS route.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Qiu; Chen, Biaohua; Ren, Zhibo
In the present study, thiophene hydrodesulphurization (HDS) over the Mo-edge, the S-edge, and the Mo-S connection edge of MoS 2 catalyst with 50% sulfur coverage was studied using first-principles based microkinetic modeling. Two parallel HDS routes, i.e., direct desulfurization (DDS) and hydrogenation (HYD) were taken into account. It has been found that the major reaction route of thiophene HDS on the Mo- and the Mo-S edges is temperature dependent. In the low temperature range of 500–600 K, the HYD route is dominant, leading to the C 4H 8 formation. As the temperature increases, the DDS route becomes competitive with themore » HYD route. At the temperature above 650 K, the DDS route will be the dominant HDS reaction route on the Mo- and the Mo-S edges. The DDS route leading to the formation of C 4H 6 is the major thiophene HDS reaction route on the S-edge in the entire temperature range of 500–750 K. The microkinetic modeling results show the overall HDS activity on the S-edge is lower than it on the Mo- and the Mo-S edges. The Mo-S edge also provides a preferential reaction pathway, which facilitates 2-hydrothiophene migration from the Mo-edge to the S-edge, followed by remaining elementary steps with lower activation barriers in the DDS route.« less
Arsenic- and selenium-induced changes in spectral reflectance and morphology of soybean plants
Milton, N.M.; Ager, C.M.; Eiswerth, B.A.; Power, M.S.
1989-01-01
Soybean (Glycine max) plants were grown in hydroponic solutions treated with high concentrations of either arsenic or selenium. Spectral reflectance changes in arsenic-dosed plants included a shift to shorter wavelengths in the long-wavelength edge of the chlorophyll absorption band centered at 680 nm (the red edge) and higher reflectance in the 550-650 nm region. These results are consistent with vegetation reflectance anomalies observed in previous greenhouse experiments and in airborne radiometer studies. The selenium-dosed plants contrast, exhibited a shift to longer wavelengths of the red edge and lower reflectance between 550 nm and 650 wh when compared with control plants. Morphological effects of arsenic uptake included lower overall biomass, stunted and discolored roots, and smaller leaves oriented more vertically than leaves of control plants. Selenium-dosed plants also displayed morphological changes, but root and leaf biomass were less affected than were those of arsenic-dosed plants when compared to control plants. ?? 1989.
Landscape correlates of breeding bird richness across the United States mid-Atlantic region
Jones, K.B.; Neale, A.C.; Nash, M.S.; Riitters, K.H.; Wickham, J.D.; O'Neill, R. V.; Van Remortel, R. D.
2000-01-01
Using a new set of landscape indicator data generated by the U.S.EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States. We evaluated how these relationships varied among different groupings (guilds) of birds based on functional, structural, and compositional aspects of individual species demographics. Forest edge was by far the most important landscape attribute affecting the richness of the lumped specialist and generalist guilds; specialist species richness was negatively associated with forest edge and generalist richness was positively associated with forest edge. Landscape variables (indicators) explained a greater proportion of specialist species richness than the generalist guild (46% and 31%, respectively). The lower value in generalists may reflect freer-scale distributions of open habitat that go undetected by the Landsat satellite, open habitats created by roads (the areas from which breeding bird data are obtained), and the lumping of a wide variety of species into the generalist category. A further breakdown of species into 16 guilds showed considerable variation in the response of breeding birds to landscape conditions; forest obligate species had the strongest association with landscape indicators measured in this study (55% of the total variation explained) and forest generalists and open ground nesters the lowest (17% of the total variation explained). The variable response of guild species richness to landscape pattern suggests that one must consider species' demographics when assessing the consequences of landscape change on breeding birds.Using a new set of landscape indicator data generated by the U.S. EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States. We evaluated how these relationships varied among different groupings (guilds) of birds based on functional, structural, and compositional aspects of individual species demographics. Forest edge was by far the most important landscape attribute affecting the richness of the lumped specialist and generalist guilds; specialist species richness was negatively associated with forest edge and generalist richness was positively associated with forest edge. Landscape variables (indicators) explained a greater proportion of specialist species richness than the generalist guild (46% and 31%, respectively). The lower value in generalists may reflect finer-scale distributions of open habitat that go undetected by the Landsat satellite, open habitats created by roads (the areas from which breeding bird data are obtained), and the lumping of a wide variety of species into the generalist category. A further breakdown of species into 16 guilds showed considerable variation in the response of breeding birds to landscape conditions; forest obligate species had the strongest association with landscape indicators measured in this study (55% of the total variation explained) and forest generalists and open ground nesters the lowest (17% of the total variation explained). The variable response of guild species richness to landscape pattern suggests that one must consider species' demographics when assessing the consequences of landscape change on breeding birds.
Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui
2016-03-07
The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.
Image steganography based on 2k correction and coherent bit length
NASA Astrophysics Data System (ADS)
Sun, Shuliang; Guo, Yongning
2014-10-01
In this paper, a novel algorithm is proposed. Firstly, the edge of cover image is detected with Canny operator and secret data is embedded in edge pixels. Sorting method is used to randomize the edge pixels in order to enhance security. Coherent bit length L is determined by relevant edge pixels. Finally, the method of 2k correction is applied to achieve better imperceptibility in stego image. The experiment shows that the proposed method is better than LSB-3 and Jae-Gil Yu's in PSNR and capacity.
Shelf life extension of minimally processed ready-to-cook (RTC) cabbage by gamma irradiation.
Banerjee, Aparajita; Chatterjee, Suchandra; Variyar, Prasad S; Sharma, Arun
2016-01-01
Gamma irradiation (0.5-2.5 kGy) in combination with low temperature (4-15 °C) storage was attempted to increase shelf life of ready-to-cook shredded cabbage wrapped in cling films. A maximum extension in shelf life of 8 days, while retaining the microbial and sensory quality, was obtained with an irradiation dose of 2 kGy and storage at 10 °C. Gamma irradiation also inhibited browning of shredded cabbage at their cut edges resulting in enhanced visual appeal. An increase in total antioxidant activity was observed with respect to DPPH and hydroxyl radical scavenging ability while the nitric oxide radical scavenging activity and ferric reducing property remained unaffected with irradiation. Total phenolic, flavonoid and vitamin C content remained unchanged due to irradiation. No significant migration of additives from cling films into stimulant water was observed up to a radiation dose of 2 kGy thus demonstrating the feasibility of such films for above applications.
NASA Astrophysics Data System (ADS)
Ming, Bin
Josephson junctions are at the heart of any superconductor device applications. A SQUID (Superconducting Quantum Interference Device), which consists of two Josephson junctions, is by far the most important example. Unfortunately, in the case of high-Tc superconductors (HTS), the quest for a robust, flexible, and high performance junction technology is yet far from the end. Currently, the only proven method to make HTS junctions is the SrTiO3(STO)-based bicrystal technology. In this thesis we concentrate on the fabrication of YBCO step-edge junctions and SQUIDs on sapphire. The step-edge method provides complete control of device locations and facilitates sophisticated, high-density layout. We select CeO2 as the buffer layer, as the key step to make device quality YBCO thin films on sapphire. With an "overhang" shadow mask produced by a novel photolithography technique, a steep step edge was fabricated on the CeO2 buffer layer by Ar+ ion milling with optimized parameters for minimum ion beam divergence. The step angle was determined to be in excess of 80° by atomic force microscopy (AFM). Josephson junctions patterned from those step edges exhibited resistively shunted junction (RSJ) like current-voltage characteristics. IcR n values in the 200--500 mV range were measured at 77K. Shapiro steps were observed under microwave irradiation, reflecting the true Josephson nature of those junctions. The magnetic field dependence of the junction Ic indicates a uniform current distribution. These results suggest that all fabrication processes are well controlled and the step edge is relatively straight and free of microstructural defects. The SQUIDs made from the same process exhibit large voltage modulation in a varying magnetic field. At 77K, our sapphire-based step-edge SQUID has a low white noise level at 3muphi0/ Hz , as compared to typically >10muphi0/ Hz from the best bicrystal STO SQUIDS. Our effort at device fabrication is chiefly motivated by the scanning SQUID microscopy (SSM) application. A scanning SQUID microscope is a non-contact, non-destructive imaging tool that can resolve weak currents beneath the sample surface by detecting their magnetic fields. Our low-noise sapphire-based step-edge SQUIDs should be particularly suitable for such an application. An earlier effort to make SNS trench junctions using focused ion beam (FIB) is reviewed in a separate chapter. (Abstract shortened by UMI.)
Frank, Patrick; Caruso, Francesco; Caponetti, Eugenio
2012-01-01
In 2008 the rostrum from an ancient warship was recovered from the Mediterranean near Acqualadrone, Sicily. To establish its provenance and condition, samples of black and brown rostrum wood were examined using sulfur K-edge x-ray absorption spectroscopy (XAS) and GC-MS. GC-MS of pyrolytic volatiles yielded only guaiacyl derivatives, indicating construction from pinewood. A derivatized extract of black wood yielded forms of abietic acid and sandaracopimaric acid consistent with pine pitch waterproofing. Numerical fits to the sulfur K-edge XAS spectra showed that about 65% of the endogenous sulfur consisted of thiols and disulfides. Elemental sulfur was about 2% and 7% in black and brown wood, respectively, while pyritic sulfur was about 12% and 6%. About 2% of the sulfur in both wood types was modeled as trimethylsulfonium, possibly reflecting biogenic dimethylsulfonio-propionate. High valent sulfur was exclusively represented by sulfate esters, consistent with bacterial sulfotransferase activity. Traces of chloride were detected, but no free sulfate ion. In summary, the rostrum was manufactured of pine wood and subsequently waterproofed with pine pitch. The subsequent 2300 years included battle, foundering, and marine burial followed by anoxia, bacterial colonization, sulfate reduction, and mobilization of transition metals, which produced pyrite and copious appended sulfur functionality. PMID:22545724
Carbon K-edge spectra of carbonate minerals.
Brandes, Jay A; Wirick, Sue; Jacobsen, Chris
2010-09-01
Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.
NASA Astrophysics Data System (ADS)
Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent
1999-11-01
Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.
Endo, Osamu; Nakamura, Masashi; Amemiya, Kenta; Ozaki, Hiroyuki
2017-04-25
The influence of the preparation method and adsorbed amount of n-tetratetracontane (n-C 44 H 90 ) on its orientation in a monolayer on the Au(111) surface is studied by near carbon K-edge X-ray absorption fine structure spectroscopy (C K-NEXAFS), scanning tunneling microscopy (STM) under ultrahigh vacuum, and infrared reflection-absorption spectroscopy (IRAS) at the electrochemical interface in sulfuric acid solution. The n-C 44 H 90 molecules form self-assembled lamellar structures with the chain axis parallel to the surface, as observed by STM. For small amounts adsorbed, the carbon plane is parallel to the surface (flat-on orientation). An increase in the adsorbed amount by ∼10-20% induces compression of the lamellar structure either along the lamellar axis or alkyl chain axis. The compressed molecular arrangement is observed by STM, and induced conformation and orientation changes are confirmed by in situ IRAS and C K-NEXAFS.
Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan
2018-06-14
Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.
Red edge measurements for remotely sensing plant chlorophyll content
NASA Astrophysics Data System (ADS)
Horler, D. N. H.; Dockray, M.; Barber, J.; Barringer, A. R.
The feasibility of using the wavelength of the maximum slope of the red edge of leaf reflectance spectra (λre) as an indication of plant chlorophyll status was examined in the laboratory for single leaves of several species. λre for each sample was determined by derivative reflectance spectroscopy. A high positive correlation was found between λre and leaf chlorophyll content for all species, although there were some differences in the quantitative nature of the relationship for plants of different types. The position of the red edge was found to be unaffected by simulated change in ground cover, but multiple leaf layers produced a shift in its position. Appropriate spectral measurements and processing for obtaining useful information from the red edge are discussed, and the potential of the red edge in relation to other spectral measurements is considered.
Sawicki, R.H.; Sweatt, W.
1985-11-21
A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and provides for adjustably bending the light reflecting surface into one of different curvatures depending upon the astigmatism to be corrected and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawicki, R.H.; Sweatt, W.
1985-11-21
A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and provides for adjustably bending the light reflecting surface into one of different curvatures depending upon the astigmatism to be corrected and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment tomore » the reinforced side edges of the light reflecting surface.« less
Bañuelos, Gary S; Arroyo, Irvin; Pickering, Ingrid J; Yang, Soo In; Freeman, John L
2015-01-01
Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing the Se content in food crops in Se-deficient regions of the world. In this study we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with ground shoots of the Se-hyperaccumulator Stanleyapinnata. With increasing application rates of S. pinnata, total plant Se concentrations increased to nutritionally ideal levels inside edible parts. Selenium compounds in aqueous extracts were analyzed by SAX-HPLC-ICPMS and identified as a variety of mainly organic-Se forms. Together with bulk Se K-edge X-ray absorption near-edge structure (XANES) analysis performed on broccoli florets, carrot roots and shoots, dried ground S. pinnata, and the amended soil at post-plant, we demonstrate that Se-enriched S. pinnata is valuable as a soil amendment for enriching broccoli and carrots with healthful forms of organic-Se. Published by Elsevier Ltd.
Emittance measurements of Space Shuttle orbiter reinforced carbon-carbon
NASA Technical Reports Server (NTRS)
Caram, Jose M.; Bouslog, Stanley A.; Cunnington, George R., Jr.
1992-01-01
The spectral and total normal emittance of the Reinforced Carbon-Carbon (RCC) used on Space Shuttle nose cap and wing leading edges has been measured at room temperature and at surface temperatures of 1200 to 2100 K. These measurements were made on virgin and two flown RCC samples. Room temperature directional emittance data were also obtained and were used to determine the total hemispherical emittance of RCC as a function of temperature. Results of the total normal emittance for the virgin samples showed good agreement with the current RCC emittance design curve; however, the data from the flown samples showed an increase in the emittance at high temperature possibly due to exposure from flight environments.
Interpretation of thermal conductance of the ν =5 /2 edge
NASA Astrophysics Data System (ADS)
Simon, Steven H.
2018-03-01
Recent experiments [Banerjee et al., arXiv:1710.00492] have measured thermal conductance of the ν =5 /2 edge in a GaAs electron gas and found it to be quantized as K ≈5 /2 (in appropriate dimensionless units). This result is unexpected, as prior numerical work predicts that the ν =5 /2 state should be the anti-Pfaffian phase of matter, which should have quantized K =3 /2 . The purpose of this Rapid Communication is to propose a possible solution to this conflict: If the Majorana edge mode of the anti-Pfaffian does not thermally equilibrate with the other edge modes, then K =5 /2 is expected. I briefly discuss a possible reason for this nonequilibration and what should be examined further to determine if this is the case.
The band systems of alkali vapors
NASA Technical Reports Server (NTRS)
Weizel, W.; Kulp, M.
1988-01-01
A number of band edges of the molecules, Na2, K2, NaK, NaCs, LiK, LiRb, LiCs, and NaRb are arranged in edge schemes. The vibrational quanta of the base terms and the upper terms can be approximately determined. Viewpoints are produced for interpreting electron terms. The terms Na2 are interpreted as terms of a photo-electron.
NASA Astrophysics Data System (ADS)
Matsukiyo, Hiroshi; Sato, Eiichi; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-03-01
A linear cadmium telluride (CdTe) detector is useful for carrying out energy-discrimination X-ray imaging, including computed tomography (CT). To perform enhanced gadolinium K-edge CT, we used an oscillation-type linear CdTe detector with an energy resolution of 1.2 keV. CT is performed by repeating the linear scan and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, tube voltage and current were 80 kV and 20 μA, respectively, and X-ray intensity was 1.55 μGy/s at 1.0 m from the source at a tube voltage of 80 kV. Demonstration of enhanced gadolinium K-edge X-ray CT was carried out by selecting photons with energies just beyond gadolinium K-edge energy of 50.3 keV.
Spencer, Liam P; Yang, Ping; Minasian, Stefan G; Jilek, Robert E; Batista, Enrique R; Boland, Kevin S; Boncella, James M; Conradson, Steven D; Clark, David L; Hayton, Trevor W; Kozimor, Stosh A; Martin, Richard L; MacInnes, Molly M; Olson, Angela C; Scott, Brian L; Shuh, David K; Wilkerson, Marianne P
2013-02-13
Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.
NASA Astrophysics Data System (ADS)
Perry, Justin M.
Local helicity injection (LHI) is a non-solenoidal current drive capable of achieving high-Ip tokamak startup with a relatively compact and non-invasive array of current injectors in the plasma scrape-off layer. The choice of injector location within the edge region is flexible, but has a profound influence on the nature of the current drive in LHI discharges. Past experiments on the Pegasus ST with injection on the low-field-side near the outboard midplane produced plasmas dominated by inductive drive resulting primarily from plasma geometry evolution over the discharge. Recent experiments with injection on the high-field- side in the lower divertor region produce plasmas dominated by helicity injection current drive, with relatively static plasma geometry, and thus negligible inductive drive. Plasma current up to 200 kA is driven with helicity injection as the dominant current drive using a pair of 4 cm2 area injectors sourcing 8 kA of total injected current. Steady sustainment with LHI current drive alone is demonstrated, with 100 kA sustained for 18 ms. Maximum achievable plasma current is found to scale approximately linearly with a plasma-geometry- normalized form of the effective loop voltage from LHI, Vnorm = AinjVinj/Rinj, where A inj is the total injector area, Vinj is the injector bias voltage, and Rinj is the major radius of the injectors. A newly-discovered MHD regime for LHI-driven plasmas is described, in which the large-amplitude n = 1 fluctuations at 20-50 kHz which are generally dominant during LHI are abruptly reduced by an order of magnitude on the outboard side. High frequency fluctuations ( f > 400 kHz) increase inside the plasma edge at the same time. This regime results in improved plasma current and pervasive changes to plasma behavior, and may suggest short wavelength turbulence as a current drive mechanism during LHI.
Toward broad-band x-ray detected ferromagnetic resonance in longitudinal geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ollefs, K.; European Synchrotron Radiation Facility; Meckenstock, R.
2015-06-14
An ultrahigh-vacuum-compatible setup for broad-band X-ray detected ferromagnetic resonance (XFMR) in longitudinal geometry is introduced which relies on a low-power, continuous-wave excitation of the ferromagnetic sample. A simultaneous detection of the conventional ferromagnetic resonance via measuring the reflected microwave power and the XFMR signal of the X-ray absorption is possible. First experiments on the Fe and Co L{sub 3}-edges of a permalloy film covered with Co nanostripes as well as the Fe and Ni K-edges of a permalloy film are presented and discussed. Two different XFMR signals are found, one of which is independent of the photon energy and thereforemore » does not provide element-selective information. The other much weaker signal is element-selective, and the dynamic magnetic properties could be detected for Fe and Co separately. The dependence of the latter XFMR signal on the photon helicity of the synchrotron light is found to be distinct from the usual x-ray magnetic circular dichroism effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Morris; Li, Hong; Li, Liyu
Gadolinium can be dissolved in sodium-alumino-borosilicate glasses up to 47 wt% in a baseline borosilicate glass (mol%) 20 B2O3, 5 Al2O3, 60 SiO2,and 20 Na2O. Understanding of Gd dissolution in borosilicate melts is important in glass formulation optimization. Electron energy loss fine structure (ELFS) spectroscopy is chosen, which provides well resolved local atomic structure information for both amorphous and crystalline materials with high sensitivity to low Z elements such as Al, B, Na, O, and Si where the x-ray absorption fine structure (XAFS) technique faces experimental difficulty. In this study, we report our results of boron K-edge ELFS study. Twomore » borosilicate glass samples with 30 and 47 mass% Gd2O3, B20Gd30 and B20Gd47were chosen for B K-edge ELFS study. EEL spectra were acquired on a Philips 430 TEM equipped with Gatan PEELS system 666 and EL/P 2.1 software with Custom function AcqLong. The ELFS data analysis was performed using UWELFS, UWXAFS and FEFF software. From our Gd solubility study, the local structure of Gd in the borate environment possibly resembles double chain structure found in crystalline Gd(BO2)3 as proposed by Chakraborty et al. The B/Gd ratio's in both glasses are smaller then 3, which means the excess Gd atoms in the Si-sites would be 17 and 60 mol% of the total Gd atoms, respectively according to the model, yet the local environment of borate sites saturated with Gd should be remained. To verity above hypothesis, the double chain structure model was applied to fit boron K-edge. The model was shown to well fit experimental boron K-edge EELS spectra for both glasses with some degree of distance distortion which is understandable in amorphous structure. Therefore, it is very likely that Gd stabilized in borate sites has a local structure resembling the double chain Gd(BO2)3 structure as proposed by our solubility study and literature.« less
Sharma, Aditya; Varshney, Mayora; Shin, Hyun-Joon; Park, Yong Jun; Kim, Min-Gyu; Ha, Tae-Kyun; Chae, Keun Hwa; Gautam, Sanjeev
2014-10-07
Single phase nanoparticles (NPs) of CeO2, Ce0.5Zr0.5O2, Ce0.5Hf0.5O2 and Ce0.5Hf0.25Zr0.25O2 were successfully synthesized by co-precipitation method at constant pH and temperature. The X-ray diffraction results revealed that the additive atoms did not segregate to form secondary phases but led to grain size variation in the NPs. The 10 Dq values in the near edge X-ray absorption fine structure (NEXAFS) spectra at the O K-edge did not vary in the same way as the average grain size was changed for the doped CeO2 NPs. The deconvolution of Ce M5-edge and detailed analysis of O K pre-edge peak have shown the higher Ce(+3)/(Ce(+3) + Ce(+4)) ratio in the Zr- and Hf-doped samples. The local atomic structure around the Ce, Zr and Hf atoms was investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy at Ce K-edge, Zr K-edge and Hf L3-edge, respectively, and the EXAFS data were fitted with the theoretical calculations. The 4f occupancy, Ce(+3)/(Ce(+3) + Ce(+4)) ratio of Ce ions, coordination number of Ce and Ce-Ce/Ce-O bond distances were sensitive to the additive atoms but not explicitly changed according to the grain size variation in the NPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabelnick, A.M.; Capitano, A.T.; Kane, S.M.
2000-01-12
The oxidation of propylene preabsorbed on the Pt(111) surface has been characterized in oxygen pressures up to 0.02 Torr using fluorescence yield near-edge spectroscopy (FYNES) and temperature-programmed fluorescence yield near-edge spectroscopy (TP-FYNES) above the carbon K edge. During oxidation of adsorbed propylene, a stable intermediate was observed and characterized using these soft X-ray methods. A general in situ method for determining the stoichiometry of carbon-containing reaction intermediate species has been developed and demonstrated for the first time. Total carbon concentration measured during temperature-programmed reaction studies clearly indicates a reaction intermediate is formed in the 300 K temperature range with amore » surface concentration of 0.55 x 10{sup 15} carbon atoms/cm{sup 2}. By comparing the intensity of the C-H {sigma}* resonance at the magic angle with the intensity in the carbon continuum, the stoichiometry of this intermediate can be determined unambiguously. Based on calibration with molecular propylene (C{sub 3}H{sub 6}) and propylidyne (C{sub 3}H{sub 5}), the intermediate has a C{sub 3}H{sub 5} stoichiometry for oxygen pressures up to 0.02 Torr. A set of normal and glancing angle FYNES spectra above the carbon K edge was used to characterize the bonding and structure of this intermediate. Spectra of known coverages of adsorbed propylene and propylidyne served as standards. The spectra of di-{sigma} propylene, propylidyne, and the intermediate were curve fit as a group with consistent energies and widths of all primary features. Based on this procedure, the intermediate is 1,1,2-tri-{sigma} 1-methylvinyl. The stoichiometry and temperature stability range of the 1-methylvinyl intermediate formed in oxygen pressures up to 0.02 Torr is identical with the stoichiometry and stability of the same intermediate formed during oxidation of preadsorbed propylene by excess coadsorbed atomic oxygen.« less
Edge ohmic heating and improved confinement on HT-6M Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, X.
1995-04-01
An improved confinement has been observed on HT-6M tokamak after application of Edge Ohmic Heating (EOH) which makes plasma current rapidly ramp up from an initial steady state (I{sub p}=55 kA) within a small time scale (0.4 ms) to a second steady state (I{sub p}=60 kA) with a ramp rate of 12 MA/sec. The improved confinement is characterized by (a) increased average density n{sub e}; (b) reduced H{sub alpha} radiation; (c) reduced density fluctuations both in the center and at the edge; (d) a steeper n{sub e} and T{sub e} profile at the edge; (e) the changed profiles of plasmamore » parameters n{sub e}(r), q(r) and j(r); (f) transferred the oscillation modes of the soft-X ray signals from Mirnov fluctuation (12 kHz) to sawtooth oscillation (1.7 kHz). The changes of edge fluctuation, radial electric field and bremsstrahlung during EOH were measured and discussed in details. The measured values of {beta}{sub p}+l{sub i}/2 and soft-X ray sawtooth inversion radius implied the anomalous current penetration. 10 refs., 2 figs.« less
Uranium association with iron-bearing phases in mill tailings from Gunnar, Canada.
Othmane, Guillaume; Allard, Thierry; Morin, Guillaume; Sélo, Madeleine; Brest, Jessica; Llorens, Isabelle; Chen, Ning; Bargar, John R; Fayek, Mostafa; Calas, Georges
2013-11-19
The speciation of uranium was studied in the mill tailings of the Gunnar uranium mine (Saskatchewan, Canada), which operated in the 1950s and 1960s. The nature, quantification, and spatial distribution of uranium-bearing phases were investigated by chemical and mineralogical analyses, fission track mapping, electron microscopy, and X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies at the U LIII-edge and Fe K-edge. In addition to uranium-containing phases from the ore, uranium is mostly associated with iron-bearing minerals in all tailing sites. XANES and EXAFS data and transmission electron microscopy analyses of the samples with the highest uranium concentrations (∼400-700 mg kg(-1) of U) demonstrate that uranium primarily occurs as monomeric uranyl ions (UO2(2+)), forming inner-sphere surface complexes bound to ferrihydrite (50-70% of the total U) and to a lesser extent to chlorite (30-40% of the total U). Thus, the stability and mobility of uranium at the Gunnar site are mainly influenced by sorption/desorption processes. In this context, acidic pH or alkaline pH with the presence of UO2(2+)- and/or Fe(3+)-complexing agents (e.g., carbonate) could potentially solubilize U in the tailings pore waters.
Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V
2009-04-09
Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.
Minimizing the Diameter of a Network Using Shortcut Edges
NASA Astrophysics Data System (ADS)
Demaine, Erik D.; Zadimoghaddam, Morteza
We study the problem of minimizing the diameter of a graph by adding k shortcut edges, for speeding up communication in an existing network design. We develop constant-factor approximation algorithms for different variations of this problem. We also show how to improve the approximation ratios using resource augmentation to allow more than k shortcut edges. We observe a close relation between the single-source version of the problem, where we want to minimize the largest distance from a given source vertex, and the well-known k-median problem. First we show that our constant-factor approximation algorithms for the general case solve the single-source problem within a constant factor. Then, using a linear-programming formulation for the single-source version, we find a (1 + ɛ)-approximation using O(klogn) shortcut edges. To show the tightness of our result, we prove that any ({3 over 2}-ɛ)-approximation for the single-source version must use Ω(klogn) shortcut edges assuming P ≠ NP.
X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.
Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan
2018-03-01
The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.
K-edge subtraction synchrotron X-ray imaging in bio-medical research.
Thomlinson, W; Elleaume, H; Porra, L; Suortti, P
2018-05-01
High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Es structure using an HF radar
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1986-05-01
By using an HF radar which produces a steerable beam about 4° wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of mid-latitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1° from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds, each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.
Es structure using an HF radar
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
Using an HF radar which produces a steerable beam about 4 deg wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of midlatitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1 deg from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.
Broadband operation of rolled-up hyperlenses
NASA Astrophysics Data System (ADS)
Schwaiger, Stephan; Rottler, Andreas; Bröll, Markus; Ehlermann, Jens; Stemmann, Andrea; Stickler, Daniel; Heyn, Christian; Heitmann, Detlef; Mendach, Stefan
2012-06-01
This work is related to an earlier publication [Schwaiger , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.163903 102, 163903 (2009)], where we demonstrated by means of fiber-based transmission measurements that rolled-up Ag-(In)GaAs multilayers represent three-dimensional metamaterials with a plasma edge which is tunable over the visible and near-infrared regime by changing the thickness ratio of Ag and (In)GaAs, and predicted by means of finite-difference time-domain simulations that hyperlensing occurs at this frequency-tunable plasma edge. In the present work we develop a method to measure reflection curves on these structures and find that they correspond to the same tunable plasma edge. We find that retrieving the effective parameters from transmission and reflection data fails, because our realized metamaterials exceed the single-layer thicknesses of 5nm, which we analyze to be the layer thickness limit for the applicability of effective parameter retrieval. We show that our realized structures nevertheless have the functionality of an effective metamaterial by supplying a detailed finite-difference time-domain study which compares light propagation through our realized structure (17-nm-thick Ag layers and 34-nm-thick GaAs layers) and light propagation through an idealized structure of the same total thickness but with very thin layers [2-nm-thick Ag layers and 4-nm-thick (In)GaAs layers]. In particular, our simulations predict broadband hyperlensing covering a large part of the visible spectrum for both the idealized and our realized structures.
Kolin, David L.; Ronis, David; Wiseman, Paul W.
2006-01-01
We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272
The Erdős-Rothschild problem on edge-colourings with forbidden monochromatic cliques
NASA Astrophysics Data System (ADS)
Pikhurko, Oleg; Staden, Katherine; Yilma, Zelealem B.
2017-09-01
Let $\\mathbf{k} := (k_1,\\dots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;\\mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,\\dots,s$ such that, for every $c \\in \\{1,\\dots,s\\}$, the edges of colour $c$ contain no clique of order $k_c$. Write $F(n;\\mathbf{k})$ to denote the maximum of $F(G;\\mathbf{k})$ over all graphs $G$ on $n$ vertices. This problem was first considered by Erd\\H{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. We prove that, for every $\\mathbf{k}$ and $n$, there is a complete multipartite graph $G$ on $n$ vertices with $F(G;\\mathbf{k}) = F(n;\\mathbf{k})$. Also, for every $\\mathbf{k}$ we construct a finite optimisation problem whose maximum is equal to the limit of $\\log_2 F(n;\\mathbf{k})/{n\\choose 2}$ as $n$ tends to infinity. Our final result is a stability theorem for complete multipartite graphs $G$, describing the asymptotic structure of such $G$ with $F(G;\\mathbf{k}) = F(n;\\mathbf{k}) \\cdot 2^{o(n^2)}$ in terms of solutions to the optimisation problem.
Full multiple-scattering calculations on silicates and oxides at the Al K edge
NASA Astrophysics Data System (ADS)
Cabaret, Delphine; Sainctavit, Philippe; Ildefonse, Philippe; Flank, Anne-Marie
1996-05-01
We present full multiple-scattering calculations at the aluminium K edge that we compare with experiments for four crystalline silicates and oxide minerals. In the different minerals aluminium atoms are either fourfold or sixfold coordinated to oxygen atoms in Al sites that are poorly symmetric. The calculations are based on different choices of one-electron potentials according to aluminium coordinations and crystallographic structures of the compounds. Hence it is possible to determine how the near-edge spectral features are a sensitive probe of the effective potential seen by the photoelectron in the molecular environment. The purpose of this work is to determine on the one hand the relation between Al K-edge spectral features and the geometrical arrangements around the aluminium sites, and on the other hand the electronic structure of the compounds.
NASA Astrophysics Data System (ADS)
van Aken, P. A.; Liebscher, B.; Styrsa, V. J.
In a recent paper entitled ``Water in minerals detectable by electron energy-loss spectroscopy EELS'' by R. Wirth, it has been claimed that OH-- and H2O-bearing minerals exhibit a characteristic peak in the ELNES spectra at about 528 eV prior to the onset of the O K-edge at 532 eV, which could be used for (semi-)quantitative determination of water- or OH-contents on a nanometer scale. It is shown here by parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM) that O K-pre-edge peaks with very high intensities may also exist in water-free compounds and minerals, in particular when they contain transition metals. These spectral features arise from covalent mixing of the metal and oxygen states, which introduces oxygen p character in unoccupied states of mainly metal character. The point is illustrated by the comparison of hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) O K-edge PEELS spectra which exhibit similar intensities of the pre-edge peak, despite of their grossly different OH- contents. As a consequence, the general validity of the method proposed by Wirth is questioned.
NASA Astrophysics Data System (ADS)
Farges, François
2009-09-01
Cr K-edge XANES spectra were obtained for a variety of Cr-bearing model compounds containing Cr(II), Cr(III), Cr(IV), Cr(V) and Cr(VI), in which the Cr-site symmetry is D4h, Oh and Td. The centroid position of the pre-edge feature is a better indicator of the Cr valence than the edge position. In Cr-rich oxides, higher-energy transitions must be excluded in order to refine a robust valence for Cr. The pre-edge for chromates is not unique and varies as a function of the CrO4 2- moiety distortion, which is often related to Cr-polymerization (monochromate vs. dichromate). Both the analogy with the Mn K-pre-edge information and ab initio FEFF calculations of the pre-edge feature for Cr(III) and Cr(VI) confirm the experimental trends. This methodology is applied to the Cr K-edge pre-edge feature collected in gems (emerald, spinel and ruby), the layered minerals fuchsite and kämmererite, two Cr-bearing aqueous solutions and a set of sodo-calcic silicate glasses used for bottling sparkling white wine. In emerald and fuchsite, the Cr-site is differently distorted than its ruby or spinel counterpart. In a Cr(III)-bearing aqueous solution and sodo-calcic glass, no evidence for Cr(III) with Td and C3v symmetry is detected. However, minor amounts of chromate moieties (most likely monomeric) are detected in a glass synthesized in air. Preliminary spectra for the wine bottle glass suggest that only trace amounts of chromates might possibly be present in these glasses.
NASA Astrophysics Data System (ADS)
Juhin, Amélie; Sainctavit, Philippe; Ollefs, Katharina; Sikora, Marcin; Filipponi, Adriano; Glatzel, Pieter; Wilhelm, Fabrice; Rogalev, Andrei
2016-12-01
X-ray magnetic circular dichroism is measured at the Fe K pre-edge in yttrium iron garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in total fluorescence yield (TFY) with an extremely high signal-to-noise ratio enables a factor of 2.4 to be gained in the XMCD intensity. Ligand field multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by resonant inelastic x-ray scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of ˜4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.
A Comprehensive X-Ray Absorption Model for Atomic Oxygen
NASA Technical Reports Server (NTRS)
Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.;
2013-01-01
An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Cormack, R; Bhagwat, M
Purpose: Gold nanoparticles (AuNP) are multifunctional platforms ideal for drug delivery, targeted imaging and radiosensitization. We have investigated quantitative imaging of AuNPs using on board imager (OBI) cone beam computed tomography (CBCT). To this end, we also present, for the first time, a novel method for k-edge imaging of AuNP by filter-based spectral shaping. Methods: We used a digital 25 cm diameter water phantom, embedded with 3 cm spheres filled with AuNPs of different concentrations (0 mg/ml – 16 mg/ml). A poly-energetic X-ray spectrum of 140 kVp from a conventional X-ray tube is shaped by balanced K-edge filters to createmore » an excess of photons right above the K-edge of gold at 80.7 keV. The filters consist of gold, tin, copper and aluminum foils. The phantom with appropriately assigned attenuation coefficients is forward projected onto a detector for each energy bin and then integrated. FKD reconstruction is performed on the integrated projections. Scatter, detector efficiency and noise are included. Results: We found that subtracting the results of two filter sets (Filter A:127 µm gold foil with 254 µm tin, 330 µm copper and 1 mm aluminum, and Filter B: 635 µm tin with 264 µm copper and 1 mm aluminum), provides substantial image contrast. The resulting filtered spectra match well below 80.7 keV, while maintaining sufficient X-ray quanta just above that. Voxel intensities of AuNP containing spheres increase linearly with AuNP concentration. K-edge imaging provides 18% more sensitivity than the tin filter alone, and 38% more sensitivity than the gold filter alone. Conclusion: We have shown that it is feasible to quantitatively detect AuNP distributions in a patient-sized phantom using clinical CBCT and K-edge spectral shaping.« less
2016-01-01
Herein, a systematic study of [L2Fe2S2]n model complexes (where L = bis(benzimidazolato) and n = 2-, 3-, 4-) has been carried out using iron and sulfur K-edge X-ray absorption (XAS) and iron Kβ and valence-to-core X-ray emission spectroscopies (XES). These data are used as a test set to evaluate the relative strengths and weaknesses of X-ray core level spectroscopies in assessing redox changes in iron–sulfur clusters. The results are correlated to density functional theory (DFT) calculations of the spectra in order to further support the quantitative information that can be extracted from the experimental data. It is demonstrated that due to canceling effects of covalency and spin state, the information that can be extracted from Fe Kβ XES mainlines is limited. However, a careful analysis of the Fe K-edge XAS data shows that localized valence vs delocalized valence species may be differentiated on the basis of the pre-edge and K-edge energies. These findings are then applied to existing literature Fe K-edge XAS data on the iron protein, P-cluster, and FeMoco sites of nitrogenase. The ability to assess the extent of delocalization in the iron protein vs the P-cluster is highlighted. In addition, possible charge states for FeMoco on the basis of Fe K-edge XAS data are discussed. This study provides an important reference for future X-ray spectroscopic studies of iron–sulfur clusters. PMID:27097289
Overdense microwave plasma heating in the CNT stellarator
NASA Astrophysics Data System (ADS)
Hammond, K. C.; Diaz-Pacheco, R. R.; Köhn, A.; Volpe, F. A.; Wei, Y.
2018-02-01
Overdense plasmas have been attained with 2.45 GHz microwave heating in the low-field, low-aspect-ratio CNT stellarator. Densities higher than four times the ordinary (O) mode cutoff density were measured with 8 kW of power injected in the O-mode and, alternatively, with 6.5 kW in the extraordinary (X) mode. The temperature profiles peak at the plasma edge. This was ascribed to collisional damping of the X-mode at the upper hybrid resonant layer. The X-mode reaches that location by tunneling, mode-conversions or after polarization-scrambling reflections off the wall and in-vessel coils, regardless of the initial launch being in O- or X-mode. This interpretation was confirmed by full-wave numerical simulations. Also, as the CNT plasma is not completely ionized at these low microwave power levels, electron density was shown to increase with power. A dependence on magnetic field strength was also observed, for O-mode launch.
Variability at the edge: highly accreting objects in Taurus
NASA Astrophysics Data System (ADS)
Abraham, Peter; Kospal, Agnes; Szabo, Robert
2017-04-01
In Kepler K2, Campaign 13, we will obtain 80-days-long optical light curves of seven highly accreting T Tauri stars in the benchmark Taurus star forming region. Here we propose to monitor our sample simultaneously with Kepler and Spitzer, to be able to separate variability patterns related to different physical processes. Monitoring our targets with Spitzer during the final 11 days of the K2 campaign, we will clean the light curves from non-accretion effects (rotating stellar spots, dips due to passing dust structures), and construct, for the first time, a variability curve which reflects the time-dependent accretion only. We will then study and understand how time-dependent mass accretion affects the density and temperature structure of the protoplanetary disk, which sets the initial conditions for planet formation. The proposed work cannot be done without the unparalleled precision of Kepler and Spitzer. This unique and one-time opportunity motivated our DDT proposal.
Reactivity and reaction intermediates for acetic acid adsorbed on CeO 2(111)
Calaza, Florencia C.; Chen, Tsung -Liang; Mullins, David R.; ...
2015-05-02
Adsorption and reaction of acetic acid on a CeO 2(1 1 1) surface was studied by a combination of ultra-highvacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectronspectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IRspectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that thedesorption products are strongly dependent upon the initial oxidation state of the CeO 2 surface, includingselectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demon-strate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above whichpoint ketene, acetone andmore » acetic acid desorb. Furthermore, DFT and RAIRS show that below 500 K, bridge bondedacetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed bywater desorption.« less
Huang, Jingfeng; Wei, Chen; Zhang, Yao; Blackburn, George Alan; Wang, Xiuzhen; Wei, Chuanwen; Wang, Jing
2015-01-01
Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a. PMID:26356842
On the dispersion in brightness of far-ultraviolet emission lines of cool giant stars
NASA Technical Reports Server (NTRS)
Simon, T.
1984-01-01
Low-resolution spectra have been obtained with the short-wavelength camera of IUE for late-type giant stars of spectral type F5 III-G8 III. These stars are believed to be in their first crossing of the H-R diagram, as inferred from their location along the blue edge of the Hertzsprung gap or their high abundance of lithium. From the earliest spectral type observed along the blue edge of the gap, the normalized C IV flux, which is indicative of 100,000 K plasma, increases to a maximum at G0 and then falls with advancing spectral type. The total range in emission measure of 100,000 K gas is an order of magnitude or more among stars making their first appearance as yellow giants and averages about 25 times higher in these stars than in other G8-K0 yellow giants, the majority of which are probably He-burning post-red giants. The observations tentatively show that transition region emission, and by inference coronal emission, increases in intensity with the growth of convection zones in late-type giants and then declines at lower surface temperatures, perhaps because of rotational spin-down and a weakening of dynamo action.
Smith, Anna L; Colineau, Eric; Griveau, Jean-Christophe; Popa, Karin; Kauric, Guilhem; Martin, Philippe; Scheinost, Andreas C; Cheetham, Anthony K; Konings, Rudy J M
2017-05-15
The physicochemical properties of the potassium neptunate K 2 NpO 4 have been investigated in this work using X-ray diffraction, X-ray absorption near edge structure (XANES) spectroscopy at the Np-L 3 edge, and low-temperature heat capacity measurements. A Rietveld refinement of the crystal structure is reported for the first time. The Np(VI) valence state has been confirmed by the XANES data, and the absorption edge threshold of the XANES spectrum has been correlated to the Mössbauer isomer shift value reported in the literature. The standard entropy and heat capacity of K 2 NpO 4 have been derived at 298.15 K from the low-temperature heat capacity data. The latter suggest the existence of a magnetic ordering transition around 25.9 K, most probably of the ferromagnetic type.
NASA Astrophysics Data System (ADS)
Enoki, Toshiaki; Kiguchi, Manabu
2018-03-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Nanographenes have important edge geometry dependence in their electronic structures. In armchair edges, electron wave interference works to contribute to energetic stability. Meanwhile, zigzag edges possess an edge-localized and spin-polarized nonbonding edge state, which causes electronic, magnetic, and chemical activities. In addition to the geometry dependence, the electronic structures are seriously affected by edge chemistry details. The edge chemistry dependence together with edge geometries on the electronic structures are discussed with samples of randomly networked nanographenes (microporous activated carbon fibers) in pristine state and under high-temperature annealing. In the pristine sample with the edges oxidized in ambient atmospheric conditions, the edge state, which is otherwise unstable, can be stabilized because of the charge transfer from nanographene to terminating oxygen. Nanographene, whose edges consist of a combination of magnetic zigzag edges and nonmagnetic armchair edges, is found to be ferrimagnetic with a nonzero net magnetic moment created under the interplay between a strong intrazigzag-edge ferromagnetic interaction and intermediate-strength interzigzag-edge antiferromagnetic-ferromagnetic interaction. At heat-treatment temperatures just below the fusion start (approximately 1500 K), the edge-terminating structure is changed from oxygen-containing groups to hydrogen in the nanographene network. Additionally, hydrogen-terminated zigzag edges, which are present as the majority and chemically unstable, play a triggering role in fusion above 1500 K. The fusion start brings about an insulator-to-metal transition at TI -M˜1500 K . Local fusions taking place percolatively between nanographenes work to expand the π -bond network, eventually resulting in the development of antiferromagnetic short-range order toward spin glass in the magnetic moments of nanographenes. For applications, the edge-state spins in nanographene-based microporous carbon can be a good tool as a molecule sensor in detecting molecules having different chemical properties and sizes. The on-off magnetic switching phenomena upon the adsorption of H2O and other OH-containing molecules offers a molecule sensor. A He sensor, in which the edge-state spins is employed as a probe, is also proposed on the basis of a huge condensation of He into ultramicropores.
Analysis of coke beverages by total-reflection X-ray fluorescence
NASA Astrophysics Data System (ADS)
Fernández-Ruiz, Ramón; von Bohlen, Alex; Friedrich K, E. Josue; Redrejo, M. J.
2018-07-01
The influence of the organic content, sample preparation process and the morphology of the depositions of two types of Coke beverage, traditional and light Coke, have been investigated by mean of Total-reflection X-ray Fluorescence (TXRF) spectrometry. Strong distortions of the nominal concentration values, up to 128% for P, have been detected in the analysis of traditional Coke by different preparation methods. These differences have been correlated with the edge X-ray energies of the elements analyzed being more pronounced for the lighter elements. The influence of the organic content (mainly sugar) was evaluated comparing traditional and light Coke analytical TXRF results. Three sample preparation methods have been evaluated as follows: direct TXRF analysis of the sample only adding internal standard, TXRF analysis after open vessel acid digestion and TXRF analysis after high pressure and temperature microwave-assisted acid digestion. Strong correlations were detected between quantitative results, methods of preparation and energies of the X-ray absorption edges of quantified elements. In this way, a decay behavior for the concentration differences between preparation methods and the energies of the X-ray absorption edges of each element were observed. The observed behaviors were modeled with exponential decay functions obtaining R2 correlation coefficients from 0.989 to 0.992. The strong absorption effect observed, and even possible matrix effect, can be explained by the inherent high organic content of the evaluated samples and also by the morphology and average thickness of the TXRF depositions observed. As main conclusion of this work, the analysis of light elements in samples with high organic content by TXRF, i.e. medical, biological, food or any other organic matrixes should be taken carefully. In any case, the direct analysis is not recommended and a previous microwave-assisted acid digestion, or similar, is mandatory, for the correct elemental quantification by TXRF.
Effect of phosphorus deficiency on spectral reflectance and morphology of soybean plants
Milton, N.M.; Eiswerth, B.A.; Ager, C.M.
1991-01-01
Soybean plants were grown in hydroponic solutions having three concentration levels of phosphorus. Spectral reflectance changes included higher reflectance in the green and yellow portions of the electromagnetic spectrum in phosphorus-deficient plants and a difference in position of the long wavelength edge (the red edge) of the chlorophyll absorption band centered near 0.68 ??m. Plants having the least phosphorus in the growing medium did not show the normal shift of the red edge to longer wavelength which occurs as leaves mature. Shoot and root biomass were significantly lower in the phosphorus-deficient plants. These results are consistent with those obtained when soybean plants are dosed with elevated concentrations of metallic elements. We hypothesize that nutrient imbalances or anomalous metal concentrations in the soil set up physiological conditions at the soil/root interface that are responsible for the reflectance differences observed in laboratory and field studies of plants growing in substrates enriched in metallic elements. ?? 1991.
NASA Astrophysics Data System (ADS)
Foster, A. L.; Klofas, J. M.; Hein, J. R.; Koschinsky, A.; Bargar, J.; Dunham, R. E.; Conrad, T. A.
2011-12-01
Marine ferromanganese crusts and nodules ("Fe-Mn crusts") are considered a potential mineral resource due to their accumulation of several economically-important elements at concentrations above mean crustal abundances. They are typically composed of intergrown Fe oxyhydroxide and Mn oxide; thicker (older) crusts can also contain carbonate fluorapatite. We used X-ray absorption fine-structure (XAFS) spectroscopy, a molecular-scale structure probe, to determine the speciation of several elements (Te, Bi, Mo, Zr, Pt) in Fe-Mn crusts. As a first step in analysis of this dataset, we have conducted principal component analysis (PCA) of Te K-edge and Mo K-edge, k3-weighted XAFS spectra. The sample set consisted of 12 homogenized, ground Fe-Mn crust samples from 8 locations in the global ocean. One sample was subjected to a chemical leach to selectively remove Mn oxides and the elements associated with it. The samples in the study set contain 50-205 mg/kg Te (average = 88) and 97-802 mg/kg Mo (average = 567). PCAs of background-subtracted, normalized Te K-edge and Mo K-edge XAFS spectra were performed on a data matrix of 12 rows x 122 columns (rows = samples; columns = Te or Mo fluorescence value at each energy step) and results were visualized without rotation. The number of significant components was assessed by the Malinowski indicator function and ability of the components to reconstruct the features (minus noise) of all sample spectra. Two components were significant by these criteria for both Te and Mo PCAs and described a total of 74 and 75% of the total variance, respectively. Reconstruction of potential model compounds by the principal components derived from PCAs on the sample set ("target transformation") provides a means of ranking models in terms of their utility for subsequent linear-combination, least-squares (LCLS) fits (the next step of data analysis). Synthetic end-member models of Te4+, Te6+, and Mo adsorbed to Fe(III) oxyhydroxide and Mn oxide were tested. Te6+ sorbed to Fe oxyhydroxide and Mo sorbed to Fe oxyhydroxide were identified as the best models for Te and Mo PCAs, respectively. However, in the case of Mo, least-squares fits contradicted these results, indicating that about 80% of Mo in crust samples was associated with Mn oxides. Ultimately it was discovered that the sample from which Mn oxide had been leached was skewing the results in the Mo PCA but not in the Te PCA. When the leached sample was removed and the Mo PCA repeated (n = 11), target transformation indicated that Mo sorbed to Mn oxide was indeed the best model for the set. Our results indicate that Te and Mo are strongly partitioned into different phases in these Fe-Mn crusts, and emphasize the importance of evaluating outliers and their effects on PCA.
Ramp-edge structured tunneling devices using ferromagnet electrodes
Kwon, Chuhee [Long Beach, CA; Jia, Quanxi [Los Alamos, NM
2002-09-03
The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La.sub.0.7 Sr.sub.0.3) MnO.sub.3, ferromagnetic electrodes and a SrTiO.sub.3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.
NASA Astrophysics Data System (ADS)
Ye, Lihua; Wang, Yan; Feng, Yangyang; Liu, Bo; Gu, Bing; Cui, Yiping; Lu, Yanqing
2018-03-01
By changing the doping concentration of the chiral agent to adjust the relative position of the reflection band of cholesteric liquid crystals and the fluorescence emission spectrum of the dye, photonic band-edge and random lasing were observed, respectively. The reflection band of the cholesteric phase liquid crystal can also be controlled by adjusting the temperature: the reflection band is blue-shifted with increasing temperature, and a reversible switch from photonic band-edge to random lasing is obtained. Furthermore, the laser line width can be thermally adjusted from 1.1 nm (at 27 °C) to 4.6 nm (at 32.1 °C). A thermally tunable polarization state of a random laser from dual cells was observed, broadening the field of application liquid crystal random lasers.
Use of complex frequency plane to design broadband and sub-wavelength absorbers.
Romero-García, V; Theocharis, G; Richoux, O; Pagneux, V
2016-06-01
The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-wavelength resonators is studied in this work. In particular, only single mode reflected waves are considered, an approximation which is accurate in this low frequency regime. A method of analysis of absorption that uses the structure of the reflection coefficient in the complex frequency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of poles and zeros that are complex conjugate and which have imaginary parts linked to the energy leakage by radiation. When losses are introduced and balanced to the leakage, the critical coupling condition is satisfied and total absorption is obtained. Examples of a slot resonator and of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total absorption.
NASA Astrophysics Data System (ADS)
Ching, Wai-Yim; Rulis, Paul
2009-03-01
Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.
A robotic reflective Schmidt telescope for Dome C
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Andersen, M. I.; Steinbach, M.
2004-10-01
This paper lays out a wide-field robotic Schmidt telescope (RST) for the Antarctic site Dome C. The telescope is based on 80/120cm reflective Schmidt optics, built originally for a space project, and a mosaic of four 7.5k×7.5k 8-μm thinned CCDs from the PEPSI/LBT wafer run. The telescope's total field of view (FOV) would be 5o circular (minimum 3o× 3o square) with a plate scale of 0.7 arcsec per pixel. Limiting magnitude is expected to be V=21.5mag in 60 sec for a field of 9 square degrees.
Getty, Kendra; Delgado-Jaime, Mario Ulises
2010-01-01
The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030
NASA Astrophysics Data System (ADS)
de Vives, Ana Elisa Sirito; Moreira, Silvana; Brienza, Sandra Maria Boscolo; Medeiros, Jean Gabriel Silva; Filho, Mário Tomazello; Zucchi, Orghêda Luíza Araújo Domingues; Filho, Virgílio Franco do Nascimento
2006-11-01
This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and country sides. The sample collection was carried out in Piracicaba city, São Paulo State, which presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ("Sibipiruna") was selected because it is widely used in urban forestation. Synchrotron Radiation Total Reflection X-ray Fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and a Si(Li) detector for X-ray detection. In several samples, P, K, Ca, Ti, Fe, Sr, Ba and Pb were quantified. The K/Ca, K/P and Pb/Ca ratios were found to decrease towards the bark.
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
NASA Astrophysics Data System (ADS)
Chalmin, E.; Farges, F.; Brown, G. E.
2009-01-01
High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses.
Ranking Mammal Species for Conservation and the Loss of Both Phylogenetic and Trait Diversity.
Redding, David W; Mooers, Arne O
2015-01-01
The 'edge of existence' (EDGE) prioritisation scheme is a new approach to rank species for conservation attention that aims to identify species that are both isolated on the tree of life and at imminent risk of extinction as defined by the World Conservation Union (IUCN). The self-stated benefit of the EDGE system is that it effectively captures unusual 'unique' species, and doing so will preserve the total evolutionary history of a group into the future. Given the EDGE metric was not designed to capture total evolutionary history, we tested this claim. Our analyses show that the total evolutionary history of mammals preserved is indeed much higher if EDGE species are protected than if at-risk species are chosen randomly. More of the total tree is also protected by EDGE species than if solely threat status or solely evolutionary distinctiveness were used for prioritisation. When considering how much trait diversity is captured by IUCN and EDGE prioritisation rankings, interestingly, preserving the highest-ranked EDGE species, or indeed just the most threatened species, captures more total trait diversity compared to sets of randomly-selected at-risk species. These results suggest that, as advertised, EDGE mammal species contribute evolutionary history to the evolutionary tree of mammals non-randomly, and EDGE-style rankings among endangered species can also capture important trait diversity. If this pattern holds for other groups, the EDGE prioritisation scheme has greater potential to be an efficient method to allocate scarce conservation effort.
Intercomparison of methods for image quality characterization. I. Modulation transfer function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samei, Ehsan; Ranger, Nicole T.; Dobbins, James T. III
The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge testmore » device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 {mu}m opening. The translucent edge test device was made of a laminated and polished Pt{sub 0.9}Ir{sub 0.1} alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4.0%{+-}0.2% lower than that of Dobbins et al. and 0.7%{+-}0.4% higher than that of Samei et al. averaged over the zero to cutoff frequency range. Over the same frequency range, keeping beam quality and limitation constant, the average MTF estimate obtained with the edge techniques differed by up to 5.2%{+-}0.2% from that of the slit, with the opaque edge providing lower MTF estimates at lower frequencies than those obtained with the translucent edge or slit. The beam quality impacted the average estimated MTF by as much as 3.7%{+-}0.9% while the use of beam limiting devices alone increased the average estimated MTF by as much as 7.0%{+-}0.9%. While the slit method is inherently very sensitive to misalignment, both edge techniques were found to tolerate misalignments by as much as 6 cm. The results suggest the use of the opaque edge test device and the tube internal collimator for beam limitation in order to achieve an MTF result most reflective of the overall performance of the imaging system and least susceptible to misalignment and scattered radiation. Careful attention to influencing factors is warranted to achieve accurate results.« less
Intercomparison of methods for image quality characterization. I. Modulation transfer function.
Samei, Ehsan; Ranger, Nicole T; Dobbins, James T; Chen, Ying
2006-05-01
The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge test device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 microm opening. The translucent edge test device was made of a laminated and polished Pt(0.9)Ir(0.1). alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4.0% +/- 0.2% lower than that of Dobbins et al. and 0.7% +/- 0.4% higher than that of Samei et al. averaged over the zero to cutoff frequency range. Over the same frequency range, keeping beam quality and limitation constant, the average MTF estimate obtained with the edge techniques differed by up to 5.2% +/- 0.2% from that of the slit, with the opaque edge providing lower MTF estimates at lower frequencies than those obtained with the translucent edge or slit. The beam quality impacted the average estimated MTF by as much as 3.7% +/- 0.9% while the use of beam limiting devices alone increased the average estimated MTF by as much as 7.0% +/- 0.9%. While the slit method is inherently very sensitive to misalignment, both edge techniques were found to tolerate misalignments by as much as 6 cm. The results suggest the use of the opaque edge test device and the tube internal collimator for beam limitation in order to achieve an MTF result most reflective of the overall performance of the imaging system and least susceptible to misalignment and scattered radiation. Careful attention to influencing factors is warranted to achieve accurate results.
Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Content in Slash Pine
NASA Technical Reports Server (NTRS)
Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.
1990-01-01
Chlorophyll is a key indicator of the physiological status of a forest canopy. However, its distribution may vary greatly in time and space, so that the estimation of chlorophyll content of canopies or branches by extrapolation from leaf values obtained by destructive sampling is labor intensive and potentially inaccurate. Chlorophy11 content is related positively to the point of maximum slope in vegetation reflectance spectra which occurs at wavelengths between 690-740 nm and is known as the "red edge." The red edge of needles on individual slash pine (Piniis elliottii Engelm.) branches and in whole forest canopies was measured with a spectroradiometer. Branches were measured on the ground against a spectrally flat reflectance target and canopies were measured from observation towers against a spectrally variable understory and forest floor. There was a linear relationship between red edge and chlorophyll content of branches (R(exp 2) = 0.91). Measurements of the red edge and this relationship were used to estimate the chlorophyll content of other branches with an error that was lower than that associated with the colorimetric (laboratory) method. There was no relationship between the red edge and the chlorophyll content of whole canopies. This can be explained by the overriding influence of the understory and forest floor, an influence that was illustrated by spectral mixture modeling. The results suggest that the red edge could be used to estimate the chlorophyll content in branches but it is unlikely to be of value for the estimation of chlorophyll content in canopies unless the canopy cover is high.
Sawicki, Richard H.; Sweatt, William
1987-01-01
A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique utilizes first means which defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and second means acting on the first means for adjustably bending the light reflecting surface into a particular selected one of the different curvatures depending upon the astigmatism to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.
NASA Astrophysics Data System (ADS)
Prüßmann, T.; Denecke, M. A.; Geist, A.; Rothe, J.; Lindqvist-Reis, P.; Löble, M.; Breher, F.; Batchelor, D. R.; Apostolidis, C.; Walter, O.; Caliebe, W.; Kvashnina, K.; Jorissen, K.; Kas, J. J.; Rehr, J. J.; Vitova, T.
2013-04-01
N-donor ligands such as n-Pr-BTP (2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine) studied here preferentially bind An(III) over Ln(III) in liquid-liquid separation of trivalent ac-tinides from spent nuclear fuel. The chemical and physical processes responsible for this selectivity are not yet well understood. We present systematic comparative near-edge X-ray absorption structure (XANES) spectroscopy investigations at the Gd L3 edge of [GdBTP3](NO3)3, [Gd(BTP)3](OTf)3, Gd(NO3)3, Gd(OTf)3 and N K edge of [Gd(BTP)3](NO3)3, Gd(NO3)3 complexes. The pre-edge absorption resonance in Gd L3 edge high-energy resolution X-ray absorption near edge structure spectra (HR-XANES) is explained as arising from 2p3/2 → 4f/5d electronic transitions by calculations with the FEFF9.5 code. Experimental evidence is found for higher electronic density on Gd in [Gd(BTP)3](NO3)3 and [Gd(BTP)3](OTf)3 compared to Gd in Gd(NO3)3 and Gd(OTf)3, and on N in [Gd(BTP)3](NO3)3 compared to n-Pr-BTP. The origin of the pre-edge structure in the N K edge XANES is explained by density functional theory (DFT) with the ORCA code. Results at the N K edge suggest a change in ligand orbital occupancies and mixing upon complexation but further work is necessary to interpret observed spectral variations.
Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.
2016-08-10
We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less
Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe
2016-01-28
The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.
Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; ...
2016-01-01
The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide bettermore » resolution than actinide L 3 -edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L 2,3 -edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K 4 Fe II (CN) 6 , thorium hexacyanoferrate Th IV Fe II (CN) 6 , and neodymium hexacyanoferrate KNd III Fe II (CN) 6 . The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe II (CN) 6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K 4 Fe II (CN) 6 ), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.« less
Relativistic Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748-288
NASA Technical Reports Server (NTRS)
Miller, J. M.; Fox, D. W.; Matteo, T. DI; Wijnands, R.; Belloni, T.; Pooley, D.; Kouveliotou, C.; Lewin, W. H. G.
2001-01-01
We report evidence for an Fe K(alpha) fluorescence line feature and disk reflection in the very high, high-, and low-state X-ray spectra of the Galactic microquasar XTE J1748-288 during its 1998 June outburst. Spectral analyses are made on data gathered throughout the outburst by the Rossi X-Ray Timing Explorer Proportional Counter Array. Gaussian line, relativistic disk emission line, and ionized disk reflection models are fitted to the data. In the very high state the line profile appears strongly redshifted, consistent with disk emission from the innermost stable orbits around a maximally rotating Kerr black hole. In the high state the line profile is less redshifted and increasingly prominent. The low-state line profile is very strong (approx. 0.5 keV equivalent width) and centered at 6.7 +/- 0.10 keV; disk line emission model fits indicate that the inner edge of the disk fluctuates between approx. 20Rg and approx. 100Rg in this state. The disk reflection fraction is traced through the outburst; reflection from an ionized disk is preferred in the very high and high states, and reflection from a relatively neutral disk is preferred in the low state. We discuss the implications of our findings for the binary system dynamics and accretion flow geometry in XTE J1748-288.
Relativistic Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748-288
NASA Technical Reports Server (NTRS)
Miller, J. M.; Fox, D. W.; DiMatteo, T.; Wijnands, R.; Belloni, T.; Pooley, D.; Kouveliotou, C.; Lewin, W. H. G.
2001-01-01
We report evidence for an Fe K-alpha fluorescence line feature and disk reflection in the very high, high-, and low-state X-ray spectra of the Galactic microquasar XTE J1748 - 288 during its 1998 June outburst. Spectral analyses are made on data gathered throughout the outburst by the Rossi X-Ray Timing Explorer Proportional Counter Array. Gaussian line, relativistic disk emission line, and ionized disk reflection models are fitted to the data. In the very high state the line profile appears strongly redshifted, consistent with disk emission from the innermost stable orbits around a maximally rotating Kerr black hole. In the high state the line profile is less redshifted and increasingly prominent. The low-state line profile is very strong (approx. 0.5 keV equivalent width) and centered at 6.7 +/- 0.10 keV; disk line emission model fits indicate that the inner edge of the disk fluctuates between approx. 20R(sub g) and - approx. 100R(sub g) in this state. The disk reflection fraction is traced through the outburst; reflection from an ionized disk is preferred in the very high and high states, and reflection from a relatively neutral disk is preferred in the low state. We discuss the implications of our findings for the binary system dynamics and accretion flow geometry in XTE J1748 - 288.
On P2 ⋄ Pn -supermagic labeling of edge corona product of cycle and path graph
NASA Astrophysics Data System (ADS)
Yulianto, R.; Martini, Titin S.
2018-04-01
A simple graph G = (V, E) admits a H-covering, where H is subgraph of G, if every edge in E belongs to a subgraph of G isomorphic to H. Graph G is H-magic if there is a total labeling f:V(G)\\cup E(G)\\to 1,2,\\ldots,|V(G)|+|E(G)|, such that each subgraph {H}{\\prime }=({V}{\\prime },{E}{\\prime }) of G isomorphic to H and satisfying f{({H}{\\prime })}=def{\\sum }\\upsilon \\in {V{\\prime }}f(\\upsilon )+{\\sum }e\\in {E{\\prime }}f(e)=m(f) where m(f) is a constant magic sum. Additionaly, G admits H-supermagic if f(V)=1,2,\\ldots,|V|. The edge corona {C}n \\diamond {P}n of Cn and Pn is defined as the graph obtained by taking one copy of Cn and n copies of Pn , and then joining two end-vertices of the i-th edge of Cn to every vertex in the i-th copy of Pn . This research aim is to find H-supermagic covering on an edge corona product of cycle and path graph {C}n \\diamond {P}n where H is {P}2 \\diamond {P}n. We use k-balanced multiset to solve our reserarch. Here, we find that an edge corona product of cycle and path graph {C}n \\diamond {P}n is {P}2 \\diamond {P}n supermagic for n > 3.
K-Shell Photoabsorption Edge of Strongly Coupled Matter Driven by Laser-Converted Radiation
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jiamin; Zhang, Jiyan; Yang, Guohong; Wei, Minxi; Xiong, Gang; Song, Tianming; Zhang, Zhiyu; Bao, Lihua; Deng, Bo; Li, Yukun; He, Xiaoan; Li, Chaoguang; Mei, Yu; Yu, Ruizhen; Jiang, Shaoen; Liu, Shenye; Ding, Yongkun; Zhang, Baohan
2013-10-01
The first observation of the K-shell photoabsorption edge of strongly coupled matter with an ion-ion coupling parameter of about 65 generated by intense x-ray radiation-driven shocks is reported. The soft x-ray radiation generated by laser interaction with a “dog bone” high-Z hohlraum is used to ablate two thick CH layers, which cover a KCl sample, to create symmetrical inward shocks. While the two shocks impact at the central KCl sample, a highly compressed KCl is obtained with a density of 3-5 times solid density and a temperature of about 2-4 eV. The photoabsorption spectra of chlorine near the K-shell edge are measured with a crystal spectrometer using a short x-ray backlighter. The redshift of the K edge up to 11.7 eV and broadening of 15.2 eV are obtained for the maximum compression. A comparison of the measured redshifts and broadenings with dense plasma calculations are made, and it indicates potential improvements in the theoretical description.
Matsunaga, Yuki; Fujisawa, Kiyoshi; Ibi, Naoko; Fujita, Mitsuharu; Ohashi, Tetuya; Amir, Nagina; Miyashita, Yoshitaro; Aika, Ken-Ichi; Izumi, Yasuo; Okamoto, Ken-Ichi
2006-02-01
The sulfur K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to homoleptic thiolato complexes with Zn(II) and Cd(II), (Et(4)N)[Zn(SAd)(3)] (1), (Et(4)N)(2)[{Zn(ScHex)(2)}(2)(mu-ScHex)(2)] (2), (Et(4)N)(2)[{Cd(ScHex)(2)}(2)(mu-ScHex)(2)] (3), (Et(4)N)(2)[{Cd(ScHex)}(4)(mu-ScHex)(6)] (4), [Zn(mu-SAd)(2)](n) (5), and [Cd(mu-SAd)(2)](n) (6) (HSAd=1-adamantanethiol, HScHex=cyclohexanethiol). The EXAFS results are consistent with the X-ray crystal data of 1-4. The structures of 5 and 6, which have not been determined by X-ray crystallography, are proposed to be polynuclear structures on the basis of the sulfur K-edge EXAFS, far-IR spectra, and elemental analysis. Clear evidences of the S...S interactions (between bridging atoms or neighboring sulfur atoms) and the S...C(far) interactions (in which C(far) atom is next to carbon atom directly bonded to sulfur atom) were observed in the EXAFS data for all complexes and thus lead to the reliable determination of the structures of 5 and 6 in combination with conventional zinc K-edge EXAFS analysis for 5. This new methodology, sulfur K-edge EXAFS, could be applied for the structural determination of in vivo metalloproteins as well as inorganic compounds.
Tommaseo, C E; Kersten, M
2002-07-01
Zinc oxide was added during hydration of alite (C3S) as an analogue for solidification/stabilization by cement of metal-bearing hazardous waste. Curing of samples was stopped at various intervals between 8 h and 100 d, and the reaction products were analyzed by both X-ray diffraction (XRD) and X-ray absorption spectroscopy (EXAFS at Zn, Ca, and Si K-edges). Calcium zincate hydrate (CaZn2(OH)6 x 2H2O) initially formed together with calcium silicate hydrate (CSH) vanishes from X-ray diffractograms after 14 d, and no other crystalline Zn-bearing phase could be detected thereafter. EXAFS Zn K-edge data analysis reveals that Zn(O,OH)4 tetrahedra continue to determine the first shell coordination. However, a new Zn-Si bond appears in the second coordination shell as indicated by both Zn K-edge and Si K-edge EXAFS. Together with the Ca-Zn and Ca-Ca shells derived from the Ca K-edge EXAFS spectra, a structural model for the site occupation of Zn in CSH is proposed, whereby the Zn(O,OH)4 tetrahedra are bound in layer rather than interlayer positions substituting for the silicate bridging tetrahedra and/or at terminal silicate chain sites. This structural model enables ultimately the formulation of a thermodyamic Lippmann model to predict the aqueous solubility of Zn in solid solution with a CSH phase of a Ca/Si ratio fixed to unity.
NASA Astrophysics Data System (ADS)
Kaya, N.; Tıraşoğlu, E.; Apaydın, G.
2008-04-01
The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.
Electronic structure of transition metal-cysteine complexes from X-ray absorption spectroscopy.
Leung, Bonnie O; Jalilehvand, Farideh; Szilagyi, Robert K
2008-04-17
The electronic structures of HgII, NiII, CrIII, and MoV complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
NASA Technical Reports Server (NTRS)
Wan, Zhengming; Dozier, Jeff
1992-01-01
The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.
Optimization of a Scintillator for the Measurement of Positrons from Trapped, Polarized 37K
NASA Astrophysics Data System (ADS)
France, Erin; Melconian, Dan
2011-10-01
Precision beta decay experiments can be used to test the Standard Model via their value of correlation parameters. The TRINAT Collaboration is performing such an experiment using a source of polarized 37K from a magneto optical trap. The momentum of an emitted positron will be detected using a Silicon strip detector backed by a plastic scintillator. The goal of my research was to optimize the readout of the scintillator by testing different experimental setups. The front face and sides of the scintillator and light guide were wrapped with various reflective materials to find which maximized the light output. We found that one layer of Teflon tape on the front face with a loose wrapping of 3M-ESR (Enhanced Spectral Reflector) on the sides was optimal. We then tested the position dependence of this detector by moving a collimated source of betas across the front face, showing only a (5.9 +/- 0.5)% reduction in light collection at the edge compared to the center. The product of this work will be used in the upcoming TRINAT experiment measuring the beta asymmetry of 37K.
Replica Exchange Simulations of the Thermodynamics of Aβ Fibril Growth
Takeda, Takako; Klimov, Dmitri K.
2009-01-01
Abstract Replica exchange molecular dynamics and an all-atom implicit solvent model are used to probe the thermodynamics of deposition of Alzheimer's Aβ monomers on preformed amyloid fibrils. Consistent with the experiments, two deposition stages have been identified. The docking stage occurs over a wide temperature range, starting with the formation of the first peptide-fibril interactions at 500 K. Docking is completed when a peptide fully adsorbs on the fibril edge at the temperature of 380 K. The docking transition appears to be continuous, and occurs without free energy barriers or intermediates. During docking, incoming Aβ monomer adopts a disordered structure on the fibril edge. The locking stage occurs at the temperature of ≈360 K and is characterized by the rugged free energy landscape. Locking takes place when incoming Aβ peptide forms a parallel β-sheet structure on the fibril edge. Because the β-sheets formed by locked Aβ peptides are typically off-registry, the structure of the locked phase differs from the structure of the fibril interior. The study also reports that binding affinities of two distinct fibril edges with respect to incoming Aβ peptides are different. The peptides bound to the concave edge have significantly lower free energy compared to those bound on the convex edge. Comparison with the available experimental data is discussed. PMID:19167295
NASA Technical Reports Server (NTRS)
Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.
1995-01-01
A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.
NASA Technical Reports Server (NTRS)
Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei
1995-01-01
A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.
Kerepesi, Csaba; Varga, Bálint; Szalkai, Balázs; Grolmusz, Vince
2018-04-23
In the applications of the graph theory, it is unusual that one considers numerous, pairwise different graphs on the very same set of vertices. In the case of human braingraphs or connectomes, however, this is the standard situation: the nodes correspond to anatomically identified cerebral regions, and two vertices are connected by an edge if a diffusion MRI-based workflow identifies a fiber of axons, running between the two regions, corresponding to the two vertices. Therefore, if we examine the braingraphs of n subjects, then we have n graphs on the very same, anatomically identified vertex set. It is a natural idea to describe the k-frequently appearing edges in these graphs: the edges that are present between the same two vertices in at least k out of the n graphs. Based on the NIH-funded large Human Connectome Project's public data release, we have reported the construction of the Budapest Reference Connectome Server http://www.connectome.pitgroup.org that generates and visualizes these k-frequently appearing edges. We call the graphs of the k-frequently appearing edges "k-consensus connectomes" since an edge could be included only if it is present in at least k graphs out of n. Considering the whole human brain, we have reported a surprising property of these consensus connectomes earlier. In the present work we are focusing on the frontal lobe of the brain, and we report here a similarly surprising dynamical property of the consensus connectomes when k is gradually changed from k = n to k = 1: the connections between the nodes of the frontal lobe are seemingly emanating from those nodes that were connected to sub-cortical structures of the dorsal striatum: the caudate nucleus, and the putamen. We hypothesize that this dynamic behavior copies the axonal fiber development of the frontal lobe. An animation of the phenomenon is presented at https://youtu.be/wBciB2eW6_8. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawerk, Elie, E-mail: eliekawerk@hotmail.com, E-mail: ekawerk@units.it; Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris; Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise, 90656 Jdeidet el Metn, Liban
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
Optical properties of highly compressed polystyrene: An ab initio study
NASA Astrophysics Data System (ADS)
Hu, S. X.; Collins, L. A.; Colgan, J. P.; Goncharov, V. N.; Kilcrease, D. P.
2017-10-01
Using all-electron density functional theory, we have performed an ab initio study on x-ray absorption spectra of highly compressed polystyrene (CH). We found that the K -edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K -edge shift in warm, dense CH, we have developed a model designated as "single mixture in a box" (SMIAB), which incorporates both the lowering of the continuum and the rising of the Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K -edge shift of carbon in highly compressed CH in good agreement with results from quantum molecular dynamics (QMD) calculations. Traditional opacity models failed to give the proper K -edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [ρ =0.1 -100 g /c m3 and T =2000 -1 000 000 K ]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity-patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos atomic model for moderately compressed CH (ρCH≤10 g /c m3 ), but remains a factor of 2 to 3 higher at extremely high densities (ρCH≥50 g /c m3 ). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K -edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.
Optical properties of highly compressed polystyrene: An ab initio study
Hu, S. X.; Collins, L. A.; Colgan, J. P.; ...
2017-10-16
Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less
Optical properties of highly compressed polystyrene: An ab initio study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.; Collins, L. A.; Colgan, J. P.
Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less
Alternative Parameterizations for Cluster Editing
NASA Astrophysics Data System (ADS)
Komusiewicz, Christian; Uhlmann, Johannes
Given an undirected graph G and a nonnegative integer k, the NP-hard Cluster Editing problem asks whether G can be transformed into a disjoint union of cliques by applying at most k edge modifications. In the field of parameterized algorithmics, Cluster Editing has almost exclusively been studied parameterized by the solution size k. Contrastingly, in many real-world instances it can be observed that the parameter k is not really small. This observation motivates our investigation of parameterizations of Cluster Editing different from the solution size k. Our results are as follows. Cluster Editing is fixed-parameter tractable with respect to the parameter "size of a minimum cluster vertex deletion set of G", a typically much smaller parameter than k. Cluster Editing remains NP-hard on graphs with maximum degree six. A restricted but practically relevant version of Cluster Editing is fixed-parameter tractable with respect to the combined parameter "number of clusters in the target graph" and "maximum number of modified edges incident to any vertex in G". Many of our results also transfer to the NP-hard Cluster Deletion problem, where only edge deletions are allowed.
Linear array optical edge sensor
NASA Technical Reports Server (NTRS)
Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)
1987-01-01
A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system.
NASA Astrophysics Data System (ADS)
Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.
1995-12-01
Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 ±0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.
NASA Astrophysics Data System (ADS)
Zhou, Tianji; Zheng, Pengyuan; Pandey, Sumeet C.; Sundararaman, Ravishankar; Gall, Daniel
2018-04-01
The effect of the surface roughness on the electrical resistivity of metallic thin films is described by electron reflection at discrete step edges. A Landauer formalism for incoherent scattering leads to a parameter-free expression for the resistivity contribution from surface mound-valley undulations that is additive to the resistivity associated with bulk and surface scattering. In the classical limit where the electron reflection probability matches the ratio of the step height h divided by the film thickness d, the additional resistivity Δρ = √{3 /2 } /(g0d) × ω/ξ, where g0 is the specific ballistic conductance and ω/ξ is the ratio of the root-mean-square surface roughness divided by the lateral correlation length of the surface morphology. First-principles non-equilibrium Green's function density functional theory transport simulations on 1-nm-thick Cu(001) layers validate the model, confirming that the electron reflection probability is equal to h/d and that the incoherent formalism matches the coherent scattering simulations for surface step separations ≥2 nm. Experimental confirmation is done using 4.5-52 nm thick epitaxial W(001) layers, where ω = 0.25-1.07 nm and ξ = 10.5-21.9 nm are varied by in situ annealing. Electron transport measurements at 77 and 295 K indicate a linear relationship between Δρ and ω/(ξd), confirming the model predictions. The model suggests a stronger resistivity size effect than predictions of existing models by Fuchs [Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)], Sondheimer [Adv. Phys. 1, 1 (1952)], Rossnagel and Kuan [J. Vac. Sci. Technol., B 22, 240 (2004)], or Namba [Jpn. J. Appl. Phys., Part 1 9, 1326 (1970)]. It provides a quantitative explanation for the empirical parameters in these models and may explain the recently reported deviations of experimental resistivity values from these models.
Sun Oven Grown Cuprates Superconductivity and Periodic Lattice Distortions PLD
NASA Astrophysics Data System (ADS)
Acrivos, Juana V.; Chidvinadze, J. G.; Gulanova, D. D.; Loy, D.
2011-03-01
Bi 1.7 Pb 0.3 Sr 2 Ca n-1 Cu n O4 + 2 n + δ identified by the layer heavy element composition with substitution, s (2 s :2:n-1:n > 2) cuprates grown by green chemistry, transition temperatures to superconductivity Tc = 87 to 150K are related to their structure. Enhanced XRD at energies near but below the Cu K, and Pb and Bi L3-edges for pure n=2, 3 phases show Darwin shaped preferred [HKL] reflections that identify the magnitude of the allowed transition moment from the core state to extended unoccupied states determined by the electron density symmetry in that plane, confirmed by XAS of 3 μ m thick films. Weak PLD are still detected, but the stability gained by substitution of Bi by Pb is the formation of nearly symmetric Pb8 cubes in (2s : 2 : 1 : 2)13 and (2s < formula > < ? TeX super-lattices. The preferred 2D [HKL] reflection planes play the same role in the chemical activity of 3D solids as the linear bonds do in molecular reactions, governed by scattering dependent on the electron density symmetry in their highest and lowest unoccupied states. Supported by US NSF, Dreyfus, DOE Laboratories SSRL-SLAC, STUC-Ukraine and Georgia NSF.
Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, Andrew; Brandes, Jay; Leri, Alessandra
Interactions between organic matter and mineral matrices are critical to the preservation of soil and sediment organic matter. In addition to clay minerals, Fe(III) oxides particles have recently been shown to be responsible for the protection and burial of a large fraction of sedimentary organic carbon (OC). Through a combination of synchrotron X-ray techniques and high-resolution images of intact sediment particles, we assessed the mechanism of interaction between OC and iron, as well as the composition of organic matter co-localized with ferric iron. We present scanning transmission x-ray microscopy images at the Fe L 3 and C K1 edges showingmore » that the organic matter co-localized with Fe(III) consists primarily of C=C, C=O and C-OH functional groups. Coupling the co-localization results to iron K-edge X-ray absorption spectroscopy fitting results allowed to quantify the relative contribution of OC-complexed Fe to the total sediment iron and reactive iron pools, showing that 25–62% of total reactive iron is directly associated to OC through inner-sphere complexation in coastal sediments, as much as four times more than in low OC deep sea sediments. Direct inner-sphere complexation between OC and iron oxides (Fe-O-C) is responsible for transferring a large quantity of reduced OC to the sedimentary sink, which could otherwise be oxidized back to CO 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J
Software solves the three-dimensional Poisson equation div(k(grad(u)) = f, by the finite element method for the case when material properties, k, are distributed over hierarchy of edges, facets and tetrahedra in the finite element mesh. Method is described in Weiss, CJ, Finite element analysis for model parameters distributed on a hierarchy of geometric simplices, Geophysics, v82, E155-167, doi:10.1190/GEO2017-0058.1 (2017). A standard finite element method for solving Poisson’s equation is augmented by including in the 3D stiffness matrix additional 2D and 1D stiffness matrices representing the contributions from material properties associated with mesh faces and edges, respectively. The resulting linear systemmore » is solved iteratively using the conjugate gradient method with Jacobi preconditioning. To minimize computer storage for program execution, the linear solver computes matrix-vector contractions element-by-element over the mesh, without explicit storage of the global stiffness matrix. Program output vtk compliant for visualization and rendering by 3rd party software. Program uses dynamic memory allocation and as such there are no hard limits on problem size outside of those imposed by the operating system and configuration on which the software is run. Dimension, N, of the finite element solution vector is constrained by the the addressable space in 32-vs-64 bit operating systems. Total storage requirements for the problem. Total working space required for the program is approximately 13*N double precision words.« less
Phosphorus K-edge XANES spectroscopy of mineral standards
Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul
2011-01-01
Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905
Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
Hu, Jiuning; Ruan, Xiulin; Chen, Yong P
2009-07-01
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.
NASA Astrophysics Data System (ADS)
Luan, Jing
2018-04-01
As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500K< Teff < 10800K . Known as DAVs or ZZ Ceti stars, their oscillations are attributed to overstable g-modes excited by convective driving. The effective temperature at the blue edge of the instability strip is slightly lower than that at which a surface convection zone appears. The temperature at the red edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.
Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy
NASA Astrophysics Data System (ADS)
Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.
2017-01-01
Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.
Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: experiment and theory.
Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano
2005-03-22
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288 eV photon energy, due to absorption to pi* virtual orbitals, and broader structures at higher energy, involving sigma* virtual orbitals. The sharp absorption structures to the pi* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of pi* symmetry, from the six chemically shifted C 1s core orbitals.
Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory
NASA Astrophysics Data System (ADS)
Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano
2005-03-01
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288eV photon energy, due to absorption to π* virtual orbitals, and broader structures at higher energy, involving σ* virtual orbitals. The sharp absorption structures to the π* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of π* symmetry, from the six chemically shifted C 1s core orbitals.
Effect of Fe-substitution on the structure and magnetism of single crystals Mn2-xFexBO4
NASA Astrophysics Data System (ADS)
Platunov, M. S.; Kazak, N. V.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Moshkina, E. M.; Trigub, A. L.; Veligzhanin, A. A.; Zubavichus, Y. V.; Solovyov, L. A.; Velikanov, D. A.; Ovchinnikov, S. G.
2017-10-01
Single crystalline Mn2-xFexBO4 with x = 0.3, 0.5, 0.7 grown by the flux method have been studied by means of X-ray diffraction and X-ray absorption spectroscopy at both Mn and Fe K edges. The compounds were found to crystallize in an orthorhombic warwickite structure (sp. gr. Pnam). The lattice parameters change linearly with x thus obeying the Vegard's law. The Fe3+ substitution for Mn3+ has been deduced from the X-ray absorption near-edge structure (XANES) spectra. Two energy positions of the absorption edges have been observed in Mn K-edge XANES spectra indicating the presence of manganese in two different oxidation states. Extended X-ray absorption fine structure (EXAFS) analysis has shown the reduction of local structural distortions upon Fe substitution. The magnetization data have revealed a spin-glass transition at TSG = 11, 14 and 18 K for x = 0.3, 0.5 and 0.7, respectively.
NASA Astrophysics Data System (ADS)
Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.
1995-05-01
Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.
NASA Technical Reports Server (NTRS)
Chlebowski, T.; Seward, F. D.; Swank, J.; Szymkowiak, A.
1984-01-01
X-ray observations of Eta Car obtained with the high-resolution imager and solid-state spectrometer of the Einstein observatory are reported and interpreted in terms of a two-shell model. A soft component with temperature 5 million K is located in the expanding outer shell, and the hard core component with temperature 80 million K is attributed to the interaction of a high-velocity stellar wind from the massive central object with the inner edge of a dust shell. Model calculations based on comparison with optical and IR data permit estimation of the mass of the outer shell (0.004 solar mass), the mass of the dust shell (3 solar mass), and the total shell expansion energy (less than 2 x 10 to the 49th ergs).
NASA Technical Reports Server (NTRS)
Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1985-01-01
Two 25 cell stacks of the 13 inch x 23 inch cell size (about 4kW) remain on test after 4000 hours and 2900 hours, respectively, using simulated reformate fuel. These tests are focusing on the durability of fuel cell stack components developed through the end of 1983. Also, these stacks are serving as forerunners of a 25kW stack that will contain 175 cells of the same size and will employ the same technology base. The stack technology development program has focused on a new, low cost bipolar plate edge seal technique and evaluation of advanced cathode catalysts, an electrolyte replenishment system, and nonmetallic cooling plates in small stacks.
Ear-Canal Reflectance, Umbo Velocity and Tympanometry in Normal Hearing Adults
Rosowski, John J; Nakajima, Hideko H.; Hamade, Mohamad A.; Mafoud, Lorice; Merchant, Gabrielle R.; Halpin, Christopher F.; Merchant, Saumil N.
2011-01-01
Objective This study compares measurements of ear-canal reflectance (ECR) to other objective measurements of middle-ear function including, audiometry, umbo velocity (VU), and tympanometry in a population of strictly defined normal hearing ears. Design Data were prospectively gathered from 58 ears of 29 normal hearing subjects, 16 female and 13 male, aged 22–64 years. Subjects met all of the following criteria to be considered as having normal hearing. (1) No history of significant middle-ear disease. (2) No history of otologic surgery. (3) Normal tympanic membrane (TM) on otoscopy. (4) Pure-tone audiometric thresholds of 20 dB HL or better for 0.25 – 8 kHz. (5) Air-bone gaps no greater than 15 dB at 0.25 kHz and 10 dB for 0.5 – 4 kHz. (6) Normal, type-A peaked tympanograms. (7) All subjects had two “normal” ears (as defined by these criteria). Measurements included pure-tone audiometry for 0.25 – 8 kHz, standard 226 Hz tympanometry, Ear canal reflectance(ECR) for 0.2 – 6 kHz at 60 dB SPL using the Mimosa Acoustics HearID system, and Umbo Velocity (VU ) for 0.3 – 6 kHz at 70–90 dB SPL using the HLV-1000 laser Doppler vibrometer (Polytec Inc). Results Mean power reflectance (|ECR|2) was near 1.0 at 0.2– 0.3 kHz, decreased to a broad minimum of 0.3 to 0.4 between 1 and 4 kHz, and then sharply increased to almost 0.8 by 6 kHz. The mean pressure reflectance phase angle (∠ECR) plotted on a linear frequency scale showed a group delay of approximately 0.1 ms for 0.2 – 6 kHz. Small significant differences were observed in |ECR|2 at the lowest frequencies between right and left ears, and between males and females at 4 kHz. |ECR|2 decreased with age, but reached significance only at 1 kHz. Our ECR measurements were generally similar to previous published reports. Highly significant negative correlations were found between |ECR|2 and VU for frequencies below 1 kHz. Significant correlations were also found between the tympanometrically determined peak total compliance and |ECR|2 and The results suggest that middle-ear compliance VU at frequencies below 1 kHz. contributes significantly to the measured power reflectance and umbo velocity at frequencies below 1 kHz, but not at higher frequencies. Conclusions This study has established a database of objective measurements of middle ear function (ear-canal reflectance, umbo velocity, tympanometry) in a population of strictly defined normal hearing ears. The data will promote our understanding of normal middle ear function, and will serve as a control for comparison to similar measurements made in pathological ears. PMID:21857517
Baker, Michael L.; Mara, Michael W.; Yan, James J.; ...
2017-02-09
Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as Kα resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3dmore » orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of σ and π donor bonding and π back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. Here, the application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Michael L.; Mara, Michael W.; Yan, James J.
Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as Kα resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3dmore » orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of σ and π donor bonding and π back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. Here, the application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.« less
NASA Astrophysics Data System (ADS)
Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.
2017-11-01
Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.
NASA Astrophysics Data System (ADS)
Kross, Angela; McNairn, Heather; Lapen, David; Sunohara, Mark; Champagne, Catherine
2015-02-01
Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosynthetic pathways. The advantages of Rapid Eye in terms of increased temporal resolution (∼daily), high spatial resolution (∼5 m) and enhanced spectral information (includes red-edge band) are explored as an individual sensor and as part of a multi-sensor constellation. Seven vegetation indices based on combinations of reflectance in green, red, red-edge and near infrared bands were derived from RapidEye imagery between 2011 and 2013. LAI and biomass data were collected during the same period for calibration and validation of the relationships between vegetation indices and LAI and dry above-ground biomass. Most indices showed sensitivity to LAI from emergence to 8 m2/m2. The normalized difference vegetation index (NDVI), the red-edge NDVI and the green NDVI were insensitive to crop type and had coefficients of variations (CV) ranging between 19 and 27%; and coefficients of determination ranging between 86 and 88%. The NDVI performed best for the estimation of dry leaf biomass (CV = 27% and r2 = 090) and was also insensitive to crop type. The red-edge indices did not show any significant improvement in LAI and biomass estimation over traditional multispectral indices. Cumulative vegetation indices showed strong performance for estimation of total dry above-ground biomass, especially for corn (CV ≤ 20%). This study demonstrated that continuous crop LAI monitoring over time and space at the field level can be achieved using a combination of RapidEye, Landsat and SPOT data and sensor-dependant best-fit functions. This approach eliminates/reduces the need for reflectance resampling, VIs inter-calibration and spatial resampling.
Electron energy loss spectroscopy analysis of lithium deintercalated Li5/3-xTi7/3CrO7
NASA Astrophysics Data System (ADS)
Díaz-Carrasco, P.; Moreau, P.; Guyomard, D.; Kuhn, A.; García-Alvarado, F.
2006-05-01
Electron energy loss spectroscopy has been used to investigate the average oxidation state of Cr in both electrochemically and chemically delithiathed Li5/3-xTi7/3CrO7. The O K edge, Ti L2,3 and Cr L2,3 edge were monitored. Upon removal of Li ions, the oxygen K edge shows a continuous change while the Cr L edges remain almost unchanged. The Cr 2p multiplet was compared with reference samples (Cr2O3, CrO2 and K2Cr2O7) in order to assess on the sensitivity of the Cr L-edge to the oxidation state of chromium ion. The similarity between the Cr L spectra of Cr2O3 and CrO2 makes the valence analysis difficult in Li5/3-xTi7/3CrO7 but the presence of CrVI is excluded in oxidized samples. However, evolution of the low energy loss spectra observed in the 10 15 eV region confirms the modification of the electronic structure and partial oxidation of CrIII to CrIV.
On the Detectability of CO Molecules in the Interstellar Medium via X-Ray Spectroscopy
NASA Technical Reports Server (NTRS)
Joachimi, Katerine; Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.
2016-01-01
We present a study of the detectability of CO molecules in the Galactic interstellar medium using high-resolution X-ray spectra obtained with the XMM-Newton Reflection Grating Spectrometer. We analysed 10 bright low mass X-ray binaries (LMXBs) to study the CO contribution in their line of sights. A total of 25 observations were fitted with the ISMabs X-ray absorption model which includes photoabsorption cross-sections for Oi, Oii, Oiii and CO. We performed a Monte Carlo (MC) simulation analysis of the goodness of fit in order to estimate the significance of the CO detection. We determine that the statistical analysis prevents a significant detection of CO molecular X-ray absorption features, except for the lines of sight towards XTE J1718-330 and 4U 1636-53. In the case of XTE J1817-330, this is the first report of the presence of CO along its line of sight. Our results reinforce the conclusion that molecules have a minor contribution to the absorption features in the O K-edge spectral region. We estimate a CO column density lower limit to perform a significant detection with XMM-Newton of N(CO) greater than 6 x 10(exp 16) per sq cm for typical exposure times.
Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.
Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi
2016-02-16
In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.
XAS study of TiO2-based nanomaterials
NASA Astrophysics Data System (ADS)
Schneider, K.; Zajac, D.; Sikora, M.; Kapusta, Cz.; Michalow-Mauke, K.; Graule, Th.; Rekas, M.
2015-07-01
X-Ray Absorption Spectroscopy studies of the W (0-1 at% W) and Mo-doped TiO2 (0-1 at% Mo) nanoparticle specimens at the K edges of titanium and molybdenum as well as at the L2 L3 edges of tungsten are presented. The materials were prepared with Flame Spray Synthesis process by oxidation of metal-organic precursors. The Ti:K edge spectra in the XANES range show pre-edge and post-edge features characteristic for anatase. A decrease of the amplitude of the EXAFS function with doping is observed and attributed to a softening of the crystal lattice. The Mo EXAFS functions show a considerable decrease of the second-neighbour-shell peak with increasing Mo content, which is attributed to an increased number of cation vacancies. For tungsten a less pronounced effect is observed. The Mo and W XANES spectra do not show noticeable changes with doping level, which indicates their unchanged oxidation states.
Devlaeminck, Rebecca; De Schrijver, An; Hermy, Martin
2005-01-20
Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.
Wang, Hongxin; Young, Anthony T.; Guo, Jinghua; Cramer, Stephen P.; Friedrich, Stephan; Braun, Artur; Gu, Weiwei
2013-01-01
X-ray absorption and scattering spectroscopies involving the 3d transition-metal K- and L-edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M-edges, which are below 100 eV. Synchrotron-based X-ray sources can have higher energy resolution at M-edges. M-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) could therefore provide complementary information to K- and L-edge spectroscopies. In this study, M 2,3-edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M 2,3-edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different d–d transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M-edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high-sensitivity and high-resolution superconducting tunnel junction X-ray detectors below 100 eV is also illustrated and discussed. PMID:23765304
Wang, Hongxin; Young, Anthony T; Guo, Jinghua; Cramer, Stephen P; Friedrich, Stephan; Braun, Artur; Gu, Weiwei
2013-07-01
X-ray absorption and scattering spectroscopies involving the 3d transition-metal K- and L-edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M-edges, which are below 100 eV. Synchrotron-based X-ray sources can have higher energy resolution at M-edges. M-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) could therefore provide complementary information to K- and L-edge spectroscopies. In this study, M2,3-edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3-edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different d-d transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M-edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high-sensitivity and high-resolution superconducting tunnel junction X-ray detectors below 100 eV is also illustrated and discussed.
Do chemical gradients within soil aggregates reflect plant/soil interactions?
NASA Astrophysics Data System (ADS)
Krüger, Jaane; Hallas, Till; Kinsch, Lena; Stahr, Simon; Prietzel, Jörg; Lang, Friederike
2016-04-01
As roots and hyphae often accumulate at the surface of soil aggregates, their formation and turnover might be related to the bioavailability especially of immobile nutrients like phosphorus. Several methods have been developed to obtain specific samples from aggregate surfaces and aggregate cores and thus to investigate differences between aggregate shell and core. However, these methods are often complex and time-consuming; therefore most common methods of soil analysis neglect the distribution of nutrients within aggregates and yield bulk soil concentrations. We developed a new sequential aggregate peeling method to analyze the distribution of different nutrients within soil aggregates (4-20 mm) from four forest sites (Germany) differing in concentrations of easily available mineral P. Aggregates from three soil depths (Ah, BwAh, Bw) were isolated, air-dried, and peeled with a sieving machine performing four sieving levels with increasing sieving intensity. This procedure was repeated in quadruplicate, and fractions of the same sample and sieving level were pooled. Carbon and N concentration, citric acid-extractable PO4 and P, as well as total element concentrations (P, K, Mg, Ca, Al, Fe) were analyzed. Additionally, synchrotron-based P K-edge XANES spectroscopy was applied on selected samples to detect P speciation changes within the aggregates. The results reveal for most samples a significantly higher C and N concentration at the surface compared to the interior of the aggregates. Carbon and N gradients get more pronounced with increasing soil depth and decreasing P status of study sites. This might be explained by lower aggregate turnover rates of subsoil horizons and intense bioturbation on P-rich sites. This assumption is also confirmed by concentrations of citric acid-extractable PO4 and P: gradients within aggregates are getting more pronounced with increasing soil depth and decreasing P status. However, the direction of these gradients is site-specific: On P-rich study sites the results reveal a significant depletion of citric acid-extractable PO4 and P on aggregate surfaces in subsoil horizons, while at the other study sites a slight enrichment at the aggregate surfaces could be observed. Total P concentrations show no distinct gradients within topsoil aggregates, but a slight P enrichment at the surface of subsoil aggregates at the P-rich site. A strong correlation with the total Al concentrations may indicate a P speciation change within aggregates (e.g., due to acidification processes). These results were also confirmed by P K-edge XANES spectra of aggregate core and shell samples of the P-rich site: In the aggregate shells of topsoil as well as subsoil aggregates, organic P forms are most dominant (82 and 80 %, respectively) than in the aggregate interior (54 and 66%, respectively). Moreover, P in the shell seems to be completely associated to Al, whereas some of the P in the aggregate interior is bound to Fe and/or Ca. Overall, our results show that plant/soil interactions impact on small-scale distribution and bioavailability of nutrients by root uptake and root-induced aggregate engineering.
Theory of K-edge resonant inelastic x-ray scattering and its application for La0.5Sr1.5MnO4
NASA Astrophysics Data System (ADS)
Seman, T. F.; Liu, X.; Hill, J. P.; van Veenendaal, M.; Ahn, K. H.
2013-03-01
We present a formula based on tight-binding approach for the calculation of K-edge resonant inelastic x-ray scattering spectrum for transition metal oxides, by extending the previous result [K. H. Ahn, A. J. Fedro, and M. van Veenendaal, Phys. Rev. B 79, 045103 (2009).] to include explicit momentum dependence and a basis with multiple core hole sites. We apply this formula to layered charge, orbital, and spin ordered manganites, La0.5Sr1.5MnO4. The K-edge RIXS spectrum is found not periodic with respect to the actual reciprocal lattice, but approximately periodic with respect to the reciprocal lattice for the hypothetical unit cell with one core hole site. With experimental strcuture and reasonable tight-binding parameters, we obtain good agreement with experimental data, in particular, with regards to the large variation of the intensity with momentum. We find that the screening in La0.5Sr1.5MnO4 is highly localized around the core hole site and demonstrate the potential of K-edge RIXS as a probe for the screening dynamics in materials. Work supported by US.DOE Contr. DE-AC02-98CH10886 (X.L.,J.H.), US.DOE Award DE-FG02-03ER46097 (M.v.V.), CMCSN under Grants DE-FG02-08ER46540 & DE-SC0007091 (T.S.,K.A.,M.v.V.), Argonne XSD Visitor Prog.(K.A.), US.DOE Contr. DE-AC02-06CH11357 (X.L.,J.H).
Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation
NASA Astrophysics Data System (ADS)
Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.
2017-07-01
The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.
Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study
NASA Astrophysics Data System (ADS)
Jiang, Xiankai; Song, Bo; Tománek, David
2018-04-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.
NASA Astrophysics Data System (ADS)
Hall, T. A.; Al-Kuzee, J.; Benuzzi, A.; Koenig, M.; Krishnan, J.; Grandjouan, N.; Batani, D.; Bossi, S.; Nicolella, S.
1998-03-01
Experimental measurements of the shift and width of the aluminium K-absorption edge in laser shock-compressed plasma is presented. The spectrometer used in these experiments allows an accurate wavelength calibration and fiduciary and hence provides precise measurements of both the shift and the width of the absorption edge. Results have been obtained for compressions up to approximately ×2 and temperatures up to about 1.5 eV. The values of shift and width are compared with a new model with which there is very good agreement.
Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate
2017-09-05
Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.
NASA Astrophysics Data System (ADS)
Itoh, Takanori; Imai, Hideto
2018-03-01
The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.
The effect of mining data k-means clustering toward students profile model drop out potential
NASA Astrophysics Data System (ADS)
Purba, Windania; Tamba, Saut; Saragih, Jepronel
2018-04-01
The high of student success and the low of student failure can reflect the quality of a college. One of the factors of fail students was drop out. To solve the problem, so mining data with K-means Clustering was applied. K-Means Clustering method would be implemented to clustering the drop out students potentially. Firstly the the result data would be clustering to get the information of all students condition. Based on the model taken was found that students who potentially drop out because of the unexciting students in learning, unsupported parents, diffident students and less of students behavior time. The result of process of K-Means Clustering could known that students who more potentially drop out were in Cluster 1 caused Credit Total System, Quality Total, and the lowest Grade Point Average (GPA) compared between cluster 2 and 3.
Ribeiro, Roberta de Oliveira Resende; Mársico, Eliane Teixeira; de Jesus, Edgar Francisco Oliveira; da Silva Carneiro, Carla; Júnior, Carlos Adam Conte; de Almeida, Eduardo; Filho, Virgílio Franco do Nascimento
2014-04-01
Trace and minor elements in Brazilian honey were analyzed by total reflection X-ray fluorescence spectroscopy. Up to 12 elements (K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, and Sr) were detected in 160 samples of honey from 4 regions of Rio de Janeiro State (Barra Mansa, Teresópolis, northern and southern Nova Friburgo). The results showed the samples from Teresópolis had higher rates of essential and nonessential elements than samples from the other regions, except for Ni. K and Ca were the most abundant elements in all samples, in the range of 116.5 to 987.0 μg g(-1) . Ni, Cu, Zn, Se, and Sr were identified in small concentrations (0.01 to 12.08 μg g(-1) ) in all samples, indicating a low level of contamination in all the regions. © 2014 Institute of Food Technologists®
Fabrication of high edge-definition steel-tape gratings for optical encoders.
Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei
2017-10-01
High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO 2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.
Fabrication of high edge-definition steel-tape gratings for optical encoders
NASA Astrophysics Data System (ADS)
Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei
2017-10-01
High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.
NASA Astrophysics Data System (ADS)
Cole, Jacqueline M.; Cramer, Alisha J.; Shastri, Sarvjit D.; Mukaddem, Karim T.; Newport, Robert J.
2018-04-01
A Gd K -edge anomalous x-ray scattering (AXS) study is performed on the rare-earth (R ) phosphate glass, (Gd2O3 ) 0.230(P2O5) 0.770 , in order to determine Gd ⋯Gd separations in its local structure. The minimum rare-earth separation is of particular interest given that the optical properties of these glasses can quench when rare-earth ions become too close to each other. To this end, a weak Gd ⋯Gd pairwise correlation is located at 4.2 (1 )Å , which is representative of a metaphosphate R ⋯R separation. More intense first-neighbor Gd ⋯Gd pairwise correlations are found at the larger radial distributions, 4.8(1), 5.1(1), and 5.4 (1 )Å . These reflect a mixed ultraphosphate and metaphosphate structural character, respectively. A second-neighbor Gd ⋯Gd pairwise correlation lies at 6.6 (1 )Å which is indicative of metaphosphate structures. Meta- and ultraphosphate classifications are made by comparing the R ⋯R separations against those of rare-earth phosphate crystal structures, R (PO3) 3 and R P5O14 , respectively, or difference pair-distribution function (Δ PDF ) features determined on similar glasses using difference neutron-scattering methods. The local structure of this glass is therefore found to display multiple rare-earth ion environments, presumably because its composition lies between these two stoichiometric formulae. These Gd ⋯Gd separations are well-resolved in Δ PDFs that represent the AXS signal. Indeed, the spatial resolution is so good that it also enables the identification of R ⋯X (X =R , P, O) pairwise correlations up to r ˜9 Å ; their average separations lie at r ˜7.1 (1 ) , 7.6(1), 7.9(1), 8.4(1), and 8.7 (1 )Å . This is a report of a Gd K -edge AXS study on an amorphous material. Its demonstrated ability to characterize the local structure of a glass up to such a long range of r heralds exciting prospects for AXS studies on other ternary noncrystalline materials. However, the technical challenge of such an experiment should not be underestimated, as is highlighted in this work where probing AXS signal near the Gd K edge is found to produce inelastic x-ray scattering that precludes the normal AXS methods of data processing. Nonetheless, it is shown that AXS results are not only tractable but they also reveal local structure of rare-earth phosphate glasses that is important from a materials-centered perspective and which could not be obtained by other materials characterization methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Jacqueline M.; Cramer, Alisha J.; Shastri, Sarvjit D.
A Gd K-edge anomalous X-ray scattering (AXS) study is performed on the rare-earth (R) phosphate glass, (Gd2O3)0.230(P2O5)0.770, in order to determine Gd…Gd separations in its local structure. The minimum rare-earth separation is of particular interest given that the optical properties of these glasses can quench when rare-earth ions become too close to each other. To this end, a weak Gd…Gd pairwise correlation is located at 4.2(1) Å which is representative of a meta-phosphate R…R separation. More intense first neighbor Gd…Gd pairwise correlations are found at the larger radial distributions, 4.8(1) Å, 5.1(1) Å and 5.4(1) Å. These reflect a mixedmore » ultra-phosphate and meta-phosphate structural character, respectively. A second neighbor Gd…Gd pairwise correlation lies at 6.6(1) Å which is indicative of meta-phosphate structures. Meta- and ultra-phosphate classifications are made by comparing the R…R separations against those of rare-earth phosphate crystal structures, R(PO3)3 and RP5O14 respectively, or difference pair distribution function (ΔPDF) features determined on similar glasses using difference neutron scattering methods. The local structure of this glass is therefore found to display multiple rare-earth ion environments, presumably because its composition lies between these two stoichiometric formulae. These Gd…Gd separations are well resolved in the ΔPDFs that represent the AXS signal. Indeed, the spatial resolution is so good that it also enables the identification of R…X (X = R, P, O) pairwise correlations up to r ~ 9 Å; their average separations lie at r ~ 7.1(1) Å, 7.6(1) Å 7.9(1) Å, 8.4(1) Å and 8.7(1) Å. This is the first report of a Gd K-edge AXS study on an amorphous material. Its demonstrated ability to characterize the local structure of a glass up to such a long-range of r, heralds exciting prospects for AXS studies on other ternary non-crystalline materials. However, the technical challenge of such an experiment should not be underestimated, as is highlighted in this work where probing AXS signal near the Gd K-edge is found to produce inelastic X-ray scattering that precludes the normal AXS methods of data processing. Nonetheless, it is shown that AXS results are not only tractable but they also reveal local structure of rare-earth phosphate glasses that is important from a materials-centered perspective and which could not be obtained by other materials characterization methods.« less
On the total rainbow connection of the wheel related graphs
NASA Astrophysics Data System (ADS)
Hasan, M. S.; Slamin; Dafik; Agustin, I. H.; Alfarisi, R.
2018-04-01
Let G = (V(G), E(G)) be a nontrivial connected graph with an edge coloring c : E(G) → {1, 2, …, l}, l ɛ N, with the condition that the adjacent edges may be colored by the same colors. A path P in G is called rainbow path if no two edges of P are colored the same. The smallest number of colors that are needed to make G rainbow edge-connected is called the rainbow edge-connection of G, denoted by rc(G). A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The smallest number of colors that are needed to make G rainbow vertex-connected is called the rainbow vertex-connection of G, denoted by rvc(G). A total-colored path is total-rainbow if edges and internal vertices have distinct colours. The minimum number of colour required to color the edges and vertices of G is called the total rainbow connection number of G, denoted by trc(G). In this paper, we determine the total rainbow connection number of some wheel related graphs such as gear graph, antiweb-gear graph, infinite class of convex polytopes, sunflower graph, and closed-sunflower graph.
NASA Astrophysics Data System (ADS)
Alp, H.; Vardar, D.; Alpar, B.
2017-12-01
The sea-bottom sediment distribution, benthic habitats and erosional pathways between Küçükçekmece and Büyükçekmece lagoons at the northern margin of the Marmara Sea were mapped via 340-680 kHz dual frequency side scan sonar, one of the most effective tools for underwater exploration. In fact these lagoons were two former estuaries, later separated from the sea by coarse grained sediments mainly made up of natural sand bars and man-made barriers constructed for roads about a century ago. In the summer 2016, a total of 250-km long side scan data were acquired, with a 300 m of swath width. The coastal strip between the present coastline and the -10 m depth, the seafloor sediments are made up of coarse-grained sandy deposits and determined as continuous bright reflections on the sonograms. Silty and muddy sand units are distributed between the water depths of -10 to -20 m, and they give continuous less bright reflections on sonograms if compared to those of shallow sandy deposits. Deeper muddy units (sandy silt) appeared on the sonograms as uniform dark reflections and soft scatterings. The areal distribution of seafloor sediments and their acoustical characteristics indicated that the net sediment transport in the study area is mainly controlled under the E-W directional longshore currents and dominant southerly waves. Some strong sonar reflections observed at shallow depths (0-15 m) in the Küçükçekmece lagoon and characteristically comprised of remarkable round-shape structures, represent reefs which need sunlight and stable hydrographic conditions to be formed. Various sand ripples are defined in the lagoon, as well.
Reactive nitrogen, ozone, and nitrate aerosols observed in the Arctic stratosphere in January 1990
NASA Technical Reports Server (NTRS)
Kondo, Y.; Aimedieu, P.; Koike, M.; Iwasaka, Y.; Newman, P. A.; Schmidt, U.; Matthews, W. A.; Hayashi, M.; Sheldon, W. R.
1992-01-01
Ozone mixing ratios in the vicinity of the 525-K potential temperature surface in January and early February of 1990 were observed to decrease sharply across the edge of the vortex boundary, where the vortex position was estimated from Ertel's potential vorticity. The changes in NO(y) mixing ratio with respect to altitude measured on January 18 and 31 were quite well correlated with those of ozone between 15 and 24 km, indicating that NO(y) also had a large gradient across the edge of the vortex. This is interpreted as being mainly due to the significant denitrification that occurred inside the vortex. The total amount of gas and particulate phase HNO3 was close to the NO(y) amount at the altitude of the 22- to 23-km region, suggesting that the conversion of non-HNO3 reactive nitrogen to HNO3 had occurred with a PSC.
Large enhancement of magnetic moment in L1(0) ordered FePt thin films by Nd substitutional doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, D. B.; Sun, C J; Chen, J. S.
2015-07-01
We studied L1(0) ordered Fe50Pt50-xNdx alloy films, which showed a large enhancement (similar to 18.4% at room temperature and similar to 11.7% at 10 K) of magnetic moment with 6 atomic % of Nd. Analysis of the x-ray magnetic circular dichroism spectra at the Fe L-3,L-2 edges and Nd M-5,M-4 edges in Fe50Pt44Nd6 films indicated a significant contribution of the Nd orbital moment. The origin of the large enhancement of magnetic moment was attributed to the effect of ferromagnetic coupling of the total magnetic moments between Fe and Nd. Density functional theory based first principles calculations supported the experimental observationsmore » of increasing moment due to Nd substitution of Pt.« less
Oxidant K edge x-ray emission spectroscopy of UF 4 and UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, J. G.; Yu, S. -W.; Qiao, R.
The K-Edge (1s) x-ray emission spectroscopy of uranium tetrafluoride and uranium dioxide were compared to each other and to the results of a pair of earlier cluster calculations. Here, using a very simplified approach, it is possible to qualitatively reconstruct the main features of the x-ray emission spectra from the cluster calculation state energies and 2p percentages.
Oxidant K edge x-ray emission spectroscopy of UF 4 and UO 2
Tobin, J. G.; Yu, S. -W.; Qiao, R.; ...
2018-01-31
The K-Edge (1s) x-ray emission spectroscopy of uranium tetrafluoride and uranium dioxide were compared to each other and to the results of a pair of earlier cluster calculations. Here, using a very simplified approach, it is possible to qualitatively reconstruct the main features of the x-ray emission spectra from the cluster calculation state energies and 2p percentages.
47 CFR 74.794 - Digital emissions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Stringent mask. In the first 500 kHz from the channel edges, emissions must be attenuated no less than 47 dB... determined by the following formula: A(dB) = 47 + 11.5 (Δf-0.5) (iii) Full service mask: (A) The power level... first 500 kHz from the channel edge the emissions must be attenuated no less than 47 dB. More than 6 MHz...
47 CFR 74.794 - Digital emissions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Stringent mask. In the first 500 kHz from the channel edges, emissions must be attenuated no less than 47 dB... determined by the following formula: A(dB) = 47 + 11.5 (Δf-0.5) (iii) Full service mask: (A) The power level... first 500 kHz from the channel edge the emissions must be attenuated no less than 47 dB. More than 6 MHz...
47 CFR 74.794 - Digital emissions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Stringent mask. In the first 500 kHz from the channel edges, emissions must be attenuated no less than 47 dB... determined by the following formula: A(dB) = 47 + 11.5 (Δf-0.5) (iii) Full service mask: (A) The power level... first 500 kHz from the channel edge the emissions must be attenuated no less than 47 dB. More than 6 MHz...
47 CFR 74.794 - Digital emissions.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Stringent mask. In the first 500 kHz from the channel edges, emissions must be attenuated no less than 47 dB... determined by the following formula: A(dB) = 47 + 11.5 (Δf-0.5) (iii) Full service mask: (A) The power level... first 500 kHz from the channel edge the emissions must be attenuated no less than 47 dB. More than 6 MHz...
NASA Astrophysics Data System (ADS)
Senty, Tess; Joshi, Toyanath; Trappen, Robbyn; Zhou, Jinling; Chen, Song; Ferrari, Piero; Borisov, Pavel; Song, Xueyan; Holcomb, Mikel; Bristow, Alan; Cabrera, Alejandro; Lederman, David
2015-03-01
Growth of pure phase delafossite CuFeO2 thin films on Al2O3 (00.1) substrates by pulsed laser deposition was systematically investigated as function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO2 films demonstrated a phase transition at TC = 15K, which agrees with the first antiferromagnetic transition at 14K in the bulk CuFeO2. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis. This work was supported by a Research Challenge Grant from the West Virginia Higher Education Policy Commission (HEPC.dsr.12.29) and the Microelectronics Advanced Research Corporation (Contract #2013-MA-2382) at WVU. Work at PUC was supported by FONDECyT.
Local structural effects in Sr 3NiRhO 6 across magnetic transitions
Singh, Navneet; Khalid, S.; Bindu, R.
2016-04-06
Here, we investigate the temperature dependence of the structural parameters of quasi-one-dimensional Sr 3NiRhO 6 across the region of magnetic phase transitions using Ni K-edge and Sr K-edge x-ray absorption spectroscopy (XAS). The features in the x-ray absorption near-edge region are identified using multiple scattering calculations. The temperature-dependent extended x-ray absorption fine structure (EXAFS) studies show that the setting of the intra-chain super exchange interaction starts at ~200 K, which is well above the first transition temperature (45 K) revealed by magnetic susceptibility studies. The onset of the inter-chain super–super exchange interaction appears to be at ~125 K. Interestingly, themore » role played by direct exchange interaction between the Ni 3d and Rh 4d states in stabilising the magnetic interaction is less significant. The present results shed light on the generic features exhibited by isostructural compounds and may help in identifying the magnetic exchange pathways useful for understanding the unusual properties exhibited by such compounds.« less
Energy discriminating x-ray camera utilizing a cadmium telluride detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Purkhet, Abderyim; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Wantanabe, Manabu; Nagao, Jiro; Nomiya, Seiichiro; Hitomi, Keitaro; Tanaka, Etsuro; Kawai, Toshiaki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2009-07-01
An energy-discriminating x-ray camera is useful for performing monochromatic radiography using polychromatic x rays. This x-ray camera was developed to carry out K-edge radiography using iodine-based contrast media. In this camera, objects are exposed by a cone beam from a cerium x-ray generator, and penetrating x-ray photons are detected by a cadmium telluride detector with an amplifier unit. The optimal x-ray photon energy and the energy width are selected out using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x-y stage driven by a two-stage controller, and radiograms obtained by energy discriminating are shown on a personal computer monitor. In radiography, the tube voltage and current were 60 kV and 36 μA, respectively, and the x-ray intensity was 4.7 μGy/s. Cerium K-series characteristic x rays are absorbed effectively by iodine-based contrast media, and iodine K-edge radiography was performed using x rays with energies just beyond iodine K-edge energy 33.2 keV.
Anomalous x-ray diffraction on InAs/GaAs quantum dot systems
NASA Astrophysics Data System (ADS)
Schulli, T. U.; Sztucki, M.; Chamard, V.; Metzger, T. H.; Schuh, D.
2002-07-01
Free-standing InAs quantum dots on a GaAs (001) substrate have been investigated using grazing incidence x-ray diffraction. To suppress the strong scattering contribution from the GaAs substrate, we performed anomalous diffraction experiments at the superstructure (200) reflection, showing that the relative intensities from the dots and the substrate undergo a significant change with the x-ray energy below and above the As K edge. Since the signal from the substrate material can essentially be suppressed, this method is ideally suited for the investigation of strain, shape, and interdiffusion of buried quantum dots and quantum dots embedded in heteroepitaxial multilayers. In addition, we show that it can be used as a tool for studying wetting layers.
Method for fabricating beryllium-based multilayer structures
Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.
2003-02-18
Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).
Davis, Doreen E.
2018-01-01
Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. Methods We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k-means clustering. Results Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. Discussion We show that edge effects on ground beetle community structure and composition and environmental variation at the intersection of forest patches and residential developments can be described by boundaries and that these boundaries overlap in space. However, our results also highlight the complexity of edge effects in our system: environmental boundaries were located at or near edges whereas beetle boundaries related to edges could be spatially disjunct from them; boundaries incompletely delineated edges such that only parts of edges were well-described by sharp transitions in beetle and/or environmental variables; and the occurrence of boundaries related to edges was apparently influenced by individual property management practices, site-specific characteristics such as development geometry, and spatial scale. PMID:29333346
Davis, Doreen E; Gagné, Sara A
2018-01-01
Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k -means clustering. Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. We show that edge effects on ground beetle community structure and composition and environmental variation at the intersection of forest patches and residential developments can be described by boundaries and that these boundaries overlap in space. However, our results also highlight the complexity of edge effects in our system: environmental boundaries were located at or near edges whereas beetle boundaries related to edges could be spatially disjunct from them; boundaries incompletely delineated edges such that only parts of edges were well-described by sharp transitions in beetle and/or environmental variables; and the occurrence of boundaries related to edges was apparently influenced by individual property management practices, site-specific characteristics such as development geometry, and spatial scale.
Obeidat, Wasfy M; Sahni, Ekneet; Kessler, William; Pikal, Michael
2018-02-01
The goal of the work described in this publication was to evaluate a new, small, material-sparing freeze dryer, denoted as the "mini-freeze dryer or mini-FD", capable of reproducing the product temperature history of larger freeze dryers, thereby facilitating scale-up. The mini-FD wall temperatures can be controlled to mimic loading procedures and dryer process characteristics of larger dryers. The mini-FD is equipped with a tunable diode laser absorption spectroscopy (TDLAS) water vapor mass flow monitor and with other advanced process analytical technology (PAT) sensors. Drying experiments were performed to demonstrate scalability to larger freeze dryers, including the determination of vial heat transfer coefficients, K v . Product temperature histories during K v runs were evaluated and compared with those obtained with a commercial laboratory-scale freeze dryer (LyoStar II) for sucrose and mannitol product formulations. When the mini-FD wall temperature was set at the LyoStar II band temperature (- 20°C) to mimic lab dryer edge vials, edge vial drying in the mini-FD possessed an average K v within 5% of those obtained during drying in the LyoStar II. When the wall temperature of the mini-FD was set equal to the central vial product temperature, edge vials behaved as center vials, possessing a K v value within 5% of those measured in the LyoStar II. During both K v runs and complete product freeze drying runs, the temperature-time profiles for the average edge vials and central vial in the mini-FD agreed well with the average edge and average central vials of the LyoStar II.
Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array
NASA Astrophysics Data System (ADS)
Tan, Zhongwei; Cao, Dandan; Ding, Zhichao
2018-03-01
An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.
Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin
2013-01-01
The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.
2009-01-01
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."
Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy; ...
2017-03-02
Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy
Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less
Influence of depositional environment in fossil teeth: a micro-XRF and XAFS study
NASA Astrophysics Data System (ADS)
Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.
2014-04-01
The formation of metal-rich phases during the fossilization of vertebrate fossil teeth, recovered from various deposition environments in northern Greece, is studied by means of synchrotron radiation X-ray fluorescence (SR-XRF) as well as Fe and Mn K edge X-ray absorption fine structure (XAFS) spectroscopy. XRF line-scans from the samples' cross-sections revealed different contamination paths for Mn and Fe. The two-dimensional XRF maps illustrate the spatial distribution of P, Ca, Mn and Fe as well as the precipitation of Fe-rich phases in cementum, dentin and dentinal tubules. Goethite, lepidocrocite and ferrihydrite were detected in the samples' cross-section by means of Fe K edge EXAFS spectroscopy. Moreover the Fe and Mn K edge EXAFS revealed the presence of vivianite and birnessite (MnO2) on the external surface of two samples.
Tew, Min Wei; Nachtegaal, Maarten; Janousch, Markus; Huthwelker, Thomas; van Bokhoven, Jeroen A
2012-04-28
The catalytically active phase of silica-supported palladium catalysts in the selective and non-selective hydrogenation of 1-pentyne was determined using in situ X-ray absorption spectroscopy at the Pd K and L(3) edges. Upon exposure to alkyne, a palladium carbide-like phase rapidly forms, which prevents hydrogen to diffuse into the bulk of the nano-sized particles. Both selective and non-selective hydrogenation occur over carbided particles. The palladium carbide-like phase is stable under reaction conditions and only partially decomposes under high hydrogen partial pressure. Non-selective hydrogenation to pentane is not indicative of hydride formation. The palladium carbide phase was detected in the EXAFS analysis and the K edge XANES showed representative features. This journal is © the Owner Societies 2012
Crystal structure and electronic states of Co and Gd ions in a Gd0.4Sr0.6CoO2.85 single crystal
NASA Astrophysics Data System (ADS)
Platunov, M. S.; Dudnikov, V. A.; Orlov, Yu. S.; Kazak, N. V.; Solovyov, L. A.; Zubavichus, Ya. V.; Veligzhanin, A. A.; Dorovatovskii, P. V.; Vereshchagin, S. N.; Shaykhutdinov, K. A.; Ovchinnikov, S. G.
2016-02-01
X-ray diffraction and X-ray absorption near edge structure (XANES) spectra have been measured at the Co K-edge and Gd L 3-edge in GdCoO3 and Gd0.4Sr0.6CoO2.85 cobaltites. The effect of Sr substitution on the crystal structure and electronic and magnetic states of Co3+ ions in a Gd0.4Sr0.6CoO2.85 single crystal has been analyzed. The XANES measurements at the Co K-edge have not showed a noticeable shift of the absorption edge with an increase in the concentration of Sr. This indicates that the effective valence of cobalt does not change. An increase in the intensity of absorption at the Gd L 3-edge is due to an increase in the degree of hybridization of the Gd(5 d) and O(2 p) states. The effect of hole doping on the magnetic properties results in the appearance of the ferromagnetic component and in a significant increase in the magnetic moment.
Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.
Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C
2016-12-20
The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.
Quantifying edge significance on maintaining global connectivity
Qian, Yuhua; Li, Yebin; Zhang, Min; Ma, Guoshuai; Lu, Furong
2017-01-01
Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity. PMID:28349923
Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2010-07-01
An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.
Magnesium K-edge XANES spectroscopy of geological standards.
Yoshimura, Toshihiro; Tamenori, Yusuke; Iwasaki, Nozomu; Hasegawa, Hiroshi; Suzuki, Atsushi; Kawahata, Hodaka
2013-09-01
Magnesium K-edge X-ray absorption near-edge structure (XANES) spectra have been investigated to develop a systematic understanding of a suite of Mg-bearing geological materials such as silicate and carbonate minerals, sediments, rocks and chemical reagents. For the model compounds the Mg XANES was found to vary widely between compounds and to provide a fingerprint for the form of Mg involved in geologic materials. The energy positions and resonance features obtained from these spectra can be used to specify the dominant molecular host site of Mg, thus shedding light on Mg partitioning and isotope fractionation in geologic materials and providing a valuable complement to existing knowledge of Mg geochemistry.
Characterization of local atomic structure in Co/Zn based ZIFs by XAFS
NASA Astrophysics Data System (ADS)
Podkovyrina, Yulia; Butova, Vera; Bulanova, Elena; Budnyk, Andriy; Kremennaya, Maria; Soldatov, Alexander; Lamberti, Carlo
2018-03-01
The local atomic structure in bimetallic Co/Zn zeolitic imidazolate frameworks (ZIFs) was studied using X-ray Absorption Fine Structure (XAFS) spectroscopy and theoretical calculations. The experimental Co K-edge and Zn K-edge XANES (X-ray Absorption Near Edge Structure) spectra of Zn1-xCoxC8H10N4 samples (x = 0.05, 0.25, 0.75) synthesized by microwave synthesis were compared with the data for the ZIF-67 (x=1) and ZIF-8 (x=0). Theoretical XANES spectra for the bimetallic ZIFs were calculated. It was shown that in bimetallic ZIFs the Co and Zn atoms have the similar local environment.
Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study
NASA Astrophysics Data System (ADS)
Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.
2018-06-01
The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.
Unusual Electronic Structures of CO2 at Deep Mantle Pressures
NASA Astrophysics Data System (ADS)
Shieh, S. R.; Jarrige, I.; Hiraoka, N.; Wu, M.; Tse, J.; MI, Z.; Kaci, L.; Cai, Y.
2011-12-01
Carbon dioxide (CO2) is an important planetary gas phase found in the Venus, Earth and Mars. The high-pressure behavior of CO2 will have important implications for understanding the evolution and dynamics of planetary interiors. CO2 shows six solid phases and one amorphous phase at various pressure and temperature conditions. However, knowledge of its electronic structure remains unclear and may provide clues for the stability fields. Here we report the electronic structures of CO2 at high pressure and room temperature. The high-pressure inelastic x-ray scattering measurements of CO2 were conducted at beamline BL12XU, SPring-8. A monochromatic beam with incident energy about 10 KeV was focused to a size of 20 by 30 um2. The inelastic x-ray scattering photons were collected at about 35 degrees and a solid state Si detector with resolution of about 1.4 eV was used. Each spectrum was collected for 8-20 hours. Our oxygen K-edge results show that a strong pi resonance peak and some weak sigma peaks were observed in CO2-I. For the carbon K-edge of CO2-I, only a single strong pi resonance peak and a weak broad sigma peak at 313 eV was observed. This unique feature of carbon K-edge spectrum differs from those of graphite and diamond. Furthermore, we found that feature of oxygen K-edge spectra showed change at above 7.4 GPa, indicating the phase transition to CO2-III at pressure lower than those of x-ray diffraction reports. Moreover, at about 50 GPa, both oxygen and carbon K-edge of CO2 exhibit dramatic feature change and could be attributed to polymerization phenomena. It is found that only theoretical calculations including excitonic effects reproduced the experimental trend and indicate polymerization has occurred at 50 GPa and 300 K.
Van Kuiken, Benjamin E.; Ross, Matthew R.; Strader, Matthew L.; ...
2017-05-08
Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (~2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps)more » and decays within 6 ns. The second transient species forms on a timescale of ~400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowestlying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.« less
Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.
Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less
NASA Astrophysics Data System (ADS)
Yeo, L. H.; Srivastava, A.; Majidi, M. A.; Sutarto, R.; He, F.; Poh, S. M.; Diao, C.; Yu, X.; Motapothula, M.; Saha, S.; Ojha, S.; Kanjilal, D.; Trevisanutto, P. E.; Breese, M. B. H.; Venkatesan, T.; Rusydi, A.
2015-02-01
Vanadium dioxide (VO2) undergoes an unusual insulator-metal transition (IMT), and after decades of study, the origin of the IMT remains hotly debated. Here, by analyzing spectral-weight transfers (SWTs) of x-ray absorption spectroscopy at the V L3 ,2 and O K edges on specially designed VO2 films, we observe d||(dx2-y2) band splitting at the V L3 ,2 edges across the IMT, accompanied by anomalous SWTs as high as ˜12 eV at the O K edge, indicating strong electronic correlations. Surprisingly, a few oxygen vacancies induce dramatic SWTs at the O K edge, but the sample remains conducting. Supported by theoretical calculations, we find that in the metallic state, direct V (3 d∥) -V(3 d∥) and O(2 p ) -V(3 d∥) hybridized orbital correlations are screened by O(2 p ) -V(3 dπ) hybridized orbitals, while in the insulating state they are strongly correlated due to changes in the oxygen orbital occupancy. Our result shows the importance of screenings and electronic correlations for IMTs in VO2.
Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption
Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.; ...
2017-06-22
Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less
Magnetic Correlations in the Triangular Antiferromagnet TbInO3
NASA Astrophysics Data System (ADS)
Sala, Gabriele; Clark, Lucy; Maharaj, Dalini; Stone, Matthew B.; Knight, Kevin S.; Cheong, Sang-Wook; Gaulin, Bruce D.
TbInO3 crystallizes with a hexagonal P63 cm structure in which layers of edge-sharing triangles of magnetic Tb3+ ions are separated by non-magnetic [InO5]7- units. TbInO3, therefore, realizes an excellent opportunity to explore the behavior of a two-dimensional magnetic triangular lattice, a canonical model of geometric frustration. Here we present our study of a polycrystalline sample of TbInO3. Our high resolution powder neutron diffraction data (HRPD, ISIS) of TbInO3 confirm that the triangular layers of Tb3+ remain undistorted to at least 0 . 46 K. Magnetic susceptibility data follow Curie-Weiss behavior over a wide range of T with θ = - 17 . 19 (3) K indicating the dominance of antiferromagnetic correlations. The susceptibility data also show an absence of conventional long-range spin order down to at least 0 . 55 K, reflecting the frustrated nature of TbInO3. Elastic magnetic diffuse neutron scattering (SEQUOIA, SNS) is observed below ~ 15 K, due to the presence of static two-dimensional spin correlations. The spectrum of crystal field excitations in TbInO3 appears to have an exotic form due to the existence of two crystallographically distinct Tb3+ sites and leads to a strong Ising anisotropy of the spin symmetry.
Characterization and optical studies of 90/10 (wt/wt%) PVA/β-chitin blend irradiated with γ-rays.
Abd El-Kader, F H; Gaafer, S A; Abd El-Kader, M F H
2014-10-15
X-ray diffraction, IR spectroscopy and UV/visible spectra were studied as a function of gamma irradiation doses (5-100kGy) for 90/10 (wt/wt%) PVA/β-chitin. A new intense reflection peak at 2θ=21.5° appeared in the X-ray spectrum of the sample irradiated at 50kGy γ-dose. Besides, the band centered at 2931cm(-1) in IR spectrum splits into two clearly separated bands around 2919 and 2941cm(-1) for the sample irradiated at 10kGy γ-dose. The disappearance of the absorption band at 280nm of PVA in the blend sample indicates that the ligand PVA becomes opaque in the UV region and provides evidence for the miscibility between homopolymers. The value of absorbance, in UV/visible range, at 10kGy γ-dose was the highest one compared to the other γ-doses. The location of the γ-doses on the chromaticity diagram was different, indicating the change in the spectral colors of the investigated blend. In addition, the absorption edge, band tail and color parameters values were determined as a function of γ-doses. Copyright © 2014 Elsevier B.V. All rights reserved.
Weighted Scaling in Non-growth Random Networks
NASA Astrophysics Data System (ADS)
Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li
2012-09-01
We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.
NASA Astrophysics Data System (ADS)
Marcelli, A.; Maggi, V.; Cibin, G.; Sala, M.; Marino, F.; Delmonte, B.
2006-12-01
We present the first x-ray absorption spectroscopy (XAS) data at the Fe K-edge collected on insoluble mineral dust from Talos Dome firn core (TDC, 159°04'E, 72°46'S, 2316 m a.s.l., mean accumulation rate 8 g cm-2 yr- 1), drilled in the framework of the International Trans Antarctic Scientific Expedition (ITASE), and from a Colle del Lys 2003 firn core (CDL03, 45°92'N, 7°86'E, 4248m a.s.l., mean accumulation rate 134 g cm-2 yr-1, Lys Glacier, Mt. Rosa, Italy). The low concentration of mineral particles, obtained by filtering each firn core melted samples on Nuclepore membranes in a 1000 class clean room, required a specific procedure to prepare the samples necessary to the successful collection of the XAS data. The firn samples were decontaminated in clean room under laminar flow bench by means of a ceramic knife and discarding the external part of the cores. Analyses of the insoluble particle content were performed by particle counter Beckman CounterãMultisizer III in order to defined concentration and size distribution of particles in each samples. A dedicated HV experimental chamber, devoted to the realization of XAS experiments on very low absorber concentration samples, was developed and realized in the framework of the CryoAlp collaboration at IMONT, the Italian National Institute for Mountains. The original experimental setup, thanks to the presence of an in-vacuum sample micromanipulator and special sample alignment and docking system installed for these experiments at the Stanford Synchrotron Radiation Laboratory at the beamline 6-2, allows both normal-incidence X-ray Fluorescence detection using a Ketek SDD detector having an energy resolution of about 150 eV and extremely low energy detection limit, and Total X-ray Reflection Fluorescence and Absorption Spectroscopy measurements. The high quality of the XANES experiments performed, using both normal incidence and Total Reflection XAS measurements, allowed recognizing iron-inclusion mineral fractions. Samples for Total Reflection XAS measurements were prepared just for this kind of measurements by depositing the insoluble mineral dust on clean Si wafer substrates. In addition, the XANES spectra show clear differences, corresponding to different samples mineral iron hosts, demonstrating that with this fully non-distructive technique, new information about the dust mineralogy at very low concentration can be performed. The analysis is then complementary to other well established techniques like XRD and PIXE.
Analytic Reflected Lightcurves for Exoplanets
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Cowan, Nicolas B.
2018-04-01
The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.
NASA Astrophysics Data System (ADS)
Peng, D.; Hu, Y.; Li, Z.
2016-05-01
It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic development, and climate change. In the present study, we conducted a field experiment to examine spectral reflectance and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three sunny days, following tree removal from the canopy. The spectral reflectance of foliage from harvested trees was measured using an ASD FieldSpec Prospectroradiometer; synchronous meteorological data were also obtained. We found that reflectance in short-wave infrared and red-edge reflectance was more time sensitive after tree removal than reflectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized meteorological environments were found to influence water and chlorophyll contents after tree removal, and this subsequently changed the spectral canopy reflectance. Our results indicate the potential for such tree removal to be detected with NDWI or CIRE from the second day of a deforestation event.
Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: edges.
Jack Ward Thomas; Chris Maser; Jon E. Rodiek
1979-01-01
Edge can be a measure of overall diversity of any area. Diversity is considered as inherent (community/community) edge, induced cessional stage/successional stage) edge and total edge. Size of stands are related to expected wildlife diversity.
Humphrey, Craig A.; Severati, Andrea; Francis, David S.
2018-01-01
Scleractinian corals are colonial organisms comprising multiple physiologically integrated polyps and branches. Colonialism in corals is highly beneficial, and allows a single colony to undergo several life processes at once through physiological integration and compartmentalised functioning. Elucidating differences in the biochemical composition of intra-colonial branch positions will provide valuable insight into the nutritional reserves underlying different regions in individual coral colonies. This will also ascertain prudent harvesting strategies of wild donor-colonies to generate coral stock with high survival and vigour prospects for reef-rehabilitation efforts and captive husbandry. This study examined the effects of colony branch position on the nutritional profile of two different colony sizes of the common scleractinian, Acropora millepora. For smaller colonies, branches were sampled at three locations: the colony centre (S-centre), 50% of the longitudinal radius length (LRL) (S-50), and the colony edge (S-edge). For larger colonies, four locations were sampled: the colony centre (L-centre), 33.3% of the LRL (L-33), 66.6% of the LRL (L-66), and the edge (L-edge). Results demonstrate significant branch position effects, with the edge regions containing higher protein, likely due to increased tissue synthesis and calcification. Meanwhile, storage lipid and total fatty acid concentrations were lower at the edges, possibly reflecting catabolism of high-energy nutrients to support proliferating cells. Results also showed a significant effect of colony size in the two classes examined. While the major protein and structural lipid sink was exhibited at the edge for both sizes, the major sink for high-energy lipids and fatty acids appeared to be the L-66 position of the larger colonies and the S-centre and S-50 positions for the smaller colonies. These results confirm that the scleractinian coral colony is not nutritionally homogeneous, and while different regions of the coral colony are functionally specialised, so too are their nutritional profiles geared toward meeting specific energetic demands. PMID:29404204
Hanbury Brown and Twiss correlations of Cooper pairs in helical liquids
NASA Astrophysics Data System (ADS)
Choi, Mahn-Soo
2014-01-01
We propose a Hanbury Brown and Twiss (HBT) experiment of Cooper pairs on the edge channels of quantum spin Hall insulators. The helical edge channels provide a well-defined beam of Cooper pairs and perfect Andreev reflections from superconductors. This allows our setup to be identical in spirit to the original HBT experiment. Interestingly, the cross correlation is always negative and provides no hint of the bosonic nature of Cooper pairs. This counterintuitive result is attributed to the perfect Andreev reflection and the true beam splitter in the setup.
Evans, H.T.; Tourne, C.M.; Tourne, G.F.; Weakley, T.J.R.
1986-01-01
The crystal structures of K10[Co4(H2O)2(PW9O 34)2]??22H2O (1) and isomorphous K10[Zn4(H2O)2(AsW9O 34)2]??23H2O (2) have been determined {Mo-K?? radiation, space group P21/n, Z = 2; (1) a = 15.794(2), b = 21.360(2), c = 12.312(1) A??, ?? = 91.96??, R = 0.084 for 3 242 observed reflections [I ??? 3??(I)]; (2) a = 15.842(4), b = 21.327(5), c = 12.308(4) A??, ?? = 92.42(4)??, R = 0.066 for 4 675 observed reflections [F ??? 3??(F)]}. The anions have crystallographic symmetry 1 and non-crystallographic symmetry very close to 2/m (C2h). Each consists of two [XW9O34]9- moieties [??-B isomers; X = P (1) or As (2)] linked via four CoIIO6 or ZnO6 groups. Two Co or Zn atoms each carry a water ligand. The 183W n.m.r. spectra of the anions [Zn4(H2O)2(XW9O34) 2]10- (X = P or As) confirm that the anions retain 2/m symmetry in aqueous solution. Homonuclear coupling constants between 183W atoms are 5.8-9.0 Hz for adjacent WO6 octahedra sharing edges, and 19.6-25.0 Hz for octahedra sharing corners.
Reflectivity Around the Gold M-Edges of X-ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H
NASA Technical Reports Server (NTRS)
Kurashimaa, Sho; Furuzawa, Akihiro; Sato, Toshiki; Kikuchia, Naomichi; Nakaniwaa, Nozomi; Maeda, Yoshitomo; Ishida, Manabu; Izuka, Ryo; Okajima, Takashi; Mori, Hideyuki;
2016-01-01
The X-ray astronomy satellite ASTRO-H are equipped with two equivalent soft X-ray telescopes (SXT-I and SXT-S) which cover the energy band 0.3-12 keV. The X-ray reflectors of the SXTs are coated with a gold monolayer by means of the replication technique. A series of gold M absorption edges in the 2-4 keV band causes complex structures in the energy response of the SXTs. In the same band, there are astrophysically important emission lines from Si, Ar and S. Since the SXS has unprecedentedly high spectral resolution, we have measured the reflectivity around the gold M-edges in an extremely fine energy pitch at the synchrotron radiation facility KEK PF BL11-B, with the 2 eV pitch in 2100 eV to 4100 eV band that covers the entire series of the absorption edges (M-I through M-V) at grazing incident angles to the reflectors of 0.5, 0.8, 1.0, 1.2, 1.4 degree, and with a finer pitch of 0.25 eV in the 2200 eV to 2350 eV band where the two deepest M-IV and M-V edges are included. In the resultant reflectivity curves, we have clearly identified the fine structures associated with all the M-edges. Using these data, we calculated atomic scattering factor f1 as a function of X-ray energy, with which we have built the mirror response function which can be applied to the Suzaku spectra. As a result, we have found that discrepancy of the spectral model to the Suzaku data of 4U1630-472 (a black hole transient) and the Crab nebula around the M-edges are significantly reduced from those with the official Suzaku response.
NASA Technical Reports Server (NTRS)
Scantling, W. L.; Gloss, B. B.
1974-01-01
An investigation was conducted in the Langley 1/8-scale V/STOL model tunnel on a semispan delta wing with a leading-edge sweep of 74 deg, to determine the effectiveness of various locations of upper surface and reflection plane blowing on leading-edge vortex bursting. Constant area nozzles were located on the wing upper surface along a ray swept 79 deg, which was beneath the leading-edge vortex core. The bursting and reformation of the leading-edge vortex was viewed by injecting helium into the vortex core, and employing a schlieren system.
Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions.
Walker, Rachel L; Searles, Keith; Willard, Jesse A; Michelsen, Rebecca R H
2013-12-28
Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.
Measurement of the Solar Absorptance and Thermal Emittance of Lunar Simulants
NASA Technical Reports Server (NTRS)
Gaier, James R.; Street, Kenneth W.; Gustafson, Robert J.
2010-01-01
The first comparative study of the reflectance spectra of lunar simulants is presented. All of the simulants except one had a wavelength-dependent reflectivity, rho(lambda), near 0.10 over the wavelength range of 8 to 25 microns, so they are highly emitting at room temperature and lower. The 300 K emittance, epsilon, of all the lunar simulants except one ranged from 0.884 to 0.906. The 300 K epsilon of JSC Mars-1 simulant was 0.927. There was considerably more variation in the lunar simulant reflectance in the solar spectral range (250 to 2500 nm) than in the thermal infrared. Larger particle size simulants reflected much less than those with smaller particle size. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The alpha of the simulants ranged from 0.413 to 0.817 for those with smaller particles and 0.669 to 0.906 for large particles. Although spectral differences were observed, the total integrated alpha for the simulants appears to be similar to that of lunar soils (0.65 to 0.88). These data are now available to be used in modeling the effects of dust on thermal control surfaces.
Stray-light suppression in a reflecting white-light coronagraph
NASA Technical Reports Server (NTRS)
Romoli, Marco; Weiser, Heinz; Gardner, Larry D.; Kohl, John L.
1993-01-01
An analysis of stray-light suppression in the white-light channel of the Ultraviolet Coronagraph Spectrometer experiment for the Solar and Heliospheric Observatory is reported. The white-light channel consists of a reflecting telescope with external and internal occultation and a polarimeter section. Laboratory tests and analytical methods are used to perform the analysis. The various stray-light contributions are classified in two main categories: the contribution from sunlight that passes directly through the entrance aperture and the contribution of sunlight that is diffracted by the edges of the entrance aperture. Values of the stray-light contributions from various sources and the total stray-light level for observations at heliocentric heights from 1.4 to 5 solar radii are derived. Anticipated signal-to-stray-light ratios are presented together with the effective stray-light rejection by the polarimeter, demonstrating the efficacy of the stray-light suppression design.
Miniature spectrometer and multispectral imager as a potential diagnostic aid in dermatology
NASA Astrophysics Data System (ADS)
Zeng, Haishan; MacAulay, Calum E.; McLean, David I.; Lui, Harvey; Palcic, Branko
1995-04-01
A miniature spectrometer system has been constructed for both reflectance and autofluorescence spectral measurements of skin. The system is based on PC plug-in spectrometer, therefore, it is miniature and easy to operate. The spectrometer has been used clinically to collect spectral data from various skin lesions including skin cancer. To date, 48 patients with a total of 71 diseased skin sites have been measured. Analysis of these preliminary data suggests that unique spectral characteristics exist for certain types of skin lesions, i.e. seborrheic keratosis, psoriasis, etc.. These spectral characteristics will help the differential diagnosis in Dermatology practice. In conjunction with the spectral point measurements, we are building and testing a multispectral imaging system to measure the spatial distribution of skin reflectance and autofluorescence. Preliminary results indicate that a cutaneous squamous cell carcinoma has a weak autofluorescence signal at the edge of the lesion, but a higher autofluorescence signal in the central area.
NASA Astrophysics Data System (ADS)
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-01
We report a theoretical and experimental study of the high resolution resonant Kα X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the Kα emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
A superior edge preserving filter with a systematic analysis
NASA Technical Reports Server (NTRS)
Holladay, Kenneth W.; Rickman, Doug
1991-01-01
A new, adaptive, edge preserving filter for use in image processing is presented. It had superior performance when compared to other filters. Termed the contiguous K-average, it aggregates pixels by examining all pixels contiguous to an existing cluster and adding the pixel closest to the mean of the existing cluster. The process is iterated until K pixels were accumulated. Rather than simply compare the visual results of processing with this operator to other filters, some approaches were developed which allow quantitative evaluation of how well and filter performs. Particular attention is given to the standard deviation of noise within a feature and the stability of imagery under iterative processing. Demonstrations illustrate the performance of several filters to discriminate against noise and retain edges, the effect of filtering as a preprocessing step, and the utility of the contiguous K-average filter when used with remote sensing data.
Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy
Sneeden, Eileen Y.; Hackett, Mark J.; Cotelesage, Julien J. H.; ...
2017-07-27
Sulfur-based thiyl radicals are known to be involved in a wide range of chemical and biological processes, but they are often highly reactive, which makes them difficult to observe directly. We report herein X-ray absorption spectra and analysis that support the direct observation of two different thiyl species generated photochemically by X-ray irradiation. The thiyl radical sulfur K-edge X-ray absorption spectra of both species are characterized by a uniquely low energy transition at about 2465 eV, which occurs at a lower energy than any previously observed feature at the sulfur K-edge and corresponds to a 1s → 3p transition tomore » the singly occupied molecular orbital of the free radical. In conclusion, our results constitute the first observation of substantial levels of thiyl radicals generated by X-ray irradiation and detected by sulfur K-edge X-ray absorption spectroscopy.« less
Surface mass diffusion over an extended temperature range on Pt(111)
NASA Astrophysics Data System (ADS)
Rajappan, M.; Swiech, W.; Ondrejcek, M.; Flynn, C. P.
2007-06-01
Surface mass diffusion is investigated on Pt(111) at temperatures in the range 710-1220 K. This greatly extends the range over which diffusion is known from step fluctuation spectroscopy (SFS). In the present research, a beam of Pt- self-ions is employed to create a suitable structure on step edges. The surface mass diffusion coefficients then follow from the decay of Fourier components observed by low-energy electron microscopy (LEEM) at selected annealing temperatures. The results agree with SFS values where they overlap, and continue smoothly to low temperature. This makes it unlikely that diffusion along step edges plays a major role in step edge relaxation through the temperature range studied. The surface mass diffusion coefficient for the range 710-1520 K deduced from the present work, together with previous SFS data, is Ds = 4 × 10-3 exp(-1.47 eV/kBT) cm2 s-1.
NASA Technical Reports Server (NTRS)
Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.
1977-01-01
Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.
Willey, T M; Bagge-Hansen, M; Lee, J R I; Call, R; Landt, L; van Buuren, T; Colesniuc, C; Monton, C; Valmianski, I; Schuller, Ivan K
2013-07-21
Phthalocyanines, a class of macrocyclic, square planar molecules, are extensively studied as semiconductor materials for chemical sensors, dye-sensitized solar cells, and other applications. In this study, we use angular dependent near-edge x-ray absorption fine structure (NEXAFS) spectroscopy as a quantitative probe of the orientation and electronic structure of H2-, Fe-, Co-, and Cu-phthalocyanine molecular thin films. NEXAFS measurements at both the carbon and nitrogen K-edges reveal that phthalocyanine films deposited on sapphire have upright molecular orientations, while films up to 50 nm thick deposited on gold substrates contain prostrate molecules. Although great similarity is observed in the carbon and nitrogen K-edge NEXAFS spectra recorded for the films composed of prostrate molecules, the H2-phthalocyanine exhibits the cleanest angular dependence due to its purely out-of-plane π* resonances at the absorption onset. In contrast, organometallic-phthalocyanine nitrogen K-edges have a small in-plane resonance superimposed on this π* region that is due to a transition into molecular orbitals interacting with the 3dx(2)-y(2) empty state. NEXAFS spectra recorded at the metal L-edges for the prostrate films reveal dramatic variations in the angular dependence of specific resonances for the Cu-phthalocyanines compared with the Fe-, and Co-phthalocyanines. The Cu L3,2 edge exhibits a strong in-plane resonance, attributed to its b1g empty state with dx(2)-y(2) character at the Cu center. Conversely, the Fe- and Co- phthalocyanine L3,2 edges have strong out-of-plane resonances; these are attributed to transitions into not only b1g (dz(2)) but also eg states with dxz and dyz character at the metal center.
Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.
Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less
Utilizing Diffuse Reflection to Increase the Efficiency of Luminescent Solar Concentrators
NASA Astrophysics Data System (ADS)
Bowser, Seth; Weible, Seth; Solomon, Joel; Schrecengost, Jonathan; Wittmershaus, Bruce
A luminescent solar concentrator (LSC) consists of a high index solid plate containing a fluorescent material that converts sunlight into fluorescence. Utilizing total internal reflection, the LSC collects and concentrates the fluorescence at the plate's edges where it is converted into electricity via photovoltaic solar cells. The lower production costs of LSCs make them an attractive alternative to photovoltaic solar cells. To optimize an LSC's efficiency, a white diffusive surface (background) is positioned behind it. The background allows sunlight transmitted in the first pass to be reflected back through the LSC providing a second chance for absorption. Our research examines how the LSC's performance is affected by changing the distance between the white background and the LSC. An automated linear motion apparatus was engineered to precisely measure this distance and the LSC's electrical current, simultaneously. LSC plates, with and without the presence of fluorescent material and in an isolated environment, showed a maximum current at a distance greater than zero. Further experimentation has proved that the optimal distance results from the background's optical properties and how the reflected light enters the LSC. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.
Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses
Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.
2018-01-31
Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less
Williams, Kamille D.; Dai, Xuliang; Sproules, Stephen; DeBeer, Serena
2015-01-01
Three [Me2NN]Cu(η2-L2) complexes (Me2NN = HC[C(Me)NAr]2; L2 = PhNO (2), (3), PhCH 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CH2 (4); Ar = 2,6-Me2-C6H3; ArF = 3,5-(CF3)2-C6H3) have been studied by Cu K-edge X-ray absorption spectroscopy, as well as single- and multi-reference computational methods (DFT, TD-DFT, CASSCF, MRCI, and OVB). The study was extended to a range of both known and theoretical compounds bearing 2p-element donors as a means of deriving a consistent view of how the pre-edge transition energy responds in systems with significant ground state covalency. The ground state electronic structures of many of the compounds under investigation were found to be strongly influenced by correlation effects, resulting in ground state descriptions with majority contributions from a configuration comprised of a Cu(ii) metal center anti-ferromagentically coupled to radical anion O2, PhNO, and ligands. In contrast, the styrene complex 4, which displays a Cu K pre-edge transition despite its formal d10 electron configuration, exhibits what can best be described as a Cu(i):(styrene)0 ground state with strong π-backbonding. The Cu K pre-edge features for these complexes increase in energy from 1 to 4, a trend that was tracked to the percent Cu(ii)-character in the ground state. The unexpected shift to higher pre-edge transition energies with decreasing charge on copper (Q Cu) contributed to an assignment of the pre-edge features for these species as arising from metal-to-ligand charge transfer instead of the traditional Cu1s → Cu3d designation. PMID:29308158
NASA Astrophysics Data System (ADS)
Zheng, Jian-Gang; Yan, Xiongwei; Jiang, Xinying; Wang, Zhenguo; Li, Mingzhong; Zhang, Jun; Zhu, Qihua; Zheng, Wanguo
2017-05-01
Laser Inertial Fusion Energy (IFE) has been attracting the interests of the researchers around the world, because of the promising to the future energy. The Yb:YAG was broadly used in the research field of high-peak power and large energy laser with repetition-rate for IFE because of its outstanding performance, including significant thermal and mechanical capacities, long upper energy level lifetime, high quantum efficiency and highly doping capacity. But it exhibits high saturation fluence at room temperature because of the small emission and absorption cross-section. And at the same time this gain material exhibits self-absorption of laser because of the thermal population at lower laser level at room temperature. Ant it appears to have been solved by means of the cryogenic temperature, but the total efficiency of the laser system will be decreased as the use of cryogenic temperature. The amplified spontaneous emission (ASE) effect of the amplifier can be relaxed by means of edge-cladded absorption material. And the difficulties of edge cladding can be will solved as the emergence of ceramics. But at present the ceramics exhibits high scattering and many disfigurements, which limited the application in the high-power large-energy laser system. So the edge-cladding of Yb:YAG crystal will be a key issue for solution the ASE in amplifier. In this paper, we will introduce a 10J water-cooled DPSSL system, based on Yb:YAG crystal at room temperature. In this system a new edge cladding method has been used, that the Yb:YAG crystal was edge cladded by Cr:YAG ceramics, which was used as the absorption material of ASE. The amplifier was an active mirror water-cooled room temperature amplifier. With the help of this edge cladding the ASE has been lowered, and about 5 times small signal gain has been obtained in a single pass amplification, which was much higher than the earlier of 2 times. And the wavefront aberrance of the laser beam was also reduced due to the thermal equilibrium between the edge cladding and the gain region. the amplifiers can be stably operated under 10Hz. Finally the output of the laser system was about 7.15J@10Hz and 10.8J@1-2Hz. The total optical-to-optical efficiency was about 8.3% for 1-2Hz (under the condition of 120kW/1ms pumping, 880mJ input and 10.8J output) and 5.6% for 10Hz.
Kroll, Thomas; Hadt, Ryan G.; Wilson, Samuel A.; ...
2014-12-04
Axial Cu–S(Met) bonds in electron transfer (ET) active sites are generally found to lower their reduction potentials. An axial S(Met) bond is also present in cytochrome c (cyt c) and is generally thought to increase the reduction potential. The highly covalent nature of the porphyrin environment in heme proteins precludes using many spectroscopic approaches to directly study the Fe site to experimentally quantify this bond. Alternatively, L-edge X-ray absorption spectroscopy (XAS) enables one to directly focus on the 3d-orbitals in a highly covalent environment and has previously been successfully applied to porphyrin model complexes. However, this technique cannot be extendedmore » to metalloproteins in solution. Here, we use metal K-edge XAS to obtain L-edge like data through 1s2p resonance inelastic X-ray scattering (RIXS). It has been applied here to a bis-imidazole porphyrin model complex and cyt c. The RIXS data on the model complex are directly correlated to L-edge XAS data to develop the complementary nature of these two spectroscopic methods. Comparison between the bis-imidazole model complex and cyt c in ferrous and ferric oxidation states show quantitative differences that reflect differences in axial ligand covalency. The data reveal an increased covalency for the S(Met) relative to N(His) axial ligand and a higher degree of covalency for the ferric states relative to the ferrous states. These results are reproduced by DFT calculations, which are used to evaluate the thermodynamics of the Fe–S(Met) bond and its dependence on redox state. Furthermore, these results provide insight into a number of previous chemical and physical results on cyt c.« less
Ghosh, Somdatta; Gorelsky, Serge I.; George, Serena DeBeer; Chan, Jeannine M.; Cabrito, Inês; Dooley, David M.; Moura, José J. G.; Moura, Isabel; Solomon, Edward I.
2008-01-01
A combination of spectroscopy and DFT calculations has been used to evaluate the pH effect at the CuZ site in Pseudomonas nautica (Pn) N2OR and Achromobacter cycloclastes (Ac) N2OR and its relevance to catalysis. Absorption, MCD, EPR with sulfur K-edge XAS spectra of the enzymes at high and low pH show minor changes. However, resonance Raman (rR) spectroscopy of PnN2OR at high pH shows that the 415 cm−1 Cu-S vibration (observed at low pH) shifts to higher frequency, loses intensity and obtains a 9 cm−1 18O shift, implying significant Cu-O character, demonstrating the presence of a OH− ligand at the CuICuIV edge. From DFT calculations both protonation of the OH− to H2O or the μ4-S2− to μ4-SH− would produce large spectral changes which are not observed. Alternatively, DFT calculations including a lysine residue at an H-bonding distance from the CuICuIV edge ligand show that the position of the OH− ligand depends on the protonation state of the lysine. This would change the coupling of the Cu-(OH) stretch with the Cu-S stretch, as observed in the rR spectrum. Thus the observed pH effect (pKa ~9.2) likely reflects protonation equilibrium of the lysine residue which would both raise E0 and provide a proton for lowering the barrier for the N-O cleavage and for reduction of the [Cu4S(im)7OH]2+ to the fully reduced 4CuI active form for turnover. PMID:17352474
Yokonishi, Hisayuki; Imagawa, Hiroshi; Sakakibara, Ken-Ichi; Yamauchi, Akihito; Nito, Takaharu; Yamasoba, Tatsuya; Tayama, Niro
2016-03-01
In the present study, we examined the relationship between various open quotients (Oqs) and phonation types, fundamental frequency (F0), and intensity by multivariate linear regression analysis (MVA) to determine which Oq best reflects vocal fold vibratory characteristics. Using high-speed digital imaging (HSDI), a sustained vowel /e/ at different phonation types, F0s, and intensities was recorded from six vocally healthy male volunteers: the types of phonation included modal, falsetto, modal breathy, and modal pressed phonations; and each phonation was performed at different F0s and intensities. Electroglottography (EGG) and sound signals were simultaneously recorded with HSDI. From the obtained data, 10 conventional Oqs (four Oqs from the glottal area function, four kymographic Oqs, and two EGG-derived Oqs) and two newly introduced Oqs (Oq(edge)+ and Oq(edge)) were evaluated. And, relationships between various Oqs and phonation types, F0, and intensity were evaluated by MVA. Among the various Oqs, Oq(edge)+ and Oq(edge) revealed the strongest correlations with an acoustic property and could best describe changes in phonation types: Oq(edge) was found to be better than Oq(edge)¯. Oq(MLK), the average of five Oqs from five-line multiline kymography was a very good alternative to Oq(edge)¯. EGG-derived Oqs were able to differentiate between modal phonation and falsetto phonation, but it was necessary to consider the change of F0 simultaneously. MVA showed the changes in Oq values between modal and other phonation types, the degree of involvement of intensity, and no relationship between F0 and Oqs. Among Oqs evaluated in this study, Oq(edge)+ and Oq(edge) were considered to best reflect the vocal fold vibratory characteristics. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.
1996-01-01
Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an impact site caused negligible changes in reflectance. In all cases oxidation was found to be confined to the vicinity of the seams, impact sites, edges or defect sites. Asher to in-space atomic oxygen correlation issues will be addressed.
Adsorption of Potassium on the MoS2(100) Surface: A First-Principles Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.
2011-04-15
Periodic density functional theory calculations were performed to investigate the interaction that potassium with the Mo and S edges of the MoS2(100) surface. Both neutral and cationic (+1) charged potassium-promoted systems at different sulfur coverages were considered. Our calculations indicate that the potassium atom readily donates its single 4s valence electron to the MoS2 structure for the neutral potassium-promoted system, and the neutral and cationic potassium-promoted systems demonstrate a similar adsorption behavior. Moreover, potassium changes the magnetic properties known to occur at the metallic edge surface, which have implications for electron spin dependent surface characterization methods (i.e., electron spin/paramagnetic spectroscopy).more » Potassium in both the neutral and cationic systems tends to maximize its interactions with the available sulfur atoms at the edge surface, preferring sites over four-fold S hollows on fully sulfided Mo and S edges and over the interstitial gap where two to four edge surface S atoms are available for coordination. As the potassium coverage increases, the adsorption energy per potassium atom, surface work function, and transfer of the K 4s electron to the MoS2(100) surface decreases, which is in line with an increased metallization of the potassium adlayer. The potassium adlayer tends to form chains along the interstitial with K-K distances ~1 Å, which is notably less than those of bulk bcc K metal (4.61 Å). Density of states for the potassium-saturated surface suggests enhanced involvement of broad K 3d states beginning just above the Fermi level. Potassium-promotion of MoS2(100) has implications for alcohol catalysis: increasing the surface basicity by increasing the electron charge of the surface, providing hydrogenation-promoting CO site, blocking edge surface that dissociate CO and lead to methanation, and limiting H2 dissociative adsorption to the edge surface and possibly inhibiting the H2 dissociative adsorption via s character electron repulsion. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.« less
NASA Astrophysics Data System (ADS)
Loui, A.; Chiang, S.
2018-04-01
The intact adsorption and decomposition of furan (C4H4O) on vicinal palladium surfaces with (111)-oriented terraces has been studied by scanning tunneling microscopy (STM) over a range of temperatures. STM images at 225 K show that furan molecules lie flat and prefer to adsorb at upper step edges. At 225 K, furan molecules adsorbed on "narrow" terraces of 20 to 45 Å in width appear to diffuse more readily than those adsorbed on "wide" terraces of 160 to 220 Å. A distinct population of smaller features appears in STM images on "narrow" terraces at 288 K and on "wide" terraces at 415 K and is identified with the C3H3 decomposition product, agreeing with prior studies which demonstrated that furan dissociates on Pd(111) to yield carbon monoxide (CO) and a C3H3 moiety in the 280 to 320 K range. Based on our direct visualization of this reaction using STM, we propose a spatial mechanism in which adsorption of furan at upper step edges allows catalysis of the dissociation, followed by diffusion of the product to lower step edges.
Dixie Valley, Nevada playa bathymetry constructed from Landsat TM data
NASA Astrophysics Data System (ADS)
Groeneveld, David P.; Barz, David D.
2014-05-01
A bathymetry model was developed from a series of Landsat Thematic Mapper (TM) images to assist discrimination of hydrologic processes on a low-relief, stable saline playa in Dixie Valley, Nevada, USA. The slope of the playa surface, established by field survey on a reference transect, enabled calculation of relative elevation of the edges of pooled brine mapped from Landsat TM5 band 5 reflectance (TMB5) in the 1.55-1.75 μm shortwave infrared region (SWIR) of the spectrum. A 0.02 TMB5 reflectance threshold accurately differentiated the shallow (1-2 mm depth) edges of pools. Isocontours of equal elevations of pool margins were mapped with the TMB5 threshold, forming concentric rings that were assigned relative elevations according to the position that the pool edges intersected the reference transect. These data were used to fit a digital elevation model and a curve for estimating pooled volume given the distance from the playa edge to the intersection of the pool edge with the reference transect. To project pooled volume using the bathymetric model for any TM snapshot, within a geographic information system, the 0.02 TMB5 threshold is first used to define the edge of the exposed brine. The distance of this edge from the playa edge along the reference transect is then measured and input to the bathymetric equation to yield pooled volume. Other satellite platforms with appropriate SWIR bands require calibration to Landsat TMB5. The method has applicability for filling reservoirs, bodies of water that fluctuate and especially bodies of water inaccessible to acoustic or sounding methods.
NASA Astrophysics Data System (ADS)
Indira, P.; Selvam, B.; Thirusangu, K.
2018-04-01
Based on the works of Kotzig, Rosa and MacDougall et.al., we present algorithms and prove the existence of Z3-vertex magic total labeling and Z3-edge magic total labeling for the extended duplicate graph of quadrilateral snake.
Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.
Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C
2016-08-01
Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.
The existence of topological edge states in honeycomb plasmonic lattices
NASA Astrophysics Data System (ADS)
Wang, Li; Zhang, Ruo-Yang; Xiao, Meng; Han, Dezhuan; Chan, C. T.; Wen, Weijia
2016-10-01
In this paper, we investigate the band properties of 2D honeycomb plasmonic lattices consisting of metallic nanoparticles. By means of the coupled dipole method and quasi-static approximation, we theoretically analyze the band structures stemming from near-field interaction of localized surface plasmon polaritons for both the infinite lattice and ribbons. Naturally, the interaction of point dipoles decouples into independent out-of-plane and in-plane polarizations. For the out-of-plane modes, both the bulk spectrum and the range of the momentum k ∥ where edge states exist in ribbons are similar to the electronic bands in graphene. Nevertheless, the in-plane polarized modes show significant differences, which do not only possess additional non-flat edge states in ribbons, but also have different distributions of the flat edge states in reciprocal space. For in-plane polarized modes, we derived the bulk-edge correspondence, namely, the relation between the number of flat edge states at a fixed {k}\\parallel , Zak phases of the bulk bands and the winding number associated with the bulk Hamiltonian, and verified it through four typical ribbon boundaries, i.e. zigzag, bearded zigzag, armchair, and bearded armchair. Our approach gives a new topological understanding of edge states in such plasmonic systems, and may also apply to other 2D ‘vector wave’ systems.
Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite
NASA Astrophysics Data System (ADS)
Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.
2016-08-01
Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.
Chou, Ai Mei; Sem, Kai Ping; Wright, Graham Daniel; Sudhaharan, Thankiah; Ahmed, Sohail
2014-08-29
Filopodia are dynamic actin-based structures that play roles in processes such as cell migration, wound healing, and axonal guidance. Cdc42 induces filopodial formation through IRSp53, an Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain protein. Previous work from a number of laboratories has shown that IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics through its Src homology 3 domain binding partners. Here, we show that dynamin1 (Dyn1), the large guanosine triphosphatase, is an interacting partner of IRSp53 through pulldown and Förster resonance energy transfer analysis, and we explore its role in filopodial formation. In neuroblastoma cells, Dyn1 localizes to filopodia, associated tip complexes, and the leading edge just behind the anti-capping protein mammalian enabled (Mena). Dyn1 knockdown reduces filopodial formation, which can be rescued by overexpressing wild-type Dyn1 but not the GTPase mutant Dyn1-K44A and the loss-of-function actin binding domain mutant Dyn1-K/E. Interestingly, dynasore, an inhibitor of Dyn GTPase, also reduced filopodial number and increased their lifetime. Using rapid time-lapse total internal reflection fluorescence microscopy, we show that Dyn1 and Mena localize to filopodia only during initiation and assembly. Dyn1 actin binding domain mutant inhibits filopodial formation, suggesting a role in actin elongation. In contrast, Eps8, an actin capping protein, is seen most strongly at filopodial tips during disassembly. Taken together, the results suggest IRSp53 partners with Dyn1, Mena, and Eps8 to regulate filopodial dynamics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Angiography by Synchrotron Radiation
NASA Astrophysics Data System (ADS)
Rubenstein, E.; Brown, G. S.; Giacomini, J. C.; Gordon, H. J.; Hofstadter, R.; Kernoff, R. S.; Otis, J. N.; Thomlinson, W.; Thompson, A. C.; Zeman, H. D.
1987-01-01
Because coronary disease represents the principal health problem in the Western, industrialized world, and because of the risks and costs associated with conventional methods of visualizing the coronary arteries, an effort has been underway at the Stanford Synchrotron Radiation Laboratory to develop a less invasive coronary imaging procedure based on iodine K-edge dichromography. A pair of line images, recorded within a few milliseconds of each other, is taken with two monochromatic X-ray beams whose energy closely brackets the K-edge of iodine, 33.17 keV. The logarithmic subtraction of the images produced by these beams results in an image which greatly enhances signals arising from attenuation by iodine and almost totally suppresses signals arising from attenuation by soft tissue and bone. The high sensitivity to iodine allows the visualization of arterial structures after an intravenous injection of contrast agent and its subsequent 20-30 fold dilution. The experiments began in 1979, with initial studies done on phantoms and excised pig hearts. The first images of anesthetized dogs were taken in 1982. The results of experiments on dogs will be reviewed, showing the stepwise evolution of the imaging system, leading to the use of the system on human subjects in 1986. The images recorded on human subjects will be described and the remaining problems discussed.
Photoreflectance from GaAs and GaAs/GaAs interfaces
NASA Astrophysics Data System (ADS)
Sydor, Michael; Angelo, James; Wilson, Jerome J.; Mitchel, W. C.; Yen, M. Y.
1989-10-01
Photoreflectance from semi-insulating GaAs, and GaAs/GaAs interfaces, is discussed in terms of its behavior with temperature, doping, epilayer thickness, and laser intensity. Semi-insulating substrates show an exciton-related band-edge signal below 200 K and an impurity-related photoreflectance above 400 K. At intermediate temperatures the band-edge signal from thin GaAs epilayers contains a contribution from the epilayer-substrate interface. The interface effect depends on the epilayer's thickness, doping, and carrier mobility. The effect broadens the band-edge photoreflectance by 5-10 meV, and artifically lowers the estimates for the critical-point energy, ECP, obtained through the customary third-derivative functional fit to the data.
A physical optics/equivalent currents model for the RCS of trihedral corner reflectors
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polycarpou, Anastasis C.
1993-01-01
The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors.
Problems for the standard black hole/accretion disk models in Cygnus X-1?
NASA Technical Reports Server (NTRS)
Done, C.; Mulchaey, J. S.; Mushotzky, R. F.; Arnaud, K. A.
1992-01-01
Archival EXOSAT and HEAO1-A2 data from Cyg X-1 show the 'high energy excess' above 10 keV seen in X-ray observations of AGN. Using a likelihood ratio test, we are for the first time able to distinguish conclusively in favor of Compton reflection rather than partial covering as the origin of the high energy excess. This supports the idea of an X-ray illuminated accretion disk in Cyg X-1, but the line equivalent width is smaller by a factor of 2-3 than that expected from such a disk. While the larger optical depth required for reflection as opposed to line emission admit the possibility of seeing line without reflection, the converse is not possible. To see a reflection spectrum, including the strong iron absorption edge, implies that strong iron emission must be observed as the line and edge are causally linked.
Hα line shape in front of the limiter in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Wan, Baonian; Li, Jiangang; Luo, Jiarong; Xie, Jikang; Wu, Zhenwei; Zhang, Xianmei; HT-6M Group
1999-11-01
The Hα line shape in front of the limiter in the HT-6M tokamak is analysed by multi-Gaussian fitting. The energy distribution of neutral hydrogen atoms reveals that Hα radiation is contributed by Franck-Condon atoms, atoms reflected at the limiter surface and charge exchange. Multi-Gaussian fitting of the Hα spectral profile indicates contributions of 60% from reflection particles and 40% from molecule dissociation to recycling. Ion temperatures in central regions are obtained from the spectral width of charge exchange components. Dissociation of hydrogen molecules and reflection of particles at the limiter surface are dominant in edge recycling. Reduction of particle reflection at the limiter surface is important for controlling edge recycling. The measured profiles of neutral hydrogen atom density are reproduced by a particle continuity equation and a simplified one dimensional Monte Carlo simulation code.
Magnetism and electronic structure at the interface of a metal CaRuO3 and Mott insulator CaMnO3.
NASA Astrophysics Data System (ADS)
Boris, Alexander; Freeland, John; Kavich, Jerald; Lee, Ho Nyung; Yordanov, Petar; Khaliullin, Giniyat; Keimer, Bernhard; Chakhalian, Jak
2007-03-01
Recent advances in fabrication of ultra-thin complex oxide heterostructures have opened new opportunities to investigate possible novel quantum states at the correlated interfaces. With this aim we fabricated ultra-thin superlattices of CaMnO3(CMO)/CaRuO3(CRO) with the thickness of CRO layers from 1 to 12 unit cells by laser MBE. Electronic properties of CRO/CMO were investigated by soft x-ray spectroscopies at the L-edges of Mn and Ru. SQUID and optical reflectivity revealed a ferromagnetic thickness-independent transition at Tc 100K and CRO thickness-dependent negative magnetoresistance. This behavior is in marked contrast to the individual layers. At the interface we found a clear sign of net magnetic moment on Mn, which saturates only at magnetic field of 5T. Unlike CMO, similar measurements at the Ru L3-edge showed no detectable magnetism in the field up to 5T. Comparison with Ru references confirmed Ru(IV) oxidation state. These findings are in the sharp contrast with previously suggested models involving Ru(IV-V) valency exchange and thus reveal intricate nature of the interface between a metal and Mott insulator.
Nonaka, T; Dohmae, K; Araki, T; Hayashi, Y; Hirose, Y; Uruga, T; Yamazaki, H; Mochizuki, T; Tanida, H; Goto, S
2012-08-01
We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.
NASA Astrophysics Data System (ADS)
van Aken, P. A.; Sharp, T. G.; Seifert, F.
The analysis of the extended energy-loss fine structure (EXELFS) of the Si K-edge for sixfold-coordinated Si in synthetic stishovite and fourfold-coordinated Si in natural α-quartz is reported by using electron energy-loss spectroscopy (EELS) in combination with transmission electron microscopy (TEM). The stishovite Si K-edge EXELFS spectra were measured as a time-dependent series to document irradiation-induced amorphization. The amorphization was also investigated through the change in Si K- and O K-edge energy-loss near edge structure (ELNES). For α-quartz, in contrast to stishovite, electron irradiation-induced vitrification, verified by selected area electron diffraction (SAED), produced no detectable changes of the EXELFS. The Si K-edge EXELFS were analysed with the classical extended X-ray absorption fine structure (EXAFS) treatment and compared to ab initio curve-waved multiple-scattering (MS) calculations of EXAFS spectra for stishovite and α-quartz. Highly accurate information on the local atomic environment of the silicon atoms during the irradiation-induced amorphization of stishovite is obtained from the EXELFS structure parameters (Si-O bond distances, coordination numbers and Debye-Waller factors). The mean Si-O bond distance R and mean Si coordination number N changes from R=0.1775 nm and N=6 for stishovite through a disordered intermediate state (R 0.172 nm and N 5) to R 0.167 nm and N 4.5 for a nearly amorphous state similar to α-quartz (R=0.1609 nm and N=4). During the amorphization process, the Debye-Waller factor (DWF) passes through a maximum value of as it changes from for sixfold to for fourfold coordination of Si. This increase in Debye-Waller factor indicates an increase in mean-square relative displacement (MSRD) between the central silicon atom and its oxygen neighbours that is consistent with the presence of an intermediate structural state with fivefold coordination of Si. The distribution of coordination states can be estimated by modelling the amorphization as a decay process. Using the EXELFS data for amorphization, a new method is developed to derive the relative amounts of Si coordinations in high-pressure minerals with mixed coordination. For the radiation-induced amorphization process of stishovite the formation of a transitory structure with Si largely in fivefold coordination is deduced.
Many-Body Effects in the Mesoscopic x-Ray Edge Problem
NASA Astrophysics Data System (ADS)
Hentschel, M.; R"Oder, G.; Ullmo, D.
Many-body phenomena, a key interest in the investigation ofbulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray excition of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozières-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case.
Rost, Jon C.; Porkolab, Miklos; Dorris, James R.; ...
2014-06-17
A region of turbulence with large radial wavenumber (k rρ s > 1) is found in the high-shear portion of the plasma edge in Quiescent H-mode (QH-mode) on DIII{D using the Phase Contrast Imaging (PCI) diagnostic. At its peak outside the minimum of the E r well, the turbulence exhibits large amplitudemore » $$\\tilde{n}$$/n ~ 40%, with large radial wavenumber |$$\\bar{k}$$ r/ $$\\bar{k}$$ θ| ~ 11 and short radial correlation length L r/ρ i ~ 0.2. The turbulence inside the E r well minimum is characterized by the opposite sign in radial wavenumber from that of turbulence outside the minimum, consistent with the expected effects of velocity shear. The PCI diagnostic provides a line-integrated measurement of density uctuations, so data is taken during a scan of plasma position at constant parameters to allow the PCI to sample a range in k r/k θ . Analysis of the Doppler Shift and plasma geometry allows the turbulence to be localized to a narrow region 3 mm inside the last closed flux surface (LCFS), outside the minimum of the E r well. The turbulence amplitude and radial wavenumber and correlation length are determined by fitting the PCI results with a simple non-isotropic turbulence model with two regions of turbulence. Finally, these PCI observations, made in QH-mode, are qualitatively similar to those made in standard ELM-free H-mode and between edge localized modes (ELMs), suggesting a similar role for large k r turbulence there.« less
NASA Astrophysics Data System (ADS)
Ma, Fei; Su, Jing; Hao, Yongxing; Yao, Bing; Yan, Guanghui
2018-02-01
The problem of uncovering the internal operating function of network models is intriguing, demanded and attractive in researches of complex networks. Notice that, in the past two decades, a great number of artificial models are built to try to answer the above mentioned task. Based on the different growth ways, these previous models can be divided into two categories, one type, possessing the preferential attachment, follows a power-law P(k) ∼k-γ, 2 < γ < 3. The other has exponential-scaling feature, P(k) ∼α-k. However, there are no models containing above two kinds of growth ways to be presented, even the study of interconnection between these two growth manners in the same model is lacking. Hence, in this paper, we construct a class of planar and self-similar graphs motivated from a new attachment way, vertex-edge-growth network-operation, more precisely, the couple of both them. We report that this model is sparse, small world and hierarchical. And then, not only is scale-free feature in our model, but also lies the degree parameter γ(≈ 3 . 242) out the typical range. Note that, we suggest that the coexistence of multiple vertex growth ways will have a prominent effect on the power-law parameter γ, and the preferential attachment plays a dominate role on the development of networks over time. At the end of this paper, we obtain an exact analytical expression for the total number of spanning trees of models and also capture spanning trees entropy which we have compared with those of their corresponding component elements.
NASA Astrophysics Data System (ADS)
Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa
2018-03-01
Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490 nm when the excitation wavelength was 300 nm. As the ZnO phase developed, a variety of violet emission bands occurred within the range of 400 nm-450 nm, which was obviously related to the change in Eg. The intrinsic defects occurred in the NiO/ZnO composite powders were probably responsible for this phenomenon.
NASA Astrophysics Data System (ADS)
Herrera, A.; Ali, H.; Punjabi, A.
2004-11-01
The unperturbed magnetic topology of DIII-D USN shot 115467 in the absence of ELMs and C-coils is described by the symmetric simple map (SSM) with the map parameter k=0.2623. For this k, the last good surface passes through x=0 and y=0.9995, q_edge=6.48 if six iterations of the SSM are taken to be equivalent to a single toroidal circuit of DIII-D, and the q_edge equals the q_edge in the DIII-D for shot 115467 [1]. The map parameter k represents the effects of the toroidal asymmetries. We study the changes in the last good surface and its destruction as the map parameter k is increased. This work is supported by NASA SHARP program and DE-FG02-02ER54673. [1] H. Ali, A. Punjabi, A. Boozer, and T. Evans, presented at the 31st European Physical Society Plasma Physics Meeting, London, UK, June 29, 2004, paper P2-172.
Relative fluorescent efficiency of sodium salicylate between 90 and 800 eV
NASA Technical Reports Server (NTRS)
Angel, G. C.; Samson, J. A. R.; Wiliams, G.
1986-01-01
The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138-15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.
The relative fluorescent efficiency of sodium salicylate between 90 and 800 eV
NASA Technical Reports Server (NTRS)
Angel, G. C.; Samson, J. A. R.; Williams, G.
1986-01-01
The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138 -15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.
NASA Astrophysics Data System (ADS)
Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong
2016-01-01
Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.
Long- and Short-Range Structure of Ferrimagnetic Iron-Chromium Maghemites.
García-Guaderrama, Marco; Montero-Cabrera, María E; Morán, Emilio; Alario-Franco, Miguel A; Fuentes-Cobas, Luis E; Macías-Ríos, Edgar; Esparza-Ponce, Hilda E; Fuentes-Montero, María E
2015-12-07
Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).
NASA Astrophysics Data System (ADS)
Qur’ania, A.; Sarinah, I.
2018-03-01
People often wrong in knowing the type of jasmine by just looking at the white color of the jasmine, while not all white flowers including jasmine and not all jasmine flowers have white. There is a jasmine that is yellow and there is a jasmine that is white and purple.The aim of this research is to identify Jasmine flower (Jasminum sp.) based on the shape of the flower image-based using Sobel edge detection and k-Nearest Neighbor. Edge detection is used to detect the type of flower from the flower shape. Edge detection aims to improve the appearance of the border of a digital image. While k-Nearest Neighbor method is used to classify the classification of test objects into classes that have neighbouring properties closest to the object of training. The data used in this study are three types of jasmine namely jasmine white (Jasminum sambac), jasmine gambir (Jasminum pubescens), and jasmine japan (Pseuderanthemum reticulatum). Testing of jasmine flower image resized 50 × 50 pixels, 100 × 100 pixels, 150 × 150 pixels yields an accuracy of 84%. Tests on distance values of the k-NN method with spacing 5, 10 and 15 resulted in different accuracy rates for 5 and 10 closest distances yielding the same accuracy rate of 84%, for the 15 shortest distance resulted in a small accuracy of 65.2%.
2012-11-08
ψk with the mass matrix Mik = ∫ Ωe ψiψkdΩ; for the sake of simplicity, we did not write the dependence on x of the basis functions although it should...polynomial order N throughout all the elements Ωe in the domain Ω = ⋃Ne e =1 Ωe and if we insist that the elements have straight edges, then the matrix M−1...constant within each element of our grid but we allow µlim to change between different elements. The total viscosity parameter for each element e is
Measurement of LYSO Intrinsic Light Yield Using Electron Excitation
NASA Astrophysics Data System (ADS)
Turtos, Rosana Martinez; Gundacker, Stefan; Pizzichemi, Marco; Ghezzi, Alessio; Pauwels, Kristof; Auffray, Etiennette; Lecoq, Paul; Paganoni, Marco
2016-04-01
The determination of the intrinsic light yield (LYint) of scintillating crystals, i.e. number of optical photons created per amount of energy deposited, constitutes a key factor in order to characterize and optimize their energy and time resolution. However, until now measurements of this quantity are affected by large uncertainties and often rely on corrections for bulk absorption and surface/edge state. The novel idea presented in this contribution is based on the confinement of the scintillation emission in the central upper part of a 10 mm cubic crystal using a 1.5 MeV electron beam with diameter of 1 mm. A black non-reflective pinhole aligned with the excitation point is used to fix the light extraction solid angle (narrower than total reflection angle), which then sets a light cone travel path through the crystal. The final number of photoelectrons detected using a Hamamatsu R2059 photomultiplier tube (PMT) was corrected for the extraction solid angle, the Fresnel reflection coefficient and quantum efficiency (QE) of the PMT. The total number of optical photons produced per energy deposited was found to be 40000 ph/MeV ± 9% (syst) ±3% (stat) for LYSO. Simulations using Geant4 were successfully compared to light output measurements of 2 × 2 mm2 section crystals with lengths of 5-30 mm, in order to validate the light transport model and set a limit on Light Transfer Efficiency estimations.
Spin-dependent electron scattering at graphene edges on Ni(111).
Garcia-Lekue, A; Balashov, T; Olle, M; Ceballos, G; Arnau, A; Gambardella, P; Sanchez-Portal, D; Mugarza, A
2014-02-14
We investigate the scattering of surface electrons by the edges of graphene islands grown on Ni(111). By combining local tunneling spectroscopy and ab initio electronic structure calculations we find that the hybridization between graphene and Ni states results in strongly reflecting graphene edges. Quantum interference patterns formed around the islands reveal a spin-dependent scattering of the Shockley bands of Ni, which we attribute to their distinct coupling to bulk states. Moreover, we find a strong dependence of the scattering amplitude on the atomic structure of the edges, depending on the orbital character and energy of the surface states.
George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.
2009-01-01
We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140
A X-Ray Absorption Study of Transition Metal Oxides
NASA Astrophysics Data System (ADS)
Bunker, Grant Byrd
This work is an experimental and theoretical study of the x-ray absorption near-edge structure of selected 3d transition metal compounds. The goal is to understand the physical mechanisms of XANES, using the competing multiple scattering (MS) and single scattering formalisms of Durham et al, and of Muller and Schaich, respectively. Careful experimental measurements of the K edge absorption of Mn oxides and KMnO(,4) at 300(DEGREES)K, 140(DEGREES)K and 80(DEGREES)K were made. These materials were chosen because they exhibit a variety of structures and oxidation states. Computer simulations of the XANES using the formalisms above were also performed. The experimental results show that atoms beyond the first coordination shell significantly affect the XANES near and above the edge; in particular the temperature dependent XANES and the "white line" in MnO establish this. We conclude that XANES, like EXAFS, is primarily sensitive to geometrical structure, except within about 1 Rydberg of the Fermi level. Two types of MS are distinguished: type 1 (forward scattering) is important in both XANES and EXAFS regions; type 2 (large angle scattering) is important only at and below the edge. MS of the photoelectron among the first shell Oxygen atoms in KMnO(,4) is observed experimentally, and found to become negligible above (DBLTURN) 1 Rydberg past the edge. The sharp features in XANES are primarily due to scattering from distant atoms, rather than localized states, except below the edge. This is supported by the observation that (alpha)-Mn(,2)O(,3) and Mn(,3)O(,4) spectra are nearly identical; their structures are the same, but the average oxidation states are different. We find the bond length strongly affects the edge position and the intensity of the 3d absorption in tetrahedrally coordinated transition metals. Other new results are the first shell EXAFS amplitude in MnO shows an anomalous energy dependence, which apparently cannot be explained by current theory. A new deconvolution algorithm is proposed to minimize truncation effects in Fourier filtering.
Atomic resolution chemical bond analysis of oxygen in La2CuO4
NASA Astrophysics Data System (ADS)
Haruta, M.; Nagai, T.; Lugg, N. R.; Neish, M. J.; Nagao, M.; Kurashima, K.; Allen, L. J.; Mizoguchi, T.; Kimoto, K.
2013-08-01
The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent.
Structural motifs of pre-nucleation clusters.
Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E
2013-10-07
Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions.
Yano, Junko; Visser, Hendrik; Robblee, John H.; Gu, Weiwei; de Groot, Frank M. F.; Christou, George; Pecoraro, Vincent L.
2014-01-01
Resonant inelastic X-ray scattering (RIXS) was used to collect Mn K pre-edge spectra and to study the electronic structure in oxides, molecular coordination complexes, as well as the S1 and S2 states of the oxygen-evolving complex (OEC) of photosystem II (PS II). The RIXS data yield two-dimensional plots that can be interpreted along the incident (absorption) energy or the energy transfer axis. The second energy dimension separates the pre-edge (predominantly 1s to 3d transitions) from the main K-edge, and a detailed analysis is thus possible. The 1s2p RIXS final-state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy, and the RIXS spectra are therefore sensitive to the Mn spin state. This new technique thus yields information on the electronic structure that is not accessible in conventional K-edge absorption spectroscopy. The line splittings can be understood within a ligand field multiplet model, i.e., (3d,3d) and (2p,3d) two-electron interactions are crucial to describe the spectral shapes in all systems. We propose to explain the shift of the K pre-edge absorption energy upon Mn oxidation in terms of the effective number of 3d electrons (fractional 3d orbital population). The spectral changes in the Mn 1s2p3/2 RIXS spectra between the PS II S1 and S2 states are small compared to that of the oxides and two of the coordination complexes (MnIII(acac)3 and MnIV(sal)2(bipy)). We conclude that the electron in the step from S1 to S2 is transferred from a strongly delocalized orbital. PMID:15303869
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.
High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths andmore » during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal indicates a much faster rise time for arcs than for ELMs. Based on this observation, an ELM/arc discrimination system is being implemented to maintain RF power during ELMs even when the reflection coefficient becomes large. This work is supported by US DOE contracts DE-AC-05-00OR22725 and DE-AC02- 09CH11466. References [1] C. K. Phillips, et al, Nuclear Fusion 10, 075015 (2009)« less
High Resolution X-Ray Spectroscopy and Imaging of Supernova Remnant N132D
NASA Technical Reports Server (NTRS)
Behar, Ehud; Rasmussen, Andrew; Griffiths, R. Gareth; Dennerl, Konrad; Audard, Marc; Aschenbach, Bernd
2000-01-01
The observation of the supernova remnant N132D by the scientific instruments on board the XMM-Newton satellite is presented. The X-rays from N132D are dispersed into a detailed line-rich spectrum using the Reflection Grating Spectrometers. Spectral lines of C, N, O, Ne, Mg, Si, S, and Fe are identified. Images of the remnant, in narrow wavelength bands, produced by the European Photon Imaging Cameras reveal a complex spatial structure of the ionic distribution. While K - shell Fe seems to originate near the centre, all of the other ions are observed along the shell. An emission excess of O(6+) over O(7+) is detected on the northeastern edge of the remnant. This can be a sign of hot ionising conditions, or it can reflect a relatively cool region. Spectral fitting of the CCD spectrum suggests high temperatures in this region, but a detailed analysis of the atomic processes involved in producing the O(6+) spectral lines leads to the conclusion that the intensities of these lines alone cannot provide a conclusive distinction between the two scenarios.
Calibrations between the variables of microbial TTI response and ground pork qualities.
Kim, Eunji; Choi, Dong Yeol; Kim, Hyun Chul; Kim, Keehyuk; Lee, Seung Ju
2013-10-01
A time-temperature indicator (TTI) based on a lactic acid bacterium, Weissella cibaria CIFP009, was applied to ground pork packaging. Calibration curves between TTI response and pork qualities were obtained from storage tests at 2°C, 10°C, and 13°C. The curves of the TTI vs. total cell number at different temperatures coincided to the greatest extent, indicating the highest representativeness of calibration, by showing the least coefficient of variance (CV=11%) of the quality variables at a given TTI response (titratable acidity) on the curves, followed by pH (23%), volatile basic nitrogen (VBN) (25%), and thiobarbituric acid-reactive substances (TBARS) (47%). Similarity of Arrhenius activation energy (Ea) could also reflect the representativeness of calibration. The total cell number (104.9 kJ/mol) was found to be the most similar to that of the TTI response (106.2 kJ/mol), followed by pH (113.6 kJ/mol), VBN (77.4 kJ/mol), and TBARS (55.0 kJ/mol). Copyright © 2013 Elsevier Ltd. All rights reserved.
Analytic reflected light curves for exoplanets
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Cowan, Nicolas B.
2018-07-01
The disc-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motions coupled with an inhomogeneous albedo map. We have previously derived analytic reflected light curves for spherical harmonic albedo maps in the special case of a synchronously rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard). In this paper, we present analytic reflected light curves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_ l^m-maps). In particular, we use Wigner D-matrices to express an harmonic light curve for an arbitrary viewing geometry as a non-linear combination of harmonic light curves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected light curves, as well as fast calculation of light curves for mapping exoplanets based on time-resolved photometry. To these ends, we make available Exoplanet Analytic Reflected Lightcurves, a simple open-source code that allows rapid computation of reflected light curves.
A novel "gain chip" concept for high-power lasers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Li, Min; Li, Mingzhong; Wang, Zhenguo; Yan, Xiongwei; Jiang, Xinying; Zheng, Jiangang; Cui, Xudong; Zhang, Xiaomin
2017-05-01
High-power lasers, including high-peak power lasers (HPPL) and high-average power lasers (HAPL), attract much interest for enormous variety of applications in inertial fusion energy (IFE), materials processing, defense, spectroscopy, and high-field physics research. To meet the requirements of high efficiency and quality, a "gain chip" concept is proposed to properly design the pumping, cooling and lasing fields. The gain chip mainly consists of the laser diode arrays, lens duct, rectangle wave guide and slab-shaped gain media. For the pumping field, the pump light will be compressed and homogenized by the lens duct to high irradiance with total internal reflection, and further coupled into the gain media through its two edge faces. For the cooling field, the coolant travels along the flow channel created by the adjacent slabs in the other two edge-face direction, and cool the lateral faces of the gain media. For the lasing field, the laser beam travels through the lateral faces and experiences minimum thermal wavefront distortions. Thereby, these three fields are in orthogonality offering more spatial freedom to handle them during the construction of the lasers. Transverse gradient doping profiles for HPPL and HAPL have been employed to achieve uniform gain distributions (UGD) within the gain media, respectively. This UGD will improve the management for both amplified spontaneous emission (ASE) and thermal behavior. Since each "gain chip" has its own pump source, power scaling can be easily achieved by placing identical "gain chips" along the laser beam axis without disturbing the gain and thermal distributions. To detail our concept, a 1-kJ pulsed amplifier is designed and optical-to-optical efficiency up to 40% has been obtained. We believe that with proper coolant (gas or liquid) and gain media (Yb:YAG, Nd:glass or Nd:YAG) our "gain chip" concept might provide a general configuration for high-power lasers with high efficiency and quality.
KMC-1: a high resolution and high flux soft x-ray beamline at BESSY.
Schaefers, F; Mertin, M; Gorgoi, M
2007-12-01
The crystal monochromator beamline KMC-1 at a BESSY II bending magnet covers the energy range from soft (1.7 keV) to hard x-rays (12 keV) employing the (n,-n) double crystal arrangement with constant beam offset. The monochromator is equipped with three sets of crystals, InSb, Si (111), and Si (422) which are exchangeable in situ within a few minutes. Beamline and monochromator have been optimized for high flux and high resolution. This could be achieved by (1) a windowless setup under ultrahigh-vacuum conditions up to the experiment, (2) by the use of only three optical elements to minimize reflection losses, (3) by collecting an unusually large horizontal radiation fan (6 mrad) with the toroidal premirror, and (4) the optimization of the crystal optics to the soft x-ray range necessitating quasibackscattering crystal geometry (theta(Bragg,max)=82 degrees) delivering crystal limited resolution. The multipurpose beamline is in use for a variety of user facilities such as extended x-ray absorption fine structure, ((Bio-)EXAFS) near-edge x-ray absorption fine structure (NEXAFS), absorption and fluorescence spectroscopy. Due to the windowless UHV setup the k edges of the technologically and biologically important elements such as Si, P, and S are accessible. In addition to these experiments this beamline is now extensively used for photoelectron spectroscopy at high kinetic energies. Photon flux in the 10(11)-10(12) photons/s range and beamline resolving powers of more than E/DeltaE approximately 100.000 have been measured at selected energies employing Si (nnn) high order radiation in quasibackscattering geometry, thus photoelectron spectroscopy with a total instrumental resolution of about 150 meV is possible. This article describes the design features of the beamline and reports some experimental results in the above mentioned fields.
KMC-1: A high resolution and high flux soft x-ray beamline at BESSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefers, F.; Mertin, M.; Gorgoi, M.
2007-12-15
The crystal monochromator beamline KMC-1 at a BESSY II bending magnet covers the energy range from soft (1.7 keV) to hard x-rays (12 keV) employing the (n,-n) double crystal arrangement with constant beam offset. The monochromator is equipped with three sets of crystals, InSb, Si (111), and Si (422) which are exchangeable in situ within a few minutes. Beamline and monochromator have been optimized for high flux and high resolution. This could be achieved by (1) a windowless setup under ultrahigh-vacuum conditions up to the experiment, (2) by the use of only three optical elements to minimize reflection losses, (3)more » by collecting an unusually large horizontal radiation fan (6 mrad) with the toroidal premirror, and (4) the optimization of the crystal optics to the soft x-ray range necessitating quasibackscattering crystal geometry ({theta}{sub Bragg,max}=82 deg.) delivering crystal limited resolution. The multipurpose beamline is in use for a variety of user facilities such as extended x-ray absorption fine structure, ((Bio-)EXAFS) near-edge x-ray absorption fine structure (NEXAFS), absorption and fluorescence spectroscopy. Due to the windowless UHV setup the k edges of the technologically and biologically important elements such as Si, P, and S are accessible. In addition to these experiments this beamline is now extensively used for photoelectron spectroscopy at high kinetic energies. Photon flux in the 10{sup 11}-10{sup 12} photons/s range and beamline resolving powers of more than E/{delta}E{approx_equal}100.000 have been measured at selected energies employing Si (nnn) high order radiation in quasibackscattering geometry, thus photoelectron spectroscopy with a total instrumental resolution of about 150 meV is possible. This article describes the design features of the beamline and reports some experimental results in the above mentioned fields.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
.... (n/k/a PrimEdge, Inc.), Bio-Warm Corp. (n/k/a PHI Gold Corp.), Black Rock Golf Corp. (a/k/a Aurus... concerning the securities of Bio-Warm Corp. (n/k/a PHI Gold Corp.) because it has not filed any periodic...
An improved parallel fuzzy connected image segmentation method based on CUDA.
Wang, Liansheng; Li, Dong; Huang, Shaohui
2016-05-12
Fuzzy connectedness method (FC) is an effective method for extracting fuzzy objects from medical images. However, when FC is applied to large medical image datasets, its running time will be greatly expensive. Therefore, a parallel CUDA version of FC (CUDA-kFOE) was proposed by Ying et al. to accelerate the original FC. Unfortunately, CUDA-kFOE does not consider the edges between GPU blocks, which causes miscalculation of edge points. In this paper, an improved algorithm is proposed by adding a correction step on the edge points. The improved algorithm can greatly enhance the calculation accuracy. In the improved method, an iterative manner is applied. In the first iteration, the affinity computation strategy is changed and a look up table is employed for memory reduction. In the second iteration, the error voxels because of asynchronism are updated again. Three different CT sequences of hepatic vascular with different sizes were used in the experiments with three different seeds. NVIDIA Tesla C2075 is used to evaluate our improved method over these three data sets. Experimental results show that the improved algorithm can achieve a faster segmentation compared to the CPU version and higher accuracy than CUDA-kFOE. The calculation results were consistent with the CPU version, which demonstrates that it corrects the edge point calculation error of the original CUDA-kFOE. The proposed method has a comparable time cost and has less errors compared to the original CUDA-kFOE as demonstrated in the experimental results. In the future, we will focus on automatic acquisition method and automatic processing.
Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana
2016-03-01
Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.
Performance of LI-1542 reusable surface insulation system in a hypersonic stream
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Shideler, J. L.; Weinstein, I.
1976-01-01
The thermal and structural performance LI-1542 reusable surface insulation (RSI) tiles was investigated. The test panel was designed to represent part of the surface structure on a space shuttle orbiter fuselage along a 1250 K isotherm. Aerothermal tests were conducted at a free-stream Mach number of 6.6, a total temperature of 1820 K, Reynolds numbers of 2 millon and 5 million per meter, and dynamic pressures of 26 and 65 kPa. The RSI tiles demonstrated good thermal protection and structural integrity. High temperatures were caused by misalinement in tile height, offset the tile longitudinal alinement, and leakage around thermal seals when differential pressure existed across the panel. The damage tolerance of LI-1542 RSI appeared high. The tile coating crazed early in the test program, but this did not effect the tile integrity. Erosion of the tile edges occurred at forward-facing steps and at the ends of longitudinal gaps because of particle impacts and flow shear.
Determining thin film properties by fitting optical transmittance
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.; Cogan, S. F.
1990-08-01
The optical transmission spectra of rf sputtered tungsten oxide films on glass substrates were modeled to determine absorption edge behavior, film thickness, and index of refraction. Removal of substrate reflection and absorption phenomena from the experimental spectra allowed direct examination of thin film optical characteristics. The interference fringe pattern allows determination of the film thickness and the dependence of the real index of refraction on wavelength. Knowledge of the interference fringe behavior in the vicinity of the absorption edge was found essential to unambiguous determination of the optical band gap. In particular, the apparently random deviations commonly observed in the extrapolation of as-acquired data are eliminated by explicitly considering interference fringe phenomena. The multivariable optimization fitting scheme employed allows air-film-substrate reflection losses to be compensated without making reflectance measurements.
Edge profiles in K shell photoabsorption spectra of gaseous hydrides of 3p elements and homologues
NASA Astrophysics Data System (ADS)
Hauko, R.; Gomilšek, J. Padežnik; Kodre, A.; Arčon, I.; Aquilanti, G.
2017-10-01
Photoabsorption spectra of gaseous hydrides of 3p elements (PH3, H2S, HCl) are measured in the energy region of photoexcitations pertaining to K edge. The analysis of the edge profile is extended to hydrides of 4p series (GeH4, AsH3, H2Se, HBr) from an earlier experiment, and to published spectra of 2p hydrides (CH4, NH3, H2O, HF) and noble gases Ar, Kr and Ne and SiH4. The edge profiles are modelled with a linear combination of lorentzian components, describing excitations to individual bound states and to continuum. Transition energies and probabilities are also calculated in the non-relativistic molecular model of the ORCA code, in good agreement with the experiment. Edge profiles in the heavier homologues are closely similar, the symmetry of the molecule governs the transitions to the lowest unoccupied orbitals. In 2p series the effect of the strong nuclear potential prevails. Transitions to higher, atomic-like levels remain very much the same as in free atoms.
NASA Astrophysics Data System (ADS)
Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.
2014-07-01
We present results that show that atomic multiplet ligand field calculations are in very good agreement with experimental x-ray absorption spectra at the L2,3 edge of transition metal (TM) di-fluorides (MF2, M
The radiation from slots in truncated dielectric-covered surfaces
NASA Technical Reports Server (NTRS)
Hwang, Y. M.; Kouyoumjian, R. G.; Pathak, P. H.
1974-01-01
A theoretical approach based on the geometrical theory of diffraction is used to study the electromagnetic radiation from a narrow slot in a dielectric-covered perfectly-conducting surface terminated at an edge. The total far-zone field is composed of a geometrical optics field and a diffracted field. The geometrical optics field is the direct radiation from the slot to the field point. The slot also generates surface waves which are incident at the termination of the dielectric cover, where singly-diffracted rays and reflected surface waves are excited. The diffraction and reflection coefficients are obtained from the canonical problem of the diffraction of a surface wave by a right-angle wedge where the dielectric-covered surface is approximated by an impedance surface. This approximation is satisfactory for a very thin cover; however, the radiation from its vertical and faces cannot be neglected in treating the thicker dielectric cover. This is taken into account by using a Kirchhoff-type approximation, which contributes a second term to the diffraction coefficient previously obtained. The contributions from the geometrical optics field, the singly-diffracted rays and all significant multiply-diffracted rays are summed to give the total radiation. Calculated and measured patterns are found to be in good agreement.
NASA Astrophysics Data System (ADS)
Yokley, Zachary
2013-04-01
The LENS detector uses an optically segmented 3D lattice, a scintillation lattice (SL), that channels light via total internal reflection from a scintillation event down channels parallel to the 3 primary Cartesian axes to the edge of the detector. This unique design provides spatial and temporal resolution required to distinguish the internal background of ^115In from the neutrino signal. Optical segmentation is achieved with Teflon films. Currently a 400 liter prototype, miniLENS, is being developed to demonstrate the internal background rejection techniques needed for LENS. This requires that miniLENS be shielded from external backgrounds from the surrounding materials and the photomultiplier tubes (PMTs). This shielding is provided by a water tank that surrounds miniLENS. In order to retain the channel information and separate the PMTs from the detector the LENS collaboration has developed light guides (LGs) made from multilayer films. These LGs transport light both by total internal and specular reflection providing an efficient means of coupling the SL through the water shield to the PMTs outside the water tank. This talk will discuss light transport in the SL as well as the design and construction of the LGs in the context of miniLENS.
Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array
NASA Astrophysics Data System (ADS)
Hunacek, J.; Bock, J.; Bradford, C. M.; Butler, V.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Frez, C.; Hailey-Dunsheath, S.; Hoscheit, B.; Kim, D. W.; Li, C.-T.; Marrone, D.; Moncelsi, L.; Shirokoff, E.; Steinbach, B.; Sun, G.; Trumper, I.; Turner, A.; Uzgil, B.; Weber, A.; Zemcov, M.
2018-04-01
TIME is a mm-wavelength grating spectrometer array that will map fluctuations of the 157.7-μm emission line of singly ionized carbon ([CII]) during the epoch of reionization (redshift z ˜ 5-9). Sixty transition-edge sensor (TES) bolometers populate the output arc of each of the 32 spectrometers, for a total of 1920 detectors. Each bolometer consists of gold absorber on a ˜ 3 × 3 mm silicon nitride micro-mesh suspended near the corners by 1 × 1 × 500 μm silicon nitride legs targeting a photon-noise-dominated NEP ˜ 1 × 10^{-17} W/√{Hz} . Hafnium films are explored as a lower-T_c alternative to Ti (500 mK) for TIME TESs, allowing thicker support legs for improved yield. Hf T_c is shown to vary between 250 and 450 mK when varying the resident Ar pressure during deposition. Magnetic shielding designs and simulations are presented for the TIME first-stage SQUIDs. Total axial field suppression is predicted to be 5 × 10^7.
The formation flare loops by magnetic reconnection and chromospheric ablation
NASA Technical Reports Server (NTRS)
Forbes, T. G.; Malherbe, J. M.; Priest, E. R.
1989-01-01
Noncoplanar compressible reconnection theory is combined here with simple scaling arguments for ablation and radiative cooling to predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G, the temperature of the hot flare loops decreases from 1.2 x 10 to the 7th K to 4.0 x 10 to the 6th K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0 percent to 86 percent of the total field. When the perpendicular component exceeds 86 percent of the total field or when the altitude of the reconnection site exceeds 10 to the 6th km, flare loops no longer occur. Shock-enhanced radiative cooling triggers the formation of cool H-alpha flare loops with predicted densities of roughly 10 to the 13th/cu cm, and a small gap of roughly 1000 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silversmith, Geert; Poelman, Hilde; Poelman, Dirk
2007-02-02
A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure duringmore » propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.« less
Tip-to-tail numerical simulation of a hypersonic air-breathing engine with ethylene fuel
NASA Astrophysics Data System (ADS)
Dharavath, Malsur; Manna, P.; Chakraborty, Debasis
2016-11-01
End to end CFD simulations of external and internal flow paths of an ethylene fueled hypersonic airbreathing vehicle with including forebody, horizontal fins, vertical fins, intake, combustor, single expansion ramp nozzle are carried out. The performance of the scramjet combustor and vehicle net thrust-drag is calculated for hypersonic cruise condition. Three-dimensional Navier-Stokes equations are solved along with SST-k-ω turbulence model using the commercial CFD software CFX-14. Single step chemical reaction based on fast chemistry assumption is used for combustion of gaseous ethylene fuel. Simulations captured complex shock structures including the shocks generated from the vehicle nose and compression ramps, impingement of cowl-shock on vehicle undersurface and its reflection in the intake and combustor etc. Various thermochemical parameters are analyzed and performance parameters are evaluated for nonreacting and reacting cases. Very good mixing ( 98%) of fuel with incoming air stream is observed. Positive thrust-drag margins are obtained for fuel equivalence ratio of 0.6 and computed combustion efficiency is observed to be 94 %. Effect of equivalence ratio on the vehicle performance is studied parametrically. Though the combustion efficiency has come down by 8% for fuel equivalence ratio of 0.8, net vehicle thrust is increased by 44%. Heat flux distribution on the various walls of the whole vehicle including combustor is estimated for the isothermal wall condition of 1000 K in reacting flow. Higher local heat flux values are observed at all the leading edges of the vehicle (i.e., nose, wing, fin and cowl leading edges) and strut regions of the combustor.
Edge Antimagic Total Labeling on Two Copies of Path
NASA Astrophysics Data System (ADS)
Nurdin; Abrar, A. M.; Bhayangkara, A. R. M.; Muliani; Samsir, A. U.; Nahdi, M. R. An
2018-03-01
A graph G = (V(G), E(G)) denotes the vertex set and the edge set, respectively. A (p,q)-graph G is a graph such that |V(G) | = p and |E(G) | = q. Graph of order p and size q is called (a,d)-edge-anti magic total if there exists a bijection f : V(G) U E(G)→ {1,2,..., p + q} such that the edge weights w(u,v) = f(u) + f(uv) + f(v) form an arithmetic sequence {a, a + d, a + 2d,...,a + (q - 1)d} with the first term a and common difference d. Two copies of path is disjoint union of two path graph with same order (Pn ∪Pn ) denoted by 2Pn . In this paper we construct the (a,d)-edge-anti magic total labeling in two copies of path for some differences d.
Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince
2016-01-01
The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1-1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the individual brain development. An animation on the phenomenon is available at https://youtu.be/yxlyudPaVUE. Based on this observation and the related hypothesis, we can assign directions to some of the edges of the connectome as follows: Let Gk + 1 denote the consensus connectome where each edge is present in at least k+1 graphs, and let Gk denote the consensus connectome where each edge is present in at least k graphs. Suppose that vertex v is not connected to any other vertices in Gk+1, and becomes connected to a vertex u in Gk, where u was connected to other vertices already in Gk+1. Then we direct this (v, u) edge from v to u.
Jet Surface Interaction Noise in a High Aspect Ratio Rectangular Exhaust
NASA Technical Reports Server (NTRS)
Khavaran, Abbas
2017-01-01
A physics-based prediction model is employed to simulate jet surface interaction (JSI) noise in a transversely sheared jet exhaust. The methodology finds application in jets with a high aspect ratio (AR) rectangular exhaust in the proximity of a flat surface. Two component spectra are simulated: (i) mixing/scrubbing noise; (ii) trailing edge noise--and are superimposed to obtain the far field exhaust noise on either side of a nearby surface. This document describes the necessary input parameters (including mean flow and turbulence information for the nozzle exhaust of interest) that should be prepared in order to initiate the simulation for each noise component. Sample input/output files in connection with an 8:1 aspect ratio rectangular exhaust at Mach 0.98 near a rigid surface are described. Jet noise spectra are examined below at operating conditions listed in Table IV. Individual noise components, designated as Scrubbing Noise and Trailing Edge Noise, are presented and their sum Total Noise (Analysis) is compared with Measurement (Refs. 8 and 9) at selective number of observer polar angles at azimuth f = 90deg. Results are presented on an arc R = 17.80-ft (i.e., R = 100Deq) on both sides of a nearby surface. Although the predicted TE noise component is symmetric with respect to the edge due to symmetry in the propagator, measurements for the majority of cases are not quite symmetric and exhibit a slightly larger peak on the reflected side of the surface. Turbulent mixing/scrubbing noise component has a greater presence on the reflected side, as expected. Figure 13 to Figure 18 show that the peak in the predicted TE component could differ from measurements by as much as 4 dB due to lack of symmetry in measured data, however, the general trend is in agreement with data across the three Mach numbers. The overall sound pressure level (OASPL) associated with the TE noise component follows a U5 velocity scaling in the current modeling (Ref. 4). Directivity predictions for the TE noise component as well as the total noise are shown in Figure 19 (bottom)-and are compared with measurements (top figure) at conditions of Table IV. As anticipated, the TE noise component (dashed-line) overwhelms the directivity factor due to its dominant spectral peak level. Only at small angles to the jet axis the mixing noise component contributes significant enough to weight noticeably on the total noise.
Relativistically Skewed Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748-288
NASA Technical Reports Server (NTRS)
Miller, J. M.; Fox, D. W.; DiMatteo, T.; Wijnands, R.; Belloni, T.; Kouveliotou, C.; Lewin, W. H. G.
2000-01-01
We report evidence for an Fe K-alpha fluorescence line feature in the Very High, High, and Low state X-ray spectra of the galactic microquasar XTE JI748-288 during its June 1998 outburst. Spectral analyses were made on observations spread across the outburst, gathered with the Rossi X-ray Timing Explorer. Gaussian line. disk emission line, relativistic disk emission line, and disk reflection models are fit to the data. In the Very High State, the line profile is strongly redshifted and consistent with emission from the innermost radius of a maximally rotating Kerr black hole, 1.235 R(sub g). The line profile is less redshifted in the High State, but increasingly prominent. In the Low State, the line profile is very strong and centered af approx. 6.7 keV; disk line emission models constrain the inner edge of the disk to fluctuate between approx.20 and approx.59 R(sub g). We trace the disk reflection fraction across the full outburst of this source, and find well-constrained fractions below those observed in AGN in the Very High and High States, but consistent with other galactic sources in the Low State. We discuss the possible implications for black hole X-ray binary system dynamics and accretion flow geometry.
The Leading Edge of Early Childhood Education: Linking Science to Policy for a New Generation
ERIC Educational Resources Information Center
Lesaux, Nonie K., Ed.; Jones, Stephanie M., Ed.
2016-01-01
"The Leading Edge of Early Childhood Education" aims to support the effort to simultaneously scale up and improve the quality of early childhood education by bringing together relevant insights from emerging research to provide guidance for this critical, fledgling field. It reflects the growing recognition that early childhood…
1977-04-01
Conductivity ...... . .i 6 Relief Map of Conductivity ......... i9 7a conductivity versus Axial Position with Radial Position a a Parater...concentrations ii. pressure iii. temperature iv. velocity v. snie, number and velocity distribuions of the liquid particlas (if any are to be considered) I vi...Number = 1 vi. J• velocity = 8644 fps; Edge velocity = 10 fps vii. Jet temperature = 21160 K; Edge temperature = 278*K Also, at the exit piane, the
Understanding the Structure of Large, Diverse Collections of Shapes
2013-06-01
lowest weight edges as candidates, and for each candidate, we compute its edge rank, which is a metric proposed by Heath et al. [51] that estimates the... Neil D. McKay. A method for registration of 3-d shapes. IEEE PAMI, 14(2):239–256, February 1992. [10] V. Blanz, K. Scherbaum, and H.-P. Seidel. Fitting...2011. [50] C. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV, 2010. [51] K. Heath , N. Gelfand, M
2017-01-01
Zn(O,S) buffer layer electronic configuration is determined by its composition and thickness, tunable through atomic layer deposition. The Zn K and L-edges in the X-ray absorption near edge structure verify ionicity and covalency changes with S content. A high intensity shoulder in the Zn K-edge indicates strong Zn 4s hybridized states and a preferred c-axis orientation. 2–3 nm thick films with low S content show a subdued shoulder showing less contribution from Zn 4s hybridization. A lower energy shift with film thickness suggests a decreasing bandgap. Further, ZnSO4 forms at substrate interfaces, which may be detrimental for device performance. PMID:29083141
Characterization of edge oscillation in a traveling-wave field-effect transistor.
Narahara, Koichi
2013-07-01
In this study, we characterize the oscillating pulse edges developed in a traveling-wave field-effect transistor (TWFET). Recently, it has been found that a stable shock front can develop on a TWFET, which can travel in one direction only. Once the reflected pulse edge at the far end is transmitted to the input, the shock front develops and begins to travel on the device again. This process establishes a permanent edge oscillation. This paper discusses the device setup necessary to excite such oscillations and how pulse edges oscillate on a TWFET. By applying the phase reduction scheme to the transmission equations of a TWFET, we obtain phase sensitivity, which appropriately explains the measured spatial dependence of the locking range in frequency. Moreover, multiple oscillating edges can develop simultaneously, which are mutually synchronized. The dynamics of these multiple edges are also described.
Subharmonic edge waves on a large, shallow island
NASA Astrophysics Data System (ADS)
Foda, Mostafa A.
1988-08-01
Subharmonic resonance of edge waves by incident and reflected waves has been studied thus far for the case of a plane infinite beach. The analysis will be extended here to the case of a curved coastline, with a large radius of curvature and slowly varying beach slope in the longshore direction. It will be shown that the effects of such slow beach slope changes on a propagating edge wave are similar to the familiar shoaling effects on incident waves. The case of subharmonic edge wave generation on large shallow islands will be discussed in detail. The nonlinear analysis will show that within a certain range of island sizes, the generation mechanism can produce a stable standing edge wave around the island. For larger islands the solution disintegrates into two out-of-phase envelopes of opposite-going edge waves. For still larger islands, the generated progressive edge waves become unstable to sideband modulations.
Klipstein, P C
2018-07-11
For 2D topological insulators with strong electron-hole hybridization, such as HgTe/CdTe quantum wells, the widely used 4 × 4 k · p Hamiltonian based on the first electron and heavy hole sub-bands yields an equal number of physical and spurious solutions, for both the bulk states and the edge states. For symmetric bands and zero wave vector parallel to the sample edge, the mid-gap bulk solutions are identical to the edge solutions. In all cases, the physical edge solution is exponentially localized to the boundary and has been shown previously to satisfy standard boundary conditions for the wave function and its derivative, even in the limit of an infinite wall potential. The same treatment is now extended to the case of narrow sample widths, where for each spin direction, a gap appears in the edge state dispersions. For widths greater than 200 nm, this gap is less than half of the value reported for open boundary conditions, which are called into question because they include a spurious wave function component. The gap in the edge state dispersions is also calculated for weakly hybridized quantum wells such as InAs/GaSb/AlSb. In contrast to the strongly hybridized case, the edge states at the zone center only have pure exponential character when the bands are symmetric and when the sample has certain characteristic width values.
Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Rachel L.; Searles, Keith; Willard, Jesse A.
2013-12-28
Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphologymore » allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.« less
Algorithm for Automated Detection of Edges of Clouds
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Merceret, Francis J.
2006-01-01
An algorithm processes cloud-physics data gathered in situ by an aircraft, along with reflectivity data gathered by ground-based radar, to determine whether the aircraft is inside or outside a cloud at a given time. A cloud edge is deemed to be detected when the in/out state changes, subject to a hysteresis constraint. Such determinations are important in continuing research on relationships among lightning, electric charges in clouds, and decay of electric fields with distance from cloud edges.
Water and the oxidation state of subduction zone magmas.
Kelley, Katherine A; Cottrell, Elizabeth
2009-07-31
Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe3+/SigmaFe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H2O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe3+/SigmaFe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H2O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.
Lago, A F; Januário, R D; Cavasso Filho, R L; Simon, M; Dávalos, J Z
2017-10-01
Time of flight mass spectrometry, electron-ion coincidence, and ion yield spectroscopy were employed to investigate for the first time the thiazole (C 3 H 3 NS) molecule in the gas phase excited by synchrotron radiation in the soft X-ray domain. Total ion yield (TIY) and photoelectron-photoion coincidence (PEPICO) spectra were recorded as a function of the photon energy in the vicinity of the carbon K edge (C1s). The C1s resonant transitions as well as the core ionization thresholds have been determined from the profile of TIY spectrum, and the features were discussed. The corresponding partial ion yields were determined from the PEPICO spectra for the cation species produced upon the molecular photodissociation. Additional ab initio calculations have also been performed from where relevant structural and electronic configuration parameters were obtained for this molecule. Copyright © 2017 John Wiley & Sons, Ltd.
Multiple energy synchrotron biomedical imaging system
NASA Astrophysics Data System (ADS)
Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.
2016-12-01
A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.
Yan, Hongping; Wang, Cheng; McCarn, Allison R; Ade, Harald
2013-04-26
A practical and accurate method to obtain the index of refraction, especially the decrement δ, across the carbon 1s absorption edge is demonstrated. The combination of absorption spectra scaled to the Henke atomic scattering factor database, the use of the doubly subtractive Kramers-Kronig relations, and high precision specular reflectivity measurements from thin films allow the notoriously difficult-to-measure δ to be determined with high accuracy. No independent knowledge of the film thickness or density is required. High confidence interpolation between relatively sparse measurements of δ across an absorption edge is achieved. Accurate optical constants determined by this method are expected to greatly improve the simulation and interpretation of resonant soft x-ray scattering and reflectivity data. The method is demonstrated using poly(methyl methacrylate) and should be extendable to all organic materials.
NASA Astrophysics Data System (ADS)
Ni, Chen; Hua, Lin; Wang, Xiaokai
2018-09-01
To monitor the crack propagation and predict the fatigue life of ferromagnetic material, the metal magnetic memory (MMM) testing was carried out to the single edge notched specimen made from structural alloy steel under three-point bending fatigue experiment in this paper. The variation of magnetic memory signal Hp (y) in process of fatigue crack propagation was investigated. The gradient K of Hp (y) was investigated and compared with the stress of specimen obtained by finite element analysis. It indicated that the gradient K can qualitatively reflect the distribution and variation of stress. The maximum gradient Kmax and crack size showed a good linear relationship, which indicated that the crack propagation can be estimated by MMM testing. Furthermore, the damage model represented by magnetic memory characteristic was created and a fatigue life prediction method was developed. The fatigue life can be evaluated by the relationship between damage parameter and normalized life. The method was also verified by another specimen. Because of MMM testing, it provided a new approach for predicting fatigue life.
Visser, Hendrik; Anxolabéhère-Mallart, Elodie; Bergmann, Uwe; Glatzel, Pieter; Robblee, John H.; Cramer, Stephen P.; Girerd, Jean-Jacques; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.
2014-01-01
Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kβ X-ray emission spectroscopy (Kβ XES). The two manganese compounds are the di-μ-oxo compound [L′2MnIIIO2MnIVL′2](ClO4)3, where L′ is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623–6630) and the linear mono-μ-oxo compound [LMnIIIOMnIIIL](ClO4)2, where L− is the monoanionic N,N-bis(2-pyridylmethyl)-N′-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222–1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the MnIVMnIV species for the di-μ-oxo compound and the MnIIIMnIV and MnIVMnIV species for the mono-μ-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-μ-oxo and linear mono-μ-oxo Mn–Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kβ XES spectra show less dependence on ligand environment. The Kβ1,3 peak energies are comparable for the di-μ-oxo and mono-μ-oxo compounds in equivalent oxidation states. The energy shifts observed due to oxidation are also similar for the two different compounds. The study of the different behavior of the XANES pre-edge and main-edge features in conjunction with Kβ XES provides significant information about the oxidation state and character of the ligand environment of manganese atoms. PMID:11459481
Schwab, W.C.; Davis, A.S.; Haggerty, J.A.; Ling, T.H.; Commeau, J.A.
1984-01-01
The U.S. Geological Survey R/V S.P. LEE (cruise L9-84-CP) left Majuro, Ratak chain of the Marshall Islands, on July 28, 1984 and reached Hawaii on August 15, 1984. The main objective of this cruise was to study the distribution and composition of ferromanganese-oxide crusts in the Marshall Islands area (Fig. 1). A total of 5410 km of 12-kHz and 3.5-kHz seismic-reflection data, and 730 km of 80-in3 to 148-in3 airgun seismic-reflection data were collected. A description of these data and the ship-tracklines are presented in Schwab and Bailey (1984). This open-file report describes the types of samples collected and tabulates the results of our preliminary geochemical analyses of the ferromanganese-oxide crusts.
Scalp Wound Closure with K wires: An alternative easier method to scalp wound closure.
Ramesh, S; Ajik, S
2012-12-01
Scalp defects and lacerations present a reconstructive challenge to plastic surgeons. Many methods have been described from the use of skin grafting to rotation flaps. Here we present a method of closure of a contaminated scalp wound with the use of Kirschner wires. In our case, closure of scalp laceration was made possible with the use of 1.4 Kirschner wires and cable tie/ zip tie fasteners. The duration to closure of wound was 10 days. In reconstructing the scalp defect, this method was found to adhere to principles of scalp reconstruction. There were no post operative complications found from the procedure. On initial application on the edge of the wound, tension applied caused the K wires to cut through the wound edge. On replacement of K wires 1cm away from wound edge the procedure was not plagued by any further complication. In conclusion we find scalp closure with Kirschner wires are a simple and effective method for scalp wound closure.
NASA Astrophysics Data System (ADS)
Li, Dien; Secco, R. A.; Bancroft, G. M.; Fleet, M. E.
Aluminum K-edge XANES spectra of high pressure and high temperature (4.4 GPa and 1575°C) glasses along the NaAlSi2O6 (Jd)-NaAlSi3O8 (Ab) join are reported using synchrotron radiation, and shown to provide direct experimental evidence for the pressure-induced coordination change of Al. Five- and six-fold coordinated Al (5Al and 6Al), characterized by Al K-edge positions at 1567.8 and 1568.7 eV, respectively, first appear in glass of composition Jd60Ab40 and increase in proportion progressively with increasing Jd content. The end-member jadeite glass contains about 6% of each of 5Al and 6Al. The present direct measurements confirm literature suggestions for the important role of Al in controlling viscosity and diffusion in mantle melts.
2015-01-01
Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Hu, S. X.
2017-08-01
Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.
A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham
2016-07-27
A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge,more » Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.« less
Natural and artificial spectral edges in exoplanets
NASA Astrophysics Data System (ADS)
Lingam, Manasvi; Loeb, Abraham
2017-09-01
Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.
Distributed Ferrite Isolation in Traveling-Wave Tubes.
coupling to broadband edge modes of ferrite slabs. Evidence of coupling to the lower branch of edge mode, i.e., magnetostatic, has been obtained with L...band helix . Cold tests and analysis suggest coupling to ferrite edge modes from helix is easier at higher microwave frequencies. Plans for a hot...test at the 1-2 kW power level is an L-band TWT incorporating such distributed ferrites are described.
Influence of point defects on the near edge structure of hexagonal boron nitride
NASA Astrophysics Data System (ADS)
McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.
2017-10-01
Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.
NASA Astrophysics Data System (ADS)
Panahifar, Arash; Swanston, Treena M.; Pushie, M. Jake; Belev, George; Chapman, Dean; Weber, Lynn; Cooper, David M. L.
2016-07-01
Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.
NASA Astrophysics Data System (ADS)
Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D. D.
2005-11-01
Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K -edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K -edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.
Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.
Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus
2016-01-28
The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.
Zhao, Chen; Shi, Zong-Hai; Zhong, Jun; Liu, Jian-Guo; Li, Jun-Qing
2016-01-01
In this study, soil samples collected from different plain afforestation time (1 year, 4 years, 10 years, 15 years, and 20 years) in Miyun were characterized, including total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), available K (K+), microbial biomass carbon (MBC), and dissolved organic carbon (DOC). The DOM in the soil samples with different afforestation time was further characterized via DOC, UV-Visible spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, and 1H NMR spectroscopy. The results suggested that the texture of soil sample was sandy. The extracted DOM from soil consisted mainly of aliphatic chains and only a minor aromatic component. It can be included that afforestation can improve the soil quality to some extent, which can be partly reflected from the indexes like TOC, TN, TP, K+, MBC, and DOC. And the characterization of DOM implied that UV humic-like substances were the major fluorophores components in the DOM of the soil samples, which consisted of aliphatic chains and aromatic components with carbonyl, carboxyl, and hydroxyl groups. PMID:27433371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki; Ozaki, Yukihiro
Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopicmore » IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.« less
Ultrasonic testing of plates containing edge cracks
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.
1985-01-01
The stress wave factor (SWF) signal is utilized for the nondestructive evaluation of plates containing perpendicular edge cracks. The effects of the existence lateral location and depth of the crack on the magnitude spectra of individual reflections in the SWF signal are studied. If the reflections in the SWF signal are not overlapped the short time Fourier analysis is applied. If the reflections are overlapped the short time homomorphic analysis (cepstrum analysis) is applied. Several reflections which have average resonant frequencies approximately at 0.9, 1.3, and 1.7 MHz are analyzed. It is observed that the magnitude ratios evaluated at average resonant frequencies decrease more with increasing d/h if the crack is located between the transducers, where h is plate thickness and d is crack depth. Moreover, for the plates, crack geometries, reflections, and frequencies considered, the average decibel drop depends mainly on the dimensionless parameter d/h and it is approximately -1 dB per 0.07 d/h. Changes in the average resonant frequencies of the magnitude spectra are also observed due to changes in the location of the crack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hmelo, A.B.
1987-01-01
The nature of the plastic relaxation associated with the semi-brittle cleavage fracture of a series of pre-cracked molybdenum-niobium alloy single crystals was investigated as a function of composition and temperature from 77/sup 0/ to 298/sup 0/K. Conventional optical microscopy and white-beam Synchrotron X-Ray Fractography (SXRF) were used to examined the structure of a thin layer a few microns thick at the remnant of the precursor crack plastic zone. The plastic work of fracture was evaluated by measuring the lattice curvature associated with networks of dislocations beneath the cleavage surface. Using SXRF, lattice curvature is detected as asterism on photographic plates,more » and is associated with an excess density of edge dislocations of one sign. The results are in qualitative agreement with a previous determination of the fracture toughness of these specimens. Excess edge-dislocation density of one sign has been shown to vary as a function of temperature and composition, in a way consistent with previous studies of total dislocation content in these materials. Unlike the etch-pit analysis that can reveal the total dislocation content only, the tensor bases analysis described here allows the activity on individual slip systems to be distinguished.« less
NASA Astrophysics Data System (ADS)
Li, Dong; Cheng, Tao; Zhou, Kai; Zheng, Hengbiao; Yao, Xia; Tian, Yongchao; Zhu, Yan; Cao, Weixing
2017-07-01
Red edge position (REP), defined as the wavelength of the inflexion point in the red edge region (680-760 nm) of the reflectance spectrum, has been widely used to estimate foliar chlorophyll content from reflectance spectra. A number of techniques have been developed for REP extraction in the past three decades, but most of them require data-specific parameterization and the consistence of their performance from leaf to canopy levels remains poorly understood. In this study, we propose a new technique (WREP) to extract REPs based on the application of continuous wavelet transform to reflectance spectra. The REP is determined by the zero-crossing wavelength in the red edge region of a wavelet transformed spectrum for a number of scales of wavelet decomposition. The new technique is simple to implement and requires no parameterization from the user as long as continuous wavelet transforms are applied to reflectance spectra. Its performance was evaluated for estimating leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) of cereal crops (i.e. rice and wheat) and compared with traditional techniques including linear interpolation, linear extrapolation, polynomial fitting and inverted Gaussian. Our results demonstrated that WREP obtained the best estimation accuracy for both LCC and CCC as compared to traditional techniques. High scales of wavelet decomposition were favorable for the estimation of CCC and low scales for the estimation of LCC. The difference in optimal scale reveals the underlying mechanism of signature transfer from leaf to canopy levels. In addition, crop-specific models were required for the estimation of CCC over the full range. However, a common model could be built with the REPs extracted with Scale 5 of the WREP technique for wheat and rice crops when CCC was less than 2 g/m2 (R2 = 0.73, RMSE = 0.26 g/m2). This insensitivity of WREP to crop type indicates the potential for aerial mapping of chlorophyll content between growth seasons of cereal crops. The new REP extraction technique provides us a new insight for understanding the spectral changes in the red edge region in response to chlorophyll variation from leaf to canopy levels.
Experimental And Numerical Study Of CMC Leading Edges In Hypersonic Flows
NASA Astrophysics Data System (ADS)
Kuhn, Markus; Esser, Burkard; Gulhan, Ali; Dalenbring, Mats; Cavagna, Luca
2011-05-01
Future transportation concepts aim at high supersonic or hypersonic speeds, where the formerly sharp boundaries between aeronautic and aerospace applications become blurred. One of the major issues involved to high speed flight are extremely high aerothermal loads, which especially appear at the leading edges of the plane’s wings and at sharp edged air intake components of the propulsion system. As classical materials like metals or simple ceramics would thermally and structurally fail here, new materials have to be applied. In this context, lightweight ceramic matrix composites (CMC) seem to be prospective candidates as they are high-temperature resistant and offer low thermal expansion along with high specific strength at elevated temperature levels. A generic leading edge model with a ceramic wing assembly with a sweep back angle of 53° was designed, which allowed for easy leading edge sample integration of different CMC materials. The samples consisted of the materials C/C-SiC (non-oxide), OXIPOL and WHIPOX (both oxide) with a nose radius of 2 mm. In addition, a sharp edged C/C-SiC sample was prepared to investigate the nose radius influence. Overall, 13 thermocouples were installed inside the entire model to measure the temperature evolution at specific locations, whereby 5 thermocouples were placed inside the leading edge sample itself. In addition, non-intrusive techniques were applied for surface temperature measurements: An infrared camera was used to measure the surface temperature distribution and at specific spots, the surface temperature was also measured by pyrometers. Following, the model was investigated in DLR’s arc-heated facility L3K at a total enthalpy of 8.5 MJ/kg, Mach number of 7.8, different angles of attack and varying wing inclination angles. These experiments provide a sound basis for the simulation of aerothermally loaded CMC leading edge structures. Such fluid-structure coupled approaches have been performed by FOI, basing on a modal approach for the conduction model. Results show, that the temperature profiles are correctly depicted dependent on the model’s angle of attack.
Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O
2017-02-06
Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II (itao)(SO 4 )(H 2 O) 0,1 ] (M = Co, Ni, Cu) and [Cu(Me 6 tren)(SO 4 )] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO 4 )] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4 )] but not of [Cu(Me 6 tren)(SO 4 )] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II (SO 4 )(H 2 O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a hydrogen-bond bridge between sulfate and the itao ligand and involves orbitals at energies below the frontier set. This electronic structure feature provides a direct spectroscopic confirmation of the through-bond electron-transfer mechanism of redox-active metalloproteins.
Frank, Patrick; Szilagyi, Robert K.; Gramlich, Volker; ...
2017-01-09
Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II(itao)(SO 4)(H 2O) 0,1] (M = Co, Ni, Cu) and [Cu(Me 6tren)(SO 4)] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal–sulfur bond, while the XAS preedge of [Zn(itao)(SO 4)] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4)] but not of [Cu(Me 6tren)(SO 4)] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II(SO 4)(Hmore » 2O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5–2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal–absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a hydrogen-bond bridge between sulfate and the itao ligand and involves orbitals at energies below the frontier set. In conclusion, this electronic structure feature provides a direct spectroscopic confirmation of the through-bond electron-transfer mechanism of redox-active metalloproteins.« less
Ethylene dissociation on flat and stepped Ni(1 1 1): A combined STM and DFT study
NASA Astrophysics Data System (ADS)
Vang, Ronnie T.; Honkala, Karoliina; Dahl, Søren; Vestergaard, Ebbe K.; Schnadt, Joachim; Lægsgaard, Erik; Clausen, Bjerne S.; Nørskov, Jens K.; Besenbacher, Flemming
2006-01-01
The dissociative adsorption of ethylene (C 2H 4) on Ni(1 1 1) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (1 1 1) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges. DFT calculations were performed for several intermediate steps in the decomposition of ethylene on both Ni(1 1 1) and the stepped Ni(2 1 1) surface. In general the Ni(2 1 1) surface is found to have a higher reactivity than the Ni(1 1 1) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular the barrier for dissociation is lowered significantly more than the barrier for dehydrogenation, and this is of great importance for the bond-breaking selectivity of Ni surfaces. The influence of step edges was also probed by evaporating Ag onto the Ni(1 1 1) surface. STM shows that the room temperature evaporation leads to a step flow growth of Ag islands, and a subsequent annealing at 800 K causes the Ag atoms to completely wet the step edges of Ni(1 1 1). The blocking of the step edges is shown to prevent all decomposition of ethylene at room temperature, whereas the terrace site decomposition at 500 K is confirmed to be unaffected by the Ag atoms. Finally a high surface area NiAg alloy catalyst supported on MgAl 2O 4 was synthesized and tested in flow reactor measurements. The NiAg catalyst has a much lower activity for ethane hydrogenolysis than a similar Ni catalyst, which can be rationalized by the STM and DFT results.
Built-up edge investigation in vibration drilling of Al2024-T6.
Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A
2014-07-01
Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling. Copyright © 2014 Elsevier B.V. All rights reserved.
EELS characterisation of bulk CaCu3Ti4O12 ceramics.
Calvert, Clair C; Rainforth, W Mark; Sinclair, Derek C; West, Anthony R
2006-01-01
CaCu3Ti4O12 (CCTO) is a cubic perovskite phase and sintered ceramics exhibit high permittivity at room temperature. Electron energy-loss spectroscopy (EELS) and energy dispersive X-ray spectrometry (EDS) data have been collected from samples of CCTO to relate the observed electrical properties to the microstructure and chemistry on the nanoscale. CCTO ceramics were sintered for 24h at 1115 degrees C in air, giving a grain size of 50-300 microm. Ti L(2,3)-, Cu L(2,3)- and O K-edge EEL data were collected for bulk CCTO (within grain) and compared with well characterised Ti-oxides, CaTiO3 and BaTiO3 perovskites. The bulk metal L(2,3)-edge data for CCTO suggest that Cu is divalent and Ti is present as Ti4+. The O K-edge of CCTO shows increased near-edge structure (NES) compared to those of the simple perovskites.
Development of N+ in P pixel sensors for a high-luminosity large hadron collider
NASA Astrophysics Data System (ADS)
Kamada, Shintaro; Yamamura, Kazuhisa; Unno, Yoshinobu; Ikegami, Yoichi
2014-11-01
Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge.
Yb:YAG master oscillator power amplifier for remote wind sensing.
Sridharan, A K; Saraf, S; Byer, R L
2007-10-20
We have demonstrated key advances towards a solid-state laser amplifier at 1.03 microm for global remote wind sensing. We designed end-pumped zig-zag slab amplifiers to achieve high gain. We overcame parasitic oscillation limitations using claddings on the slab's total internal reflection (TIR) and edge surfaces to confine the pump and signal light by TIR and allow leakage of amplified spontaneous emission rays that do not meet the TIR condition. This enables e3, e5, and e8 single-, double-, and quadruple-pass small-signal amplifier gain, respectively. The stored energy density is 15.6 J/cm3, a record for a laser-diode end-pumped Yb:YAG zig-zag slab amplifier.
ERIC Educational Resources Information Center
Walker, Jearl
1985-01-01
Discusses how the sun's reflection from water offers a means for calculating sloped of waves. Experiments using angles of reflection from a tilted mirror are suggested and explained. A method of counterbalancing dominoes in a stack beyond the edge of a table (using Euler's constant) is also described. (DH)