Science.gov

Sample records for k-edge xanes studies

  1. Aluminium K-Edge XANES Study of Mica Preiswerkite

    SciTech Connect

    Wu, Z.; Marcelli, A.; Cibin, G.; Mottana, A.; Della Ventura, G.; /SLAC, SSRl

    2006-10-27

    We present the Al K-edge XANES spectrum of synthetic mica with mixed fourfold coordinated and sixfold coordinated Al (preiswerkite). Experimental analysis and multiple scattering simulations of XANES spectra demonstrate that octahedral contributions may overlap the tetrahedral ones so that the lower energy structures in mixed coordination compounds may be associated to Al octahedral site. This unexpected behavior can be explained as due to a large local distortion of the Al octahedral site.

  2. Amyloid-β peptide active site: theoretical Cu K-edge XANES study

    NASA Astrophysics Data System (ADS)

    Chaynikov, A. P.; Soldatov, M. A.; Streltsov, V.; Soldatov, A. V.

    2013-04-01

    This article is dedicated to the local atomic structure analysis of the copper binding site in amyloid-β peptide. Here we considered two possible structural models that were previously obtained by means of EXAFS analysis and density functional theory simulations. We present the calculations of Cu K-edge XANES spectra for both models and make comparison of these spectra with experiment.

  3. The blue of iron in mineral pigments: a Fe K-edge XANES study of vivianite

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. O.; Silva, T. P.; Veiga, J. P.

    2010-05-01

    Iron is a powerful chromophore element whose pigmenting properties were the first to be recognized among transition metals. The interest in blue iron minerals as pigments for painting was enhanced with the use of vivianite—a natural hydrated ferrous phosphate, Fe3(PO4)2ṡ8H2O—which in medieval Europe became an alternative to the expensive lapis lazuli, (Na, Ca)4(AlSiO4)3(SO4, Cl, S), a member of the ultramarines whose appreciated blue tone is due to the presence of sulfur polyanions. Conversely, vivianite coloring is attributed to the intervalence charge transfer (IVCT) Fe2+-Fe3+ that in later decades was studied by optical techniques and Mössbauer spectroscopy. However, the aging of blue vivianite pigments in old paintings has become a serious concern for conservators, but the aging process still awaits a satisfactory explanation. As an input to this problem, an X-ray absorption near-edge structure (XANES) study at the Fe K-edge of vivianite with different colors and origins was undertaken at the European Synchrotron Radiation Facility using the instrumental facilities of beamline ID-21. The analysis of pre-edge features corroborates previous data on the origin of vivianite color and emphasizes the need for a precautious assessment of iron speciation on the exclusive basis of XANES data. Actual results are discussed and further work is outlined.

  4. Ti K-edge EXAFS and XANES study on tektites from different strewnfields

    NASA Astrophysics Data System (ADS)

    Wang, L.; Furuta, T.; Okube, M.; Yoshiasa, A.

    2011-12-01

    The concentration and local structure of each element may have various kinds of information about the asteroid impact and mass extinction. Farges and Brown have discussed about the Ti local structure by XANES, and concluded that Ti in tektite occupies 4-coordinated site. EXAFS can be analyzed to give precise information about the distance from Ti to near neighbors. The XAFS measurement of Ti local structure was preformed at the beamline 9C of the Photon Factory in KEK, Tsukuba, Japan. The specimens of tektites are from different strewnfields, they are: indochinite, bediasite, hainanite, philippinite, australite and moldavite. Sample for comparison are Libya desert glass and suevite. The k3χ(k) function was transformed into the radial structure function (RSF) for Ti K-edge of six tektites. The RSF for the Ti atom in indochinite and bediasite are similar; hainanite, australite and philippinite are similar; and moldavite is discriminated from others. It indicates that they have the same local atomic environmental around the Ti atoms and extended structure respectively. Coordination numbers and radial structure function are determined by EXAFS analyses (Table 1). We classified the tektites in three types: in indochinite and bediasite, Ti occupies 4-coordinated tetrahedral site and Ti-O distances are 1.84-1.81 Å; in hainanite, australite and philippinite, Ti occupies 5-coordinated trigonal bi-pyramidal or tetragonal pyramidal site and Ti-O distances are 1.92-1.87 Å; in moldavite, Ti occupies the 6-coordinated octahedral site and Ti-O distance is 2.00-1.96 Å. Formation of tektites is related to the impact process. It is generally recognized that tektites were formed under higher temperature and high pressure. But through this study, local structures of Ti are differing in three strewnfields and even different locations of the same strewnfield. What caused the various local structures will be another topic of tektite studies. Local structure of Ti may be changed in

  5. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  6. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.

    PubMed

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  7. Interaction of Nanostructured Calcium Silicate Hydrate with Ibuprofen Drug Molecules: X-ray Absorption Near Edge Structure (XANES) Study at the Ca, Si and O K-edge

    NASA Astrophysics Data System (ADS)

    Guo, X. X.; Sham, T. K.; Zhu, Y. J.; Hu, Y. F.

    2013-04-01

    Mesoporous calcium silicate hydrate (CSH) nanostructure has been proven to be bioactive and biocompatible, and has a bright future in the application of bone treatment among other applications. X-ray absorption near edge structure (XANES) is a powerful tool for the study of the interactions of calcium silicate hydrates with drug molecules because it is element specific and it probes the unoccupied electronic states. Herein, we report the use of the calcium, silicon and oxygen K-edge XANES spectroscopy to identify how drug molecules interact with different groups in calcium silicate hydrate mesoporous nano-carriers with different morphologies. Significant changes are observed in XANES spectra after drug loading into the calcium silicate hydrate system, especially at the Si and O K-edge. The implications of these findings are discussed.

  8. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    SciTech Connect

    Myneni, S.C.B.; Perera, R.C.C.

    1997-04-01

    Heavy metal-rich acidic waters (SO{sub 4}{sup 2{minus}}, AsO{sub 4}{sup 3{minus}}, SeO{sub 4}{sup 2{minus}}, Fe{sup 2+}, Fe{sup 3+}, Al{sup 3+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS{sub 2}), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS{sub 2} + 3.5 O{sub 2} + H{sub 2}O {leftrightarrow} Fe{sup 2+} + SO{sub 4}{sup 2{minus}} + 2H{sup +}. Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO{sub 3}-rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined.

  9. Phosphorus K-edge XANES spectroscopy of mineral standards

    PubMed Central

    Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul

    2011-01-01

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905

  10. Phosphorus K-edge XANES Spectroscopy of Mineral Standards

    SciTech Connect

    E Ingall; J Brandes; J Diaz; M de Jonge; D Paterson; I McNulty; C Elliott; P Northrup

    2011-12-31

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens.

  11. K-edge EXAFS and XANES studies of Cu in CdTe thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xiangxin; Gupta, Akhlesh; Compaan, Alvin D.; Leyarovska, Nadia; Terry, Jeff

    2002-03-01

    Copper has been identified as a very important dopant element in CdTe thin-film solar cells. Cu is a deep acceptor in CdTe and is commonly used to obtain a heavily doped, low resistance back contact to polycrystalline CdTe. Cu also helps to increase the open circuit voltage of the cell. However, Cu is also a fast diffuser in CdTe, especially along grain boundaries, and can accumulate at the CdS/CdTe junction. It is suspected of leading to cell performance degradation in some cases. The present study is designed to help identify the lattice location of the Cu in CdTe. Cu K-edge, x-ray absorption (XAS) measurements were conducted on Cu in thin films of CdTe. Experiments were performed at the MR-CAT beamline at the Advanced Photon Source. The 3 mm CdTe layers were magnetron sputtered onto fused silica substrates. Some films were diffused with Cu from a 200 Å layer of evaporated Cu. XAS spectra were collected in fluorescence geometry with a 13 elements Ge detector. Quantitative fluorescence spectroscopy measurements were also performed. Details of the Cu environment and possible changes with time will be reported.

  12. Utilization of 'elemental' sulfur by different phototrophic sulfur bacteria (Chromatiaceae, Ectothiorhodospiraceae): A sulfur K-edge XANES spectroscopy study

    NASA Astrophysics Data System (ADS)

    Franz, B.; Lichtenberg, H.; Dahl, C.; Hormes, J.; Prange, A.

    2009-11-01

    Phototrophic sulfur bacteria are generally able to use elemental sulfur as an electron donor for anoxygenic photosynthesis. Elemental sulfur is mainly a mixture of cyclo-octasulfur and polymeric sulfur. The purple sulfur bacterium Allochromatium vinosum strongly prefers the polymeric sulfur fraction showing that sulfur speciation has a strong influence on availability of elemental sulfur. X-ray absorption near edge structure (XANES) spectroscopy was used to investigate whether polymeric sulfur is also the preferred sulfur species in other purple sulfur bacteria belonging to the families Chromatiaceae and Ecothiorodospiraceae. The cultures were fed with 50 mM of elemental sulfur consisting of 68% polymeric sulfur and 30% cyclo-octasulfur. In all cultures, elemental sulfur was converted into intra- or extracellular sulfur globules, respectively, and further oxidized to sulfate. Sulfate concentrations were determined by HPLC and turbidometric assays, respectively. However, the added elemental sulfur was only partly used by the bacteria, one part of the 'elemental sulfur' remained in the cultures and was not taken up. XANES spectroscopy revealed that only the polymeric sulfur fraction was taken up by all cultures investigated. This strongly indicates that polymeric 'chain-like' sulfur is the form preferably used by phototrophic sulfur bacteria.

  13. Cr K-Edge XANES Spectroscopy: Ligand and Oxidation State Dependence — What is Oxidation State?

    NASA Astrophysics Data System (ADS)

    Tromp, Moniek; Moulin, Jerome; Reid, Gillian; Evans, John

    2007-02-01

    A series of Cr complexes varying in oxidation state, ligand and geometry were studied with Cr K-edge XANES. The main absorption edge energy shift for an oxidation state change from Cr0 to Cr6+ is found to be similar to that for a series of Cr3+ complexes with different ligands. Theoretical XANES and density of states calculations using FEFF8.0 provided detailed insights in the origin of the XANES features for the series of distorted octahedral CrCl3L complexes. The geometry of the CrCl3L complex governs the position of the main absorption edge. Hard versus soft donor effects are overruled by the chlorine ligand for complexes with a facial geometry, whereas the chlorine ligand does not play a significant role in meridional geometry. The combined results call for a redefinition of generally used concepts like oxidation state.

  14. B K-Edge XANES of Superstructural Units in Borate Glasses

    SciTech Connect

    Sipr, O.; Simunek, A.; Rocca, F.

    2007-02-02

    The potential of x-ray absorption near-edge structure (XANES) spectroscopy for studying medium range order in borate glasses is assessed by theoretical modelling of the spectra. B K edge XANES is calculated in case that B atoms are located in isolated BO3 and BO4 units and in case that B atom are located in superstructural units of 9-15 atoms. It is found that boroxol ring and diborate and ditriborate superstructural units give rise to spectra which differ from spectra obtained by a mere superposition of spectra of isolated BO3 and BO4 units. On the other hand, spectra of pentaborate and triborate units do not differ significantly from spectra of isolated BO3 and BO4.

  15. Combined sulfur K-edge XANES-EXAFS study of the effect of protonation on the sulfate tetrahedron in solids and solutions.

    PubMed

    Pin, S; Huthwelker, T; Brown, M A; Vogel, F

    2013-09-05

    Sulfur K-edge X-ray absorption spectroscopy (XAS) has been used to distinguish between aqueous and solid sulfates and to investigate changes in their speciation. Data have been collected for tetrahedrally coordinated S in K2SO4 and KHSO4 solids and aqueous solutions. With a first qualitative analysis of the X-ray absorption near-edge structure (XANES) spectra, it has been observed that those for solids are much more structured and distinguishable from those of aqueous solutions. The protonation state has a strong effect on the white line of sulfates and has been assigned to the different charge delocalization in the samples, the effect of the solvating water molecules and multiple scattering effects. In the extended X-ray absorption fine structure (EXAFS) spectra, the backscattering from the first O shell dominated the EXAFS fine structure function, χ(k), but the nonlinear multiple scattering contributions occurring in the first coordination shell are significant and must be considered in the EXAFS analysis. The intensity of these contributions strongly depend on the symmetry of the system. For a distorted tetrahedron, the intensity of the multiple scattering contributions is less than that found in a regular tetrahedron. The FEFF code has been used to model the contributions of the multiple-scattering processes. The observed experimental evidence in the XAS data can be used to distinguish between sulfates in solids and liquids. This is applicable to many chemical, geochemical, and biological systems.

  16. Mn K-edge XANES and Kbeta XES studies of two Mn-oxo binuclear complexes: investigation of three different oxidation states relevant to the oxygen-evolving complex of photosystem II.

    PubMed

    Visser, H; Anxolabéhère-Mallart, E; Bergmann, U; Glatzel, P; Robblee, J H; Cramer, S P; Girerd, J J; Sauer, K; Klein, M P; Yachandra, V K

    2001-07-25

    Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kbeta X-ray emission spectroscopy (Kbeta XES). The two manganese compounds are the di-mu-oxo compound [L'2Mn(III)O2Mn(IV)L'2](ClO4)3, where L' is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623-6630) and the linear mono-mu-oxo compound [LMn(III)OMn(III)L](ClO4)2, where L- is the monoanionic N,N-bis(2-pyridylmethyl)-N'-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222-1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the Mn(IV)Mn(IV) species for the di-mu-oxo compound and the Mn(III)Mn(IV) and Mn(IV)Mn(IV) species for the mono-mu-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-mu-oxo and linear mono-mu-oxo Mn-Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kbeta XES spectra show less dependence on ligand environment. The Kbeta1,3 peak energies are comparable for the di-mu-oxo and mono

  17. Characterization of extracellular polymeric substances in the biofilms of typical bacteria by the sulfur K-edge XANES spectroscopy.

    PubMed

    Lin, Huirong; Ye, Chengsong; Lv, Lu; Zheng, Clark Renjun; Zhang, Shenghua; Zheng, Lei; Zhao, Yidong; Yu, Xin

    2014-08-01

    A combined approach of physicochemical extraction and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to characterize the extracellular polymeric substances (EPS) of typical bacterial biofilms in this study. Physicochemical analysis showed variation of the contents of DNA, polysaccharide and protein in different fractions of EPS in different mediums. The sulfur K-edge XANES analysis yielded a variety of spectra. Spectral fitting of the XANES spectra utilizing a large set of model compounds showed that there was more reduced sulfur in both LB-EPS (loosely bound EPS) and TB-EPS (tightly bound EPS) of all the biofilms in LB medium than in R2A medium. More oxidized sulfur was identified in LB-EPS than that in TB-EPS, suggesting different niches and physiological heterogeneity in the biofilms. Our results suggested that the sulfur K-edge XANES can be a useful tool to analyze the sulfur speciation in EPS of biofilms.

  18. Phosphorus Speciation of Forest-soil Organic Surface Layers using P K-edge XANES Spectroscopy

    SciTech Connect

    J Prietzel; J Thieme; D Paterson

    2011-12-31

    The phosphorus (P) speciation of organic surface layers from two adjacent German forest soils with different degree of water-logging (Stagnosol, Rheic Histosol) was analyzed by P K-edge XANES and subsequent Linear Combination Fitting. In both soils, {approx}70% of the P was inorganic phosphate and {approx}30% organic phosphate; reduced P forms such as phosphonate were absent. The increased degree of water-logging in the Histosol compared to the Stagnosol did not affect P speciation.

  19. Standard Protocol and Quality Assessment of Soil Phosphorus Speciation by P K-Edge XANES Spectroscopy.

    PubMed

    Werner, Florian; Prietzel, Jörg

    2015-09-01

    Phosphorus (P) in soils is most often bound as phosphate to one or more of the following four elements or compounds: calcium, aluminum, iron, and soil organic matter. A promising method for direct P speciation in soils is synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy at the K-edge of P. However, the quality of this method is debated controversially, partly because a standard protocol for reproducible spectrum deconvolution is lacking and minor modifications of the applied deconvolution procedure can lead to considerable changes in the P speciation results. On the basis of the observation that appropriate baseline correction and edge-step normalization are crucial for correct linear combination (LC) fitting results, we established a standard protocol for the deconvolution and LC fitting of P K-edge XANES spectra. We evaluated the quality of LC fits obtained according to this standard protocol with 16 defined dilute (2 mg P g(-1)) ternary mixtures of aluminum phosphate, iron phosphate, hydroxyapatite, and phytic acid in a quartz matrix. The LC fitting results were compared with the contribution of the different P compounds to total P in the various mixtures. Compared to using a traditional LC fitting procedure, our standard protocol reduced the fitting error by 6% (absolute). However, P portions smaller than 5% should be confirmed with other methods or excluded from the P speciation results. A publicly available database of P K-edge XANES reference spectra was initiated.

  20. On the origin of the differences in the Cu K-edge XANES of isostructural and isoelectronic compounds.

    PubMed

    Sipr, O; Rocca, F; Fornasini, P

    2009-06-24

    Cu K-edge x-ray absorption near-edge structure (XANES) spectra of trigonal (3R) CuScO(2) and CuLaO(2) and of hexagonal (2H) CuScO(2) were investigated experimentally and theoretically, in order to study differences between spectra of isostructural and isoelectronic compounds. Significant differences were found in the Cu K-edge XANES of 3R CuScO(2) and 3R CuLaO(2); these differences can be understood by considering the calculated polarization dependence of the XANES spectra and the differences between the phaseshifts of Sc and La. Spectra of the 3R and 2H polytypes of CuScO(2) differ only weakly and the difference originates from the long-range order. The pre-edge peak around 8980 eV is generated by the same mechanism as the pre-edge peak in Cu(2)O, i.e. involving scattering by the Cu atoms in the plane which is perpendicular to the O-Cu-O axis.

  1. Sulfur K-edge XANES for methylene blue in photocatalytic reaction over WO3 nanomaterials

    NASA Astrophysics Data System (ADS)

    Komori, K.; Yoshida, T.; Nomoto, T.; Yamamoto, M.; Tsukada, C.; Yagi, S.; Yajima, M.; Kajita, S.; Ohno, N.

    2015-12-01

    We investigated the photocatalysis of dendritic nanostructured WO3/W composite materials fabricated by He plasma irradiation to tungsten plates, followed by the surface oxidation. The samples promoted the decolorization reaction of methylene blue (MB) aqueous solution under near infrared (NIR) light irradiation. To verify the MB molecule is actually decomposed by the photocatalysis of the samples, reaction products were analyzed by S K-edge XANES measurements for the MB solution kept with the samples under the light irradiation or in the dark. By the light irradiation, the σ*(S-C) peak in the XANES spectra reduced and a new peak originated from SO42- species was clearly observed, suggesting that S-C bonds in a MB molecule are broken by the NIR light irradiation and finally the sulfur species exists in the solution in the state of SO42- ion. After the adsorption reaction in the dark, the XANES spectra of the sample surfaces showed a sharp π*(S-C) peaks, indicating that MB molecules are adsorbed on the sample surfaces and stacked each other by the π-π interaction. These results demonstrate that the photocatalytic decomposition of MB molecules really proceeds over WO3/W composite materials even under NIR light irradiation.

  2. Determining the Sulfur species in the dispersants Corexit 9500A and 9527A applying S K-edge XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Bovenkamp-Langlois, Lisa; Roy, Amitava

    2016-05-01

    The dispersants Corexit 9500A and 9527A were used extensively during the Deepwater Horizon oil spill in the Gulf of Mexico. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy was used to investigate the dispersants for the sulfur based components. The main sulfur containing component should be dioctyl sodium sulfosuccinate (DOSS). S K-edge XANES analysis shows that indeed the major sulfur species in both kinds of Corexit (9500A and 9527A) is sulfonic acid which is a part of DOSS. In addition some fraction of sulfone was detected.

  3. K-edge XANES investigation of octakis(DMSO)lanthanoid(III) complexes in DMSO solution and solid iodides

    PubMed Central

    D’Angelo, Paola; Migliorati, Valentina; Spezia, Riccardo; De Panfilis, Simone; Persson, Ingmar; Zitolo, Andrea

    2014-01-01

    The potentiality of high energy XANES (X-ray absorption near edge structure) as a structural tool for lanthanoid-containing systems has been explored. The K-edge XANES spectra of La3+, Gd3+, and Lu3+ ions both in DMSO solution and solid octakis(DMSO) lanthanoid(III) iodides have been analysed. Although the K-edges of lanthanoids cover the energy range 38 (La) to 65 (Lu) keV, the large widths of the core hole states do not appreciably reduce the potential structural information of XANES data. We show that, for lanthanoid compounds, accurate structural parameters are obtained from the analysis of K-edge XANES signal if a deconvolution procedure is carried out. We found that in solid octakis(DMSO) lanthanoid(III) iodides the Ln3+ ions are coordinated by eight DMSO ligands arranged in a quite symmetric fashion. In DMSO solution the Ln3+ ions retain a regular eight-coordination structure and the coordination number does not change along the series. At variance with water the second coordination shell has been found to provide a negligible contribution to the XANES spectra of Ln3+ ions in DMSO solution. PMID:23657739

  4. K-edge XANES investigation of octakis(DMSO)lanthanoid(III) complexes in DMSO solution and solid iodides.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Spezia, Riccardo; De Panfilis, Simone; Persson, Ingmar; Zitolo, Andrea

    2013-06-14

    The potential of high energy XANES (X-ray absorption near edge structure) as a tool for the structural analysis of lanthanoid-containing systems has been explored. The K-edge XANES spectra of La(3+), Gd(3+), and Lu(3+) ions both in DMSO solution and solid octakis(DMSO)lanthanoid(III) iodides have been analysed. Although the K-edges of lanthanoids cover the energy range of 38 (La) to 65 (Lu) keV, the large widths of the core hole states do not appreciably reduce the potential structural information of the XANES data. We show that, for lanthanoid compounds, accurate structural parameters are obtained from the analysis of K-edge XANES signals if a deconvolution procedure is carried out. We found that in solid octakis(DMSO)lanthanoid(III) iodides the Ln(3+) ions are coordinated by eight DMSO ligands arranged in a quite symmetric fashion. In DMSO solution the Ln(3+) ions retain a regular eight-coordination structure and the coordination number does not change along the series. In contrast to when in water the second coordination shell has been found to provide a negligible contribution to the XANES spectra of Ln(3+) ions in DMSO solution.

  5. Ab initio and experimental pre-edge investigations of the Mn K -edge XANES in oxide-type materials

    NASA Astrophysics Data System (ADS)

    Farges, François

    2005-04-01

    Mn K edge ab initio FEFF8.2 calculations of the pre-edge features of the x-ray-absorption near-edge structure (XANES) region were undertaken for a series of Mn-bearing oxide-type compounds. The aim of the study is to provide a reliable method for determining quantitative and accurate redox and symmetry information for manganese. In agreement with multiplet calculations by Glatzel and co-workers, FEFF8.2 predicts a doublet and a triplet for Mn(II) and Mn(III) in octahedral symmetry, respectively, in agreement with high-resolution XANES experiments. Site distortion increases notably the contribution from dipolar transitions and, consequently, the pre-edge feature integrated area. An even more intense pre-edge feature is calculated and measured for the Td symmetry (singletlike). For Mn(IV), a triplet is predicted and measured for the Oh symmetry. However, additional transitions are found in Mn(IV)-rich compounds, that are related to metal-metal transitions. These transitions overlap strongly with the “true pre-edge,” making extraction of redox and symmetry information for Mn(IV) more challenging. However, a model of the pre-edge with pseudo-Voigt functions of fixed calculated width (based on core-hole lifetime and experimental resolution) helps to separate the contributions related to first-neighbor symmetry from those of the metal-metal pairs. Application to multivalent defective manganese oxide materials suggests that the pre-edge information varies linearly as a function of Mn redox state or symmetry but varies nonlinearly as a function of both parameters. Finally, the polymerization of the manganese networks can be estimated from the metal-metal transitions found in the pre-edge region.

  6. Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials

    SciTech Connect

    Farges, Francois

    2005-04-15

    Mn K edge ab initio FEFF8.2 calculations of the pre-edge features of the x-ray-absorption near-edge structure (XANES) region were undertaken for a series of Mn-bearing oxide-type compounds. The aim of the study is to provide a reliable method for determining quantitative and accurate redox and symmetry information for manganese. In agreement with multiplet calculations by Glatzel and co-workers, FEFF8.2 predicts a doublet and a triplet for Mn(II) and Mn(III) in octahedral symmetry, respectively, in agreement with high-resolution XANES experiments. Site distortion increases notably the contribution from dipolar transitions and, consequently, the pre-edge feature integrated area. An even more intense pre-edge feature is calculated and measured for the T{sub d} symmetry (singletlike). For Mn(IV), a triplet is predicted and measured for the O{sub h} symmetry. However, additional transitions are found in Mn(IV)-rich compounds, that are related to metal-metal transitions. These transitions overlap strongly with the 'true pre-edge', making extraction of redox and symmetry information for Mn(IV) more challenging. However, a model of the pre-edge with pseudo-Voigt functions of fixed calculated width (based on core-hole lifetime and experimental resolution) helps to separate the contributions related to first-neighbor symmetry from those of the metal-metal pairs. Application to multivalent defective manganese oxide materials suggests that the pre-edge information varies linearly as a function of Mn redox state or symmetry but varies nonlinearly as a function of both parameters. Finally, the polymerization of the manganese networks can be estimated from the metal-metal transitions found in the pre-edge region.

  7. Fischer-Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

    DOE PAGES

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; ...

    2016-07-23

    The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts ismore » explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.« less

  8. Fischer-Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

    SciTech Connect

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; Sparks, Dennis E.; Shafer, Wilson D.; Khalid, Syed; Xiao, Qunfeng; Hu, Yongfeng; Davis, Burtron H.

    2016-07-23

    The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts is explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.

  9. Measurement of sulfur L2,3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum.

    PubMed

    Johnson, A S; Miseikis, L; Wood, D A; Austin, D R; Brahms, C; Jarosch, S; Strüber, C S; Ye, P; Marangos, J P

    2016-11-01

    We use a high harmonic generated supercontinuum in the soft X-ray region to measure X-ray absorption near edge structure (XANES) spectra in polythiophene (poly(3-hexylthiophene)) films at multiple absorption edges. A few-cycle carrier-envelope phase-stable laser pulse centered at 1800 nm was used to generate a stable soft X-ray supercontinuum, with amplitude gating limiting the generated pulse duration to a single optical half-cycle. We report a quantitative transmission measurement of the sulfur L2,3 edge over the range 160-200 eV and the carbon K edge from 280 to 330 eV. These spectra show all the features previously reported in the XANES spectra of polythiophene, but for the first time they are measured with a source that has an approximately 1 fs pulse duration. This study opens the door to measurements that can fully time-resolve the photoexcited electronic dynamics in these systems.

  10. Measurement of sulfur L2,3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum

    PubMed Central

    Johnson, A. S.; Miseikis, L.; Wood, D. A.; Austin, D. R.; Brahms, C.; Jarosch, S.; Strüber, C. S.; Ye, P.; Marangos, J. P.

    2016-01-01

    We use a high harmonic generated supercontinuum in the soft X-ray region to measure X-ray absorption near edge structure (XANES) spectra in polythiophene (poly(3-hexylthiophene)) films at multiple absorption edges. A few-cycle carrier-envelope phase-stable laser pulse centered at 1800 nm was used to generate a stable soft X-ray supercontinuum, with amplitude gating limiting the generated pulse duration to a single optical half-cycle. We report a quantitative transmission measurement of the sulfur L2,3 edge over the range 160–200 eV and the carbon K edge from 280 to 330 eV. These spectra show all the features previously reported in the XANES spectra of polythiophene, but for the first time they are measured with a source that has an approximately 1 fs pulse duration. This study opens the door to measurements that can fully time-resolve the photoexcited electronic dynamics in these systems. PMID:27822487

  11. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution.

    PubMed

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5'-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5'-monophosphate, and adenosine 5'-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  12. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    SciTech Connect

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  13. Humic sulfur in eutrophic bay sediments: Characterization by sulfur stable isotopes and K-edge XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Mao-Xu; Chen, Liang-Jin; Yang, Gui-Peng; Huang, Xiang-Li; Ma, Chen-Yan

    2014-02-01

    Organic sulfur (OS) is an important sedimentary sulfur pool in marine sediments and chemical extractions are often used for quantification of various OS pools, however, OS sources and mechanisms of OS formation are not well understood. In this study, sulfur stable isotope and sulfur X-ray absorption near edge structure (XANES) spectroscopy were combined to investigate the sources and speciation of humic-acid sulfur (HA-S) and fulvic-acid sulfur (FA-S) in sediments of eutrophic Jiaozhou Bay. Whilst there may be some indication that eutrophication has enhanced FA-S burial in the sediment, this has not substantially modified the characteristically low humic sulfur (i.e., HA-S + FA-S) contents of the sediments. Sulfur isotopic compositions indicate that both HA-S and FA-S are mixtures of diagenetic and biosynthetic OS in origin; HA-S is dominated by biosynthetic sulfur and FA-S by diagenetic source. Sulfur isotopic compositions and contents of pyrite and diagenetic OS indicate that inhibition of sulfurization by pyrite formation, if any, appears insignificant. XANES analysis suggests that the contents of high oxidized OS (i.e., sulfones and ester-sulfates) and strongly reduced OS species are comparable in the HA-S, whereas the FA-S is dominated by strongly reduced OS as a result of enhanced sulfurization.

  14. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES.

    PubMed

    Huang, Rixiang; Tang, Yuanzhi

    2016-09-01

    (Hydro)thermal treatments of sewage sludge is a promising option that can simultaneously target safe waste disposal, energy recovery, and nutrient recovery/recycling. The speciation of phosphorus (P) in sludge is of great relevance to P reclamation/recycling and soil application of sludge-derived products, thus it is critical to understand the effects of different treatment techniques and conditions on P speciation. This study systematically characterized P speciation (i.e. complexation and mineral forms) in chars derived from pyrolysis and hydrothermal carbonization (HTC) of municipal sewage sludges. Combined sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy analysis revealed the dependence of P transformation on treatment conditions and metal composition in the feedstocks. Pyrolysis of sludges decreased the relative abundance of phytic acid while increased the abundance of Al-associated P. HTC thoroughly homogenized and exposed P for interaction with various metals/minerals, with the final P speciation closely related to the composition/speciation of metals and their affinities to P. Results from this study revealed the mechanisms of P transformation during (hydro)thermal treatments of sewage sludges, and might be applicable to other biosolids. It also provided fundamental knowledge basis for the design and selection of waste management strategies for better P (re)cycling and reclamation.

  15. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  16. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-05-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.

  17. Effect of atomic vibrations in XANES: polarization-dependent damping of the fine structure at the Cu K-edge of (creat)2CuCl4.

    PubMed

    Šipr, Ondřej; Vackář, Jiří; Kuzmin, Alexei

    2016-11-01

    Polarization-dependent damping of the fine structure in the Cu K-edge spectrum of creatinium tetrachlorocuprate [(creat)2CuCl4] in the X-ray absorption near-edge structure (XANES) region is shown to be due to atomic vibrations. These vibrations can be separated into two groups, depending on whether the respective atoms belong to the same molecular block; individual molecular blocks can be treated as semi-rigid entities while the mutual positions of these blocks are subject to large mean relative displacements. The effect of vibrations can be efficiently included in XANES calculations by using the same formula as for static systems but with a modified free-electron propagator which accounts for fluctuations in interatomic distances.

  18. Investigation of soil legacy phosphorus transformation in long-term agricultural fields using sequential fractionation, P K-edge XANES and solution P NMR spectroscopy.

    PubMed

    Liu, Jin; Hu, Yongfeng; Yang, Jianjun; Abdi, Dalel; Cade-Menun, Barbara J

    2015-01-06

    Understanding legacy phosphorus (P) build-up and draw-down from long-term fertilization is essential for effective P management. Using replicated plots from Saskatchewan, Canada, with P fertilization from 1967 to 1995 followed by either P fertilization or P cessation (1995-2010), soil P was characterized in surface and subsurface layers using sequential fractionation, P K-edge X-ray absorption near-edge structure (XANES) and solution (31)P nuclear magnetic resonance (P NMR) spectroscopy. Legacy P from a 28-year build-up was sufficient for 15 years of wheat cultivation, resulting in no significant differences in crop yield in 2010. In surface soils, soil test (Olsen) P decreased significantly in unfertilized plots compared with 1995, which was reflected in declining aluminum (hydr)oxide-associated inorganic P by fractionation and XANES. Furthermore, XANES analysis revealed a decrease of calcium-associated P in 2010-unfertilized soils at both depths and an increase of Fe (hydr)oxides-associated P in the 2010-fertilized and -unfertilized surface soils relative to the 1995 soils. Increased total organic P and orthophosphate diesters by P NMR and accumulated inositol hexaphosphate by XANES were observed in surface soils with P fertilization cessation. In subsurface soils, few legacy P transformations were detected. These results provide important information about legacy P to improve agricultural sustainability while mitigating water quality deterioration.

  19. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    SciTech Connect

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  20. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; ...

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L-3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/ormore » coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  1. Ab initio x-ray absorption near-edge structure study of Ti K-edge in rutile.

    PubMed

    Chaboy, J; Nakajima, N; Tezuka, Y

    2007-07-04

    This work reports a theoretical x-ray absorption near-edge structure (XANES) spectroscopy study at the Ti K-edge in TiO(2) rutile. We present detailed ab initio computations of the Ti K-edge XANES spectrum performed within the multiple-scattering framework. An extensive discussion is presented concerning the size of the cluster needed to reproduce the experimental spectrum, especially regarding the split main absorption line. In addition, the role of the exchange and correlation potential (ECP) in reproducing all the experimental XANES features is discussed. The best agreement between experimental data and computations is obtained by using real ECP potentials, i.e. the energy-dependent Dirac-Hara exchange potential, or by using only the real part of the energy-dependent Hedin-Lundqvist complex potential, together with an additional imaginary constant to account for the core-hole lifetime and the experimental resolution. The addition of the imaginary part of the HL potential worsens the agreement between the experimental and calculated spectra, indicating the failure of the complex part of the Hedin-Lundqvist ECP in accounting for the electron damping in these systems.

  2. The effect of site geometry, Ti content and Ti oxidation state on the Ti K-edge XANES spectrum of synthetic hibonite

    NASA Astrophysics Data System (ADS)

    Doyle, P. M.; Berry, A. J.; Schofield, P. F.; Mosselmans, J. F. W.

    2016-08-01

    The Al-rich oxide hibonite (CaAl12O19) is modeled to be the second mineral to condense from a gas of solar composition and is found within calcium-aluminum-rich inclusions and the matrix of chondritic meteorites. Both Ti3+ and Ti4+ are reported in meteoritic hibonite, so hibonite has been proposed as a single mineral oxybarometer that could be used to elucidate conditions within the first 0.2 Myrs of the Solar System. Synthetic hibonites with Ti3+/(Ti3+ + Ti4+) (hereafter Ti3+/ΣTi) ranging between 0 and 1 were prepared as matrix-matched standards for meteoritic hibonite. The largest yield of both Ti-free and Ti-bearing hibonite at ∼1300 and ∼1400 °C was obtained by a single sinter under reducing conditions. In situ micro-beam Ti K-edge X-ray absorption near edge structure (XANES) spectra were recorded from the synthetic hibonites, as well as from terrestrial hibonite. Spectral features in the post-crest region were shown to correlate with the Ti4+ content. Furthermore, Ti4+ on the M2 trigonal bipyramidal and the adjoining M4 octahedral sites appears to cause variability in the post-crest region as a function of orientation. For this suite of synthetic hibonites it was observed that the pre-edge peak region is not influenced by orientation, but is controlled by Ti3+/ΣTi, site geometry and/or Ti concentration. In particular, the pre-edge peak intensities reflect Ti coordination environment and distortion of the M4 octahedral site. Therefore, although pre-edge peak intensities have previously been used to determine Ti3+/ΣTi in meteoritic minerals, we excluded use of the pre-edge peak intensities for quantifying Ti valence states in hibonite. The energy of the absorption edge at a normalized intensity of 0.8 (E0.8) and the energy of the minimum between the pre-edge region and the absorption edge (Em1) were found to vary systematically with Ti3+/ΣTi. Ti3+/ΣTi in hibonite as a function of Em1 was modeled by a quadratic function that may be used to quantify Ti3

  3. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    PubMed Central

    Pongpiachan, Siwatt; Thumanu, Kanjana; Kositanont, Charnwit; Schwarzer, Klaus; Prietzel, Jörg; Hirunyatrakul, Phoosak; Kittikoon, Itthipon

    2012-01-01

    This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD) and Germanium detector (GeD), were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN) at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP) and particulate matter of less than 10 millionths of a meter (PM10) collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA) and principal component analysis (PCA) has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD) from typical marine sediments (TMS). PMID:23193498

  4. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors.

    PubMed

    Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf

    2012-01-30

    The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed.

  5. Pressure Induced Phase Transition in PbTiO3 Studied by X-ray Absorption Spectroscopy at the Ti K edge

    SciTech Connect

    Dhaussy, A. C.; Marinel, S.; Veres, A.; Jaouen, N.; Itie, J. P.; Rogalev, A.

    2007-01-19

    The Ti-K edge X-ray Absorption Near Edge Structure (XANES) for CaTiO3 and PbTiO3 have been measured under high pressure in a diamond anvil cell at room temperature. Despite the huge absorption from the diamond cell and the sample high quality XANES allows us to observe that in CaTiO3 no change occurs when applying pressure, at the opposite of PbTiO3 in which the pre-edge features vary strongly. It allows studying the phase transition from ferroelectric to paraelectric phase in PbTiO3 from the local point of view. Under pressure the change in intensity of the pre-edge indicates qualitatively that the Ti atom is moving toward the centre of the oxygen octahedron along the c-axis.

  6. Full multiple scattering analysis of XANES at the Cd L3 and O K edges in CdO films combined with a soft-x-ray emission investigation

    SciTech Connect

    Demchenko, I. N.; Denlinger, J. D.; Chernyshova, M.; Yu, K. M.; Speaks, D. T.; Olalde-Velasco, P.; Hemmers, O.; Walukiewicz, W.; Derkachova, A.; Lawniczak-Jablonska, K.

    2010-07-05

    X-ray absorption near edge structure (XANES) at the cadmium L3 and oxygen K edges for CdO thin films grown by pulsed laser deposition method, is interpreted within the real-space multiple scattering formalism, FEFF code. The features in the experimental spectra are well reproduced by calculations for a cluster of about six and ten coordination shells around the absorber for L3 edge of Cd and K edge of O, respectively. The calculated projected electronic density of states is found to be in good agreement with unoccupied electronic states in experimental data and allows to conclude that the orbital character of the lowest energy of the conductive band is Cd-5s-O-2p. The charge transfer has been quantified and not purely ionic bonding has been found. Combined XANES and resonant inelastic x-ray scattering measurements allow us to determine the direct and indirect band gap of investigated CdO films to be {approx}2.4-eV and {approx}0.9-eV, respectively.

  7. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L3,2-edge XANES spectroscopy

    SciTech Connect

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L-3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.

  8. Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences

    NASA Astrophysics Data System (ADS)

    Prietzel, Jörg; Dümig, Alexander; Wu, Yanhong; Zhou, Jun; Klysubun, Wantana

    2013-05-01

    Phosphorus (P) is a crucial element for life on Earth, and the bioavailability of P in terrestrial ecosystems, which is dependent on the soil P stock and its speciation, may limit ecosystem productivity and succession. In our study, for the first time a direct speciation of soil P in two glacier foreland chronosequences has been conducted using synchrotron-based X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The chronosequences are located in the forefields of Hailuogou Glacier (Gongga Shan, China) and Damma Glacier (Swiss Alps). The age since deglaciation of the investigated soils ranges from 0 to 120 years at Hailuogou, and from 15 to >700 years at Damma. Differences in climate conditions (cooler at Damma, in contrast to Hailuogou precluding the establishment of forest in advanced ecosystem succession stages) and in the chemical composition of the parent material result in different soil contents of total P and Fe/Al oxyhydroxides, which are much smaller at Damma than at Hailuogou. Nevertheless, both chronosequences show similar trends of their topsoil P status with increasing soil age. Our study reveals a rapid change of topsoil P speciation in glacier retreat areas already during initial stages of pedogenesis: Initially dominating bedrock-derived apatite-P and Al-bound P is depleted; Fe-bound P and particularly organically-bound P is accumulated. Organic P strongly dominates in the topsoil of the mature soils outside the proglacial area of Damma Glacier (age 700-3000 years), and already 50 years after deglacation in the topsoil of the retreat area of Hailuogou Glacier. A key factor for the change in topsoil P speciation is the establishment of vegetation, resulting in soil organic matter (SOM) accumulation as well as accelerated soil acidification and apatite dissolution by organic acids, which are produced by SOM-degrading micro-organisms, mykorrhiza fungi, and plant roots. Particularly the succession of grassland to forest seems to accelerate the

  9. Morphology-dependent luminescence from ZnO nanostructures - An X-ray excited optical luminescence study at the Zn K-edge

    SciTech Connect

    Lobacheva, Olga; Murphy, Michael W; Ko, Jun Young Peter; Sham, Tsun-Kong

    2009-08-28

    ZnO nanostructures have been synthesized by thermal evaporation on Si substrates. It is found that the morphologies of the nanostructures are governed by growth conditions such as temperature, carrier-gas flow rate, and the nature of the substrate (with and without a catalyst). We report X-ray excited optical luminescence from ZnO nanostructures of distinctly different morphologies in the energy and time domain using excitation photon energies across the Zn K-edge. X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study has clearly shown the morphology dependence of the ZnO optical properties. A correlation of luminescence with morphology, size, and crystallinity emerges.

  10. Mn K-edge XANES spectroscopy of a photosynthetic O2-evolving complex. High-quality pre-edge features and distinct fine structures in the S1- and S2-states.

    PubMed

    Kusunoki, M; Ono, T; Matsushita, T; Oyanagi, H; Inoue, Y

    1990-10-01

    High-resolution XANES (X-ray Absorption Near Edge Structure) spectroscopy for Mn in the S1 and S2 states of the spinach photosynthetic O2-evolving complex revealed distinct features in K-edge spectra, when a high signal-to-noise (S/N) ratio of ca. 80 with a low and constant background-to-signal (B/S) ratio of 0.15 to 0.18 was attained. Six features resolved in each S-state spectrum involve a pre-edge feature due to 1s----3d transitions, a main-edge feature possibly due to 1s----4s transitions and four fine structures superimposed on the principal absorption bands due to 1s----4p* transitions. The high-quality pre-edge features were analyzed according to a parametric ligand-field theory in comparison with those of some typical authentic Mn complexes. It was deduced that i) all of the four Mn ions in the S1-state are octahedrally coordinated and two of them constitute a di-mu-oxo bridged Mn(III, III) dimeric subunit; ii) the bridged Mn(III) ions are further bridged by a deprotonated water dimer, (HOHOH)-, and coordinated by imidazole-N and carboxylate-O- on the opposite side of the Mn atom from the di-mu-oxo bridge; iii) the other two Mn ions exist in the form of Mn(III) monomeric subunits; and iv) upon the S1----S2 transition, only the bridged Mn(III,III) is oxidized to Mn(III,IV). The distinct change in the principal absorption band shape upon the S1----S2 transition is briefly discussed to obtain the XANES evidence for a tetrameric Mn-cluster.

  11. Preliminary study of an angiographic and angio-tomographic technique based on K-edge filters

    SciTech Connect

    Golosio, Bruno; Brunetti, Antonio; Oliva, Piernicola; Carpinelli, Massimo; Luca Masala, Giovanni; Meloni, Francesco; Battista Meloni, Giovanni

    2013-08-14

    Digital Subtraction Angiography is commonly affected by artifacts due to the patient movements during the acquisition of the images without and with the contrast medium. This paper presents a preliminary study on an angiographic and angio-tomographic technique based on the quasi-simultaneous acquisition of two images, obtained using two different filters at the exit of an X-ray tube. One of the two filters (K-edge filter) contains the same chemical element used as a contrast agent (gadolinium in this study). This filter absorbs more radiation with energy just above the so called K-edge energy of gadolinium than the radiation with energy just below it. The other filter (an aluminium filter in this study) is simply used to suppress the low-energy contribution to the spectrum. Using proper calibration curves, the two images are combined to obtain an image of the contrast agent distribution. In the angio-tomographic application of the proposed technique two images, corresponding to the two filter types, are acquired for each viewing angle of the tomographic scan. From the two tomographic reconstructions, it is possible to obtain a three-dimensional map of the contrast agent distribution. The technique was tested on a sample consisting of a rat skull placed inside a container filled with water. Six small cylinders with 4.7 mm internal diameter containing the contrast medium at different concentrations were placed inside the skull. In the plain angiographic application of the technique, five out of six cylinders were visible, with gadolinium concentration down to 0.96%. In the angio-tomographic application, all six cylinders were visible, with gadolinium concentration down to 0.49%. This preliminary study shows that the proposed technique can provide images of the contrast medium at low concentration without most of the artifacts that are present in images produced by conventional techniques. The results encourage further investigation on the feasibility of a clinical

  12. Preliminary study of an angiographic and angio-tomographic technique based on K-edge filters

    NASA Astrophysics Data System (ADS)

    Golosio, Bruno; Oliva, Piernicola; Brunetti, Antonio; Luca Masala, Giovanni; Carpinelli, Massimo; Meloni, Francesco; Battista Meloni, Giovanni

    2013-08-01

    Digital Subtraction Angiography is commonly affected by artifacts due to the patient movements during the acquisition of the images without and with the contrast medium. This paper presents a preliminary study on an angiographic and angio-tomographic technique based on the quasi-simultaneous acquisition of two images, obtained using two different filters at the exit of an X-ray tube. One of the two filters (K-edge filter) contains the same chemical element used as a contrast agent (gadolinium in this study). This filter absorbs more radiation with energy just above the so called K-edge energy of gadolinium than the radiation with energy just below it. The other filter (an aluminium filter in this study) is simply used to suppress the low-energy contribution to the spectrum. Using proper calibration curves, the two images are combined to obtain an image of the contrast agent distribution. In the angio-tomographic application of the proposed technique two images, corresponding to the two filter types, are acquired for each viewing angle of the tomographic scan. From the two tomographic reconstructions, it is possible to obtain a three-dimensional map of the contrast agent distribution. The technique was tested on a sample consisting of a rat skull placed inside a container filled with water. Six small cylinders with 4.7 mm internal diameter containing the contrast medium at different concentrations were placed inside the skull. In the plain angiographic application of the technique, five out of six cylinders were visible, with gadolinium concentration down to 0.96%. In the angio-tomographic application, all six cylinders were visible, with gadolinium concentration down to 0.49%. This preliminary study shows that the proposed technique can provide images of the contrast medium at low concentration without most of the artifacts that are present in images produced by conventional techniques. The results encourage further investigation on the feasibility of a clinical

  13. Copper blue in an ancient glass bead: a XANES study

    NASA Astrophysics Data System (ADS)

    Veiga, J. P.; Figueiredo, M. O.

    2006-06-01

    The blue colour in ancient soda-lime glasses has been attributed to the presence of copper and/or cobalt but the origin of different shades is not yet fully interpreted. As a contribution to this question, a non-destructive X-ray absorption study at [ Cu]K-edge was undertaken on the blue (turquoise) layer from a “Nueva Cadiz” type tubular glass bead dated pre-XVII century where copper is the unique colouring agent. Minerals configuring two distinct blue tonalities due to Cu (2+) in similar square coordination were selected as basic model compounds: azurite, which is a classical navy-blue pigment used in ancient wall paintings over plaster, and chalcanthite, displaying exactly the same turquoise-blue tonality of tubular glass beads manufactured since the Egyptian Antiquity. Theoretical modelling of the XAFS spectra was undertaken using the FEFF code. The IFEFFIT software package was used for fitting the calculated spectra to experimental data. EXAFS results are discussed in view of the crystal structures of copper minerals chosen to model the speciation state and structural situation of that element prevailing in the turquoise-blue archaeological glass. Special attention is focused on the difficulties in theoretical modelling [ Cu]K-XANES spectra of ancient glasses with different colourings.

  14. XANES and EXAFS study of Au-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1990-01-01

    The near-edge structure (XANES) of the Au L3 and Cu K edges of YBa2Au(0.3)Cu(2.7)O(7-delta) was studied. X ray diffraction suggests that Au goes on the Cu(1) site and XANES shows that this has little effect on the oxidation state of the remaining copper. The gold L3 edge develops a white line feature whose position lies between that of trivalent gold oxide (Au2O3) and monovalent potassium gold cyanide (KAu(CN)2) and whose intensity relative to the edge step is smaller than in the two reference compounds. The L3 EXAFS for Au in the superconductor resembles that of Au2O3. However, differences in the envelope of the Fourier filtered component for the first shell suggest that the local structure of the Au in the superconductor is not equivalent to Au2O3.

  15. Photoabsorption study of Bacillus megaterium, DNA and Related Biological Materials in the Phosphorus K-edge Region

    NASA Technical Reports Server (NTRS)

    Frigo, Sean P.; McNulty,Ian; Richmond, Robert C.; Ehret, Charles F.

    2003-01-01

    We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include red phosphorus, hydrated sodium phosphate (Na3PO4 12 H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position, where each is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B.meguterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition, the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.

  16. Photoabsorption Study of Bacillus megaterium, DNA and Related Biological Materials in the Phosphorus K-edge Region

    NASA Technical Reports Server (NTRS)

    Frigo, Sean P.; McNulty, Ian; Richmond, Robert C.; Ehret, Charles F.

    2002-01-01

    We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include elemental red phosphorus, hydrated sodium phosphate (Na3PO4.12H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Elemental red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position. Each spectrum for these substances is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for elemental red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B. megaterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition,the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.

  17. Zn K edge and O K edge x-ray absorption spectra of ZnO surfaces: implications for nanorods.

    PubMed

    Šipr, O; Rocca, F

    2011-08-10

    Zn K edge and O K edge x-ray absorption near-edge structure (XANES) spectra of ZnO surfaces are calculated. The difference between theoretical XANES for ZnO surfaces and ZnO bulk is then compared to the earlier observed differences between experimental XANES for ZnO nanostructures and ZnO bulk as taken from the literature. It follows from our calculations that the differences between the experimental XANES of bulk ZnO and nanocrystalline ZnO is not due to the enhanced role of the surfaces in nanostructures. Rather, the difference in XANES has to reflect differences in the local geometry around the photoabsorbing sites. The dependence of XANES of ZnO surfaces on the polarization of the incoming radiation is also investigated theoretically and found to be similar as in the bulk.

  18. Model compound vulcanization studied by XANES

    NASA Astrophysics Data System (ADS)

    Taweepreda, W.; Nu-Mard, R.; Pattanasiriwisawa, W.; Songsiriritthigul, P.

    2009-11-01

    Squalene has been used as a model compound for the investigation of sulphur crosslink in the vulcanization process. The effects of the accelerator on the crosslink were deduced from the sulfur K-edge absorption spectra. The majority of the crosslinks for the squalene vulcanized with ZDEC or TMTD is likely disulfidic, while that vulcanized with CBS or MBTS is monosulfidic.

  19. Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study.

    PubMed

    van Genuchten, Case M; Addy, Susan E A; Peña, Jasquelin; Gadgil, Ashok J

    2012-01-17

    Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy for Bangladesh groundwater drinking supplies. EC is based on the rapid in situ dissolution of a sacrificial Fe(0) anode to generate iron precipitates with a high arsenic sorption affinity. We used X-ray absorption spectroscopy (XAS) to investigate the local coordination environment (<4.0 Å) of Fe and As in EC precipitates generated in synthetic Bangladesh groundwater (SBGW). Fe and As K-edge EXAFS spectra were found to be similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm(2)) used to generate samples. Shell-by-shell fits of the Fe K-edge EXAFS spectra indicated that EC precipitates consist of primarily edge-sharing FeO(6) octahedra. The absence of corner-sharing FeO(6) octahedra implies that EC precipitates resemble nanoscale clusters (polymers) of edge-sharing octahedra that efficiently bind arsenic. Shell-by-shell fits of As K-edge EXAFS spectra show that arsenic, initially present as a mixture of As(III) and As(V), forms primarily binuclear, corner-sharing As(V) surface complexes on EC precipitates. This specific coordination geometry prevents the formation of FeO(6) corner-sharing linkages. Phosphate and silicate, abundant in SBGW, likely influence the structure of EC precipitates in a similar way by preventing FeO(6) corner-sharing linkages. This study provides a better understanding of the structure, reactivity, and colloidal stability of EC precipitates and the behavior of arsenic during EC. The results also offer useful constraints for predicting arsenic remobilization during the long-term disposal of EC sludge.

  20. A XANES study of Cu speciation in high-temperature brines using synthetic fluid inclusions

    SciTech Connect

    Berry, Andrew J.; Hack, Alistair C.; Mavrogenes, John A.; Newville, Matthew; Sutton, Stephen R.

    2010-12-03

    Cu K-edge X-ray absorption near edge structure (XANES) spectra were recorded from individual synthetic brine fluid inclusions as a function of temperature up to 500 C. The inclusions serve as sample cells for high-temperature spectroscopic studies of aqueous Cu-Cl speciation. Cu{sup +} and Cu{sup 2+} can both be identified from characteristic pre-edge features. Mixed oxidation states can be deconvoluted using linear combinations of Cu{sup +} and Cu{sup 2+} spectra. This work illustrates how complex Cu XANES spectra can be interpreted successfully. Cu{sup 2+} is the stable oxidation state in solution at room temperature and Cu{sup +} at high temperatures. The change in oxidation state with temperature was completely reversible. Cu{sup +} was found to occur exclusively as the linear species [CuCl{sub 2}]{sup -} in solutions containing KCl with Cu:Cl ratios up to 1:6. In the absence of K{sup +}, there is evidence for higher order coordination of Cu{sup +}, in particular the tetrahedral complex [CuCl{sub 4}]{sup 3-}. The importance of such complexes in natural ore-forming fluids is yet to be determined, but may explain the vapor-phase partitioning of Cu as a Cl complex from a Cl-rich brine.

  1. Partial-ion-yield studies of SOCl2 following x-ray absorption around the S and Cl K edges

    NASA Astrophysics Data System (ADS)

    Bowen, K. P.; Stolte, W. C.; Lago, A. F.; Dávalos, J. Z.; Piancastelli, M. N.; Lindle, D. W.

    2012-11-01

    We present a series of photoabsorption and partial-ion-yield experiments on thionyl chloride, SOCl2, at both the sulfur and chlorine K edges. The photoabsorption results exhibit better resolution than previously published data, leading to alternate spectral assignments for some of the features, particularly in the Rydberg-series region. Based on measured fragmentation patterns, we suggest the LUMO, of a' character, is delocalized over the entire molecular skeleton. Unusual behavior of the S2 + fragment hints at a relatively localized bond rupture (the S-O bond below the S K edge and the S-Cl bonds below the Cl K edge) following excitation to some of the higher lying intermediate states.

  2. Synchrotron WAXS and XANES studies of silica (SiO2) powders synthesized from Indonesian natural sands

    NASA Astrophysics Data System (ADS)

    Muchlis, Khairanissa; Aini Fauziyah, Nur; Soontaranon, Siriwat; Limpirat, Wanwisa; Pratapa, Suminar

    2017-01-01

    In this study, we have investigated polymorphic silica (SiO2) powders using, Wide Angle X-ray Scattering (WAXS) and X-Ray Absorption Near Edge Spectroscopy (XANES), laboratory X-Ray Diffraction (XRD) instruments. The WAXS and XANES spectra were collected using synchrotron radiation at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The silica powders were obtained by processing silica sand from Tanah Laut, South Kalimantan, Indonesia. Purification process of silica sand was done by magnetic separation and immersion with HCl. The purification step was needed to reduce impurity or undesirable non Si elements. Three polymorphs of silica were produced, i.e. amorphous phase (A), quartz (B), and cristobalite (C). WAXS profile for each phase was presented in terms of intensity vs. 2θ prior to analyses. Both XRD (λCuKα=1.54056 Å) and WAXS (λ=1.09 Å) patttern show that (1) A sample contains no crystallites, (2) B sample is monophasic, contains only quartz, and (3) C sample contains cristobalite and trydimite. XRD quantitative analysis using Rietica gave 98,8 wt% cristobalite, while the associated WAXS data provided 98.7 wt% cristobalite. Si K-edge XANES spectra were measured at energy range 1840 to 1920 eV. Qualitatively, the pre-edge and edge features for all phases are similar, but their main peaks in the post-edge region are different.

  3. EPR studies of 5-bromouracil crystal after irradiation with X rays in the bromine K-edge region.

    PubMed

    Yokoya, Akinari; Takakura, Kaoru; Watanabe, Ritsuko; Akamatsu, Ken; Ito, Takashi

    2004-10-01

    Radicals induced in a single crystal of 5-bromouracil (BrUra) by synchrotron soft X rays in the bromine K-edge region (13.461-13.482 keV) were investigated using the X-band EPR method. The crystal was irradiated at three peak energies of the absorption spectrum at room temperature or at 80 K. A hydrogen abstraction radical derived from N1 of the pyrimidine ring was commonly observed for all of the energies used, though with some variation in quantity. Similar characteristics were also observed in the EPR signal for the off-K-edge low-energy (13.42 keV) and (60)Co gamma rays used for comparison. When irradiated at 80 K, a much larger exposure (roughly 10 times) of soft X rays was needed to obtain the same signal intensity as that observed at room temperature. EPR signals were not detectable with gamma irradiation at liquid nitrogen temperature.

  4. Structure of Alkali Borate Glasses at High Pressure: B and Li K-Edge Inelastic X-Ray Scattering Study

    SciTech Connect

    Lee, Sung Keun; Eng, Peter J.; Mao, Ho-kwang; Meng, Yue; Shu, Jinfu

    2008-06-16

    We report the first in situ boron K-edge inelastic x-ray scattering (IXS) spectra for alkali borate glasses (Li{sub 2}B{sub 4}O{sub 7}) at high pressure up to 30 GPa where pressure-induced coordination transformation from three-coordinated to four-coordinated boron was directly probed. Coordination transformation (reversible upon decompression) begins around 5 GPa and the fraction of four-coordinated boron increases with pressure from about 50% (at 1 atm) to more than 95% (at 30 GPa) with multiple densification mechanisms, evidenced by three distinct pressure ranges for (d{sup [4]}B/dP){sub T}. The lithium K-edge IXS spectrum for Li-borate glasses at 5 GPa shows IXS features similar to that at 1 atm, suggesting that the Li environment does not change much with pressure up to 5 GPa. These results provide improved understanding of the structure of low-z glass at high pressure.

  5. Vulcanization reaction of squalene and S8 powder studied by Sulfur K-edge NEXAFS under liquid phase

    NASA Astrophysics Data System (ADS)

    Yagi, S.; Menjo, Y.; Tsukada, C.; Ogawa, S.; Kutluk, G.; Namatame, H.; Taniguchi, M.

    2015-03-01

    Vulcanized rubber materials are useful in our surroundings. However, detail structure and reaction are not revealed even in present. Since squalene molecule possesses some same properties compared with natural rubber, we have prepared the samples of vulcanized squalene at 140 °C for several hours. To understand the vulcanization reaction,sulfur K-edge NEXAFS measurements have been carried out for the vulcanized squalene under liquid phase with He-path system and fluorescence detection mode. Moreover, we have tried curve fitting analysis of NEXAFS spectra. The results indicate that the squalene has been vulcanized by the S8 molecule at 140 °C and the S8 molecule length is shortened from 8 to 5-6 after the vulcanization reaction.

  6. Mechanistic insights on the electronic properties and electronic/atomic structure aspects in orthorhombic SrVO3 thin films: XANES-EXAFS study.

    PubMed

    Sharma, Aditya; Varshney, Mayora; Cheol Lim, Weon; Shin, Hyun-Joon; Pal Singh, Jitendra; Ok Won, Sung; Hwa Chae, Keun

    2017-03-01

    Correlations among the B-O6 octahedra distortions, existing polymorphous phases, band structures and electronic conductivities of ABO3 perovskites are matters for debate and require a deep understanding of their local atomic/electronic structures and diverse assets. In this study, to illustrate the distortion in V-O6 octahedra and its implication on the band structure and electronic properties, spectroscopic investigations on the RF-sputtering grown insulating SrVO3 thin films were employed using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). V K-edge and V L3,2-edge XANES, along with atomic multiplet calculations, have confirmed the 4+ oxidation state of V ions in the pristine and annealed SrVO3 thin films. Lower t2g/eg peak intensity ratio and smaller energy separation between t2g and eg peaks in the O K-edge XANES spectra, compared to the VO2 reference sample, have confirmed a larger V-O6 distortion in the orthorhombic SrVO3 thin films. Moreover, from the EXAFS data analysis, the local orthorhombic structure has been identified in the pristine and annealed SrVO3 thin films, compelling significant distortion in the V-O6 octahedra. Dimerization in the vanadium chains and V-V twisting, caused by V-O6 octahedra distortion, manifests a miscellaneous ligand field interaction between O 2p and V 3d orbitals and facilitates (i) a larger separation between the bonding and antibonding d‖ orbitals and (ii) an upward shift of the π* band in the band structure, leading to larger band gaps in the insulating SrVO3 thin films. Our spectroscopy results may open up new avenues for the mechanism of insulating/conducting character in other complicated perovskite materials using XANES-EXAFS.

  7. XANES study of Fe-implanted strontium titanate

    NASA Astrophysics Data System (ADS)

    Lobacheva, O.; Goncharova, L. V.; Chavarha, M.; Sham, T. K.

    2014-03-01

    Properties of strontium titanate SrTiO3 (STO) depend to a great extent on the substitutional dopants and defects of crystal structure. The ion beam implantation method was used for doping STO (001) crystals with Fe at different doses. Implanted samples were then annealed at 350°C in oxygen to induce recrystallization and remove oxygen vacancies produced during ion implantation process. The effect of Fe doping and post-implantation annealing was studied by X-ray Absorption Near Edge Spectroscopy (XANES) method and Superconducting Quantum Interference Device (SQUID). XANES allowed to monitor the change in structure of STO crystals and in the local environment of Fe following the implantation and annealing steps. SQUID measurements revealed correlation between magnetic moment and Fe implantation dose. Ferromagnetic hysteresis was observed on selected Fe-implanted STO at 5 K. The observed magnetic properties can be correlated with the several Fe oxide phases in addition to the presence of O/Ti vacancies.

  8. XANES study of Fe-implanted strontium titanate

    SciTech Connect

    Lobacheva, O.; Goncharova, L. V.; Chavarha, M.; Sham, T. K.

    2014-03-31

    Properties of strontium titanate SrTiO{sub 3} (STO) depend to a great extent on the substitutional dopants and defects of crystal structure. The ion beam implantation method was used for doping STO (001) crystals with Fe at different doses. Implanted samples were then annealed at 350°C in oxygen to induce recrystallization and remove oxygen vacancies produced during ion implantation process. The effect of Fe doping and post-implantation annealing was studied by X-ray Absorption Near Edge Spectroscopy (XANES) method and Superconducting Quantum Interference Device (SQUID). XANES allowed to monitor the change in structure of STO crystals and in the local environment of Fe following the implantation and annealing steps. SQUID measurements revealed correlation between magnetic moment and Fe implantation dose. Ferromagnetic hysteresis was observed on selected Fe-implanted STO at 5 K. The observed magnetic properties can be correlated with the several Fe oxide phases in addition to the presence of O/Ti vacancies.

  9. Carbon K-Edge XANES Spectromicroscopy of Natural Graphite

    SciTech Connect

    Brandes,J.; Cody, G.; Rumble, D.; Haberstroh, P.; Wirick, S.; Gelinas, Y.; Morais-Cabral, J.

    2008-01-01

    The black carbon continuum is composed of a series of carbon-rich components derived from combustion or metamorphism and characterized by contrasting environmental behavior and susceptibility to oxidation. In this work, we present a micro-scale density fractionation method that allows isolating the small quantities of soot-like and graphitic material usually found in natural samples. Organic carbon and {delta}{sup 13}C mass balance calculations were used to quantify the relative contributions of the two fractions to thermally-stable organic matter from a series of aquatic sediments. Varying proportions of soot-like and graphitic material were found in these samples, with large variations in {delta}{sup 13}C signatures suggesting important differences in their origin and/or dynamics in the environment.

  10. Determination of the S-ZnO structural interaction in thiol-capped ZnO nanoparticles: a sulfur K-edge XAS study

    NASA Astrophysics Data System (ADS)

    Guglieri, Clara; Aquilanti, Giuliana; Díaz-Moreno, Sofía; Chaboy, J.

    2017-02-01

    ZnO nanoparticles capped with thiol molecules display room temperature ferromagnetism which has been associated with the structural details of the interface formed between the organic molecule and the ZnO core. Although the local order around sulfur atoms at the ZnS/ZnO interface has been related to the occurrence of the ferromagnetic like behavior, no direct structural determination has been obtained yet. We report here a detailed x-ray absorption spectroscopy study performed at the sulfur K-edge to determine the local structure around the sulfur atoms in these systems and how it is modified by varying the length of the organic molecule.

  11. Determination of the S-ZnO structural interaction in thiol-capped ZnO nanoparticles: a sulfur K-edge XAS study.

    PubMed

    Guglieri, Clara; Aquilanti, Giuliana; Díaz-Moreno, Sofía; Chaboy, J

    2017-02-03

    ZnO nanoparticles capped with thiol molecules display room temperature ferromagnetism which has been associated with the structural details of the interface formed between the organic molecule and the ZnO core. Although the local order around sulfur atoms at the ZnS/ZnO interface has been related to the occurrence of the ferromagnetic like behavior, no direct structural determination has been obtained yet. We report here a detailed x-ray absorption spectroscopy study performed at the sulfur K-edge to determine the local structure around the sulfur atoms in these systems and how it is modified by varying the length of the organic molecule.

  12. Theory and X-ray Absorption Spectroscopy for Aluminum Coordination Complexes – Al K-Edge Studies of Charge and Bonding in (BDI)Al, (BDI)AlR2, and (BDI)AlX2 Complexes.

    PubMed

    Altman, Alison B; Pemmaraju, C D; Camp, Clément; Arnold, John; Minasian, Stefan G; Prendergast, David; Shuh, David K; Tyliszczak, Tolek

    2015-08-19

    Polarized aluminum K-edge X-ray absorption near edge structure (XANES) spectroscopy and first-principles calculations were used to probe electronic structure in a series of (BDI)Al, (BDI)AlX2, and (BDI)AlR2 coordination compounds (X = F, Cl, I; R = H, Me; BDI = 2,6-diisopropylphenyl-β-diketiminate). Spectral interpretations were guided by examination of the calculated transition energies and polarization-dependent oscillator strengths, which agreed well with the XANES spectroscopy measurements. Pre-edge features were assigned to transitions associated with the Al 3p orbitals involved in metal-ligand bonding. Qualitative trends in Al 1s core energy and valence orbital occupation were established through a systematic comparison of excited states derived from Al 3p orbitals with similar symmetries in a molecular orbital framework. These trends suggested that the higher transition energies observed for (BDI)AlX2 systems with more electronegative X(1-) ligands could be ascribed to a decrease in electron density around the aluminum atom, which causes an increase in the attractive potential of the Al nucleus and concomitant increase in the binding energy of the Al 1s core orbitals. For (BDI)Al and (BDI)AlH2 the experimental Al K-edge XANES spectra and spectra calculated using the eXcited electron and Core-Hole (XCH) approach had nearly identical energies for transitions to final state orbitals of similar composition and symmetry. These results implied that the charge distributions about the aluminum atoms in (BDI)Al and (BDI)AlH2 are similar relative to the (BDI)AlX2 and (BDI)AlMe2 compounds, despite having different formal oxidation states of +1 and +3, respectively. However, (BDI)Al was unique in that it exhibited a low-energy feature that was attributed to transitions into a low-lying p-orbital of b1 symmetry that is localized on Al and orthogonal to the (BDI)Al plane. The presence of this low-energy unoccupied molecular orbital on electron-rich (BDI)Al distinguishes

  13. Correlated NanoSIMS, TEM, and XANES Studies of Presolar Grains

    NASA Astrophysics Data System (ADS)

    Groopman, Evan Edward

    surrounded by turbostratic graphite within a low-density SN graphite grain. Nanocrystalline cores consisting of randomly-oriented 2-4 nm sheets of graphene and surrounded by concentric shells of graphite have been observed in high-density presolar graphite grains from Asymptotic Giant Branch stars, whose grains are typically microstructurally distinct from SN graphite grains. These vastly different stellar environments briefly formed similar nanocrystalline structures before diverging in the structure of their mantling graphite to be typical of AGB and SN grains. While relatively few correlated NanoSIMS and TEM studies have been performed previously, which this research thesis aims to expand, my collaborators and I also endeavored to add a third correlated technique, STXM/XANES, which had previously not been applied to presolar grains. XANES allows for the investigation of molecular bonds, which we used to help infer physical and chemical properties of stellar ejecta. I investigated the C K-edge and Ti L-edge of molecular bonds in both presolar graphite grains and their TiC subgrains. The presolar graphite grains, while overwhelmingly composed of aromatic C molecules, host a wide variety of minor organic molecules. Considering the large isotopic anomalies in the grains, these minor components are not likely due to contamination. I also investigated the valence state of Ti in Ti-rich subgrains and plan to work towards illuminating the effect that V in solid solution has upon the TiC bonds.

  14. A Monte Carlo simulation study of an improved K-edge log-subtraction X-ray imaging using a photon counting CdTe detector

    NASA Astrophysics Data System (ADS)

    Lee, Youngjin; Lee, Amy Candy; Kim, Hee-Joung

    2016-09-01

    Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on

  15. K-edge densitometer (KED)

    SciTech Connect

    Sprinkle, J.K.; Hansen, W.J.

    1993-02-11

    In 1979, a K-edge densitometer (KED) was installed by the Safeguards Assay group from Los Alamos National Laboratory in the PNC reprocessing plant at Tokai-mura, Japan. It uses an active nondestructive assay technique, KED, to measure the plutonium concentration of the product solution. The measurement uncertainty of an assay depends on the count time chosen, but can be 0.5% or better. The computer hardware and software were upgraded in 1992. This manual describes the operation of the instrument, with an emphasis on the user interface to the software.

  16. Light-induced relaxation of photolyzed carbonmonoxy myoglobin: a temperature-dependent x-ray absorption near-edge structure (XANES) study.

    PubMed

    Arcovito, A; Lamb, D C; Nienhaus, G U; Hazemann, J L; Benfatto, M; Della Longa, S

    2005-04-01

    X-ray absorption near-edge structure (XANES) spectra at the Fe K-edge have been measured and compared on solution samples of horse carbonmonoxy-myoglobin and its photoproducts, prepared by two different photolysis protocols: 1), extended illumination at low temperature (15 K) by white light; and 2), slow-cool from 140 to 10 K at a rate of 0.5 K/min while illuminating the sample with a 532-nm continuous-wave laser source. CO recombination has been followed while increasing the temperature at a rate of 1.2 K/min. After extended illumination at 15 K, a single process is observed, corresponding to CO recombination from a completely photolyzed species with CO bound to the primary docking site (formally B-state, in agreement with previous x-ray diffraction studies). The temperature peak for this single process is approximately 50 K. Using slow-cool illumination, data show a two-state recombination curve, the two temperature peaks being roughly assigned to 50 K and 110 K. These results are in good agreement with previous FTIR studies using temperature-derivative spectroscopy. The XANES spectroscopic markers probe structural differences between the photoproduct induced by extended illumination at 15 K and the photoproduct induced by slow-cool illumination. These differences in the XANES data have been interpreted as due to light-induced Fe-heme relaxation that does not involve CO migration from the B-state. A quantitative description of the unrelaxed and relaxed B-states, including the measurements of the Fe-N(p), Fe-N(His), and Fe-CO distances, and the out-of-plane Fe displacement, has been obtained via a procedure (MXAN) recently developed by us. This work shows that XANES, being able to extract both kinetic and structural parameters in a single experiment, is a powerful tool for structural dynamic studies of proteins.

  17. High Pressure XANES studies on Mn dopeHigh Pressure XANES studies on Mn doped Bi2 Te3

    NASA Astrophysics Data System (ADS)

    Light, Brian; Kumar, Ravhi; Baker, Jason; Dharmalingam, Prabhakaran; Park, Changyong; Unlv Team; Hpcat; Carnegie Institute Of Washington Collaboration

    Bi2Te3, Bi2Se3, and Sb2Te3 are narrow band-gap semiconductors have been extensively studied along with their alloys due to their promising technological applications as thermoelectric materials. More recently pressure induced superconductivity and structural transition have been observed in these materials around 7 GPa [1, 2]. Here we have performed high pressure x-ray near edge spectroscopy (XANES) measurements at Bi L-III edge on Mn (0.1) doped Bi2Te3 samples to understand the variation of the Bi valence across the pressure induced superconductivity regime. We have inferred notable changes in the Bi valence at high pressure conditions. The results will be discussed in detail. Work at the University of Nevada Las Vegas (ALC) is funded by U.S. Department of Energy Award DE-SC0001928. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH1135.

  18. Identification of Second Shell Coordination in Transition Metal Species Using Theoretical XANES: Example of Ti-O-(C, Si, Ge) Complexes.

    PubMed

    Spanjers, Charles S; Guillo, Pascal; Tilley, T Don; Janik, Michael J; Rioux, Robert M

    2017-01-12

    X-ray absorption near-edge structure (XANES) is a common technique for elucidating oxidation state and first shell coordination geometry in transition metal complexes, among many other materials. However, the structural information obtained from XANES is often limited to the first coordination sphere. In this study, we show how XANES can be used to differentiate between C, Si, and Ge in the second coordination shell of Ti-O-(C, Si, Ge) molecular complexes based on differences in their Ti K-edge XANES spectra. Experimental spectra were compared with theoretical spectra calculated using density functional theory structural optimization and ab initio XANES calculations. The unique features for second shell C, Si, and Ge present in the Ti K pre-edge XANES are attributed to the interaction between the Ti center and the O-X (X = C, Si, or Ge) antibonding orbitals.

  19. Extended X- ray absorption fine structure study at the K-edge of copper in mixed ligand complexes having benzimidazole as one of the ligands

    NASA Astrophysics Data System (ADS)

    Hinge, V. K.; Joshi, S. K.; Nitin Nair, N.; Singh Verma, Vikram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    Extended X-ray absorption fine structure (EXAFS) spectra have been studied at the K-edge of copper in some of its biologically important complexes, viz., [Cu(BzImH)4X2] and [Cu(BzIm)2], where X= Cl, Br, 1/2SO4, ClO4, NO3, and BzIm = Benzimidazolato anion. The spectra have been recorded using a bent crystal 0.4 m Cauchois-type transmission spectrograph. The positions of EXAFS maxima and minima have been used to determine the bond lengths in the complexes with the help of three different methods, namely, Levy's, Lytle's and Lytle, Sayers and Stern's (L.S.S.) methods. The phase uncorrected bond lengths have also been determined from Fourier transforms of the experimental spectra. The results obtained from these methods have been discussed and it has been found that the results obtained by L.S.S. method are comparable with the results obtained by Fourier transformation method and that these two methods give phase uncorrected bond lengths.

  20. Manganese speciation in Diplodon chilensis patagonicus shells: a XANES study

    NASA Astrophysics Data System (ADS)

    Soldati, A. L.; Vicente-Vilas, V.; Goettlicher, J.; Jacob, D. E.

    2009-04-01

    century, resolving the environmental signal annually and even seasonally (Soldati et al., 2008b). High resolution trace elemental analysis by LA-ICPMS and EPMA in the shells show that elements like Mg and Mn are related to the seasonal pattern and can be enriched along the organic-rich annual shell growth lines. Thus, these elements could possibly be bound organically instead of occupying a defined site in the crystal lattice of the calcium carbonate phase. LA-ICP-MS results show that Mn concentrations in these Diplodon shells range between 1000-300 g/g and 100-10 g/g and that the areas of enrichment are in the micrometer range. Raman and XRD measurements at high spatial resolution failed in recognizing whether the Mn is in carbonate solid solution or not. Therefore, speciation techniques like X-ray absorption fine structure (XAFS) spectroscopy with a high lateral resolution are required to address this question. Prior to XAFS spectroscopy the samples were mapped with the intensity of the Mn Kα fluorescence emission line in order to locate the Mn rich areas of interest. Because of the Mn concentrations in the sub % range the XAFS spectra at the positions of interest have been recorded in fluorescence mode using a 7 element Si(Li) detector. This study focuses on the near edge (XANES: X-ray absorption near edge structure) part of the spectra. For data evaluation, XANES spectra of reference substances were additionally measured in order to get first hints to Mn valence and bonding. As standards were used Mn and Mn rich carbonates, Mn oxides with Mn in different oxidation states, and Mn in organic compounds (Mn-porphyrin and Mn-acetate). The XAFS measurements have been carried out at the SUL-X beamline of the synchrotron radiation source ANKA of the Forschungszentrum Karlsruhe. Data evaluation is ongoing. References MEIBOM, A., CUIF, J.P., HOULBREQUE, F., MOSTEFAOUI, S., DAUPHIN, Y., MEIBOM; K.L. & DUNBAR, R. (2008). Compositional variations at ultra-structure length scales

  1. Chemical species of sulfur in prostate cancer cells studied by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Czapla, Joanna; Kwiatek, Wojciech M.; Lekki, Janusz; Dulińska-Litewka, Joanna; Steininger, Ralph; Göttlicher, Jörg

    2013-12-01

    The role of sulfur in prostate cancer progression may be significant for understanding the process of carcinogenesis. This work, based on X-ray Absorption Near Edge Structure (XANES) spectroscopy, is focused on determination of sulfur chemical species occurring in prostate cancer cell lines. The experimental material consisted of four commercially available cell lines: three from metastasized prostate cancer (PC3, LNCaP, and DU145) and one, used as a control, from the non-tumourigenic peripheral zone of the prostate (PZ-HPV-7). The experiment was performed at the SUL-X beamline of the synchrotron radiation source ANKA, Karlsruhe (Germany). The K-edge XANES spectra of sulfur were analyzed by deconvolution in order to establish sulfur species that occur in prostate cancer cells and to find out whether there are any differences in their content between various cell lines. Experimental spectra were fitted in two ways: with two Gaussian peaks and one arctangent step function, and additionally by a Linear Combination Fit with spectra of reference compounds in order to obtain quantitative chemical information. All fitting procedures were performed with the Athena code (Ravel and Newville, 2005) and the results of deconvolution were used to determine the fraction of each sulfur form. The results of data analysis showed that cell lines from different metastasis had different ratio of reduced to oxidized sulfur species. The LCF analysis demonstrated that the highest content of GSH, one of the most important sulfur-bearing compounds in cells, was observed in DU145 cells. These findings may confirm the hypothesis of changes in redox balance in case of cancer initiation and progression.

  2. Optimization of K-edge imaging for vulnerable plaques using gold nanoparticles and energy resolved photon counting detectors: a simulation study.

    PubMed

    Alivov, Yahya; Baturin, Pavlo; Le, Huy Q; Ducote, Justin; Molloi, Sabee

    2014-01-06

    We investigated the effect of different imaging parameters, such as dose, beam energy, energy resolution and the number of energy bins, on the image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. A maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of the plaque's inflammation. The simulation studies used a single-slice parallel beam CT geometry with an x-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33 × 24 cm(2)) phantoms, where both phantoms contained tissue, calcium and gold. In the simulation studies, GNP quantification and background (calcium and tissue) suppression tasks were pursued. The x-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% full width at half maximum (FWHM) energy resolution) implementations of the photon counting detector were simulated. The simulations were performed for the CdZnTe detector with a pixel pitch of 0.5-1 mm, which corresponds to a performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the x-ray beam energy (kVp) to achieve the highest signal-to-noise ratio with respect to the patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at the 125 kVp x-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 µmol mL(-1) (0.21 mg mL(-1)) for an ideal detector and about 2.5 µmol mL(-1) (0.49 mg mL(-1)) for a more realistic (12% FWHM) detector. The studies show the optimal

  3. Optimization of the K-edge imaging for vulnerable plaques using gold nanoparticles and energy-resolved photon counting detectors: a simulation study

    PubMed Central

    Alivov, Yahya; Baturin, Pavlo; Le, Huy Q.; Ducote, Justin; Molloi, Sabee

    2014-01-01

    We investigated the effect of different imaging parameters such as dose, beam energy, energy resolution, and number of energy bins on image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. Maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of plaque's inflammation. The simulations studies used a single slice parallel beam CT geometry with an X-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33x24 cm2) phantom, where both phantoms contained tissue, calcium, and gold. In the simulation studies GNP quantification and background (calcium and tissue) suppression task were pursued. The X-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% FWHM energy resolution) implementations of photon counting detector were simulated. The simulations were performed for the CdZnTe detector with pixel pitch of 0.5-1 mm, which corresponds to the performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the X-ray beam energy (kVp) to achieve the highest signal-to-noise ratio (SNR) with respect to patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at 125 kVp X-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 μmol/mL (0.21 mg/mL) for an ideal detector and about 2.5 μmol/mL (0.49 mg/mL) for more realistic (12% FWHM) detector. The studies show the optimal imaging parameters at lowest patient dose using an energy resolved photon counting detector

  4. S K-edge X-ray absorption studies of tetranuclear iron-sulfur clusters: mu-sulfide bonding and its contribution to electron delocalization.

    PubMed

    Glaser, T; Rose, K; Shadle, S E; Hedman, B; Hodgson, K O; Solomon, E I

    2001-01-24

    X-ray absorption spectroscopy (XAS) at the sulfur ( approximately 2470 eV) and chlorine ( approximately 2822 eV) K-edges has been applied to a series of 4Fe-4S model complexes. These are compared to 2Fe-2S model complexes to obtain insight into the localized ground state in the mixed-valence dimer versus the delocalized ground state in the mixed-valence tetramer. The preedges of hypothetical delocalized mixed-valence dimers [Fe(2)S(2)](+) are estimated using trends from experimental data and density functional calculations, for comparison to the delocalized mixed-valence tetramer [Fe(4)S(4)](2+). The differences between these two mixed-valence sites are due to the change of the sulfide-bridging mode from micro(2) to micro(3). The terminal chloride and thiolate ligands are used as spectator ligands for the electron density of the iron center. From the intensity of the preedge, the covalency of the terminal ligands is found to increase in the tetramer as compared to the dimer. This is associated with a higher effective nuclear charge on the iron in the tetramer (derived from the energies of the preedge). The micro(3)-bridging sulfide in the tetramer has a reduced covalency per bond (39%) as compared to the micro(2)-bridging sulfide in the dimer (51%). A simple perturbation model is used to derive a quadratic dependence of the superexchange coupling constant J on the covalency of the metal ions with the bridging ligands. This relationship is used to estimate the superexchange contribution in the tetramer (J = -156 cm(-)(1)) as compared to the mixed-valence dimer (J = -360 cm(-)(1)). These results, combined with estimates for the double exchange and the vibronic coupling contributions of the dimer sub-site of the tetramer, lead to a delocalized S(t) = (9)/(2) spin ground state for the mixed-valence dimer in the tetramer. Thus, the decrease in the covalency, hence the superexchange pathway associated with changing the bridging mode of the sulfides from micro(2) to micro

  5. Experimental versus ab initio x-ray absorption of iron-doped zirconia: Trends in O K -edge spectra as a function of iron doping

    NASA Astrophysics Data System (ADS)

    Douma, D. H.; Ciprian, R.; Lamperti, A.; Lupo, P.; Cianci, E.; Sangalli, D.; Casoli, F.; Nasi, L.; Albertini, F.; Torelli, P.; Debernardi, A.

    2014-11-01

    We present an experimental study of x-ray absorption near edge structure (XANES) at L2 ,3,M2 ,3, and K edges of, respectively, Fe, Zr, and O in iron-doped zirconia (ZrO2:Fe ) for different Fe dopant concentrations x (from x ˜6 % to x ˜25 % at.) and make the comparison with ab initio simulations at the O K -edge. The x-ray magnetic circular dichroism (XMCD) measurements show no evidence of ferromagnetic (FM) order for all the analyzed samples in agreement with our ab initio simulations, which show an antiferromagnetic (AFM) order. We found that substituting Zr with Fe atoms leads to a radical change in the O K -edge XANES spectrum, especially in the pre-edge region where a pre-edge peak appears. This pre-edge peak is ascribed to dipole transitions from O 1 s to O 2 p states that are hybridized with the unoccupied Fe 3 d states. Both theoretical and experimental results reveal that the intensity of the pre-edge peak increases with Fe concentration, suggesting the increase of unoccupied Fe 3 d states. The increase of Fe concentration increases oxygen vacancies as required for charge neutrality and consequently improves AFM ordering. According to our first-principles calculations, the effect of one Fe atom is mostly localized in the first oxygen shell and vanishes as one moves far from it. Thus the increase of the O K -pre-edge peak with increasing Fe concentration is due to the increase of percentage of oxygen atoms that are near neighbors to Fe atoms.

  6. Chromium in urban sediment particulates: an integrated micro-chemical and XANES study

    NASA Astrophysics Data System (ADS)

    Taylor, Kevin; Byrne, Patrick; Hudson-Edwards, Karen

    2015-04-01

    Chromium is generally common within the urban sediment cascade as a result of abundant industrial and transport-related sources. The risks that Cr-bearing particles pose to ecosystems and humans depend on the solid phase chemical speciation of Cr in the particles. In this study, we use bulk chemical digests, sequential chemical extraction analysis, electron microscopy, electron microprobe and microfocus XANES analysis to describe the solid-phase speciation of Cr in urban particulate matter from both aquatic sediment and road dust sediment (RDS) in Manchester, UK. Cr-bearing grains within RDS are predominantly iron oxide grains, commonly of goethite or haematite mineralogy, but Cr-bearing silicate glass grains are also present. Iron oxide glass grains most likely have sorbed Cr, and derive from the rusting of Cr-steel particles from vehicles. Electron microprobe analysis indicates concentrations of Cr up to 3200 μg/g in these grains, and XANES analysis indicates that Cr(III) is the dominant oxidation state, with some trace amounts of Cr(VI). Cr-bearing grains within aquatic sediments are dominated by alumino-silicate glass grains derived from industrial waste. These grains contain Cr-rich areas with up to 19% Cr2O3 and XANES analysis indicates that Cr is present as Cr(III). The dominance of Cr(III) in these urban particulate grains suggests limited bioavailability or toxicity. However, the presence within two markedly different grain types (iron oxides and silicate glasses) indicates that the long-term geochemical behaviour and environmental risk of RDS and the aquatic sediments studied are likely to be quite different. These findings highlight the importance of understanding sources of metal contaminants in urban environments and the geochemical processes that affect their transfer through the urban sediment cascade and the wider river basin.

  7. Three-dimensional local structure of photoexcited Cu diimine complex refined by quantitative XANES analysis.

    SciTech Connect

    Smolentsev, G.; Soldatov, A. V.; Chen, L. X.; Chemical Sciences and Engineering Division; Southern Federal Univ.; Northwestern Univ.

    2008-05-28

    The structural details of [Cu(dmp){sub 2}]{sup +} (dmp = 2,9-dimethyl-1,10-phenanthroline) at its metal-to-ligand charge-transfer (MLCT) excited-state in acetonitrile were extracted using quantitative analysis of Cu K-edge X-ray adsorption near edge structure (XANES). The study combines two techniques: fitting experimental XANES spectra with a multidimensional interpolation approximation, and calculating theoretical XANES spectra with molecular potentials beyond the muffin-tin approximation. The results of the study show that the best fit of the experimental XANES data must include a solvent molecule binding to the Cu with a short Cu-N distance of 2.00 {angstrom}. This confirms that the formation of an exciplex is responsible for the excited-state quenching in coordinating solvents, such as acetonitrile. Moreover, the calculations suggest that the formation of this exciplex state is accompanied by significant rocking distortions of the dmp ligands resulting in a 108{sup o} angle between the N(solvent)-Cu bond and the C{sub 2} symmetry axis of the dmp ligand. This combined approach allows us to extract molecular configurations that would otherwise be missed in a conventional qualitative XANES analysis.

  8. Mn K-edge X-ray absorption studies of oxo- and hydroxo-manganese(IV) complexes: experimental and theoretical insights into pre-edge properties.

    PubMed

    Leto, Domenick F; Jackson, Timothy A

    2014-06-16

    Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [Mn(II)(Cl)2(Me2EBC)], [Mn(IV)(OH)2(Me2EBC)](2+), and [Mn(IV)(O)(OH)(Me2EBC)](+), which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [Mn(IV)(O)(OH)(Me2EBC)](+) revealed Mn-O scatterers at 1.71 and 1.84 Å and Mn-N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [Mn(II)(Cl)2(Me2EBC)] and [Mn(IV)(OH)2(Me2EBC)](2+) are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn-O(H) distances and pre-edge peak areas of Mn(IV)═O and Mn(IV)-OH complexes, but this trend was strongly modulated by the Mn(IV) coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn-O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal Mn(IV)═O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn═O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn═O σ* molecular orbital (MO) but also show intense transitions to 3dx(2)-y(2) and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal Mn(IV)═O adducts. These results underscore the importance of

  9. Mn K-Edge X-ray Absorption Studies of Oxo- and Hydroxo-manganese(IV) Complexes: Experimental and Theoretical Insights into Pre-Edge Properties

    PubMed Central

    2015-01-01

    Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [MnII(Cl)2(Me2EBC)], [MnIV(OH)2(Me2EBC)]2+, and [MnIV(O)(OH)(Me2EBC)]+, which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [MnIV(O)(OH)(Me2EBC)]+ revealed Mn–O scatterers at 1.71 and 1.84 Å and Mn–N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [MnII(Cl)2(Me2EBC)] and [MnIV(OH)2(Me2EBC)]2+ are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn–O(H) distances and pre-edge peak areas of MnIV=O and MnIV–OH complexes, but this trend was strongly modulated by the MnIV coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn–O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal MnIV=O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn=O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn=O σ* molecular orbital (MO) but also show intense transitions to 3dx2–y2 and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal MnIV=O adducts. These results underscore the importance of reporting experimental pre-edge areas

  10. ELNES investigations of the oxygen K-edge in spinels.

    PubMed

    Docherty, F T; Craven, A J; McComb, D W; Skakle, J

    2001-02-01

    The results of a systematic study of the oxygen K-edge electron energy-loss spectroscopy (ELNES) from a series of aluminium- and chromium-containing spinels are presented. Extra fine structure in the region up to 10 eV above the edge onset is observed for the chromium-containing compounds and is assigned to transitions to states created by mixing of oxygen 2p and metal 3d orbitals. The experimental data has been simulated using the multiple scattering code, FEFF8. Good agreement was obtained in the case of magnesium aluminate, but relatively poor agreement was obtained in the case of the chromites. The possible fingerprints in the oxygen K-edge ELNES corresponding to a high degree of inversion the spinel structure and to a tetragonal distortion of the cubic structure are discussed.

  11. Carbon K-edge Spectra of Carbonate Minerals

    SciTech Connect

    Brandes, J.; Wirick, S; Jacobsen, C

    2010-01-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  12. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    SciTech Connect

    Shimada, Hiroyuki Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2015-05-07

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  13. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution.

    PubMed

    Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2015-05-07

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  14. 279 - Xanes Studies on UV-Irradiated Interstellar Ice Analogs: A Comparison to STARDUST Samples

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Cody, George D.; Kilcoyne, A. L. David; Nuevo, Michel; Sandford, Scott A.; Stroud, Rhonda M.; DeGregorio, Bradley T.

    2010-01-01

    We present C-, N-, and O-XANES (X-ray Absorption Near-Edge Spectroscopy) results of organic residues produced in the laboratory from the UV irradiation of astrophysical ice analogs containing H20, CO, CH30H, NH31 in order to mimic processes that may occur in cold icy bodies of the outer Solar System, particularly in comets, Such analyses showed that laboratory-formed organic residues mainly consist of a solid phase and an oily phase. C-XANES analysis of the solid phase suggests a rich distribution of organic functionalities, among which carbonyl groups, C=C bonds, and alcohols are present. Results from N-XANES indicate the possible presence of amide, amine, and nitrile groups, The O-XANES spectra confirmed the a-bearing groups, These results are compared with the XANES spectra obtained from STARDUST cometary samples,

  15. IN SITU STUDIES OF CORROSION USING X-RAY ABSORPTION NEAR SPECTROSCOPY (XANES)

    SciTech Connect

    ISAACS, H.S.; SCHMUKI, P.; VIRTANEN, S.

    2001-03-25

    Applications of x-ray absorption near-edge spectroscopy (XANES) and the design of cells for in situ corrosion studies are reviewed. Passive films studies require very thin metal or alloy layers be used having a thickness of the order of the films formed because of penetration of the x-ray beam into the metal substrate. The depth of penetration in water also limits the thickness of solutions that can be used because of water reduces the x-ray intensity. Solution thickness must also be limited in studies of conversion layer formation studies because the masking of the Cr in solution. Illustrative examples are taken from the anodic behavior of Al-Cr alloys, the growth of passive films on Fe and stainless steels, and the formation of chromate conversion layers on Al.

  16. Optical XAFS of ZnO Nanowires at the Zn K-Edge and Related Phenomena

    SciTech Connect

    Heigl, F.; Sun, X.H.J; Lam, S.; Sham, T.K.; Gordon, R.; Brewe, D.; Rosenberg, R.; Shenoy, G.; Yablonskikh, M.; MacNaughton, J.; Moewes, A.

    2008-10-06

    We report x-ray excited optical luminescence (XEOL) from one-dimensional nanostructures of ZnO excited with photon energies across the Zn K-edge. The optical luminescence shows an UV and a green emission band characteristic of near band edge and defect emission, respectively. The optical channels were used in turn to monitor the Zn K-edge XAFS to high k values. The densities of states of oxygen character in the valence band were also studied with x-ray emission spectroscopy (XES). The Zn K-edge decay dynamics was examined with time-resolved x-ray excited optical luminescence.

  17. XAF/XANES studies of plutonium-loaded sodalite/glass composite waste forms.

    SciTech Connect

    Aase, S. B.; Kropf, A. J.; Lewis, M. A.; Reed, D. T.; Richmann, M. K.

    1999-07-14

    A sodalite/glass ceramic waste form has been developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Simulated waste forms have been fabricated which contain plutonium and are representative of the salt from the electrometallurgical process to recover uranium from spent nuclear fuel. X-ray absorption fine structure spectroscopy (XAFS) and x-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state and form of the plutonium within these waste forms. Plutonium, in the non-fission-element case, was found to segregate as plutonium(IV) oxide with a crystallite size of at least 20 nm. With fission elements present, the crystallite size was about 2 nm. No plutonium was observed within the sodalite or glass in the waste form.

  18. Vanadium K Xanes Studies of EET79001 Impact-Melt Glasses Revisited

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Rao, M. N.; Nyquist, L. E.; Ross, D. K.

    2016-01-01

    Some impact-melt glasses in shergottites are rich in Martian atmospheric noble gases and sulfur suggesting a possible association with regolith-derived secondary mineral assemblages in the shocked samples. Previously, we studied two glasses, # 506 (Lith C in Lith A) and # 507 (Lith C in Lith B) from EET79001 [1,2] and suggested that sulfur initially existed as sulfate in the glass precursor materials and, on shock-melting of the precursors, the sulfate was reduced to sulfides in the shock glasses. To examine the validity of this hypothesis, we used V K microXANES techniques to measure the valence states of vanadium in the Lith C glasses from Lith A and Lith B in EET79001 [3] to complement and com-pare with previous analogous measurements on,78 glass (Lith C in Lith A) [4,5]. We reported the preliminary results in [3]. Vanadium is ideal for addressing the redox issue because it has multiple valence states and is a well-studied element. Vanadium in basalts exists mostly as V(sup 3+), V(sup 4+) and V(sup 5+) in terrestrial samples, mainly as V(sup 3+) with minor V(sup 2+) and minor V(sup 4+) in lunar samples and as roughly equal mixtures of V(sup 3+) and V(sup 4+) in Martian meteorites. In this report, we discuss the application of the V K XANES results to decipher the nature of shock reduction occurring in the silicate glasses during the impact process.

  19. Investigation of the mica x-ray absorption near-edge structure spectral features at the Al K-edge

    NASA Astrophysics Data System (ADS)

    Wu, Ziyu; Marcelli, A.; Cibin, G.; Mottana, A.; Della Ventura, G.

    2003-10-01

    Near-edge features of Al x-ray absorption near-edge structure (XANES) spectra in aluminosilicate compounds with mixed coordination number are usually assigned to a fourfold coordinated site contribution followed by a sixfold coordinated site contribution that is displaced towards higher energy because of the increasing ligand nucleus potentials, neglecting possible contributions due to bond distance variations and local geometrical distortion. Here we present and discuss the Al K-edge XANES spectra of synthetic micas with either fourfold coordinated Al (phlogopite), or with sixfold coordinated Al (polylithionite), as well as with mixed coordination (preiswerkite). Multiple scattering simulations of XANES spectra demonstrate that octahedral contributions may overlap the tetrahedral ones so that the lower energy structures in mixed coordination compounds may be associated with the octahedral sites. This unexpected behaviour can be described as due to the effect of a significant reduction of the ligand field strength (i.e. large local distortion and Al-O bond distances).

  20. Core-to-Rydberg band shift and broadening of hydrogen bonded ammonia clusters studied with nitrogen K-edge excitation spectroscopy

    SciTech Connect

    Yamanaka, Takeshi; Takahashi, Osamu; Tabayashi, Kiyohiko; Namatame, Hirofumi; Taniguchi, Masaki; Tanaka, Kenichiro

    2012-01-07

    Nitrogen 1s (N ls) core-to-Rydberg excitation spectra of hydrogen-bonded clusters of ammonia (AM) have been studied in the small cluster regime of beam conditions with time-of-flight (TOF) fragment-mass spectroscopy. By monitoring partial-ion-yield spectra of cluster-origin products, ''cluster'' specific excitation spectra could be recorded. Comparison of the ''cluster'' band with ''monomer'' band revealed that the first resonance bands of clusters corresponding to N 1s{yields} 3sa{sub 1}/3pe of AM monomer are considerably broadened. The changes of the experimental core-to-Rydberg transitions {Delta}FWHM (N 1s{yields} 3sa{sub 1}/3pe) ={approx}0.20/{approx}0.50 eV compare well with the x ray absorption spectra of the clusters generated by using density functional theory (DFT) calculation. The broadening of the core-to-Rydberg bands in small clusters is interpreted as being primarily due to the splitting of non-equivalent core-hole N 1s states caused by both electrostatic core-hole and hydrogen-bonding (H{sub 3}N{center_dot}{center_dot}{center_dot}H-NH{sub 2}) interactions upon dimerization. Under Cs dimer configuration, core-electron binding energy of H-N (H-donor) is significantly decreased by the intermolecular core-hole interaction and causes notable redshifts of core-excitation energies, whereas that of lone-pair nitrogen (H-acceptor) is slightly increased and results in appreciable blueshifts in the core-excitation bands. The result of the hydrogen-bonding interaction strongly appears in the n-{sigma}* orbital correlation, destabilizing H-N donor Rydberg states in the direction opposite to the core-hole interaction, when excited N atom with H-N donor configuration strongly possesses the Rydberg component of anti-bonding {sigma}* (N-H) character. Contributions of other cyclic H-bonded clusters (AM){sub n} with n{>=} 3 to the spectral changes of the N 1s{yields} 3sa{sub 1}/3pe bands are also examined.

  1. Pressure-Induced Amorphisation in San Carlos Olivine: a XANES Study.

    NASA Astrophysics Data System (ADS)

    Kantor, I.; Torchio, R.

    2014-12-01

    Olivine (Mg,Fe)2SiO4 is one of the main rock-forming minerals of the Earth crust and is often used as a model compound of the whole silicate part of our planet. In equilibrium conditions in the Earth interior olivine undergoes a series of phase transitions and further breaks into ferropericlase and bridgmanite phases at about 25 GPa. All these transitions are responsible for major seismic discontinuities in the Earth. However, if olivine in compressed at temperature that is too low to overcome kinetic barrier, it preserves its original structureuntil ~35 GPa and then gradually becomes amorphous. This transformation have been observed before by mean of X-ray diffraction and Raman spectroscopy, but very little is known about the amorphisation mechanism and the local structure of (Mg,Fe)2SiO4 glass under high pressure. We performed a combined XANES and Raman spectroscopic study of a pressure-induced amorphisation is natural olivine sample (Mg0.92Fe0.08)2SiO4 from San Carlos location. Despite the fact that this natural sample has very low iron concentration and therefore absorption jump was quite small (about 0.06), a decent quality XANES spectra were recorded in transmission mode on the energy-dispercive beamline ID24 at the ESRF usind a diamond anvil cell technique. The amorphisation process can be clearly seen in Raman spectra as a significant broadening and further disappearance of the Raman peaks starting from 35-40 GPa, in perfect agreement with the previous literature data. The most interesting result is a dramatic change of the near-edge structure of X-ray absorption spectra. Since XAS is sensitive to the local structure only, one would not expect significant changes in spectra (apart for some broadening) if only long-range order in the material is lost. Our experimental results indicate that pressure-induced amorphisation in olivine is accomplished with a significant variation of the local atomic structure around Fe cation, probably forming effective

  2. In Situ XANES Study of CuO/TiO2 Thin Films During Photodegradation of Methylene Blue

    SciTech Connect

    Hsiung Tungli; Wang, H. Paul; Wei Yuling

    2007-02-02

    Speciation of copper in the CuO/TiO2 thin film (synthesized by the doctor-blade deposition method) during photocatalytic decomposition of methylene blue has been studied by in situ X-ray absorption near-edge structural (XANES) spectroscopy. During the UV/VIS radiation (90 min), in the presence of methylene blue, a decrease of Cu(II) and an increases of Cu(0) and Cu(I) fractions in the CuO/TiO2 thin film are observed by in situ XANES. The r-space Fourier transformation EXAFS (extend X-ray absorption fine structural) spectra also show that the bond distance of Cu-O in the thin film is decreased by 0.03 A during photocatalytic degradation of methylene blue.

  3. Aqueous U(VI) interaction with magnetite nanoparticles in a mixed flow reactor system: HR-XANES study

    NASA Astrophysics Data System (ADS)

    Pidchenko, I.; Heberling, F.; Kvashnina, KO; Finck, N.; Schild, D.; Bohnert, E.; Schäfer, T.; Rothe, J.; Geckeis, H.; Vitova, T.

    2016-05-01

    The redox variations and changes in local atomic environment of uranium (U) interacted with the magnetite nanoparticles were studied in a proof of principle experiment by the U L3 and M4 edges high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We designed and applied a mixed flow reactor (MFR) set-up to maintain dynamic flow conditions during U-magnetite interactions. Formation of hydrolyzed, bi- and poly-nuclear U species were excluded by slow continuous injection of U(VI) (10-6 M) and pH control integrated in the MFR set-up. The applied U HR-XANES technique is more sensitive to minor changes in the U redox states and bonding compared to the conventional XANES method. Major U(VI) contribution in uranyl type of bonding is found in the magnetite nanoparticles after three days operation time of the MFR. Indications for shortening of the U-Oaxial bond length for the magnetite compared to the maghemite system are present too.

  4. X-ray absorption near-edge structure (XANES) spectroscopy study of the interaction of silver ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli.

    PubMed

    Bovenkamp, Gudrun Lisa; Zanzen, Ulrike; Krishna, Katla Sai; Hormes, Josef; Prange, Alexander

    2013-10-01

    Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag(+) treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and DL-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted.

  5. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

    SciTech Connect

    Robblee, John Henry

    2000-12-01

    states of Mn in the S0 state. The dichroic nature of X-rays from synchrotron radiation and single-crystal Mn complexes have been exploited to selectively probe Mn-ligand bonds using XANES and EXAFS spectroscopy. The results from single-crystal Mn complexes show that dramatic dichroism exists in these complexes, and are suggestive of a promising future for single-crystal studies of PS II.

  6. Ligand binding processes in hemoglobin. Chemical reactivity of iron studied by XANES spectroscopy.

    PubMed Central

    Pin, S; Valat, P; Cortes, R; Michalowicz, A; Alpert, B

    1985-01-01

    K-absorption edge of coordinated ions exhibits a fine structure (through the use of XANES, or x-ray absorption near edge structures) that reflects the electronic repartition and the chemical reactivity of these ions. Comparative analysis of iron K-absorption-edge shape for hemoglobin derivatives with different ligand affinity suggests strongly that in hemoglobin, iron-forms with high and low affinity are highly improbable. PMID:4092074

  7. Magnetic circular x-ray dichroisms of Fe-Ni alloys at K edge.

    SciTech Connect

    Freeman, A. J.; Gofron, K. J.; Kimball, C. W.; Lee, P. L.; Montano, P. A.; Rao, F.; Wang, X.

    1997-04-03

    Magnetic Circular X-ray Dichroism (MCXD) studies at K edges of Fe-Ni alloys reveal changes of the MCXD signal with composition and crystal structure. We observe that the signal at the invar composition is of comparable strength as other compositions. Moreover, the edge position is strongly dependent on lattice constant. First principles calculations demonstrate that the shape and strength of the signal strongly depends on the crystal orientation, composition, and lattice constant. We find direct relation between the MCXD signal and the p DOS. We find that the MCXD at K edge probes the magnetism due to itinerant electrons.

  8. Electron yield XAFS study of evaporated Co/Pd multilayers with various thickness ratios of Co to Pd sublayers: Simulations of the Co K-edge XAFS and fourier transforms

    SciTech Connect

    Choi, M. . Dept. of Physics); Joo, J.H. . Materials Design Lab.); Kim, S.K.; Kang, J.S.; Lee, Y.P. ); Shin, S.C. ); Heald, S.M.

    1992-01-01

    Electron-yield XAFS measurements using the NSLS were made on e-beam evaporated Co/Pd multilayers with various sublayer thicknesses and different thickness ratios of Co to Pd sublayers. The Co K-edge and the Pd K-edge XAFS data were obtained for the Co/Pd multilayers with sublayer thicknesses of 3[Angstrom]/ 4[Angstrom], 15[Angstrom]/4[Angstrom], 3[Angstrom]/15[Angstrom], 2.1[Angstrom]/13.5[Angstrom], and 2.2[Angstrom]/4.5[Angstrom]. Fourier transforms of Co K XAFS for most samples show a splitting of major peak, and the magnitude ratio of these split peaks varies systematically with the thickness ratio of the Pd sublayer to the Co sublayer, whereas the Fourier transforms of the Pd K XAFS for the same samples do not show a splitting of peaks. As a preliminary analysis, the Co K XAFS and the split peaks in the Fourier transform for the Co/Pd(3[Angstrom]/4[Angstrom]) case were simulated by using the FEFF calculations, and the Co K XAFS and the major peak in the fourier transform for the Co/Pd(15[Angstrom]/4[Angstrom]) case were also simulated consistently.

  9. Electron yield XAFS study of evaporated Co/Pd multilayers with various thickness ratios of Co to Pd sublayers: Simulations of the Co K-edge XAFS and fourier transforms

    SciTech Connect

    Choi, M.; Joo, J.H.; Kim, S.K.; Kang, J.S.; Lee, Y.P.; Shin, S.C.; Heald, S.M.

    1992-11-01

    Electron-yield XAFS measurements using the NSLS were made on e-beam evaporated Co/Pd multilayers with various sublayer thicknesses and different thickness ratios of Co to Pd sublayers. The Co K-edge and the Pd K-edge XAFS data were obtained for the Co/Pd multilayers with sublayer thicknesses of 3{Angstrom}/ 4{Angstrom}, 15{Angstrom}/4{Angstrom}, 3{Angstrom}/15{Angstrom}, 2.1{Angstrom}/13.5{Angstrom}, and 2.2{Angstrom}/4.5{Angstrom}. Fourier transforms of Co K XAFS for most samples show a splitting of major peak, and the magnitude ratio of these split peaks varies systematically with the thickness ratio of the Pd sublayer to the Co sublayer, whereas the Fourier transforms of the Pd K XAFS for the same samples do not show a splitting of peaks. As a preliminary analysis, the Co K XAFS and the split peaks in the Fourier transform for the Co/Pd(3{Angstrom}/4{Angstrom}) case were simulated by using the FEFF calculations, and the Co K XAFS and the major peak in the fourier transform for the Co/Pd(15{Angstrom}/4{Angstrom}) case were also simulated consistently.

  10. XRD and XANES study of some Cu-doped MnBi materials

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Patil, Harsha

    2016-10-01

    High purity MnBi low temperature phase has been prepared and analyzed using X- ray diffraction (XRD) and X-ray absorption near edge structure (XANES) measurements. The X-ray diffraction measurements were carried out using Bruker D8 Advance X-ray diffractometer. The X-rays were produced using a sealed tube and the wavelength of X-ray was 154 nm (Cu K-alpha). and X-rays were detected using a fast counting detector based on Silicon strip technology (Bruker LynxEye detector)[1]. and the X-ray absorption spectra has emerged as a powerful technique for local structure determination, which can be applied to any type of material. The X-ray absorption measurements of two Cu-doped MnBi alloys have been performed at the recently developed BL-8 Dispersive EXAFS beam line at 2.5 GeV Indus-2 synchrotron at RRCAT, Indore, India[2]. The X-ray absorption near edge structure (XANES) data obtained has been processed using data analysis program Athena. The energies of the K absorption edge, chemical shifts, edge-widths, shifts of the principal absorption maximum in the alloys have been determined.

  11. XANES studies of titanium dioxide nanoparticles synthesized by using Peltophorum pterocarpum plant extract

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Balamurugan, M.; Lippitz, A.; Fonda, E.; Swaraj, S.

    2016-12-01

    The preparation and characterization of a Titanium dioxide (TiO2) by a simple, cost effective, facile and eco-friendly green synthesis method using Peltophorum pterocarpum plant extract is presented. The green synthesized nanoparticles were characterized using X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and X-ray absorption near edge spectroscopy (XANES). XRD results show that the prepared TiO2 NPs were significantly crystalline with various percentages of anatase and rutile phases. The nanoparticles were found to have different diameters ranging from 20 to 80 nm. No evidence of any intermediate or different TiO2 phases were found in XANES measurements performed at the Ti K- and L-edge. It is shown that the TiO2 NPs with high uniformity, high surface area and minimum aggregation can be prepared with relative ease and the desired anatase: rutile phase ratio can be obtained by controlling the experimental conditions.

  12. Fragmentation of HCl following excitation at the chlorine K edge

    SciTech Connect

    Hansen, D.L.; Arrasate, M.E.; Cotter, J.P.

    1997-04-01

    A space-focused time-of-flight (TOF) mass spectrometer was used to study the relaxation dynamics of HCl following excitation in the vicinity of the Cl-K edge ({approximately}2.8 keV) using x-rays from B.L. 9.3.1. At the lowest resonant excitation to a {sigma}{sup *} antibonding orbital (1{sigma} {r_arrow} 6{sigma}), a significant fraction of the excited molecules decay by emission of a neutral H atom. While neutral-H emission has been observed for shallow core levels (e.g., Cl 2p in HCl), the authors believe this to be the first observation of neutral-atom emission as a significant decay channel following resonant excitation of a deep core hole. The dissociation of neutral hydrogen atoms raises the issue of how effectively dissociation competes with Auger decay in the relaxation of these deep core levels (i.e., Cl 1s). Graphical evidence is presented to support the dissociation agrument. In addition, trends in fractional ion yields from Photo-Ion Photo-Ion COincidence (PIPICO) spectra suggest the presence of post-collision interaction (PCI). While, electron spectroscopy studies are required to confirm the observation of this effect, the authors believe this to be the first evidence of PCI moderated dissociation in molecules.

  13. Li K-edge X-ray absorption near edge structure spectra for a library of lithium compounds applied in lithium batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dongniu; Zuin, Lucia

    2017-01-01

    Lithium ion batteries (LIB) have achieved great success as energy supply systems in portable devices and in electrical vehicles. Identifying the local chemical structures of elemental lithium in lithium compounds is beneficial for improving understanding of battery components and performance. Herein, a library of Li K-edge X-ray absorption near edge structure (XANES) of lithium compounds relevant to Li-ion batteries is reported. Materials described include lithium metals (anode), Li-containing cathodes, electrolytes and solid electrolyte interphase (SEI). The results illustrate the characteristic spectral features stemming from the various electronic structures and chemical environment of lithium atoms for each and every possible battery component. XANES spectra of Sn based anode after discharging reveal the appearance of Li2CO3 on electrode surface. X-ray damage on sensitive lithium species is also assessed; the results reveal that more attention should be paid to irradiation effects to conduct XANES measurements for battery materials properly.

  14. On the Structure of the Iron K-Edge

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is shown that the commonly held view of a sharp Fe K edge must be modified if the decay pathways of the series of resonances converging to the K thresholds are adequately taken into account. These resonances display damped Lorentzian profiles of nearly constant widths that are smeared to impose continuity across the threshold. By modeling the effects of K damping on opacities, it is found that the broadening of the K edge grows with the ionization level of the plasma, and the appearance at high ionization of a localized absorption feature at 7.2 keV is identified as the Kbeta unresolved transition array.

  15. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study.

    PubMed

    Chen, Yongsheng; Xie, Chao; Li, Yan; Song, Chunshan; Bolin, Trudy B

    2010-06-07

    The present XANES study aims at elucidating the roles of carbon deposits and metal sulfides in the catalyst deactivation in steam reforming reactions with the presence of sulfur. CeO(2)-Al(2)O(3)-supported Ni and Rh-based catalysts were tested in steam reforming of liquid hydrocarbon fuel containing 350 ppm sulfur for H(2) production at 800 degrees C. The Rh catalyst demonstrated much better sulfur tolerance than the Ni catalyst. XANES revealed that there are various sulfur species (metal sulfide, sulfonate, sulfate and organic sulfide) on the used Ni and Rh catalysts. Metal sulfide and organic sulfide are the dominant sulfur species on the Ni catalyst whereas sulfonate and sulfate predominate on the Rh catalyst. Meanwhile organic sulfide and sulfate are also observed on the support alone. Furthermore, there are more carbon deposits formed in the presence of sulfur on both catalysts. More carboxyl groups occur on the carbon deposits formed on the same catalyst when there is no sulfur in the fuel. From correlation analysis of the amounts of nickel sulfide and carbon deposits along with the relative catalytic activity loss, we conclude that sulfur causes the initial deactivation of the Ni catalyst by metal sulfide formation in the first few hours while build-up of carbon deposits contributes mainly to the subsequent deactivation.

  16. Polychrome glass from Etruscan sites: first non-destructive characterization with synchrotron μ-XRF, μ-XANES and XRPD

    NASA Astrophysics Data System (ADS)

    Arletti, R.; Vezzalini, G.; Quartieri, S.; Ferrari, D.; Merlini, M.; Cotte, M.

    2008-07-01

    This work is devoted to the characterization of a suite of very rare, highly decorated and coloured glass vessels and beads from the VII to the IV century BC. The most serious difficulty in developing this study was that any sampling even micro-sampling was absolutely forbidden. As a consequence, the mineralogical and chemical nature of chromophores and opacifiers present in these Iron Age finds were identified by means of the following synchrotron-based, strictly non-destructive, techniques: micro X-ray fluorescence (μ-XRF), Fe K-edge micro X-ray absorption near edge spectroscopy (μ-XANES) and X-ray powder diffraction (XRPD). The μ-XRF mapping evidenced high levels of Pb and Sb in the yellow decorations and the presence of only Sb in the white and light-blue ones. Purple and black glass show high amounts of Mn and Fe, respectively. The XRPD analyses confirmed the presence of lead and calcium antimonates in yellow, turquoise and white decorations. Fe K-edge μ-XANES spectra were collected in different coloured parts of the finds, thus enabling the mapping of the oxidation state of these elements across the samples. In most of the samples iron is present in the reduced form Fe2+ in the bulk glass of the vessels, and in the oxidized form Fe3+ in the decorations, indicating that these glass artefacts were produced in at least two distinct processing steps under different furnace conditions.

  17. X-ray fluorescence mapping and micro-XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT-added gasoline.

    PubMed

    Mölders, N; Schilling, P J; Wong, J; Roos, J W; Smith, I L

    2001-08-01

    The elemental distribution and compositional homogeneity in auto exhaust particulates emitted from methylcyclopentadienyl manganese tricarbonyl-(MMT-)added gasoline engines have been investigated using a newly installed synchrotron X-ray microprobe. Two representative groups of exhaust particulate matter, as defined in a recent bulk X-ray absorption fine structure (XAFS) spectroscopic study at the Mn K-edge, were studied. The micro-X-ray absorption near-edge structure (XANES) spectra indicate a relatively homogeneous distribution of phases within a given particulate sample, down to a spatial extent of 40 microm (the resolution of microprobe). The micro-XANES also enabled analysis of several areas which displayed compositions different from the bulk sample, supporting the general theory describing manganese species formation in the exhaust. The ability to evaluate small regions also enabled direct verification of manganese sulfate from the S XANES despite the vast excess of sulfur present in other forms. The presence of a chloride compound, introduced through the sample dilution air and engine intake air, was also revealed. The study demonstrates the value of the combined X-ray microfluorescence with excitation by polychromatic radiation for elemental mapping and micro-XANES spectroscopy for chemical speciation in the study of dilute environmental materials containing low-Z constituents such as Cl, S, and P.

  18. HgL(3) XANES Study of Mercury Methylation in Shredded Eichhornia Crassipes

    SciTech Connect

    Rajan, M.; Darrow, J.; Hua, M.; Barnett, B.; Mendoza, M.; Greenfield, B.K.; Andrews, J.C.

    2009-05-21

    Eichhornia crassipes (water hyacinth) is a non-native plant found in abundance in the Sacramento-San Joaquin River Delta (hereafter called Delta). This species has become a problem, clogging waterways and wetlands. Water hyacinth are also known to accumulate mercury. Recent attempts to curb its proliferation have included shredding with specialized boats. The purpose of this research is to better understand the ability of water hyacinth to phytoremediate mercury and to determine the effect of shredding and anoxic conditions on mercury speciation in plant tissue. In the field assessment, total mercury levels in sediment from the Dow Wetlands in the Delta were found to be 0.273 {+-} 0.070 ppm Hg, and levels in hyacinth roots and shoots from this site were 1.17 {+-} 0.08 ppm and 1.03 {+-} 0.52 ppm, respectively, indicating bioaccumulation of mercury. Plant samples collected at this site were also grown in nutrient solution with 1 ppm HgCl{sub 2} under (1) aerobic conditions, (2) anaerobic conditions, and (3) with shredded plant material only. The greatest accumulation was found in the roots of whole plants. Plants grown in these conditions were also analyzed at Stanford Synchrotron Radiation Laboratory using Hg L{sub 3} X-ray Absorption Near Edge Spectroscopy (XANES), a method to examine speciation that is element-specific and noninvasive. Least-squares fitting of the XANES data to methylated and inorganic mercury(II) model compounds revealed that in plants grown live and aerobically, 5 {+-} 3% of the mercury was in the form of methylmercury, in a form similar to methylmercury cysteine. This percentage increased to 16 {+-} 4% in live plants grown anaerobically and to 22 {+-} 6% in shredded anaerobic plants. We conclude that shredding of the hyacinth plants and, in fact, subjection of plants to anaerobic conditions (e.g., as in normal decay, or in crowded growth conditions) increases mercury methylation. Mechanical removal of the entire plant is significantly more

  19. Hg L3 XANES study of mercury methylation in shredded Eichhornia crassipes.

    PubMed

    Rajan, Michael; Darrow, Jeannine; Hua, Michael; Barnett, Brandy; Mendoza, Miguel; Greenfield, Ben K; Andrews, Joy C

    2008-08-01

    Eichhornia crassipes (water hyacinth) is a non-native plant found in abundance in the Sacramento-San Joaquin River Delta (hereafter called Delta). This species has become a problem, clogging waterways and wetlands. Water hyacinth are also known to accumulate mercury. Recent attempts to curb its proliferation have included shredding with specialized boats. The purpose of this research is to better understand the ability of water hyacinth to phytoremediate mercury and to determine the effect of shredding and anoxic conditions on mercury speciation in plant tissue. In the field assessment, total mercury levels in sediment from the Dow Wetlands in the Delta were found to be 0.273 +/- 0.070 ppm Hg, and levels in hyacinth roots and shoots from this site were 1.17 +/- 0.08 ppm and 1.03 +/- 0.52 ppm, respectively, indicating bioaccumulation of mercury. Plant samples collected at this site were also grown in nutrient solution with 1 ppm HgCl2 under (1) aerobic conditions, (2) anaerobic conditions, and (3)with shredded plant material only. The greatest accumulation was found in the roots of whole plants. Plants grown in these conditions were also analyzed at Stanford Synchrotron Radiation Laboratory using Hg L3 X-ray Absorption Near Edge Spectroscopy (XANES), a method to examine speciation that is element-specific and noninvasive. Least-squares fitting of the XANES data to methylated and inorganic mercury(II) model compounds revealed that in plants grown live and aerobically, 5 +/- 3% of the mercury was in the form of methylmercury, in a form similar to methylmercury cysteine. This percentage increased to 16 +/- 4% in live plants grown anaerobically and to 22 +/- 6% in shredded anaerobic plants. We conclude that shredding of the hyacinth plants and, in fact, subjection of plants to anaerobic conditions (e.g., as in normal decay, or in crowded growth conditions) increases mercury methylation. Mechanical removal of the entire plant is significantly more expensive than

  20. First approach to studies of sulphur electron DOS in prostate cancer cell lines and tissues studied by XANES

    NASA Astrophysics Data System (ADS)

    Kwiatek, Wojciech M.; Czapla, Joanna; Podgórczyk, Magdalena; Kisiel, Andrzej; Konior, Jerzy; Balerna, Antonella

    2011-10-01

    Urological cancers comprise approximately one-third of all cancers diagnosed in men worldwide and out of these, prostate cancer is the most common one ( WHO World Cancer Report, 2008). Several risk factors such as age, hormone levels, environmental conditions and family history are suspected to play a role in the onset of this disease of otherwise obscure aetiology. It is therefore the medical need that drives multidisciplinary research in this field, carried out by means of various experimental and theoretical techniques. Out of many relevant factors, it is believed that sulphur can take an important part in cancer transformations. We have investigated the prostate cancer cell lines and tissues, along with selected organic and inorganic compounds used as references, by the X-ray absorption fine structure spectroscopy near the sulphur edge energy region. Particularly, the comparison of the experimental results collected during XANES measurements and theoretical calculations of electron density of states with use of the FEFF8 code and LAPW (linearised augmented plane-wave) method has been performed and in this work the first results of our studies are presented.

  1. New methodological approach for the vanadium K-edge X-ray absorption near-edge structure interpretation: application to the speciation of vanadium in oxide phases from steel slag.

    PubMed

    Chaurand, Perrine; Rose, Jérôme; Briois, Valérie; Salome, Murielle; Proux, Olivier; Nassif, Vivian; Olivi, Luca; Susini, Jean; Hazemann, Jean-Louis; Bottero, Jean-Yves

    2007-05-17

    This paper presents a comparison between several methods dedicated to the interpretation of V K-edge X-ray absorption near-edge structure (XANES) features. V K-edge XANES spectra of several V-bearing standard compounds were measured in an effort to evaluate advantages and limits of each method. The standard compounds include natural minerals and synthetic compounds containing vanadium at various oxidation state (from +3 to +5) and in different symmetry (octahedral, tetrahedral, and square pyramidal). Correlations between normalized pre-edge peak area and its centroid position have been identified as the most reliable method for determining quantitative and accurate redox and symmetry information for vanadium. This methodology has been previously developed for the Fe K edge. It is also well adapted for the V K edge and is less influenced by the standard choice than other methods. This methodology was applied on an "environmental sample," i.e., a well-crystallized leached steel slag containing vanadium as traces. Micro-XANES measurements allowed elucidating the microdistribution of vanadium speciation in leached steel slag. The vanadium exhibits an important evolution from the unaltered to the altered phases. Its oxidation state increases from +3 to +5 together with the decrease of its symmetry (from octahedral to tetrahedral).

  2. Spectral CT Using Multiple Balanced K-Edge Filters

    PubMed Central

    Rakvongthai, Yothin; Worstell, William; Fakhri, Georges El; Bian, Junguo; Lorsakul, Auranuch; Ouyang, Jinsong

    2015-01-01

    Our goal is to validate a spectral CT system design that uses a conventional X-ray source with multiple balanced K-edge filters. By performing a simultaneously synthetic reconstruction in multiple energy bins, we obtained a good agreement between measurements and model expectations for a reasonably complex phantom. We performed simulation and data acquisition on a phantom containing multiple rods of different materials using a NeuroLogica CT scanner. Five balanced K-edge filters including Molybdenum, Cerium, Dysprosium, Erbium, and Tungsten were used separately proximal to the X-ray tube. For each sinogram bin, measured filtered vector can be defined as a product of a transmission matrix, which is determined by the filters and is independent of the imaging object, and energy-binned intensity vector. The energy-binned sinograms were then obtained by inverting the transmission matrix followed by a multiplication of the filter measurement vector. For each energy bin defined by two consecutive K-edges, a synthesized energy-binned attenuation image was obtained using filtered back-projection reconstruction. The reconstructed attenuation coefficients for each rod obtained from the experiment was in good agreement with the corresponding simulated results. Furthermore, the reconstructed attenuation coefficients for a given energy bin, agreed with National Institute of Standards and Technology reference values when beam hardening within the energy bin is small. The proposed cost-effective system design using multiple balanced K-edge filters can be used to perform spectral CT imaging at clinically relevant flux rates using conventional detectors and integrating electronics. PMID:25252276

  3. XANES Speciation of P in Environmental Samples: An Assessment of Filter Media for on-Site Wastewater Treatment

    SciTech Connect

    Eveborn, D.; Gustafsson, J; Hesterberg, D; Hillier, S

    2009-01-01

    X-ray absorption near edge structure (XANES) spectroscopy is a useful technique for characterization of chemical species of phosphorus in complex environmental samples. To develop and evaluate bed filters as sustainable on-site wastewater treatment solutions, our objective in this study was to determine the chemical forms of accumulated phosphorus in a selection of promising filter materials: Filtralite P, Filtra P, Polonite, Absol, blast furnace slag, and wollastonite. Full-scale operational wastewater-treatment systems were sampled and in addition, filter samples collected from laboratory studies provided access to additional media and complementary samples. Phosphorus species were characterized using phosphorus K-edge XANES spectroscopy, complemented by X-ray powder diffraction (XRPD) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). No systematic differences could be seen in the results between laboratory- and full-scale samples. All six filter media contained significant amounts of crystalline calcium phosphates. Some samples also contained amorphous calcium phosphate (>60% of total P in Absol). In Filtralite P and blast furnace slag, more than 35% of the accumulated phosphorus was associated with Fe or Al. Both the power and shortcomings of XANES analysis for characterizing P species in these filter media are discussed.

  4. Study of the Warm Dense Matter with XANES spectroscopy - Applications to planetary interiors

    NASA Astrophysics Data System (ADS)

    Denoeud, Adrien

    With the recent discovery of many exoplanets, modelling the interior of these celestial bodies is becoming a fascinating scientific challenge. In this context, it is crucial to accurately know the equations of state and the macroscopic and microscopic physical properties of their constituent materials in the Warm Dense Matter regime (WDM). Moreover, planetary models rely almost exclusively on physical properties obtained using first principles simulations based on density functional theory (DFT) predictions. It is thus of paramount importance to validate the basic underlying mechanisms occurring for key planetary constituents (metallization, dissociation, structural modifications, phase transitions, etc....) as pressure and temperature both increase. In this work, we were interested in two materials that can be mainly found in the Earth-like planets: silica, or SiO2, as a model compound of the silicates that constitute the major part of their mantles, and iron, which is found in abundance in their cores. These two materials were compressed and brought to the WDM regime by using strong shock created by laser pulses during various experiments performed on the LULI2000 (Palaiseau, France) and the JLF (Livermore, US) laser facilities and on the LCLS XFEL (Stanford, US). In order to penetrate this dense matter and to have access to its both ionic and electronic structures, we have probed silica and iron with time-resolved X-ray Absorption Near Edge Structure (XANES). In parallel with these experiments, we performed quantum molecular dynamics simulations based on DFT at conditions representative of the region investigated experimentally so as to extract the interesting physical processes and comprehend the limits of the implemented models. In particular, these works allowed us to highlight the metallization processes of silica in temperature and the structural changes of its liquid in density, as well as to more constrain the melting curve of iron at very high pressures.

  5. Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS.

    PubMed

    Benfield, Robert E; Grandjean, Didier; Dore, John C; Esfahanian, Hamid; Wu, Zhonghua; Kröll, Michael; Geerkens, Marcus; Schmid, Günter

    2004-01-01

    Mesoporous alumina membranes ("anodic aluminium oxide", or "AAO") are made by anodic oxidation of aluminium metal. These membranes contain hexagonal arrays of parallel non-intersecting cylindrical pores perpendicular to the membrane surface. By varying the anodisation voltage, the pore diameters are controllable within the range 5-250 nm. We have used AAO membranes as templates for the electrochemical deposition of metals within the pores to produce nanowires. These represent assemblies of one-dimensional quantum wires with prospective applications in electronic, optoelectronic and magnetic devices. Detailed characterisation of the structures of these nanowire assemblies on a variety of length scales is essential to understand their physical properties and evaluate their possible applications. We have used EXAFS, XANES, WAXS, high energy X-ray diffraction and SAXS to study their structure and bonding. In this paper we report the results of our studies of four different nanowire systems supported in AAO membranes. These are the ferromagnetic metals iron and cobalt, the superconducting metal tin, and the semiconductor gallium nitride. Iron nanowires in pores of diameter over the range 12 nm-72 nm are structurally very similar to bcc bulk iron. They have a strong preferred orientation within the alumina pores. Their XANES shows significant differences from that of bulk iron, showing that the electronic structure of the iron nanowires depends systematically on their diameter. Cobalt nanowires are composed of a mixture of hcp and fcc phases, but the ratio of the two phases does not depend in a simple way on the pore diameter or preparation conditions. In bulk cobalt, the fcc beta-phase is normally stable only at high temperatures. Strong preferred orientation of the c-axis in the pores was found. Tin nanowires in alumina membranes with pores diameters between 12 nm and 72 nm have a tetragonal beta-structure at ambient temperature and also at 80 K. Magnetic

  6. Anisotropy of chemical bonds in collagen molecules studied by X-ray absorption near-edge structure (XANES) spectroscopy.

    PubMed

    Lam, Raymond S K; Metzler, Rebecca A; Gilbert, Pupa U P A; Beniash, Elia

    2012-03-16

    Collagen type I fibrils are the major building blocks of connective tissues. Collagen fibrils are anisotropic supramolecular structures, and their orientation can be revealed by polarized light microscopy and vibrational microspectroscopy. We hypothesized that the anisotropy of chemical bonds in the collagen molecules, and hence their orientation, might also be detected by X-ray photoemission electron spectromicroscopy (X-PEEM) and X-ray absorption near-edge structure (XANES) spectroscopy, which use linearly polarized synchrotron light. To test this hypothesis, we analyzed sections of rat-tail tendon, composed of parallel arrays of collagen fibrils. The results clearly indicate that XANES-PEEM is sensitive to collagen fibril orientation and, more specifically, to the orientations of carbonyl and amide bonds in collagen molecules. These data suggest that XANES-PEEM is a promising technique for characterizing the chemical composition and structural organization at the nanoscale of collagen-based connective tissues, including tendons, cartilage, and bone.

  7. XANES Measurements of Cr Valence in Olivine and their Applications to Planetary Basalts (Invited)

    NASA Astrophysics Data System (ADS)

    Bell, A. S.; Burger, P.; Le, L.; Shearer, C. K.; Papike, J.; Sutton, S. R.; Newville, M.; Jones, J. H.

    2013-12-01

    The oxidation state and partitioning behavior of trace Cr in terrestrial and planetary basaltic magmas has long been a subject of petrologic inquiry. We have performed a series of experiments designed to examine the relationship between oxygen fugacity and the ratio of divalent to trivalent Cr present in olivine crystals grown from a basaltic liquid. The experimental olivine crystals were grown at fO2 values ranging from IW-1 to IW+3.4. The melt composition used in this work was modeled after the bulk composition of the primitive, basaltic martian meteorite Yamato 980459 (Y-98). Chromium valence in the olivine crystals was measured with X-ray-Absorption-Near-Edge-Spectroscopy (XANES) at the Advanced Photon Source, Argonne National Laboratory. Chromium K-edge XANES data were acquired with the x-ray microprobe of GSECARS beamline 13-ID-E. Beam focusing was accomplished with dynamically-figured Kirkpatrick-Baez focusing mirrors; this configuration yielded a beam focused to a final spot size of ~ 4 μm2. Results from the XANES measurements indicate that the ratio of divalent to trivalent Cr in the olivine is systematically correlated with fO2 in a manner that is consistent with the expected redox systematics for Cr2+- Cr3+ in the melt. In this way, measurements of the Cr2+/Cr3+ in olivine phenocrysts can indirectly reveal information about the Cr valence ratio and fO2 the liquid from which it grew even in the absence of a quenched melt phase. Although the results from the experiments presented in this work specifically apply to the Yamato 98 parental liquid, the concepts and XANES analytical techniques used in this study present a novel, generalized methodology that may be applicable to any olivine-bearing basalt. Furthermore, the XANES based measurements are made on a micron-scale, thus potential changes of the Cr2+/Cr3+ in the melt occurring during crystallization may be recorded in detail.

  8. Investigation of S H bonds in biologically important compounds by sulfur K-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prange, A.; Dahl, C.; Trüper, H. G.; Behnke, M.; Hahn, J.; Modrow, H.; Hormes, J.

    2002-09-01

    X-ray Absorption Near Edge Structure (XANES) spectroscopy, often provides a direct correlation between observed resonances in the spectrum and molecular bonds in the sample. This can be used as a fingerprint for the presence of a given molecular environment of the absorber atom in a sample. As the white line is found at similar energy positions for S C and S H bonds, this approach is impossible when both types of bond are present simultaneously, as often in biological systems. To develop a criterium for the presence of S H bonds in such samples, reduced glutathione, reduced coenzyme A, cysteine and their corresponding oxidized forms were investigated using sulfur K-edge XANES, revealing a unique feature at 2 475.8 eV in the respective difference spectra. To correlate this structure to S H bonds, H2S and H2S2 were measured, whose difference spectrum also shows a structure at this energy position, whereas it is not present throughout a variety of C S C/C S S C environments. Theoretical investigations suggest its correlation to a Rydberg transition occurring in the case of a S H bond. Using this criterium, the presence of S H bonds is in the purple sulfur bacterium Allochromatium vinosum during oxidation of intracellular accumulated sulfur, is proved, as expected from biological considerations.

  9. A XANES study of the structural role of lead in glazes from decorated tiles, XVI to XVIII century manufacture

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. O.; Silva, T. P.; Veiga, J. P.

    2006-05-01

    Aged lead-rich, tin-opacified glazes from polychrome tiles manufactured in the 16th 18th century were studied to ascertain the structural role of lead. Glaze fragments with white, blue, yellow, brown and green colouring were analysed using non-destructive X-ray techniques, both laboratorial X-ray diffraction to identify crystalline components and synchrotron-based. Elemental analyses by synchrotron radiation X-ray fluorescence were performed at the former LURE photon microprobe (line D15A at DCI, in Orsay). The instrumental set-up of beamline BM29 at the ESRF, in Grenoble, was applied to collect X-ray absorption spectra at the Pb L3-edge. Natural minerals and synthetics with known crystal structure were used as model oxy-compounds to configure different formal valences and coordinations of lead ions by oxygen anions, and to interpret the effects upon details of X-ray absorption near-edge spectroscopy (XANES) spectra. Experimental evidence supports the general conclusion that lead is hosted by the glassy matrix, irrespective of the glaze colour. Furthermore, it was concluded that lead ions assume coordinations higher than usual for silica glasses, acting as network modifiers in the silica-lime-alkali glasses of ancient tile glazes.

  10. Interaction of NH3 with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study.

    PubMed

    Giordanino, Filippo; Borfecchia, Elisa; Lomachenko, Kirill A; Lazzarini, Andrea; Agostini, Giovanni; Gallo, Erik; Soldatov, Alexander V; Beato, Pablo; Bordiga, Silvia; Lamberti, Carlo

    2014-05-01

    In the typical NH3-SCR temperature range (100-500 °C), ammonia is one of the main adsorbed species on acidic sites of Cu-SSZ-13 catalyst. Therefore, the study of adsorbed ammonia at high temperature is a key step for the understanding of its role in the NH3-SCR catalytic cycle. We employed different spectroscopic techniques to investigate the nature of the different complexes occurring upon NH3 interaction. In particular, FTIR spectroscopy revealed the formation of different NH3 species, that is, (i) NH3 bonded to copper centers, (ii) NH3 bonded to Brønsted sites, and (iii) NH4(+)·nNH3 associations. XANES and XES spectroscopy allowed us to get an insight into the geometry and electronic structure of Cu centers upon NH3 adsorption, revealing for the first time in Cu-SSZ-13 the presence of linear Cu(+) species in Ofw-Cu-NH3 or H3N-Cu-NH3 configuration.

  11. Ni K-Edge XANES Analyses of Residual Ni Catalyst in Carbon Nanofiber Using Full Multiple Scattering Theory

    SciTech Connect

    Ushiro, Mayuko; Ohminami, Kenryo; Nagamatsu, Shin-ichi; Fujikawa, Takashi; Asakura, Kiyotaka

    2007-02-02

    Residual Ni species after Ni removal treatment of carbon nanofibers have been investigated by use of XAFS analyses. Most of the Ni impurities are in Ni monomer which is located on defects in carbon nanofibers. The XAFS analyses combined with the multiple scattering theory give useful information on nano-structures of small amount species. Molecular orbital calculation also support the results from the XAFS analyses.

  12. Solvation structure of Zn(2+) and Cu(2+) ions in acetonitrile: a combined EXAFS and XANES study.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina

    2015-03-12

    The solvation structure of Zn(2+) and Cu(2+) in acetonitrile has been determined by a combined approach using both X-ray absorption near edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) spectroscopy. For the former cation, an octahedral geometry of the acetonitrile solvate complex has been found with a Zn-N distance of 2.12(1) Å. For the Cu(2+) solvates the EXAFS technique has been found to be not able to provide a conclusive determination of the coordination numbers and polyhedral environment, while the analysis of the XANES spectra unambiguously shows the existence of an axially elongated square pyramidal coordination, ruling out the previously proposed octahedral Jahn-Teller (JT) distorted geometry. The Cu-N distances obtained are 2.00(1) and 2.28(2) Å for the equatorial and axial ligands, respectively, and the EXAFS and XANES techniques find values of the bond distances in good agreement. The XANES technique has proven to be extremely powerful in providing a reliable resolution of solution structure for dynamic ion complexes.

  13. A Carbon-XANES Study of IDP Organic Diversity: Evidence for Multiple Sources of Early Solar System Organic Matter

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.; Wirick, S.; Keller, L. P.

    2013-09-01

    We identified >30 distinct C-XANES spectra, differing in positions, relative areas, and widths of C=O and C=C absorptions, in a single ultramicrotome section of a CP IDP, suggesting multiple sources for organic matter in the early solar system.

  14. Portable X-Ray, K-Edge Heavy Metal Detector

    SciTech Connect

    Fricke, V.

    1999-10-25

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.

  15. XANES spectroscopy as a tool to trace phosphorus transformation during soil genesis and mountain ecosystem development from lake sediments

    NASA Astrophysics Data System (ADS)

    Giguet-Covex, C.; Poulenard, J.; Chalmin, E.; Arnaud, F.; Rivard, C.; Jenny, J.-P.; Dorioz, J.-M.

    2013-10-01

    The aim of this study is to investigate phosphorus (P) species modifications triggered by soil genesis and mountain ecosystem development after glacial retreat using a lake sediment archive (Lake Anterne, North French Alps). Five lake sediment samples, representative of different stages of soil and ecosystem development, were selected for P speciation analyses. Furthermore, a sequence of current soils from the catchment was analyzed to better constrain our interpretations of the lacustrine archive. Synchrotron techniques (X-ray Fluorescence (XRF) mapping and P K-edge X-ray absorption near edge structure (XANES) spectroscopy) were applied to lake sediments, soils, and standards (mineral and organic) to distinguish between different P species. The results show that soil development during the first millennia of the Holocene triggered increased P species diversity. At the onset of the Holocene, P was present as apatite when rocks and leptosols dominated the catchment. Pedogenic processes then led to apatite dissolution and the formation of large amounts of P on metal/clay-organic complexes. P geochemistry during the main step of soil genesis (early leptosols dominated by apatite, low weathered cambisols with P mainly adsorbed on iron oxides, highly weathered podzols with large amounts of P on Al/Fe/clay organic complexes) is thus clearly recorded in lake sediments. P K-edge XANES spectroscopy is particularly relevant as qualitative method to study P species in soils and lake sediments at high spatial resolution. Such resolution is needed to reveal the diversity of small P particles and like this better characterize the P cycle and improve our understanding of ecosystem evolution.

  16. Neutral dissociation of hydrogen following photoexcitation of HCl at the chlorine K edge

    SciTech Connect

    Hansen, D.L.; Arrasate, M.E.; Martin, R.; Vanderford, B.; Lindle, D.W.; Cotter, J.; Neill, P.; Fisher, G.R.; Perera, R.C.; Leung, K.T.; Levin, J.C.; Sellin, I.A.; Simon, M.; Simon, M.; Uehara, Y.; Whitfield, S.B.

    1998-04-01

    Time-of-flight mass spectroscopy was used to study the relaxation dynamics of HCl following photoexcitation in the vicinity of the Cl K edge ({approximately}2.8keV) using monochromatic synchrotron radiation. At the lowest resonant excitation to the 6{sigma}{sup {asterisk}} antibonding orbital, almost half of the excited molecules decay by emission of a neutral H atom, mostly in coincidence with a highly charged Cl{sup n+} ion. The present work demonstrates that neutral-atom emission can be a significant decay channel for excited states with very short lifetimes (1 fs). {copyright} {ital 1998} {ital The American Physical Society}

  17. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex.

    PubMed

    Bressler, Ch; Milne, C; Pham, V-T; Elnahhas, A; van der Veen, R M; Gawelda, W; Johnson, S; Beaud, P; Grolimund, D; Kaiser, M; Borca, C N; Ingold, G; Abela, R; Chergui, M

    2009-01-23

    X-ray absorption spectroscopy is a powerful probe of molecular structure, but it has previously been too slow to track the earliest dynamics after photoexcitation. We investigated the ultrafast formation of the lowest quintet state of aqueous iron(II) tris(bipyridine) upon excitation of the singlet metal-to-ligand-charge-transfer (1MLCT) state by femtosecond optical pump/x-ray probe techniques based on x-ray absorption near-edge structure (XANES). By recording the intensity of a characteristic XANES feature as a function of laser pump/x-ray probe time delay, we find that the quintet state is populated in about 150 femtoseconds. The quintet state is further evidenced by its full XANES spectrum recorded at a 300-femtosecond time delay. These results resolve a long-standing issue about the population mechanism of quintet states in iron(II)-based complexes, which we identify as a simple 1MLCT-->3MLCT-->5T cascade from the initially excited state. The time scale of the 3MLCT-->5T relaxation corresponds to the period of the iron-nitrogen stretch vibration.

  18. MICROSCANNING XRF, XANES, AND XRD STUDIES OF THEDECORATED SURFACE OF ROMAN TERRA SIGILLATA CERAMICS

    SciTech Connect

    Mirguet, C.; Sciau, P.; Goudeau, P.; Mehta, A.; Pianetta, P.; Liu, Z.; Tamura, N.

    2008-10-24

    Different microscanning synchrotron techniques were used to better understand the elaboration process and origins of Terra Sigillata potteries from the Roman period. A mixture Gallic slip sample cross-section showing red and yellow colors was studied. The small (micron) size of the X-ray beam available at Stanford Synchrotron Radiation Laboratory (SSRL) and Advanced Light Source (ALS) synchrotron sources, coupled with the use of a sample scanning stage allowed us to spatially resolve the distribution of the constitutive mineral phases related to the chemical composition. Results show that red color is a result of iron-rich hematite crystals and the yellow part is a result of the presence of Ti-rich rutile-type phase (brookite). Volcanic-type clay is at the origin of these marble Terra Sigillata.

  19. NanoSIMS, TEM, and XANES studies of a unique presolar supernova graphite grain

    SciTech Connect

    Groopman, Evan; Bernatowicz, Thomas; Zinner, Ernst; Nittler, Larry R.

    2014-07-20

    We report on isotopic and microstructural investigations of a unique presolar supernova (SN) graphite grain, referred to as G6, isolated from the Orgueil CI chondrite. G6 contains complex heterogeneities in its isotopic composition and in its microstructure. Nano-scale secondary ion mass spectrometer isotope images of ultramicrotome sections reveal heterogeneities in its C, N, and O isotopic compositions, including anomalous shell-like structures. Transmission electron microscope studies reveal a nanocrystalline core surrounded by a turbostratic graphite mantle, the first reported nanocrystalline core from a low-density SN graphite grain. Electron diffraction analysis shows that the nanocrystalline core consists of randomly oriented 2-4 nm graphene particles, similar to those in cores of high-density (HD) presolar graphite grains from asymptotic giant branch stars. G6's core also exhibits evidence for planar stacking of these graphene nano-sheets with a domain size up to 4.5 nm, which was unobserved in the nanocrystalline cores of HD graphite grains. We also report on X-ray absorption near-edge structure measurements of G6. The complex isotopic- and micro-structure of G6 provides evidence for mixing and/or granular transport in SN ejecta.

  20. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study

    PubMed Central

    2016-01-01

    The antidiabetic activities of vanadium(V) and -(IV) prodrugs are determined by their ability to release active species upon interactions with components of biological media. The first X-ray absorption spectroscopic study of the reactivity of typical vanadium (V) antidiabetics, vanadate ([VVO4]3–, A) and a vanadium(IV) bis(maltolato) complex (B), with mammalian cell cultures has been performed using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1 (mouse adipocytes and preadipocytes) cell lines, as well as the corresponding cell culture media. X-ray absorption near-edge structure data were analyzed using empirical correlations with a library of model vanadium(V), -(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly five- and six-coordinate VV species (∼75% total V) in a cell culture medium within 24 h at 310 K. Speciation of V in intact HepG2 cells also changed with the incubation time (from ∼20% to ∼70% VIV of total V), but it was largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular fractionation of A549 cells suggested that VV reduction to VIV occurred predominantly in the cytoplasm, while accumulation of VV in the nucleus was likely to have been facilitated by noncovalent bonding to histone proteins. The nuclear VV is likely to modulate the transcription process and to be ultimately related to cell death at high concentrations of V, which may be important in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes) showed a higher propensity to form VIV species, despite the prevalence of VV in the medium. The distinct V biochemistry in these cells is consistent with their crucial role in insulin-dependent glucose and fat metabolism and may also point to an endogenous role of V in adipocytes. PMID:25906315

  1. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study.

    PubMed

    Levina, Aviva; McLeod, Andrew I; Pulte, Anna; Aitken, Jade B; Lay, Peter A

    2015-07-20

    The antidiabetic activities of vanadium(V) and -(IV) prodrugs are determined by their ability to release active species upon interactions with components of biological media. The first X-ray absorption spectroscopic study of the reactivity of typical vanadium (V) antidiabetics, vanadate ([V(V)O4](3-), A) and a vanadium(IV) bis(maltolato) complex (B), with mammalian cell cultures has been performed using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1 (mouse adipocytes and preadipocytes) cell lines, as well as the corresponding cell culture media. X-ray absorption near-edge structure data were analyzed using empirical correlations with a library of model vanadium(V), -(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly five- and six-coordinate V(V) species (∼75% total V) in a cell culture medium within 24 h at 310 K. Speciation of V in intact HepG2 cells also changed with the incubation time (from ∼20% to ∼70% V(IV) of total V), but it was largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular fractionation of A549 cells suggested that V(V) reduction to V(IV) occurred predominantly in the cytoplasm, while accumulation of V(V) in the nucleus was likely to have been facilitated by noncovalent bonding to histone proteins. The nuclear V(V) is likely to modulate the transcription process and to be ultimately related to cell death at high concentrations of V, which may be important in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes) showed a higher propensity to form V(IV) species, despite the prevalence of V(V) in the medium. The distinct V biochemistry in these cells is consistent with their crucial role in insulin-dependent glucose and fat metabolism and may also point to an endogenous role of V in adipocytes.

  2. Biotransformations of antidiabetic vanadium prodrugs in mammalian cells and cell culture media: A XANES spectroscopic study

    SciTech Connect

    Levina, Aviva; McLeod, Andrew I.; Pulte, Anna; Aitken, Jade B.; Lay, Peter A.

    2015-04-23

    The antidiabetic activities of vanadium(V) and -(IV) prodrugs are determined by their ability to release active species upon interactions with components of biological media. The first X-ray absorption spectroscopic study of the reactivity of typical vanadium (V) antidiabetics, vanadate ([VVO4]3–, A) and a vanadium(IV) bis(maltolato) complex (B), with mammalian cell cultures has been performed using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1 (mouse adipocytes and preadipocytes) cell lines, as well as the corresponding cell culture media. X-ray absorption near-edge structure data were analyzed using empirical correlations with a library of model vanadium(V), -(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly five- and six-coordinate VV species (~75% total V) in a cell culture medium within 24 h at 310 K. Speciation of V in intact HepG2 cells also changed with the incubation time (from ~20% to ~70% VIV of total V), but it was largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular fractionation of A549 cells suggested that VV reduction to VIV occurred predominantly in the cytoplasm, while accumulation of VV in the nucleus was likely to have been facilitated by noncovalent bonding to histone proteins. The nuclear VV is likely to modulate the transcription process and to be ultimately related to cell death at high concentrations of V, which may be important in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes) showed a higher propensity to form VIV species, despite the prevalence of VV in the medium. Lastly, the distinct V biochemistry in these cells is consistent with their crucial role in insulin-dependent glucose and fat metabolism and may also point to an endogenous role of V in

  3. Biotransformations of antidiabetic vanadium prodrugs in mammalian cells and cell culture media: A XANES spectroscopic study

    DOE PAGES

    Levina, Aviva; McLeod, Andrew I.; Pulte, Anna; ...

    2015-04-23

    The antidiabetic activities of vanadium(V) and -(IV) prodrugs are determined by their ability to release active species upon interactions with components of biological media. The first X-ray absorption spectroscopic study of the reactivity of typical vanadium (V) antidiabetics, vanadate ([VVO4]3–, A) and a vanadium(IV) bis(maltolato) complex (B), with mammalian cell cultures has been performed using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1 (mouse adipocytes and preadipocytes) cell lines, as well as the corresponding cell culture media. X-ray absorption near-edge structure data were analyzed using empirical correlations with a library of model vanadium(V), -(IV), and -(III) complexes. Both Amore » and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly five- and six-coordinate VV species (~75% total V) in a cell culture medium within 24 h at 310 K. Speciation of V in intact HepG2 cells also changed with the incubation time (from ~20% to ~70% VIV of total V), but it was largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular fractionation of A549 cells suggested that VV reduction to VIV occurred predominantly in the cytoplasm, while accumulation of VV in the nucleus was likely to have been facilitated by noncovalent bonding to histone proteins. The nuclear VV is likely to modulate the transcription process and to be ultimately related to cell death at high concentrations of V, which may be important in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes) showed a higher propensity to form VIV species, despite the prevalence of VV in the medium. Lastly, the distinct V biochemistry in these cells is consistent with their crucial role in insulin-dependent glucose and fat metabolism and may also point to an endogenous role of V in adipocytes.« less

  4. XANES evidence of arsenate removal from water with magnetic ferrite.

    PubMed

    Tu, Yao-Jen; You, Chen-Feng; Chang, Chien-Kuei; Wang, Shan-Li

    2013-05-15

    Arsenic (As) in groundwater and surface water is a worldwide problem possessing a serious threat to public health. In this study, a magnetic ferrite, was synthesized and investigated for its As(V) removal efficiency. The adsorption of As(V) by magnetic ferrite exhibited an L-shaped nonlinear isotherm, suggesting limiting binding sites on the adsorbent surface. The As K-edge X-Ray Absorption Near-Edge Structure (XANES) revealed that the adsorbed As(V) on ferrite was not reduced to more toxic As(III) by Fe(2+) in the ferrite structure. The maximum As adsorption capacity of ferrite was 14 mg/g at pH 3 and decreased with increasing pH due to enhanced electrostatic repulsion between As(V) and the adsorbent surface. Desorption of As(V) using six different acid and salt solutions showed that the desorption rate decreased in an order of H3PO4 > Na3PO4 > H2SO4 > Na2SO4 > HCl > HNO3. These results suggest that magnetic ferrite without surface modification is an effective adsorbent for removing As(V) from water, which was confirmed by the effective removal of As(V) from contaminated groundwater using this material. The used material can then be recovered using a magnet because of its paramagnetism; the adsorbed As(V) on the material can be recovered using H3PO4 or Na3PO4 solutions.

  5. Probing the electronic and geometric structure of ferric and ferrous myoglobins in physiological solutions by Fe K-edge absorption spectroscopy.

    PubMed

    Lima, Frederico A; Penfold, Thomas J; van der Veen, Renske M; Reinhard, Marco; Abela, Rafael; Tavernelli, Ivano; Rothlisberger, Ursula; Benfatto, Maurizio; Milne, Christopher J; Chergui, Majed

    2014-01-28

    We present an iron K-edge X-ray absorption study of carboxymyoglobin (MbCO), nitrosylmyoglobin (MbNO), oxymyoglobin (MbO2), cyanomyoglobin (MbCN), aquomet myoglobin (metMb) and unligated myoglobin (deoxyMb) in physiological media. The analysis of the XANES region is performed using the full-multiple scattering formalism, implemented within the MXAN package. This reveals trends within the heme structure, absent from previous crystallographic and X-ray absorption analysis. In particular, the iron-nitrogen bond lengths in the porphyrin ring converge to a common value of about 2 Å, except for deoxyMb whose bigger value is due to the doming of the heme. The trends of the Fe-Nε (His93) bond length is found to be consistent with the effect of ligand binding to the iron, with the exception of MbNO, which is explained in terms of the repulsive trans effect. We derive a high resolution description of the relative geometry of the ligands with respect to the heme and quantify the magnitude of the heme doming in the deoxyMb form. Finally, time-dependent density functional theory is used to simulate the pre-edge spectra and is found to be in good agreement with the experiment. The XAS spectra typically exhibit one pre-edge feature which arises from transitions into the unoccupied dσ and dπ - πligand* orbitals. 1s → dπ transitions contribute weakly for MbO2, metMb and deoxyMb. However, despite this strong Fe d contribution these transitions are found to be dominated by the dipole (1s → 4p) moment due to the low symmetry of the heme environment.

  6. Investigation of X-ray fluorescence computed tomography (XFCT) and K-edge imaging.

    PubMed

    Bazalova, Magdalena; Kuang, Yu; Pratx, Guillem; Xing, Lei

    2012-08-01

    This work provides a comprehensive Monte Carlo study of X-ray fluorescence computed tomography (XFCT) and K-edge imaging system, including the system design, the influence of various imaging components, the sensitivity and resolution under various conditions. We modified the widely used EGSnrc/DOSXYZnrc code to simulate XFCT images of two acrylic phantoms loaded with various concentrations of gold nanoparticles and Cisplatin for a number of XFCT geometries. In particular, reconstructed signal as a function of the width of the detector ring, its angular coverage and energy resolution were studied. We found that XFCT imaging sensitivity of the modeled systems consisting of a conventional X-ray tube and a full 2-cm-wide energy-resolving detector ring was 0.061% and 0.042% for gold nanoparticles and Cisplatin, respectively, for a dose of ∼ 10 cGy. Contrast-to-noise ratio (CNR) of XFCT images of the simulated acrylic phantoms was higher than that of transmission K-edge images for contrast concentrations below 0.4%.

  7. Diurnal Variation and Spatial Distribution Effects on Sulfur Speciation in Aerosol Samples as Assessed by X-Ray Absorption Near-Edge Structure (XANES)

    PubMed Central

    Pongpiachan, Siwatt; Thumanu, Kanjana; Na Pattalung, Warangkana; Hirunyatrakul, Phoosak; Kittikoon, Itthipon; Ho, Kin Fai; Cao, Junji

    2012-01-01

    This paper focuses on providing new results relating to the impacts of Diurnal variation, Vertical distribution, and Emission source on sulfur K-edge XANES spectrum of aerosol samples. All aerosol samples used in the diurnal variation experiment were preserved using anoxic preservation stainless cylinders (APSCs) and pressure-controlled glove boxes (PCGBs), which were specially designed to prevent oxidation of the sulfur states in PM10. Further investigation of sulfur K-edge XANES spectra revealed that PM10 samples were dominated by S(VI), even when preserved in anoxic conditions. The “Emission source effect” on the sulfur oxidation state of PM10 was examined by comparing sulfur K-edge XANES spectra collected from various emission sources in southern Thailand, while “Vertical distribution effects” on the sulfur oxidation state of PM10 were made with samples collected from three different altitudes from rooftops of the highest buildings in three major cities in Thailand. The analytical results have demonstrated that neither “Emission source” nor “Vertical distribution” appreciably contribute to the characteristic fingerprint of sulfur K-edge XANES spectrum in PM10. PMID:22988545

  8. Second Generation Gold Nanobeacons for Robust K-Edge Imaging with Multi-Energy CT

    PubMed Central

    Schirra, Carsten O.; Senpan, Angana; Roessl, Ewald; Thran, Axel; Stacy, Allen J.; Wu, Lina; Proska, Roland; Pan, Dipanjan

    2012-01-01

    Spectral CT is the newest advancement in CT imaging technology, which enhances traditional CT images with the capability to image and quantify certain elements based on their distinctive K-edge energies. K-edge imaging feature recognizes high accumulations of targeted elements and presents them as colorized voxels against the normal grayscale X-ray background offering promise to overcome the relatively low inherent contrast within soft tissue and distinguish the high attenuation of calcium from contrast enhanced targets. Towards this aim, second generation gold nanobeacons (GNB2), which incorporate at least five times more metal than the previous generation was developed. The particles were synthesized as lipid-encapsulated, vascularly constrained (>120 nm) nanoparticle incorporating tiny gold nanoparticles (2–4 nm) within a polysorbate core. The choice of core material dictated to achieve a higher metal loading. The particles were thoroughly characterized by physicochemical techniques. This study reports one of the earlier examples of spectral CT imaging with gold nanoparticles demonstrating the potential for targeted in vitro and in vivo imaging and eliminates calcium interference with CT. The use of statistical image reconstruction shows high SNR may allow dose reduction and/or faster scan times. PMID:23185109

  9. Iron in Silicate Glasses: Systematic Analysis of Pre-Edge And Xanes Features

    SciTech Connect

    Farges, F.; Rossano, S.; Wilke, M.; Lefrere, Y.; Brown, G.E., Jr.; /SLAC, SSRL

    2006-10-27

    A large number (67) of silicate glasses containing variable amounts of iron oxide were studied by high-resolution XANES spectroscopy at the Fe K-edge to determine an accurate method to derive redox information from pre-edge features. The glass compositions studied mimic geological magmas, ranging from basaltic to rhyolitic, dry and hydrous, with variable quench rates. The studied glasses also include more chemically simple calco-sodic silicate glass compositions. The Fe contents range from 30 wt.% to less than 2000 ppm. For most of the series of composition studied, the pre-edge information varies linearly with redox, even under high-resolution conditions. The average coordination of Fe(II) is often similar to its Fe(III) counterpart except in highly polymerized glasses because of the strong influence exerted by the tetrahedral framework on iron's sites. Natural volcanic glasses (from various volcanoes around the world) show similar variations. The average coordination of Fe(II) is often comprised between 4.5 and 5. Fe(III) shows larger variations in coordination (4 to 6, depending on composition). Bond valence models are proposed to predict the average coordination of Fe based on composition. Molecular dynamics simulations (Born-Mayer-Huggins) potentials were carried out on some compositions to estimate the magnitude of disorder effects (both static and thermal) in the XAFS analysis. XANES calculations based on the MD simulations and FEFF 8.2 show large variations in the local structures around Fe. Also, 5-coordinated Fe(III) is found to be an important moiety in ferrisilicate glasses. For Fe(II), discrepancies between glass and melt are larger and are related to its greater structural relaxation at T{sub g}. Also, a strong destructive interference between network formers and modifiers explain the relatively weak intensity of the next-nearest neighbors contributions in the experimental spectra.

  10. Strong excitonic interactions in the oxygen K-edge of perovskite oxides.

    PubMed

    Tomita, Kota; Miyata, Tomohiro; Olovsson, Weine; Mizoguchi, Teruyasu

    2016-04-13

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO3, SrTiO3, and BaTiO3, together with reference oxides, MgO, CaO, SrO, BaO, and TiO2, were investigated using a first-principles Bethe-Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti-O-Ti bonds.

  11. Phosphorus Speciation in Manure and Manure-Amended Soils Using XANES Spectroscopy

    SciTech Connect

    Sato,S.; Solomon, D.; Hyland, C.; Ketterings, Q.; Lehmann, J.

    2005-01-01

    Previous studies suggested an increase in the proportion of calcium phosphates (CaP) of the total phosphorus (P) pool in soils with a long-term poultry manure application history versus those with no or limited application histories. To understand and predict long-term P accumulation and release dynamics in these highly amended soils, it is important to understand what specific P species are being formed. We assessed forms of CaP formed in poultry manure and originally acidic soil in response to different lengths of mostly poultry manure applications using P K-edge X-ray absorption near-edge structure (XANES) spectroscopy. Phosphorus K-edge XANES spectra of poultry manure showed no evidences of crystalline P minerals but dominance of soluble CaP species and free and weakly bound phosphates (aqueous phosphate and phosphate adsorbed on soil minerals). Phosphate in an unamended neighboring forest soil (pH 4.3) was mainly associated with iron (Fe) compounds such as strengite and Fe-oxides. Soils with a short-term manure history contained both Fe-associated phosphates and soluble CaP species such as dibasic calcium phosphate (DCP) and amorphous calcium phosphate (ACP). Long-term manure application resulted in a dominance of CaP forms confirming our earlier results obtained with sequential extractions, and a transformation from soluble to more stable CaP species such as {beta}-tricalcium calcium phosphate (TCP). Even after long-term manure application (>25 yr and total P in soil up to 13 307 mg kg{sup -1}), however, none of the manure-amended soils showed the presence of crystalline CaP. With a reduction or elimination of poultry manure application to naturally acidic soils, the pH of the soil is likely to decrease, thereby increasing the solubility of Ca-bonded inorganic P minerals. Maintaining a high pH is therefore an important strategy to minimize P leaching in these soils.

  12. In situ S-K XANES study of polymer electrolyte fuel cells: changes in the chemical states of sulfonic groups depending on humidity.

    PubMed

    Isegawa, Kazuhisa; Nagami, Tetsuo; Jomori, Shinji; Yoshida, Masaaki; Kondoh, Hiroshi

    2016-09-14

    Changes in the chemical states of sulfonic groups of Nafion in polymer electrolyte fuel cells (PEFCs) under gas-flowing conditions were studied using in situ S-K XANES spectroscopy. The applied potential to the electrodes and the humidity of the cell were changed under flowing H2 gas in the anode and He gas in the cathode. While the potential shows no significant effect on the S-K XANES spectra, the humidity is found to induce reversible changes in the spectra. Comparison of the spectral changes with simulations based on the density functional theory calculations indicates that the humidity influences the chemical state of the sulfonic group; under wet conditions the sulfonic group is in the form of a sulfonate ion. By drying treatment the sulfonate ion binds to hydrogen and becomes sulfonic acid. Furthermore, a small fraction of the sulfonic acid irreversibly decomposes to atomic sulfur. The peak energy of the atomic sulfur suggests that the generated atomic sulfur is adsorbed on the Pt catalyst surfaces.

  13. Polarized experimental and theoretical K-edge x-ray absorption studies of SO/sub 4//sup 2-/, ClO/sub 3//sup -/, S/sub 2/O/sub 3//sup 2-/, and S/sub 2/O/sub 6//sup 2-/

    SciTech Connect

    Tyson, T.A.; Roe, A.L.; Frank, P.; Hodgson, K.O.; Hedman, B.

    1989-04-01

    The first studies of the polarized sulfur and chlorine x-ray K-edge absorption spectra of the oxyanions SO/sub 4//sup 2-/ (sulfate), ClO/sub 3//sup -/ (chlorate), S/sub 2/O/sub 3//sup 2-/ (thiosulfate), and S/sub 2/O/sub 6//sup 2-/ (dithionate) are presented. To provide a basis for the interpretation of the experimental measurements, extended continuum multiple-scattering X..cap alpha.. computations were carried out. This approach enabled us to identify features in the absorption spectra both by symmetry and final-state type (final bound states or final continuum states). For the thiosulfate anion (which has two nonequivalent sulfur atoms) it proved possible to determine which sulfur atom is responsible for each of a series of well-resolved features in the polarized spectra. In addition, generalizing from the case of the chlorate anion, molecules in which the absorbing atom is not completely surrounded by ligands (''open clusters'') may have important contributions from the second shell of neighbors manifested as features in the continuum region of the spectrum.

  14. XANES evidence for sulphur speciation in Mn-, Ni- and W-bearing silicate melts

    NASA Astrophysics Data System (ADS)

    Evans, K. A.; O'Neill, H. St. C.; Mavrogenes, J. A.; Keller, N. S.; Jang, L.-Y.; Lee, J.-F.

    2009-11-01

    S K-edge XANES and Mn-, W- and Ni-XANES and EXAFS spectra of silicate glasses synthesised at 1400 °C and 1 bar with compositions in the CaO-MgO-Al 2O 3-SiO 2-S plus MnO, NiO, or WO 3 systems were used to investigate sulphur speciation in silicate glasses. S K-edge spectra comprised a composite peak with an edge between 2470 and 2471.4 eV, which was attributed to S 2-, and a peak of variable height with an edge at 2480.2-2480.8 eV, which is consistent with the presence of S 6+. The latter peak was attributed to sample oxidation during sample storage. W-rich samples produced an additional lower energy peak at 2469.8 eV that is tentatively attributed to the existence of S 3p orbitals hybridised with the W 5d states. Deconvolution of the composite peak reveals that the composite peak for Mn-bearing samples fits well to a model that combines three Lorentzians at 2473.1, 2474.9 and 2476.2 eV with an arctan edge step. The composite peak for W-bearing samples fits well to the same combination plus an additional Lorentzian at 2469.8 eV. The ratio of the proportions of the signal accounted for by peaks at 2473.1 and 2476.2 eV correlates with Mn:Ca molar ratios, but not with W:Ca ratios. Spectra from Ni-bearing samples were qualitatively similar but S levels were too low to allow robust quantification of peak components. Some part of the signal accounted for by the 2473.1 eV peak was therefore taken to record the formation of Mn-S melt species, while the 2469.8 peak is interpreted to record the formation of W-S melt species. The 2474.9 and 2476.2 eV peaks were taken to be dominated by Ca-S and Mg-S interactions. However, a 1:1 relationship between peak components and specific energy transitions is not proposed. This interpretation is consistent with known features of the lower parts of the conduction band in monosulphide minerals and indicates a similarity between sulphur species in the melts and the monosulphides. S-XANES spectra cannot be reproduced by a combination of the

  15. Polarized XANES and EXAFS spectroscopic investigation into copper(II) complexes on vermiculite

    NASA Astrophysics Data System (ADS)

    Furnare, Luca J.; Vailionis, Arturas; Strawn, Daniel G.

    2005-11-01

    Interaction of heavy metals with clay minerals can dominate solid-solution reactions in soil, controlling the fate of the metals in the environment. In this study we used powdered and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES) to investigate Cu sorbed on Llano vermiculite and compare the results to reported Cu sorption mechanism on Wyoming (WY) smectite and reduced South African (SA) vermiculite. Analysis of the Cu K-edge spectra revealed that Cu sorbed on Llano vermiculite at high ionic strength ( I) has the greatest degree of covalent bond character, followed by Cu sorbed on montmorillonite at high I, and Cu sorbed on reduced SA vermiculite at high I. Cu sorbed on clay minerals at low I has the least covalent character. EXAFS data from Cu sorbed Ca- and K-equilibrated Llano vermiculites showed the presence of a second-shell Al, Si, or Mg backscatterer at 3.02 Å. This distance is consistent with Cu sorbing via a corner-sharing monodentate or bidentate bond. Polarized XANES and EXAFS results revealed that the angle between the Cu atom and the mineral sorption sites is 68° with respect to the [001] direction. From the bond angle and the persistence of the second-shell backscatterer when the interlayer is collapsed (K-equilibration), we conclude that Cu adsorption on the Llano vermiculite is not occurring in the interlayer but rather Cu is adsorbing onto the edges of the vermiculite. Results from this research provide evidence that Cu forms inner-sphere and outer-sphere complexes on clay minerals, and does not form the vast multinuclear surface precipitates that have been observed for Co, Zn, and Ni.

  16. Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina cordgrass.

    PubMed

    Patty, Cynthia; Barnett, Brandy; Mooney, Bridget; Kahn, Amanda; Levy, Silvio; Liu, Yijin; Pianetta, Piero; Andrews, Joy C

    2009-10-01

    San Francisco Bay has been contaminated historically by mercury from mine tailings as well as contemporary industrial sources. Native Spartina foliosa and non-native S. alterniflora-hybrid cordgrasses are dominant florae within the SF Bay estuary environment. Understanding mercury uptake and transformations in these plants will help to characterize the significance of their roles in mercury biogeochemical cycling in the estuarine environment. Methylated mercury can be biomagnified up the food web, resulting in levels in sport fish up to 1 million times greater than in surrounding waters and resulting in advisories to limit fish intake. Understanding the uptake and methylation of mercury in the plant rhizosphere can yield insight into ways to manage mercury contamination. The transmission X-ray microscope on beamline 6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) was used to obtain absorption contrast images and 3D tomography of Spartina foliosa roots that were exposed to 1 ppm Hg (as HgCl2) hydroponically for 1 week. Absorption contrast images of micrometer-sized roots from S. foliosa revealed dark particles, and dark channels within the root, due to Hg absorption. 3D tomography showed that the particles are on the root surface, and slices from the tomographic reconstruction revealed that the particles are hollow, consistent with microorganisms with a thin layer of Hg on the surface. Hg L3 XANES of ground-up plant roots and Hg L3 micro-XANES from microprobe analysis of micrometer-sized roots (60-120 microm in size) revealed three main types of speciation in both Spartina species: Hg-S ligation in a form similar to Hg(II) cysteine, Hg-S bonding as in cinnabar and metacinnabar, and methylmercury-carboxyl bonding in a form similar to methylmercury acetate. These results are interpreted within the context of obtaining a "snapshot" of mercury methylation in progress.

  17. Using X-ray Microscopy and Hg L3 XANES to study Hg Binding in the Rhizosphere of Spartina Cordgrass

    PubMed Central

    Patty, Cynthia; Barnett, Brandy; Mooney, Bridget; Kahn, Amanda; Levy, Silvio; Liu, Yijin; Pianetta, Piero; Andrews, Joy C

    2009-01-01

    San Francisco Bay has been contaminated historically by mercury from mine tailings as well as contemporary industrial sources. Native Spartina foliosa and non-native S. alterniflora-hybrid cordgrasses are dominant florae within the SF Bay estuary environment. Understanding mercury uptake and transformations in these plants will help to characterize the significance of their roles in mercury biogeochemical cycling in the estuarine environment. Methylated mercury can be biomagnified up the food web, resulting in levels in sport fish up to one million times greater than in surrounding waters and resulting in advisories to limit fish intake. Understanding the uptake and methylation of mercury in the plant rhizosphere can yield insight into ways to manage mercury contamination. The transmission x-ray microscope on beamline 6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) was used to obtain absorption contrast images and 3D tomography of Spartina foliosa roots that were exposed to 1 ppm Hg (as HgCl2) hydroponically for one week. Absorption contrast images of micron-sized roots from S. foliosa revealed dark particles, and dark channels within the root, due to Hg absorption. 3D tomography showed that the particles are on the root surface, and slices from the tomographic reconstruction revealed that the particles are hollow, consistent with microorganisms with a thin layer of Hg on the surface. Hg L3 XANES of ground-up plant roots and Hg L3 micro-XANES from microprobe analysis of micron-sized roots (60–120 microns in size) revealed three main types of speciation in both Spartina species: Hg-S ligation in a form similar to Hg(II) cysteine, Hg-S bonding as in cinnabar and metacinnabar, and methylmercury-carboxyl bonding in a form similar to methylmercury acetate. These results are interpreted within the context of obtaining a “snapshot” of mercury methylation in progress. PMID:19848152

  18. A balanced filterless K-edge energy window multilayer detector for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Allec, Nicholas; Karim, Karim S.

    2010-04-01

    Ross (or balanced) filter-based systems have been studied extensively in the past, however they have only recently been studied for medical applications such as computed tomography and contrast-enhanced mammography. Balanced filters are filters composed of different materials which have thicknesses designed to match the attenuation for all radiation energies except those within a certain energy window (between the K-edges of the filter materials). Images obtained using different filters to attenuate the incident x-rays can be subtracted to obtain an image which contains information solely within the energy window. The disadvantage of this image acquisition method is the requirement of a separate exposure for each filter. This can lead to motion artifacts in the resulting image for example due to cardiac, respiratory, or patient movement. In this paper we investigate a filterless, multilayer detector design using the general concept of balanced filters. In the proposed detector, energy discrimination is achieved using stacked layers of different conversion materials. Similar to how the thicknesses of balanced filters are chosen, the thicknesses of the conversion layers are designed to match the attenuation of x-rays except between the K-edges of the conversion materials. Motion artifacts are suppressed in the final image due to the simultaneous acquisition of images on all layers during a single exposure. The proposed multilayer design can be used for a number of applications depending on the energy range of interest. To study the proposed design, we consider dual energy computed tomography (CT) using a gadolinium-based contrast agent.

  19. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  20. Beyond carbon K-edge harmonic emission using a spatial and temporal synthesized laser field.

    PubMed

    Pérez-Hernández, J A; Ciappina, M F; Lewenstein, M; Roso, L; Zaïr, A

    2013-02-01

    We present numerical simulations of high-order harmonic generation in helium using a temporally synthesized and spatially nonhomogeneous strong laser field. The combination of temporal and spatial laser field synthesis results in a dramatic cutoff extension far beyond the usual semiclassical limit. Our predictions are based on the convergence of three complementary approaches: resolution of the three dimensional time dependent Schrödinger equation, time-frequency analysis of the resulting dipole moment, and classical trajectory extraction. A laser field synthesized both spatially and temporally has been proven capable of generating coherent extreme ultraviolet photons beyond the carbon K edge, an energy region of high interest as it can be used to initiate inner-shell dynamics and study time-resolved intramolecular attosecond spectroscopy.

  1. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy.

    PubMed

    Silatani, Mahsa; Lima, Frederico A; Penfold, Thomas J; Rittmann, Jochen; Reinhard, Marco E; Rittmann-Frank, Hannelore M; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J; Chergui, Majed

    2015-10-20

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein's function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼ 200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump-probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center.

  2. Small copper clusters studied by x-ray absorption near-edge structure

    NASA Astrophysics Data System (ADS)

    Oyanagi, H.; Sun, Z. H.; Jiang, Y.; Uehara, M.; Nakamura, H.; Yamashita, K.; Orimoto, Y.; Zhang, L.; Lee, C.; Fukano, A.; Maeda, H.

    2012-04-01

    The local structure of copper nanoparticles grown in organic solution by reducing Cu(II) hexafluoroacetylacetonate [Cu(hfac)2] was studied as-grown by the Cu K-edge x-ray absorption near-edge structure (XANES). Comparison of the experimental XANES spectra with reference materials indicated small copper clusters are formed by ligand-exchange with oleylamine and subsequent reducing by diphenylsilane. The multiple-scattering (MS) calculation for various model clusters consisting of 13-135 atoms suggests that small (13-19 atom) Cu clusters are stabilized without a large deformation.

  3. Killing of Bacillus Megaterium Spores by X-Rays at the Phosphorus K-Edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10 photons/sec/mm . The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  4. Killing of Bacillus Megaterium Spores by X-rays at the Phosphorus K-edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10(exp 18) photons/sec/sq mm. The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140 eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  5. Comparison of quantitative k-edge empirical estimators using an energy-resolved photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zimmerman, Kevin C.; Gilat Schmidt, Taly

    2016-03-01

    Using an energy-resolving photon counting detector, the amount of k-edge material in the x-ray path can be estimated using a process known as material decomposition. However, non-ideal effects within the detector make it difficult to accurately perform this decomposition. This work evaluated the k-edge material decomposition accuracy of two empirical estimators. A neural network estimator and a linearized maximum likelihood estimator with error look-up tables (A-table method) were evaluated through simulations and experiments. Each estimator was trained on system-specific calibration data rather than specific modeling of non-ideal detector effects or the x-ray source spectrum. Projections through a step-wedge calibration phantom consisting of different path lengths through PMMA, aluminum, and a k-edge material was used to train the estimators. The estimators were tested by decomposing data acquired through different path lengths of the basis materials. The estimators had similar performance in the chest phantom simulations with gadolinium. They estimated four of the five densities of gadolinium with less than 2mg/mL bias. The neural networks estimates demonstrated lower bias but higher variance than the A-table estimates in the iodine contrast agent simulations. The neural networks had an experimental variance lower than the CRLB indicating it is a biased estimator. In the experimental study, the k-edge material contribution was estimated with less than 14% bias for the neural network estimator and less than 41% bias for the A-table method.

  6. Progressive Oxidation of Pyrite in Five Bituminous Coal Samples: An As XANES and 57Fe Mossbauer Spectroscopic Study

    SciTech Connect

    Kolker,A.; Huggins, F.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O{sub 2} atmosphere; (3) room atmosphere (relative humidity {approx}20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and {sup 57}Fe Mossbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. {sup 57}Fe Mossbauer spectroscopy also shows a much greater proportion of Fe{sup 3+} forms (jarosite, Fe{sup 3+} sulfate, FeOOH) for samples stored under wet conditions, but much less

  7. Progressive oxidation of pyrite in five bituminous coal samples: An As XANES and 57Fe Mössbauer spectroscopic study

    USGS Publications Warehouse

    Kolker, Allan; Huggins, Frank E.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less

  8. Interpretation of O K-edge EELS in zircon using a structural variation approach

    SciTech Connect

    Spence, John C.H; Jiang, Nan

    2009-12-01

    This work describes an approach to interpret the near-edge fine structure of electron energy-loss spectroscopy (EELS) of O K-edge in zircon using a structural variation method. The positions and intensities of several peaks in the O K-edge EELS spectrum are assigned to specific structural parameters. It suggests that the near-edge structures in EELS can be used to measure atomic structure changes.

  9. Interpretation of O K-edge EELS in zircon using a structural variation approach.

    PubMed

    Jiang, Nan; Spence, John C H

    2009-12-01

    This work describes an approach to interpret the near-edge fine structure of electron energy-loss spectroscopy (EELS) of O K-edge in zircon using a structural variation method. The positions and intensities of several peaks in the O K-edge EELS spectrum are assigned to specific structural parameters. It suggests that the near-edge structures in EELS can be used to measure atomic structure changes.

  10. Simultaneous x-ray fluorescence and K-edge CT imaging with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Chen, Zhiqiang

    2016-10-01

    Rapid development of the X-ray phonon-counting detection technology brings tremendous research and application opportunities. In addition to improvements in conventional X-ray imaging performance such as radiation dose utilization and beam hardening correction, photon-counting detectors allows significantly more efficient X-ray fluorescence (XRF) and K-edge imaging, and promises a great potential of X-ray functional, cellular and molecular imaging. XRF is the characteristic emission of secondary X-ray photons from a material excited by initial X-rays. The phenomenon is widely used for chemical and elemental analysis. K-edge imaging identifies a material based on its chemically-specific absorption discontinuity over X-ray photon energy. In this paper, we try to combine XRF and K-edge signals from the contrast agents (e.g., iodine, gadolinium, gold nanoparticles) to simultaneously realize XFCT and K-edge CT imaging for superior image performance. As a prerequisite for this dual-modality imaging, the accurate energy calibration of multi-energy-bin photon-counting detectors is critically important. With the measured XRF data of different materials, we characterize the energy response function of a CZT detector for energy calibration and spectrum reconstruction, which can effectively improve the energy resolution and decrease the inconsistence of the photon counting detectors. Then, a simultaneous K-edge and X-ray fluorescence CT imaging (SKYFI) experimental setup is designed which includes a cone-beam X-ray tube, two separate photon counting detector arrays, a pin-hole collimator and a rotation stage. With a phantom containing gold nanoparticles the two types of XFCT and K-edge CT datasets are collected simultaneously. Then, XFCT and K-edge CT images are synergistically reconstructed in a same framework. Simulation results are presented and quantitative analyzed and compared with the separate XFCT and K-edge CT results.

  11. Field demonstration of a portable, X-ray, K-edge heavy-metal detector

    SciTech Connect

    Jensen, T.; Aljundi, T.; Whitmore, C.; Zhong, H.; Gray, J.N.

    1997-03-31

    Under the Characterization, Monitoring, and Sensor Technology Crosscutting Program, the authors have designed and built a K-edge heavy metal detector that measures the level of heavy metal contamination inside closed containers in a nondestructive, non-invasive way. The device employs a volumetric technique that takes advantage of the X-ray absorption characteristics of heavy elements, and is most suitable for characterization of contamination inside pipes, processing equipment, closed containers, and soil samples. The K-edge detector is a fast, efficient, and cost-effective in situ characterization tool. More importantly, this device will enhance personnel safety while characterizing radioactive and toxic waste. The prototype K-edge system was operated at the Materials and Chemistry Laboratory User Facility at the Oak Ridge K-25 Site during February 1997. Uranium contaminated pipes and valves from a UF{sub 6} feed facility were inspected using the K-edge technique as well as a baseline nondestructive assay method. Operation of the K-edge detector was demonstrated for uranium contamination ranging from 10 to 6,000 mg/cm{sup 2} and results from the K-edge measurements were found to agree very well with nondestructive assay measurements.

  12. Calculation and Interpretation of XANES

    NASA Astrophysics Data System (ADS)

    Ravel, B.; Rehr, J. J.

    1997-03-01

    A real space multiple-scattering (MS) approach for ab initio calculations and for the interpretation of x-ray absorption near edge structure (XANES) is presented. The method is based on full-MS calculations of the electron density matrix ρ(E). Our approach uses the exact Rehr-Albers [Phys. Rev. B, 41, 8139, (1990)] separable representation of the free propagator G together with atomic scattering t-matrices from uc(FEFF7) [Phys. Rev. B52, 2995 (1995)]. This method yields a parallel treatment both of XANES and local electronic structure, including local densities of states (LDOS) and charge transfer. With this method XANES for large clusters can be calculated efficiently. A scattering theoretic interpretation is presented using the separation of both XANES and LDOS into central site and scattering parts, i.e., μ(E)=μ_c(E)[1+\\chi(E)] and ρ(E)=ρ_c(E)[1+\\chi(E)], where \\chi(E) is the XAFS function and both μc and ρc are smooth backgrounds. Charge transfer is interpreted in terms of the scattering part \\chi, and hence is related to features in XANES. Calculations for several materials are presented and compared with LMTO band-structure calculations and with experiment.

  13. Ce K edge XAS of ceria-based redox materials under realistic conditions for the two-step solar thermochemical dissociation of water and/or CO2.

    PubMed

    Rothensteiner, Matthäus; Sala, Simone; Bonk, Alexander; Vogt, Ulrich; Emerich, Hermann; van Bokhoven, Jeroen A

    2015-10-28

    X-ray absorption spectroscopy was used to characterise ceria-based materials under realistic conditions present in a reactor for solar thermochemical two-step water and carbon dioxide splitting. A setup suitable for in situ measurements in transmission mode at the cerium K edge from room temperature up to 1773 K is presented. Time-resolved X-ray absorption near-edge structure (XANES) data, collected for a 10 mol% hafnium-doped ceria sample (Ce0.9Hf0.1O2-δ) during reduction at 1773 K in a flow of inert gas and during re-oxidation by CO2 at 1073 K, enables the quantitative determination of the non-stoichiometry δ of the fluorite-type structure. XANES analysis suggests the formation of the hexagonal Ce2O3 phase upon reduction in 2% hydrogen/helium at 1773 K. We discuss the experimental limitations and possibilities of high-temperature in situ XAS at edges of lower energy as well as the importance of the technique for understanding and improving the properties of ceria-based oxygen storage materials for thermochemical solar energy conversion.

  14. Absolute determination of charge-coupled device quantum detection efficiency using Si K-edge x-ray absorption fine structure

    SciTech Connect

    Dunn, J; Steel, A B

    2012-05-06

    We report a method to determine the quantum detection efficiency and the absorbing layers on a front-illuminated charge-coupled device (CCD). The CCD under study, as part of a crystal spectrometer, measures intense continuum x-ray emission from a picosecond laser-produced plasma and spectrally resolves the Si K-edge x-ray absorption fine structure features due to the electrode gate structure of the device. The CCD response across the Si K-edge shows a large discontinuity as well as a number of oscillations that are identified individually and uniquely from Si, SiO{sub 2}, and Si{sub 3}N{sub 4} layers. From the spectral analysis of the structure and K-edge discontinuity, the active layer thickness and the different absorbing layers thickness can be determined precisely. A precise CCD detection model from 0.2-10 keV can be deduced from this highly sensitive technique.

  15. Linear combination of XANES for quantitative analysis of Ti-Si binary oxides.

    PubMed

    Lee, J S; Kim, W B; Choi, S H

    2001-03-01

    A new method is demonstrated for the quantification of Ti-O-Si and Ti-O-Ti bonds in Ti-Si binary oxides. It is based on the linear combination of two reference X-ray absorption near-edge structure (XANES) spectra at the Ti K edge. The proper selection of a Ti-O-Si reference material is most important for the successful application of this method. Three Ti-Si binary oxide systems have been analysed by the new method: Ti-Si mixed oxides, titania supported on silica and Ti-substituted MCM-41 (crystalline mesoporous molecular sieve material invented by Mobil) with various Ti contents.

  16. Oxidation of shallow conduit magma: Insight from μ-XANES analysis on volcanic ash particle

    NASA Astrophysics Data System (ADS)

    Miwa, T.; Ishibashi, H.; Iguchi, M.

    2014-12-01

    Redox state of magma is important to understand dynamics of volcanic eruptions because magma properties such as composition of degassed volatiles, stability field of minerals, and rheology of magma depend on redox state. To evaluate redox state of magma, Fe3+/ΣFe ratio [= Fe3+/( Fe3++ Fe2+)] of volcanic glass has been measured non-destructively by Fe-K edge μ-XANES (micro X-ray Absorption Near Edge Structure) spectroscopy (e.g., Cottrell and Kelly, 2011). We performed textural, compositional, and Fe-K edge μ-XANES analyses on volcanic ash to infer oxidation process of magma at shallow conduit during eruption at Bromo Volcano, Indonesia. The volcanic ash particles were collected in 24th March 2011 by real-time sampling from ongoing activity. The activity was characterized by strombolian eruption showing magma head ascended to near the ground surface. The ash sample contains two type of volcanic glasses named as Brown and Black glasses (BrG and BlG), based on their color. Textual analysis shows microlite crystallinities are same in the two type of glasses, ranging from 0 to 3 vol.%. EPMA analyses show that all of the glasses have almost identical andesitic composition with SiO2 = 60 wt.%. In contrast, Fe-K edge μ-XANES spectra with the analytical method by Ishibashi et al. (in prep) demonstrate that BrG (Fe3+/ΣFe = 0.20-0.26) is more oxidized than BlG (Fe3+/ΣFe = 0.32-0.60). From combination of the glass composition, the measured Fe3+/ΣFe ratio and 1060 degree C of temperature (Kress and Carmichael, 1991), the oxygen fugacities are estimated to be NNO and NNO+4 for BrG and BlG, respectively. The volcanic glasses preserve syn-eruptive physicochemical conditions by rapid quenching due to their small size ranging from 125 to 250 μm. Our results demonstrate that BrG and BlG magmas are textually and chemically identical but their redox conditions are different at the eruption. The oxidation of magma can be caused by following two processes; 1) diffusive transport

  17. Exact Multiple Scattering XANES Calculations

    NASA Astrophysics Data System (ADS)

    Ravel, B.; Rehr, J. J.

    1996-03-01

    Ab initio calculations of X-ray absorption near-edge structure (XANES), are made by inverting the full multiple-scattering (MS) matrix G=(1-G_0t)-1G_0. Our approach uses the fast, quickly convergent Rehr-Albers(J.J. Rehr and R.C. Albers, Phys. Rev. B, 41), 8139, (1990) separable representation of the free electron propagator G0 together with atomic scattering t-matrices from the FEFF6 code,(S. I. Zabinsky, et al., Phys. Rev. B52), 2995 (1995). which are calculated within the muffin-tin approximation with overlapped atom potentials. With this technique XANES spectra and its polarization dependence can be calculated in reasonable cpu time on large clusters. Good agreement with the XANES spectra of several sample compounds is obtained. This strategy is also used to determine the local densities of states ρ(E, r ) from the full MS matrix. From ρ(E, r ) we calculate the Fermi energies and estimate charge transfer for our sample clusters. The prospect of quantitative analysis of XANES spectra and its preedge features is discussed.

  18. XANES, EXAFS and photoluminescence investigations on the amorphous Eu:HfO2

    NASA Astrophysics Data System (ADS)

    Sharma, Aditya; Varshney, Mayora; Shin, Hyun-Joon; Chae, KeunHwa; Won, Sung Ok

    2017-02-01

    We report detailed investigations on the local electronic/atomic structure and photoluminescence properties of chemically synthesized Eu:HfO2 powders. X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and photoluminescence (PL) measurements were performed to analyze the crystal structure, local atomic/electronic structure and luminescence properties of the samples. No crystalline phases were detected with Cu Kα (λ = 1.5418 Å) based XRD; however, local monoclinic structure was confirmed by the Hf L-edge XANES and EXAFS. O K-edge XANES spectral features could be deconvoluted with doublets and triplets in eg and t2g orbitals, respectively, which ascribed to the local monoclinic structure for all of the samples. Eu M5,4-edge XANES confirmed the pre-dominancy of Eu3 + ions in the HfO2 samples with a fractional amount of Eu2 + ions. PL spectra revealed the electric dipole allowed (5D0-7F0,2,4) emission properties of Eu:HfO2 samples. The orange-red emission is ascribed to the Eu interstitial/surface segregation induced defects.

  19. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    SciTech Connect

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.; Smith, Steven C.; McNamara, Bruce K.; Buck, Edgar C.; Eiden, Gregory C.; Duffin, Andrew M.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS to study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.

  20. Absorption and scattering by interstellar dust in the silicon K-edge of GX 5-1

    NASA Astrophysics Data System (ADS)

    Zeegers, S. T.; Costantini, E.; de Vries, C. P.; Tielens, A. G. G. M.; Chihara, H.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.; Zeidler, S.

    2017-03-01

    Context. We study the absorption and scattering of X-ray radiation by interstellar dust particles, which allows us to access the physical and chemical properties of dust. The interstellar dust composition is not well understood, especially on the densest sight lines of the Galactic plane. X-rays provide a powerful tool in this study. Aims: We present newly acquired laboratory measurements of silicate compounds taken at the Soleil synchrotron facility in Paris using the Lucia beamline. The dust absorption profiles resulting from this campaign were used in this pilot study to model the absorption by interstellar dust along the line of sight of the low-mass X-ray binary GX 5-1. Methods: The measured laboratory cross-sections were adapted for astrophysical data analysis and the resulting extinction profiles of the Si K-edge were implemented in the SPEX spectral fitting program. We derive the properties of the interstellar dust along the line of sight by fitting the Si K-edge seen in absorption in the spectrum of GX 5-1. Results: We measured the hydrogen column density towards GX 5-1 to be 3.40 ± 0.1 × 1022 cm-2. The best fit of the silicon edge in the spectrum of GX 5-1 is obtained by a mixture of olivine and pyroxene. In this study, our modeling is limited to Si absorption by silicates with different Mg:Fe ratios. We obtained an abundance of silicon in dust of 4.0 ± 0.3 × 10-5 per H atom and a lower limit for total abundance, considering both gas and dust of >4.4 × 10-5 per H atom, which leads to a gas to dust ratio of >0.22. Furthermore, an enhanced scattering feature in the Si K-edge may suggest the presence of large particles along the line of sight.

  1. Inelastic scattering at the B K edge of hexagonal BN

    SciTech Connect

    Jia, J.J.; Callcott, T.A.; Zhou, L.

    1997-04-01

    Many recent soft x-ray fluorescence (SXF) studies have shown that inelastic scattering processes make important contributions to the observed spectra for excitation near the x-ray threshold. These effects are all attributed to a process, usually called an electronic Raman scattering (ERS) process, in which energy is lost to an electronic excitation. The theory has been described using second order perturbation theory by Tulkki and Aberg. In different materials, the detailed nature of the electronic excitation producing the energy loss may be very different. In crystalline Si, diamond and graphite, changes in spectral shape and dispersion of spectral features with variation of the excitation energy are observed, which are attributed to k conservation between the photoelectron generated in the excitation process and the valence hole remaining after the coupled emission process. Hence the process is strongly localized in k-space. In haxagonal boron nitride, which has a lattice and band structure very similar to graphite, inelastic scattering produces very different effects on the observed spectra. Here, the inelastic losses are coupled to a strong resonant elastic scattering process, in which the intermediate state is a localized core exciton and the final state is a localized valence exciton, so that the electronic excitation is strongly localized in real rather than reciprocal space.

  2. Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, XANES/DRIFTS study

    SciTech Connect

    Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF; Gao, Feng; Hanson, Jonathan C.; Szanyi, Janos

    2014-05-05

    Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes in the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here was

  3. Study of XANES near Ta-L edges in LiTaO3 through thermal wave, fluorescence and first principles

    NASA Astrophysics Data System (ADS)

    Kane, S. R.; Kumar, Shailendra; Ghosh, Haranath; Singh, Ajit Kumar; Tiwari, M. K.

    2016-01-01

    X-ray absorption near-edge spectra (XANES) of Ta-L2 and L3 edges in LiTaO3 (LTO) crystals are measured by measuring amplitude and phase of thermal waves generated within the LTO crystal, using pyroelectric property of LTO. Thus, LTO crystal is used both as a sample as well as sensor material. XANES of Ta-L edges in LTO are also measured by fluorescence. XANES spectra from fluorescence and first-principles simulations agree excellently well. The onset of the pre-edge region of XANES, measured by both techniques, extends below the edge by about 50 eV. This pre-edge onset of absorption is explained in terms of the core-hole lifetime effect on near-edge absorption using density functional theory. However, detailed nature of XANES peaks near Ta-L3 and Ta-L2 absorption edges, measured by thermal waves and fluorescence, differ. Possible origins of these differences are discussed.

  4. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    SciTech Connect

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  5. Electronic structure of Al-doped ZnO transparent conductive thin films studied by x-ray absorption and emission spectroscopies

    SciTech Connect

    Huang, W. H.; Sun, S. J.; Chiou, J. W.; Chou, H.; Chan, T. S.; Lin, H.-J.; Kumar, Krishna; Guo, J.-H.

    2011-11-15

    This study used O K-, Zn L{sub 3}-, Zn K-, and Al K-edges x-ray absorption near-edge structure (XANES) and O K-edge x-ray emission spectroscopy (XES) measurements to investigate the electronic structure of transparent Al-doped ZnO (AZO) thin film conductors. The samples were prepared on glass substrates at a low temperature near 77 K by using a standard RF sputtering method. High-purity Ne (5N) was used as the sputtering gas. The crystallography of AZO thin films gradually transformed from the ZnO wurtize structure to an amorphous structure during sample deposition, which suggests the suitability to grow on flexible substrates, eliminating the severe degradation due to fragmentation by repeated bending. The O K- and Zn L{sub 3}-edges XANES spectra of AZO thin films revealed a decrease in the number of both O 2p and Zn 3d unoccupied states when the pressure of Ne was increased from 5 to 100 mTorr. In contrast, Al K-edges XANES spectra showed that the number of unoccupied states of Al 3p increased in conjunction with the pressure of Ne, indicating an electron transfer from Al to O atoms, and suggesting that Al doping increases the negative effective charge of oxygen ions. XES and XANES spectra of O 2p states at the O K-edge also revealed that Al doping not only raised the conduction-band-minimum, but also increased the valence-band-maximum and the band-gap. The results indicate that the reduction in conductivity of AZO thin films is due to the generation of ionic characters, the increase in band-gap, and the decrease in density of unoccupied states of oxygen.

  6. Structural investigation of high-valent manganese-salen complexes by UV/Vis, Raman, XANES, and EXAFS spectroscopy.

    PubMed

    Feth, Martin P; Bolm, Carsten; Hildebrand, Jens P; Köhler, Manuela; Beckmann, Oliver; Bauer, Matthias; Ramamonjisoa, Rivo; Bertagnolli, Helmut

    2003-03-17

    XANES and EXAFS spectroscopic studies at the Mn-K- and Br-K-edge of reaction products of (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride ([(salen)Mn(III)Cl], 1) and (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) bromide ([(salen)Mn(III)Br], 2) with 4-phenylpyridine N-oxide (4-PPNO) and 3-chloroperoxybenzoic acid (MCPBA) are reported. The reaction of the Mn(III) complexes with two equivalents of 4-PPNO leads to a hexacoordinated compound, in which the manganese atom is octahedrally coordinated by four oxygen/nitrogen atoms of the salen ligand at an average distance of approximately 1.90 A and two additional, axially bonded oxygen atoms of the 4-PPNO at 2.25 A. The oxidation state of this complex was determined as approximately +IV by a comparative study of Mn(III) and Mn(V) reference compounds. The green intermediate obtained in reactions of MCPBA and solutions of 1 or 2 in acetonitrile was investigated with XANES, EXAFS, UV/Vis, and Raman spectroscopy, and an increase of the coordination number of the manganese atoms from 4 to 5 and the complete abstraction of the halide was observed. A formal oxidation state of IV was deduced from the relative position of the pre-edge 1s-->3d feature of the X-ray absorption spectrum of the complex. The broad UV/Vis band of this complex in acetonitrile with lambda(max)=648 nm was consistent with a radical cation structure, in which a MCPBA molecule was bound to the Mn(IV) central atom. An oxomanganese(V) or a dimeric manganese(IV) species was not detected.

  7. K-edge subtraction angiography with synchrotron x-rays: Final technical report, (February 1, 1984 to January 31, 1987)

    SciTech Connect

    Hofstadter, R

    1987-09-01

    The aim was the development of an angiographic method and appropriate equipment for imaging with x-rays the coronary arteries in a non-invasive manner. Successive steps involved studies with phantoms, live animals and finally with human subjects. Clinical evaluation of human coronary arteries remains a goal of this and a continuing project, and steps along the way to such an achievement are in process. Transvenous injection of a dye using the method of iodine dichromography near 33.2 keV, the K-edge of iodine, forms the basis of the method. 11 refs.

  8. K-edge Subtraction Angiography with Synchrotron X-Rays: Final Technical Report, (February 1, 1984 to January 31, 1987)

    DOE R&D Accomplishments Database

    Hofstadter, R.

    1987-09-01

    The aim was the development of an angiographic method and appropriate equipment for imaging with x-rays the coronary arteries in a non-invasive manner. Successive steps involved studies with phantoms, live animals and finally with human subjects. Clinical evaluation of human coronary arteries remains a goal of this and a continuing project, and steps along the way to such an achievement are in process. Transvenous injection of a dye using the method of iodine dichromography near 33.2 keV, the K-edge of iodine, forms the basis of the method

  9. Photoabsorption spectra of potassium and rubidium near the K-edge

    SciTech Connect

    Azuma, Y.; Berry, H.G.; Cowan, P.L.

    1995-08-01

    We have used a high-temperature circulating heat-pipe absorption cell together with monochromatized X-ray beams at the X24A and X23A2 beam lines at the NSLS to obtain photoabsorption spectra of potassium and rubidium at their K- and KM-edges. The photon-energy ranges lay near 3600 eV and 15200 eV, respectively. We have also obtained first measurements of the LII and LIII edges in cesium. Although the K-edge photoabsorptions of the rare gases have been studied, there is little previous work on other atomic vapors. Most of the edges and resonance peaks that we observed have now been identified using Dirac Hartree-Fock calculations. As a check, we have compared these results with those obtained previously in closed-shell rare-gas absorption spectra. The absolute energies were obtained through a calibration of the X24A systems using measurements of several metal L-edges in the 3200-5000 eV energy range. We found that the 4p resonance in potassium is significantly enhanced compared with the corresponding situation in argon. Likewise, the 5p resonance in krypton is unresolved from the background ionization cross section, whereas it is well resolved in rubidium. As suggested by Amusia, these enhancements may be due to the enhanced potential seen in the excited state of the alkali systems as a result of the presence of an s-electron which reduces the nuclear shielding.

  10. Studies of valence of selected rare earth silicides determined using Si K and Pd/Rh L2,3 XANES and LAPW numerical studies

    NASA Astrophysics Data System (ADS)

    Zajdel, P.; Kisiel, A.; Szytuła, A.; Goraus, J.; Balerna, A.; Banaś, A.; Starowicz, P.; Konior, J.; Cinque, G.; Grilli, A.

    2015-12-01

    We report on the investigation of Si and Pd/Rh chemical environments using X-ray Absorption Near Edge Spectroscopy in two different families of rare earth silicides R2PdSi3 (R = Ce, Nd, Tb, Dy, Ho, Er) and HoRh2-xPdxSi2 (x = 0, 0.5, 0.75, 1.0, 1.5, 1.8, 2.0). The Si K, Pd L3 and Rh L3 absorption edges were recorded in order to follow their changes upon the variation of 4f and 4d5s electron numbers. In both cases it was found that the Si K edge was shifted ≈0.5 eV toward lower energies, relative to pure silicon. In the first family, the shift decreases with increasing number of f-electrons, while the Si K edge remains constant upon rhodium-palladium substitution. In all cases the Pd L3 edge was shifted to higher energies relative to metallic Pd. No visible change in the Pd L3 position was observed either with a varying 4f electron count or upon Pd/Rh substitution. Also, the Rh L3 edge did not change. For two selected members, Ho2PdSi3 and HoPd2Si2, the Wien2K'09 (LDA + U) package was used to calculate the electronic structure and the absorption edges. Si K edges were reproduced well for both compounds, while Pd L3 only exhibited a fair agreement for the second compound. This discrepancy between the Pd L3 theory and experiment for the Ho2PdSi3 sample can be attributed to the specific ordered superstructure used in the numerical calculations. The observed changes indicate that despite possessing a formal inter-metallic character, the chemical bond between the R-Si and R-Pd interactions are different. The variation and the direction of the chemical shift of the Si K edge suggests a weak ionic character of the R-Si bonds, in agreement with the localized character of the 4f electrons. In turn, the changes of the Pd/Rh edge are consistent with a metallic band that is affected by its long range chemical environment.

  11. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E.; Bellarmine, F.; Ramanjaneyulu, M.; Lamberti, Carlo; Ramachandra Rao, M. S.

    2013-09-01

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni0 nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.

  12. Full-Field Calcium K-Edge X-ray Absorption Near-Edge Structure Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation.

    PubMed

    Hesse, Bernhard; Salome, Murielle; Castillo-Michel, Hiram; Cotte, Marine; Fayard, Barbara; Sahle, Christoph J; De Nolf, Wout; Hradilova, Jana; Masic, Admir; Kanngießer, Birgit; Bohner, Marc; Varga, Peter; Raum, Kay; Schrof, Susanne

    2016-04-05

    Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.

  13. Stability of mineral fibres in contact with human cell cultures. An in situ μXANES, μXRD and XRF iron mapping study.

    PubMed

    Pollastri, Simone; Gualtieri, Alessandro F; Vigliaturo, Ruggero; Ignatyev, Konstantin; Strafella, Elisabetta; Pugnaloni, Armanda; Croce, Alessandro

    2016-12-01

    Relevant mineral fibres of social and economic importance (chrysotile UICC, crocidolite UICC and a fibrous erionite from Jersey, Nevada, USA) were put in contact with cultured diploid human non-tumorigenic bronchial epithelial (Beas2B) and pleural transformed mesothelial (MeT5A) cells to test their cytotoxicity. Slides of each sample at different contact times up to 96 h were studied in situ using synchrotron XRF, μ-XRD and μ-XAS (I18 beamline, Diamond Light Source, UK) and TEM investigations. XRF maps of samples treated for 96 h evidenced that iron is still present within the chrysotile and crocidolite fibres and retained at the surface of the erionite fibres, indicating its null to minor mobilization in contact with cell media; this picture was confirmed by the results of XANES pre-edge analyses. μ-XRD and TEM data indicate greater morphological and crystallinity modifications occurring in chrysotile, whereas crocidolite and erionite show to be resistant in the biological environment. The contact of chrysotile with the cell cultures seems to lead to earlier amorphization, interpreted as the first dissolution step of these fibres. The formation of such silica-rich fibre skeleton may prompt the production of HO in synergy with surface iron species and could indicate that chrysotile may be much more reactive and cytotoxic in vitro in the (very) short term whereas the activity of crocidolite and erionite would be much more sluggish but persistent in the long term.

  14. Composition-dependent structure of polycrystalline magnetron-sputtered V-Al-C-N hard coatings studied by XRD, XPS, XANES and EXAFS.

    PubMed

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Mangold, Stefan; Doyle, Stephen; Ulrich, Sven; Leiste, Harald; Stüber, Michael; Baumbach, Tilo

    2013-08-01

    V-Al-C-N hard coatings with high carbon content were deposited by reactive radio-frequency magnetron sputtering using an experimental combinatorial approach, deposition from a segmented sputter target. The composition-dependent coexisting phases within the coating were analysed using the complementary methods of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS). For the analysis of the X-ray absorption near-edge spectra, a new approach for evaluation of the pre-edge peak was developed, taking into account the self-absorption effects in thin films. Within the studied composition range, a mixed face-centred cubic (V,Al)(C,N) phase coexisting with a C-C-containing phase was observed. No indication of hexagonal (V,Al)(N,C) was found. The example of V-Al-C-N demonstrates how important a combination of complementary methods is for the detection of coexisting phases in complex multi-element coatings.

  15. Composition-dependent structure of polycrystalline magnetron-sputtered V–Al–C–N hard coatings studied by XRD, XPS, XANES and EXAFS

    PubMed Central

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Mangold, Stefan; Doyle, Stephen; Ulrich, Sven; Leiste, Harald; Stüber, Michael; Baumbach, Tilo

    2013-01-01

    V–Al–C–N hard coatings with high carbon content were deposited by reactive radio-frequency magnetron sputtering using an experimental combinatorial approach, deposition from a segmented sputter target. The composition-dependent coexisting phases within the coating were analysed using the complementary methods of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS). For the analysis of the X-ray absorption near-edge spectra, a new approach for evaluation of the pre-edge peak was developed, taking into account the self-absorption effects in thin films. Within the studied composition range, a mixed face-centred cubic (V,Al)(C,N) phase coexisting with a C–C-containing phase was observed. No indication of hexagonal (V,Al)(N,C) was found. The example of V–Al–C–N demonstrates how important a combination of complementary methods is for the detection of coexisting phases in complex multi-element coatings. PMID:24046506

  16. Electronic structure and hybridization of CaS by means of X-ray absorption spectroscopy at Ca and S K-edges.

    PubMed

    Xu, Wei; Liu, Lijuan; Cui, Mingqi; Zheng, Lei; Hu, Yongfeng; Marcelli, Augusto; Wu, Ziyu

    2013-01-01

    The cubic calcium sulfide (CaS) is a well known system and an attractive building block material for many luminescence technological applications. However, it is essential to achieve an accurate understanding of its electronic structure in order to engineer its band structure for optimized applications. Here a study of the electronic structure of CaS by means of X-ray absorption spectroscopy performed at both Ca and S K-edges, and calculations performed in the framework of the multiple-scattering theory and of the finite difference method are presented. At the Ca K-edge the presence of an anomalous d states feature is discussed while in the S K-edge spectrum the presence of a pre-edge shoulder owing to the hybridization among Ca d states and S p states is pointed out. Although the l-projected density of states of CaS is in good agreement with previous first-principles calculations, the standard muffin-tin potential is inadequate to reproduce near-edge structures at both Ca and S K-edges in this system. Indeed, with its highly symmetric and less compact structure, CaS is characterized by a large set of collinear atomic configurations that pose severe constraints on the construction of the atomic potential. On the contrary, the finite-difference method with no muffin-tin approximation is more suitable for X-ray absorption calculations in this system.

  17. Dispersion corrections of the copper K edge measured by Fresnel diffraction.

    PubMed

    Lee, Wah-Keat; Cloetens, Peter; Schlenker, Michel

    2004-01-01

    Dispersion corrections to the atomic scattering factors for the copper K edge have been measured by a new technique, Fresnel diffraction. Fresnel diffraction fringes were measured at several sample-detector distances as a function of energy across the copper K-absorption edge. The dispersion corrections were obtained from optimizing a least-squares fit of Fresnel fringe simulations to the measured data.

  18. Ion yields for tetramethylgermane exposed to x-rays near the Ge K-edge

    SciTech Connect

    Holroyd, R.A.; Preses, J.M.; Sham, T.K.

    2000-03-30

    Free ion yields were measured for tetramethylgermane (TMG) in both the liquid and vapor phase and for Kr gas exposed to X-rays. The X-ray energy was varied across the K-edges of Ge and Kr, respectively. In Kr the relative W value increases slightly at the K-edge, which is at 14.3 keV. In liquid TMG the observed ion yield drops at the Ge K-edge (11.1 keV) and shows two minima separated by 10 eV. This ion-yield spectrum is a mirror image of the absorption spectrum, as represented by the gas-phase ion-yield spectrum. The observation of such an inverted spectrum in liquids is shown to be due in large part to inefficiency of collection of charges. This is a consequence of the large Ge cross sections above the edge which concentrates the region of irradiation near the entrance window, increasing the local dose rate and enhancing recombination. The yield of excited states in mixtures of TMG and toluene drops at the Ge K-edge by the amount expected considering the large X-ray fluorescence yield.

  19. Environmental applications of XANES: Speciation of {Tc} in cement after chemical treatment and Se after bacterial uptake

    SciTech Connect

    Shuh, D.K.; Kaltsoyannis, N.; Bucher, J.J.

    1994-03-01

    XANES (X-ray Absorption Near Edge Spectroscopy) has been employed to evaluate the efficacy of a process designed to encapsulate and reduce {Tc}O{sub 4}{sup {minus}} in cement matrices, thereby immobilizing {Tc}. The oxidation state of Se following.bioremediation of Se by bacteria has also been determined by XANES. The XANES measurements were performed at the Stanford Synchrotron Radiation Laboratory (SSRL) and the National Synchrotron Light Source (NSLS) at the respective K edges of {Tc} (21.0 keV) and Se (12.7 keV). Comparison of the XANES spectra of Tc in untreated cement to Tc in slag treated cement and to the chemical shifts of reference materials, shows that the oxidation state of {Tc} is the same in both cements. Thus, the addition of a reducing agent to the cement formulation does not significantly reduce the {Tc}O{sub 4} The common soil bacterium, Bacillus subtilis, is known to incorporate Se on or within the cell wall when exposed to a SE(IV) solution. The Se XANES spectra of B. subtilis, as well as bacillus isolated from selenium rich soil, show that the organisms reduce selenite to the red allotrope of elemental Se.

  20. Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

    PubMed Central

    2015-01-01

    Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792

  1. A XANES and Raman investigation of sulfur speciation and structural order in Murchison and Allende meteorites

    NASA Astrophysics Data System (ADS)

    Bose, M.; Root, R. A.; Pizzarello, S.

    2017-03-01

    Insoluble organic matter (IOM) and hydrothermally treated IOM extracted from two carbonaceous chondrites, Murchison and Allende, was studied using sulfur K-edge XANES (X-ray absorption near edge structure) and μ-Raman spectroscopy, with the aim to understand their IOM's sulfur speciation and structural order, and how aqueous alteration or thermal metamorphism may have transformed these materials. We found that the sulfur-functional group chemistry of both the Murchison IOM and hydrothermally treated IOM samples have a large chemical variability ranging from oxidation states of S-2 to S+6, and exhibit a transformation in their oxidation state after the hydrothermal treatment (HT) to produce thiophenes and thiol compounds. Sulfoxide and sulfite peaks are also present in Murchison. Sulfates considered intrinsic to Murchison are most likely preaccretionary in nature, and not a result of reactions with water at high temperatures on the asteroid parent body. We argue that the reduced sulfides may have formed in the CM parent body, while the thiophenes and thiol compounds are a result of the HT. Micro-Raman spectra show the presence of aliphatic and aromatic moieties in Murchison's material as observed previously, which exhibits no change after HT. Because the Murchison IOM was modified, as seen by XANES analysis, absence of a change observed using micro-Raman indicated that although the alkyl carbons of IOM were cleaved, the aromatic network was not largely modified after HT. By contrast, Allende IOM contains primarily disulfide and elemental sulfur, no organic sulfur, and shows no transformation after HT. This nontransformation of Allende IOM after HT would indicate that parent body alteration of sulfide to sulfate is not feasible up to temperatures of 300°C. The reduced sulfur products indicate extreme secondary chemical processing from the precursor compounds in its parent body at temperatures as high as 624°C, as estimated from μ-Raman D band parameters. The

  2. Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems

    PubMed Central

    2014-01-01

    Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodology to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed. PMID:25492398

  3. Hybrid-K-edge/X-ray Fluorescense Densitometry with Laser-Compton Scattered X-rays

    SciTech Connect

    Dr. Khalid Chouffani El Fassi

    2010-08-29

    The quantitative verification of the accountancy of fissile nuclear materials through independent measurements represents one of the key elements of nuclear materials Safeguards. Elemental probes of materials of interest to non-proliferation are critical to research strategy in order to identify sensitive advanced instrumentation detection technologies. Advanced instrumentation for material detection and accountability are needed for use in fuel cycle facilities for real-time in-process monitoring of separations-partitioning, fuels fabrication as well as for traditional safeguards activities. Radiation-based NDA (non-destructive analysis) techniques can provide some vital information about nuclear materials much more quickly, cheaply and safely than chemical or radio chemical analysis. Hybrid K-edge densitometry (HKED) is currently the most accurate nondestructive inspection technique that provides sensitive quantification of heavy metal contamination. HKED in a technique that exploits both K-edge absorption and X-ray fluorescence (XRF) and allows simultaneously greater elemental specificity and lower detection limits

  4. K-edge x-ray absorption spectra of Cs and Xe

    SciTech Connect

    Gomilsek, J. Padeznik; Kodre, A.; Arcon, I.; Hribar, M.

    2003-10-01

    X-ray absorption spectrum of cesium vapor in the K-edge region is measured in a stainless steel cell. The spectrum is free of the x-ray absorption fine structure signal and shows small features analogous to those in the spectrum of the neighbor noble gas Xe. Although the large natural width of the K vacancy (>10 eV) washes out most of the details, fingerprints of multielectron excitations can be recognized at energies close to Dirac-Fock estimates of doubly excited states 1s4(d,p,s) and 1s3(d,p). Among these, the 1s3p excitation 1000 eV above the K edge in both spectra is the deepest double excitation observed so far. Within the K-edge profile, some resolution is recovered with numerical deconvolution of the spectra, revealing the coexcitation of the 5(p,s) electrons, and even the valence 6s electron in Cs. As in homologue elements, three-electron excitations, either as separate channels or as configuration admixtures are required to explain some spectral features in detail.

  5. Experimental and theoretical XANES of CdSxSe1-x nanostructures

    NASA Astrophysics Data System (ADS)

    Yiu, Y. M.; Murphy, M. W.; Liu, L.; Hu, Y.; Sham, T. K.

    2014-03-01

    The morphology and electronic properties of the CdSxSe1-x nanostructures with varying alloy compositions have been acquired experimentally by X-ray Absorption Near-Edge Structures (XANES) at the Cd, Se and S K-edge and L3,2-edges. The theoretical XANES spectra have been calculated using the density functional approach. It is found that the optical band-gap emission of these CdSxSe1-x nano-ribbons can be tuned to the range between that of pure CdS (2.43 eV) and CdSe (1.74 eV) by changing the S and Se ratio. This gradual shift in (optical and structural) properties from CdS character to CdSe character is also seen in the electronic structures. The densities of states and band structures show that with the addition of Se replacing S in CdS, the band gap shrinks. The K and L3,2 edges of Cd, Se, and S of the XANES structures of both the CdS and CdSe in B4 (wurtzite) and B3 (cubic zinc-blende) structures have been calculated and compared.

  6. The Ti environment in natural hibonite: XANES spectroscopy and computer modelling

    NASA Astrophysics Data System (ADS)

    Kravtsova, Antonina N.; Soldatov, Alexander V.; Walker, Andrew M.; Berry, Andrew J.

    2016-05-01

    The local atomic structure around Ti in Ti-bearing hibonite (CaAl12O19) was studied using X-ray absorption near-edge structure (XANES) spectroscopy and computer modelling. Structural models of the direct substitution of Al by Ti3+, Al by Ti4+ charge balanced by the coupled substitution of Mg2+ for Al, and small Ti clusters were considered. The Ti K-XANES spectra of natural hibonite with different Ti concentration were recorded. Theoretical Ti K- XANES spectra for structural models of hibonite were calculated. It was shown that the theoretical Ti K-XANES spectra for a model with Ti at the five-coordinated M2 site are in agreement with the experimental XANES spectra of hibonite with low concentrations of Ti, while the theoretical spectra for a structural model of clustered Ti are in agreement with the experimental spectra of hibonite with higher Ti contents.

  7. Structural Properties and Charge Distribution of the Sodium Uranium, Neptunium, and Plutonium Ternary Oxides: A Combined X-ray Diffraction and XANES Study.

    PubMed

    Smith, Anna L; Martin, Philippe; Prieur, Damien; Scheinost, Andreas C; Raison, Philippe E; Cheetham, Anthony K; Konings, Rudy J M

    2016-02-15

    The charge distributions in α-Na2UO4, Na3NpO4, α-Na2NpO4, Na4NpO5, Na5NpO6, Na2PuO3, Na4PuO5, and Na5PuO6 are investigated in this work using X-ray absorption near-edge structure (XANES) spectroscopy at the U-L3, Np-L3, and Pu-L3 edges. In addition, a Rietveld refinement of monoclinic Na2PuO3, in space group C2/c, is reported for the first time, and the existence of the isostructural Na2NpO3 phase is revealed. In contrast to measurements in solution, the number of published XANES data for neptunium and plutonium solid phases with a valence state higher than IV is very limited. The present results cover a wide range of oxidation states, namely, IV to VII, and can serve as reference for future investigations. The sodium actinide series show a variety of local coordination geometries, and correlations between the shape of the XANES spectra and the local structural environments are discussed herein.

  8. Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-edge X-ray Absorption Spectroscopy

    SciTech Connect

    Liu, Xiang; Cui, Shengsheng; Sun, Zijun; Ren, Yang; Zhang, Xiaoyi; Du, Pingwu

    2016-01-21

    Developing efficient water oxidation catalysts made of earth-abundant elements is a demanding challenge that should be met to fulfill the promise of water splitting for clean energy. Herein we report an annealing approach to synthesize binder-free, self-supported heterogeneous copper oxide (CuO) on conductive electrodes for oxygen evolution reaction (OER), producing electrodes with excellent electrocatalytic properties such as high efficiency, low overpotential, and good stability. The catalysts were grown in situ on fluorine-doped tin oxide (FTO) by electrodeposition from a simple Cu(II) salt solution, followed by annealing at a high temperature. Under optimal conditions, the CuO-based OER catalyst shows an onset potential of <0.58 V (vs Ag/AgCl) in 1.0 M KOH at pH 13.6. From the Tafel plot, the required overpotentials for current densities of 0.1 and 1.0 mA/cm2 are only 360 and 430 mV, respectively. The structure and the presence of a CuO motif in the catalyst have been identified by high-energy X-ray diffraction (HE-XRD), Cu K-edge X-ray absorption (XAS) spectra including X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS). To the best of our knowledge, this represents the best catalytic activity for CuO-based OER catalysts to date.

  9. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael V.

    2016-04-01

    Transition aluminas doped with Cr find widespread application in the dehydrogenation catalysis industry, while La-stabilized transition aluminas are used extensively for high-temperature application as catalytic supports (Wefers and Misra in Oxides and hydroxides of aluminum, Alcoa Laboratories, Pittsburgh, 1987). In this work, detailed synchrotron XAFS spectroscopy studies were conducted to shed light upon the atomic mechanisms of surface and subsurface reconstructions and/or catalytic support stabilization of doped aluminas. It was demonstrated that in four transition aluminas doped with Cr, it is the atoms which are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and chi-alumina). In the transition series aluminas: "gamma- chi- theta- eta-alumina," the change of properties (in particular, the dramatic increase in dehydrogenation catalytic activity and catalyst longevity and the coloration of samples) takes place because of the reduction in the average size of Cr clusters and their appearance on the Al2O3 surface, probably responsible for change in catalytic activity. It was demonstrated that in the samples of gamma-alumina doped with La any substantial change in the local coordination of the La atoms takes place only upon heating up to 1400 °C. This makes the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g., catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). Furthermore, it was demonstrated that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amount of this rare earth material is required to achieve full

  10. Vanadium K-edge X-ray-absorption spectroscopy of the functioning and thionine-oxidized forms of the VFe-protein of the vanadium nitrogenase from Azotobacter chroococcum.

    PubMed Central

    Arber, J M; Dobson, B R; Eady, R R; Hasnain, S S; Garner, C D; Matsushita, T; Nomura, M; Smith, B E

    1989-01-01

    Vanadium K-edge X-ray-absorption spectra were collected for samples of thionine-oxidized, super-reduced (during enzyme turnover) and dithionite-reduced VFe-protein of the vanadium nitrogenase of Azotobacter chroococcum (Acl*). Both the e.x.a.f.s and the x.a.n.e.s. (X-ray-absorption near-edge structure) are consistent with the vanadium being present as part of a VFeS cluster; the environment of the vanadium is not changed significantly in different oxidation states of the protein. The vanadium atom is bound to three oxygen (or nitrogen), three sulphur and three iron atoms at 0.215(3), 0.231(3) and 0.275(3) nm respectively. PMID:2730564

  11. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3.

    PubMed

    Marini, C; Noked, O; Kantor, I; Joseph, B; Mathon, O; Shuker, R; Kennedy, B J; Pascarelli, S; Sterer, E

    2016-02-03

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ∼14.5 GPa.

  12. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3

    NASA Astrophysics Data System (ADS)

    Marini, C.; Noked, O.; Kantor, I.; Joseph, B.; Mathon, O.; Shuker, R.; Kennedy, B. J.; Pascarelli, S.; Sterer, E.

    2016-02-01

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb5+ towards Nb4+ above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ˜14.5 GPa.

  13. Comparison of iodine K-edge subtraction and fluorescence subtraction imaging in an animal system

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhu, Y.; Bewer, B.; Zhang, L.; Korbas, M.; Pickering, I. J.; George, G. N.; Gupta, M.; Chapman, D.

    2008-09-01

    K-Edge Subtraction (KES) utilizes the discontinuity in the X-ray absorption across the absorption edge of the selected contrast element and creates an image of the projected density of the contrast element from two images acquired just above and below the K-edge of the contrast element. KES has proved to be powerful in coronary angiography, micro-angiography, bronchography, and lymphatic imaging. X-ray fluorescence imaging is a successful technique for the detection of dilute quantities of elements in specimens. However, its application at high X-ray energies (e.g. at the iodine K-edge) is complicated by significant Compton background, which may enter the energy window set for the contrast material's fluorescent X-rays. Inspired by KES, Fluorescence Subtraction Imaging (FSI) is a technique for high-energy (>20 keV) fluorescence imaging using two different incident beam energies just above and below the absorption edge of a contrast element (e.g. iodine). The below-edge image can be assumed as a "background" image, which includes Compton scatter and fluorescence from other elements. The above-edge image will contain nearly identical spectral content as the below-edge image but will contain the additional fluorescence of the contrast element. This imaging method is especially promising with thick objects with dilute contrast materials, significant Compton background, and/or competing fluorescence lines from other materials. A quality factor is developed to facilitate the comparison. The theoretical value of the quality factor sets the upper limit that an imaging method can achieve when the noise is Poisson limited. The measured value of this factor makes two or more imaging methods comparable. Using the Hard X-ray Micro-Analysis (HXMA) beamline at the Canadian Light Source (CLS), the techniques of FSI and KES were critically compared, with reference to radiation dose, image acquisition time, resolution, signal-to-noise ratios, and quality factor.

  14. X-ray, K-edge measurement of uranium concentration in reactor fuel plates

    SciTech Connect

    Jensen, T.; Aljundi, T.; Whitmore, C.; Zhong, H.; Gray, J.N.

    1997-11-26

    Under the Characterization, Monitoring, and Sensor Technology Crosscutting Program, the authors have designed and built a K-edge heavy-metal detector that measures the level of heavy-metal content inside closed containers in a nondestructive, non-invasive way. They have applied this technique to measurement of the amount of uranium in stacks of reactor fuel plates containing nuclear materials of different enrichments and alloys. They have obtained good agreement with expected uranium concentrations ranging from 60 mg/cm{sup 2} to 3,000 mg/cm{sup 2}, and have demonstrated that the instrument can operate in a high radiation field (> 200 mR/hr).

  15. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters

    SciTech Connect

    Chen, C. D.; Porkolab, M.; King, J. A.; Beg, F. N.; Key, M. H.; Chen, H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Akli, K. U.; Stephens, R. B.; Freeman, R. R.; Link, A.; Van Woerkom, L. D.

    2008-10-15

    A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with image plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code INTEGRATED TIGER SERIES 3.0 and the dosimeters calibrated with radioactive sources. An electron distribution with a slope temperature of 1.3 MeV is inferred from the Bremsstrahlung spectra.

  16. A Bremsstrahlung Spectrometer using k-edge and Differential Filters with Image plate dosimeters

    SciTech Connect

    Chen, C; Mackinnon, A; Beg, F; Chen, H; Key, M; King, J A; Link, A; MacPhee, A; Patel, P; Porkolab, M; Stephens, R; VanWoerkom, L; Akli, K; Freeman, R

    2008-05-02

    A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with Image Plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code Integrated Tiger Series 3.0 and the dosimeters calibrated with radioactive sources. Electron distributions with slope temperatures in the MeV range are inferred from the Bremsstrahlung spectra.

  17. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.

    PubMed

    Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland

    2011-09-01

    The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of

  18. Vibrationally resolved NEXAFS at C and N K-edges of pyridine, 2-fluoropyridine and 2,6-difluoropyridine: A combined experimental and theoretical assessment

    SciTech Connect

    Baiardi, Alberto; Mendolicchio, Marco; Barone, Vincenzo; Fronzoni, Giovanna; Cardenas Jimenez, Gustavo Adolfo; Stener, Mauro; Grazioli, Cesare; Simone, Monica de; Coreno, Marcello

    2015-11-28

    In the present work, the near edge X-ray absorption spectroscopy (NEXAFS) spectra at both C and N K-edges of pyridine, 2-fluoropyridine, and 2,6-difluoropyridine have been studied both experimentally and theoretically. From an electronic point of view, both transition potential density functional theory and time-dependent density functional theory approaches lead to reliable results provided that suitable basis sets and density functionals are employed. In this connection, the global hybrid B3LYP functional in conjunction with the EPR-III basis set appears particularly suitable after constant scaling of the band positions. For the N K-edge, vertical energies obtained at these levels and broadened by symmetric Gaussian distributions provide spectra in reasonable agreement with the experiment. Vibronic contributions further modulate the band-shapes leading to a better agreement with the experimental results, but are not strictly necessary for semi-quantitative investigations. On the other hand, vibronic contributions are responsible for strong intensity redistribution in the NEXAFS C K-edge spectra, and their inclusion is thus mandatory for a proper description of experiments. In this connection, the simple vertical gradient model is particularly appealing in view of its sufficient reliability and low computational cost. For more quantitative results, the more refined vertical Hessian approach can be employed, and its effectiveness has been improved thanks to a new least-squares fitting approach.

  19. Study of Cu chemical state inside single neurons from Parkinson's disease and control substantia nigra using the micro-XANES technique.

    PubMed

    Chwiej, Joanna; Adamek, Dariusz; Szczerbowska-Boruchowska, Magdalena; Krygowska-Wajs, Anna; Bohic, Sylvain; Lankosz, Marek

    2008-01-01

    Parkinson's disease (PD) is referred to as idiopathic disorder, which means that its causes have not been found yet. However, a few processes such as oxidative stress, protein aggregation and mitochondrial dysfunction are suspected to lead to the atrophy and death of substantia nigra (SN) neurons in case of this neurodegenerative disorder. Cu is a trace element whose role in the pathogenesis of PD is widely discussed. The investigation of Cu oxidation state inside single nerve cells from SN of PD and control cases may shed some new light on the role of this element in PD. The differences in Cu chemical state were investigated with the use of X-ray absorption near edge structure (XANES) spectroscopy. The least-square fitting method was applied for the analysis of XANES spectra. The comparison of the positions of white line, multiple scattering and pre-edge peak maximum at the energy scale did not reveal the existence of differences in Cu chemical state between PD and control samples. However, it was found that most of the Cu inside SN neurons occurs in tetrahedral environment and probably as Cu(II).

  20. Animal experiments by K-edge subtraction angiography by using SR (abstract)

    NASA Astrophysics Data System (ADS)

    Anno, I.; Akisada, M.; Takeda, T.; Sugishita, Y.; Kakihana, M.; Ohtsuka, S.; Nishimura, K.; Hasegawa, S.; Takenaka, E.; Hyodo, K.; Ando, M.

    1989-07-01

    Ischemic heart disease is one of the most popular and lethal diseases for aged peoples in the world, and is usually diagnosed by transarterial selective coronary arteriography. However, it is rather invasive and somewhat dangerous, so that the selective coronary arteriography is not feasible for prospective screening of coronary occlusive heart disease. Conventional digital subtraction angiography (DSA) is widely known as a relatively noninvasive and useful technique is making a diagnosis of arterial occlusive disease, especially in making the diagnosis of ischemic heart disease. Conventional intravenous subtraction angiography by temporal subtraction, however, has several problems when applying to the moving objects. Digital subtraction method using high-speed switching above and below the K edge could be the ideal approach to this solution. We intend to make a synchrotron radiation digital K-edge subtraction angiography in the above policy, and to apply it to the human coronary ischemic disease on an outpatient basis. The principles and experimental systems have already been described in detail by our coworkers. Our prototype experimental system is situated at the AR (accumulation ring) for TRISTAN project of high energy physics. The available beam size is 70 mm by 120 mm. The electron energy of AR is 6.5 GeV and average beam current is approximately 10 mA. This paper will show the animal experiments of our K-edge subtraction system, and discuss some problems and technical difficulties. Three dogs, weighing approximately 15 kg, were examined to evaluate the ability of our prototype synchrotron radiation DSA unit, that we are now constructing. The dogs were anaesthetized with pentobarbital sodium, intravenously (30 mg/kg). Six french-sized (1.52 mm i.d.) pigtail catheter with multiple side holes were introduced via the right femoral vein into the right atrium by the cutdown technique under conventional x-ray fluoroscopic control. Respiration of the dogs was

  1. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  2. New insights into the role of Mn and Fe in coloring origin of blue decorations of blue-and-white porcelains by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Luo, Wugan; Chen, Dongliang; Xu, Wei; Ming, Chaofang; Wang, Changsui; Wang, Lihua

    2013-04-01

    Blue and white porcelain is one of the most valuable ancient ceramics varieties in ancient China. It is well known for its beautiful blue decorations. However, the origin of its blue color has not been very clear till now. In this research, two blue and white porcelains from Jingdezhen, Jiangxi province were selected and Mn and Fe K-edge XANES spectra were recorded from blue decorations with or without transparent glaze. Results showed that Mn K-edge XANES features were almost identical between different samples while that of iron changed. The above findings indicated the positive role of iron in the variation of blue decorations. As for manganese, although more system researches were need, its negative role on the variations of the tone of blue decorations was obtained. On the other hand, the paper also revealed the XAFS results will be affect by the glaze layer above the pigment. These findings provided us more information to understand the coloring origin of blue decorations of blue-and-white porcelain by means of XANES spectroscopy.

  3. Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, μ-XRF and μ-XANES investigations.

    PubMed

    Mamindy-Pajany, Yannick; Sayen, Stéphanie; Mosselmans, J Frederick W; Guillon, Emmanuel

    2014-07-01

    Metal solid phase speciation plays an important role in the control of the long-term stability of metals in biosolid-amended soils. The present work used pH-adsorption edge experiments and synchrotron-based spectroscopy techniques to understand the solid phase speciation of copper, nickel and zinc in a biosolid-amended soil. Comparison of metal adsorption edges on the biosolid-amended soil and the soil sample showed that Cu, Ni, and Zn can be retained by both soil and biosolid components such as amorphous iron phases, organic matter and clay minerals. These data are combined with microscopic results to obtain structural information about the surface complexes formed. Linear combination fitting of K-edge XANES spectra of metal hot-spots indicated consistent differences in metal speciation between metals. While organic matter plays a dominant role in Ni binding in the biosolid-amended soil, it was of lesser importance for Cu and Zn. This study suggests that even if the metals can be associated with soil components (clay minerals and organic matter), biosolid application will increase metals retention in the biosolid-amended soil by providing reactive organic matter and iron oxide fractions. Among the studied metals, the long-term mobility of Ni could be affected by organic matter degradation while Cu and Zn are strongly associated with iron oxides.

  4. Properties of pure and sulfided NiMoO{sub 4} and CoMoO{sub 4} catalysts: TPR, XANES and time-resolved XRD studies

    SciTech Connect

    Chaturvedi, S.; Rodriguez, J.A.; Hanson, J.C.; Albornoz, A.; Brito, J.L.

    1998-12-31

    X-ray absorption near-edge spectroscopy (XANES) was used to characterize the structural and electronic properties of a series of cobalt- and nickel-molybdate catalysts (AMoO{sub 4}.nH{sub 2}O, {alpha}-AMoO{sub 4}, {beta}-AMoO{sub 4}; A=Co or Ni). The results of XANES indicate that the Co and Ni atoms are in octahedral sites in all these compounds, while the coordination of Mo varies from octahedral in the {alpha}-phases to tetrahedral in the {beta}-phases and hydrate. Time-resolved x-ray diffraction shows a direct transformation of the hydrates into the {beta}-AMoO{sub 4} compounds (following a kinetics of first order) at temperatures between 200 and 350{degrees}C. This is facilitated by the similarities that the AMoO{sub 4}.nH{sub 2}O and H{sub 2} at temperatures between 400 and 600{degrees}C, forming gaseous water oxides in which the oxidation state of Co and Ni remains +2 while that of Mo is reduced to +5 or +4. After exposing {alpha}-NiMoO{sub 4} and {beta}-NiMoO{sub 4} to H{sub 2}S, both metals get sulfided and a NiMoS{sub x} phase is formed. For the {beta} phase of NiMoO{sub 4} the sulfidation of Mo is more extensive than for the {alpha} phase, making the former a better precursor for catalysts of hydrodesulfurization reactions.

  5. Measurement of an inverse Compton scattering source local spectrum using k-edge filters

    SciTech Connect

    Golosio, Bruno; Oliva, Piernicola; Carpinelli, Massimo; Endrizzi, Marco; Delogu, Pasquale; Pogorelsky, Igor; Yakimenko, Vitaly

    2012-04-16

    X-ray sources based on the inverse Compton scattering process are attracting a growing interest among scientists, due to their extremely fast pulse, quasi-monochromatic spectrum, and relatively high intensity. The energy spectrum of the x-ray beam produced by inverse Compton scattering sources in a fixed observation direction is a quasi-monochromatic approximately Gaussian distribution. The mean value of this distribution varies with the scattering polar angle between the electron beam direction and the x-ray beam observation direction. Previous works reported experimental measurements of the mean energy as a function of the polar angle. This work introduces a method for the measurement of the whole local energy spectrum (i.e., the spectrum in a fixed observation direction) of the x-ray beam yielded by inverse Compton scattering sources, based on a k-edge filtering technique.

  6. Exotic sources of x-rays for iodine K-edge angiography

    SciTech Connect

    Carr, R.

    1993-08-01

    Digital Subtractive Angiography (DSA) has been performed to image human coronary arteries using wiggler radiation from electron storage rings. The significant medical promise of this procedure motivates the development of smaller and less costly x-ray sources. Several exotic sources are candidates for consideration, using effects such as Cherenkov, channeling, coherent bremsstrahlung, laser backscattering, microundulator, parametric, Smith-Purcell, and transition radiation. In this work we present an analysis of these effects as possible sources of intense x-rays at the iodine K-edge at 33.169 key. The criteria we use are energy, efficiency, flux, optical properties, and technical realizability. For each of the techniques, we find that they suffer either from low flux, a low energy cutoff, target materials heating, too high electron beam energy requirement, optical mismatch to angiography, or a combination of these. We conclude that the foreseeable state-of-the-art favors a compact storage ring design.

  7. Reduction and re-oxidation of Cu/Al2O3 catalysts investigated with quick-scanning XANES and EXAFS

    NASA Astrophysics Data System (ADS)

    Stötzel, J.; Lützenkirchen-Hecht, D.; Frahm, R.; Kimmerle, B.; Baiker, A.; Nachtegaal, M.; Beier, M. J.; Grunwaldt, J.-D.

    2009-11-01

    In the present study the structure of copper catalysts on alumina support were investigated in situ and time resolved during reduction and re-oxidation at different temperatures with the quick-scanning EXAFS (QEXAFS) technique. Different impregnation times (2 min and 90 min) were chosen for the preparation which resulted in different copper species that show a strong variation in the reduction/re-oxidation behaviour. These dynamic changes as well as possible intermediate phases during the gas atmospheres changes were followed with up to 20 EXAFS spectra per second at the copper K-edge covering an energy range of 450 eV. The high time resolution provided new insights into the dynamics of the catalysts e.g. revealing Cu(I) as intermediate state during re-oxidation. Latest advances in the data acquisition hardware are leading to an improved data quality of spectra collected at the SuperXAS beamline. Thus, not only accurate analysis of the catalysts via XANES but also by EXAFS was possible. This is also due to the recent upgrade to monitor the Bragg angle directly with an encoder during the experiments.

  8. Local structure of ball-milled LaNi{sub 5} hydrogen storage material by Ni K-edge EXAFS

    SciTech Connect

    Joseph, B.; Iadecola, A.; Schiavo, B.; Cognigni, A.; Olivi, L.; D'Ali Staiti, G.; Saini, N.L.

    2010-07-15

    Local structure of the nanostructured LaNi{sub 5} hydrogen storage alloys, prepared by ball-milling, has been studied using Ni K-edge extended X-ray absorption fine structure spectroscopy. Results indicate that the ball-milling up to 100 h results in the production of nanoparticles characterized by large atomic disorder and slightly reduced unit-cell volume, compared to the bulk LaNi{sub 5}. High temperature annealing appears to help in partial recovery of atomic order in the ball-milled samples; however, long-time ball-milled samples retain large disorder even after the high temperature annealing. The results suggest that the large disorder and the reduced unit-cell volume might be causing a higher energy-barrier for the hydride-phase formation in the long time ball-milled LaNi{sub 5} powders. - Graphical Abstract: X-ray diffraction (XRD) pattern (left panel) and Fourier transforms of the Ni K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy (right panel) of bulk LaNi{sub 5} hydrogen storage material (structure model is given in the middle) together with the same after 100 h ball-milling. Milled samples show a remarkable reduction intensity and broadening of the XRD peaks. Substantial damping of the amplitude and a slight shrinkage of the profile are observed in the EXAFS spectrum. These results indicate that the ball-milling up to 100 h results in the production of nanoparticles characterized by slightly reduced unit-cell volume and substantial atomic disorder compared to the bulk LaNi5. High temperature annealing appears to help in partial recovery of atomic order in the ball-milled samples; however, long-time ball-milled samples retain the disorder even after the high temperature annealing. The results suggest that the large disorder and the reduced unit-cell volume might be causing a higher energy-barrier for the hydride-phase formation in the long-time ball-milled LaNi{sub 5} powders.

  9. Field flatteners fabricated with a rapid prototyper for K-edge subtraction imaging of small animals

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Zhang, Honglin; Bewer, Brian; Florin Gh. Popescu, Bogdan; Nichol, Helen; Chapman, Dean

    2008-04-01

    One of the difficulties in X-ray imaging is the need to record a wide dynamic range of intensities on the detector. For example, some rays may miss the object being imaged entirely while others may suffer many orders of magnitude attenuation in passing through. In K-edge subtraction (KES) [E. Rubenstein, et al., Trans. Am. Clin. Climatol. Assoc. 97 (1985) 27.] imaging subtle differences in transmission through an object about the absorption edge of an element are used to create an image of the projected density of that element. This is done by a logarithmic subtraction of images acquired with energies above and below the absorption edge. For KES, the detector must register this transmitted intensity range in a linear manner for the subtraction method to be successful. The range of intensities which may strike the detector has inspired the concept of a field flattener. A field flattener is a device placed in the beam path that attenuates the input monochromatic beam to equalize X-ray absorption due to differences in the density of soft and hard tissues of an object before it passes through the object and thus achieves a flattened image. This removes the need for a wide dynamic range linear detector and allows detectors with modest performance to be used successfully in KES applications. The field flattener improves the S/ N ratio since X-ray exposures can be increased up to detector saturation. However, a field flattener removes anatomical information from each raw image (above or below K-edge) that may provide useful landmarks. Using rapid prototyping technology, two sets of field flatteners were fabricated and used in a KES experiment. This paper describes the procedure to design and fabricate field flatteners based on animal images from X-ray computed tomography (CT). Analysis of experimental data and KES images of a rat head with and without the field flattener are also presented. The results show a promising improvement of S/ N ratio using a field flattener

  10. Resonant inelastic x-ray scattering on iso-C₂H₂Cl₂ around the chlorine K-edge: structural and dynamical aspects.

    PubMed

    Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  11. Fe K-edge X-ray resonant magnetic scattering from Ba(Fe1−xCox)2As2 superconductors

    SciTech Connect

    Kim, Min Gyu; Kreyssig, Andreas; Lee, Yongbin; McQueeney, Robert J.; Harmon, Bruce N.; Goldman, Alan I.

    2012-06-15

    We present an X-ray resonant magnetic scattering study at the Fe-K absorption edge of the BaFe2As2 compound. The energy spectrum of the resonant scattering, together with our calculation using the full-potential linear-augmented plane wave method with a local density functional suggests that the observed resonant scattering arises from electric dipole (E1) transitions. We discuss the role of Fe K-edge X-ray resonant magnetic scattering in understanding the relationship between the structure and the antiferromagnetic transition in the doped Ba(Fe1−xCox)2As2 superconductors.

  12. Oxygen K edge scattering from bulk comb diblock copolymer reveals extended, ordered backbones above lamellar order-disorder transition

    DOE PAGES

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; ...

    2016-12-14

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc12-b-pNte21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODT corresponds tomore » loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less

  13. Oxygen K edge scattering from bulk comb diblock copolymer reveals extended, ordered backbones above lamellar order-disorder transition

    SciTech Connect

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; Jiang, Xi; Zuckermann, Ronald N.

    2016-12-14

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc12-b-pNte21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODT corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.

  14. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  15. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris.

    PubMed

    Brinza, Loredana; Schofield, Paul F; Hodson, Mark E; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D; Mosselmans, J Frederick W

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  16. Demonstration of enhanced K-edge angiography using a cerium target x-ray generator

    SciTech Connect

    Sato, Eiichi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Sato, Shigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-11-01

    The cerium target x-ray generator is useful in order to perform enhanced K-edge angiography using a cone beam because K-series characteristic x rays from the cerium target are absorbed effectively by iodine-based contrast mediums. The x-ray generator consists of a main controller, a unit with a Cockcroft-Walton circuit and a fixed anode x-ray tube, and a personal computer. The tube is a glass-enclosed diode with a cerium target and a 0.5-mm-thick beryllium window. The maximum tube voltage and current were 65 kV and 0.4 mA, respectively, and the focal-spot sizes were 1.0x1.3 mm. Cerium K{alpha} lines were left using a barium sulfate filter, and the x-ray intensity was 0.48 {mu}C/kg at 1.0 m from the source with a tube voltage of 60 kV, a current of 0.40 mA, and an exposure time of 1.0 s. Angiography was performed with a computed radiography system using iodine-based microspheres. In coronary angiography of nonliving animals, we observed fine blood vessels of approximately 100 {mu}m with high contrasts.

  17. Using X-ray, K-edge densitometry in spent fuel characterization

    SciTech Connect

    Jensen, T.; Aljundi, T.; Gray, J.N.

    1998-06-01

    There are instances where records for spent nuclear fuel are incomplete, as well as cases where fuel assemblies have deteriorated during storage. To bring these materials into compliance for long term storage will require determination of parameters such as enrichment, total fissionable material, and burnup. To obtain accurate estimates of these parameters will require the combination of information from different inspection techniques. A method which can provide an accurate measure of the total uranium in the spent fuel is X-ray K-edge densitometry. To assess the potential for applying this method in spent fuel characterization, the authors have measured the amount of uranium in stacks of reactor fuel plates containing nuclear materials of different enrichments and alloys. They have obtained good agreement with expected uranium concentrations ranging from 60 mg/cm{sup 2} to 3,000 mg/cm{sup 2}, and have demonstrated that these measurements can be made in a high radiation field (> 200 mR/hr).

  18. Comparative study of experimental and theoretical analysis of EXAFS data of copper complexes using FT method

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Mishra, S.; Kekre, P.; Choudhary, Pankaj

    2014-09-01

    The X-ray absorption spectra at the K-edge for a series of copper mixed ligand, having hydroxypyridine as one of the ligands, have been investigated in the laboratory X-ray spectroscopic set-up. In the series only X-ray absorption near edge structure (XANES) parameters and bond length using modified Lytle, Levy's and LSS methods were calculated. In the present study the bond lengths are calculated by Fourier Transform method theoretically using IFEFFIT software and compared with experimental results.

  19. XANES spectra of metal phytate compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metal speciation of phosphate and metal-phosphate interactions can be investigated by molecular-scale X-ray absorption near edge structure (XANES) spectroscopic analysis. Much of the effort, however, has been focused on inorganic P speciation (i. e. metal-orthophosphate interactions). Phytate (inosi...

  20. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors.

    PubMed

    Cassol, F; Portal, L; Graber-Bolis, J; Perez-Ponce, H; Dupont, M; Kronland, C; Boursier, Y; Blanc, N; Bompard, F; Boudet, N; Buton, C; Clémens, J C; Dawiec, A; Debarbieux, F; Delpierre, P; Hustache, S; Vigeolas, E; Morel, C

    2015-07-21

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images.

  1. The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes.

    PubMed

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2013-06-07

    X-ray spectroscopy at the metal K-edge is an important tool for understanding catalytic processes and provides insight into the geometric and electronic structures of transition metal complexes. In particular, X-ray emission-based methods such as high-energy resolution fluorescence detection (HERFD), X-ray absorption near-edge spectroscopy (XANES) and valence-to-core X-ray emission spectroscopy (V2C-XES) hold the promise of providing increased chemical sensitivity compared to conventional X-ray absorption spectroscopy. Here, we explore the ability of HERFD-XANES and V2C-XES spectroscopy to distinguish substitutions beyond the directly coordinated atoms for the example of ferrocene and selected ferrocene derivatives. The experimental spectra are assigned and interpreted through the use of density functional theory (DFT) calculations. We find that while the pre-edge peaks in the HERFD-XANES spectra are affected by substituents at the cyclopentadienyl ring containing π-bonds [A. J. Atkins, Ch. R. Jacob and M. Bauer, Chem.-Eur. J., 2012, 18, 7021], the V2C-XES spectra are virtually unchanged. The pre-edge in HERFD-XANES probes the weak transition to unoccupied metal d-orbitals, while the V2C-XES spectra are determined by dipole-allowed transitions from occupied ligand orbitals to the 1s core hole. The latter turn out to be less sensitive to changes beyond the first coordination shell.

  2. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using X-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  3. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using x-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  4. Double-core ionization and excitation above the sulphur K-edge in ?, ? and ?

    NASA Astrophysics Data System (ADS)

    Reynaud, Cécile; Gaveau, Marc-André; Bisson, Kristel; Millié, Philippe; Nenner, Irène; Bodeur, Suzanne; Archirel, Pierre; Lévy, Bernard

    1996-11-01

    Experimental and theoretical results are reported on double-core excitation and ionization processes in some sulphur containing molecules. X-ray absorption spectra have been recorded at the sulphur K-edge using synchrotron radiation delivered by the DCI ring at LURE (Orsay, France). Absolute x-ray absorption cross sections have been determined for gas phase 0953-4075/29/22/017/img12, 0953-4075/29/22/017/img13 and 0953-4075/29/22/017/img14 molecules in the 2400 - 2800 eV region. Several narrow features are observed far from the edge and assigned to 0953-4075/29/22/017/img15 double-core excited states. Two series of states are present corresponding to the triplet and singlet configurations, due to the core 1s - 2p exchange term. The energy, width and intensity of the features are strongly molecule dependent. In the case of 0953-4075/29/22/017/img12, a theoretical determination of all the single- and double-core vacancy ionization potentials has been performed using a new theoretical approach which makes it possible to solve the convergence problem inherent in a simple SCF calculation. Results compare favourably with available experimental values. In particular, the singlet - triplet separation is correctly predicted for all the double-core ionized states. The relation between the double-core relaxation energies and the associated single-core relaxation values is discussed. Finally, the double-core excited state energies are determined within a Z + 2 core equivalent model, allowing a full assignment of the 0953-4075/29/22/017/img15 experimental spectra of 0953-4075/29/22/017/img12.

  5. Extraction of local coordination structure in a low-concentration uranyl system by XANES.

    PubMed

    Zhang, Linjuan; Zhou, Jing; Zhang, Jianyong; Su, Jing; Zhang, Shuo; Chen, Ning; Jia, Yunpeng; Li, Jiong; Wang, Yu; Wang, Jian Qiang

    2016-05-01

    Obtaining structural information of uranyl species at an atomic/molecular scale is a critical step to control and predict their physical and chemical properties. To obtain such information, experimental and theoretical L3-edge X-ray absorption near-edge structure (XANES) spectra of uranium were studied systematically for uranyl complexes. It was demonstrated that the bond lengths (R) in the uranyl species and relative energy positions (ΔE) of the XANES were determined as follows: ΔE1 = 168.3/R(U-Oax)(2) - 38.5 (for the axial plane) and ΔE2 = 428.4/R(U-Oeq)(2) - 37.1 (for the equatorial plane). These formulae could be used to directly extract the distances between the uranium absorber and oxygen ligand atoms in the axial and equatorial planes of uranyl ions based on the U L3-edge XANES experimental data. In addition, the relative weights were estimated for each configuration derived from the water molecule and nitrate ligand based on the obtained average equatorial coordination bond lengths in a series of uranyl nitrate complexes with progressively varied nitrate concentrations. Results obtained from XANES analysis were identical to that from extended X-ray absorption fine-structure (EXAFS) analysis. XANES analysis is applicable to ubiquitous uranyl-ligand complexes, such as the uranyl-carbonate complex. Most importantly, the XANES research method could be extended to low-concentration uranyl systems, as indicated by the results of the uranyl-amidoximate complex (∼40 p.p.m. uranium). Quantitative XANES analysis, a reliable and straightforward method, provides a simplified approach applied to the structural chemistry of actinides.

  6. Energy-Specific Equation-of-Motion Coupled-Cluster Methods for High-Energy Excited States: Application to K-edge X-ray Absorption Spectroscopy.

    PubMed

    Peng, Bo; Lestrange, Patrick J; Goings, Joshua J; Caricato, Marco; Li, Xiaosong

    2015-09-08

    Single-reference techniques based on coupled-cluster (CC) theory, in the forms of linear response (LR) or equation of motion (EOM), are highly accurate and widely used approaches for modeling valence absorption spectra. Unfortunately, these equations with singles and doubles (LR-CCSD and EOM-CCSD) scale as O(N⁶), which may be prohibitively expensive for the study of high-energy excited states using a conventional eigensolver. In this paper, we present an energy-specific non-Hermitian eigensolver that is able to obtain high-energy excited states (e.g., XAS K-edge spectrum) at low computational cost. In addition, we also introduce an improved trial vector for iteratively solving the EOM-CCSD equation with a focus on high-energy eigenstates. The energy-specific EOM-CCSD approach and its low-scaling alternatives are applied to calculations of carbon, nitrogen, oxygen, and sulfur K-edge excitations. The results are compared to other implementations of CCSD for excited states, energy-specific linear response time-dependent density functional theory (TDDFT), and experimental results with multiple statistical metrics are presented and evaluated.

  7. X-ray diffraction and X-ray K-absorption near edge studies of Copper (II) Micro cyclic Carbamide complexes.

    NASA Astrophysics Data System (ADS)

    Malviya, P. K.; Sharma, P.; Mishra, A.; Bhalse, D.

    2016-10-01

    Synthesis of metal complexes [Cu (Carbamide)] (X = Br, Cl, NO3, SO4,CH3COO) by the chemical root method. The XRD data have been recorded at DAE, IUC Indore.XANES spectra have been recorded at the K-edge of Cu using the dispersive beam line at 2.5GeV Indus-2 synchrotron radiation source RRCAT (Raja Ramanna Center for Advance Technology), Indore, India. XRD and XANES data have been analysed using the computer software Origin 8.0 professional and Athena. X-ray diffraction studies of all the complexes are indicative of their crystalline nature. The crystalline size of the samples is estimated using the Scherer's formula. The values of the chemical shifts suggest that copper is in oxidation state +2 in all of the complexes.

  8. Sulfur K-edge X-ray absorption spectroscopy as an experimental probe for S-nitroso proteins

    SciTech Connect

    Szilagyi, Robert K. . E-mail: Szilagyi@Montana.EDU; Schwab, David E.

    2005-04-29

    X-ray absorption spectroscopy at the sulfur K-edge (2.4-2.6 keV) provides a sensitive and specific technique to identify S-nitroso compounds, which have significance in nitric oxide-based cell signaling. Unique spectral features clearly distinguish the S-nitroso-form of a cysteine residue from the sulfhydryl-form or from a methionine thioether. Comparison of the sulfur K-edge spectra of thiolate, thiol, thioether, and S-nitroso thiolate compounds indicates high sensitivity of energy positions and intensities of XAS pre-edge features as determined by the electronic environment of the sulfur absorber. A new experimental setup is being developed for reaching the in vivo concentration range of S-nitroso thiol levels in biological samples.

  9. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    DOE PAGES

    Liu, X.; Dean, M. P. M.; Liu, J.; ...

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore » RIXS energy resolutions in the hard X-ray region is usually poor.« less

  10. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    SciTech Connect

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; Hill, J. P.

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolutions in the hard X-ray region is usually poor.

  11. Electronic structure and optical properties of 2,5,8,11-tetra-tert-butylperylene polyhedral crystals from x-ray absorption near-edge structure and x-ray excited optical luminescence studies

    NASA Astrophysics Data System (ADS)

    Lv, Jingyu; Ko, Peter J. Y.; Zhang, Ying; Liu, Lijia; Zhang, Xiujuan; Zhang, Xiaohong; Sun, Xuhui; Sham, T. K.

    2011-06-01

    X-ray absorption near-edge structure (XANES) and x-ray excited optical luminescence (XEOL) have been used to study the optical properties of 2,5,8,11-tetra-tert-butylperylene (TBPe) polyhedral crystals with morphology varies from cube to rhombic dodecahedron. Benefit from the high resolution of synchrotron radiation spectroscopy, C 1s to π∗ and σ∗ transitions from different carbon sites in TBPe can be clearly distinguished in the carbon K-edge XANES. XEOL studies reveal that different crystals exhibit multiple emission bands with different branching ratio. It is also found that all the polyhedral crystals exhibit a weak luminescence in the near infrared, which is absent in the powder sample.

  12. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Panahifar, Arash; Swanston, Treena M.; Pushie, M. Jake; Belev, George; Chapman, Dean; Weber, Lynn; Cooper, David M. L.

    2016-07-01

    Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

  13. Characterization of Phosphorus Species in Biosolids and Manures Using XANES Spectroscopy

    SciTech Connect

    Shober,A.; Hesterberg, D.; Sims, J.; Gardner, S.

    2006-01-01

    Received for publication March 10, 2006. Identification of the chemical P species in biosolids or manures will improve our understanding of the long-term potential for P loss when these materials are land applied. The objectives of this study were to determine the P species in dairy manures, poultry litters, and biosolids using X-ray absorption near-edge structure (XANES) spectroscopy and to determine if chemical fractionation techniques can provide useful information when interpreted based on the results of more definitive P speciation studies. Our XANES fitting results indicated that the predominant forms of P in organic P sources included hydroxylapatite, PO{sub 4} sorbed to Al hydroxides, and phytic acid in lime-stabilized biosolids and manures; hydroxylapatite, PO{sub 4} sorbed on ferrihydrite, and phytic acid in lime- and Fe-treated biosolids; and PO{sub 4} sorbed on ferrihydrite, hydroxylapatite, {beta}-tricalcium phosphate ({beta}-TCP), and often PO{sub 4} sorbed to Al hydroxides in Fe-treated and digested biosolids. Strong relationships existed between the proportions of XANES PO{sub 4} sorbed to Al hydroxides and NH{sub 4}Cl- + NH{sub 4}F-extractable P, XANES PO{sub 4} sorbed to ferrihydrite + phytic acid and NaOH-extractable P, and XANES hydroxylapatite + {beta}-TCP and dithionite-citrate-bicarbonate (DCB)- + H{sub 2}SO{sub 4}-extractable P ({gamma}{sup 2} = 0.67 [P = 0.01], 0.78 [P = 0.01], and 0.89 [P = 0.001], respectively). Our XANES fitting results can be used to make predictions about long-term solubility of P when biosolids and manures are land applied. Fractionation techniques indicate that there are differences in the forms of P in these materials but should be interpreted based on P speciation data obtained using more advanced analytical tools.

  14. Characterization of phosphorus species in biosolids and manures using XANES spectroscopy.

    PubMed

    Shober, Amy L; Hesterberg, Dean L; Sims, J Thomas; Gardner, Sheila

    2006-01-01

    Identification of the chemical P species in biosolids or manures will improve our understanding of the long-term potential for P loss when these materials are land applied. The objectives of this study were to determine the P species in dairy manures, poultry litters, and biosolids using X-ray absorption near-edge structure (XANES) spectroscopy and to determine if chemical fractionation techniques can provide useful information when interpreted based on the results of more definitive P speciation studies. Our XANES fitting results indicated that the predominant forms of P in organic P sources included hydroxylapatite, PO(4) sorbed to Al hydroxides, and phytic acid in lime-stabilized biosolids and manures; hydroxylapatite, PO(4) sorbed on ferrihydrite, and phytic acid in lime- and Fe-treated biosolids; and PO(4) sorbed on ferrihydrite, hydroxylapatite, beta-tricalcium phosphate (beta-TCP), and often PO(4) sorbed to Al hydroxides in Fe-treated and digested biosolids. Strong relationships existed between the proportions of XANES PO(4) sorbed to Al hydroxides and NH(4)Cl- + NH(4)F-extractable P, XANES PO(4) sorbed to ferrihydrite + phytic acid and NaOH-extractable P, and XANES hydroxylapatite + beta-TCP and dithionite-citrate-bicarbonate (DCB)- + H(2)SO(4)-extractable P (r(2) = 0.67 [P = 0.01], 0.78 [P = 0.01], and 0.89 [P = 0.001], respectively). Our XANES fitting results can be used to make predictions about long-term solubility of P when biosolids and manures are land applied. Fractionation techniques indicate that there are differences in the forms of P in these materials but should be interpreted based on P speciation data obtained using more advanced analytical tools.

  15. Electronic structure of KD2xH2(1-x)PO4 studied by soft x-ray absorption and emission spectroscopies

    SciTech Connect

    Kucheyev, S O; Bostedt, C F; van Buuren, T; Willey, T M; Land, T A; Terminello, L J; Felter, T E; Hamza, A V; Demos, S G; Nelson, A J

    2004-04-27

    The surface and bulk electronic structure of tetragonal (at 300 K) and orthorhombic (at 77 K) KD{sub 2x}H{sub 2(1-x)}PO{sub 4} single crystals (so-called KDP and DKDP), with a deuteration degree x of 0.0, 0.3, and 0.6, is studied by soft x-ray absorption near-edge structure (XANES) and non-resonant soft x-ray emission (XES) spectroscopies. High-resolution O K-edge, P L{sub 2,3}-edge, and K L{sub 2,3}-edge XANES and XES spectra reveal that the element-specific partial density of states in the conduction and valence bands is essentially independent of deuteration x. We give assignment of XANES and XES peaks based on previous molecular orbital and band-structure calculations. Projected densities of states in the conduction band also appear to be essentially identical for tetragonal (at 300 K) and orthorhombic (at 77 K) phases, consistent with previous band structure calculations. However, a decrease in sample temperature from 300 to 77 K results in an {approx} 0.5 eV shift in the valence band edge (probed by XES), with negligible changes to the conduction band edge (probed by XANES). Results also show that high-intensity x-ray irradiation results in decomposition of these hydrogen-bonded materials into water and KPO{sub 3} cyclo- and polyphosphates.

  16. Communication: Near edge x-ray absorption fine structure spectroscopy of aqueous adenosine triphosphate at the carbon and nitrogen K-edges.

    PubMed

    Kelly, Daniel N; Schwartz, Craig P; Uejio, Janel S; Duffin, Andrew M; England, Alice H; Saykally, Richard J

    2010-09-14

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen and carbon K-edges was used to study the hydration of adenosine triphosphate in liquid microjets. The total electron yield spectra were recorded as a function of concentration, pH, and the presence of sodium, magnesium, and copper ions (Na(+)/Mg(2+)/Cu(2+)). Significant spectral changes were observed upon protonation of the adenine ring, but not under conditions that promote π-stacking, such as high concentration or presence of Mg(2+), indicating that NEXAFS is insensitive to the phenomenon. Intramolecular inner-sphere association of Cu(2+) did create observable broadening of the nitrogen spectrum, whereas outer-sphere association with Mg(2+) did not.

  17. XANES mapping of organic sulfate in three scleractinian coral skeletons

    NASA Astrophysics Data System (ADS)

    Cuif, Jean-Pierre; Dauphin, Yannicke; Doucet, Jean; Salome, Murielle; Susini, Jean

    2003-01-01

    The presence and localization of organic sulfate within coral skeletons are studied by using X-ray absorption near edge structure spectroscopy (XANES) fluorescence. XANES spectra are recorded from four reference sulfur-bearing organic molecules: three amino acids (H-S-C bonds in cysteine; C-S-C bonds in methionine; one disulfide bond C-S-S-C bonds in cystine) and a sulfated sugar (C-SO 4 bonds in chondroitin sulfate). Spectral responses of three coral skeletons show that the sulfated form is extremely dominant in coral aragonite, and practically exclusive within both centres of calcification and the surrounding fibrous tissues of coral septa. Mapping of S-sulfate concentrations in centres and fibres gives us direct evidence of high concentration of organic sulfate in centres of calcification. Additionally, a banding pattern of S-sulfate is visible in fibrous part of the coral septa, evidencing a biochemical zonation that corresponds to the step-by-step growth of fibres.

  18. Submicrometer hyperspectral X-ray imaging of heterogeneous rocks and geomaterials: applications at the Fe k-edge.

    PubMed

    De Andrade, Vincent; Susini, Jean; Salomé, Murielle; Beraldin, Olivier; Rigault, Cecile; Heymes, Thomas; Lewin, Eric; Vidal, Olivier

    2011-06-01

    Because of their complex genesis, rocks and geomaterials are commonly polycrystalline heterogeneous systems, with various scale-level chemical and structural heterogeneities. Like most other μ-analytical techniques relying on scanning instruments with pencil-beam, the X-ray absorption near edge structure (XANES) technique allows elemental oxidation states to be probed with high spatial resolution but suffers from long acquisition times, imposing practical limits on the field of view. Now, regions of interest of sample are generally several orders of magnitude larger than the beam size. Here, we show the potential of coupling XANES and full-field absorption radiographies with a large hard X-ray beam. Thanks to a new setup, which allows both the acquisition of a XANES image stack and the execution of polarization contrast imaging, 1 to 4 mega-pixel crystallographic orientations and Fe oxidation state mapping corrected from polarization effects are obtained in a couple of hours on polycrystalline materials with submicrometric resolution. The demonstration is first carried out on complex metamorphic rocks, where Fe(3+)/Fe(total) images reveal subtle redox variations within single mineralogical phases. A second application concerns a bentonite analogue considered for nuclear waste and CO(2) storage. Proportion mappings of finely mixed phases are extracted from hyperspectral data, imaging the spatial progress of reaction processes essential for the safety of such storage systems.

  19. Sulfur K-Edge XAS and DFT Calculations on NitrileHydratase: Geometric and Electronic Structure of the Non-heme Iron Active Site

    SciTech Connect

    Dey, Abhishek; Chow, Marina; Taniguchi, Kayoko; Lugo-Mas, Priscilla; Davin, Steven; Maeda, Mizuo; Kovacs, Julie A.; Odaka, Masafumi; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC, SSRL

    2006-09-28

    The geometric and electronic structure of the active site of the non-heme iron enzyme nitrile hydratase (NHase) is studied using sulfur K-edge XAS and DFT calculations. Using thiolate (RS{sup -})-, sulfenate (RSO{sup -})-, and sulfinate (RSO{sub 2}{sup -})-ligated model complexes to provide benchmark spectral parameters, the results show that the S K-edge XAS is sensitive to the oxidation state of S-containing ligands and that the spectrum of the RSO- species changes upon protonation as the S-O bond is elongated (by {approx}0.1 {angstrom}). These signature features are used to identify the three cysteine residues coordinated to the low-spin Fe{sup III} in the active site of NHase as CysS{sup -}, CysSOH, and CysSO{sub 2}{sup -} both in the NO-bound inactive form and in the photolyzed active form. These results are correlated to geometry-optimized DFT calculations. The pre-edge region of the X-ray absorption spectrum is sensitive to the Z{sub eff} of the Fe and reveals that the Fe in [FeNO]{sup 6} NHase species has a Z{sub eff} very similar to that of its photolyzed Fe{sup III} counterpart. DFT calculations reveal that this results from the strong {pi} back-bonding into the {pi}* antibonding orbital of NO, which shifts significant charge from the formally t{sub 2}{sup 6} low-spin metal to the coordinated NO.

  20. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    PubMed

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  1. Resonant inelastic X-ray scattering spectrometer with 25meV resolution at the Cu K -edge

    DOE PAGES

    Ketenoglu, Didem; Harder, Manuel; Klementiev, Konstantin; ...

    2015-06-27

    An unparalleled resolution is reported with an inelastic X-ray scattering instrument at the CuK-edge. Based on a segmented concave analyzer, featuring single-crystal quartz (SiO2) pixels, the spectrometer delivers a resolution near 25meV (FWHM) at 8981eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick–Baez optics. The measured resolution agrees with the ray-tracing simulation of an ideal spectrometer. The performance of the spectrometer is demonstrated by reproducing the phonon dispersion curve of a beryllium single-crystal.

  2. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Wernet, Philippe

    2016-09-01

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  3. Atomistic origins of pressure-induced changes in the O K -edge x-ray Raman scattering features of Si O2 and MgSi O3 polymorphs: Insights from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Yi, Yoo Soo; Lee, Sung Keun

    2016-09-01

    Despite its fundamental importance in condensed matter physics and geophysical implications, establishing the systematic and direct link between the pressure-induced structural changes in crystalline and noncrystalline low-z oxides and their corresponding evolution in O K -edge core-electron excitation features under extreme compression has been challenging. Here we calculated the site-resolved partial density of states and O K -edge x-ray Raman scattering (XRS) spectra for two of the important oxide phases in the Earth's lower mantle, MgSi O3 bridgmanite and post-bridgmanite, up to 120 GPa using ab initio calculations, revealing the electronic origins of the O K -edge features for oxides under compression. The absorption threshold (EA) and band gap increase linearly with a decrease in the O-O distance in diverse Si O2 and MgSi O3 high-pressure phases [EA(eV ) ≈-10.9 dO-O(Å ) +34.4 ] , providing a predictive relationship between the EA and the O-O distances in the oxide at high pressure. Despite densification, upon isobaric phase transition from bridgmanite to post-bridgmanite at 120 GPa, a decrease in band gap results in a decrease in edge energy because of an increase in O-O distance. The oxygen proximity is a useful structural proxy of oxide densification upon compression, as it explains the pressure-induced changes in O K -edge XRS features of crystalline and amorphous Si O2 and MgSi O3 at high pressures. These results can be applied to studies of the pressure-bonding transitions in a wide range of oxides under extreme compression.

  4. Characterization of Sulfur Compounds in Coffee Beans by Sulfur K-XANES Spectroscopy

    SciTech Connect

    Lichtenberg, H.; Hormes, J.; Prange, A.; Modrow, H.

    2007-02-02

    In this 'feasibility study' the influence of roasting on the sulfur speciation in Mexican coffee beans was investigated by sulfur K-XANES Spectroscopy. Spectra of green and slightly roasted beans could be fitted to a linear combination of 'standard' reference spectra for biological samples, whereas longer roasting obviously involves formation of additional sulfur compounds in considerable amounts.

  5. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography

    NASA Astrophysics Data System (ADS)

    Schlomka, J. P.; Roessl, E.; Dorscheid, R.; Dill, S.; Martens, G.; Istel, T.; Bäumer, C.; Herrmann, C.; Steadman, R.; Zeitler, G.; Livne, A.; Proksa, R.

    2008-08-01

    Theoretical considerations predicted the feasibility of K-edge x-ray computed tomography (CT) imaging using energy discriminating detectors with more than two energy bins. This technique enables material-specific imaging in CT, which in combination with high-Z element based contrast agents, opens up possibilities for new medical applications. In this paper, we present a CT system with energy detection capabilities, which was used to demonstrate the feasibility of quantitative K-edge CT imaging experimentally. A phantom was imaged containing PMMA, calcium-hydroxyapatite, water and two contrast agents based on iodine and gadolinium, respectively. Separate images of the attenuation by photoelectric absorption and Compton scattering were reconstructed from energy-resolved projection data using maximum-likelihood basis-component decomposition. The data analysis further enabled the display of images of the individual contrast agents and their concentrations, separated from the anatomical background. Measured concentrations of iodine and gadolinium were in good agreement with the actual concentrations. Prior to the tomographic measurements, the detector response functions for monochromatic illumination using synchrotron radiation were determined in the energy range 25 keV-60 keV. These data were used to calibrate the detector and derive a phenomenological model for the detector response and the energy bin sensitivities.

  6. Near-coincident K-line and K-edge energies as ionization diagnostics for some high atomic number plasmas

    SciTech Connect

    Pereira, N. R.; Weber, B. V.; Phipps, D. G.; Schumer, J. W.; Seely, J. F.; Carroll, J. J.; Vanhoy, J. R.; Slabkowska, K.; Polasik, M.

    2012-10-15

    For some high atomic number atoms, the energy of the K-edge is tens of eVs higher than the K-line energy of another atom, so that a few eV increase in the line's energy results in a decreasing transmission of the x-ray through a filter of the matching material. The transmission of cold iridium's Asymptotically-Equal-To 63.287 keV K{alpha}{sub 2} line through a lutetium filter is 7% lower when emitted by ionized iridium, consistent with an energy increase of {Delta}{epsilon} Asymptotically-Equal-To 10{+-}1 eV associated with the ionization. Likewise, the transmission of the K{beta}{sub 1} line of ytterbium through a near-coincident K-edge filter changes depending on plasma parameters that should affect the ionization. Systematic exploration of filter-line pairs like these could become a unique tool for diagnostics of suitable high energy density plasmas.

  7. XRD and xanes studies of copper complexes using (diethyl 4-amino-1-phenyl-1H-pyrazole-3,5 dicarboxylate) as ligand

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Jain, Garima

    2013-06-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopic (XAS) studies have been done on three copper complexes using (diethyl 4-amino-1-phenyl-1H-pyrazole-3,5 dicarboxylate) as ligand. The X-ray diffraction studies of copper complexes have been recorded using Rigaku RINT-2000 X-ray diffractometer equipped with a rotating anode with tube voltage of 40 kV and current of 100 mA. The X-ray absorption spectra of the complexes have been recorded at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore and is called beamline.

  8. XANES and micro-Raman spectroscopy study of the barium titanosilicates BaTiSi2O7 and BaTiSi4O11

    NASA Astrophysics Data System (ADS)

    Viani, A.; Pollastri, S.; Macova, P.; Palermo, A.; Peréz-Estébanez, M.; Gualtieri, A. F.

    2016-04-01

    The coordination environment around Ti4+ in the photoluminescent compound BaTiSi2O7 and in BaTiSi4O11 was investigated with X-ray absorption near-edge structure spectroscopy and micro-Raman spectroscopy. The presence of VTi in TiO5 pyramidal units with one short Ti-O bond involving the apical oxygen was detected in both compounds. Interpretation of the vibrational signal from the silicate framework suggested that BaTiSi4O11 is a metasilicate containing building units of SiO4 tetrahedra, which are larger than in other barium titanosilicates. These results confirmed the same structural environment of Ti4+ as recently disclosed by structure refinement of BaTiSi2O7 and provided new insights into the unknown structure of BaTiSi4O11 in the light of the study of its physical properties as potential functional material.

  9. Diamond xenolith and matrix organic matter in the Sutter's Mill meteorite measured by C-XANES

    NASA Astrophysics Data System (ADS)

    Kebukawa, Yoko; Zolensky, Michael E.; Kilcoyne, A. L. David; Rahman, Zia; Jenniskens, Peter; Cody, George D.

    2014-11-01

    The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2-5 surrounded by fine-grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine-grained matrix employing carbon and nitrogen X-ray absorption near-edge structure (C-XANES and N-XANES) spectroscopy using a scanning transmission X-ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2-5 contains C-rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C-XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen-bearing functional groups were observed with N-XANES. One of the possible diamond grains contains a Ca-bearing inclusion that is not carbonate. C-XANES features of the diamond-edges suggest that the diamond might have formed by the CVD process, or in a high-temperature and -pressure environment in the interior of a much larger parent body.

  10. Iron K-edge X-ray absorption spectroscopy of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae.

    PubMed Central

    Arber, J M; Flood, A C; Garner, C D; Gormal, C A; Hasnain, S S; Smith, B E

    1988-01-01

    Iron K-edge X-ray absorption data for the iron-molybdenum cofactor ('FeMoco') from Klebsiella pneumoniae reported here provide the first evidence for long-range structural order in the cofactor [Fe...Fe(Mo) = 0.368 nm in addition to Fe...S = 0.22 nm and Fe...Fe(Mo) = 0.27 nm] and, in contrast with previously published data [Antonio, Teo, Orme-Johnson, Nelson, Groh, Lindahl, Kauzlarich & Averill (1982) J. Am. Chem. Soc. 104, 4703-4705], indicate that most of the iron centres are not co-ordinated to light (oxygen, nitrogen) atoms. This demonstrates that presently available chemical models for FeMoco are inadequate. PMID:3046607

  11. Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge

    SciTech Connect

    Gilles, Mary K; Moffet, R.C.; Henn, T.; Laskin, A.

    2011-01-20

    We have developed an automated data analysis method for atmospheric particles using scanning transmission X-ray microscopy coupled with near edge X-ray fine structure spectroscopy (STXM/NEXAFS). This method is applied to complex internally mixed submicrometer particles containing organic and inorganic material. Several algorithms were developed to exploit NEXAFS spectral features in the energy range from 278 to 320 eV for quantitative mapping of the spatial distribution of elemental carbon, organic carbon, potassium, and noncarbonaceous elements in particles of mixed composition. This energy range encompasses the carbon K-edge and potassium L2 and L3 edges. STXM/NEXAFS maps of different chemical components were complemented with a subsequent analysis using elemental maps obtained by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX). We demonstrate the application of the automated mapping algorithms for data analysis and the statistical classification of particles.

  12. Oxygen K-edge fine structures of water by x-ray Raman scattering spectroscopy under pressure conditions

    SciTech Connect

    Fukui, Hiroshi; Huotari, Simo; Andrault, Denis; Kawamoto, Tatsuhiko

    2007-10-07

    Fine structure of the oxygen K edge was investigated for water at ambient pressure, 0.16, 0.21, 0.27, 0.47, and 0.60 GPa using x-ray Raman scattering spectroscopy (XRS). Similarity in near-edge structures at 0.16 and 0.60 GPa suggests little difference in the electronic state of oxygen in the low-pressure and high-pressure forms of water. Yet, we observed significant variation of preedge structure of the XRS spectra with compression. The intensity of the preedge peak at 535.7 eV has a minimal value at around 0.3 GPa, indicating that the number of hydrogen bonding increases first and then decreases as a function of pressure.

  13. Analyzing organic sulfur in coal/char: Integrated mild gasification/XANES methods. Technical report, 1 March--31 May 1994

    SciTech Connect

    Palmer, S.R.; Huffman, G.P.

    1994-09-01

    The overall goal of this study is to improve the understanding of sulfur in coals/chars via the use of combined advanced non-destructive and advanced destructive methods of sulfur analysis. This study combines selective oxidation, analytical pyrolysis, and sulfur X-ray Absorption Near Edge Structure Spectroscopy (XANES) analysis. Samples with a wide variety of sulfur contents, (0.63% to 4.40%) have been prepared for use in this study. This includes steam gasification chars, oxidized coals and desulfurized coals as well of the original unaltered coals. Mild pyrolysis and preliminary XANES data shows that the sulfur chemistry of gasification chars is significantly different from that of the original coals. Mild pyrolysis of the samples that were oxidized with peroxyacetic acid showed that the level of simple thiophene structures observed in the pyrolysis products declines with increasing levels of oxidation. Sulfur XANES spectra of treated samples showed various effects depending on the treatment severity. For the less severely treated samples (demineralization and solvent extraction), the XANES spectra were similar, although not identical, to the untreated coal spectra, whereas the more severe treatments (steam at 450 C; peroxyacetic acid at 25 C) showed preferential oxidation of one or more sulfur-bearing phases in the original coal. Additional samples have recently been examined by XANES and W-band EPR and the data is currently being processed and evaluated.

  14. Spectroscopic studies of cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Totir, Dana Alexa

    2000-10-01

    Structural changes that occur during electrochemical cycling of lithium-ion battery cathode materials have been investigated using in situ spectroscopic techniques. A new method was developed for the preparation of carbon and binder free cathodes utilizing powder materials of interest for commercial batteries. The extraordinary quality of the cyclic voltammetric curves recorded for this type of electrodes during the in situ measurements allows direct correlations to be made between the state of charge of the material and its structural and electronic characteristics. LiCoO2, LiMn2O4 and LiCo0.15Ni 0.85O2 electrodes were evaluated using cycling voltammetry and the mean diffusion coefficient for Li-ions in the lattice (DLi) was calculated for LiMn2O4. LiMn2O4 electrodes prepared by this technique have been studied in situ using Mn K-edge XAS. Data analysis for the species formed at different potentials indicated a contraction of the lattice associated with the increase in the oxidation state of manganese. In situ Raman spectra of particles of LiMn2O 4, and LiCoO2 embedded in Au and also of KS-44 graphite and carbon microfibers MCF28 embedded in thermally annealed Ni have been recorded as a function of the applied potential. Fe K-edge XAFS of pyrite electrodes in a Li/PEO(LiClO4)/FeS 2 cell and S K-edge XANES measurements of a FeS2 electrode in a non-aqueous electrolyte have been acquired as a function of the state of charge. The studies have clearly evidenced the formation of metallic Fe and Li2S as intermediates after 4 e- discharge and the formation of Li2FeS2 after 2 e- recharge. While Fe K-edge studies have indicated that there is no change in the Fe environment and oxidation state upon 4 e- recharge, the results obtained from S K-edge studies are inconclusive for this stage. Finally, in situ Co K-edge XAFS data were obtained for the first time during the electrochemical cycling of electrodeposited Co(OH) 2 films in alkaline solutions. The results support

  15. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  16. Postcollision-interaction effects in HCl following photofragmentation near the chlorine K edge

    SciTech Connect

    Hansen, D.L.; Arrasate, M.E.; Martin, R.; Vanderford, B.; Lindle, D.W.; Levin, J.C.; Sellin, I.A.; Neill, P; Perera, R.C.C. Leung, K.T. Simon, M. Simon, M. Uehara, Y. Whitfield, S.B.

    1998-06-01

    Ion time-of-flight mass spectroscopy was used to study the relaxation dynamics of HCl following photoexcitation in the vicinity of the Cl K threshold ({approx}2.8 keV). Detailed observations of molecular fragmentation mediated by postcollision interaction between a photoelectron and an Auger electron are presented, evidenced by the recapture of Cl K photoelectrons by either Cl{sup n+} or H{sup +} dissociation fragments. {copyright} {ital 1998} {ital The American Physical Society}

  17. Photoconductivity measurements of x-ray absorption fine structures in liquids in the soft x-ray region: Si and Cl K-edge

    SciTech Connect

    Sham, T.K.; Xiong, J.Z.; Feng, X.H.; Holroyd, R.A.; Yang, B.X.

    1992-12-31

    Photoconductivity measurements of X-ray absorption fine structures (XAFS) at the Si and Cl K-edge have been carried out in a liquid cell for (CH{sub 3}){sub 4},Si [(CH{sub 3}){sub 3}Si]{sub 4}Si and eitheras a pure liquid or 2,2,4-trimethylpentane solution. It is found that for the pure liquids and their concentrated hydrocarbon solutions, all K-edge XAFS spectra are inverted as expected under the condition of total absorption. A sharp conductivity dip is also observed in CCl{sub 4} at the Cl K-edge. The concentration dependence of the XAFS spectrum of CCl{sub 4} is reported. These results are discussed in terms of soft X-ray induced ion yields of the solute and solvent molecules in liquids.

  18. Photoconductivity measurements of x-ray absorption fine structures in liquids in the soft x-ray region: Si and Cl K-edge

    SciTech Connect

    Sham, T.K.; Xiong, J.Z.; Feng, X.H. . Dept. of Chemistry); Holroyd, R.A. ); Yang, B.X. )

    1992-01-01

    Photoconductivity measurements of X-ray absorption fine structures (XAFS) at the Si and Cl K-edge have been carried out in a liquid cell for (CH[sub 3])[sub 4],Si [(CH[sub 3])[sub 3]Si][sub 4]Si and eitheras a pure liquid or 2,2,4-trimethylpentane solution. It is found that for the pure liquids and their concentrated hydrocarbon solutions, all K-edge XAFS spectra are inverted as expected under the condition of total absorption. A sharp conductivity dip is also observed in CCl[sub 4] at the Cl K-edge. The concentration dependence of the XAFS spectrum of CCl[sub 4] is reported. These results are discussed in terms of soft X-ray induced ion yields of the solute and solvent molecules in liquids.

  19. Asymptotically-Equal-To 10 eV ionization shift in Ir K{alpha}{sub 2} from a near-coincident Lu K-edge

    SciTech Connect

    Pereira, N. R.; Weber, B. V.; Phipps, D.; Schumer, J. W.; Seely, J. F.; Carroll, J. J.; VanHoy, J. R.; Slabkowska, K.; Polasik, M.

    2012-10-15

    Close to an x-ray filter's K-edge the transmission depends strongly on the photon energy. For a few atom pairs, the K-edge of one is only a few tens of eV higher than a K-line energy of another, so that a small change in the line's energy becomes a measurable change in intensity behind such a matching filter. Lutetium's K-edge is Asymptotically-Equal-To 27 eV above iridium's K{alpha}{sub 2} line, Asymptotically-Equal-To 63.287 keV for cold Ir. A Lu filter reduces this line's intensity by Asymptotically-Equal-To 10 % when it is emitted by a plasma, indicating an ionization shift {Delta}E Asymptotically-Equal-To 10{+-}1 eV.

  20. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    SciTech Connect

    Arber, J.M.; de Boer, E.; Garner, C.D.; Hasnain, S.S.; Wever, R. )

    1989-09-19

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure data confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.

  1. Site-selective photofragmentation of chlorinated polymeric films observed around the chlorine K-edge

    NASA Astrophysics Data System (ADS)

    Arantes, C.; Mendes, L. A. V.; Pinho, R. R.; Ferreira, M.; de Souza, G. G. B.; Rocha, A. B.; Rocco, M. L. M.

    2013-03-01

    Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly(vinyl chloride) (PVC) and poly(vinyl dichloride) (PVDC) around the chlorine 1s-edge. Experiments were performed using a synchrotron source operating in the single-bunch mode and a time-of-flight mass spectrometry for ion analysis. Cl+ ion yields, as a function of the photon energy, reproduce the photoabsorption spectrum, showing significant increase at the 1s-resonance. Edge-jump ratios, defined as the ratio between edge-jumps (intensity ratio of the yields between above and below the absorption edge) of two different transitions, for Cl+ ion yields were much higher than the equivalent electron yields, indicating site-selectivity in C-Cl bond breaking for both polymers, as a result of efficient spectator Auger decay. The expected isotope ratio of 3:1 for chlorine was measured for PVC. The interpretation of the NEXAFS spectrum was assisted by quantum mechanical calculations at a multireference perturbation theory level.

  2. Resonant inelastic x-ray scattering on iso-C{sub 2}H{sub 2}Cl{sub 2} around the chlorine K-edge: Structural and dynamical aspects

    SciTech Connect

    Kawerk, Elie E-mail: ekawerk@units.it; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Simon, Marc; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; and others

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  3. Use of synchrotron XANES and Cr-doped coal to further confirm the vaporization of organically bound Cr and the formation of chromium(VI) during coal oxy-fuel combustion.

    PubMed

    Chen, Juan; Jiao, Facun; Zhang, Lian; Yao, Hong; Ninomiya, Yoshihiko

    2012-03-20

    Through the use of synchrotron XANES and Cr-doped brown coal, extensive efforts have been made to clarify the volatility of organically bound Cr during oxy-fuel combustion and the mode of occurrence and leachability of Cr in resulting fly ashes. As the continuation of our previous study using raw coal, the Cr-doped coal has been tested in this study to improve the signal-to-noise ratio for Cr K-edge XANES spectra, and hence the accuracy for Cr(VI) quantification. As has been confirmed, the abundant CO(2) as a balance gas for oxy-firing has the potential to inhibit the decomposition of organically bound Cr, thereby favoring its retention in solid ash. It also has the potential to promote the oxidation of Cr(III) to Cr(VI) to a minor extent. Increasing the oxygen partial pressure, particularly in the coexistence of HCl in flue gas, favored the oxidation of Cr(III) into gaseous Cr(VI)-bearing species such as CrO(2)Cl(2). Regarding the solid impurities including Na(2)SO(4) and CaO, Na(2)SO(4) has proven to preferentially capture the Cr(III)-bearing species at a low furnace temperature such as 600 °C. Its promoting effect on the oxidation of Cr(III) to Cr(VI), although thermodynamically available at the temperatures examined here, is negligible in a lab-scale drop tube furnace (DTF), where the particle residence time is extremely short. In contrast, CaO has proven facilitating the capture of Cr(VI)-bearing species particularly oxychloride vapors at 1000 °C, forming Ca chromate with the formulas of CaCrO(4) and Ca(3)(CrO(4))(2) via a direction stabilization of Cr(VI) oxychloride vapor by CaO particle or an indirect oxidation of Cr(III) via the initial formation of Ca chromite. The fly ash collected from the combustion of Cr-doped coal alone has a lower water solubility (i.e., 58.7%) for its Cr(VI) species, due to the formation of Ba/Pb chromate and/or the incorporation of Cr(VI) vapor into a slagging phase which is water-insoluble. Adding CaO to coal increased the

  4. Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.

    2014-01-01

    . The natures of the macromolecular carbon in the solid inclusions observed by C-XANES are consistent with the previous studies showing that the carbonaceous solid inclusions have not originated from Monahans parent body [1-3], and have various origins, including various chondritic meteorite parent bodies as well as other unknown source(s).

  5. A valence state evaluation of a positive electrode material in an Li-ion battery with first-principles K- and L-edge XANES spectral simulations and resonance photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kubobuchi, Kei; Mogi, Masato; Matsumoto, Masashi; Baba, Teruhisa; Yogi, Chihiro; Sato, Chikai; Yamamoto, Tomoyuki; Mizoguchi, Teruyasu; Imai, Hideto

    2016-10-01

    X-ray absorption near edge structure (XANES) analysis is an element-specific method for proving electronic state mostly in the field of applied physics, such as battery and catalysis reactions, where the valence change plays an important role. In particular, many results have been reported for the analysis of positive electrode materials of Li-ion batteries, where multiple transition materials contribute to the reactions. However, XANES analysis has been limited to identifying the valence state simply in comparison with reference materials. When the shape of XANES spectra shows complicated changes, we were not able to identify the valence states or estimate the valence quantitatively, resulting in insufficient reaction analysis. To overcome such issues, we propose a valence state evaluation method using K- and L-edge XANES analysis with first-principles simulations. By using this method, we demonstrated that the complicated reaction mechanism of Li(Ni1/3Co1/3Mn1/3)O2 can be successfully analyzed for distinguishing each contribution of Ni, Co, Mn, and O to the redox reactions during charge operation. In addition to the XANES analysis, we applied resonant photoelectron spectroscopy (RPES) and diffraction anomalous fine structure spectroscopy (DAFS) with first-principles calculations to the reaction analysis of Co and Mn, which shows no or very little contribution to the redox. The combination of RPES and first-principles calculations successfully enables us to confirm the contribution of Co at high potential regions by electively observing Co 3d orbitals. Through the DAFS analysis, we deeply analyzed the spectral features of Mn K-edges and concluded that the observed spectral shape change for Mn does not originate from the valence change but from the change in distribution of wave functions around Mn upon Li extraction.

  6. Photoionization of Ne Atoms and Ne+ Ions Near the K Edge: Precision Spectroscopy and Absolute Cross-sections

    NASA Astrophysics Data System (ADS)

    Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander, Jr.; Buhr, Ticia; Hellhund, Jonas; Holste, Kristof; Kilcoyne, A. L. David; Klumpp, Stephan; Martins, Michael; Ricz, Sandor; Seltmann, Jörn; Viefhaus, Jens; Schippers, Stefan

    2017-02-01

    Single, double, and triple photoionization of Ne+ ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon–ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV, facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne+(1s2{s}22{p}6{}2{{{S}}}1/2) level, for example, requires cooperative interaction of at least four electrons.

  7. Resonant soft x-ray reflectivity of Me/B4C multilayers near the boron K edge

    SciTech Connect

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich

    2010-09-01

    Energy dependence of the optical constants of boron carbide in the short period Ru/B4C and Mo/B4C multilayers (MLs) are evaluated from complete reflectivity scans across the boron K edge using the energy-resolved photon-in-photon-out method. Differences between the refractive indices of the B4Cmaterial inside and close to the surface are obtained from the peak profile of the first order ML Bragg peak and the reflection profile near the critical angle of total external reflection close to the surface. Where a Mo/B4C ML with narrow barrier layers appears as a homogeneous ML at all energies, a Ru/B4C ML exhibits another chemical nature of boron at the surface compared to the bulk. From evaluation of the critical angle of total external reflection in the energy range between 184 and 186 eV, we found an enriched concentration of metallic boron inside the Ru-rich layer at the surface, which is not visible in other energy ranges.

  8. High-speed K-edge angiography achieved with tantalum K-series characteristic x rays (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Sato, Shigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2005-04-01

    The tantalum plasma flash x-ray generator is useful in order to perform high-speed K-edge angiography using cone beams because Kα rays from the tantalum target are absorbed effectively by gadolinium-based contrast media. In the flash x-ray generator, a 150 nF condenser is charged up to 80 kV by a power supply, and flash x rays are produced by the discharging. The x-ray tube is a demountable diode, and the turbomolecular pump evacuates air from the tube with a pressure of approximately 1 mPa. Since the electric circuit of the high-voltage pulse generator employs a cable transmission line, the high-voltage pulse generator produces twice the potential of the condenser charging voltage. When the charging voltage was increased, the K-series characteristic x-ray intensities of tantalum increased. The K lines were clean and intense, and hardly any bremsstrahlung rays were detected. The x-ray pulse widths were approximately 100 ns, and the time-integrated x-ray intensity had a value of approximately 300 μGy at 1.0 m from the x-ray source with a charging voltage of 80 kV. Angiography was performed using a film-less computed radiography (CR) system and gadolinium-based contrast media. In angiography of non-living animals, we observed fine blood vessels of approximately 100 μm with high contrasts.

  9. A 23Na magic angle spinning nuclear magnetic resonance, XANES, and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7.

    PubMed

    Smith, A L; Raison, P E; Martel, L; Charpentier, T; Farnan, I; Prieur, D; Hennig, C; Scheinost, A C; Konings, R J M; Cheetham, A K

    2014-01-06

    The valence state of uranium has been confirmed for the three sodium uranates NaU(V)O3/[Rn](5f(1)), Na4U(VI)O5/[Rn](5f(0)), and Na2U(VI)2O7/[Rn](5f(0)), using X-ray absorption near-edge structure (XANES) spectroscopy. Solid-state (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been performed for the first time, yielding chemical shifts at -29.1 (NaUO3), 15.1 (Na4UO5), and -14.1 and -19 ppm (Na1 8-fold coordinated and Na2 7-fold coordinated in Na2U2O7), respectively. The [Rn]5f(1) electronic structure of uranium in NaUO3 causes a paramagnetic shift in comparison to Na4UO5 and Na2U2O7, where the electronic structure is [Rn]5f(0). A (23)Na multi quantum magic angle spinning (MQMAS) study on Na2U2O7 has confirmed a monoclinic rather than rhombohedral structure with evidence for two distinct Na sites. DFT calculations of the NMR parameters on the nonmagnetic compounds Na4UO5 and Na2U2O7 have permitted the differentiation between the two Na sites of the Na2U2O7 structure. The linear thermal expansion coefficients of all three compounds have been determined using high-temperature X-ray diffraction: αa = 22.7 × 10(-6) K(-1), αb = 12.9 × 10(-6) K(-1), αc = 16.2 × 10(-6) K(-1), and αvol = 52.8 × 10(-6) K(-1) for NaUO3 in the range 298-1273 K; αa = 37.1 × 10(-6) K(-1), αc = 6.2 × 10(-6) K(-1), and αvol = 81.8 × 10(-6) K(-1) for Na4UO5 in the range 298-1073 K; αa = 6.7 × 10(-6) K(-1), αb = 14.4 × 10(-6) K(-1), αc = 26.8 × 10(-6) K(-1), αβ = -7.8 × 10(-6) K(-1), and αvol = -217.6 × 10(-6) K(-1) for Na2U2O7 in the range 298-573 K. The α to β phase transition reported for the last compound above about 600 K was not observed in the present studies, either by high-temperature X-ray diffraction or by differential scanning calorimetry.

  10. The determination of dopant ion valence distributions in insulating crystals using XANES measurements.

    PubMed

    Hughes-Currie, Rosa B; Ivanovskikh, Konstantin V; Wells, Jon-Paul R; Reid, Michael F; Gordon, Robert A

    2016-04-06

    Ytterbium-doped wide-bandgap fluoride crystals CaF2, SrF2 and NaMgF3 have been measured using x-ray absorption near edge structure (XANES) on the L3 edge to determine the ratio of trivalent to divalent Yb ions present in the crystals. This study improves upon previous XANES measurements of dopant ion valency by taking into account the x-ray emission transition probabilities for the divalent and trivalent species instead of simply assuming that the relative concentrations may be determined by the ratio of the x-ray excitation band areas. Trivalent to divalent ratios as high as 5 are inferred even at low total dopant ion concentrations of 0.05 mol% Yb.

  11. The determination of dopant ion valence distributions in insulating crystals using XANES measurements

    NASA Astrophysics Data System (ADS)

    Hughes-Currie, Rosa B.; Ivanovskikh, Konstantin V.; Wells, Jon-Paul R.; Reid, Michael F.; Gordon, Robert A.

    2016-04-01

    Ytterbium-doped wide-bandgap fluoride crystals CaF2, SrF2 and NaMgF3 have been measured using x-ray absorption near edge structure (XANES) on the L3 edge to determine the ratio of trivalent to divalent Yb ions present in the crystals. This study improves upon previous XANES measurements of dopant ion valency by taking into account the x-ray emission transition probabilities for the divalent and trivalent species instead of simply assuming that the relative concentrations may be determined by the ratio of the x-ray excitation band areas. Trivalent to divalent ratios as high as 5 are inferred even at low total dopant ion concentrations of 0.05 mol% Yb.

  12. Spectral Analysis by XANES Reveals that GPNMB Influences the Chemical Composition of Intact Melanosomes

    SciTech Connect

    T Haraszti; C Trantow; A Hedberg-Buenz; M Grunze; M Anderson

    2011-12-31

    GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism, and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes in melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology.

  13. Local electronic structure of aqueous zinc acetate: oxygen K-edge X-ray absorption and emission spectroscopy on micro-jets.

    PubMed

    Golnak, Ronny; Atak, Kaan; Suljoti, Edlira; Hodeck, Kai F; Lange, Kathrin M; Soldatov, Mikhail A; Engel, Nicholas; Aziz, Emad F

    2013-06-07

    Oxygen K-edge X-ray absorption, emission, and resonant inelastic X-ray scattering spectra were measured to site selectively gain insights into the electronic structure of aqueous zinc acetate solution. The character of the acetate ion and the influence of zinc and water on its local electronic structure are discussed.

  14. Amorphisation mechanism of a flint aggregate during the alkali-silica reaction: X-ray diffraction and X-ray absorption XANES contributions

    SciTech Connect

    Verstraete, J.; Khouchaf, L.; Bulteel, D.; Garcia-Diaz, E.; Flank, A.M; Tuilier, M.H

    2004-04-01

    Flint samples at different stages of the Alkali-Silica Reaction were prepared and analyzed by X-ray diffraction (XRD) and silicon K-edge X-ray absorption near edge structure techniques (XANES). The results are compared to those of measurements performed on alpha quartz c-SiO{sub 2} and rough flint aggregate. The molar fraction of Q{sub 3} sites is determined as a function of the time of reaction. Up to 14 h of attack, the effect of the reaction seems of little importance. From 30 to 168 h, we showed an acceleration of the effect of the reaction on the crystal structure of the aggregate resulting in an amorphisation of the crystal. During this period, the amorphous fraction increases linearly with the number of Q{sub 3} sites. The results of the XANES confirm the amorphisation of the aggregate during the reaction and show the presence of silicon in a tetrahedral environment of oxygen whatever the time of attack.

  15. XANES Analysis of Organic Residues Produced from the UV Irradiation of Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Nuevo, M.; Milam, S N.; Sandford, S A.; De Gregorio, B T.; Cody, G D.; Kilcoyne, A L.

    2011-01-01

    Organic residues formed in the laboratory from the ultraviolet (UV) photo-irradiation or ion bombardment of astrophysical ice analogs have been extensively studied for the last 15 years with a broad suite of techniques, including infrared (IR) and UV spectroscopies, as well as mass spectrometry. Analyses of these materials show that they consist of complex mixtures of organic compounds stable at room temperature, mostly soluble, that have not been fully characterized. However, the hydrolysis products of these residues have been partly identified using chromatography techniques, which indicate that they contain molecular precursors of prebiotic interest such as amino acids, nitrile-bearing compounds, and amphiphilic compounds. In this study, we present the first X-ray absorption near-edge structure (XANES) spectroscopy measurements of three organic residues made from the UV irradiation of ices having different starting compositions. XANES spectra confirm the presence of different chemical functions in these residues, and indicate that they are rich in nitrogenand oxygen-bearing species. These data can be compared with XANES measurements of extraterrestrial materials. Finally, this study also shows how soft X rays can alter the chemical composition of samples.

  16. SU-C-207-06: In Vivo Quantification of Gold Nanoparticles Using K-Edge Imaging Via Spectrum Shaping by Gold Filter

    SciTech Connect

    Chen, H; Cormack, R; Bhagwat, M; Berbeco, R

    2015-06-15

    Purpose: Gold nanoparticles (AuNP) are multifunctional platforms ideal for drug delivery, targeted imaging and radiosensitization. We have investigated quantitative imaging of AuNPs using on board imager (OBI) cone beam computed tomography (CBCT). To this end, we also present, for the first time, a novel method for k-edge imaging of AuNP by filter-based spectral shaping. Methods: We used a digital 25 cm diameter water phantom, embedded with 3 cm spheres filled with AuNPs of different concentrations (0 mg/ml – 16 mg/ml). A poly-energetic X-ray spectrum of 140 kVp from a conventional X-ray tube is shaped by balanced K-edge filters to create an excess of photons right above the K-edge of gold at 80.7 keV. The filters consist of gold, tin, copper and aluminum foils. The phantom with appropriately assigned attenuation coefficients is forward projected onto a detector for each energy bin and then integrated. FKD reconstruction is performed on the integrated projections. Scatter, detector efficiency and noise are included. Results: We found that subtracting the results of two filter sets (Filter A:127 µm gold foil with 254 µm tin, 330 µm copper and 1 mm aluminum, and Filter B: 635 µm tin with 264 µm copper and 1 mm aluminum), provides substantial image contrast. The resulting filtered spectra match well below 80.7 keV, while maintaining sufficient X-ray quanta just above that. Voxel intensities of AuNP containing spheres increase linearly with AuNP concentration. K-edge imaging provides 18% more sensitivity than the tin filter alone, and 38% more sensitivity than the gold filter alone. Conclusion: We have shown that it is feasible to quantitatively detect AuNP distributions in a patient-sized phantom using clinical CBCT and K-edge spectral shaping.

  17. K-edge angiography utilizing a tungsten plasma X-ray generator in conjunction with gadolinium-based contrast media

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Sato, Shigehiro; Takayama, Kazuyoshi; Onagawa, Jun; Ido, Hideaki

    2006-11-01

    The tungsten plasma flash X-ray generator is useful in order to perform high-speed enhanced K-edge angiography using cone beams because K-series characteristic X-rays from the tungsten target are absorbed effectively by gadolinium-based contrast media. In the flash X-ray generator, a 150 nF condenser is charged up to 80 kV by a power supply, and flash X-rays are produced by the discharging. The X-ray tube is a demountable diode, and the turbomolecular pump evacuates air from the tube with a pressure of approximately 1 mPa. Since the electric circuit of the high-voltage pulse generator employs a cable transmission line, the high-voltage pulse generator produces twice the potential of the condenser charging voltage. At a charging voltage of 80 kV, the estimated maximum tube voltage and current were approximately 160 kV and 40 kA, respectively. When the charging voltage was increased, the characteristic X-ray intensities of tungsten K α lines increased. The K α lines were clean, and hardly any bremsstrahlung rays were detected. The X-ray pulse widths were approximately 110 ns, and the time-integrated X-ray intensity had a value of approximately 0.35 mGy at 1.0 m from the X-ray source with a charging voltage of 80 kV. Angiography was performed using a film-less computed radiography (CR) system and gadolinium-based contrast media. In angiography of non-living animals, we observed fine blood vessels of approximately 100 μm with high contrasts.

  18. XANES Identification of Plutonium Speciation in RFETS Samples

    SciTech Connect

    LoPresti, V.; Conradson, S.D.; Clark, D.L.

    2009-06-03

    Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

  19. In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors

    SciTech Connect

    Kumar, Suhas; Graves, Catherine E.; Strachan, John Paul Williams, R. Stanley; Kilcoyne, A. L. David; Tyliszczak, Tolek; Nishi, Yoshio

    2015-07-21

    Memristors are receiving keen interest because of their potential varied applications and promising large-scale information storage capabilities. Tantalum oxide is a memristive material that has shown promise for high-performance nonvolatile computer memory. The microphysics has been elusive because of the small scale and subtle physical changes that accompany conductance switching. In this study, we probed the atomic composition, local chemistry, and electronic structure of functioning tantalum oxide memristors through spatially mapped O K-edge x-ray absorption. We developed a time-multiplexed spectromicroscopy technique to enhance the weak and possibly localized oxide modifications with spatial and spectral resolutions of <30 nm and 70 meV, respectively. During the initial stages of conductance switching of a micrometer sized crosspoint device, the spectral changes were uniform within the spatial resolution of our technique. When the device was further driven with millions of high voltage-pulse cycles, we observed lateral motion and separation of ∼100 nm-scale agglomerates of both oxygen interstitials and vacancies. We also demonstrate a unique capability of this technique by identifying the relaxation behavior in the material during electrical stimuli by identifying electric field driven changes with varying pulse widths. In addition, we show that changes to the material can be localized to a spatial region by modifying its topography or uniformity, as against spatially uniform changes observed here during memristive switching. The goal of this report is to introduce the capability of time-multiplexed x-ray spectromicroscopy in studying weak-signal transitions in inhomogeneous media through the example of the operation and temporal evolution of a memristor.

  20. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    SciTech Connect

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  1. Imaging Taurine in the Central Nervous System Using Chemically Specific X-ray Fluorescence Imaging at the Sulfur K-Edge

    SciTech Connect

    Hackett, Mark J.; Paterson, Phyllis G.; Pickering, Ingrid J.; George, Graham N.

    2016-11-15

    A method to image taurine distributions within the central nervous system and other organs has long been sought. Since taurine is small and mobile, it cannot be chemically “tagged” and imaged using conventional immuno-histochemistry methods. Combining numerous indirect measurements, taurine is known to play critical roles in brain function during health and disease and is proposed to act as a neuro-osmolyte, neuro-modulator, and possibly a neuro-transmitter. Elucidation of taurine’s neurochemical roles and importance would be substantially enhanced by a direct method to visualize alterations, due to physiological and pathological events in the brain, in the local concentration of taurine at or near cellular spatial resolution in vivo or in situ in tissue sections. We thus have developed chemically specific X-ray fluorescence imaging (XFI) at the sulfur K-edge to image the sulfonate group in taurine in situ in ex vivo tissue sections. To our knowledge, this represents the first undistorted imaging of taurine distribution in brain at 20 μm resolution. We report quantitative technique validation by imaging taurine in the cerebellum and hippocampus regions of the rat brain. Further, we apply the technique to image taurine loss from the vulnerable CA1 (cornus ammonis 1) sector of the rat hippocampus following global brain ischemia. The location-specific loss of taurine from CA1 but not CA3 neurons following ischemia reveals osmotic stress may be a key factor in delayed neurodegeneration after a cerebral ischemic insult and highlights the significant potential of chemically specific XFI to study the role of taurine in brain disease.

  2. XAFS STUDIES OF NICKEL AND SULFUR SPECIATION IN RESIDENTIAL OIL FLY-ASH PARTICULATE MATTERS (ROFA PM)

    EPA Science Inventory

    XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, dep...

  3. Speciation Mapping of Environmental Samples Using XANES Imaging

    EPA Science Inventory

    Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...

  4. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B4C multilayer

    SciTech Connect

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B4C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 -{delta} + i{beta} close to the boron K edge ({approx}188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B4C and various boron oxides.

  5. Probing single magnon excitations in Sr2IrO4 using O K-edge resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbăian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; Hill, J. P.

    2015-05-01

    Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr2IrO4, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor.

  6. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    SciTech Connect

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J.M.; Somers, Joseph

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis of room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.

  7. In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K-edge region.

    PubMed

    Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta

    2015-11-01

    Carbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10(-7) Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbon K-edge region (560-660 eV) was found to be a factor of 0.1-0.48 smaller than that of the gold-coated mirror.

  8. Local atomic structure investigation of AlFeCuCrMgx (0.5, 1, 1.7) high entropy alloys: X-ray absorption spectroscopy study

    NASA Astrophysics Data System (ADS)

    Maulik, Ornov; Patra, N.; Bhattacharyya, D.; Jha, S. N.; Kumar, Vinod

    2017-02-01

    The present paper reports local atomic structure investigation of novel AlFeCuCrMgx (x=0.5, 1, 1.7) high entropy alloys (HEAs) produced by mechanical alloying using Fe, Cr and Cu K-edge X-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS) spectroscopy. XANES spectra measured at Fe and Cr K-edges resemble that of the respective pure metal foils, while the spectrum measured at Cu K-edge manifests the presence of some other phases in the as-milled alloys. The radial distribution functions (RDFs) obtained from Fourier transformation of EXAFS spectra support the formation of disordered BCC structure.

  9. High-precision determination of iron oxidation state in silicate glasses using XANES

    SciTech Connect

    Cottrell, Elizabeth; Kelley, Katherine A.; Lanzirotti, Antonio; Fischer, Rebecca A.

    2009-11-04

    Fe K-edge X-ray absorption near-edge structure (XANES) and Moessbauer spectra were collected on natural basaltic glasses equilibrated over a range of oxygen fugacity (QFM - 3.5 to QFM + 4.5). The basalt compositions and fO{sub 2} conditions were chosen to bracket the natural range of redox conditions expected for basalts from mid-ocean ridge, ocean island, back-arc basin, and arc settings, in order to develop a high-precision calibration for the determination of Fe{sup 3+}/{Sigma}Fe in natural basalts. The pre-edge centroid energy, corresponding to the 1s {yields} 3d transition, was determined to be the most robust proxy for Fe oxidation state, affording significant advantages compared to the use of other spectral features. A second-order polynomial models the correlation between the centroid and Fe{sup 3+}/{Sigma}Fe, yielding a precision of {+-} 0.0045 in Fe{sup 3+}/{Sigma}Fe for glasses with Fe{sup 3+}/{Sigma}Fe > 8%, which is comparable to the precision of wet chemistry. This high precision relies on a Si (311) monochromator to better define the Fe{sup 2+} and Fe{sup 3+} transitions, accurate and robust modeling of the pre-edge feature, dense fO{sub 2}-coverage and compositional appropriateness of reference glasses, and application of a non-linear drift correction. Through re-analysis of the reference glasses across three synchrotron beam sessions, we show that the quoted precision can be achieved (i.e., analyses are reproducible) across multiple synchrotron beam sessions, even when spectral collection conditions (detector parameters or sample geometry) change. Rhyolitic glasses were also analyzed and yield a higher centroid energy at a given Fe{sup 3+}/{Sigma}Fe than basalts, implying that major variations in melt structure affect the relationship between centroid position and Fe{sup 3+}/{Sigma}Fe, and that separate calibrations are needed for the determination of oxidation state in basalts and rhyolites.

  10. Pd nanoparticles formation inside porous polymeric scaffolds followed by in situ XANES/SAXS

    NASA Astrophysics Data System (ADS)

    Longo, A.; Lamberti, C.; Agostini, G.; Borfecchia, E.; Lazzarini, A.; Liu, W.; Giannici, F.; Portale, G.; Groppo, E.

    2016-05-01

    Simultaneous time-resolved SAXS and XANES techniques were employed to follow in situ the formation of Pd nanoparticles from palladium acetate precursor in two porous polymeric supports: polystyrene (PS) and poly(4-vinyl-pyridine) (P4VP). In this study we have investigated the effect of the use of different reducing agents (H2 and CO) from the gas phase. These results, in conjunction with data obtained by diffuse reflectance IR (DRIFT) spectroscopy and TEM measurements, allowed us to unravel the different roles played by gaseous H2 and CO in the formation of the Pd nanoparticles for both PS and P4VP hosting scaffolds.

  11. Iron speciation in human cancer cells by K-edge total reflection X-ray fluorescence-X-ray absorption near edge structure analysis

    NASA Astrophysics Data System (ADS)

    Polgári, Zs.; Meirer, F.; Sasamori, S.; Ingerle, D.; Pepponi, G.; Streli, C.; Rickers, K.; Réti, A.; Budai, B.; Szoboszlai, N.; Záray, G.

    2011-03-01

    X-ray absorption near edge structure (XANES) analysis in combination with synchrotron radiation induced total reflection X-ray fluorescence (SR-TXRF) acquisition was used to determine the oxidation state of Fe in human cancer cells and simultaneously their elemental composition by applying a simple sample preparation procedure consisting of pipetting the cell suspension onto the quartz reflectors. XANES spectra of several inorganic and organic iron compounds were recorded and compared to that of different cell lines. The XANES spectra of cells, independently from the phase of cell growth and cell type were very similar to that of ferritin, the main Fe store within the cell. The spectra obtained after CoCl 2 or NiCl 2 treatment, which could mimic a hypoxic state of cells, did not differ noticeably from that of the ferritin standard. After 5-fluorouracil administration, which could also induce an oxidative-stress in cells, the absorption edge position was shifted toward higher energies representing a higher oxidation state of Fe. Intense treatment with antimycin A, which inhibits electron transfer in the respiratory chain, resulted in minor changes in the spectrum, resembling rather the N-donor Fe-α,α'-dipyridyl complex at the oxidation energy of Fe(III), than ferritin. The incorporation of Co and Ni in the cells was followed by SR-TXRF measurements.

  12. The status of strontium in biological apatites: an XANES investigation.

    PubMed

    Bazin, D; Daudon, M; Chappard, Ch; Rehr, J J; Thiaudière, D; Reguer, S

    2011-11-01

    Osteoporosis represents a major public health problem and increases patient morbidity through its association with fragility fractures. Among the different treatments proposed, strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk. While the localization of Sr(2+) cations in the bone matrix has been extensively studied, little is known regarding the status of Sr(2+) cations in natural biological apatite. In this investigation the local environment of Sr(2+) cations has been investigated through XANES (X-ray absorption near-edge structure) spectroscopy in a set of pathological and physiological apatites. To assess the localization of Sr(2+) cations in these biological apatites, numerical simulations using the ab initio FEFF9 X-ray spectroscopy program have been performed. The complete set of data show that the XANES part of the absorption spectra may be used as a fingerprint to determine the localization of Sr(2+) cations versus the mineral part of calcifications. More precisely, it appears that a relationship exists between some features present in the XANES part and a Sr(2+)/Ca(2+) substitution process in site (I) of crystal apatite. Regarding the data, further experiments are needed to confirm a possible link between the relationship between the preparation mode of the calcification (cellular activity for physiological calcification and precipitation for the pathological one) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Is it possible to draw a line between life and chemistry through the localization of Sr in apatite? The question is open for discussion. A better structural description of these physiological and pathological calcifications will help to develop specific therapies targeting the demineralization process in the case of osteoporosis.

  13. Theory of K-edge resonant inelastic x-ray scattering and its application for La0.5Sr1.5MnO4

    NASA Astrophysics Data System (ADS)

    Seman, T. F.; Liu, X.; Hill, J. P.; van Veenendaal, M.; Ahn, K. H.

    2013-03-01

    We present a formula based on tight-binding approach for the calculation of K-edge resonant inelastic x-ray scattering spectrum for transition metal oxides, by extending the previous result [K. H. Ahn, A. J. Fedro, and M. van Veenendaal, Phys. Rev. B 79, 045103 (2009).] to include explicit momentum dependence and a basis with multiple core hole sites. We apply this formula to layered charge, orbital, and spin ordered manganites, La0.5Sr1.5MnO4. The K-edge RIXS spectrum is found not periodic with respect to the actual reciprocal lattice, but approximately periodic with respect to the reciprocal lattice for the hypothetical unit cell with one core hole site. With experimental strcuture and reasonable tight-binding parameters, we obtain good agreement with experimental data, in particular, with regards to the large variation of the intensity with momentum. We find that the screening in La0.5Sr1.5MnO4 is highly localized around the core hole site and demonstrate the potential of K-edge RIXS as a probe for the screening dynamics in materials. Work supported by US.DOE Contr. DE-AC02-98CH10886 (X.L.,J.H.), US.DOE Award DE-FG02-03ER46097 (M.v.V.), CMCSN under Grants DE-FG02-08ER46540 & DE-SC0007091 (T.S.,K.A.,M.v.V.), Argonne XSD Visitor Prog.(K.A.), US.DOE Contr. DE-AC02-06CH11357 (X.L.,J.H).

  14. Auger electron and photoabsorption spectra of glycine in the vicinity of the oxygen K-edge measured with an X-FEL

    NASA Astrophysics Data System (ADS)

    Sanchez-Gonzalez, A.; Barillot, T. R.; Squibb, R. J.; Kolorenč, P.; Agaker, M.; Averbukh, V.; Bearpark, M. J.; Bostedt, C.; Bozek, J. D.; Bruce, S.; Carron Montero, S.; Coffee, R. N.; Cooper, B.; Cryan, J. P.; Dong, M.; Eland, J. H. D.; Fang, L.; Fukuzawa, H.; Guehr, M.; Ilchen, M.; Johnsson, A. S.; Liekhus-S, C.; Marinelli, A.; Maxwell, T.; Motomura, K.; Mucke, M.; Natan, A.; Osipov, T.; Östlin, C.; Pernpointner, M.; Petrovic, V. S.; Robb, M. A.; Sathe, C.; Simpson, E. R.; Underwood, J. G.; Vacher, M.; Walke, D. J.; Wolf, T. J. A.; Zhaunerchyk, V.; Rubensson, J.-E.; Berrah, N.; Bucksbaum, P. H.; Ueda, K.; Feifel, R.; Frasinski, L. J.; Marangos, J. P.

    2015-12-01

    We report the first measurement of the near oxygen K-edge auger spectrum of the glycine molecule. Our work employed an x-ray free electron laser as the photon source operated with input photon energies tunable between 527 and 547 eV. Complete electron spectra were recorded at each photon energy in the tuning range, revealing resonant and non-resonant auger structures. Finally ab initio theoretical predictions are compared with the measured above the edge auger spectrum and an assignment of auger decay channels is performed.

  15. Analyzing organic sulfur in coal/char: Integrated mild degradation/XANES methods. Final technical report, September 1, 1993--November 30, 1994

    SciTech Connect

    Palmer, S.R.; Huffman, G.P.

    1994-12-31

    The overall goal of this study is to improve the understanding of sulfur in coals/chars via the use of combined advanced nondestructive and advanced destructive methods of sulfur analysis. This study combines selective oxidation, analytical pyrolysis, and sulfur X-ray Absorption Near Edge Structure Spectroscopy (XANES) analysis. Samples with a wide variety of sulfur contents, (0.63%--4.40%) have been prepared for use in this study. This includes steam gasification chars, oxidized coals and desulfurized coals as well of the original unaltered coals. Mild pyrolysis and XANES data shows that the sulfur chemistry of gasification chars is significantly different from that of the original coals. Mild pyrolysis of the samples that were oxidized with peroxyacetic acid showed that the level of simple thiophene structures observed in the pyrolysis products declines with increasing levels of oxidation. Sulfur XANES spectra of treated samples showed various effects depending on the treatment severity. The XANES spectra of less severely treated samples were similar, although not identical, to the untreated coal spectra. XANES of gasification chars indicated conversion of pyrite to pyrrhotite, removal of organic sulfide sulfur and dissolution of soluble inorganic sulfur species during gasification. Mild oxidation with peroxyacetic acid results in preferential oxidation of sulfide forms before thiophene forms but increasing oxidation severity leads to virtually all sulfur species being oxidized. Good agreement between W-band EPR and XANES data for aromatic sulfur contents were obtained. The TPR analysis of coal indicated that organic sulfur was present as alkyl-aryl sulfide, aryl-aryl sulfides, simple thiophenes and condensed thiophenes. TPR shows that non-thiophenic compounds are removed by PAA oxidation, and that the longer the oxidation is performed the greater is the removal of non-thiophenic sulfur structures.

  16. Multiple pre-edge structures in Cu K -edge x-ray absorption spectra of high- Tc cuprates revealed by high-resolution x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gougoussis, C.; Rueff, J.-P.; Calandra, M.; D'Astuto, M.; Jarrige, I.; Ishii, H.; Shukla, A.; Yamada, I.; Azuma, M.; Takano, M.

    2010-06-01

    Using high-resolution x-ray absorption spectroscopy and state-of-the-art electronic structure calculations we demonstrate that the pre-edge region at the Cu K edge of high- Tc cuprates is composed of several excitations invisible in standard x-ray absorption spectra. We consider in detail the case of Ca2-xCuO2Cl2 and show that the many pre-edge excitations (two for c -axis polarization, four for in-plane polarization and out-of-plane incident x-ray momentum) are dominated by off-site transitions and intersite hybridization. This demonstrates the relevance of approaches beyond the single-site model for the description of the pre edges of correlated materials. Finally, we show the occurrence of a doubling of the main edge peak that is most visible when the polarization is along the c axis. This doubling, that has not been seen in any previous absorption data in cuprates, is not reproduced by first-principles calculations. We suggest that this peak is due to many-body charge-transfer excitations while all the other visible far-edge structures are single particle in origin. Our work indicates that previous interpretations of the Cu K -edge x-ray absorption spectra in high- Tc cuprates can be profitably reconsidered.

  17. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice.

    PubMed

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-11-20

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures.

  18. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  19. Local disorder investigation in NiS(2-x)Se(x) using Raman and Ni K-edge x-ray absorption spectroscopies.

    PubMed

    Marini, C; Joseph, B; Caramazza, S; Capitani, F; Bendele, M; Mitrano, M; Chermisi, D; Mangialardo, S; Pal, B; Goyal, M; Iadecola, A; Mathon, O; Pascarelli, S; Sarma, D D; Postorino, P

    2014-11-12

    We report on Raman and Ni K-edge x-ray absorption investigations of a NiS(2-x)Se(x) (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS(2-x)Se(x) Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS(2-x)Se(x) pyrites.

  20. Probing the K-edge of a laser heated aluminum plasma using X-rays from betatron oscillations in a laser wakefield accelerator with femtosecond resolution

    NASA Astrophysics Data System (ADS)

    Behm, Keegan; Hussein, Amina; Zhao, Tony; Hill, Edward; Maksimchuk, Anatoly; Nees, John; Yanovsky, Victor; Mangles, Stuart; Krushelnick, Karl; Thomas, Alexander; CenterUltrafast Optical Science Team; Plasmas Group Team

    2016-10-01

    Presented here are data from a two-beam pump-probe experiment. We used synchrotron-like X-rays created by betatron oscillations to probe a thin metal foil that is pumped by the secondary laser beam. The Hercules Ti:Sapphire laser facility was operated with a pulse duration of 34 fs and a power of 80 TW split. A 75-25 beam splitter was used to drive a laser wakefield accelerator and heat the secondary target. We observed opacity changes around the K-edge of thin aluminum foil as it was heated by an ultrafast pump laser. To understand how the opacity is changing with heating and expansion of the plasma, the delay between the two laser paths was adjusted on a femtosecond time scale from 50 to 400 fs. Experimental data for aluminum shows variation in opacity around the K-edge with changes in the probe delay. The transmitted synchrotron-like spectrum was measured using single photon counting on an X-ray CCD camera and was available on a shot-by-shot basis. The success of this work demonstrates a practical application for X-rays produced from betatron oscillations in a wakefield accelerator. U.S. Department of Energy and the National Nuclear Security Administration.

  1. Reduced chromium in olivine grains from lunar basalt 15555 - X-ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Jones, K. W.; Gordon, B.; Rivers, M. L.; Bajt, S.; Smith, J. V.

    1993-01-01

    The oxidation state of Cr in 200-micron regions within individual lunar olivine and pyroxene grains from lunar basalt 15555 was inferred using X-ray Absorption Near Edge Structure (XANES). Reference materials had previously been studied by optical absorption spectroscopy and included Cr-bearing borosilicate glasses synthesized under controlled oxygen fugacity and Cr-doped olivines. The energy dependence of XANES spectral features defined by these reference materials indicated that Cr is predominantly divalent in the lunar olivine and trivalent in the pyroxene. These results, coupled with the apparent f(02)-independence of partitioning coefficients for Cr into olivine, imply that the source magma was dominated by divalent Cr at the time of olivine crystallization.

  2. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy.

    PubMed

    Malherbe, Julien; Isaure, Marie-Pierre; Séby, Fabienne; Watson, Russell P; Rodriguez-Gonzalez, Pablo; Stutzman, Paul E; Davis, Clay W; Maurizio, Chiara; Unceta, Nora; Sieber, John R; Long, Stephen E; Donard, Olivier F X

    2011-12-15

    Hexavalent chromium (Cr(VI)) occurrence in soils is generally determined using an extraction step to transfer it to the liquid phase where it is more easily detected and quantified. In this work, the performance of the most common extraction procedure (EPA Method 3060A) using NaOH-Na(2)CO(3) solutions is evaluated using X-ray absorption near edge structure spectroscopy (XANES), which enables the quantification of Cr(VI) directly in the solid state. Results obtained with both methods were compared for three solid samples with different matrices: a soil containing chromite ore processing residue (COPR), a loamy soil, and a paint sludge. Results showed that Cr(VI) contents determined by the two methods differ significantly, and that the EPA Method 3060A procedure underestimated the Cr(VI) content in all studied samples. The underestimation is particularly pronounced for COPR. Low extraction yield for EPA Method 3060A was found to be the main reason. The Cr(VI) present in COPR was found to be more concentrated in magnetic phases. This work provides new XANES analyses of SRM 2701 and its extraction residues for the purpose of benchmarking EPA 3060A performance.

  3. Magnetite biomineralization in Magnetospirillum gryphiswaldense: time-resolved magnetic and structural studies.

    PubMed

    Fdez-Gubieda, M Luisa; Muela, Alicia; Alonso, Javier; García-Prieto, Ana; Olivi, Luca; Fernández-Pacheco, Rodrigo; Barandiarán, José Manuel

    2013-04-23

    Magnetotactic bacteria biosynthesize magnetite nanoparticles of high structural and chemical purity that allow them to orientate in the geomagnetic field. In this work we have followed the process of biomineralization of these magnetite nanoparticles. We have performed a time-resolved study on magnetotactic bacteria Magnetospirillum gryphiswaldense strain MSR-1. From the combination of magnetic and structural studies by means of Fe K-edge X-ray absorption near edge structure (XANES) and high-resolution transmission electron microscopy we have identified and quantified two phases of Fe (ferrihydrite and magnetite) involved in the biomineralization process, confirming the role of ferrihydrite as the source of Fe ions for magnetite biomineralization in M. gryphiswaldense. We have distinguished two steps in the biomineralization process: the first, in which Fe is accumulated in the form of ferrihydrite, and the second, in which the magnetite is rapidly biomineralized from ferrihydrite. Finally, the XANES analysis suggests that the origin of the ferrihydrite could be at bacterial ferritin cores, characterized by a poorly crystalline structure and high phosphorus content.

  4. Sulphur XANES Analysis of Cultured Human Prostate Cancer Cells

    NASA Astrophysics Data System (ADS)

    Kwiatek, W. M.; Podgórczyk, M.; Paluszkiewicz, Cz.; Balerna, A.; Kisiel, A.

    2008-08-01

    Prostate cancer is one of the most commonly diagnosed cancers in men throughout the world. It is believed that changes to the structure of protein binding sites, altering its metabolism, may play an important role in carcinogenesis. Sulphur, often present in binding sites, can influence such changes through its chemical speciation. Hence there is a need for precise investigation of coordination environment of sulphur. X-ray absorption near edge structure spectroscopy offers such possibility. Cell culture samples offer histologically well defined areas of good homogeneity, suitable for successful and reliable X-ray absorption near edge structure analysis. This paper presents sulphur speciation data collected from three different human prostate cancer cell lines (PC-3, LNCaP and DU-145). Sulphur X-ray absorption near edge structure analysis was performed on K-edge structure. The spectra of cells were compared with those of cancerous tissue and with organic substances as well as inorganic compounds.

  5. Spectroscopic study of the polymerization of intercalated anilinium ions in different montmorillonite clays

    NASA Astrophysics Data System (ADS)

    do Nascimento, Gustavo M.; Temperini, Marcia L. A.

    2011-09-01

    The polymerization of the intercalated aniline ions was studied in three different clays, Swy2-montmorillonite (MMT), synthetic mica-montmorillonite (Syn1) and pillarized Swy2-montmorillonite (PILC). PANI is formed between the MMT and Syn1 clay layers, being confirmed by the shift of d001 peak in the X-ray pattern. X-ray Absorption near to Si K edge (Si K XANES) data show that the structures of clays are preserved after the polymerization process and in addition to the SEM images show that morphologies of the clays are maintained after polymerization, indicating no polymerization in their external surface. UV-vis-NIR and resonance Raman data display that the PANI formed in Syn1 galleries has higher amount of phenazinic rings than observed for PANI intercalated in montmorillonite (MMT) clay. No polymer formation was detected in the PILC. N K XANES and EPR spectroscopies show the presence of azo and radical nitrogen in intercalated PANI chains. Hence, the results are rationalized considering the structural differences between the clays for understanding the role of the anilinium polymerization within the clays galleries.

  6. X-ray natural linear dichroism of graphitic materials across the carbon K-edge: Correction for perturbing high-order harmonics

    NASA Astrophysics Data System (ADS)

    Jansing, C.; Mertins, H. C.; Gaupp, A.; Sokolov, A.; Gilbert, M. C.; Wahab, H.; Timmers, H.

    2016-05-01

    Reflectivity measurements on graphitic materials such as graphene at energies across the carbon K-edge are frustrated by significant intensity loss due to adventitious carbon on beamline mirrors. Such intensity reduction enhances effects due to perturbing high-order harmonics in the beam. These effects distort the actual structure of the reflectance curve. In order to overcome this limitation, a correction technique has been developed and demonstrated first with measurements for highly ordered pyrolytic graphite. The same approach may be applied to other graphitic materials such as graphene and it may be used with other synchrotron beamlines. The fraction of high-order harmonics was determined by passing the incident beam through a 87 nm thin silicon nitride absorber that can be well modeled. Using the corrected measurements the x-ray natural linear dichroism of the sample has been determined.

  7. Unraveling the nature of charge excitations in La2CuO4 with momentum-resolved Cu K-edge resonant inelastic X-ray scattering

    SciTech Connect

    Chen, Cheng-Chien

    2011-03-01

    Results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu K-edge resonant inelastic X-ray scattering (RIXS) from La{sub 2}CuO{sub 4}. The model includes electronic orbitals necessary to highlight non-local Zhang-Rice singlet, charge transfer and d-d excitations, as well as states with apical oxygen 2p{sub z} character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multi-orbital character of RIXS profiles in the energy transfer range 1-6 eV.

  8. Ag K-edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: insight into the structural origins of emission tuning by DNA sequence variations.

    PubMed

    Neidig, Michael L; Sharma, Jaswinder; Yeh, Hsin-Chih; Martinez, Jennifer S; Conradson, Steven D; Shreve, Andrew P

    2011-08-10

    DNA-templated silver nanoclusters are promising biological fluorescence probes due to their useful fluorescence properties, including tunability of emission wavelength through DNA template sequence variations. Ag K-edge EXAFS analysis of DNA-templated silver nanoclusters has been used to obtain insight into silver nanocluster bonding, size, and structural correlations to fluorescence. The results indicate the presence of small silver nanoclusters (<30 silver atoms) containing Ag-Ag bonds and Ag-N/O ligations to DNA. The DNA sequence used leads to differences in silver-DNA ligation as well as silver nanocluster size. The results support a model in which cooperative effects of both Ag-DNA ligation and variations in cluster size lead to the tuning of the fluorescence emission of DNA-templated silver nanoclusters.

  9. The Be K-edge in beryllium oxide and chalcogenides: soft x-ray absorption spectra from first-principles theory and experiment.

    PubMed

    Olovsson, W; Weinhardt, L; Fuchs, O; Tanaka, I; Puschnig, P; Umbach, E; Heske, C; Draxl, C

    2013-08-07

    We have carried out a theoretical and experimental investigation of the beryllium K-edge soft x-ray absorption fine structure of beryllium compounds in the oxygen group, considering BeO, BeS, BeSe, and BeTe. Theoretical spectra are obtained ab initio, through many-body perturbation theory, by solving the Bethe-Salpeter equation (BSE), and by supercell calculations using the core-hole approximation. All calculations are performed with the full-potential linearized augmented plane-wave method. It is found that the two different theoretical approaches produce a similar fine structure, in good agreement with the experimental data. Using the BSE results, we interpret the spectra, distinguishing between bound core-excitons and higher energy excitations.

  10. Ligand K-edge X-ray absorption spectroscopy and DFT calculations on [Fe3S4]0,+ clusters: delocalization, redox, and effect of the protein environment.

    PubMed

    Dey, Abhishek; Glaser, Thorsten; Moura, Jose J-G; Holm, Richard H; Hedman, Britt; Hodgson, Keith O; Solomon, Edward I

    2004-12-29

    Ligand K-edge XAS of an [Fe3S4]0 model complex is reported. The pre-edge can be resolved into contributions from the mu(2)S(sulfide), mu(3)S(sulfide), and S(thiolate) ligands. The average ligand-metal bond covalencies obtained from these pre-edges are further distributed between Fe(3+) and Fe(2.5+) components using DFT calculations. The bridging ligand covalency in the [Fe2S2]+ subsite of the [Fe3S4]0 cluster is found to be significantly lower than its value in a reduced [Fe2S2] cluster (38% vs 61%, respectively). This lowered bridging ligand covalency reduces the superexchange coupling parameter J relative to its value in a reduced [Fe2S2]+ site (-146 cm(-1) vs -360 cm(-1), respectively). This decrease in J, along with estimates of the double exchange parameter B and vibronic coupling parameter lambda2/k(-), leads to an S = 2 delocalized ground state in the [Fe3S4]0 cluster. The S K-edge XAS of the protein ferredoxin II (Fd II) from the D. gigas active site shows a decrease in covalency compared to the model complex, in the same oxidation state, which correlates with the number of H-bonding interactions to specific sulfur ligands present in the active site. The changes in ligand-metal bond covalencies upon redox compared with DFT calculations indicate that the redox reaction involves a two-electron change (one-electron ionization plus a spin change of a second electron) with significant electronic relaxation. The presence of the redox inactive Fe(3+) center is found to decrease the barrier of the redox process in the [Fe3S4] cluster due to its strong antiferromagnetic coupling with the redox active Fe2S2 subsite.

  11. Time-dependent X-ray absorption spectroscopic (XAS) study on the transformation of zinc basic salt into bis(N-oxopyridine-2-thionato) zinc (II).

    PubMed

    Paek, Seung-Min; Jo, Won-Young; Park, Man; Choy, Jin-Ho

    2007-11-01

    Solid transchelation reaction was established for the synthesis of bis(N-oxopyridine-2-thionato) zinc (II), commonly known as zinc pyrithione (ZPT), to control particle size using zinc basic salt (ZBS) and aqueous sodium pyrithione solution. Distinguished from ZPT particles prepared by usual precipitation reaction, the obtained ZPT nanoparticles exhibited very narrow size distribution. X-ray absorption spectroscopy (XAS) at Zn K-edge was systematically examined to elucidate time-dependent local structural evolution during solid transchelation reaction. X-ray absorption near edge structure (XANES) analysis clearly revealed that local environment around zinc atoms transformed into pentahedron as reaction proceeded. Based on quantitative X-ray diffraction and XANES analysis, we made structural models. Theoretical XAS spectrum calculated with FEFF code could reproduce experimental one, suggesting that XAS analysis could be very powerful tool to probe phase transformation. Furthermore, according to extended X-ray absorption fine structure (EXAFS) fitting results, Zn-O distance in reaction products gradually increased from 1.96 to 2.07 angstroms, suggesting that zinc atoms bounded with oxygen ones in ZBS were transchelated with pyrithione ligands. This study could be a strong evidence for the usefulness of XAS to study time-dependent structural transformation of nanocrystalline materials.

  12. Time resolved XANES illustrates a substrate-mediated redox process in Prussian blue cultural heritage materials

    NASA Astrophysics Data System (ADS)

    Gervais, Claire; Lanquille, Marie-Angélique; Moretti, Giulia; Réguer, Solenn

    2016-05-01

    The pigment Prussian blue is studied in heritage science because of its capricious fading behavior under light exposure. We show here that XANES can be used to study the photosensitivity of Prussian blue heritage materials despite X-ray radiation damage. We used an original approach based on X-ray photochemistry to investigate in depth the redox process of Prussian blue when it is associated with a cellulosic substrate, as in cyanotypes and watercolors. By modifying cation and proton contents of the paper substrate, we could tune both rate and extent of Prussian blue reduction. These results demonstrate that the photoreduction and fading of Prussian blue is principally mediated by the substrate and its interaction with the oxygen of the environment.

  13. Local structure and La L1 and L3-edge XANES spectra of lanthanum complex oxides.

    PubMed

    Asakura, Hiroyuki; Shishido, Tetsuya; Teramura, Kentaro; Tanaka, Tsunehiro

    2014-06-16

    La L1 and L3-edge X-ray absorption near-edge structure (XANES) of various La oxides were classified according to the local configuration of La. We found a correlation between both of the areas of the pre-edge peaks of the La L1-edge XANES spectra and the full width at half-maximum of white line of La L3-edge XANES spectra and the local configuration of La. Theoretical calculation of the XANES spectra and local density of states reveals the difference of La L1 and L3-edge XANES spectra of various La compounds is related to the p-d hybridization of the unoccupied band and broadening of the d band of La induced by the difference of local configuration. In addition, simplified bond angle analysis parameters defined by the angles of the La atom and the two adjacent oxygen atoms are correlated to the pre-edge peak intensity of the La L1-edge XANES spectra. These results indicate that quantitative analysis of La L1 and L3-edge XANES spectra could be an indicator of the local structure of La materials.

  14. XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.

    2013-04-01

    The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.

  15. Induction of DNA strand breaks, base lesions and clustered damage sites in hydrated plasmid DNA films by ultrasoft X rays around the phosphorus K edge.

    PubMed

    Yokoya, Akinari; Cunniffe, Siobhan M T; Watanabe, Ritsuko; Kobayashi, Katsumi; O'Neill, Peter

    2009-09-01

    To characterize the DNA damage induced by K-shell ionization of phosphorus atom in DNA backbone on the level of hydration, the yields of DNA strand breaks and base lesions arising from the interaction of ultrasoft X rays with energies around the phosphorus K edge were determined using dry and fully hydrated pUC18 plasmid DNA samples. Base lesions and bistranded clustered DNA damage sites were revealed by postirradiation treatment with the base excision repair proteins endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). The yield of prompt single-strand breaks (SSBs) with dry DNA irradiated at the phosphorus K resonance energy (2153 eV) is about one-third that below the phosphorus K edge (2147 eV). The yields of prompt double-strand breaks (DSBs) were found to be less dependent on the X-ray energy, with the yields being about two times lower when irradiated at 2153 eV. Heat-labile sites were not produced in detectable amounts. The yields of base lesions were dependent on the energy of the X rays, especially when the DNA was fully hydrated. Bistranded clustered DNA damage sites, revealed enzymatically as additional DSBs, were produced in dry as well as in hydrated DNA with all three energies of X rays. The yields of these enzyme-sensitive sites were also lower when irradiated at the phosphorus K resonance energy. On the other hand, the yields of prompt SSBs and enzyme-sensitive sites for the two off-resonance energies were, larger than those determined previously for gamma radiation. The results indicate that the photoelectric effect caused by X rays and dense ionization and excitation events along the tracks of low-energy secondary electrons are more effective at inducing SSBs and enzyme-sensitive sites. The complex types of damage, prompt and enzymatically induced DSBs, are preferentially induced by phosphorus K resonance at 2153 eV rather than simple SSBs and isolated base lesions, particularly in hydrated conditions. It is concluded that not

  16. micro-XANES and micro-XRF investigations of metal binding mechanisms in biosolids.

    PubMed

    Hettiarachchi, G M; Scheckel, K G; Ryan, J A; Sutton, S R; Newville, M

    2006-01-01

    Micro-X-ray fluorescence (micro-XRF) microprobe analysis and micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy were employed to identify Fe and Mn phases and their association with selected metals in two biosolids (limed composted [LC] and Nu-Earth) before and after treatment to remove organic carbon (OC). Spatial correlations derived from elemental mapping of XRF images showed strong correlations between Fe and Cd, Cr, Pb, or Zn (r2= 0.65-0.92) before and after removal of most of the OC. The strong correlation between Fe and Cu that was present in intact samples disappeared after OC removal, suggesting that Cu was associated with OC coatings that may have been present on Fe compounds. Except for Fe and Cr, the spatial correlations of metals with Mn were improved after treatment to remove OC, indicating that the treatment may have altered more than the OC in the system. The Fe micro-XANES spectra of the intact biosolids sample showed that every point had varying mixtures of Fe(II and III) species and no two points were identical. The lack of uniformity in Fe species in the biosolids sample illustrates the complexity of the materials and the difficulty of studying biosolids using conventional analytical tools or chemical extraction techniques. Still, these microscopic observations provide independent information supporting the previous laboratory and field hypothesis that Fe compounds play a major role in retention of environmentally important trace elements in biosolids. This could be due to co-precipitation of the metals with Fe, adsorption of metals by Fe compounds, or a combination of both mechanisms.

  17. An unambiguous signature in molecular frame photoelectron angular distributions of core hole localization in fluorine K-edge photoionization of CF4

    NASA Astrophysics Data System (ADS)

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.; Lucchese, R. R.

    2016-05-01

    Molecular Frame Photoelectron Angular Distributions (MFPADs) are calculated using the Complex Kohn variational method for core-hole ionization of the carbon and fluorines in CF4 at photoelectron energies below 15 eV. The angular distributions for localized versus delocalized core-hole creation on the four equivalent fluorines are radically different. A strong propensity for the dissociation to take place via the mechanism hν +CF4 -->CF 4 + +e- -->CF 3 + +F(1s-1) -->CF 3 + +F+ + 2e- in which a core excited neutral fluorine atom ionizes during or after dissociation creates the conditions for experimental observation of core hole localization. Comparison with recent unpublished experiments at the Advanced Light Source that measured the Recoil Frame Photoelectron Angular Distributions (averaged over CF3 rotations around the recoil axis) for fluorine K-edge ionization gives unambiguous evidence that these experiments directly observed the creation of an almost completely localized core hole on the dissociating fluorine atom when the molecule was initially photoionized. Work supported by USDOE, OBES Chemical Sciences, Geosciences, and Biosciences Division.

  18. Dual-energy fluorescent x-ray computed tomography system with a pinhole design: Use of K-edge discontinuity for scatter correction

    PubMed Central

    Sasaya, Tenta; Sunaguchi, Naoki; Thet-Lwin, Thet-; Hyodo, Kazuyuki; Zeniya, Tsutomu; Takeda, Tohoru; Yuasa, Tetsuya

    2017-01-01

    We propose a pinhole-based fluorescent x-ray computed tomography (p-FXCT) system with a 2-D detector and volumetric beam that can suppress the quality deterioration caused by scatter components. In the corresponding p-FXCT technique, projections are acquired at individual incident energies just above and below the K-edge of the imaged trace element; then, reconstruction is performed based on the two sets of projections using a maximum likelihood expectation maximization algorithm that incorporates the scatter components. We constructed a p-FXCT imaging system and performed a preliminary experiment using a physical phantom and an I imaging agent. The proposed dual-energy p-FXCT improved the contrast-to-noise ratio by a factor of more than 2.5 compared to that attainable using mono-energetic p-FXCT for a 0.3 mg/ml I solution. We also imaged an excised rat’s liver infused with a Ba contrast agent to demonstrate the feasibility of imaging a biological sample. PMID:28272496

  19. Low-temperature spin-state transition in LaCoO{sub 3} investigated using resonant x-ray absorption at the Co K edge

    SciTech Connect

    Medarde, M.; Pomjakushina, E.; Conder, K.; Dallera, C.; Grioni, M.; Voigt, J.; Podlesnyak, A.; Neisius, Th.; Tjernberg, O.; Barilo, S. N.

    2006-02-01

    LaCoO{sub 3} displays two broad anomalies in the DC magnetic susceptibility {chi}{sup DC}, occurring, respectively, around 50 K and 500 K. We have investigated the first of them within the 10 KK-edge XAS reports, our data show the existence of abrupt changes around 50 K which can be nicely correlated with the anomaly in {chi}{sup DC}. To our knowledge, this is the first time that a clear, quantitative relationship between the temperature dependence of the magnetic susceptibility and that of the XAS spectra is reported. The intensity changes in the preedge region, which are consistent with a transition from a lower to a higher spin state, have been analyzed using a minimal model including the Co 3d and O 2p hybridization in the initial state. The temperature dependence of the Co magnetic moment obtained from the estimated e{sub g} and t{sub 2g} occupations could be satisfactorily reproduced. Also, the decrease of the Co 3d and O 2p hybridization by increasing temperature obtained from this simple model compares favorably with the values estimated from thermal evolution of the crystallographic structure.

  20. Dual-energy fluorescent x-ray computed tomography system with a pinhole design: Use of K-edge discontinuity for scatter correction

    NASA Astrophysics Data System (ADS)

    Sasaya, Tenta; Sunaguchi, Naoki; Thet-Lwin, Thet-; Hyodo, Kazuyuki; Zeniya, Tsutomu; Takeda, Tohoru; Yuasa, Tetsuya

    2017-03-01

    We propose a pinhole-based fluorescent x-ray computed tomography (p-FXCT) system with a 2-D detector and volumetric beam that can suppress the quality deterioration caused by scatter components. In the corresponding p-FXCT technique, projections are acquired at individual incident energies just above and below the K-edge of the imaged trace element; then, reconstruction is performed based on the two sets of projections using a maximum likelihood expectation maximization algorithm that incorporates the scatter components. We constructed a p-FXCT imaging system and performed a preliminary experiment using a physical phantom and an I imaging agent. The proposed dual-energy p-FXCT improved the contrast-to-noise ratio by a factor of more than 2.5 compared to that attainable using mono-energetic p-FXCT for a 0.3 mg/ml I solution. We also imaged an excised rat’s liver infused with a Ba contrast agent to demonstrate the feasibility of imaging a biological sample.

  1. Solvation Effects on S K-edge XAS Spectra of Fe-S Proteins: Normal and Inverse Effects on WT and Mutant Rubredoxin

    PubMed Central

    Sun, Ning; Dey, Abhishek; Xiao, Zhiguang; Wedd, Anthony G.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2010-01-01

    S K-edge X-ray Absorption Spectroscopy (XAS) was performed on wild type Cp rubredoxin and its Cys->Ser mutants in both solution and lyophilized forms. For wild type rubredoxin and for the mutants where an interior cysteine residue (C6 or C39) is substituted by serine, a normal solvent effect is observed, that is, the S covalency increases upon lyophilization. For the mutants where a solvent accessible surface cysteine residue is substituted by serine, the S covalency decreases upon lyophilization which is an inverse solvent effect. Density functional theory (DFT) calculations reproduce these experimental results and show that the normal solvent effect reflects the covalency decrease due to solvent H-bonding to the surface thiolates and that the inverse solvent effect results from the covalency compensation from the interior thiolates. With respect to the Cys->Ser substitution, the S covalency decreases. Calculations indicate that the stronger bonding interaction of the alkoxide with the Fe relative to that of thiolate increases the energy of the Fe d orbitals and reduces their bonding interaction with the remaining cysteines. The solvent effects support a surface solvent tuning contribution to electron transfer and the Cys->Ser result provides an explanation for the change in properties of related iron-sulfur sites with this mutation. PMID:20726554

  2. Octahedral versus tetrahedral coordination of Al in synthetic micas determined by XANES

    SciTech Connect

    Mottana, A.; Ventura, G.D.; Robert, J.L.

    1997-05-01

    We used the JUMBO monochromator at SSRL to measure the Al K-edge X-ray absorption spectra of synthetic micas having variable Al content and occupancy, from 0 to 2/3 in the octahedral M positions, and 0 to 2/3 in the tetrahedral T positions. The measured Al K edges differ markedly, but the differences may have a common explanation: (1) Micas containing 1/3 Al in M or {1/4} Al in T have K edges that differ in the energy and intensity of the first two features, which are related to interaction of Al with its first-shell nearest neighbors (O and OH or F). They are nearly identical to the K edges of reference minerals such as albite (tetrahedral Al only) or grossular (octahedral Al only). (2) Micas containing Al in both M and T have K edges that can be interpreted as a weighed combination of the simple edges. 39 refs., 4 figs., 1 tab.

  3. First Ti-XANES analyses of refractory inclusions from Murchison

    SciTech Connect

    Simon, S.B.; Sutton, S.R.; Grossman, L.

    2009-03-23

    Ti valence in refractory phases is an important recorder of redox conditions in the early solar nebula. We report the valence of Ti in pyroxene, spinel and hibonite in spinel-hibonite and spinel-pyroxene inclusions and in a coarse hibonite grain. A system of solar composition is so reducing that Ti{sup 3+} and Ti{sup 4+} can coexist, making the valence of Ti a valuable indicator of f{sub O2} conditions during formation of nebular materials. The Ti{sup 3+}/Ti{sup 4+} ratios observed in the Ti-rich phases fassaite and rhoenite in coarse-grained refractory inclusions from CV3 chondrites have been shown to be quantitatively consistent with formation in a gas of solar composition (log f{sub O2} = IW-6.8), but these are the only objects in chondrites for which this is the case. Here, we report the valence of Ti in various phases in refractory inclusions from the Murchison CM2 chondrite. The second-highest temperature, major-element-bearing phase predicted to condense from a gas of solar composition, hibonite (ideally CaAl{sub 12}O{sub 19}), can contain significant amounts of Ti, but the hibonite structure can have oxygen vacancies, so calculation of Ti valence from stoichiometry of electron probe analyses is not recommended for hibonite. To date, the only reported measurement of Ti valence in meteoritic hibonite was done by electron spin resonance, on coarse crystals from a Murchison hibonite-perovskite-melilite inclusion. Spinel and most of the pyroxene in CM inclusions contain too little Ti for derivation of Ti{sup 3+}/Ti{sup 4+} ratios from electron probe analyses. X-ray absorption near edge spectroscopy (XANES), however, allows determination of Ti valence in relatively Ti-poor phases. In the present work, we apply synchrotron microXANES to a large hibonite grain from Murchison and to spinel-hibonite (sp-hib) and spinel-pyroxene (sp-pyx) inclusions from Murchison, refractory materials whose Ti{sup 3+}/Ti{sup 4+} ratios have not been previously measured. Analysis of

  4. EXAFS and XANES analysis of oxides at the nanoscale

    PubMed Central

    Kuzmin, Alexei; Chaboy, Jesús

    2014-01-01

    Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles. PMID:25485137

  5. Identification of Martian Regolith Sulfur Components in Shergottites Using Sulfur K Xanes and Fe/S Ratios

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Ross, D. K.; Rao, M. N.; Nyquist, L. E.

    2014-01-01

    Based on isotopic anomalies in Kr and Sm, Sr-isotopes, S-isotopes, XANES results on S-speciation, Fe/S ratios in sulfide immiscible melts [5], and major element correlations with S determined in impact glasses in EET79001 Lith A & Lith B and Tissint, we have provided very strong evidence for the occurrence of a Martian regolith component in some impact melt glasses in shergottites. Using REE measurements by LA-ICP-MS in shergottite impact glasses, Barrat and co-workers have recently reported conflicting conclusions about the occurrence of Martian regolith components: (a) Positive evidence was reported for a Tissint impact melt, but (b) Negative evidence for impact melt in EET79001 and another impact melt in Tissint. Here, we address some specific issues related to sulfur speciation and their relevance to identifying Martian regolith components in impact glasses in EET79001 and Tissint using sulfur K XANES and Fe/S ratios in sulfide immiscible melts. XANES and FE-SEM measurements in approx. 5 micron size individual sulfur blebs in EET79001 and Tissint glasses are carried out by us using sub-micron size beams, whereas Barrat and coworkers used approx. 90 micron size laser spots for LA- ICP-MS to determine REE abundances in bulk samples of the impact melt glasses. We contend that Martian regolith components in some shergottite impact glasses are present locally, and that studying impact melts in various shergottites can give evidence both for and against regolith components because of sample heterogeneity.

  6. Analysis of Flame Retardancy in Polymer Blends by Synchrotron X-ray K-edge Tomography and Interferometric Phase Contrast Movies.

    PubMed

    Olatinwo, Mutairu B; Ham, Kyungmin; McCarney, Jonathan; Marathe, Shashidhara; Ge, Jinghua; Knapp, Gerry; Butler, Leslie G

    2016-03-10

    Underwriters Laboratories 94 test bars have been imaged with X-ray K-edge tomography between 12 and 32 keV to assess the bromine and antimony concentration gradient across char layers of partially burnt samples. Phase contrast tomography on partially burnt samples showed gas bubbles and dark-field scattering ascribed to residual blend inhomogeneity. In addition, single-shot grating interferometry was used to record X-ray movies of test samples during heating (IR and flame) intended to mimic the UL 94 plastics flammability test. The UL 94 test bars were formulated with varying concentrations of a brominated flame retardant, Saytex 8010, and a synergist, Sb2O3, blended into high-impact polystyrene (HIPS). Depending on the sample composition, samples will pass or fail the UL 94 plastics flammability test. Tomography and interferometry imaging show differences that correlate with UL 94 performance. Key features such as char layer, gas bubble formation, microcracks, and dissolution of the flame retardant in the char layer regions are used in understanding the efficiency of the flame retardant and synergist. The samples that pass the UL 94 test have a thick, highly visible char layer as well as an interior rich in gas bubbles. Growth of gas bubbles from flame-retardant thermal decomposition is noted in the X-ray phase contrast movies. Also noteworthy is an absence of bubbles near the burning surface of the polymer; dark-field images after burning suggest a microcrack structure between interior bubbles and the surface. The accepted mechanism for flame retardant activity includes free radical quenching in the flame by bromine and antimony species. The imaging supports this as well as provides a fast inspection of other parameters, such as viscosity and surface tension.

  7. Valence state partitioning of vanadium between pyroxene-melt: effects of pyroxene and melt composition and direct determination of V valence by XANES

    SciTech Connect

    Karner, J.M.; Papike, J.J.; Sutton, S.R.; Shearer, C.K.; Burger, P.; McKay, G.; Le, L.

    2008-04-29

    This paper continues the study of the partitioning of multivalent elements between pyroxene-melt in synthetic charges of martian basalt QUE 94201 composition. Here we concentrate on the partitioning of V between augite/melt and pigeonite/melt. Previous studies have used the partitioning of V between minerals and melt to estimate the fO2 condition and setting of terrestrial and extraterrestrial lavas. Although the V partitioning studies have been successful in estimating fO{sub 2}, they provide no direct determination of V valence in the minerals or the melt. That information is now obtainable through XANES spectroscopy, and here we report XANES data on the same pyroxene grains that we measured the partitioning data.

  8. Metal (Hydr)oxides for the removal of Cr(VI) from drinking water: a XAFS study

    NASA Astrophysics Data System (ADS)

    Pinakidou, F.; Kaprara, E.; Katsikini, M.; Paloura, E. C.; Simeonidis, K.; Mitrakas, M.

    2016-05-01

    The reduction mechanism and adsorption behaviour of Cr(VI) onto Tin(II) oxy- hydroxides are investigated using Cr-K edge X-ray absorption fine structure (XAFS) spectroscopies. The synthesis of the Sn oxy-hydroxide proceeds via hydrolysis of SnSO4. The successful reduction of Cr(VI) was identified by the analysis of the Cr-K edge XANES spectra where only Cr(III) species in octahedral sites are detected. According to the Cr-K edge EXAFS analysis results, Cr(III) forms bidentate inner sphere (binuclear (2C) and mononuclear (2E)) complexes. However, the surface coverage of Cr affects the type of Cr(III)-complexes formed: as the Cr-loading increases, Cr(III)-oxy-anions preferentially sorb in a “combined” 2C and 1V configuration, at the expense of the existing 2E sorption geometry.

  9. XAFS studies of nickel and sulfur speciation in residual oil fly-ash particulate matters (ROFA PM).

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P; Linak, William P; Miller, C Andrew

    2007-02-15

    XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, depending upon the combustion conditions, lesser amounts of thiophenic sulfur, metal sulfide, and elemental sulfur may also be observed. Least-squares fitting of Ni K-edge XANES reveals that most of the nickel in PM is present as bioavailable NiSO4.nH2O. The insoluble Ni mainly exists as a minor species, as nickel ferrite in PM2.5 (PM < 2.5 microm) and nickel sulfide, Ni(x)SY(y) in PM2.5+ (PM > 2.5 microm). The Ni K-edge XANES results are in agreement with the EXAFS data. Such detailed speciation of Ni and S in PM is needed for determining their mobility, bioavailability, and reactivity, and hence, their role in PM toxicity. This information is also important for understanding the mechanism of PM formation, developing effective remediation measures, and providing criteria for identification of potential emission sources. Transition metals complexing with sulfur is ubiquitous in nature. Therefore, this information on metal sulfur complex can be critical to a large body of environmental literature.

  10. Existence of Fe{sup 4+} ions in Co{sub 2.25}Fe{sub 0.75}O{sub 4} spinel ferrite confirmed from SXRD and XANES spectroscopy

    SciTech Connect

    Panda, Manas Ranjan Bhowmik, R. N.; Sinha, A. K.

    2015-06-24

    The Co{sub 2.25}Fe{sub 0.75}O{sub 4} ferrite composition has been prepared by chemical co-precipitation route. The as-prepared sample after annealing at 900°C in air formed single phase cubic spinel structure. Synchrotron X-ray diffraction and X-ray absorption near edge structure (XANES) measurements were used to study charge states of the cations in octahedral and tetrahedral sites of the cubic spinel structure. Raman spectra indicated normal cubic spinel structure. XANES data suggested the existence of Fe{sup 4+} ions in the spinel structure.

  11. SORPTION OF ARSENATE AND ARSENITE ON RUO2 X H2O: ANALYSIS OF SORBED PHASE OXIDATION STATE BY XANES IN ADVANCED PHOTON SOURCE ACTIVITY REPORT 2002

    EPA Science Inventory

    The sorption reactions of arsenate (As(V)) and arsenite (As(III)) on RuO2 x H2O were examined by X-ray Absorption Near Edge Spectroscopy (XANES) to elucidate the solid state speciation of sorbed As. At all pH values studied (pH 4-8), RuO2 x H

  12. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity.

    PubMed

    Dey, Abhishek; Jenney, Francis E; Adams, Michael W W; Johnson, Michael K; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I

    2007-10-17

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results

  13. Understanding the Zr and Si interdispersion in Zr1-xSixO2 mesoporous thin films by using FTIR and XANES spectroscopy.

    PubMed

    Andrini, Leandro; Angelomé, Paula C; Soler-Illia, Galo J A A; Requejo, Félix G

    2016-06-14

    Zr-Si mixed mesoporous oxides were obtained in a wide range of proportions, from 0 to 30% and from 70 to 100% of Si, using Si(OEt)4 and ZrCl4 as precursors and Pluronic F127 as a template. The oxide mesostructure was characterized by transmission electron microscopy and 2D-small angle X-ray scattering. Fourier transform infrared spectroscopy measurements suggested a local homogeneous interdispersion of both cations. Further selective studies using X-ray Absorption Near Edge Structure (XANES) spectroscopy for separately Zr and Si local environments, allowed for demonstrating that the Zr coordination varies from close to 7 to 6, when its concentration in the mixed oxide is reduced. In addition, it was possible to determine that in mixed oxides with low Zr concentrations, Zr can fit into the spaces occupied by Si in SiO2 pure oxide. An equivalent XANES result was obtained for Si, which is also compatible with the information obtained by FTIR. Furthermore, the Zr-O distance varied from close to 2.2 Å to 1.7 Å when the Zr concentration decreased. Finally, our study also demonstrates the usefulness of XANES to selectively assess the local structure (coordination, symmetry and chemical state) of specific atoms in nanostructured systems.

  14. Analyzing organic sulfur in coal/char: Integrated mild degradation/XANES methods. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Palmer, S.R.; Huffman, G.P.

    1994-06-01

    The cost effective removal of sulfur from coal has been very difficult to accomplish. Perhaps the single most important reason for this is the fact that the organic sulfur in coal remains very poorly characterized. The overall goal of this study is to improve our understanding of sulfur in coals/chars via the use of combined advanced non-destructive and advanced destructive methods of sulfur analysis. This study combines selective oxidation, analytical pyrolysis, and sulfur X-ray Absorption Near Edge Structure Spectroscopy (XANES) analysis. Examination of samples that were oxidized with peroxyacetic acid using the analytical pyrolysis technique showed that the level of simple thiophene structures observed in the pyrolysis products declines with increasing levels of oxidation. Sulfur XANES spectra of treated samples showed various effects depending on the treatment severity. For the less severely treated samples (demineralization and solvent extraction), the XANES spectra were similar, although not identical, to the untreated coal spectra, whereas the more severe treatments (steam at 450{degree}C; peroxyacetic acid at 25{degree}C) showed preferential oxidation of one or more sulfur-bearing phases in the original coal.

  15. First-principles calculations of Zn-K XANES in Ca-deficient hydroxyapatite.

    PubMed

    Murata, Hidenobu; Shitara, Kazuki; Tanaka, Isao; Nakahira, Atsushi; Mizoguchi, Teruyasu; Matsunaga, Katsuyuki

    2010-09-29

    The local environment of substitutional Zn(2+) in Ca-deficient hydroxyapatite (HAp) was investigated using experimental and theoretical analyses of the x-ray absorption near edge structure (XANES). For Zn-K XANES calculations, two situations of Zn(2+) were considered. One was Zn(2+) substituted for Ca sites in perfect HAp, and the other was a Ca-deficient HAp model of substitutional Zn(2+) associated with a Ca(2+) vacancy charge compensated by two protons. The model of Zn(2+) in perfect HAp did not reproduce the experimental Zn-K XANES spectrum. In contrast, the Ca-deficient HAp model agreed well with the experimental spectrum. This indicates that substitutional Zn(2+) in Ca-deficient HAp is associated with the Ca(2+) vacancy complex in HAp.

  16. Density functional theory simulation of the L2,3 XANES spectra

    NASA Astrophysics Data System (ADS)

    Alperovich, I.; Soldatov, A. V.; Moonshiram, D.; Pushkar, Yu. N.

    2012-07-01

    A method for the theoretical simulation of X-ray absorption near edge structure (XANES) spectra at the Ru L2,3 edges has been developed using relativistic density functional theory (DFT) calculations. The effect of the parameters of DFT calculations on the shape of theoretical curves has been comparatively analyzed for XANES spectra of a water oxidation catalyst and hexaammineruthenium complexes. Recommendations for the choice of the best parameters ensuring good agreement with the experimental data, including the most correct exchange-correlation potential, have been made.

  17. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer.

    PubMed

    Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O

    2017-02-06

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M(II)(itao)(SO4)(H2O)0,1] (M = Co, Ni, Cu) and [Cu(Me6tren)(SO4)] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO4)] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO4)] but not of [Cu(Me6tren)(SO4)] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M(II)(SO4)(H2O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which extends across a

  18. Combined Carbon, Nitrogen, and Oxygen XANES Spectroscopy on Hydrated and Anhydrous Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Feser, M.; Wirick, S.; Flynn, G. J.; Keller, L. P.

    2003-01-01

    Interplanetary dust particles (IDPs) collected from the Earth s stratosphere generally contain percent-level concentrations of organic matter. This organic matter in IDPs is important for several reasons: 1) some IDPs contain interstellar organic matter, identified by high D/H or N-15, providing the opportunity to characterize this interstellar material, 2) comparison of the organic matter in anhydrous IDPs to that in hydrated IDPs can help establish the effects of parent body aqueous alteration, and, 3) IDPs are believed to have delivered to the surface of the early Earth pre-biotic organic matter important for the origin of life. X-Ray Absorption Near-Edge Structure (XANES) spectroscopy provides information on the functional groups present in a sample, and XANES can be performed on the nano-scale, comparable to the size of some of the sub-units of the IDPs. The energies of the XANES transitions are diagnostic of the type of bonding of the C, N, and O, allowing identification of the functional groups present in the sample. As part of our ongoing effort to characterize the organic matter in the IDPs, we have performed carbon- and oxygen- and the first nitrogen-XANES spectroscopy on two IDPs and acid-insoluble residue from the CM2 meteorite Murchison.

  19. µ-XANES AND µ-XRF INVESTIGATIONS OF METAL BINDING MECHANISMS IN BIOSOLIDS

    EPA Science Inventory

    Micro-X-ray fluorescence (µ-XRF) microprobe analysis and micro-X-ray absorption near edge spectroscopy (µ-XANES) were employed to identify Fe and Mn phases and their association with selected toxic elements in two biosolids (limed composted and Nu-Earth) containing low ...

  20. Interaction between nuclear graphite and molten fluoride salts: a synchrotron radiation study of the substitution of graphitic hydrogen by fluoride ion.

    PubMed

    Yang, Xinmei; Feng, Shanglei; Zhou, Xingtai; Xu, Hongjie; Sham, T K

    2012-01-26

    The interaction between nuclear graphite and molten fluoride salts (46.5 mol % LiF/11.5 mol % NaF/42 mol % KF) is investigated by synchrotron X-ray diffraction and C K-edge X-ray absorption near-edge structure (XANES). It is found that there are a large number of H atoms in IG-110 nuclear graphite, which is attributed to the residual C-H bond after the graphitization process of petroleum coke and pitch binder. The elastic recoil detection analysis indicates that H atoms are uniformly distributed in IG-110 nuclear graphite, in excellent agreement with the XANES results. The XANES results indicate that the immersion in molten fluoride salts at 500 °C led to H atoms in nuclear graphite partly substituted by the fluorine from fluoride salts to form C-F bond. The implications of these findings are discussed.

  1. Utilization of solid "elemental" sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: a sulfur K-edge X-ray absorption spectroscopy study.

    PubMed

    Franz, Bettina; Lichtenberg, Henning; Hormes, Josef; Modrow, Hartwig; Dahl, Christiane; Prange, Alexander

    2007-04-01

    The purple sulfur bacterium Allochromatium vinosum can use elemental sulfur as an electron donor for anoxygenic photosynthesis. The elemental sulfur is taken up, transformed into intracellular sulfur globules and oxidized to sulfate. Commercially available "elemental" sulfur usually consists of the two species cyclo-octasulfur and polymeric sulfur. The authors investigated whether only one sulfur species is used or at least preferred when Alc. vinosum takes up elemental sulfur and forms globules. To this end, Alc. vinosum was cultivated photolithoautotrophically with two types of elemental sulfur that differed in their cyclo-octasulfur : polymeric sulfur ratio, as well as with pure polymeric sulfur. Sulfur speciation was analysed using X-ray absorption spectroscopy, and sulfate contents were determined by HPLC to quantify the amount of elemental sulfur being taken up and oxidized by Alc. vinosum. The results show that Alc. vinosum uses only the polymeric sulfur (sulfur chain) fraction of elemental sulfur and is probably unable to take up and form sulfur globules from cyclo-octasulfur. Furthermore, direct cell-sulfur contact appears to be necessary for uptake of elemental sulfur by Alc. vinosum.

  2. Sulfur and iron speciation in gas-rich impact-melt glasses from basaltic shergottites determined by microXANES

    SciTech Connect

    Sutton, S.R.; Rao, M.N.; Nyquist, L.E.

    2008-04-28

    Sulfur and iron K XANES measurements were made on GRIM glasses from EET 79001. Iron is in the ferrous state. Sulfur speciation is predominately sulfide coordination but is Fe coordinated in Lith B and, most likely, Ca coordinated in Lith A. Sulfur is abundantly present as sulfate near Martian surface based on chemical and mineralogical investigations on soils and rocks in Viking, Pathfinder and MER missions. Jarosite is identified by Moessbauer studies on rocks at Meridian and Gusev, whereas MgSO{sub 4} is deduced from MgO-SO{sub 3} correlations in Pathfinder MER and Viking soils. Other sulfate minerals such as gypsum and alunogen/S-rich aluminosilicates and halides are detected only in martian meteorites such as shergottites and nakhlites using SEM/FE-SEM and EMPA techniques. Because sulfur has the capacity to occur in multiple valence states, determination of sulfur speciation (sulfide/sulfate) in secondary mineral assemblages in soils and rocks near Mars surface may help us understand whether the fluid-rock interactions occurred under oxidizing or reducing conditions. On Earth, volcanic rocks contain measurable quantities of sulfur present as both sulfide and sulfate. Carroll and Rutherford showed that oxidized forms of sulfur may comprise a significant fraction of total dissolved sulfur, if the oxidation state is higher than {approx}2 log fO{sub 2} units relative to the QFM buffer. Terrestrial samples containing sulfates up to {approx}25% in fresh basalts from the Galapagos Rift on one hand and high sulfide contents present in oceanic basalts on the other indicate that the relative abundance of sulfide and sulfate varies depending on the oxygen fugacity of the system. Basaltic shergottites (bulk) such as Shergotty, EET79001 and Zagami usually contain small amounts of sulfur ({approx}0.5%) as pyrrhotite. But, in isolated glass pockets containing secondary salts (known as GRIM glasses) in these meteorites, sulfur is present in high abundance ({approx}1-12%). To

  3. Surface and bulk investigation of ZSM5 and Al-MCM-41 usingsynchrotron XPS, XANES, and hexane cracking

    SciTech Connect

    Jalil, P.A.; Kariapper, M.S.; Faiz, Z.; Tabet, N.; Hamdan, N.M.; Diaz, J.; Hussain, Z.

    2005-05-12

    We present a comparative study of ZSM5 and Al-MCM-41 catalysts using spectroscopic and chemical techniques. The analysis of conventional and synchrotron XPS spectra of these catalysts reveals the presence of a topmost surface-related Si peak in addition to the bulk peak. XANES results suggest structural modification upon heating Al-MCM-41 at 500 C. Depth-resolved XPS data show Al depletion from the surface of Al-MCM-41 in contrast to surface enrichment of Al in ZSM5. These surface modifications could be one of the reasons for the weak acidity of Al-MCM-41 in chemical reactions such as hexane cracking at different temperatures.

  4. Surface and bulk investigation of ZSM5 and Al-MCM-41 usingsynchrotron XPS, XANES, and hexane cracking

    SciTech Connect

    Jalil, P.A.; Kariapper, M.S.; Faiz, Z.; Tabet, N.; Hamdan, N.M.; Diaz, J.; Hussain, Z.

    2005-05-12

    We present a comparative study of ZSM5 and Al-MCM-41 catalysts using spectroscopic and chemical techniques. The analysis of conventional and synchrotron XPS spectra of these catalysts reveals the presence of a topmost surface-related Si peak in addition to the bulkpeak. XANES results suggest structural modification upon heating Al-MCM-41 at 500 C. Depth-resolved XPS data show Al depletion from the surface of Al-MCM-41 in contrast to surface enrichment of Al in ZSM5. These surface modifications could be one of the reasons for the weak acidity of Al-MCM-41 in chemical reactions such as hexane cracking at different temperatures.

  5. A new structural motif for biological iron: iron K-edge XAS reveals a [Fe4-mu-(OR)5(OR)(9-10)] cluster in the ascidian Perophora annectens.

    PubMed

    Frank, Patrick; DeTomaso, Anthony; Hedman, Britt; Hodgson, Keith O

    2006-05-15

    The Phlebobranch ascidian Perophora annectens surprisingly exhibited a biological Fe/V ratio of approximately 15:1 on multichannel X-ray fluorescence analysis of two independent collections of organisms. Iron K-edge X-ray absorption spectroscopy (XAS) indicated a single form of iron. The XAS K-edge of the first collection of blood cells was shifted approximately +1 eV relative to that of the second, indicating redox activity with average iron oxidation states of 2.67+ and 2.60+. The first-derivative iron XAS K-edge features at 7120.5, 7124, and 7128 eV resembled the XAS of magnetite but not of ferritin or of dissolved Fe(II) or Fe(III). Pseudo-Voigt fits to blood-cell iron K-edge XAS spectra yielded 12.4 integrated units of preedge intensity, indicating a noncentrosymmetric environment. The non-phase-corrected extended X-ray absorption fine structure (EXAFS) Fourier transform spectrum showed a first-shell O/N peak at 1.55 angstroms and an intense Fe-Fe feature at 2.65 angstroms. Fits to the EXAFS required a split first shell with two O at 1.93 angstroms and three O at 2.07 angstroms, consistent with terminal and bridging alkoxide ligands, respectively. More distant shells included three C at 2.87 angstroms, two Fe at 3.08 angstroms, three O at 3.29 angstroms, and one Fe at 3.8 angstroms. Structural models consistent with these findings include a [Fe4(OR)13](2-/3-) broken-edged Fe4O5 cuboid or a [Fe4(OR)14](3-/4-) "Jacob's ladder" with three edge-fused Fe2(OR)2 rhombs. Either of these models represents an entirely new structural motif for biological iron. Vanadium domination of blood-cell metals cannot be a defining trait of Phlebobranch tunicates so long as P. annectens is included among them.

  6. XANES Spectroscopic Analysis of Phosphorus Speciation in Alum-Amended Poultry Litter

    SciTech Connect

    Seiter,J.; Staats-Borda, K.; Ginder-Vogel, M.; Sparks, D.

    2008-01-01

    Aluminum sulfate (alum; Al2(SO4)3{center_dot}14H2O) is used as a chemical treatment of poultry litter to reduce the solubility and release of phosphate, thereby minimizing the impacts on adjacent aquatic ecosystems when poultry litter is land applied as a crop fertilizer. The objective of this study was to determine, through the use of X-ray absorption near edge structure (XANES) spectroscopy and sequential extraction, how alum amendments alter P distribution and solid-state speciation within the poultry litter system. Our results indicate that traditional sequential fractionation procedures may not account for variability in P speciation in heterogeneous animal manures. Analysis shows that NaOH-extracted P in alum amended litters is predominantly organic ({approx}80%), whereas in the control samples, >60% of NaOH-extracted P was inorganic P. Linear least squares fitting (LLSF) analysis of spectra collected of sequentially extracted litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic forms (phytic acid, polyphosphates, and monoesters) in alum- and non-alum-amended poultry litter. When determining land application rates of poultry litter, all of these compounds must be considered, especially organic P. Results of the sequential extractions in conjunction with LLSF suggest that no P species is completely removed by a single extractant. Rather, there is a continuum of removal as extractant strength increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid, whereas untreated samples contained Ca-P minerals and organic P compounds. This study provides in situ information about P speciation in the poultry litter solid and about P availability in alum- and non-alum-treated poultry litter that will dictate P losses to ground and surface water systems.

  7. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Prieur, Damien; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J. M.; Somers, Joseph

    2015-10-01

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β- decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state 31P NMR agrees with the XANES results and the presence of a solid-solution.

  8. Energy-discrimination X-ray computed tomography system utilizing a silicon-PIN detector and its application to 2.0-keV-width K-edge imaging

    NASA Astrophysics Data System (ADS)

    Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    Demonstration of narrow-energy-width computed tomography (CT) was carried out by means of energy-discrimination. An X-ray CT system is of a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a silicon-PIN detector system with amplifiers, a multi-channel analyzer (MCA), a counter card (CC), and a personal computer (PC). CT is accomplished by repeating the translation and the rotation of an object, and projection curves of the object are obtained by the translation of the moving object. Both photon-energy level and energy width are determined by the MCA, and the pulses of the discriminated event signal from the MCA are counted by CC in conjunction with PC. The maximum count rate was approximately 300 cps (counts per second) with energy widths of 2.0 keV, and energy-discrimination CT was carried out with a photon-energy resolution of 0.15 keV. To perform iodine K-edge CT, X-ray photons with an energy range from 33.2 to 35.2 keV were used. Next, to carry out cerium K-edge CT, an energy range from 40.3 to 42.3 keV was selected.

  9. Water-window soft x-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 μm OPCPA source

    NASA Astrophysics Data System (ADS)

    Stein, Gregory J.; Keathley, Phillip D.; Krogen, Peter; Liang, Houkun; Siqueira, Jonathas P.; Chang, Chun-Lin; Lai, Chien-Jen; Hong, Kyung-Han; Laurent, Guillaume M.; Kärtner, Franz X.

    2016-08-01

    We report the generation of coherent water-window soft x-ray harmonics in a neon-filled semi-infinite gas cell driven by a femtosecond multi-mJ mid-infrared optical parametric chirped-pulse amplification (OPCPA) system at a 1 kHz repetition rate. The cutoff energy was extended to ∼450 eV with a 2.1 μm driver wavelength and a photon flux of ∼ 1.5× {10}6 photons/s/1% bandwidth was obtained at 350 eV. A comparable photon flux of ∼ 1.0× {10}6 photons/s/1% bandwidth was observed at the nitrogen K-edge of 410 eV. This is the first demonstration of water-window harmonic generation up to the nitrogen K-edge from a kHz OPCPA system. Finally, this system is suitable for time-resolved soft x-ray near-edge absorption spectroscopy. Further scaling of the driving pulse's energy and repetition rate is feasible due to the availability of high-power picosecond Yb-doped pump laser technologies, thereby enabling ultrafast, tabletop water-window x-ray imaging.

  10. Polyoxomolybdate promoted hydrolysis of a DNA-model phosphoester studied by NMR and EXAFS spectroscopy.

    PubMed

    Absillis, Gregory; Van Deun, Rik; Parac-Vogt, Tatjana N

    2011-11-21

    Hydrolysis of (p-nitrophenyl)phosphate (NPP), a commonly used phosphatase model substrate, was examined in molybdate solutions by means of (1)H, (31)P, and (95)Mo NMR spectroscopy and Mo K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. At 50 °C and pD 5.1 the cleavage of the phosphoester bond in NPP proceeds with a rate constant of 2.73 × 10(-5) s(-1) representing an acceleration of nearly 3 orders of magnitude as compared to the hydrolysis measured in the absence of molybdate. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest cleavage observed in solutions where [Mo(7)O(24)](6-) is the major species in solution. Mixing of NPP and [Mo(7)O(24)](6-) resulted in formation of these two intermediate complexes that were detected by (31)P NMR spectroscopy. Complex A was characterized by a (31)P NMR resonance at -4.27 ppm and complex B was characterized by a (31)P NMR resonance at -7.42 ppm. On the basis of the previous results from diffusion ordered NMR spectroscopy, performed with the hydrolytically inactive substrate phenylphosphonate (PhP), the structure of these two complexes was deduced to be (NPP)(2)Mo(5)O(21)(4-) (complex A) and (NPP)(2)Mo(12)O(36)(H(2)O)(6)(4-) (complex B). The pH studies point out that both complexes are hydrolytically active and lead to the hydrolysis of phosphoester bond in NPP. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of Mo(VI) reduction to Mo(V), and indicating that the cleavage of the phosphomonoester bond is purely hydrolytic. The Mo K-edge XANES region also did not show any sign of Mo(VI) to Mo(V) reduction during the hydrolytic reaction. (95)Mo NMR and Mo K-edge EXAFS spectra measured during different stages of the hydrolytic reaction showed a gradual disappearance of [Mo(7)O(24)](6-) during the hydrolytic reaction and appearance of [P(2)Mo(5)O(23)](6-), which was the final complex observed at the end of hydrolytic reaction.

  11. Core-hole effect on XANES and electronic structure of minor actinide dioxides with fluorite structure

    NASA Astrophysics Data System (ADS)

    Suzuki, Chikashi; Nishi, Tsuyoshi; Nakada, Masami; Akabori, Mitsuo; Hirata, Masaru; Kaji, Yoshiyuki

    2012-02-01

    The authors investigated theoretically core-hole effects on X-ray absorption near-edge structures (XANES) of Np and Am LIII in neptunium dioxide (NpO2) and americium dioxide (AmO2) with CaF2-type crystal lattices using the all-electron full-potential linearized augmented plane-wave (FP-LAPW) method. The peak creation mechanism of XANES was shown by examining the electronic structures of these oxides, which indicated that core-hole screening was more marked for AmO2 than for NpO2 because of the difference in the charge transfer between these oxides. Furthermore, the results of charge density analysis suggested that the white line was assigned to the quasi-bound state composed of the localized Np d or Am d components and O components, and that the tail structure was created as a result of delocalized standing waves between the Np or Am atoms.

  12. Probing Covalency in the UO3 Polymorphs by U M4 edge HR- XANES

    NASA Astrophysics Data System (ADS)

    Podkovyrina, Y.; Pidchenko, I.; Prüßmann, T.; Bahl, S.; Göttlicher, J.; Soldatov, A.; Vitova, T.

    2016-05-01

    Local atomic and electronic structure investigations of uranium trioxide (UO3) crystalline phases performed by the U M4 edge HR-XANES technique is presented. The experimental U M4 edge HR-XANES spectra of α-UO3, β-UO3 and γ-UO3 polymorphic phases are compared with spectra of uranate (CaU2O7) and uranyl (UO3•1-2(H2O)) compounds. We describe a finger print approach valuable for characterization of variations of U-O axial bond lengths. Theoretical calculations of spectra using full-multiple-scattering theory (FEFF9.6 code) are performed. We have tested and selected input parameters, which provide best agreement between experimental and calculated spectra.

  13. Revised Mossbauer Calibration for Fe3+/FeT of XANES Basalt Standards: Implications for MORB

    NASA Astrophysics Data System (ADS)

    Hirschmann, M. M.; Zhang, H.; Cottrell, E.

    2015-12-01

    Among techniques for determining Fe3+/FeT of natural glasses, XANES affords high precision, spatial resolution, and sample throughput and consequently has become widely used. However, because XANES determinations depend on standardization against materials of known Fe3+/FeT, they are only as accurate as the methods used for calibration. In many cases, calibration is performed with Mossbauer spectroscopy. Accurate determination of Fe3+/FeT by Mossbauer spectroscopy is the subject of a long-standing controversy, in part owing to debate as to the influence of recoilless fraction on the area ratios of room temperature (RT) Mossbauer absorption doublets associated with paramagnetic Fe2+ and Fe3+ in silicate glasses. Recoilless fraction effects for glasses are comparatively subtle, and so characterization efforts have not always produced statistically resolvable effects, in part because glasses produce broadened line shapes that degrade analytical precision, but both theoretical considerations of bond strengths and abundant evidence from minerals demonstrate that RT Mossbauer analyses will overestimate Fe3+/FeTof Fe-bearing silicates. Cottrell & Kelley (2011) used the basalt XANES calibration of Cottrell et al. (2009) to show that the average Fe3+/FeT of MORB glasses is close to 0.16, but this calibration depends chiefly on RT Mossbauer spectra of a suite of standard glasses. New cryogenic (10 K) Mossbauer spectra of these same glasses suggests a correction factor, C, of 1.1, where [Fe3+/FeT(corrected)]=[Fe3+/FeT (RT)]/([Fe3+/FeT (RT)]+C(1-[Fe3+/FeT(RT)]). If this correction is applied to the XANES data, the median of MORB glasses is ~0.15. Because recoilless fractions are not exactly unity even at 10 K, this correction represents a minimum; however the 10 K data are in good agreement with Fe3+/FeT predicted for the Mossbauer standards by the wet-chemistry-based model of Kress and Carmichael (1991) based on the synthesis fO2. The precision of XANES for the determination

  14. Application of X-ray Absorption Spectroscopy to the study of nuclear structural materials

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan

    One of key technologies for the next generation nuclear systems are advanced materials, including high temperature structural materials, fast neutron resistance core materials and so on. Local structure determination in these systems, which often are crystallographically intractable, is critical to gaining an understanding of their properties. In this thesis, X-ray Absorption Spectroscopy (XAS), including Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES), is used to examine the geometric and electronic structure of nuclear structural materials under varying conditions. The thesis is divided into two main sections. The first examines the structural analysis of nanostructured ferritic alloys (NFA) which are dispersion strengthened by an ultra high density of Y-Ti-O enriched nano-features, resulting in remarkable high temperature creep strength and radiation damage resistance. Titanium and Yttrium K-edge XAS shows commercial alloys MA957 and J12YWT more closely resemble the as received Fe-14Cr-3W-0.4Ti (wt. %) powders, and mechanically alloyed (MA) powders with 0.25Y2O3 (wt. %). It shows that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix. In contrast, annealed powders and hot isostatic press (HIP) consolidated alloys show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y2Ti2O7 and, especially, TiO. The second section describes corrosion studies of Pb with 316L stainless steel, molybdenum and spinet (MgAl2O4) at high temperature by XAS. The corrosion of fuel cladding and structural materials by liquid lead at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. The results of ex-situ studies show that a Mo substrate retained a smooth and less corroded surface than 316L stainless steel sample at elevated temperature. In

  15. Theoretical analysis of x-ray-absorption near-edge fine structure at the O and metal K edges of LaFeO{sub 3} and LaCoO{sub 3}

    SciTech Connect

    Wu, Z.Y.; Pedio, M.; Cimino, R.; Mobilio, S. |; Barman, S.R. |; Maiti, K.; Sarma, D.D. |

    1997-07-01

    We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO{sub 3} and LaCoO{sub 3}. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds. {copyright} {ital 1997} {ital The American Physical Society}

  16. Ni K-Edge XAS Suggests that Coordination of Ni II to the Unstructured Amyloidogenice Region of the Human Prion Protein Produces a Ni2 bis-u-hydroxo Dimer

    SciTech Connect

    Shearer,J.; Soh, P.

    2007-01-01

    Prion diseases are thought to be caused by the misfolding of the ubiquitous neuronal membrane prion protein (PrP) through an unknown mechanism that may involve Cu{sup II} coordination to the PrP. Previous work has utilized Ni{sup II} as a diamagnetic probe for Cu{sup II} coordination [C.E. Jones, M. Klewpatinond, S.R. Abdelraheim, D.R. Brown, J.H. Viles, J. Mol. Biol. 346 (2005) 1393-1407]. Herein we investigate Ni{sup II} coordination to the PrP fragment PrP(93-114) (AcN-GGTHSQWNKPSKPKTNMKHMAG) at pH = 10.0 by Ni K-edge X-ray absorption spectroscopy (XAS). We find that two equivalents of Ni{sup II} will coordinate to PrP(93-114) by UV/Vis titrations and mass spectrometry. Ni K-edge XAS data is consistent with Ni{sup II} ligated by five N/O based ligands (three N/O ligands at 2.01(2) {angstrom} and two at 1.855(2) {angstrom}). We were also able to locate a Ni-Ni vector at 3.1(1) {angstrom}, which suggests the two Ni{sup II} centers are contained in a bis-{mu}-hydroxo dimer. We therefore suggest that Ni{sup II} may not be a suitable diamagnetic mimic for Cu{sup II} coordination within the PrP since differential coordination modes for the two metals exist.

  17. Use of micro-XANES to speciate chromium in airborne fine particles in the Sacramento Valley

    SciTech Connect

    Michelle L. Werner; Peter S. Nico; Matthew A. Marcus; Cort Anastasio

    2007-07-15

    While particulate matter (PM) in the atmosphere can lead to a wide array of negative health effects, the cause of toxicity is largely unknown. One aspect of PM that likely affects health is the chemical composition, in particular the transition metals within the particles. Chromium is one transition metal of interest due to its two major oxidation states, with Cr(III) being much less toxic compared to Cr(VI). Using microfocused X-ray absorption near edge structure (micro-XANES), we analyzed the Cr speciation in fine particles (diameters {le} 2.5 {mu}m) collected at three sites in the Sacramento Valley of northern California: Sacramento, a large urban area, Davis, a small city, and Placerville, a rural area. These are several major stationary sources of Cr within 24 km of the site including chrome-plating plants, power plants and incinerators. The microfocused X-ray beam enables us to look at very small areas on the filter with a resolution of typically 5-7 micrometers. With XANES we are able to not only distinguish between Cr(VI) and Cr(III), but also to identify different types of Cr(III) and more reduced Cr species. At all of our sampling sites the main Cr species were Cr(III), with Cr(OH){sub 3} or a Cr-Fe, chromite-like, phase being the dominant species. Cr(VI)-containing particles were found only in the most urban site. All three sites contained some reduced Cr species, either Cr(0) or Cr{sub 3}C{sub 2}, although these were minor components. This work demonstrates that micro-XANES can be used as a minimally invasive analytical tool to investigate the composition of ambient PM. 32 refs., 6 figs.

  18. Distribution of trace element in Japanese red coral Paracorallium japonicum by μ-XRF and sulfur speciation by XANES: Linkage between trace element distribution and growth ring formation

    NASA Astrophysics Data System (ADS)

    Trong Nguyen, Luan; Rahman, Mohammad Azizur; Maki, Teruya; Tamenori, Yusuke; Yoshimura, Toshihiro; Suzuki, Atsushi; Iwasaki, Nozomu; Hasegawa, Hiroshi

    2014-02-01

    This study investigated the distribution of magnesium (Mg), phosphorus (P), sulfur (S) and strontium (Sr) using micro X-ray fluorescence (μ-XRF), and the speciation of S using X-ray absorption near edge spectroscopy (XANES) along the annual growth rings in the skeleton of Japanese red coral Paracorallium japonicum. The Mg, P and S distribution in μ-XRF mapping images correspond to the dark and light bands along the annual growth rings in microscopic images of the coral skeleton. The μ-XRF mapping data showed a positive correlation (r = 0.6) between P and S distribution in the coral skeleton. A contrasting distribution pattern of S and Mg along the axial skeleton of P. japonicum indicates a weak negative correlation (r = -0.2) between these two elements. The distribution pattern of S, P and Mg in the axial skeleton of P. japonicum reveals linkage between the trace element distribution and the formation of dark/light bands along the annual growth rings. Sulfur and P were distributed in the organic matrix rich dark bands, while Mg was distributed in the light bands of the annual growth rings. XANES analysis showed that inorganic sulfate is the major species of S in the skeleton of P. japonicum with a ratio of 1:20 for organic and inorganic sulfate.

  19. Local structure of Fe in Fe-doped misfit-layered calcium cobaltite: An X-ray absorption spectroscopy study

    SciTech Connect

    Prasoetsopha, Natkrita; Pinitsoontorn, Supree; Bootchanont, Atipong; Kidkhunthod, Pinit; Srepusharawoot, Pornjuk; Kamwanna, Teerasak; Amornkitbamrung, Vittaya; Kurosaki, Ken; Yamanaka, Shinsuke

    2013-08-15

    Polycrystalline Ca{sub 3}Co{sub 4−x}Fe{sub x}O{sub 9+δ} ceramics (x=0, 0.01, 0.03, 0.05) were fabricated using a simple thermal hydro-decomposition method and a spark plasma sintering technique. Thermoelectric property measurements showed that increasing Fe concentration resulted in a decrease in electrical resistivity, thermopower and thermal conductivity, leading to an improvement in the dimensionless figure-of-merit, >35% for x=0.05 at 1073 K. An X-ray absorption spectroscopy technique was used to investigate the local structure of Fe ions in the Ca{sub 3}Co{sub 4−x}Fe{sub x}O{sub 9+δ} structure for the first time. By fitting data from the extended X-ray absorption fine structure (EXAFS) spectra and analyzing the X-ray absorption near-edge structure (XANES) spectra incorporated with first principle simulation, it was shown that Fe was substituted for Co in the the Ca{sub 2}CoO{sub 3} (rocksalt, RS) layer rather than in the CoO{sub 2} layer. Variation in the thermoelectric properties as a function of Fe concentration was attributed to charge transfer between the CoO{sub 2} and the RS layers. The origin of the preferential Fe substitution site was investigated considering the ionic radii of Co and Fe and the total energy of the system. - Graphical abstract: The Fe K-edge XANES spectra of: (a) experimental result in comparison to the simulated spectra when Fe atoms were substituted in the RS layer; (b) with magnetic moment; (c) without magnetic moment, and in the CoO{sub 2} layer; (d) with magnetic moment and (e) without magnetic moment. Highlights: • Synthesis, structural studies, and thermoelectric properties of Ca{sub 3}Co{sub 4−x}Fe{sub x}O{sub 9+δ}. • Direct evidence for the local structure of the Fe ions in the Ca{sub 3}Co{sub 4−x}Fe{sub x}O{sub 9+δ} using XAS analysis. • EXAFS and XANES analysis showed that Fe was likely to be situated in the RS layer structure. • Changes in TE property with Fe content was due to charge transfer between

  20. Phosphorous Speciation in WTR-treated Biosolids Using XANES

    NASA Astrophysics Data System (ADS)

    Zhang, T. Q.; Huff, D.; Lin, Z.-Q.

    2009-04-01

    The concept of co-application of biosolids and drinking water treatment residues (DWTRs) represents an environmentally sustainable and economically sound strategy for the management of municipal solid wastes. This study demonstrated the effectiveness of reducing water-soluble P in biosolids-amended agricultural soil by the addition of DWTRs. Results showed that total P in soil leachate was significantly reduced during the initial 42-days of a 200-day greenhouse study when biosolids (50 g kg-1) were applied along with DWTRs (40 g kg-1). Particulate P was the dominant fraction of P in the soil leachate, which decreases with increasing DWTR application rate. The application of DWTRs does not significantly decrease the growth and yield of wheat (Triticum aestivum L.). The primary P chemical composition in biosolids include cupper phytate [Cu(IP6)6], barium phytate [Ba6IP6], and cupper phosphate [Cu3(PO4)2]. The addition of DWTRs to biosolids alternated the P speciation, and the P speciation change became significant with increasing the incubation time of the mixture of biosolids and DWTRs. The chemical component of Cu3(PO4)2 became non significant (<5%) with the addition of DWTRs. During the 14-day incubation time period, the proportion of P that was adsorbed on amorphous Fe(OH)3 increased substantially from 8 to 46% and Ba6IP6 increased steadily from 30 to 50%, while the proportion of Cu(IP6)6 decreased significantly from 53 to 5%. The amorphous Fe(OH)3-adsorbed P and Ba6IP6 formed the dominant P chemical components in the mixture of biosolids and DWTRs.

  1. X-ray diffraction and absorption spectroscopic studies of copper mixed ligand complexes with aminophenol as one of the ligands

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Jain, Garima; Patil, H.

    2012-05-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopic (XAS) studies have been conducted on two copper complexes, i.e., copper macrocyclic complex of succinic acid and ortho aminophenol (complex-1) and copper macrocyclic complex of pthalic acid and ortho aminophenol (complex-2). The diffraction pattern of the complexes have been recorded using Rigaku RINT-2000 X-ray diffractometer equipped with rotating anode X-ray tube operated at 40 kV and 100 mA. The X-ray absorption spectra of the complexes have been recorded at the K-edge of copper on Cauchois type bent crystal spectrograph having radius 0.4 m employing a mica crystal, oriented to reflect from (100) planes, for dispersion. The X-ray absorption near edge structure (XANES) parameters, viz., chemical shift, energy position of the principal absorption maximum and edge-width have been determined and discussed. From the extended X-ray absorption fine structure (EXAFS) data, the bond lengths have been calculated using three methods, namely, Levy's method, Lytle, Sayers and Stern's (LSS) method and Fourier transformation method. The results obtained have been compared with each other and discussed.

  2. An X-ray Raman spectrometer for EXAFS studies on minerals: bent Laue spectrometer with 20 keV X-rays.

    PubMed

    Hiraoka, N; Fukui, H; Tanida, H; Toyokawa, H; Cai, Y Q; Tsuei, K D

    2013-03-01

    An X-ray Raman spectrometer for studies of local structures in minerals is discussed. Contrary to widely adopted back-scattering spectrometers using ≤10 keV X-rays, a spectrometer utilizing ~20 keV X-rays and a bent Laue analyzer is proposed. The 20 keV photons penetrate mineral samples much more deeply than 10 keV photons, so that high intensity is obtained owing to an enhancement of the scattering volume. Furthermore, a bent Laue analyzer provides a wide band-pass and a high reflectivity, leading to a much enhanced integrated intensity. A prototype spectrometer has been constructed and performance tests carried out. The oxygen K-edge in SiO(2) glass and crystal (α-quartz) has been measured with energy resolutions of 4 eV (EXAFS mode) and 1.3 eV (XANES mode). Unlike methods previously adopted, it is proposed to determine the pre-edge curve based on a theoretical Compton profile and a Monte Carlo multiple-scattering simulation before extracting EXAFS features. It is shown that the obtained EXAFS features are reproduced fairly well by a cluster model with a minimal set of fitting parameters. The spectrometer and the data processing proposed here are readily applicable to high-pressure studies.

  3. High-resolution results from the LBL 55-meter SGM (Spherical Grating Monochromator) at SSRL (Stanford Synchrotron Radiation Laboratory) near the K-edge of carbon and nitrogen

    SciTech Connect

    Heimann, P.A.; McKinney, W.; Howells, M.; van Zee, R.D.; Medhurst, L.J.; Lauritzen, T.; Chin, J.; Meneghetti, J.; Gath, W.; Hogrefe, H.; Shirley, D.A. ); Senf, F. . Stanford Synchrotron Radiation Lab.)

    1989-07-01

    The performance of a 55-meter Spherical Grating Monochromator (SGM) is described. A resolution of 60 MeV has been achieved at 400 eV, inferred from the linewidths of the nitrogen 1s-{pi}* resonance. With 0.5 eV resolution, a photon flux of 4 {times} 10{sup 10} photons/sec has been observed at 440 eV. An initial experiment has studied the core-shell resonances of gas-phase ethylene, C{sub 2}H{sub 4}. Vibrational fine structure was resolved both for the carbon 1s-{pi}* and carbon 1s-Rydberg excitations. Comparison with the vibrational frequencies of ground state ethylene implies that the {nu}{sub 1} (C-H stretch) and {nu}{sub 2} (C-C stretch) or {nu}{sub 3} (H-C-H bend) are excited. It is suggested that the lower Rydberg orbitals, 3s and 3p{sigma}, have molecular, anti-bonding character. 13 refs., 6 figs.

  4. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  5. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    PubMed

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  6. The Electronic Properties and L3 XANES of Au and Nano-Au

    SciTech Connect

    Yiu, Y.M.; Zhang, P.; Sham, T.K.

    2004-04-20

    The electronic properties of Au crystal and nano Au have been investigated by theory and experiment. Molecularly capped nano-Au was synthesized using the two-phase method. Au nano-particles have been characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). They retain the fcc crystal structure. Their sizes have been determined to be in a range from 5.5 nm to 1.7 nm. The L3 X-ray Absorption Near Edge Structure (XANES) of nano-Au and Au foil have been recorded using synchrotron radiation, and examined by theoretical calculation based on the first principles. Both theory and experiment show that the nano-Au particles have essentially all the Au L3 XANES features of bulk Au in the near edge region with less pronounced resonance peaks. It is also shown that nano Au exhibits lower 4f binding energy than bulk Au in good agreement with quantum confined Au systems reported previously.

  7. Investigation of damaged interior walls using synchrotron-based XPS and XANES.

    PubMed

    Poo-arporn, Yingyot; Thachepan, Surachai; Palangsuntikul, Rungtiva

    2015-01-01

    Evidence of internal sulfate attack in field exposure was demonstrated by the damaged interior wall of a three-year-old house situated in Nakhon Ratchasima Province, Thailand. Partial distension of the mortar was clearly observed together with an expansion of a black substance. Removal of the black substance revealed a dense black layer. This layer was only found in the vicinity of the damaged area, suggesting that this black material is possibly involved in the wall cracking. By employing synchrotron-based X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) techniques, the unknown sample was chemically identified. The S 2p and O 1s XPS results mutually indicated the existence of sulfate species in the materials collected from the damaged area. The XANES results indicated the presence of ferrous (II) sulfate, confirming sulfate-induced expansion and cracking. The sulfate attack in the present case appeared to physically affect the structure whereas the chemical integrity at the molecular level of the calcium silicate hydrate phase was retained since there was a lack of spectroscopic evidence for calcium sulfate. It was speculated that internal sulfate probably originated from the contaminated aggregates used during the construction. The current findings would be beneficial for understanding the sulfate-attack mechanism as well as for future prevention against sulfate attack during construction.

  8. Growth of Au@Pt coreshell nanoparticles: Probed by in-situ XANES and UV-visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Nayak, C.; Bhattacharyya, K.; Tripathi, A. K.; Jha, S. N.; Bhattacharyya, D.; Sahoo, N. K.

    2016-05-01

    Au@Pt core shell nanoparticles have been synthesized by reducing Au and Pt chloride precursors with Block Co-polymer and Ascorbic acid. The growth and nucleation of Au@Pt nanoparticles have been investigated by in-situ time resolved XANES measurement which gives the evolution of the reduction process of the precursors. Linear combination fitting of the XANES spectra has been carried out to find the fraction of Au and Pt cations reduced at a particular reaction time. UV-Visible spectroscopy is used as a complementary technique which gives the changes in the Au SPR peak as Au@Pt core shell nanoparticles are formed.

  9. X-ray absorption spectroscopy study of the local environment around tungsten and molybdenum ions in tungsten-phosphate and molybdenum-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Kuzmin, A.; Purans, J.

    1997-02-01

    X-ray absorption spectroscopy (XAS) was used to study the local environment around tungsten and molybdenum ions in BaO-P2O5-WO3 and CaO-P2O5-MoO3 glasses having different composition of WO3 and MoO3 oxides. The W L1,3 and Mo K edges x-ray absorption spectra were measured in transmission mode at room temperature using the synchrotron radiation emitted by the ADONE and LURE DCI storage rings, respectively. The analysis of x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) in glasses was performed in comparison with the results for a number of crystalline WO3, CaWO4, Na0.66WO3 alpha- MoO3, beta-MoO3 and amorphous a-WO3, a-MoO3 compounds. The results of the EXAFS modeling by two different methods [(1) multi-shell best-fit procedure within harmonic approximation and (2) model-independent radial distribution function approach] allowed us to extract detailed structural information on the first coordination shell of metal (W or Mo) ions. Using the obtained data together with the information given by XRD, EPR and optical spectroscopies, we propose the model of incorporation of W and Mo ions within the glass network.

  10. XANES characterization of UO2/Mo(Pd) thin films as models for epsilon-particles in spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Denecke, M. A.; Petersmann, T.; Marsac, R.; Dardenne, K.; Vitova, T.; Prüßmann, T.; Borchert, M.; Bösenberg, U.; Falkenberg, G.; Wellenreuther, G.

    2013-04-01

    X-ray absorption near edge structure (XANES) is recorded for nano- and micro-particles formed in Mo doped UO2 thin films (TFs) prepared by in situ sputter co-deposition and 1000°C tempering. These UO2/Mo TFs are intended to serve as synthetic models for epsilon-particles in spent nuclear fuel. We find that when Si is used as substrate, nano-sized zero-valent Mo particles form as desired. However, these are embedded in USi3, which forms at the high temper temperatures. Micron-sized Mo-particles are formed when SiO2 is used as substrate. Using focussed X-ray beams of varying size (500μm, 25μm and 5μm), these particles are characterized to be predominantly hexavalent Mo oxides, potentially with tetrahedral coordinated [Mo(VI)O4]2- at the surface and a MoO3-like phase in the bulk. These TFs are poor synthetic models for spent fuel epsilon-particles but do offer the opportunity to study changes in surface structures in response to stress/charge as a function of particle size.

  11. Effect of Precursor on the Electronic and Geometric Properties of Cobalt Nanoparticles Investigated by Co-K XANES and EXAFS

    SciTech Connect

    Palshin, Vadim; Silva, Rohini M. de; Hormes, Josef; Kumar, Challa S. S. R.

    2007-02-02

    By varying techniques and parameters in wet-chemical synthesis Co-nanoparticles different crystallographic structures (hcp, fcc and epsilon) can be synthesized. Co-K XANES and EXAFS spectra are very powerful tools to distinguish between those structures. In this study we are investigating for the first time the effect of the precursor molecule used for the synthesis on the electronic and geometric properties of cobalt nanoparticles. As precursors two organometallic cobalt complexes were used: alkyne-bridged dicobalthexacarbonyl [(Co2({mu}-HC{identical_to}CH)(CO)6] (ADH) and the well known dicobalt octacarbonyl [Co2(CO)8] (DCO). Both precursors were thermally decomposed under identical reaction conditions. Besides, effect of the precursor on the Co NPs was also investigated when two different types of surfactants are utilized in the reaction, oleic acid and n-trioctylphosphine. When only oleic acid was used as the surfactant, the XAFS analysis showed formation of fcc structure with ADH and hcp with DCO. When a combination of oleic acid and TOP were used, the crystal structure of CO NPs obtained is currently being analyzed.

  12. Direct determination of europium valence state by XANES in extraterrestrial merrillite: Implications for REE crystal chemistry and martian magmatism

    SciTech Connect

    Shearer, C.K.; Papike, J.J.; Burger, P.V.; Sutton, S.R.; McCubbin, F.M.; Newville, M.

    2012-03-15

    The relative proportion of divalent and trivalent Eu has proven to be a useful tool for estimating f{sub O{sub 2}} in various magmatic systems. However, in most cases, direct determination of the Eu valence state has not been made. In this study, direct determination of Eu valence by XANES and REE abundance in merrillite provide insights into the crystal chemistry of these phosphates and their ability to record conditions of magmatism. Merrillite strongly prefers Eu{sup 3+} to Eu{sup 2+}, with the average valence state of Eu ranging between 2.9 and 3 over approximately six orders of magnitude in f{sub O{sub 2}}. The dramatic shift in the REE patterns of merrillite in martian basaltic magmas, from highly LREE-depleted to LREE-enriched, parallels many other trace element and isotopic variations and reflects the sources for these magmas. The behavior of REE in the merrillite directly reflects the relationship between the eightfold-coordinated Ca1 site and adjacent sixfold Na and tetrahedral P sites that enables charge balancing through coupled substitutions.

  13. Complex polarization propagator approach in the restricted open-shell, self-consistent field approximation: the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine.

    PubMed

    Linares, Mathieu; Stafström, Sven; Rinkevicius, Zilvinas; Ågren, Hans; Norman, Patrick

    2011-05-12

    A presentation of the complex polarization propagator in the restricted open-shell self-consistent field approximation is given. It rests on a formulation of a resonant-convergent, first-order polarization propagator approach that makes it possible to directly calculate the X-ray absorption cross section at a particular frequency without explicitly addressing the excited states. The quality of the predicted X-ray spectra relates only to the type of density functional applied without any separate treatment of dynamical relaxation effects. The method is applied to the calculation of the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine. Comparison is made between the spectra of the radicals and those of the corresponding cations and anions to assess the effect of the increase of electron charge in the frontier orbital. The method offers the possibility for unique assignment of symmetry-independent atoms. The overall excellent spectral agreement motivates the application of the method as a routine precise tool for analyzing X-ray absorption of large systems of technological interest.

  14. Sulfur K-Edge XAS and DFT Calculations on [Fe4S4]2+Clusters: Effects of H-bonding and Structural Distortion on Covalency and SpinTopology

    SciTech Connect

    Dey, A.; Roche, C.L.; Walters, M.A.; Hodgson, K.O.; B., Hedman; Solomon, E.I.; /Stanford U., Chem. Dept. /SLAC, SSRL

    2006-09-28

    Sulfur K-edge X-ray absorption spectroscopy of a hydrogen-bonded elongated [Fe{sub 4}S{sub 4}]{sup 2+} cube is reported. The data show that this synthetic cube is less covalent than a normal compressed cube with no hydrogen bonding. DFT calculations reveal that the observed difference in electronic structure has significant contributions from both the cluster distortion and from hydrogen bonding. The elongated and compressed Fe{sub 4}S{sub 4} structures are found to have different spin topologies (i.e., orientation of the delocalized Fe{sub 2}S{sub 2} subclusters which are antiferromagnetically coupled to each other). It is suggested that the H-bonding interaction with the counterion does not contribute to the cluster elongation. A magneto-structural correlation is developed for the Fe{sub 4}S{sub 4} cube that is used to identify the redoxactive Fe{sub 2}S{sub 2} subclusters in active sites of HiPIP and ferredoxin proteins involving these clusters.

  15. High-resolution Measurement of Contact Ion-pair Structures in Aqueous RbCl Solutions from the Simultaneous Corefinement of their Rb and Cl K-edge XAFS and XRD Spectra

    SciTech Connect

    Pham, Van-Thai; Fulton, John L.

    2016-06-21

    In concentrated solutions of aqueous RbCl, all of the Rb+ and Cl- ions exist as contact ion pairs. This full structural assessment is derived from the refinement of three independent experimental measurements: the Rb and Cl K-edge x-ray absorption fine structure (XAFS) and the x-ray diffraction spectra (XRD). This simultaneous refinement of the XAFS and XRD data provides high accuracy since each method probes the structure of different local regions about the ions with high sensitivity. At high RbCl concentration (6 m (mol/kg )) the solution is dominated by Rb+ - Cl- contact ion pairs yielding an average of 1.5 pairs at an Rb-Cl distance of 3.24 Å. Upon formation of these ion pairs, approximately 1.1 waters molecules are displaced from the Rb+ and 1.4 water molecules from Cl-. The hydration shells about both the cation and anion are also determined. These results greatly improve the understanding of monovalent ions and provide a basis for testing the Rb+-Cl- interaction potentials used in molecular dynamics (MD) simulation. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  16. Reanalysis of the Schwertmannite structure and the incorporationof SO42- groups: An IR, XAS, WAXS and simulation study

    SciTech Connect

    Waychunas, G.A.; Myneni, S.C.B.; Traina, S.J.; Bigham, J.M.; Fuller, C.C.; Davis, J.A.

    2001-05-05

    Schwertmannite is a poorly crystallized iron oxyhydroxidewith essential structural sulfate that can be a major component in acidmine drainage environments. Original characterization work concluded thatthe sulfate was largely contained within tunnels of an orderedakaganeite-like structure based on powder XRD, analysis of IR spectra,and sulfate extraction procedures [1]. Since the original description,problems have emerged with the nature of the tunnel sulfate, and with theinterpretation of the IR spectra. Other related work has shown that it isnow possible to determine sulfate-iron oxide inner sphere bindingunambiguously from the S K-edge XANES spectrum. Hence a reassessment ofthe evidence for the original schwertmannite structure was deemednecessary and timely.

  17. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    NASA Astrophysics Data System (ADS)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  18. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    DOE PAGES

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2016-06-06

    Copper ferrite, CuFe2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2 O 4. A phase pure tetragonal CuFe2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-raymore » absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.« less

  19. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    SciTech Connect

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; Li, Jing; Stach, Eric A.; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S.; Takeuchi, Kenneth J.; Marschilok, Amy C.

    2016-06-06

    Copper ferrite, CuFe2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2 O 4. A phase pure tetragonal CuFe2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  20. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: II. XANES analysis and simulation

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.; Rehr, J.J.

    2003-01-01

    X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to "fingerprint" comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence. In the present work, calculations of the XANES for 50- to 200-atom clusters of structure from Zn model compounds using the full multiple-scattering code Feff 8.0 accurately replicate experimental spectra and display features characteristic of specific first-neighbor anion coordination geometry and second-neighbor cation geometry and number. Analogous calculations of the XANES for small molecular clusters indicative of precipitation and sorption geometries for aqueous Zn on ferrihydrite, and suggested by EXAFS analysis, are in good agreement with observed spectral trends with sample composition, with Zn-oxygen coordination and with changes in second-neighbor cation coordination as a function of sorption coverage. Empirical analysis of experimental XANES features further verifies the validity of the calculations. The findings agree well with a complete EXAFS analysis previously reported for the same sample set, namely, that octahedrally coordinated aqueous Zn2+ species sorb as a tetrahedral complex on ferrihydrite with varying local geometry depending on sorption density. At significantly higher densities but below those at which Zn hydroxide is expected to precipitate, a mainly octahedral coordinated Zn2+ precipitate is observed. An analysis of the multiple scattering paths contributing to the XANES

  1. Linear Combination Fitting (LCF)-XANES analysis of As speciation in selected mine-impacted materials

    EPA Pesticide Factsheets

    This table provides sample identification labels and classification of sample type (tailings, calcinated, grey slime). For each sample, total arsenic and iron concentrations determined by acid digestion and ICP analysis are provided along with arsenic in-vitro bioaccessibility (As IVBA) values to estimate arsenic risk. Lastly, the table provides linear combination fitting results from synchrotron XANES analysis showing the distribution of arsenic speciation phases present in each sample along with fitting error (R-factor).This dataset is associated with the following publication:Ollson, C., E. Smith, K. Scheckel, A. Betts, and A. Juhasz. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Diana Aga, Wonyong Choi, Andrew Daugulis, Gianluca Li Puma, Gerasimos Lyberatos, and Joo Hwa Tay JOURNAL OF HAZARDOUS MATERIALS. Elsevier Science Ltd, New York, NY, USA, 313: 130-137, (2016).

  2. EXAFS and XANES structural characterization of bimetallic AuPd vapor derived catalysts

    NASA Astrophysics Data System (ADS)

    Balerna, A.; Evangelisti, C.; Schiavi, E.; Vitulli, G.; Bertinetti, L.; Martra, G.; Mobilio, S.

    2013-04-01

    Using an innovative procedure known as metal vapor synthesis (MVS) to prepare bimetallic catalysts, starting from Au and Pd vapors, [AuPd] co-evaporated and [Au][Pd] separately evaporated bimetallic catalysts were achieved. After being tested, the catalytic activity and selectivity of the [AuPd] catalyst turned out to be higher than the [Au][Pd] ones. Using EXAFS spectroscopy it was shown that, in the [AuPd] samples, small bimetallic AuPd nanoparticles were present, having an Au rich core surrounded by an AuPd alloyed shell while in the [Au][Pd] sample there was the presence of monometallic Au and Pd nanoparticles showing some alloying only in the boundary regions. The EXAFS results were also qualitatively confirmed by the XANES spectra.

  3. Mg coordination in biogenic carbonates constrained by theoretical and experimental XANES

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshihiro; Tamenori, Yusuke; Takahashi, Osamu; Nguyen, Luan T.; Hasegawa, Hiroshi; Iwasaki, Nozomu; Kuroyanagi, Azumi; Suzuki, Atsushi; Kawahata, Hodaka

    2015-07-01

    Incorporation of magnesium into biogenic calcium carbonate is widely used to infer the conditions of mineral growth. From a mineralogical perspective, the dominant chemical environment of Mg and whether Mg replaces calcium by ideal substitution in biogenic CaCO3 are still debated, however. Here we show that energy positions and resonance features in experimental and theoretical XANES spectra can be used to identify the dominant molecular host site. In all biogenic calcite, which is produced by foraminifera, corals, bivalves, and brachiopods, the local environment of Mg indicated that it is incorporated primarily as a structural substitute for calcium in the crystal lattice, but in aragonitic coral and bivalves a pronounced effect of the organic fraction or disordered phases was observed. These differences among CaCO3 polymorphs suggest that physicochemical parameters affect the final composition of biogenic calcite, but in aragonite-secreting organisms, there may be physiological controls on Mg concentrations in biogenic aragonite.

  4. The role of trace metallic elements in neurodegenerative disorders: quantitative analysis using XRF and XANES spectroscopy.

    PubMed

    Ide-Ektessabi, Ari; Rabionet, Mariona

    2005-07-01

    The present paper focuses on the analysis of trace metallic elements and their role in neurodegenerative disorders. The use of synchrotron radiation microbeams allows investigation of pathological tissues from Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis cases in a nondestructive manner and at cellular level. By employing X-ray absorption near edge structure (XANES) technique, the chemical state of the investigated elements can be determined, while energy-selective X-ray fluorescence spectroscopy provides the spatial distribution of each element in each oxidative state selectively. The investigated tissues (derived from human, monkey and mouse specimens) show distinct imbalances of metallic elements such as Zn and Cu as well as Fe(2+)/Fe(3+) redox pair, which point to oxidative stress as a crucial factor in the development or progress of these neurodegenerative diseases.

  5. The Valence of Iron in CM Chondrite Serpentine as Measured by Synchrotron Xanes

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Zolensky, Michael E.; Satake, W.; Le, L.

    2012-01-01

    Fe-bearing phyllosilicates are the dominant product of aqueous alteration in carbonaceous chondrites, and serpentine is the most abundant phyllosilicate in CM2 chondrites that are the most abundant carbonaceous chondrite. Browning et al. predicted that Fe(3+)/(sum of Fe) ratios of serpentine in CM chondrites should change with progressive alteration. They proposed that progressive CM alteration is best monitored by evaluating the progress of Si and Fe3+ substitutions that necessarily attend the transition from end-member cronstedtite to serpentine. Their proposed Mineralogic Alteration Index, 2-(Fe(3+)/(2-Si)), was intended to highlight and utilize the relevant ex-change information in the stoichiometric phyllosilicate formulas based upon the coupled substitution of 2(Fe(3+), Al) = Si + (Mg, Fe(2+)...) in serpentine. The value of this ratio increases as alteration proceeds. We always wanted to directly test Browning s pre-diction through actual measurements of the Fe3+ con-tent of serpentine at the micron scale appropriate to EPMA analyses (Zega et al. have measured it at much finer scale), and this test can now be made using Synchrotron Radiation X-ray Absorption Near-Edge Structure (SR-XANES). Thus, we have recently begun investigation with CMs that span a large portion of the range of observed aqueous alteration, and we first analyzed Murray, Nogoya, and ALH84029 by SR-XANES. However, we did not find clear correlation between Fe3+/(sum of Fe) ratios of serpentine and their alteration degrees. We thus analyzed serpentine in three more CMs and here report their Fe3+/(sum of Fe) ratios in comparison with our previous results.

  6. Low-Dose-Rate Computed Tomography System Utilizing 25 mm/s-Scan Silicon X-ray Diode and Its Application to Iodine K-Edge Imaging Using Filtered Bremsstrahlung Photons

    NASA Astrophysics Data System (ADS)

    Matsushita, Ryo; Sato, Eiichi; Yanbe, Yutaka; Chiba, Hiraku; Maeda, Tomoko; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2013-03-01

    A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of sub-mA was developed using a silicon X-ray diode (Si-XD). The Si-XD is a high-sensitivity Si photodiode (PD) selected for detecting X-ray photons, and the X-ray sensitivity of the Si-XD was twice as high as that of Si-PD cerium-doped yttrium aluminum perovskite [YAP(Ce)]. X-ray photons are directly detected using the Si-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with a maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to the differentiator with a time constant of 500 ns to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 0.55 mA and 60 kV, respectively, and iodine K-edge CT was carried out using filtered bremsstrahlung X-ray spectra with a peak energy of 38 keV.

  7. HERFD-XANES and XES as complementary operando tools for monitoring the structure of Cu-based zeolite catalysts during NOx-removal by ammonia SCR

    NASA Astrophysics Data System (ADS)

    Günter, T.; Doronkin, D. E.; Carvalho, H. W. P.; Casapu, M.; Grunwaldt, J.-D.

    2016-05-01

    In this article, we demonstrate the potential of hard X-ray techniques to characterize catalysts under working conditions. Operando high energy resolution fluorescence detected (HERFD) XANES and valence to core (vtc) X-ray emission spectroscopy (XES) have been used in a spatially-resolved manner to study Cu-zeolite catalysts during the standard-SCR reaction and related model conditions. The results show a gradient in Cu oxidation state and coordination along the catalyst bed as the reactants are consumed. Vtc-XES gives complementary information on the direct adsorption of ammonia at the Cu sites. The structural information on the catalyst shows the suitability of X-ray techniques to understand catalytic reactions and to facilitate catalyst optimization.

  8. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  9. PROCEEDINGS ON SYNCHROTRON RADIATION: Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    NASA Astrophysics Data System (ADS)

    Bao, Liang-Man; Zhang, Gui-Lin; Zhang, Yuan-Xim; Li, Yan; Lin, Jun; Liu, Wei; Cao, Qing-Chen; Zhao, Yi-Dong; Ma, Chen-Yan; Han, Yong

    2009-11-01

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO2-4. It can monitor the sulfur pollution in atmosphere.

  10. XANES (X-ray Absorption Near Edge Structure) investigation of cerium as an inhibitor for Al alloys

    SciTech Connect

    Davenport, A.J.; Isaacs, H.S. ); Kendig, M.W. . Science Center)

    1991-01-01

    Cerium ions are under investigation as possible replacements for toxic chromates. The use of cerium ions as corrosion inhibitors for aluminum alloys is investigated using XANES (x-ray absorption near edge structure). On immersion in a dilute solution of cerium ions, cerium is incorporated into the oxide films on aluminum alloys in either the 3- or 4-valent state depending upon the alloy and on the surface preparation. 7 refs., 2 figs.

  11. Ru L[subscript 2,3] XANES theoretical simulation with DFT: A test of the core-hole treatment

    SciTech Connect

    Alperovich, Igor; Moonshiram, Dooshaye; Soldatov, Alexander; Pushkar, Yulia

    2012-10-09

    Density functional theory (DFT)-based relativistic calculations were performed to model the Ru L-edge X-ray absorption near edge structure (XANES) spectra of the hexaammineruthenium complex [Ru(NH{sub 3}){sub 6}]{sup 3+} and 'blue dimer' water oxidation catalyst, cis,cis- [(bpy){sub 2}(H{sub 2}O)Ru{sup III}ORu{sup III}(OH{sub 2})(bpy){sub 2}]{sup 4+} (bpy is 2,2-bipyridine). Two computational approaches were compared: simulations without the core-hole and by modeling of the core-hole within the Z+1 approximation. Good agreement between calculated and experimental XANES spectra is achieved without including the core-hole. Simulations with algorithms beyond the Z+1 approximation were only possible in a framework of the scalar relativistic treatment. Time-dependent DFT (TD-DFT) was used to compute the Ru L-edge spectrum for [Ru(NH{sub 3}){sub 6}]{sup 3+} model compound. Three different core-hole treatments were compared in a real-space full multiple scattering XANES modeling within the Green function formalism (implemented in the FEFF9.5 package) for the [Ru(Mebimpy)(bpm)(H{sub 2}O)]{sup 2+} complex. The latter approaches worked well in cases where spin-orbit treatment of relativistic effects is not required.

  12. In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids

    DOE PAGES

    Apblett, Christopher A.; Stewart, David M.; Fryer, Robert T.; ...

    2015-10-23

    We apply in situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Furthermore, the determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarlymore » coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. Finally, we suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping.« less

  13. In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids

    SciTech Connect

    Apblett, Christopher A.; Stewart, David M.; Fryer, Robert T.; Sell, Julia C.; Pratt, Harry D. III; Anderson, Travis M.; Meulenberg, Robert W.

    2015-10-23

    We apply in situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Furthermore, the determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarly coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. Finally, we suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping.

  14. Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach.

    PubMed

    Chaurand, Perrine; Rose, Jerome; Briois, Valérie; Olivi, Luca; Hazemann, Jean-Louis; Proux, Olivier; Domas, Jérémie; Bottero, Jean-Yves

    2007-01-31

    Basic oxygen furnace (BOF) steel slag is a residue from the basic oxygen converter in steel-making operations, and is partially reused as an aggregate for road constructions. Although BOF slag is an attractive building material, its long-term behaviour and the associated environmental impacts must be taken into account. Indeed BOF slag is mainly composed of calcium, silicon and iron but also contains trace amounts of potential toxic elements, specifically chromium and vanadium, which can be released. The present research focuses (i) on the release of Cr and V during leaching and (ii) on their speciation within the bearing phase. Indeed the mobility and toxicity of heavy metals strongly depend on their speciation. Leaching tests show that only low amounts of Cr, present at relatively high concentration in steel slag, are released while the release of V is significantly high. X-ray absorption near-edge structure (XANES) spectroscopy indicates that Cr is present in the less mobile and less toxic trivalent form and that its speciation does not evolve during leaching. On the contrary, V which is predominantly present in the 4+ oxidation state seems to become oxidized to the pentavalent form (the most toxic form) during leaching.

  15. Coordination nature of aluminum (oxy)hydroxides formed under the influence of tannic acid studied by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Y. F.; Xu, R. K.; Dynes, J. J.; Blyth, R. I. R.; Yu, G.; Kozak, L. M.; Huang, P. M.

    2008-04-01

    The effect of biomolecules on the mechanisms of the formation and nature of the transformation products of Al (oxy)hydroxides at the atomic and molecular levels and the impact on their nano-scale surface chemistry remain to be uncovered. In this article, the coordination structure of Al in Al (oxy)hydroxides formed under the influence of tannic acid was studied with X-ray absorption near edge structure (XANES) spectroscopy. Al K-edge and L-edge spectra show that as the tannate/Al molar ratio (MR) was increased from 0, 0.001, 0.01 to 0.1, the coordination number of Al changed from the sixfold coordination to mixed six-, five-, and/or fourfold coordination in the structural network of the Al (oxy)hydroxides formed under the increasing perturbation of tannic acid. In O K-edge spectra, the intensity of the peak assigned to the π ∗ at 532.1 eV increased as the tannate/Al MR increased, with the spectrum of the Al precipitate formed at a tannate/Al MR of 0.1 being almost identical to that of tannic acid. These results indicate that tannate ligands are incorporated into the structural network of short-range ordered Al (oxy)hydroxides to perturb their structural configuration during the formation of Al precipitates under the influence of tannic acid. With increasing tannate/Al MR, the Al (oxy)hydroxides decreased in amount and developed structural defects and the Al-tannate precipitates increased in amount. The decrease in the coordination number of Al in the Al (oxy)hydroxides is attributed to steric and electronic factors which cause the change in Al-O bonding, because Al is complexed with tannate which has different functional groups and is much larger in size compared with OH and H 2O ligands. The surface reactivity of a metal-O bond is related to its covalency and coordination geometry. The findings obtained in the present study are, thus, of fundamental significance in understanding the structural and surface chemistry of Al (oxy)hydroxides and their impact on the

  16. X-ray absorption fine structure spectroscopic studies of Octakis(DMSO)lanthanoid(III) complexes in solution and in the solid iodides.

    PubMed

    Persson, Ingmar; Risberg, Emiliana Damian; D'Angelo, Paola; De Panfilis, Simone; Sandström, Magnus; Abbasi, Alireza

    2007-09-17

    Octakis(DMSO)lanthanoid(III) iodides (DMSO = dimethylsulfoxide), [Ln(OS(CH3)2)8]I3, of most lanthanoid(III) ions in the series from La to Lu have been studied in the solid state and in DMSO solution by extended X-ray absorption fine structure (EXAFS) spectroscopy. L3-edge and also some K-edge spectra were recorded, which provided mean Ln-O bond distances for the octakis(DMSO)lanthanoid(III) complexes. The agreement with the average of the Ln-O bond distances obtained in a separate study by X-ray crystallography was quite satisfactory. The crystalline octakis(DMSO)lanthanoid(III) iodide salts have a fairly broad distribution of Ln-O bond distances, ca. 0.1 A, with a few disordered DMSO ligands. Their EXAFS spectra are in excellent agreement with those obtained for the solvated lanthanoid(III) ions in DMSO solution, both of which show slightly asymmetric distributions of the Ln-O bond distances. Hence, all lanthanoid(III) ions are present as octakis(DMSO)lanthanoid(III) complexes in DMSO solution, with the mean Ln-O distances centered at 2.50 (La), 2.45 (Pr), 2.43 (Nd), 2.41 (Sm), 2.40 (Eu), 2.39 (Gd), 2.37 (Tb), 2.36 (Dy), 2.34 (Ho), 2.33 (Er), 2.31 (Tm), and 2.29 A (Lu). This decrease in the Ln-O bond distances is larger than expected from the previously established ionic radii for octa-coordination. This indicates increasing polarization of the LnIII-O(DMSO) bonds with increasing atomic number. However, the S(1s) electron transition energies in the sulfur K-edge X-ray absorption near-edge structure (XANES) spectra, probing the unoccupied molecular orbitals of lowest energy of the DMSO ligands for the [Ln(OS(CH3)2)8](3+) complexes, change only insignificantly from Ln = La to Lu. This indicates that there is no appreciable change in the sigma-contribution to the S-O bond, probably due to a corresponding increase in the contribution from the sulfur lone pair to the bonding.

  17. X-Ray Absorption Fine Structure Spectroscopic Studies of Octakis(DMSO)Lanthanoid(III) Complexes in Solution And in the Solid Iodides

    SciTech Connect

    Persson, I.; Risberg, E.Damian; D'Angelo, P.; Panfilis, S.De; Sandstrom, M.; Abbasi, A.

    2009-06-04

    Octakis(DMSO)lanthanoid(III) iodides (DMSO = dimethylsulfoxide), [Ln(OS(CH{sub 3}){sub 2}){sub 8}]I{sub 3}, of most lanthanoid(III) ions in the series from La to Lu have been studied in the solid state and in DMSO solution by extended X-ray absorption fine structure (EXAFS) spectroscopy. L{sub 3}-edge and also some K-edge spectra were recorded, which provided mean Ln-O bond distances for the octakis(DMSO)lanthanoid(III) complexes. The agreement with the average of the Ln-O bond distances obtained in a separate study by X-ray crystallography was quite satisfactory. The crystalline octakis(DMSO)lanthanoid(III) iodide salts have a fairly broad distribution of Ln-O bond distances, ca. 0.1 {angstrom}, with a few disordered DMSO ligands. Their EXAFS spectra are in excellent agreement with those obtained for the solvated lanthanoid(III) ions in DMSO solution, both of which show slightly asymmetric distributions of the Ln-O bond distances. Hence, all lanthanoid(III) ions are present as octakis(DMSO)lanthanoid(III) complexes in DMSO solution, with the mean Ln-O distances centered at 2.50 (La), 2.45 (Pr), 2.43 (Nd), 2.41 (Sm), 2.40 (Eu), 2.39 (Gd), 2.37 (Tb), 2.36 (Dy), 2.34 (Ho), 2.33 (Er), 2.31 (Tm), and 2.29 {angstrom} (Lu). This decrease in the Ln-O bond distances is larger than expected from the previously established ionic radii for octa-coordination. This indicates increasing polarization of the Ln{sup III}-O(DMSO) bonds with increasing atomic number. However, the S(1s) electron transition energies in the sulfur K-edge X-ray absorption near-edge structure (XANES) spectra, probing the unoccupied molecular orbitals of lowest energy of the DMSO ligands for the [Ln(OS(CH{sub 3}){sub 2}){sub 8}]{sup 3+} complexes, change only insignificantly from Ln = La to Lu. This indicates that there is no appreciable change in the ?-contribution to the S-O bond, probably due to a corresponding increase in the contribution from the sulfur lone pair to the bonding.

  18. Iron Redox Variations in Australasian Muong Nong-Type Tektites

    NASA Astrophysics Data System (ADS)

    Giuli, G.; Cicconi, M. R.; Trapananti, A.; Eeckhout, S. G.; Pratesi, G.; Paris, E.; Koeberl, C.

    2013-08-01

    The Fe oxidation state along few profile across dark/light layers of two Australasian Muong Nong tektite sample have been studied by Fe K-edge XANES. The dark layer results to be slightly but reproducibly more oxidized respect to the light layers.

  19. Iron Redox Variations in Australasian Muong Nong-Type Tektites

    NASA Astrophysics Data System (ADS)

    Giuli, G.; Cicconi, M. R.; Trapananti, A.; Eeckhout, S. G.; Pratesi, G.; Paris, E.; Koeberl, C.

    2013-09-01

    The Fe oxidation state along profiles across dark and light layers of two Australasian Muong Nong tektite samples have been studied by Fe K-edge XANES. The dark layer results to be slightly but reproducibly more oxidized respect to the light layers.

  20. P, T conditions of the CCSD (Chinese Continental Scientific Drilling) eclogites; importance of ferric estimation based on Mössbauer and micro-XANES analysis

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Jahn, B.; Yui, T.; Akasaka, M.; Xu, Z.

    2007-12-01

    Recent UHP experiments in C-O-H fluid-bearing MORB system have revealed that phase change and fluid composition depend on oxygen fugacity (e.g. Molina and Poli, 2000). If oxygen fugacities represented by the equilibrium NNO (Ni-NiO) or FMQ (fayalie-magnetite-quartz) are assumed to be the average condition of UHP metamorphism, then the phase assemblages of UHP rocks are expected to have graphite/diamond only, graphite/diamond +carbonates, or carbonates only depending on the bulk compositions (Poli and Fumagalli, 2004). CCSD (Chinese Continental Scientific Drilling) samples are probably the best for identification of C- species in UHP rocks. We investigated nine eclogites from various depths (170 to 2000 m). Under the microscope, the eclogites contain garnet, clinopyroxene. quartz and rutile with or without phengite, graphite, apatite, zircon, pyrite, talc, and K-feldspar. Graphite is always recognized with pyrite, suggesting oxygen fugacity was low (NNO) at UHP stage. The presence of graphite suggests that the eclogites released H2O-rich (CO2- poor) fluids and melt at UHP stage. The studied eclogites contain CaEs component in clinopyroxene. Therefore, Fe3+ content can not be calculated based on EPMA analysis. We estimated Fe3+/Fe2+ based on Mossbauer and micro-XANES analysis. With ignoring the Fe3+, P-T conditions based on the assemblage of phengite-garnet-cpx- (coesite) can be estimated as P=3-5 GPa, and T = 850-950 oC. However, the Fe3+ estimation from the clinopyroxenes based on Mössbauer and micro-XANES analysis corrects the P, T condition as 3-4 GPa, and 650 -780 oC. The geothermobarometry based on the kyanite-garnet-cpx- phengite-coesite assemblage (Ravna and Terry, 2004) is reliable because temperature estimation is independent from Fe3+ content in clinopyroxene. The estimation from one eclogite gives P=3.4 GPa, and T=750oC, quite consistent with the above estimation. The thermometry based on Zr concentration from rutile also gives estimated as 600 to 730 o

  1. The Five-To-Six-Coordination Transition of Ferric Human Serum Heme-Albumin Is Allosterically-Modulated by Ibuprofen and Warfarin: A Combined XAS and MD Study

    PubMed Central

    Bionducci, Monica; Fanali, Gabriella; Meli, Massimiliano; Colombo, Giorgio; Fasano, Mauro; Ascenzi, Paolo; Mobilio, Settimio

    2014-01-01

    Human serum albumin (HSA) is involved physiologically in heme scavenging; in turn, heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, the allosteric effect of ibuprofen and warfarin on the local atomic structure around the ferric heme-Fe (heme-Fe(III)) atom of HSA-heme-Fe (HSA-heme-Fe(III)) has been probed by Fe-K edge X-ray absorption spectroscopy (XAS). The quantitative analysis of the Fe-K edge extended X-ray absorption fine structure (EXAFS) signals and modeling of the near edge (XANES) spectral features demonstrated that warfarin and ibuprofen binding modify the local structure of the heme-Fe(III). Combined XAS data analysis and targeted molecular dynamics (MD) simulations provided atomic resolution insights of protein structural rearrangements required to accommodate the heme-Fe(III) upon ibuprofen and warfarin binding. In the absence of drugs, the heme-Fe(III) atom is penta-coordinated having distorted 4+1 configuration made by the nitrogen atoms of the porphyrin ring and the oxygen phenoxy atom of the Tyr161 residue. MD simulations show that ibuprofen and warfarin association to the secondary fatty acid (FA) binding site 2 (FA2) induces a reorientation of domain I of HSA-heme-Fe(III), this leads to the redirection of the His146 residue providing an additional bond to the heme-Fe(III) atom, providing the 5+1 configuration. The comparison of Fe-K edge XANES spectra calculated using MD structures with those obtained experimentally confirms the reliability of the proposed structural model. As a whole, combining XAS and MD simulations it has been possible to provide a reliable model of the heme-Fe(III) atom coordination state and to understand the complex allosteric transition occurring in HSA-heme-Fe(III) upon ibuprofen and warfarin binding. PMID:25153171

  2. Localization and Speciation of Arsenic in Soil and Desert Plant Parkinsonia florida using μXRF and μXANES

    PubMed Central

    Castillo-Michel, Hiram; Hernandez-Viezcas, Jose; Dokken, Kenneth M.; Marcus, Matthew A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2011-01-01

    Parkinsonia florida is a plant species native to the semi-desert regions of North America. The cultivation characteristics of this shrub/tree suggest that it could be used for phytoremediation purposes in semiarid regions. This work describes, through the use of synchrotron μXRF and μXANES techniques and ICP-OES, the arsenic (As) accumulation and distribution in P. florida plants grown in two soils spiked with As at 20 mg kg-1. Plants grown in a sandy soil accumulated at least twice more As in the roots compared to plants grown in a loamy soil. The lower As accumulation in plants grown in the loamy soil corresponded to a lower concentration of As in the water soluble fraction (WSF) of this soil. LC-ICP-MS speciation analysis showed only As(V) in the WSF from all treatments. In contrast, linear combination XANES speciation analysis from the root tissues showed As mainly present in the reduced As(III) form. Moreover, a fraction of the reduced As was found coordinating to S in a form consistent with As-Cys3. The percentage of As coordinated to sulfur was smaller for plants grown in the loamy soil when compared to the sandy soil. PMID:21842861

  3. A theoretical approach to La L1-edge XANES spectra of La complex oxides and their local configuration

    NASA Astrophysics Data System (ADS)

    Asakura, Hiroyuki; Shishido, Tetsuya; Teramura, Kentaro; Tanaka, Tsunehiro

    2015-04-01

    The characteristic peaks (pre-edge peaks) in the La L1-edge X-ray absorption near edge structure (XANES) of various La complex oxides were analyzed by both experimental and theoretical approaches. The pre-edge peak areas are correlated with the bond angle analysis (BAA) parameter, which we proposed as an indicator of the centrosymmetry or disorder of the local configuration of the La site. The origin of the pre-edge peak and the parameterization criteria of the BAA parameter were evaluated using theoretical calculations based on molecular orbital theory and multiple scattering theory. The theoretical calculations showed that the origin of the pre-edge peak at the La L1-edge is electric dipole transition from 2s to unoccupied states generated by p-d hybridization. Medium-scale theoretical simulations of the La L1-edge XANES spectra of thousands of virtual La aqueous complex models verified that the parameterization criteria of the BAA parameter are applicable to local configuration analysis of La.

  4. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    NASA Astrophysics Data System (ADS)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  5. A theoretical approach to La L(1)-edge XANES spectra of La complex oxides and their local configuration.

    PubMed

    Asakura, Hiroyuki; Shishido, Tetsuya; Teramura, Kentaro; Tanaka, Tsunehiro

    2015-04-28

    The characteristic peaks (pre-edge peaks) in the La L1-edge X-ray absorption near edge structure (XANES) of various La complex oxides were analyzed by both experimental and theoretical approaches. The pre-edge peak areas are correlated with the bond angle analysis (BAA) parameter, which we proposed as an indicator of the centrosymmetry or disorder of the local configuration of the La site. The origin of the pre-edge peak and the parameterization criteria of the BAA parameter were evaluated using theoretical calculations based on molecular orbital theory and multiple scattering theory. The theoretical calculations showed that the origin of the pre-edge peak at the La L1-edge is electric dipole transition from 2s to unoccupied states generated by p-d hybridization. Medium-scale theoretical simulations of the La L1-edge XANES spectra of thousands of virtual La aqueous complex models verified that the parameterization criteria of the BAA parameter are applicable to local configuration analysis of La.

  6. Coordination nature of aluminum (oxy)hydroxides formed under the influence of low molecular weight organic acids and a soil humic acid studied by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, R. K.; Hu, Y. F.; Dynes, J. J.; Zhao, A. Z.; Blyth, R. I. R.; Kozak, L. M.; Huang, P. M.

    2010-11-01

    Organic ligands in the environment hinder the formation of crystalline Al precipitation products by perturbing the hydrolytic and polymeric reactions of Al resulting in the formation of short-range ordered (SRO) mineral colloids with varying degrees of crystallinity. However, the effect of these ligands on the mechanisms of their formation and nature of the transformation products of Al (oxy)hydroxides at the atomic and molecular levels is not well understood. In this study, the coordination structure of Al in Al (oxy)hydroxides formed under the influence of varying concentrations of low molecular weight (LMW) organic acids such as citric, malic, salicylic and acetic acids and a humic acid (HA) was investigated with X-ray absorption near edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis. The Al K- and L-edge XANES spectra showed that with increasing LMW organic acid concentration the coordination number of Al changed from 6-fold to a mixture of 4- and 6-fold, except for acetate as acetate was unable to perturb the formation of Al (oxy)hydroxides at the acetate/Al molar ratio (MR) = 0.1. The proportion of 4-fold to 6-fold coordinated Al in the Al precipitation products depended on the structure and functionality of the LMW organic acids. The incorporation of the LMW organic acid into the network structure of Al (oxy)hydroxides prevented the formation of sheets/inter-layer H-bonding that was required for the formation of crystalline Al (oxy)hydroxides. The HA used in this study only slightly perturbed the crystallization of the Al (oxy)hydroxides at the concentrations used. The Al K-edge data showed that Al coordination number had not been altered in the presence of HA. The findings obtained in the present study are of fundamental significance in understanding the physicochemical behavior of soils and sediments, and their relation to the accumulation and transport of nutrients and pollutants in the

  7. XANES analysis of organic residues formed from the UV irradiation of astrophysical ice analogs and comparison with Stardust samples

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Milam, Stefanie; Sandford, Scott; Cody, George; Kilcoyne, David; de Gregorio, Bradley; Stroud, Rhonda

    The NASA Stardust mission successfully collected authentic cometary grains from Comet 81P/Wild 2.1,2 X-ray absorption near-edge structure (XANES) analysis of these samples in-dicates that a number of them contains O-rich and N-rich organic materials, consisting of a broad variety of functional groups: carbonyls, C=C bonds, aliphatic chains, amines, amides, etc.3 One component of these organics contains very little aromatic carbon and resembles the organic residues produced by the irradiation of interstellar/cometary ice analogs. Stardust sam-ples were also recently shown to contain the amino acid glycine.4 Organic residues produced from the UV irradiation of astrophysical ice analogs are already known to contain a large suite of prebiotic molecules including amino acids,5-7 and amphiphilic compounds (fatty acids).8 In this work, residues were produced in the laboratory from the UV irradiation of mixtures of ices containing H2 O, CH3 OH, CO, and NH3 in relative proportions 100:50:1:1 at 7 K. Additional residues were produced from mixtures with no NH3 , and mixtures containing alkanes and/or naphthalene (C10 H8 ). C-, N-, and O-XANES spectra of these residues were measured in order to assess their organic functional group chemistry and overall atomic composition, as well as their C/N/O ratios. The first results indicate the presence of a number of chemical bonds and functions, namely, carbonyls, C=C bonds, alcohols, amides, amines, and nitrile groups, whose relative proportions are compared with XANES measurements of Stardust samples.9 References: 1. Brownlee, D. E., et al., Science, 314, 1711 (2006). 2. Sandford, S. A., et al., Science, 314, 1720 (2006). 3. Cody, G. D., et al., Meteoritics & Planet. Sci., 43, 353 (2008). 4. Elsila, J. E., et al., Meteoritics & Planet. Sci., 44, 1323 (2009). 5. Bernstein, M. P., et al., Nature, 416, 401 (2002). 6. Muñoz Caro, G. M., et al., Nature, 416, 403 (2002). n 7. Nuevo, M., et al., Orig. Life Evol. Biosph., 38, 37 (2008). 8

  8. Study of structural defects and crystalline perfection of near stoichiometric LiNbO3 crystals grown from flux and prepared by VTE technique

    NASA Astrophysics Data System (ADS)

    Bhatt, R.; Bhaumik, Indranil; Ganesamoorthy, S.; Karnal, A. K.; Gupta, P. K.; Swami, M. K.; Patel, H. S.; Sinha, A. K.; Upadhyay, A.

    2014-10-01

    Near-stoichiometric LiNbO3 (SLN) single crystals were grown/prepared by top seeded solution growth/vapor transport equilibration (VTE) technique, and investigated for stoichiometry, disorder and structural defects. The optical absorption and Raman line-width studies revealed higher stoichiometry (i.e., higher Li/Nb) for SLN prepared by vapor transport equilibration (SLN_V) technique in comparison to SLN grown from K2O flux (SLN_K) and Li-rich melt (SLN_L). The nearly symmetric single diffraction curve (DC), though broad, as observed for SLN_L specimen in high resolution X-rays diffraction (HRXRD) analysis depicted lesser low angle grain boundaries. On the other hand, relatively sharp DC with lowest full-width at half-maximum (FWHM ∼45 arc-sec) in HRXRD and lesser Urbach energy (∼80 meV) in the absorption spectra for SLN_V crystal revealed less structural defects with respect to other SLN crystals. The higher FWHM of DCs in HRXRD for SLN_L and SLN_K is attributed to growth related imperfections usually observed in solution growth. Though, VTE process results in SLN crystals with better stoichiometry and lesser structural defects but the limitation being that samples up to ∼1 mm thickness can be prepared with this technique. For bulk SLN, growth from K2O flux resulted in better stoichiometry whereas Li-rich flux resulted in better structural quality. The absorption spectra of the grown SLN crystals depicted oxygen vacancy induced electronic defects (Nb4+, polarons), which was further authenticated by X-ray absorption near-edge structure (XANES) analysis at Nb K edge revealing lesser Nb4+ defects in SLN with respect to congruent lithium niobate (CLN) crystal.

  9. Behavioral response of pyrite structured Co0.2Fe0.8S2 nano-wires under high-pressure up to 8 GPa - Mössbauer spectroscopic and electrical resistivity studies

    NASA Astrophysics Data System (ADS)

    Chandra, U.; Sharma, P.; Parthasarathy, G.; Sreedhar, B.

    2016-02-01

    Pyrite-structured Co0.2Fe0.8S2 nano wires with aspect ratio 45:1, synthesized using solution colloid method were studied under high pressure up to 8 GPa using 57Fe Mössbauer spectroscopy (using diamond anvil cell) and electrical resistivity (using tungsten carbide cell) techniques. Room temperature S K-edge XANES studies at INFN-LNF synchrotron beam line signified the changes in the electronic structure owing to Co substitution. Magnetic measurements at 5 K demonstrated disordered ferromagnetic behavior similar to Griffith phase. The value of isomer shift identified Fe in divalent, low spin state corresponding to pyrite structure. Higher value of quadrupole splitting observed at ambient condition was due to large lattice strain and electric field gradient generated by large surface to volume ratio of the nano size of the system. With applied pressure, the value followed the expected trend of increase up to 4.3 GPa, then to decrease till 6.4 GPa. Such change in the trend suggested a phase transition. On decompression to ambient pressure, the system seemed to retain high pressure phase and nano structure. The pressure coefficient of electrical resistivity varying from -0.0454 to -0.166 Ω-cm/GPa across the transition pressure of ~4.5 GPa was sluggish suggesting second order phase transition. The pressure-dependent variations by Mössbauer parameters and electrical resistivity showed identical result. This is the first report of pressure effect on nano sized Co0.2Fe0.8S2. Effect of particle size on transition pressure could not be evaluated due to lack of available reports on bulk system.

  10. Roman coloured and opaque glass: a chemical and spectroscopic study

    NASA Astrophysics Data System (ADS)

    Arletti, R.; Dalconi, M. C.; Quartieri, S.; Triscari, M.; Vezzalini, G.

    2006-05-01

    This work reports the results of an archaeometrical investigation of opaque Roman glass and is mainly focussed on the role of configuration and oxidation state of copper on the colour and opacity of red and green opaque finds (mosaic tesserae, game counters, and glass artefacts) from Sicily and Pompeii excavations. The glass fragments were characterised by EMPA, SEM-EDS, TEM, and XRPD analyses and the copper local environment was investigated using X-ray absorption spectroscopy. The analyses of high-resolution Cu-K edge XANES and EXAFS spectra suggest that, in red samples, copper is present as monovalent cations coordinated to the oxygen atoms of the glass framework, accompanied by metallic clusters. In green samples all the copper cations are incorporated in the glass matrix.

  11. Removal of Ca(2+) from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study.

    PubMed

    Lohmiller, Thomas; Shelby, Megan L; Long, Xi; Yachandra, Vittal K; Yano, Junko

    2015-10-29

    Ca(2+)-depleted and Ca(2+)-reconstituted spinach photosystem II was studied using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca(2+) ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca(2+)-depleted S1 (S1') and S2 (S2') states, the S2'YZ(•) state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca(2+)-reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca(2+)-depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca(2+)-containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca(2+) ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca(2+) ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca(2+) removal are discussed, attributing to the Ca(2+) ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ(•) (D1-Tyr161).

  12. Removal of Ca2+ from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study

    DOE PAGES

    Lohmiller, Thomas; Shelby, Megan L.; Long, Xi; ...

    2015-05-19

    We studied Ca2+ -depleted and Ca2+ -reconstituted spinach photosystem II using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca2+ ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca2+ -depleted S1 (S1') and S2 (S2') states, the S2'YZ• state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca2+ -reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all statesmore » of Ca2+ -depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca2+ -containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca2+ ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca2+ ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca2+ removal are discussed, attributing to the Ca2+ ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ• (D1-Tyr161).« less

  13. Photoinduced ferrimagnetic systems in Prussian blue analogues C(I)xCo4[Fe(CN)6]y (C(I) = alkali cation). 4. Characterization of the ferrimagnetism of the photoinduced metastable state in Rb1.8Co4[Fe(CN)6]3.3-13H2O by K edges X-ray magnetic circular dichroism.

    PubMed

    Champion, G; Escax, V; Cartier Dit Moulin, C; Bleuzen, A; Villain, F; Baudelet, F; Dartyge, E; Verdaguer, M

    2001-12-19

    In Part 2 of this work, the electronic and local structure of the photoinduced metastable magnetic state of the Prussian blue analogue Rb1.8Co4[Fe(CN)6]3.3-13H2O were characterized. To determine directly the relative orientation of the magnetic moments of Co(II) and Fe(III) ions in the metastable state, and the nature of the exchange interaction between them, we performed X-ray magnetic circular dichroism (XMCD) experiments at the cobalt and iron K edges. We present the first direct experimental evidence of the antiferromagnetic interaction between the cobalt and the iron ions, leading to the ferrimagnetism of the photoinduced metastable state.

  14. The chemistry of uranium in evaporation pond sediment in the San Joaquin valley, California, USA, using X-ray fluorescence and XANES techniques

    NASA Astrophysics Data System (ADS)

    Duff, Martine C.; Amrhein, Christopher; Bertsch, Paul M.; Hunter, Douglas B.

    1997-01-01

    Evaporation ponds in the San Joaquin Valley (SJV), CA, used for the disposal of irrigation drainage waters, contain elevated levels of uranium. The ponds are filled periodically and support algae which upon evaporation become incorporated in the sediments as layers of decaying organic matter. This rich source of organic matter promotes reducing conditions in the sediments. Our research was conducted to characterize oxidation/ reduction reactions that affect soluble and sediment U(IV)/U(VI) concentrations in the SJV ponds. Studies were done to (1) determine soluble U(VI)/U(IV) in waters in contact with a pond sediment subjected to changes in redox status, (2) observe U solid oxidation state as a reducing pond sediment underwent (in vitro) oxidation, and (3) determine U solid oxidation state with respect to depth in pond surface sediment layers. Low pressure ion-exchange chromatography with an eluent of 0.125 M H 2C 2O 4/0.25 M HNO 3 was used for the separation of U (IV) and U(VI) oxidation states in the drainage waters. Soluble U(VI) and U(IV) coexisted in sediment suspensions exposed to changes in redox potential (Eh) (-260 mV to +330 mV), and U(VI) was highly soluble in the oxidized, surface pond sediments. X-ray near edge absorption spectroscopy (XANES) showed that the U solid phases were 25% U(IV) and 75% U(VI) and probably a mixed solid [U 3O 8(s)] in highly reducing pond sediments. Sediment U (IV) increased slightly with depth in the surface pond sediment layers suggesting a gradual reduction of U (VI) to U (IV) with time. Under oxidized conditions, this mixed oxidation-state solid was highly soluble.

  15. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  16. Antimony leaching and chemical species analyses in an industrial solid waste: Surface and bulk speciation using ToF-SIMS and XANES.

    PubMed

    Kappen, P; Ferrando-Miguel, G; Reichman, S M; Innes, L; Welter, E; Pigram, P J

    2017-05-05

    The surface chemistry and bulk chemical speciation of solid industrial wastes containing 8wt-% antimony (Sb) were investigated using synchrotron X-ray Absorption Near Edge Structure (XANES) and Time-of-Flight Ion Secondary Mass Spectrometry (ToF-SIMS). Leaching experiments were conducted in order to better understand the behavior of Sb in waste streams and to inform regulatory management of antimony-containing wastes. The experiments also demonstrate how a combination of XANES and ToF-SIMS adds value to the field of waste investigations. Leaching treatments (acid and base) were performed at a synchrotron over 24h time periods. Surface analyses of the wastes before leaching showed the presence of Sb associated with S and O. Bulk analyses revealed Sb to be present, primarily, as trivalent sulfide species. Both acid and base leaching did not change the antimony speciation on the solid. Leaching transferred about 1% of the total Sb into solution where Sb was found to be present as Sb(V). XANES data showed similarities between leachate and FeSbO4. During base leaching, the Sb content in solution gradually increased over time, and potential desorption mechanisms are discussed.

  17. Characterization of Ca-phosphate biological materials by scanning transmission X-ray microscopy (STXM) at the Ca L2,3-, P L2,3- and C K-edges.

    PubMed

    Cosmidis, Julie; Benzerara, Karim; Nassif, Nadine; Tyliszczak, Tolek; Bourdelle, Franck

    2015-01-01

    Several naturally occurring biological materials, including bones and teeth, pathological calcifications, microbial mineral deposits formed in marine phosphogenesis areas, as well as bio-inspired cements used for bone and tooth repair are composed of Ca-phosphates. These materials are usually identified and characterized using bulk-scale analytical tools such as X-ray diffraction, Fourier transform infrared spectroscopy or nuclear magnetic resonance. However, there is a need for imaging techniques that provide information on the spatial distribution and chemical composition of the Ca-phosphate phases at the micrometer- and nanometer scales. Such analyses provide insightful indications on how the materials may have formed, e.g. through transient precursor phases that eventually remain spatially separated from the mature phase. Here, we present scanning transmission X-ray microscopy (STXM) analyses of Ca-phosphate reference compounds, showing the feasibility of fingerprinting Ca-phosphate-based materials. We calibrate methods to determine important parameters of Ca-phosphate phases, such as their Ca/P ratio and carbonate content at the ∼25nm scale, using X-ray absorption near-edge spectra at the C K-, Ca L2,3- and P L2,3-edges. As an illustrative case study, we also perform STXM analyses on hydroxyapatite precipitates formed in a dense fibrillar collagen matrix. This study paves the way for future research on Ca-phosphate biomineralization processes down to the scale of a few tens of nanometers.

  18. Micro-XANES Measurements on Experimental Spinels and the Oxidation State of Vanadium in Spinel-Melt Pairs

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.R.; Newville, M.

    2004-01-01

    Spinel can be a significant host phase for V as well as other transition metals such as Ni and Co. However, vanadium has multiple oxidation states V(2+), V(3+), V(4+) or V(5+) at oxygen fugacities relevant to natural systems. We do know that D(V) spinel/melt is correlated with V and TiO2 content and fO2, but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V(3+) is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al2O3-SiO2 system. On the other hand, it has been argued that V(4+) will be stable across the range of natural oxygen fugacities in nature. In order to gain a better understanding of D(V) spinel/melt we have equilibrated spinel-melt pairs at controlled oxygen fugacities, between HM to NNO, where V is present in the spinel at natural levels (approx. 300 ppm V). These spinel-melt pairs were analyzed using micro-XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with spinel compositional data (Ti, V content) and oxygen fugacity, to unravel the effects of these variables on D(V) spinel/melt.

  19. Determination of localized Fe 2+/Fe 3+ ratios in inks of historic documents by means of μ-XANES

    NASA Astrophysics Data System (ADS)

    Proost, K.; Janssens, K.; Wagner, B.; Bulska, E.; Schreiner, M.

    2004-01-01

    An important part of the European cultural heritage is composed of hand-written documents. Many of these documents were drawn up with iron-gall ink. This type of ink present a serious conservation problem, as it slowly oxidizes ('burns') the paper it is written on, thereby gradually disintegrating the historic document. Acid hydrolysis of the cellulose and/or the oxidation of organic compounds promoted by radical intermediates that are formed due to the presence of Fe 2+ ions are considered to be the cause of the disintegration. μ-XANES measurements were performed with a lateral resolution of 30-50 μm in order to determine the local Fe 2+/Fe 3+ ratio in 19th C. documents from the Austrian National Archives and fragments of 16th C documents from the Polish National Library. In the 19th C documents, no significant amount of Fe 2+ was detected. On the other hand, in the 16th C fragments, significant amounts of Fe 2+ and appreciable differences in distribution of Fe 2+ and Fe 3+ within individual letters/ink stains were observed.

  20. The darkening of zinc yellow: XANES speciation of chromium in artist;s paints after light and chemical exposures

    SciTech Connect

    Zanella, Luciana; Casadio, Francesca; Gray, Kimberly A.; Warta, Richard; Ma, Qing; Gaillard, Jean-François

    2012-03-14

    The color darkening of selected brushstrokes of the masterpiece A Sunday on La Grande Jatte - 1884 (by Georges Seurat) has been attributed to the alteration of the chromate pigment zinc yellow. The pigment originally displays a bright greenish-yellow color but may undergo, after aging, darkening to a dull, ocher tone. We used XANES to probe the oxidation state of Cr on paint reconstructions, and show that color changes are associated with the reduction of Cr(VI) to Cr(III). Paint mixtures containing the pigment and linseed oil to mimic mixtures used in La Grande Jatte were subjected to artificial aging in the presence of light, SO{sub 2}, and variable air humidity - 50 and 90% relative humidity. High relative humidity led to the largest degree of Cr(VI) reduction whereas low relative humidity promoted light-induced alterations. These results are corroborated by visible reflectance measurements on the same laboratory samples and contribute to a better understanding of the chemical reactivity of chromate pigments, which are present in many historical works of art.

  1. STXM-XANES Analysis of Organic Matter in Dark Clasts and Halite Crystals in Zag and Monahans Meteorites

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Nakato, A.; Kilcoyne, A. L. D.; Takeichi, Y.; Suga, H.; Miyamoto, C.; Rahman, Z.; Kobayashi, K.; Mase, K.; Takahashi, Y.

    2016-01-01

    Zag and Monahans meteorites (H5) contains xenolithic dark clasts and halite (NaCl) crystals [e.g., 1]. The proposed source of the H chondrites is asteroid 6 Hebe [2]. The modern orbits of 1 Ceres and 6 Hebe essentially cross, with aphelion/perihelion of Ceres and Hebe of 2.99/2.55 and 2.91/1.94 AU (Astronomical Units), respectively. Therefore, Ceres might be the source of the clasts and halite in Zag and Monahans meteorites. Recent results from NASA's Dawn mission shows that bright spots in Ceres's crater may be hydrated magnesium sulfate with some water ice, and an average global surface contains ammoniated phyllosilicates that is likely of outer Solar System origin. One dark clast and all halite crystals in Zag and Monahans meteorites contain carbon-rich particles. We report organic analyses of these carbon-rich particles using carbon, nitrogen, and oxygen X-ray absorption near edge structure (C-, N-, and O-XANES), in order to constrain the origin of the clast and halite crystals.

  2. X-ray absorption near edge structure study on Acutolysin-C, a zinc-metalloproteinase from Agkistrodon acutus venom: Insight into the acid-inactive mechanism

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Chu, Wangsheng; Li, Shujun; Liu, Yiwei; Gao, Bin; Niu, Liwen; Teng, Maikun; Benfatto, Maurizio; Hu, Tiandou; Wu, Ziyu

    2007-11-01

    Acutolysin-C, a snake-venom zinc metalloproteinase, displays a distinct pH-dependent proteolytic activity, which has been tentatively assigned to a structural change of the zinc-containing catalytic center. In this work we compare X-ray absorption near-edge structure (XANES) experimental spectra at the Zn K-edge and theoretical calculations of solutions at different pH values. The experimental data show clear differences confirmed by a best fit using the MXAN procedure. The results show that, when pH decreases from pH 8.0 to pH 3.0, the zinc-coordinating catalytic water molecule moves far from the Glu143 residue that is considered to play an essential role in the proteolytic process. Data suggests that this is the possible mechanism that deactivates the metalloproteinase.

  3. Micro-XANES Measurements on Experimental Spinels and the Oxidation State of Vanadium in Coexisting Spinel and Silicate Melt

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S. R.; Newville, M.; Le. L.; Schwandt, C. S.

    2005-01-01

    Spinel can be a significant host phase for V which has multiple oxidation states V(sup 2+), V(sup 3+), V(sup 4+) or V(sup 5+) at oxygen fugacities relevant to natural systems. The magnitude of D(V) spinel/melt is known to be a function of composition, temperature and fO2, but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V(sup 3+) is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al2O3-SiO2 system. On the other hand, it has been argued that V(sup 4+) will be stable across the range of natural oxygen fugacities in nature. In order to build on our previous work in more oxidized systems, we have carried out experiments at relatively reducing conditions from the FMQ buffer to 2 log fO2 units below the IW buffer. These spinel-melt pairs, where V is present in the spinel at natural levels (approx. 300 ppm V), were analyzed using an electron microprobe at NASA-JSC and micro- XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with previous results to understand the valence of V in spinel-melt systems across 12 orders of magnitude of oxygen fugacity, and with application to natural systems.

  4. Soft x-ray absorption spectroscopy studies of doped Pr-containing cuprates

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Liu, S. J.; Chang, C. F.; Lin, J.-Y.; Gou, Y. S.; Yang, H. D.

    2003-01-01

    Using high-resolution O K-edge x-ray absorption near-edge-structure (XANES) spectroscopy, unoccupied states of the YxPr1-xBa2Cu3O7 (x=0 1) thin films and polycrystalline Pr1-xCaxBa2Cu3O7 (x=0 0.3) as well as R0.8Pr0.2Ba2Cu3O7 samples (R=Tm, Dy, Gd, and Sm) are investigated. In YxPr1-xBa2Cu3O7, hole numbers in the CuO2 planes decrease significantly with increasing Pr doping level. Hole carriers generated via Ca doping in Pr1-xCaxBa2Cu3O7 are directed predominantly into both the Zhang-Rice and Fehrenbacher-Rice (FR) states, while those in the CuO3 ribbons remain almost unchanged with Ca substitution. In R0.8Pr0.2Ba2Cu3O7, the hole content in the CuO2 planes decreases monotonically with increasing ionic size of the R3+ ions, confirming the hole depletion effect based on the Pr 4f O 2p hybridization. We demonstrate the spectroscopic evidence of the existence of the FR states. The present XANES results provide a deeper understanding of the nature of hybridization and the origin of the ionic size effect.

  5. PREFACE: Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008) Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki

    2009-03-01

    Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more

  6. Using thermal and spectroscopic (XANES) indices to understand the biological stability of soil organic matter.

    NASA Astrophysics Data System (ADS)

    Gillespie, A. W.; Sanei, H.; Diochon, A.; Tarnocai, C.; Janzen, H.; Regier, T. Z.; Gregorich, E.

    2014-12-01

    Soil organic matter (SOM) composition is a key property that underpins ecosystem productivity. Understanding its physical, chemical and biological properties is important for evaluating its role in carbon (C) and nutrient cycling in terrestrial ecosystems. In particular, the stability of SOM (i.e., resistance to microbial degradation) has important implications in ecosystem processes, including nutrient cycling, emission of greenhouse gases from soil, and C sequestration. Thus there is interest in developing new ways to measure and quantify the labile and stable forms of soil organic carbon. In this presentation, we describe the combined use of thermal decomposition methods based on pyrolysis, and chemical properties using X-ray absorption spectroscopy (XAS), to describe the stability of soil organic matter. Soils (n=81) for this study were obtained from a wide geographical range and management practices. Controlled respiration studies were conducted on the soils to determine the biodegradability of organic C after 98 days. In the thermal analysis, the sample is subjected to a temperature ramp and pyrolyzed/volatilized organic C was recorded as a function of temperature. Analysis by XAS provided information on the types of C functional groups present in a soil sample. We show that biological stability is well described using a two component model which included thermal stability and C composition chemistry.

  7. XANES spectral changes for discotic liquid crystals of bis[1,2-bis(3,4-dioctyloxyphenyl) ethanedione dioximato]Ni(II)

    NASA Astrophysics Data System (ADS)

    Yokomizo, Mitsutoshi; Kurisaki, Tsutomu; Yamaguchi, Toshio; Wakita, Hisanobu; Oka-Inagaki, Yoshio; Ohta, Kazuchika

    The one-dimensional stacking structures of a liquid crystal Ni complex- [1,2-bis(3,4-dialkoxyphenyl)ethanedione dioximato]Ni(II), [Ni{(C8O)4dpg}2],which shows thermochromism, (see Fig. 1) have been investigated over a temperature range from room temperature to 220°C by analyzing X-ray absorption near-edge structure (XANES) spectra together with a DV-X[alpha] molecular orbital calculation. The thermochromic character of the complex is discussed through the structural change with temperature in Ni--Ni and Ni to ligand atom interactions.

  8. Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic

    NASA Astrophysics Data System (ADS)

    Dorchies, F.; Recoules, V.

    2016-10-01

    The advent of femtosecond lasers has shed new light on non-equilibrium high energy density physics. The ultrafast energy absorption by electrons and the finite rate of their energy transfer to the lattice creates non-equilibrium states of matter, triggering a new class of non-thermal processes from the ambient solid up to extreme conditions of temperature and pressure, referred as the warm dense matter regime. The dynamical interplay between electron and atomic structures is the key issue that drives the ultrafast phase transitions dynamics. Bond weakening or bond hardening are predicted, but strongly depends on the material considered. Many studies have been conducted but this physics is still poorly understood. The experimental tools used up-to-now have provided an incomplete insight. Pure optical techniques measure only indirectly atomic motion through changes in the dielectric function whereas X-ray or electron diffraction only probes the average long-range order. This review is dedicated to recent developments in time-resolved X-ray absorption near-edge spectroscopy, which is expected to give a more complete picture by probing simultaneously the modifications of the near-continuum electron and local atomic structures. Results are reported for three different types of metals (simple, transition and noble metals) in which a confrontation has been carried out between measurements and ab initio simulations.

  9. The status of strontium in biological apatites: an XANES/EXAFS investigation.

    PubMed

    Bazin, Dominique; Dessombz, Arnaud; Nguyen, Christelle; Ea, Hang Korng; Lioté, Frédéric; Rehr, John; Chappard, Christine; Rouzière, Stephan; Thiaudière, Dominique; Reguer, Solen; Daudon, Michel

    2014-01-01

    Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr-based drugs are not totally elucidated. The local environment of Sr(2+) cations in biological apatites present in pathological and physiological calcifications in patients without such Sr-based drugs has been assessed. In this investigation, X-ray absorption spectra have been collected for 17 pathological and physiological calcifications. These experimental data have been combined with a set of numerical simulations using the ab initio FEFF9 X-ray spectroscopy program which takes into account possible distortion and Ca/Sr substitution in the environment of the Sr(2+) cations. For selected samples, Fourier transforms of the EXAFS modulations have been performed. The complete set of experimental data collected on 17 samples indicates that there is no relationship between the nature of the calcification (physiological and pathological) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Such structural considerations have medical implications. Pathological and physiological calcifications correspond to two very different preparation procedures but are associated with the same localization of Sr(2+) versus apatite crystals. Based on this study, it seems that for supplementation of Sr at low concentration, Sr(2+) cations will be localized into the apatite network.

  10. The scanning transmission x-ray microscope at the NSLS: From XANES to cryo

    SciTech Connect

    Maser, J.; Chapman, H.; Jacobsen, C.

    1995-12-31

    The Stony Brook scanning transmission x-ray microscope (STXM) has been operated at the XIA beamline at the NSLS since 1989. A large number of users have used it to study biological and material science samples. The authors report on changes that have been performed in the past year, and present recent results. To stabilize the position of the micro probe when doing spectral scans at high spatial resolution, they have constructed a piezo-driven flexure stage which carries out the focusing motion of the zone plate needed when changing the wavelength. To overcome the detector limitation set by saturation of the gas-flow counter at count rates around 1 MHz, they are installing an avalanche photo diode with an active quenching circuit which they expect to respond linearly to count rates in excess of 10 MHz. They have improved the enclosure for STXM to improve the stability of the Helium atmosphere while taking data. This reduces fluctuations of beam absorption and, therefore, noise in the image. A fast shutter has been installed in the beam line. The authors are also developing a cryo-STXM which is designed for imaging frozen hydrated samples at temperatures below 120 K. At low temperatures, radiation sensitive samples can tolerate a considerably higher radiation dose than at room temperature. This should improve the resolution obtainable from biological samples and should make recording of multiple images of the same sample area possible while minimizing the effects of radiation damage. This should enable them to perform elemental and chemical mapping at high resolution, and to record the large number of views needed for 3D reconstruction of the object.

  11. Arsenic incorporation in synthetic struvite (NH4MgPO4·6H2O): a synchrotron XAS and single-crystal EPR study.

    PubMed

    Lin, Jinru; Chen, Ning; Pan, Yuanming

    2013-11-19

    Struvite, a common biomineral and increasingly important fertilizer recovered from wastewater treatment plants, is capable of sequestering a wide range of heavy metals and metalloids, including arsenic. Inductively coupled plasma mass spectrometric (ICPMS) analyses and microbeam synchrotron X-ray fluororescence (μ-SXRF) mapping show that struvite formed under ambient conditions contains up to 547 ± 15 ppm As and that the uptake of As is controlled by pH. Synchrotron As K-edge XANES spectra measured at 20 K show that As(5+) is the predominant oxidation state in struvite, irrespective of Na2HAsO4·7H2O or NaAsO2 as the source for As. Modeling of As K-edge EXAFS data suggest that local structural distortion associated with the substitution of As(5+) for P(5+) in struvite reaches up to 3.75 Å. Single-crystal electron paramagnetic resonance (EPR) spectra of gamma-ray-irradiated struvite disclose five [AsO3](2-) radicals and one [AsO4](2-) radical. These arsenic-centered oxyradicals are all readily attributed to form from diamagnetic [AsO4](3-) precursors during irradiation, providing further support for exclusive incorporation and local structural expansion beyond the first shell of As(5+) at the P site in struvite.

  12. Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust's role in the solid Earth oxygen cycle

    NASA Astrophysics Data System (ADS)

    Shorttle, Oliver; Moussallam, Yves; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Murton, Bramley J.

    2015-10-01

    The cycling of material from Earth's surface environment into its interior can couple mantle oxidation state to the evolution of the oceans and atmosphere. A major uncertainty in this exchange is whether altered oceanic crust entering subduction zones can carry the oxidised signal it inherits during alteration at the ridge into the deep mantle for long-term storage. Recycled oceanic crust may be entrained into mantle upwellings and melt under ocean islands, creating the potential for basalt chemistry to constrain solid Earth-hydrosphere redox coupling. Numerous independent observations suggest that Iceland contains a significant recycled oceanic crustal component, making it an ideal locality to investigate links between redox proxies and geochemical indices of enrichment. We have interrogated the elemental, isotope and redox geochemistry of basalts from the Reykjanes Ridge, which forms a 700 km transect of the Iceland plume. Over this distance, geophysical and geochemical tracers of plume influence vary dramatically, with the basalts recording both long- and short-wavelength heterogeneity in the Iceland plume. We present new high-precision Fe-XANES measurements of Fe3+ / ∑ Fe on a suite of 64 basalt glasses from the Reykjanes Ridge. These basalts exhibit positive correlations between Fe3+ / ∑ Fe and trace element and isotopic signals of enrichment, and become progressively oxidised towards Iceland: fractionation-corrected Fe3+ / ∑ Fe increases by ∼0.015 and ΔQFM by ∼0.2 log units. We rule out a role for sulfur degassing in creating this trend, and by considering various redox melting processes and metasomatic source enrichment mechanisms, conclude that an intrinsically oxidised component within the Icelandic mantle is required. Given the previous evidence for entrained oceanic crustal material within the Iceland plume, we consider this the most plausible carrier of the oxidised signal. To determine the ferric iron content of the recycled component ([Fe2O

  13. Characteristics of Organobentonite and Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Ha, J.; Hwang, B.; Hwang, J.; Brown, G. E.

    2008-12-01

    The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate (HDP+)) was investigated, and the organobentonites were characterized using uptake measurements, micro X-ray diffraction (micro-XRD), and electrophoretic mobility measurements prior to reaction with KI solutions. Uptake measurements indicate that bentonite has a high affinity for HDP+. Increasing [HDP+](aq) results in an increase in HDP+ uptake on bentonite by up to 280% of the CEC equivalents of bentonite, and causes a concomitant increase in Na released as a result of the replacement of exchangeable inorganic cations in bentonite interlayers. Based micro-XRD, the d001 spacing of untreated bentonite was 1.22 nm whereas organobentonites modified with HDP+ at different equivalent amounts, corresponding to 100%, 200%, and 400% of the cation exchange capacity (CEC) of bentonite, showed d001 spacings of 1.96 nm, 3.77 nm, and 3.77 nm, respectively. Our micro-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of montmorillonite. The electrophoretic mobility indicates that the untreated bentonite had a negative surface charge over the entire pH range examined (pH 2-12) whereas the organobentonite at an equivalent amount corresponding to 200% of the CEC had a positive surface charge over this pH range. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with HDP+ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and LIII-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near

  14. Investigation of oxygen vacancies in CeO2/Pt system with synchrotron light techniques

    NASA Astrophysics Data System (ADS)

    Braglia, L.; Bugaev, A. L.; Lomachenko, K. A.; Soldatov, A. V.; Lamberti, C.; Guda, A. A.

    2016-05-01

    A peculiar property of ceria is the ease to form oxygen vacancies, producing reactive sites or facilitating ionic diffusion. For these reasons ceria promotes catalytic activities for a number of important reactions when it is used as a support for transition metals. In our work we study the temporal evolution of oxygen vacancies formation by time-resolved XANES at Ce K- edge and XRD measurements on CeO2/Pt nanoparticles, successfully monitoring the reaction of CO oxidation.

  15. Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES.

    PubMed

    Terzano, Roberto; Al Chami, Ziad; Vekemans, Bart; Janssens, Koen; Miano, Teodoro; Ruggiero, Pacifico

    2008-05-14

    Zinc distribution and speciation within different organs (root, petiole, and leaf) of the edible plant Eruca vesicaria L. Cavalieri were determined using synchrotron microbeam X-ray techniques (XRF microtomography and mu-XANES) for plants grown in polluted soil with or without compost amendment. Data on soil derived from different extraction procedures and using mu-XANES analyses on rhizospheric soil indicated that compost amendment did not significantly influence the Zn speciation and availability in soil. However, major differences were observed within the plants. Plants grown in the presence of compost were able to partly block zinc immediately outside the root endodermis in the form of zinc-phytate, while a smaller Zn fraction was allowed to xylem transport as zinc-citrate. In the leaves, zinc was largely excluded from leaf cells, and about approximately 50% was in the form of phosphate precipitates, and the other 50% was complexed by cysteine and histidine residues. The reported data provide new information concerning the mechanisms of zinc tolerance in E. vesicaria L. Cavalieri, a very common edible plant in Mediterranean regions, and on the role of compost in influencing the molecular strategies involved in zinc uptake and detoxification.

  16. Influence of 300°C thermal conversion of Fe-Ce hydrous oxides prepared by hydrothermal precipitation on the adsorptive performance of five anions: Insights from EXAFS/XANES, XRD and FTIR (companion paper).

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan

    2017-04-01

    In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300°C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300°C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents.

  17. Investigation of Co-Doped ZnO Nanowires by X-ray Absorption Spectroscopy and Ab Initio Simulation

    NASA Astrophysics Data System (ADS)

    Chu, Manh Hung; Nguyen, Van Duy; Nguyen, Duc Hoa; Nguyen, Van Hieu

    2017-01-01

    The local structure of single room- and high-temperature Co-implanted ZnO nanowires with subsequent thermal annealing has been studied using hard-x-ray techniques in combination with ab initio Zn K-edge x-ray absorption near-edge structure (XANES) simulations. X-ray fluorescence data reveal a homogeneous distribution of Co atoms/ions with concentration of about 0.1 at.% to 0.3 at.% in the nanowires. XANES data indicate substitutional incorporation of Co2+ ions at Zn sites in both types of nanowire. Improved structural order around Co atoms is obtained in nanowires with high-temperature ion implantation followed by thermal annealing. The ab initio Zn K-edge simulations not only confirm recovery of implantation-induced damage in the ZnO host lattice by the thermal annealing process, but also assist in studying the effect of oxygen vacancies in the Zn K-edge XANES spectra. Microphotoluminescence data certify that high-temperature ion implantation with subsequent thermal annealing is an effective approach to achieve the strongest optical activation of Co ions and good energy transfer to Co ions from the ZnO host matrix.

  18. Stabilizing Cr species in incinerator fly ashes with/without kaolin addition through a firing process: a molecular study on heated Cr.

    PubMed

    Wei, Yu-Ling; Wang, Hsi-Chih; Peng, Yen-Shiun

    2016-10-06

    Cr speciation in Cr-sorbing washed incinerator fly ash after heating up to 1100°C is temperature dependent. Higher temperature leads to greater level of chemical reduction of Cr(VI) that is considerably more toxic than Cr(III). Most Cr(VI) sorbed washed incinerator fly ash is effectively transformed into Cr(III) after heating to 1100°C for 2 hr, as indicated by the disappearance of hexavalent pre-edge peak of Cr K-edge XANES spectrum. After heating the Cr-sorbing incinerator fly ash to 100(o)C and 500(o)C for 2 hr, water soluble CaCrO4 is determined to be the principal Cr species due to the chemical reaction between the sorbed Cr(VI) and CaO component of washed fly ash, based on the comparison between sample and reference XANES spectra. Replacing half of the washed fly ash with kaolin could effectively reduce all Cr(VI) after heating to ≧900(o)C for 2 hr.

  19. Electronic structure and local atomic arrangement of transition metal ions in nanoporous iron-substituted nickel phosphates, VSB-1 and VSB-5.

    PubMed

    Kim, Tae Woo; Oh, Eun-Jin; Jhung, Sung Hwa; Chang, Jong-San; Hwang, Seong-Ju

    2010-01-01

    The electronic structure and local atomic arrangement of transition metal ions in nanoporous iron-substituted nickel phosphates VSB-1 and VSB-5 have been investigated using X-ray absorption near-edge structure (XANES) spectroscopy at Fe K- and Ni K-edges. The Fe K-edge XANES study clearly demonstrated that substituted iron ions were stabilized in octahedral nickel sites of nanoporous nickel phosphate lattice. A comparison with several Fe-references revealed that the substituted irons have mixed Fe2+/Fe3+ oxidation state with the average valence of +2.8-3.0. According to the Ni K-edge XANES analysis, the aliovalent substitution of Ni2+ with Fe2+/Fe3+ induced a slight reduction of divalent nickel ions in VSB-5 to meet a charge balance. On the contrary, Fe substitution for the VSB-1 phase did not cause notable decrease in the oxidation state of nickel ions, which would be related either to the accompanying decrease of pentavalent phosphorus cations or to the increase of oxygen anions. In conclusion, the present findings clearly demonstrated that the nanoporous lattice of nickel phosphate can accommodate effectively iron ions in its octahedral nickel sites.

  20. Zn distribution and speciation in zinc-containing steelmaking wastes by synchrotron radiation induced μ-XRF and μ-XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Huang, Yuying; Lu, Xiaoming

    2013-04-01

    Zinc is an important element in steelmaking industry not only for its impact on environment but also for its hazardous influence to steel production. Collecting information about the chemical association of zinc in zinc-containing steelmaking wastes is fundamental for monitoring its behavior during further treatment. In the work presented here, the spatial distribution, and chemical forms of zinc in accumulated particles of zinc-containing steelmaking wastes, including electric arc furnace dust (EAFD) and basic oxygen furnace OG sludge (BOF OG), have been investigated using synchrotron radiation induced μ-XRF and μ-XANES spectroscopy. Results of μ-XRF analysis showed that zinc distributed in two ways. One was shared with iron and its distribution showed a positive correlation with that of iron. The other was accumulated in some well-defined hot spots with high amount and its distribution showed negative correlation with that of iron. For EAFD, results of μ-XANES spectroscopy indicated that zinc was mainly present in the form of ZnFe2O4 within the whole particles no matter the spots with high or low zinc content. Whereas for BOF OG, ZnFe2O4 was the main constituent in well-defined hot spots while in other regions zinc was mainly in the form of zinc carbonate. These results indicated that chemical reaction between zinc and other components occurred during the formation of accumulated OG sludge particles. If the above findings could be confirmed by more systematic investigations, it will provide valuable information for treating and utilizing these metallurgical residues.

  1. Chemical Heterogeneity of a Large Cluster IDP: Clues to its Formation History Using X-ray Fluorescence Mapping and XANES Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2013-01-01

    Chondritic porous IDPs may be among the most primitive objects found in our solar system [1]. They consist of many micron to submicron minerals, glasses and carbonaceous matter [2,3,4,5,6,7] with > 10(exp 4) grains in a 10 micron cluster [8]. Speculation on the environment where these fine grained, porous IDPs formed varies with possible sources being presolar dusty plasma clouds, protostellar condensation, solar asteroids or comets [4,6,9]. Also, fine grained dust forms in our solar system today [10,11]. Isotopic anomalies in some particles in IDPs suggest an interstellar source[4,7,12]. IDPs contain relic particles left from the dusty plasma that existed before the protostellar disk formed and other grains in the IDPs formed later after the cold dense nebula cloud collapsed to form our protostar and other grains formed more recently. Fe and CR XANES spectroscopy is used here to investigate the oxygen environment in a large (>50 10 micron or larger sub-units) IDP. Conclusions: Analyzing large (>50 10 micron or larger sub-units) CP IDPs gives one a view on the environments where these fine dust grains formed which is different from that found by only analyzing the small, 10 micron IDPs. As with cluster IDP L2008#5 [3], L2009R2 cluster #13 appears to be an aggregate of grains that sample a diversity of solar and perhaps presolar environments. Sub-micron, grain by grain measurement of trace element contents and elemental oxidation states determined by XANES spectroscopy offers the possibility of understanding the environments in which these grains formed when compared to standard spectra. By comparing thermodynamic modeling of condensates with analytical data an understanding of transport mechanisms operating in the early solar system may be attained.

  2. Covellite CuS as a matrix for "invisible" gold: X-ray spectroscopic study of the chemical state of Cu and Au in synthetic minerals

    NASA Astrophysics Data System (ADS)

    Tagirov, Boris R.; Trigub, Alexander L.; Kvashnina, Kristina O.; Shiryaev, Andrey A.; Chareev, Dmitriy A.; Nickolsky, Maximilian S.; Abramova, Vera D.; Kovalchuk, Elena V.

    2016-10-01

    Geological processes leading to formation of sulfide ores often result in precipitation of gold-bearing sulfides which can contain high concentrations of this metal in "invisible" (or "refractory") state. Covellite (CuS) is ubiquitous mineral in many types of the ore deposits, and numerous studies of the natural ores show that covellite can contain high concentrations of Au. At the same time, Au-bearing covellite withstands cooling in contrast to other minerals of the Cu-Fe-S system (chalcocite, bornite, chalcopyrite), where Au exsolves at low temperatures. This makes covellite a convenient model system for investigation of the chemical state (local environment and valence) of the "invisible" Au in copper-sulfide ores (copper-porphyry, epithermal, volcanogenic massive sulfide, SEDEX deposits). Therefore, it is necessary to determine the location of Au in the covellite matrix as it will have important implications for the methods employed by mineral processing industry to extract Au from sulfide ores. Here we investigate the chemical state of Cu and Au in synthetic covellite containing up to 0.3 wt.% of Au in the "invisible" state. The covellite crystals were synthesized by hydrothermal and salt flux methods. Formation of the chemically bound Au is indicated by strong dependence of the concentration of Au in covellite on the sulfur fugacity in the experimental system (d(log C(Au))/d(log f(S2)) ∼ 0.65). The Au concentration of covellite grows with increasing temperature from 400 to 450 °C, whereas further temperature increase to 500 °C has only minor effect. The synthesized minerals were studied using X-ray absorption fine structure spectroscopy (XAFS) in high energy resolution fluorescence detection (HERFD) mode. Ab initio simulations of Cu K edge XANES spectra show that the Cu oxidation state in two structural positions in covellite (tetrahedral and triangular coordination with S atoms) is identical: the total loss of electronic charge for the 3d shell is ∼0

  3. Ce(III) and Ce(IV) (re)distribution and fractionation in a laterite profile from Madagascar: Insights from in situ XANES spectroscopy at the Ce LIII-edge

    NASA Astrophysics Data System (ADS)

    Janots, Emilie; Bernier, Felix; Brunet, Fabrice; Muñoz, Manuel; Trcera, Nicolas; Berger, Alfons; Lanson, Martine

    2015-03-01

    The distribution of trivalent and tetravalent cerium, Ce(III) and Ce(IV) respectively, in a lateritic profile from Madagascar, has been characterized by X-ray-absorption near-edge structure (XANES) spectroscopy at the Ce LIII-edge on the LUCIA beamline (SOLEIL synchrotron, France). XANES spectra were acquired on bulk-rock samples as well as on specific lateritic minerals or polymineral zones (in-situ measurements) of the tonalite bedrock and the three overlying weathered horizons (C-, B- and A-horizons). Geochemically, the bedrock, and the A- and C-horizons show similar rare earth element content (REE = 363-405 mg/kg). They also display the same positive Ce-anomaly (CeCN/Ce∗ = 1.12-1.45), which is therefore likely to be inherited from the bedrock. In the B-horizon, the higher REE content (REE = 2194 mg/kg) and the larger Ce-anomaly (CeCN/Ce∗ = 4.26) are consistent with an accumulation zone caused by the evaporation of groundwater during the dry season. There is a good agreement between the Ce(III)/Cetotal ratio (XCe(III)) deduced from the positive Ce-anomaly (bulk-rock geochemical data) and that derived from XANES spectroscopy on the same bulk-rock samples (BR-XCe(III)-XANES) in the bedrock, and the C- and B-horizons. In the A-horizon, XANES measurements on bulk rock and minerals revealed a higher BR-XCe(III)-XANES (up to 100%) compared to the XCe(III) deduced from geochemical data (XCe(III) = 79%). The preservation of a positive Ce-anomaly in the A-horizon suggests that the Ce mobilization and redistribution during weathering occurred with no significant Ce fractionation from other trivalent REE. Remarkably, the only investigated sample where cerianite is observed belongs to the B-horizon. Within this horizon, Ce oxidation state varies depending on the microstructural position (porosity, cracks, clay-rich groundmass). The highest Ce(IV) concentrations are measured in cerianite (and aluminophosphates) localized in pores at the vicinity of Mn-rich domains (XCe(III)-XANES

  4. Study of C-coated LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4} as positive electrode material for Li-ion batteries

    SciTech Connect

    Perea, A.; Castro, L.; Aldon, L.; Stievano, L.; Dedryvere, R.; Gonbeau, D.; Tran, N.; Nuspl, G.; Breger, J.; Tessier, C.

    2012-08-15

    Commercial C-LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4} positive electrode material has been investigated by {sup 57}Fe Moessbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS). The combined use of these experimental techniques provides a better understanding of the electrochemical reaction involved during cycling. {sup 57}Fe MS is very efficient to directly follow oxidation state of Fe in the electrode, and gives surprisingly indirect information on the oxidation state of Mn as observed by XAS and XPS. The electrochemical mechanism is proposed based from in situ and operando investigations using both MS and XAS, and is consistent with XPS surface studies. XPS analysis of the electrodes at the end of charge (4.4 V) reveals enhanced electrode/electrolyte interface reactivity at this high potential. Aging of C-LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4}/Li cells after 50 cycles at 60 Degree-Sign C indicates a rather good electrochemical behavior (low capacity fading) of the electrode material. Both {sup 57}Fe MS and XPS (Mn 2p and Fe 2p) clearly show no modification on Fe and Mn oxidation state compared to fresh electrode confirming the good electrochemical performances. - Graphical abstrct: Quantitative evaluation of the Fe{sup 3+} and Mn{sup 3+} content during the first charge/discharge cycle obtained from K-edge XANES spectra of C-LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4} recorded upon cell operation at RT with C/10 rate. During the charge co-existence of Fe and Mn oxidation is observed between points 2 and 4 of the potential curve. At the end of the charge the cut-off voltage limits the oxidation at about 93%. Highlights: Black-Right-Pointing-Pointer C-LiFe{sub 0.33}Mn{sub 0.67}PO{sub 4} electrode material upon cycling vs. metallic lithium. Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy is a (in)direct probe for Fe(Mn) oxidation state. Black-Right-Pointing-Pointer Both K-Fe and K-Mn edges XAS show a simultaneous

  5. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES

    NASA Astrophysics Data System (ADS)

    Helz, R. T.; Cottrell, E.; Brounce, M. N.; Kelley, K. A.

    2017-03-01

    The 1959 summit eruption of Kīlauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most Kīlauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems. The observed variations of Fe+ 3/FeT ratios in the glasses reflect two distinct processes. The main process, sulfur degassing, produces steady decrease of the Fe+ 3/FeT ratio. Melt inclusions in olivine are high in sulfur (1060-1500 ppm S), with Fe+ 3/FeT = 0.160-0.175. Matrix glasses are degassed (mostly S < 200 ppm) with generally lower Fe+ 3/FeT (0.114-0.135). Interstitial glasses within clumps of olivine crystals locally show intermediate levels of sulfur and Fe+ 3/FeT ratio. The correlation suggests that (1) the 1959 magma was significantly reduced by sulfur degassing during the eruption

  6. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    NASA Astrophysics Data System (ADS)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-01

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  7. Removal of Ca2+ from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study

    SciTech Connect

    Lohmiller, Thomas; Shelby, Megan L.; Long, Xi; Yachandra, Vittal K.; Yano, Junko

    2015-05-19

    We studied Ca2+ -depleted and Ca2+ -reconstituted spinach photosystem II using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca2+ ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca2+ -depleted S1 (S1') and S2 (S2') states, the S2'YZ• state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca2+ -reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca2+ -depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca2+ -containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca2+ ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca2+ ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca2+ removal are discussed, attributing to the Ca2+ ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ• (D1-Tyr161).

  8. Fischer Tropsch synthesis : influence of Mn on the carburization rates and activities of Fe-based catalysts by TPR-EXAFS/XANES and catalyst testing.

    SciTech Connect

    Ribeiro, M. C.; Jacobs, G.; Pendyala, R.; Davis, B. H.; Cronauer, D. C.; Kropf, A. J.; Marshall, C. L.

    2011-03-24

    Fe-based catalysts containing different amounts of Mn were tested for Fischer-Tropsch synthesis using a stirred tank reactor at 270 C, 1.21 MPa, and H{sub 2}:CO = 0.7. Catalyst activation by carburization with 10% CO/He was followed by Temperature Programmed Reduction/X-ray Absorption Spectroscopy (TPR-EXAFS/XANES) from room temperature to 300 C. {gamma}-Fe{sub 2}O{sub 3} was converted into iron carbides, whereas MnO{sub x} was reduced to oxygen deficient MnO. Mn hindered Fe carburization, such that the carburized catalyst displayed higher Fe{sub 3}O{sub 4} content than the catalyst without Mn. EXAFS fitting indicates that the carburized catalyst contained a mixture of Hgg carbide, Fe{sub 3}O{sub 4}, and Mn oxides. Increasing Mn content led to higher CH{sub 4} and light product selectivities, and lower light olefin selectivities. Higher and stable conversions were obtained with a catalyst containing an almost equimolar Fe/Mn ratio relative to the catalyst without Mn. Selectivity trends are attributed to the higher WGS rates observed on the FeMn catalysts, consistent with the structural differences observed.

  9. XANES-EXAFS analysis of se solid-phase reaction products formed upon contacting Se(IV) with FeS2 and FeS.

    PubMed

    Breynaert, E; Bruggeman, C; Maes, A

    2008-05-15

    The solid-phase Se speciation after short-term (3 weeks) contact of selenite [Se(IV)] oxyanions with pyrite (FeS2) and troilite (FeS) was investigated using X-ray absorption spectroscopy (XAS; X-ray absorption near-edge spectroscopy-extended X-ray absorption fine structure (XANES-EXAFS)). It was found that the nature of the sulfide mineral dictates the final speciation since respectively Se(0) and FeSe(x) were formed, meaning that the reaction mechanism is different and that these phases cannot be regarded as geochemically similar. The experimental results support the previously proposed sorption/ reduction mechanism for the reaction of selenite with pyrite. In the presence of troilite the reduction proceeds through the intermediate formation of Se(0) by reduction of selenite with dissolved sulfide. XAS data recorded for the FeS2 and FeS were compared with different Se reference phases, ranging in oxidation state from -II to +IV, used for validation of the XAS analysis methodology. This methodology can in principle be used to analyze Se phases formed in "in situ" geochemical conditions such as high-level radioactive waste disposal facilities.

  10. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO₂ nanoparticles in cucumber (Cucumis sativus) plants.

    PubMed

    Servin, Alia D; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose A; Diaz, Baltazar Corral; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2012-07-17

    Advances in nanotechnology have raised concerns about possible effects of engineered nanomaterials (ENMs) in the environment, especially in terrestrial plants. In this research, the impacts of TiO(2) nanoparticles (NPs) were evaluated in hydroponically grown cucumber (Cucumis sativus) plants. Seven day old seedlings were treated with TiO(2) NPs at concentrations varying from 0 to 4000 mg L(-1). At harvest, the size of roots and shoots were measured. In addition, micro X- ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS), respectively, were used to track the presence and chemical speciation of Ti within plant tissues. Results showed that at all concentrations, TiO(2) significantly increased root length (average >300%). By using micro-XRF it was found that Ti was transported from the roots to the leaf trichomes, suggesting that trichomes are possible sink or excretory system for the Ti. The micro-XANES spectra showed that the absorbed Ti was present as TiO(2) within the cucumber tissues, demonstrating that the TiO(2) NPs were not biotransformed.

  11. Comparison of Synchrotron MicroXANES Determination of Fe(3+)/Sigma Fe with Moessbauer Values for Clean Mineral Separates of Pyroxene from Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Dyar, M. D.

    2003-01-01

    The oxidation state of Fe in Martian meteorites is a parameter of great interest and the ability to determine this value in micrometer scale samples is important. Intense, tunable x-ray sources at large synchrotron storage rings are being exploited to examine the Fe K-absorption edge with energy resolution of approx. 1-1.5eV in spots of 10x15 microns on thin sections of a wide variety of materials including several Martian meteorites. Synchrotron microXANES (SmX) spectroscopy is the technique that provides the most flexible capability for investigating Fe(3+)/Sigma Fe. Variation of Fe(3+)/Sigma Fe is manifested as a function of the energy of the pre-edge to the Fe absorption edge produced by the sample. SmX is at present the only technique that can be used with conventional polished thin sections. Data for a broad spectrum of minerals have been produced and indicate that SmX can be used with a large variety of samples types.

  12. Cluster Beam Studies of Metal Combustion

    DTIC Science & Technology

    1992-07-21

    begun the first high-quality experiments on reactions of clean boron surfaces. This work is important because it directly measures the elementary...studies. (See Fig. 1 for a schematic diagram of one of the instruments). * Measurements of reaction cross sections over a wide collision energy range... Measurement of exciton structure near the boron K-edge. * High level ab iniflo calculation of boron duster ion structures and properties to compliment

  13. L-edge X-ray absorption studies of neptunium compounds

    NASA Astrophysics Data System (ADS)

    Bertram, S.; Kaindl, G.; Jové, J.; Pagès, M.

    1989-06-01

    The x-ray absorption near-edge structure (XANES) at the Np-L thresholds was investigated for Np compounds with formal valencies III to VII. At LIII, single and double-peaked white lines are observed corresponding to different final states that are populated through core excitation and 5f/ligand hybridization. For the non-metallic Np compounds studied, the weighted mean values of the LIII-XANES shifts relative to NpO2 exhibit a clear correlation with the isomer shifts of the 59-keV Mössbauer resonance of 237Np.

  14. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  15. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  16. L-Edge Xanes Measurements of the Oxidation State of Tungsten in Iron Bearing and Iron Free Silicate Glasses

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Sutton, S.; Newville, M.

    2008-01-01

    Tungsten is important in constraining core formation of the Earth because this element is a moderately siderophile element (depleted 10 relative to chondrites) and, as a member of the Hf-W isotopic system, it is useful in constraining the timing of core formation. A number of previous experimental studies have been carried out to determine the silicate solubility and metal-silicate partitioning behavior of W, including its concomitant oxidation state. However, results of previous studies are inconsistent on whether W occurs as W(4+) or W(6+). It is assumed that W(4+) is the cation valence relevant to core formation. Given the sensitivity to silicate composition of high valence cations, knowledge of the oxidation state of W over a wide range of fO2 is critical to understanding the oxidation state of the mantle and core formation processes. This study seeks to measure the W valence and change in valence state over the range of fO2 most relevant to core formation, around IW-2.

  17. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.

    PubMed

    Yang, Jianjun; Liu, Jin; Dynes, James J; Peak, Derek; Regier, Tom; Wang, Jian; Zhu, Shenhai; Shi, Jiyan; Tse, John S

    2014-02-01

    Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.

  18. X-ray Absorption and Emission Spectroscopic Studies of [L2Fe2S2]n Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron–Sulfur Clusters

    PubMed Central

    2016-01-01

    Herein, a systematic study of [L2Fe2S2]n model complexes (where L = bis(benzimidazolato) and n = 2-, 3-, 4-) has been carried out using iron and sulfur K-edge X-ray absorption (XAS) and iron Kβ and valence-to-core X-ray emission spectroscopies (XES). These data are used as a test set to evaluate the relative strengths and weaknesses of X-ray core level spectroscopies in assessing redox changes in iron–sulfur clusters. The results are correlated to density functional theory (DFT) calculations of the spectra in order to further support the quantitative information that can be extracted from the experimental data. It is demonstrated that due to canceling effects of covalency and spin state, the information that can be extracted from Fe Kβ XES mainlines is limited. However, a careful analysis of the Fe K-edge XAS data shows that localized valence vs delocalized valence species may be differentiated on the basis of the pre-edge and K-edge energies. These findings are then applied to existing literature Fe K-edge XAS data on the iron protein, P-cluster, and FeMoco sites of nitrogenase. The ability to assess the extent of delocalization in the iron protein vs the P-cluster is highlighted. In addition, possible charge states for FeMoco on the basis of Fe K-edge XAS data are discussed. This study provides an important reference for future X-ray spectroscopic studies of iron–sulfur clusters. PMID:27097289

  19. The pathogenesis of Randall's plaque: a papilla cartography of Ca compounds through an ex vivo investigation based on XANES spectroscopy.

    PubMed

    Carpentier, Xavier; Bazin, Dominique; Jungers, Paul; Reguer, Solenn; Thiaudière, Dominique; Daudon, Michel

    2010-05-01

    At the surface of attached kidney stones, a particular deposit termed Randall's plaque (RP) serves as a nucleus. This structural particularity as well as other major public health problems such as diabetes type-2 may explain the dramatic increase in urolithiasis now affecting up to 20% of the population in the industrialized countries. Regarding the chemical composition, even if other phosphate phases such as whitlockite or brushite can be found as minor components (less than 5%), calcium phosphate apatite as well as amorphous carbonated calcium phosphate (ACCP) are the major components of most RPs. Through X-ray absorption spectroscopy performed at the Ca K-absorption edge, a technique specific to synchrotron radiation, the presence and crystallinity of the Ca phosphate phases present in RP were determined ex vivo. The sensitivity of the technique was used as well as the fact that the measurements can be performed directly on the papilla. The sample was stored in formol. Moreover, a first mapping of the chemical phase from the top of the papilla to the deep medulla is obtained. Direct structural evidence of the presence of ACCP as a major constituent is given for the first time. This set of data, coherent with previous studies, shows that this chemical phase can be considered as one precursor in the genesis of RP.

  20. Operando QEXAFS studies of Ni₂P during thiophene hydrodesulfurization: direct observation of Ni-S bond formation under reaction conditions.

    PubMed

    Wada, Takahiro; Bando, Kyoko K; Miyamoto, Takeshi; Takakusagi, Satoru; Oyama, S Ted; Asakura, Kiyotaka

    2012-03-01

    Structural changes in Ni(2)P/MCM-41 were followed by quick extended X-ray absorption fine structure (QEXAFS) and were directly related to changes in X-ray absorption near-edge structure (XANES) which had been used earlier for the study of the active catalyst phase. An equation is proposed to correct the transient QEXAFS spectra up to second-order in time to remove spectral distortions induced by structural changes occurring during measurements. A good correlation between the corrected QEXAFS and the XANES spectral changes was found, giving support to the conclusions derived from the XANES in the previous work, namely that the formation of a Ni-S bond in a surface NiPS phase is involved in the active site for the hydrodesulfurization reaction.

  1. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    PubMed

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  2. Valence state partitioning of V between pyroxene-melt: Effects of pyroxene and melt composition, and direct determination of V valence states by XANES. Application to Martian basalt QUE 94201 composition

    SciTech Connect

    Karner, J.M.; Papike, J.J.; Sutton, S.R.; Shearer, C.K.; Burger, P.; McKay, G.; Le, L.

    2009-01-13

    Experiments on a Martian basalt composition show that D{sub V} augite/melt is greater than D{sub V} pigeonite/melt in samples equilibrated under the same fO{sub 2} conditions. This increase is due to the increased availability of elements for coupled substitution with the V{sup 3+} or V{sup 4+} ions, namely Al and Na. for this bulk composition, both Al and Na are higher in concentration in augite compared with pigeonite; therefore more V can enter augite than pigeonite. Direct valence state determination by XANES shows that the V{sup 3+} and V{sup 4+} are the main V species in the melt at fO{sub 2} conditions of IW-1 to IW+3.5, whereas pyroxene grains at IW-1, IW, and IW+1 contain mostly V{sup 3+}. This confirms the idea that V{sup 3+} is more compatible in pyroxene than V{sup 4+}. The Xanes data also indicates that a small percentage of V{sup 2+} may exist in melt and pyroxene at IW-1. The similar valence of V in glass and pyroxene at IW-1 suggests that V{sup 2+} and V{sup 3+} may have similar compatibilities in pyroxene.

  3. Electronic structure determination using an assembly of conventional and synchrotron techniques: The case of a xanthate complex.

    PubMed

    Juncal, Luciana C; Avila, José; Asensio, Maria Carmen; Della Védova, Carlos O; Romano, Rosana M

    2017-03-03

    The electronic properties of the coordination complex nickel (II) bis-n-propylxanthate, Ni(CH3(CH2)2OC(S)S)2, were studied by a combination of complementary experimental (both laboratory and synchrotron based techniques) and theoretical methods. Energy differences between HOMOs and LUMOs were determined from UV-visible spectroscopy. The assignment of the transitions were performed with the aid of TD-DFT calculations and based in symmetry considerations. The analysis of the Raman excitation profiles of selected vibrational modes of the complex, taken in resonance with a particular electronic transition, was found to reinforce the electronic assignment. Experimental binding energies of inner and core electrons were determined by PES measurements. Ni K-edge, S K-edge, Ni L-edge, O K-edge and C K-edge XANES spectra were interpreted in terms of the promotion of core electrons to unoccupied electronic levels. An experimental quantitative molecular orbital diagram was constructed using the information extracted from the different techniques.

  4. Fe, Ni and Zn speciation, in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  5. Fe-bearing Olenite with Tetrahedrally Coordinated Al from an Abyssal Pegmatite at Kutna Hora, Czech Republic: Structure, Crystal Chemistry, Optical and XANES Spectra

    SciTech Connect

    Cempirek,J.; Novak, M.; Ertl, A.; Hughes, J.; Rossman, G.; Dyar, M.

    2006-01-01

    } region (690 cm{sup -2} per cm thickness), which is one of the lowest measured to date for tourmaline. The OH seems to be ordered strongly at the O3 site. The composition of this sample of olenite shows a trend toward the proposed olenite end-member formula, which contains only 1 OH group. The low content of F (0.01 apfu) is uncommon for natural Al-rich and Mg-poor tourmaline from granitic pegmatites. Synchrotron micro-XANES was used to detect the valence state of Fe in this crystal; it was found to have 93 {+-} 10% of the total Fe as Fe{sup 2+}. Optical absorption spectra show that the blue color is derived primarily from a combination of {sup [6]}Fe{sup 2+}, together with {sup [6]}Fe{sup 2+} interaction with a minor amount of {sup [6]}Fe{sup 3+}.

  6. Various Arsenic Network Structures in 112-Type Ca1-xLaxFe1-yPdyAs2 Revealed by Synchrotron X-ray Diffraction Experiments.

    PubMed

    Tamura, Shinya; Katayama, Naoyuki; Yamada, Yuto; Sugiyama, Yuki; Sugawara, Kento; Sawa, Hiroshi

    2017-03-06

    Two novel 112-type palladium-doped iron arsenides were synthesized and identified using comprehensive studies involving synchrotron X-ray diffraction and X-ray absorption near-edge structure (XANES) experiments. Whereas in-plane arsenic zigzag chains were found in the 112-type superconducting iron arsenide Ca1-xLaxFeAs2 with maximum Tc = 34 K, deformed arsenic network structures appeared in other 112-type materials, such as longitudinal arsenic zigzag chains in CaFe1-yPdyAs2 (y ∼ 0.51) and arsenic square sheets constructed via hypervalent bonding in Ca1-xLaxFe1-yPdyAs2 (x ∼ 0.31, y ∼ 0.30). As K-edge XANES spectra clarified the similar oxidization states around FeAs4 tetrahedrons, alluding to possible parents for high-Tc 112-type iron arsenide superconductors.

  7. Contrast to Noise Ratio and Contrast Detail Analysis in Mammography:A Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Metaxas, V.; Delis, H.; Kalogeropoulou, C.; Zampakis, P.; Panayiotakis, G.

    2015-09-01

    The mammographic spectrum is one of the major factors affecting image quality in mammography. In this study, a Monte Carlo (MC) simulation model was used to evaluate image quality characteristics of various mammographic spectra. The anode/filter combinations evaluated, were those traditionally used in mammography, for tube voltages between 26 and 30 kVp. The imaging performance was investigated in terms of Contrast to Noise Ratio (CNR) and Contrast Detail (CD) analysis, by involving human observers, utilizing a mathematical CD phantom. Soft spectra provided the best characteristics in terms of both CNR and CD scores, while tube voltage had a limited effect. W-anode spectra filtered with k-edge filters demonstrated an improved performance, that sometimes was better compared to softer x-ray spectra, produced by Mo or Rh anode. Regarding the filter material, k-edge filters showed superior performance compared to Al filters.

  8. Local structural variation with oxygen fugacity in Fe2SiO4+x fayalitic iron silicate melts

    NASA Astrophysics Data System (ADS)

    Alderman, O. L. G.; Lazareva, L.; Wilding, M. C.; Benmore, C. J.; Heald, S. M.; Johnson, C. E.; Johnson, J. A.; Hah, H.-Y.; Sendelbach, S.; Tamalonis, A.; Skinner, L. B.; Parise, J. B.; Weber, J. K. R.

    2017-04-01

    The structure of molten Fe2SiO4+x has been studied using both high-energy X-ray diffraction and Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy, combined with aerodynamic levitation and laser beam heating. A wide range of Fe3+ contents were accessed by varying the levitation and atmospheric gas composition. Diffraction measurements were made in the temperature (T) and oxygen partial pressure ranges 1624(21) < T < 2183(94) K (uncertainties in parentheses) and -5.6(3) < ΔFMQ < +2.8(5) log units (relative to the Fayalite-Magnetite-Quartz buffer). Iron K-edge XANES measurements covered the ranges 1557(33) < T < 1994(36) K and -2.1(3) < ΔFMQ < +4.4(3) log units. Fe3+ contents, x = Fe3+/ΣFe, estimated directly from the pre-edge peaks of the XANES spectra varied between 0.15(1) and 0.40(2). While these agree in some cases with semi-empirical models, notable discrepancies are discussed in the context of the redox kinetics and the limitations in both the models and in the calibrations used to derive oxidation state from XANES spectra. XANES pre-edge peak areas imply average Fe-O coordination numbers, nFeO, close to 5 for all Fe3+/ΣFe. Diffraction measurements yielded values of 4.4(2) < nFeO < 4.7(1). There is limited evidence for a linear trend nFeO(x) = 4.46(3) + 0.4(1)x. Asymmetric Fe-O bond length distributions peak at around 1.96 Å and have a shoulder arising from longer interatomic distances. Mean rFeO lie close to 2.06 Å, consistent with nFeO close to 5. These observations suggest that Fe2+ is less efficient at stabilizing tetrahedral Fe3+ compared to large monovalent alkali cations. Comparison of in-situ XANES estimates of Fe3+/ΣFe in the melts to those of the quenched solids obtained from XANES as well as Mössbauer spectroscopy indicate rapid oxidation during cooling, enabled by stirring of the melt by the levitation gas flow. As such, the oxidation state of hot komatiitic and other highly fluid melts may not be retained, even during

  9. Electronic and Chemical Properties of Ce0.8Zr0.2O₂ (111) Surfaces: Photoemission, XANES, Density- Functional, and NO₂ Adsorption Studies

    SciTech Connect

    Liu, Gang; Rodriguez, Jose A.; Hrbek, Jan; Dvorak, Joseph; Peden, Charles HF

    2002-07-01

    Zirconia-doped ceria (Ce₁-xZrxO₂) is a complex material and an important component of catalysts used in automotive exhaust gas converters. The exact role of pure and Zr-doped ceria to reduce the emission of toxic pollutants such as nitrogen oxides NOx (NO₂, NO, N₂O) in automobile catalytic converters is not clear. Understanding the details of NOx chemistry on Ce₁-xZrxO₂ surfaces has both practical and academic interests.

  10. Studies on the Structural Transformation of Pt Clusters with Adsorbed Hydrogen on α-Al2O3(0001) Using Multiple Scattering Approach to Pt L3-edge Polarized X-Ray Absorption Near Edge Structure Spectra for the Pt Cluster

    NASA Astrophysics Data System (ADS)

    Ohtani, Kunihiro

    1998-03-01

    The X-ray absorption near edge structure (XANES) or the Extended X-ray absorption fine structure (EXAFS) study with polarization dependence is useful for determining the structures of the metal clusters. We have calculated Pt L3-edge XANES spectra for various structures of Pt clusters with adsorbed hydrogen, such as the one-layer-thick raft, and the hemispherical and spherical structures on α-Al2O3(0001), using the full multiple scattering approach. Comparison of the calculated results with the experimental results have yielded important information. With an increase in the spherically symmetric character of Pt clusters, the influence of Pt-support interaction on the XANES spectra decreases, that is, the hydrogen-Pt interaction plays a dominant role in such cases. We expect that Pt clusters with the one-layer-thick raft, or hemispherical structures are on the top site of surface oxygen atoms.

  11. In situ X-ray absorption fine structure studies of a manganese dioxide electrode in a rechargeable MnO{sub 2}/Zn alkaline battery environment

    SciTech Connect

    Mo, Y.; Hu, Y.; Bae, I.T.; Miller, B.; Scherson, D.A.; Antonio, M.R.

    1996-12-31

    Electronic and structural aspects of a MnO{sub 2} electrode in a rechargeable MnO{sub 2}/Zn battery environment have been investigated by in situ Mn K-edge X-ray absorption fine structure (XAFS). The relative amplitudes of the three major Fourier transform shells of the EXAFS (extended XAFS) function of the rechargeable MnO{sub 2} electrode in the undischarged state were found to be similar to those found for ramsdellite, a MnO{sub 2} polymorph with substantial corner-sharing linkages among the basic MnO{sub 6} octahedral units. The analyses of the background-subtracted pre-edge peaks and absorption edge regions for the nominally 1-e{sup {minus}} discharged electrode were consistent with Mn{sup 3+} as being the predominant constituent species, rather than a mixture of Mn{sup 4+} and Mn{sup 2+} sites. Furthermore, careful inspection of both the XANES (X-ray absorption near edge structure) and EXAFS indicated that the full recharge of MnO, which had been previously discharged either by a 1- or 2-equivalent corner-sharing linkages compared to the original undischarged MnO{sub 2}.

  12. Effects of strain relaxation in Pr0.67Sr0.33MnO3 films probed by polarization dependent X-ray absorption near edge structure

    SciTech Connect

    zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; Sun, Cheng -Jun; Heald, Steve M.; Chow, Gan Moog; Yang, Ping; Chi, Xiao; Lin, Weinan

    2016-01-28

    In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr0.67Sr0.33MnO3 films with different thicknesses on (001) LaAlO3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy Er. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results, it was suggested that the strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of Er. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.

  13. Effects of strain relaxation in Pr0.67Sr0.33MnO3 films probed by polarization dependent X-ray absorption near edge structure

    DOE PAGES

    zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; ...

    2016-01-28

    In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr0.67Sr0.33MnO3 films with different thicknesses on (001) LaAlO3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy Er. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results, it was suggested that themore » strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of Er. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less

  14. Partitioning of Eu between augite and a highly spiked martian basalt composition as a function of oxygen fugacity (IW-1 to QFM): Determination of Eu[superscript 2+]/Eu[superscript 3+] ratios by XANES

    SciTech Connect

    Karner, J.M.; Papike, J.J.; Sutton, S.R.; Burger, P.V.; Shearer, C.K.; Le, L.; Newville, M.; Choi, Y.

    2010-03-16

    We have determined D{sub Eu} between augite and melt in samples that crystallized from a highly spiked martian basalt composition at four f{sub O{sub 2}} conditions. D{sub Eu} augite/melt shows a steady increase with f{sub O{sub 2}} from 0.086 at IW-1 to 0.274 at IW+3.5. This increase is because Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure; thus increasing f{sub O{sub 2}} leads to greater Eu{sup 3+}/Eu{sup 2+} in the melt and more Eu (total) can partition into the crystallizing pyroxene. This interpretation is supported by direct determinations of Eu valence state by XANES, which show a steady increase of Eu{sup 3+}/Eu{sup 2+} with increasing f{sub O{sub 2}} in both pyroxene (0.38 to 14.6) and glass (0.20 to 12.6) in the samples. Also, pyroxene Eu{sup 3+}/Eu{sup 2+} is higher than that of adjacent glass in all the samples, which verifies that Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure. Combining partitioning data with XANES data allows for the calculation of specific valence state D-values for augite/melt where D{sub Eu{sup 3+}} = 0.28 and D{sub Eu{sup 2+}} = 0.07.

  15. Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment

    ERIC Educational Resources Information Center

    Nayak, S. V.; Badiger, N. M.

    2007-01-01

    We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…

  16. Dissociation Dynamics and Molecular Imaging of Methane following Photoionization at the Carbon K-Edge

    NASA Astrophysics Data System (ADS)

    Williams, J. B.; Trevisan, C.; Schoeffler, M. S.; Jahnke, T.; Bocharova, I.; Sturm, F.; McCurdy, C. W.; Belkacem, A.; Doerner, R.; Weber, Th; Landers, A. L.

    2014-04-01

    We have used Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) to measure the momenta of the photoelectron and the molecular fragments arising from the dissociation of methane following core photoionization and subsequent Auger decay.

  17. Operando soft X-ray absorption spectroscopic study on a solid oxide fuel cell cathode during electrochemical oxygen reduction.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-03-16

    Operando soft X-ray absorption spectroscopic technique, which could analyze electronic structures of the electrode materials at elevated temperature and controlled atmosphere under electrochemical polarization, was established and its availability was demonstrated by investigating electronic structural changes of an La2NiO4+d dense film electrode during electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K in fully atmospheric pressure of 100 ppm O2-He, 0.1% O2-He and 1% O2-He gas mixtures. By the PO2 change and the application of electrical potential, considerable spectral changes were observed in O K-edge X-ray absorption spectra while only small spectral changes were observed in Ni L-edge X-ray absorption spectra. Pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied pDOS of Ni3d-O2p hybridization, increased/deceased with cathodic/anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopy developed in this study.

  18. State of manganese in the photosynthetic apparatus. 2. X-ray absorption edge studies on manganese in photosynthetic membrane

    SciTech Connect

    Kirby, J. A.; Goodin, D. B.; Wydrzynski, T.; Robertson, A. S.; Klein, M. P.

    1981-09-01

    X-ray absorption spectra at the Manganese K-edge are presented for spinach chloroplasts, and chloroplasts which have been Tris treated and hence unable to evolve oxygen. A significant change in the electronic environment of manganese is observed and is attributed to the release of manganese from the thylakoid membranes with a concomitant change in oxidation state. A correlation of the K-edge energy, defined as the energy at the first inflection point, with coordination charge has been established for a number of manganese compounds of known structure and oxidation state. In this study, comparison of the manganese K-edge energies of the chloroplast samples with the reference compounds places the average oxidation state of the chloroplasts between 2+ and 3+. Using the edge spectra for Tris treated membranes which were osmotically shocked to remove the released manganese, difference edge spectra were synthesized to approximate the active pool of manganese. Coordination charge predictions for this fraction are consistent with an average resting oxidation state higher than 2+. The shape at the edge is also indicative of heterogeneity of the manganese site, of low symmetry, or both.

  19. The structure of graphite oxide: investigation of its surface chemical groups.

    PubMed

    Lee, D W; De Los Santos V, L; Seo, J W; Leon Felix, L; Bustamante D, A; Cole, J M; Barnes, C H W

    2010-05-06

    The structure of graphite oxide (GO) has been systematically studied using various tools such as SEM, TEM, XRD, Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy (XPS), (13)C solid-state NMR, and O K-edge X-ray absorption near edge structure (XANES). The TEM data reveal that GO consists of amorphous and crystalline phases. The XPS data show that some carbon atoms have sp(3) orbitals and others have sp(2) orbitals. The ratio of sp(2) to sp(3) bonded carbon atoms decreases as sample preparation times increase. The (13)C solid-state NMR spectra of GO indicate the existence of -OH and -O- groups for which peaks appear at 60 and 70 ppm, respectively. FT-IR results corroborate these findings. The existence of ketone groups is also implied by FT-IR, which is verified by O K-edge XANES and (13)C solid-state NMR. We propose a new model for GO based on the results; -O-, -OH, and -C=O groups are on the surface.

  20. Understanding Sulfur Poisoning and Regeneration of Nickel Biomass Conditioning Catalysts using X-Ray Absorption Spectroscopy

    SciTech Connect

    Yung, M. M.; Cheah, S.; Kuhn, J. N.

    2013-01-01

    The production of biofuels can proceed via a biomass gasification to produce syngas, which can then undergo catalytic conditioning and reforming reactions prior to being sent to a fuel synthesis reactor. Catalysts used for biomass conditioning are plagued by short lifetimes which are a result of, among other things, poisoning. Syngas produced from biomass gasification may contain between 30-300 ppm H2S, depending on the feedstock and gasification conditions, and H2S is a key catalyst poison. In order to overcome catalyst poisoning, either an H2S-tolerant catalyst or an efficient regeneration protocol should be employed. In this study, sulfur K-edge X-ray absorption near edge spectroscopy (XANES) was used to monitor sulfur species on spent catalyst samples and the transformation of these species from sulfides to sulfates during steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. Additionally, nickel K-edge EXAFS and XANES are used to examine the state of nickel species on the catalysts. Post-reaction samples showed the presence of sulfides on the H2S-poisoned nickel catalyst and although some gaseous sulfur species were observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst and a transformation from sulfides to sulfates was observed. The subsequent H2 reduction led to a partial reduction of sulfates back to sulfides. A proposed reaction sequence is presented and recommended regeneration strategies are discussed.