Sample records for k-epsilon turbulence models

  1. Near-wall k-epsilon turbulence modeling

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Kim, J.; Moin, P.

    1987-01-01

    The flow fields from a turbulent channel simulation are used to compute the budgets for the turbulent kinetic energy (k) and its dissipation rate (epsilon). Data from boundary layer simulations are used to analyze the dependence of the eddy-viscosity damping-function on the Reynolds number and the distance from the wall. The computed budgets are used to test existing near-wall turbulence models of the k-epsilon type. It was found that the turbulent transport models should be modified in the vicinity of the wall. It was also found that existing models for the different terms in the epsilon-budget are adequate in the region from the wall, but need modification near the wall. The channel flow is computed using a k-epsilon model with an eddy-viscosity damping function from the data and no damping functions in the epsilon-equation. These computations show that the k-profile can be adequately predicted, but to correctly predict the epsilon-profile, damping functions in the epsilon-equation are needed.

  2. An improved k-epsilon model for near wall turbulence

    NASA Technical Reports Server (NTRS)

    Shih, T. H.; Hsu, Andrew T.

    1991-01-01

    An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. In the first part of this work, the near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation are analyzed. Based on these analyses, a modified eddy viscosity model with the correct near-wall behavior is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated, and a boundary condition for the dissipation rate is suggested. In the second part of the work, one of the deficiencies of the existing k-epsilon models, namely, the wall distance dependency of the equations and the damping functions, is examined. An improved model that does not depend on any wall distance is introduced. Fully developed turbulent channel flows and turbulent boundary layers over a flat plate are studied as validations for the proposed new models. Numerical results obtained from the present and other previous k-epsilon models are compared with data from direct numerical simulation. The results show that the present k-epsilon model, with added robustness, performs as well as or better than other existing models in predicting the behavior of near-wall turbulence.

  3. A k-epsilon modeling of near wall turbulence

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Shih, T. H.

    1991-01-01

    A k-epsilon model is proposed for turbulent bounded flows. In this model, the turbulent velocity scale and turbulent time scale are used to define the eddy viscosity. The time scale is shown to be bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using the time scale, removing the need to introduce the pseudo-dissipation. A damping function is chosen such that the shear stress satisfies the near wall asymptotic behavior. The model constants used are the same as the model constants in the commonly used high turbulent Reynolds number k-epsilon model. Fully developed turbulent channel flows and turbulent boundary layer flows over a flat plate at various Reynolds numbers are used to validate the model. The model predictions were found to be in good agreement with the direct numerical simulation data.

  4. New time scale based k-epsilon model for near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Shih, T. H.

    1993-01-01

    A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.

  5. An Improved K-Epsilon Model for Near-Wall Turbulence and Comparison with Direct Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Shih, T. H.

    1990-01-01

    An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. The near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation is analyzed. Based on this analysis, a modified eddy viscosity model, having correct near-wall behavior, is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated. Fully developed channel flows were used for model testing. The calculations using various k-epsilon models are compared with direct numerical simulations. The results show that the present k-epsilon model performs well in predicting the behavior of near-wall turbulence. Significant improvement over previous k-epsilon models is obtained.

  6. A new time scale based k-epsilon model for near wall turbulence

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Shih, T. H.

    1992-01-01

    A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.

  7. A Galilean and tensorial invariant k-epsilon model for near wall turbulence

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Shih, T. H.

    1993-01-01

    A k-epsilon model is proposed for wall bounded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation rate equation is reformulated using this time scale and no singularity exists at the wall. A new parameter R = k/S(nu) is introduced to characterize the damping function in the eddy viscosity. This parameter is determined by local properties of both the mean and the turbulent flow fields and is free from any geometry parameter. The proposed model is then Galilean and tensorial invariant. The model constants used are the same as in the high Reynolds number Standard k-epsilon Model. Thus, the proposed model will also be suitable for flows far from the wall. Turbulent channel flows and turbulent boundary layer flows with and without pressure gradients are calculated. Comparisons with the data from direct numerical simulations and experiments show that the model predictions are excellent for turbulent channel flows and turbulent boundary layers with favorable pressure gradients, good for turbulent boundary layers with zero pressure gradients, and fair for turbulent boundary layer with adverse pressure gradients.

  8. Numerical solution of turbulent flow past a backward facing step using a nonlinear K-epsilon model

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.; Ngo, Tuan

    1987-01-01

    The problem of turbulent flow past a backward facing step is important in many technological applications and has been used as a standard test case to evaluate the performance of turbulence models in the prediction of separated flows. It is well known that the commonly used kappa-epsilon (and K-l) models of turbulence yield inaccurate predictions for the reattachment points in this problem. By an analysis of the mean vorticity transport equation, it will be argued that the intrinsically inaccurate prediction of normal Reynolds stress differences by the Kappa-epsilon and K-l models is a major contributor to this problem. Computations using a new nonlinear kappa-epsilon model (which alleviates this deficiency) are made with the TEACH program. Comparisons are made between the improved results predicted by this nonlinear kappa-epsilon model and those obtained from the linear kappa-epsilon model as well as from second-order closure models.

  9. Advanced k-epsilon modeling of heat transfer

    NASA Technical Reports Server (NTRS)

    Kwon, Okey; Ames, Forrest E.

    1995-01-01

    This report describes two approaches to low Reynolds-number k-epsilon turbulence modeling which formulate the eddy viscosity on the wall-normal component of turbulence and a length scale. The wall-normal component of turbulence is computed via integration of the energy spectrum based on the local dissipation rate and is bounded by the isotropic condition. The models account for the anisotropy of the dissipation and the reduced mixing length due to the high strain rates present in the near-wall region. The turbulent kinetic energy and its dissipation rate were computed from the k and epsilon transport equations of Durbin. The models were tested for a wide range of turbulent flows and proved to be superior to other k-epsilon models, especially for nonequilibrium anisotropic flows. For the prediction of airfoil heat transfer, the models included a set of empirical correlations for predicting laminar-turbulent transition and laminar heat transfer augmentation due to the presence of freestream turbulence. The predictions of surface heat transfer were generally satisfactory.

  10. Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model

    NASA Technical Reports Server (NTRS)

    Yakhot, A.; Staroselsky, I.; Orszag, S. A.

    1994-01-01

    Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.

  11. Experience with k-epsilon turbulence models for heat transfer computations in rotating

    NASA Technical Reports Server (NTRS)

    Tekriwal, Prabbat

    1995-01-01

    This viewgraph presentation discusses geometry and flow configuration, effect of y+ on heat transfer computations, standard and extended k-epsilon turbulence model results with wall function, low-Re model results (the Lam-Bremhorst model without wall function), a criterion for flow reversal in a radially rotating square duct, and a summary.

  12. Implementation and Validation of the Chien k-epsilon Turbulence Model in the Wind Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; Georgiadis, Nicholas J.

    1999-01-01

    The two equation k-epsilon turbulence model of Chien has been implemented in the WIND Navier-Stokes flow solver. Details of the numerical solution algorithm, initialization procedure, and stability enhancements are described. Results obtained with this version of the model are compared with those from the Chien k-epsilon model in the NPARC Navier-Stokes code and from the WIND SST model for three validation cases: the incompressible flow over a smooth flat plate, the incompressible flow over a backward facing step, and the shock-induced flow separation inside a transonic diffuser. The k-epsilon model results indicate that the WIND model functions very similarly to that in NPARC, though the WIND code appears to he slightly more accurate in the treatment of the near-wall region. Comparisons of the k-epsilon model results with those from the SST model were less definitive, as each model exhibited strengths and weaknesses for each particular case.

  13. A critical comparison of several low Reynolds number k-epsilon turbulence models for flow over a backward facing step

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.

    1993-01-01

    Turbulent backward-facing step flow was examined using four low turbulent Reynolds number k-epsilon models and one standard high Reynolds number technique. A tunnel configuration of 1:9 (step height: exit tunnel height) was used. The models tested include: the original Jones and Launder; Chien; Launder and Sharma; and the recent Shih and Lumley formulation. The experimental reference of Driver and Seegmiller was used to make detailed comparisons between reattachment length, velocity, pressure, turbulent kinetic energy, Reynolds shear stress, and skin friction predictions. The results indicated that the use of a wall function for the standard k-epsilon technique did not reduce the calculation accuracy for this separated flow when compared to the low turbulent Reynolds number techniques.

  14. Simulations of free shear layers using a compressible k-epsilon model

    NASA Technical Reports Server (NTRS)

    Yu, S. T.; Chang, C. T.; Marek, C. J.

    1991-01-01

    A two-dimensional, compressible Navier-Stokes equations with a k-epsilon turbulence model are solved numerically to simulate the flows of compressible free shear layers. The appropriate form of k and epsilon equations for compressible flows are discussed. Sarkar's modeling is adopted to simulate the compressibility effects in the k and epsilon equations. The numerical results show that the spreading rate of the shear layers decreases with increasing convective Mach number. In addition, favorable comparison was found between the calculated results and Goebel and Dutton's experimental data.

  15. Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.

    PubMed

    Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao

    2005-01-01

    The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.

  16. Simulating boundary layer transition with low-Reynolds-number k-epsilon turbulence models. I - An evaluation of prediction characteristics. II - An approach to improving the predictions

    NASA Technical Reports Server (NTRS)

    Schmidt, R. C.; Patankar, S. V.

    1991-01-01

    The capability of two k-epsilon low-Reynolds number (LRN) turbulence models, those of Jones and Launder (1972) and Lam and Bremhorst (1981), to predict transition in external boundary-layer flows subject to free-stream turbulence is analyzed. Both models correctly predict the basic qualitative aspects of boundary-layer transition with free stream turbulence, but for calculations started at low values of certain defined Reynolds numbers, the transition is generally predicted at unrealistically early locations. Also, the methods predict transition lengths significantly shorter than those found experimentally. An approach to overcoming these deficiencies without abandoning the basic LRN k-epsilon framework is developed. This approach limits the production term in the turbulent kinetic energy equation and is based on a simple stability criterion. It is correlated to the free-stream turbulence value. The modification is shown to improve the qualitative and quantitative characteristics of the transition predictions.

  17. Development of a two-equation turbulence model for hypersonic flows. Volume 1; Evaluation of a low Reynolds number correction to the Kappa - epsilon two equation compressible turbulence model

    NASA Technical Reports Server (NTRS)

    Knight, Doyle D.; Becht, Robert J.

    1995-01-01

    The objective of the current research is the development of an improved k-epsilon two-equation compressible turbulence model for turbulent boundary layer flows experiencing strong viscous-inviscid interactions. The development of an improved model is important in the design of hypersonic vehicles such as the National Aerospace Plane (NASP) and the High Speed Civil Transport (HSCT). Improvements have been made to the low Reynolds number functions in the eddy viscosity and dissipation of solenoidal dissipation of the k-epsilon turbulence mode. These corrections offer easily applicable modifications that may be utilized for more complex geometries. The low Reynolds number corrections are functions of the turbulent Reynolds number and are therefore independent of the coordinate system. The proposed model offers advantages over some current models which are based upon the physical distance from the wall, that modify the constants of the standard model, or that make more corrections than are necessary to the governing equations. The code has been developed to solve the Favre averaged, boundary layer equations for mass, momentum, energy, turbulence kinetic energy, and dissipation of solenoidal dissipation using Keller's box scheme and the Newton spatial marching method. The code has been validated by removing the turbulent terms and comparing the solution with the Blasius solution, and by comparing the turbulent solution with an existing k-epsilon model code using wall function boundary conditions. Excellent agreement is seen between the computed solution and the Blasius solution, and between the two codes. The model has been tested for both subsonic and supersonic flat-plate turbulent boundary layer flow by comparing the computed skin friction with the Van Driest II theory and the experimental data of Weighardt; by comparing the transformed velocity profile with the data of Weighardt, and the Law of the Wall and the Law of the Wake; and by comparing the computed results

  18. Experience with turbulence interaction and turbulence-chemistry models at Fluent Inc.

    NASA Technical Reports Server (NTRS)

    Choudhury, D.; Kim, S. E.; Tselepidakis, D. P.; Missaghi, M.

    1995-01-01

    This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.

  19. Modeling of near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Shih, T. H.; Mansour, N. N.

    1990-01-01

    An improved k-epsilon model and a second order closure model is presented for low Reynolds number turbulence near a wall. For the k-epsilon model, a modified form of the eddy viscosity having correct asymptotic near wall behavior is suggested, and a model for the pressure diffusion term in the turbulent kinetic energy equation is proposed. For the second order closure model, the existing models are modified for the Reynolds stress equations to have proper near wall behavior. A dissipation rate equation for the turbulent kinetic energy is also reformulated. The proposed models satisfy realizability and will not produce unphysical behavior. Fully developed channel flows are used for model testing. The calculations are compared with direct numerical simulations. It is shown that the present models, both the k-epsilon model and the second order closure model, perform well in predicting the behavior of the near wall turbulence. Significant improvements over previous models are obtained.

  20. Implementation of a kappa-epsilon turbulence model to RPLUS3D code

    NASA Technical Reports Server (NTRS)

    Chitsomboon, Tawit

    1992-01-01

    The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.

  1. Implementation of a kappa-epsilon turbulence model to RPLUS3D code

    NASA Astrophysics Data System (ADS)

    Chitsomboon, Tawit

    1992-02-01

    The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.

  2. Arbitrary Steady-State Solutions with the K-epsilon Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.

    2006-01-01

    Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.

  3. Wall functions for the kappa-epsilon turbulence model in generalized nonorthogonal curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Sondak, D. L.; Pletcher, R. H.; Vandalsem, W. R.

    1992-01-01

    A k-epsilon turbulence model suitable for compressible flow, including the new wall function formulation, has been incorporated into an existing compressible Reynolds-averaged Navier-Stokes code, F3D. The low Reynolds number k-epsilon model of Chien (1982) was added for comparison with the present method. A number of features were added to the F3D code including improved far-field boundary conditions and viscous terms in the streamwise direction. A series of computations of increasing complexity was run to test the effectiveness of the new formulation. Flow over a flat plate was computed by using both orthogonal and nonorthogonal grids, and the friction coefficients and velocity profiles compared with a semi-empirical equation. Flow over a body of revolution at zero angle of attack was then computed to test the method's ability to handle flow over a curved surface. Friction coefficients and velocity profiles were compared to test data. All models gave good results on a relatively fine grid, but only the wall function formulation was effective with coarser grids. Finally, in order to demonstrate the method's ability to handle complex flow fields, separated flow over a prolate spheroid at angle of attack was computed, and results were compared to test data. The results were also compared to a k-epsilon model by Kim and Patel (1991), in which one equation model patched in at the wall was employed. Both models gave reasonable solutions, but improvement is required for accurate prediction of friction coefficients in the separated regions.

  4. Computation of confined coflow jets with three turbulence models

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T. H.

    1993-01-01

    A numerical study of confined jets in a cylindrical duct is carried out to examine the performance of two recently proposed turbulence models: an RNG-based K-epsilon model and a realizable Reynolds stress algebraic equation model. The former is of the same form as the standard K-epsilon model but has different model coefficients. The latter uses an explicit quadratic stress-strain relationship to model the turbulent stresses and is capable of ensuring the positivity of each turbulent normal stress. The flow considered involves recirculation with unfixed separation and reattachment points and severe adverse pressure gradients, thereby providing a valuable test of the predictive capability of the models for complex flows. Calculations are performed with a finite-volume procedure. Numerical credibility of the solutions is ensured by using second-order accurate differencing schemes and sufficiently fine grids. Calculations with the standard K-epsilon model are also made for comparison. Detailed comparisons with experiments show that the realizable Reynolds stress algebraic equation model consistently works better than does the standard K-epsilon model in capturing the essential flow features, while the RNG-based K-epsilon model does not seem to give improvements over the standard K-epsilon model under the flow conditions considered.

  5. Simulations of free shear layers using a compressible kappa-epsilon model

    NASA Technical Reports Server (NTRS)

    Yu, S. T.; Chang, C. T.; Marek, C. J.

    1991-01-01

    A two-dimensional, compressible Navier-Stokes equation with a k-epsilon turbulence model is solved numerically to simulate the flow of a compressible free shear layer. The appropriate form of k and epsilon equations for compressible flow is discussed. Sarkar's modeling is adopted to simulate the compressibility effects in the k and epsilon equations. The numerical results show that the spreading rate of the shear layers decreases with increasing convective Mach number. In addition, favorable comparison was found between the calculated results and experimental data.

  6. Computation of flows in a turn-around duct and a turbine cascade using advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Luo, J.

    1993-01-01

    Numerical investigation has been carried out to evaluate the capability of the Algebraic Reynolds Stress Model (ARSM) and the Nonlinear Stress Model (NLSM) to predict strongly curved turbulent flow in a turn-around duct (TAD). The ARSM includes the near-wall damping term of pressure-strain correlation phi(sub ij,w), which enables accurate prediction of individual Reynolds stress components in wall flows. The TAD mean flow quantities are reasonably well predicted by various turbulence models. The ARSM yields better predictions for both the mean flow and the turbulence quantities than the NLSM and the k-epsilon (k = turbulent kinetic energy, epsilon = dissipation rate of k) model. The NLSM also shows slight improvement over the k-epsilon model. However, all the models fail to capture the recovery of the flow from strong curvature effects. The formulation for phi(sub ij,w) appears to be incorrect near the concave surface. The hybrid k-epsilon/ARSM, Chien's k-epsilon model, and Coakley's q-omega (q = the square root of k, omega = epsilon/k) model have also been employed to compute the aerodynamics and heat transfer of a transonic turbine cascade. The surface pressure distributions and the wake profiles are predicted well by all the models. The k-epsilon model and the k-epsilon/ARSM model provide better predictions of heat transfer than the q-omega model. The k-epsilon/ARSM solutions show significant differences in the predicted skin friction coefficients, heat transfer rates and the cascade performance parameters, as compared to the k-epsilon model. The k-epsilon/ARSM model appears to capture, qualitatively, the anisotropy associated with by-pass transition.

  7. Recent Turbulence Model Advances Applied to Multielement Airfoil Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.

    2000-01-01

    A one-equation linear turbulence model and a two-equation nonlinear explicit algebraic stress model (EASM) are applied to the flow over a multielement airfoil. The effect of the K-epsilon and K-omega forms of the two-equation model are explored, and the K-epsilon form is shown to be deficient in the wall-bounded regions of adverse pressure gradient flows. A new K-omega form of EASM is introduced. Nonlinear terms present in EASM are shown to improve predictions of turbulent shear stress behind the trailing edge of the main element and near midflap. Curvature corrections are applied to both the one- and two-equation turbulence models and yield only relatively small local differences in the flap region, where the flow field undergoes the greatest curvature. Predictions of maximum lift are essentially unaffected by the turbulence model variations studied.

  8. Turbulence Modeling Validation, Testing, and Development

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Huang, P. G.; Coakley, T. J.

    1997-01-01

    The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.

  9. Workshop on Computational Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This document contains presentations given at Workshop on Computational Turbulence Modeling held 15-16 Sep. 1993. The purpose of the meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Papers cover the following topics: turbulence modeling activities at the Center for Modeling of Turbulence and Transition (CMOTT); heat transfer and turbomachinery flow physics; aerothermochemistry and computational methods for space systems; computational fluid dynamics and the k-epsilon turbulence model; propulsion systems; and inlet, duct, and nozzle flow.

  10. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1988-01-01

    The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.

  11. Improved two-equation k-omega turbulence models for aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Menter, Florian R.

    1992-01-01

    Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows.

  12. Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Luo, J.

    1996-01-01

    The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the

  13. Numerical simulation of two-dimensional combustion process in a spark ignition engine with a prechamber using k-. epsilon. turbulence model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, H.; Asanuma, T.

    1989-01-01

    Two-dimensional combustion processes in a spark ignition engine with and without an unscavenged horizontal prechamber are calculated numerically using a {kappa}-{epsilon} turbulence model, a flame kernel ignition model and an irreversible reaction model to obtain a better understanding of the spatial and temporal distributions of flow and combustion. The simulation results are compared with the measured results under the same operating conditions of experiments, that is, the minimum spark advance for best torque (MBT), volumetric efficiency of 80 +- 2%, air-fuel ratio of 15 and engine speed of 1000 rpm, with various torch nozzle areas and an open chamber. Consequently,more » the flow and combustion characteristics calculated for the S.I. engine with and without prechamber are discussed to examine the effect of torch jet on the velocity vectors, contour maps of turbulence and gas temperature.« less

  14. Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1992-01-01

    The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data.

  15. A near-wall four-equation turbulence model for compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Sommer, T. P.; So, R. M. C.; Zhang, H. S.

    1992-01-01

    A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers.

  16. Calculations of turbulent separated flows

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T. H.

    1993-01-01

    A numerical study of incompressible turbulent separated flows is carried out by using two-equation turbulence models of the K-epsilon type. On the basis of realizability analysis, a new formulation of the eddy-viscosity is proposed which ensures the positiveness of turbulent normal stresses - a realizability condition that most existing two-equation turbulence models are unable to satisfy. The present model is applied to calculate two backward-facing step flows. Calculations with the standard K-epsilon model and a recently developed RNG-based K-epsilon model are also made for comparison. The calculations are performed with a finite-volume method. A second-order accurate differencing scheme and sufficiently fine grids are used to ensure the numerical accuracy of solutions. The calculated results are compared with the experimental data for both mean and turbulent quantities. The comparison shows that the present model performs quite well for separated flows.

  17. Comparison of numerical predictions of horizontal nonisothermal jet in a room with three turbulence models -- {kappa}-{epsilon} EVM, ASM, and DSM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Shuzo; Kato, Shinsuke; Ooka, Ryozo

    1994-12-31

    A three-dimensional nonisothermal jet in a room is analyzed numerically by the standard {kappa}-{epsilon} eddy viscosity model (EVM) and two second-moment closure models-the algebraic stress model (ASM) (Hossain and Rodi 1982) and the differential stress model (DSM) (Launder et al. 1975). Numerical results given by these turbulence models are compared with experimental results, and the prediction errors existing in the results are examined, thus clarifying the relative structural differences between the {kappa}-{epsilon} EVM and the second-moment closure models. Since the second moment closure models clearly manifest the turbulence structures of the flow field, they are more accurate than the {kappa}-{epsilon}more » EVM. A small difference between the DSM and the ASM -- one based on an inappropriate approximation of the convection and diffusion terms in the Reynolds stress transport equations in the ASM -- is also observed.« less

  18. Turbulence Modeling for the Simulation of Transition in Wall Shear Flows

    NASA Technical Reports Server (NTRS)

    Crawford, Michael E.

    2007-01-01

    Our research involves study of the behavior of k-epsilon turbulence models for simulation of bypass-level transition over flat surfaces and turbine blades. One facet of the research has been to assess the performance of a multitude of k-epsilon models in what we call "natural transition", i.e. no modifications to the k-e models. The study has been to ascertain what features in the dynamics of the model affect the start and end of the transition. Some of the findings are in keeping with those reported by others (e.g. ERCOFTAC). A second facet of the research has been to develop and benchmark a new multi-time scale k-epsilon model (MTS) for use in simulating bypass-level transition. This model has certain features of the published MTS models by Hanjalic, Launder, and Schiestel, and by Kim and his coworkers. The major new feature of our MTS model is that it can be used to compute wall shear flows as a low-turbulence Reynolds number type of model, i.e. there is no required partition with patching a one-equation k model in the near-wall region to a two-equation k-epsilon model in the outer part of the flow. Our MTS model has been studied extensively to understand its dynamics in predicting the onset of transition and the end-stage of the transition. Results to date indicate that it far superior to the standard unmodified k-epsilon models. The effects of protracted pressure gradients on the model behavior are currently being investigated.

  19. Turbulence modeling in three-dimensional stenosed arterial bifurcations.

    PubMed

    Banks, J; Bressloff, N W

    2007-02-01

    Under normal healthy conditions, blood flow in the carotid artery bifurcation is laminar. However, in the presence of a stenosis, the flow can become turbulent at the higher Reynolds numbers during systole. There is growing consensus that the transitional k-omega model is the best suited Reynolds averaged turbulence model for such flows. Further confirmation of this opinion is presented here by a comparison with the RNG k-epsilon model for the flow through a straight, nonbifurcating tube. Unlike similar validation studies elsewhere, no assumptions are made about the inlet profile since the full length of the experimental tube is simulated. Additionally, variations in the inflow turbulence quantities are shown to have no noticeable affect on downstream turbulence intensity, turbulent viscosity, or velocity in the k-epsilon model, whereas the velocity profiles in the transitional k-omega model show some differences due to large variations in the downstream turbulence quantities. Following this validation study, the transitional k-omega model is applied in a three-dimensional parametrically defined computer model of the carotid artery bifurcation in which the sinus bulb is manipulated to produce mild, moderate, and severe stenosis. The parametric geometry definition facilitates a powerful means for investigating the effect of local shape variation while keeping the global shape fixed. While turbulence levels are generally low in all cases considered, the mild stenosis model produces higher levels of turbulent viscosity and this is linked to relatively high values of turbulent kinetic energy and low values of the specific dissipation rate. The severe stenosis model displays stronger recirculation in the flow field with higher values of vorticity, helicity, and negative wall shear stress. The mild and moderate stenosis configurations produce similar lower levels of vorticity and helicity.

  20. An application of a two-equation model of turbulence to three-dimensional chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1994-01-01

    A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.

  1. The applicability of turbulence models to aerodynamic and propulsion flowfields at McDonnell-Douglas Aerospace

    NASA Technical Reports Server (NTRS)

    Kral, Linda D.; Ladd, John A.; Mani, Mori

    1995-01-01

    The objective of this viewgraph presentation is to evaluate turbulence models for integrated aircraft components such as the forebody, wing, inlet, diffuser, nozzle, and afterbody. The one-equation models have replaced the algebraic models as the baseline turbulence models. The Spalart-Allmaras one-equation model consistently performs better than the Baldwin-Barth model, particularly in the log-layer and free shear layers. Also, the Sparlart-Allmaras model is not grid dependent like the Baldwin-Barth model. No general turbulence model exists for all engineering applications. The Spalart-Allmaras one-equation model and the Chien k-epsilon models are the preferred turbulence models. Although the two-equation models often better predict the flow field, they may take from two to five times the CPU time. Future directions are in further benchmarking the Menter blended k-w/k-epsilon and algorithmic improvements to reduce CPU time of the two-equation model.

  2. Studies of turbulence models in a computational fluid dynamics model of a blood pump.

    PubMed

    Song, Xinwei; Wood, Houston G; Day, Steven W; Olsen, Don B

    2003-10-01

    Computational fluid dynamics (CFD) is used widely in design of rotary blood pumps. The choice of turbulence model is not obvious and plays an important role on the accuracy of CFD predictions. TASCflow (ANSYS Inc., Canonsburg, PA, U.S.A.) has been used to perform CFD simulations of blood flow in a centrifugal left ventricular assist device; a k-epsilon model with near-wall functions was used in the initial numerical calculation. To improve the simulation, local grids with special distribution to ensure the k-omega model were used. Iterations have been performed to optimize the grid distribution and turbulence modeling and to predict flow performance more accurately comparing to experimental data. A comparison of k-omega model and experimental measurements of the flow field obtained by particle image velocimetry shows better agreement than k-epsilon model does, especially in the near-wall regions.

  3. Low Reynolds number k-epsilon modelling with the aid of direct simulation data

    NASA Technical Reports Server (NTRS)

    Rodi, W.; Mansour, N. N.

    1993-01-01

    The constant C sub mu and the near-wall damping function f sub mu in the eddy-viscosity relation of the k-epsilon model are evaluated from direct numerical simulation (DNS) data for developed channel and boundary layer flow at two Reynolds numbers each. Various existing f sub mu model functions are compared with the DNS data, and a new function is fitted to the high-Reynolds-number channel flow data. The epsilon-budget is computed for the fully developed channel flow. The relative magnitude of the terms in the epsilon-equation is analyzed with the aid of scaling arguments, and the parameter governing this magnitude is established. Models for the sum of all source and sink terms in the epsilon-equation are tested against the DNS data, and an improved model is proposed.

  4. A two-equation model for heat transport in wall turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Nagano, Y.; Kim, C.

    1988-08-01

    A new proposal for closing the energy equation is presented at the two-equation level of turbulence modeling. The eddy diffusivity concept is used in modeling. However, just as the eddy viscosity is determined from solutions of the k and epsilon equations, so the eddy diffusivity for heat is given as functions of temperature variance, and the dissipation rate of temperature fluctuations, together with k and epsilon. Thus, the proposed model does not require any questionable assumptions for the 'turbulent Prandtl number'. Modeled forms of the equations are developed to account for the physical effects of molecular Prandtl number and near-wall turbulence. The model is tested by application to a flat-plate boundary layer, the thermal entrance region of a pipe, and the turbulent heat transfer in fluids over a wide range of the Prandtl number. Agreement with the experiment is generally very satisfactory.

  5. Dilatation-dissipation corrections for advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1992-01-01

    This paper analyzes dilatation-dissipation based compressibility corrections for advanced turbulence models. Numerical computations verify that the dilatation-dissipation corrections devised by Sarkar and Zeman greatly improve both the k-omega and k-epsilon model predicted effect of Mach number on spreading rate. However, computations with the k-gamma model also show that the Sarkar/Zeman terms cause an undesired reduction in skin friction for the compressible flat-plate boundary layer. A perturbation solution for the compressible wall layer shows that the Sarkar and Zeman terms reduce the effective von Karman constant in the law of the wall. This is the source of the inaccurate k-gamma model skin-friction predictions for the flat-plate boundary layer. The perturbation solution also shows that the k-epsilon model has an inherent flaw for compressible boundary layers that is not compensated for by the dilatation-dissipation corrections. A compressibility modification for k-gamma and k-epsilon models is proposed that is similar to those of Sarkar and Zeman. The new compressibility term permits accurate predictions for the compressible mixing layer, flat-plate boundary layer, and a shock separated flow with the same values for all closure coefficients.

  6. Applying Turbulence Models to Hydroturbine Flows: A Sensitivity Analysis Using the GAMM Francis Turbine

    NASA Astrophysics Data System (ADS)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2011-11-01

    Turbulence models are generally developed to study common academic geometries, such as flat plates and channels. Creating quality computational grids for such geometries is trivial, and allows stringent requirements to be met for boundary layer grid refinement. However, engineering applications, such as flow through hydroturbines, require the analysis of complex, highly curved geometries. To produce body-fitted grids for such geometries, the mesh quality requirements must be relaxed. Relaxing these requirements, along with the complexity of rotating flows, forces turbulence models to be employed beyond their developed scope. This study explores the solution sensitivity to boundary layer grid quality for various turbulence models and boundary conditions currently implemented in OpenFOAM. The following models are resented: k-omega, k-omega SST, k-epsilon, realizable k-epsilon, and RNG k-epsilon. Standard wall functions, adaptive wall functions, and sub-grid integration are compared using various grid refinements. The chosen geometry is the GAMM Francis Turbine because experimental data and comparison computational results are available for this turbine. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  7. Notes on rotating turbulence

    NASA Technical Reports Server (NTRS)

    Zeman, Otto

    1994-01-01

    This work investigates the turbulent constitutive relation when turbulence is subjected to solid body rotation. Laws regarding spectra and asymptotic decay of rotating homogeneous turbulence were confirmed through large-eddy simulation (LES) computations. Rotating turbulent flows exist in many industrial, geophysical, and astrophysical applications. From Lagrangian analysis a relation between turbulent stress and strain in rotating homogeneous turbulence was inferred. This relation was used to derive the spectral energy flux and, ultimately, the energy spectrum form. If the rotation wavenumber k(sub Omega) lies in the inertial subrange, then for wavenumbers less than k(sub Omega) the turbulence motions are affected by rotation and the energy spectrum slope is modified. Energy decay laws inferred in other reports and the present results suggest a modification of the epsilon model equation and eddy viscosity in k-epsilon models.

  8. Effects of Artificial Viscosity on the Accuracy of High-reynolds-number Kappa-epsilon Turbulence Model

    NASA Technical Reports Server (NTRS)

    Chitsomboon, Tawit

    1994-01-01

    Wall functions, as used in the typical high Reynolds number k-epsilon turbulence model, can be implemented in various ways. A least disruptive method (to the flow solver) is to directly solve for the flow variables at the grid point next to the wall while prescribing the values of k and epsilon. For the centrally-differenced finite-difference scheme employing artificial viscocity (AV) as a stabilizing mechanism, this methodology proved to be totally useless. This is because the AV gives rise to a large error at the wall due to too steep a velocity gradient resulting from the use of a coarse grid as required by the wall function methodology. This error can be eliminated simply by extrapolating velocities at the wall, instead of using the physical values of the no-slip velocities (i.e. the zero value). The applicability of the technique used in this paper is demonstrated by solving a flow over a flat plate and comparing the results with those of experiments. It was also observed that AV gives rise to a velocity overshoot (about 1 percent) near the edge of the boundary layer. This small velocity error, however, can yield as much as 10 percent error in the momentum thickness. A method which integrates the boundary layer up to only the edge of the boundary (instead of infinity) was proposed and demonstrated to give better results than the standard method.

  9. A critical evaluation of various turbulence models as applied to internal fluid flows

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.

    1985-01-01

    Models employed in the computation of turbulent flows are described and their application to internal flows is evaluated by examining the predictions of various turbulence models in selected flow configurations. The main conclusions are: (1) the k-epsilon model is used in a majority of all the two-dimensional flow calculations reported in the literature; (2) modified forms of the k-epsilon model improve the performance for flows with streamline curvature and heat transfer; (3) for flows with swirl, the k-epsilon model performs rather poorly; the algebraic stress model performs better in this case; and (4) for flows with regions of secondary flow (noncircular duct flows), the algebraic stress model performs fairly well for fully developed flow, for developing flow, the algebraic stress model performance is not good; a Reynolds stress model should be used. False diffusion and inlet boundary conditions are discussed. Countergradient transport and its implications in turbulence modeling is mentioned. Two examples of recirculating flow predictions obtained using PHOENICS code are discussed. The vortex method, large eddy simulation (modeling of subgrid scale Reynolds stresses), and direct simulation, are considered. Some recommendations for improving the model performance are made. The need for detailed experimental data in flows with strong curvature is emphasized.

  10. A non-isotropic multiple-scale turbulence model

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1990-01-01

    A newly developed non-isotropic multiple scale turbulence model (MS/ASM) is described for complex flow calculations. This model focuses on the direct modeling of Reynolds stresses and utilizes split-spectrum concepts for modeling multiple scale effects in turbulence. Validation studies on free shear flows, rotating flows and recirculating flows show that the current model perform significantly better than the single scale k-epsilon model. The present model is relatively inexpensive in terms of CPU time which makes it suitable for broad engineering flow applications.

  11. A critical evaluation of two-equation models for near wall turbulence

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Abid, Ridha; Anderson, E. Clay

    1990-01-01

    A variety of two-equation turbulence models,including several versions of the K-epsilon model as well as the K-omega model, are analyzed critically for near wall turbulent flows from a theoretical and computational standpoint. It is shown that the K-epsilon model has two major problems associated with it: the lack of natural boundary conditions for the dissipation rate and the appearance of higher-order correlations in the balance of terms for the dissipation rate at the wall. In so far as the former problem is concerned, either physically inconsistent boundary conditions have been used or the boundary conditions for the dissipation rate have been tied to higher-order derivatives of the turbulent kinetic energy which leads to numerical stiffness. The K-omega model can alleviate these problems since the asymptotic behavior of omega is known in more detail and since its near wall balance involves only exact viscous terms. However, the modeled form of the omega equation that is used in the literature is incomplete-an exact viscous term is missing which causes the model to behave in an asymptotically inconsistent manner. By including this viscous term and by introducing new wall damping functions with improved asymptotic behavior, a new K-tau model (where tau is identical with 1/omega is turbulent time scale) is developed. It is demonstrated that this new model is computationally robust and yields improved predictions for turbulent boundary layers.

  12. Preliminary testing of turbulence and radionuclide transport modeling in deep ocean environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Dummuller, D.C.; Trent, D.S.

    Pacific Northwest Laboratory (PNL) performed a study for the US Environmental Protection Agency's Office of Radiation Programs to (1) identify candidate models for regional modeling of low-level waste ocean disposal sites in the mid-Atlantic ocean; (2) evaluate mathematical representation of the model's eddy viscosity/dispersion coefficients; and (3) evaluate the adequacy of the k-{epsilon} turbulence model and the feasibility of one of the candidate models, TEMPEST{copyright}/FLESCOT{copyright}, to deep-ocean applications on a preliminary basis. PNL identified the TEMPEST{copyright}/FLESCOT{copyright}, FLOWER, Blumberg's, and RMA 10 models as appropriate candidates for the regional radionuclide modeling. Among these models, TEMPEST/FLESCOT is currently the only model thatmore » solves distributions of flow, turbulence (with the k-{epsilon} model), salinity, water temperature, sediment, dissolved contaminants, and sediment-sorbed contaminants. Solving the Navier-Stokes equations using higher order correlations is not practical for regional modeling because of the prohibitive computational requirements; therefore, the turbulence modeling is a more practical approach. PNL applied the three-dimensional code, TEMPEST{copyright}/FLESCOT{copyright} with the k-{epsilon} model, to a very simple, hypothetical, two-dimensional, deep-ocean case, producing at least qualitatively appropriate results. However, more detailed testing should be performed for the further testing of the code. 46 refs., 39 figs., 6 tabs.« less

  13. Calculations of wall shear stress in harmonically oscillated turbulent pipe flow using a low-Reynolds-number {kappa}-{epsilon} model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismael, J.O.; Cotton, M.A.

    1996-03-01

    The low-Reynolds-number {kappa}-{epsilon} turbulence model of Launder and Sharma is applied to the calculation of wall shear stress in spatially fully-developed turbulent pipe flow oscillated at small amplitudes. It is believed that the present study represents the first systematic evaluation of the turbulence closure under consideration over a wide range of frequency. Model results are well correlated in terms of the parameter {omega}{sup +} = {omega}{nu}/{bar U}{sub {tau}}{sup 2} at high frequencies, whereas at low frequencies there is an additional Reynolds number dependence. Comparison is made with the experimental data of Finnicum and Hanratty.

  14. Stellar model chromospheres. VIII - 70 Ophiuchi A /K0 V/ and Epsilon Eridani /K2 V/

    NASA Technical Reports Server (NTRS)

    Kelch, W. L.

    1978-01-01

    Model atmospheres for the late-type active-chromosphere dwarf stars 70 Oph A and Epsilon Eri are computed from high-resolution Ca II K line profiles as well as Mg II h and k line fluxes. A method is used which determines a plane-parallel homogeneous hydrostatic-equilibrium model of the upper photosphere and chromosphere which differs from theoretical models by lacking the constraint of radiative equilibrium (RE). The determinations of surface gravities, metallicities, and effective temperatures are discussed, and the computational methods, model atoms, atomic data, and observations are described. Temperature distributions for the two stars are plotted and compared with RE models for the adopted effective temperatures and gravities. The previously investigated T min/T eff vs. T eff relation is extended to Epsilon Eri and 70 Oph A, observed and computed Ca II K and Mg II h and k integrated emission fluxes are compared, and full tabulations are given for the proposed models. It is suggested that if less than half the observed Mg II flux for the two stars is lost in noise, the difference between an active-chromosphere star and a quiet-chromosphere star lies in the lower-chromospheric temperature gradient.

  15. Some practical turbulence modeling options for Reynolds-averaged full Navier-Stokes calculations of three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1993-01-01

    New turbulence modeling options recently implemented for the 3-D version of Proteus, a Reynolds-averaged compressible Navier-Stokes code, are described. The implemented turbulence models include: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, the Chien k-epsilon model, and the Launder-Sharma k-epsilon model. Features of this turbulence modeling package include: well documented and easy to use turbulence modeling options, uniform integration of turbulence models from different classes, automatic initialization of turbulence variables for calculations using one- or two-equation turbulence models, multiple solid boundaries treatment, and fully vectorized L-U solver for one- and two-equation models. Validation test cases include the incompressible and compressible flat plate turbulent boundary layers, turbulent developing S-duct flow, and glancing shock wave/turbulent boundary layer interaction. Good agreement is obtained between the computational results and experimental data. Sensitivity of the compressible turbulent solutions with the method of y(sup +) computation, the turbulent length scale correction, and some compressibility corrections are examined in detail. The test cases show that the highly optimized one-and two-equation turbulence models can be used in routine 3-D Navier-Stokes computations with no significant increase in CPU time as compared with the Baldwin-Lomax algebraic model.

  16. Turbulence modeling in simulation of gas-turbine flow and heat transfer.

    PubMed

    Brereton, G; Shih, T I

    2001-05-01

    The popular k-epsilon type two-equation turbulence models, which are calibrated by experimental data from simple shear flows, are analyzed for their ability to predict flows involving shear and an extra strain--flow with shear and rotation and flow with shear and streamline curvature. The analysis is based on comparisons between model predictions and those from measurements and large-eddy simulations of homogenous flows involving shear and an extra strain, either from rotation or from streamline curvature. Parameters are identified, which show the conditions under which performance of k-epsilon type models can be expected to be poor.

  17. Turbulent flow in a 180 deg bend: Modeling and computations

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    1989-01-01

    A low Reynolds number k-epsilon turbulence model was presented which yields accurate predictions of the kinetic energy near the wall. The model is validated with the experimental channel flow data of Kreplin and Eckelmann. The predictions are also compared with earlier results from direct simulation of turbulent channel flow. The model is especially useful for internal flows where the inflow boundary condition of epsilon is not easily prescribed. The model partly derives from some observations based on earlier direct simulation results of near-wall turbulence. The low Reynolds number turbulence model together with an existing curvature correction appropriate to spinning cylinder flows was used to simulate the flow in a U-bend with the same radius of curvature as the Space Shuttle Main Engine (SSME) Turn-Around Duct (TAD). The present computations indicate a space varying curvature correction parameter as opposed to a constant parameter as used in the spinning cylinder flows. Comparison with limited available experimental data is made. The comparison is favorable, but detailed experimental data is needed to further improve the curvature model.

  18. Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A.; Chen, C. P.

    1990-01-01

    Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows (the turbulent particle dispersion and the turbulence modulation effects) are addressed, using the Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient-diffusion approximations are employed in the Eulerian formulation, while a stochastic procedure is utilized to simulate turbulent dispersion in the Lagrangina formulation. The k-epsilon turbulence model is used to characterize the time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to predict turbulent fully-developed gas-solid vertical pipe flow with reasonable accuracy.

  19. The remarkable ability of turbulence model equations to describe transition

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1992-01-01

    This paper demonstrates how well the k-omega turbulence model describes the nonlinear growth of flow instabilities from laminar flow into the turbulent flow regime. Viscous modifications are proposed for the k-omega model that yield close agreement with measurements and with Direct Numerical Simulation results for channel and pipe flow. These modifications permit prediction of subtle sublayer details such as maximum dissipation at the surface, k approximately y(exp 2) as y approaches 0, and the sharp peak value of k near the surface. With two transition specific closure coefficients, the model equations accurately predict transition for an incompressible flat-plate boundary layer. The analysis also shows why the k-epsilon model is so difficult to use for predicting transition.

  20. Numerical analysis of hypersonic turbulent film cooling flows

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  1. A critical evaluation of two-equation models for near wall turbulence

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Anderson, E. Clay; Abid, Ridha

    1990-01-01

    A basic theoretical and computational study of two-equation models for near-wall turbulent flows was conducted. Two major problems established for the K-epsilon model are discussed, the lack of natural boundary conditions for the dissipation rate and the appearance of higher-order correlations in the balance of terms for the dissipation rate at the wall. The K-omega equation is shown to have two problems also: an exact viscous term is missing, and the destruction of the dissipation term is not properly damped near the wall. A new K-tau model (where tau = 1/omega is the turbulent time scale) was developed by inclusion of the exact viscous term, and by introduction of new wall damping functions with improved asymptotic behavior. A preliminary test of the new model yields improved predictions for the flat-plate turbulent boundary layer.

  2. Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows

    NASA Technical Reports Server (NTRS)

    Zhao, C. Y.; So, R. M. C.; Gatski, T. B.

    2001-01-01

    The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.

  3. Examination of various turbulence models for application in liquid rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1991-01-01

    There is a large variety of turbulence models available. These models include direct numerical simulation, large eddy simulation, Reynolds stress/flux model, zero equation model, one equation model, two equation k-epsilon model, multiple-scale model, etc. Each turbulence model contains different physical assumptions and requirements. The natures of turbulence are randomness, irregularity, diffusivity and dissipation. The capabilities of the turbulence models, including physical strength, weakness, limitations, as well as numerical and computational considerations, are reviewed. Recommendations are made for the potential application of a turbulence model in thrust chamber and performance prediction programs. The full Reynolds stress model is recommended. In a workshop, specifically called for the assessment of turbulence models for applications in liquid rocket thrust chambers, most of the experts present were also in favor of the recommendation of the Reynolds stress model.

  4. A Particle Representation Model for the Deformation of Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Kassinos, S. C.; Reynolds, W. C.

    1996-01-01

    In simple flows, where the mean deformation rates are mild and the turbulence has time to come to equilibrium with the mean flow, the Reynolds stresses are determined by the applied strain rate. Hence in these flows, it is often adequate to use an eddy-viscosity representation. The modern family of kappa-epsilon models has been very useful in predicting near equilibrium turbulent flows, where the rms deformation rate S is small compared to the reciprocal time scale of the turbulence (epsilon/kappa). In modern engineering applications, turbulence models are quite often required to predict flows with very rapid deformations (large S kappa/epsilon). In these flows, the structure takes some time to respond and eddy viscosity models are inadequate. The response of turbulence to rapid deformations is given by rapid distortion theory (RDT). Under RDT the nonlinear effects due to turbulence-turbulence interactions are neglected in the governing equations, but even when linearized in this fashion, the governing equations are unclosed at the one-point level due to the non-locality of the pressure fluctuations.

  5. Turbulence modeling for Francis turbine water passages simulation

    NASA Astrophysics Data System (ADS)

    Maruzewski, P.; Hayashi, H.; Munch, C.; Yamaishi, K.; Hashii, T.; Mombelli, H. P.; Sugow, Y.; Avellan, F.

    2010-08-01

    The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-epsilon model, or the standard k-epsilon model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.

  6. Exploiting similarity in turbulent shear flows for turbulence modeling

    NASA Technical Reports Server (NTRS)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-01-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  7. Exploiting similarity in turbulent shear flows for turbulence modeling

    NASA Astrophysics Data System (ADS)

    Robinson, David F.; Harris, Julius E.; Hassan, H. A.

    1992-12-01

    It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.

  8. Advancements in engineering turbulence modeling

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.

    1991-01-01

    Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.

  9. Modeling of Turbulent Swirling Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  10. A comprehensive comparison of turbulence models in the far wake

    NASA Technical Reports Server (NTRS)

    Cimbala, John M.

    1993-01-01

    In the present study, the far wake was examined numerically using an implicit, upwind, finite-volume, compressible Navier-Stokes code. The numerical grid started at 500 equivalent circular cylinder diameters in the wave, and extended to 4000 equivalent diameters. By concentrating only on the far wake, the numerical difficulties and fine mesh requirements near the wake-generating body were eliminated. At the time of this writing, results for the K-epsilon and K-omega turbulence models at low Mach number have been completed and show excellent agreement with previous incompressible results and far-wake similarity solutions. The code is presently being used to compare the performance of various other turbulence models, including Reynolds stress models and the new anisotropic two-equation turbulence models being developed at NASA Langley. By increasing our physical understanding of the deficiencies and limits of these models, it is hoped that improvements to the universality of the models can be made. Future plans include examination of two-dimensional momentumless wakes as well.

  11. Comparison of experiment with calculations using curvature-corrected zero and two equation turbulence models for a two-dimensional U-duct

    NASA Astrophysics Data System (ADS)

    Monson, D. J.; Seegmiller, H. L.; McConnaughey, P. K.

    1990-06-01

    In this paper experimental measurements are compared with Navier-Stokes calculations using seven different turbulence models for the internal flow in a two-dimensional U-duct. The configuration is representative of many internal flows of engineering interst that experience strong curvature. In an effort to improve agreement, this paper tests several versions of the two-equation k-epsilon turbulence model including the standard version, an extended version with a production range time scale, and a version that includes curvature time scales. Each is tested in its high and low Reynolds number formulations. Calculations using these new models and the original mixing length model are compared here with measurements of mean and turbulence velocities, static pressure and skin friction in the U-duct at two Reynolds numbers. The comparisons show that only the low Reynolds number version of the extended k-epsilon model does a reasonable job of predicting the important features of this flow at both Reynolds numbers tested.

  12. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.

    PubMed

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-08-26

    This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports. 2010 Elsevier Ltd. All rights reserved.

  13. A near-wall two-equation model for compressible turbulent flows

    NASA Technical Reports Server (NTRS)

    Zhang, H. S.; So, R. M. C.; Speziale, C. G.; Lai, Y. G.

    1991-01-01

    A near-wall two-equation turbulence model of the K - epsilon type is developed for the description of high-speed compressible flows. The Favre-averaged equations of motion are solved in conjunction with modeled transport equations for the turbulent kinetic energy and solenoidal dissipation wherein a variable density extension of the asymptotically consistent near-wall model of So and co-workers is supplemented with new dilatational models. The resulting compressible two-equation model is tested in the supersonic flat plate boundary layer - with an adiabatic wall and with wall cooling - for Mach numbers as large as 10. Direct comparisons of the predictions of the new model with raw experimental data and with results from the K - omega model indicate that it performs well for a wide range of Mach numbers. The surprising finding is that the Morkovin hypothesis, where turbulent dilatational terms are neglected, works well at high Mach numbers, provided that the near wall model is asymptotically consistent. Instances where the model predictions deviate from the experiments appear to be attributable to the assumption of constant turbulent Prandtl number - a deficiency that will be addressed in a future paper.

  14. Turbulence modeling of free shear layers for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.

    1993-01-01

    The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.

  15. Analysis of two-equation turbulence models for recirculating flows

    NASA Technical Reports Server (NTRS)

    Thangam, S.

    1991-01-01

    The two-equation kappa-epsilon model is used to analyze turbulent separated flow past a backward-facing step. It is shown that if the model constraints are modified to be consistent with the accepted energy decay rate for isotropic turbulence, the dominant features of the flow field, namely the size of the separation bubble and the streamwise component of the mean velocity, can be accurately predicted. In addition, except in the vicinity of the step, very good predictions for the turbulent shear stress, the wall pressure, and the wall shear stress are obtained. The model is also shown to provide good predictions for the turbulence intensity in the region downstream of the reattachment point. Estimated long time growth rates for the turbulent kinetic energy and dissipation rate of homogeneous shear flow are utilized to develop an optimal set of constants for the two equation kappa-epsilon model. The physical implications of the model performance are also discussed.

  16. Finite elements for the calculation of turbulent flows in three-dimensional complex geometries

    NASA Astrophysics Data System (ADS)

    Ruprecht, A.

    A finite element program for the calculation of incompressible turbulent flows is presented. In order to reduce the required storage an iterative algorithm is used which solves the necessary equations sequentially. The state of turbulence is defined by the k-epsilon model. In addition to the standard k-epsilon model, the modification of Bardina et al., taking into account the rotation of the mean flow, is investigated. With this program, the flow in the draft tube of a Kaplan turbine is examined. Calculations are carried out for swirling and nonswirling entrance flow. The results are compared with measurements.

  17. Solving Navier-Stokes Equations with Advanced Turbulence Models on Three-Dimensional Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.; Frink, Neal T.

    1999-01-01

    USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flows. We have implemented two modified versions of the original Jones and Launder k-epsilon two-equation turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for two flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those of empirical formulae, theoretical results and the existing Spalart-Allmaras one-equation model.

  18. DPW-VI Results Using FUN3D with Focus on k-kL-MEAH2015 (k-kL) Turbulence Model

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Carlson, Jan-Renee; Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Park, Michael A.

    2017-01-01

    The Common Research Model wing-body configuration is investigated with the k-kL-MEAH2015 turbulence model implemented in FUN3D. This includes results presented at the Sixth Drag Prediction Workshop and additional results generated after the workshop with a nonlinear Quadratic Constitutive Relation (QCR) variant of the same turbulence model. The workshop provided grids are used, and a uniform grid refinement study is performed at the design condition. A large variation between results with and without a reconstruction limiter is exhibited on "medium" grid sizes, indicating that the medium grid size is too coarse for drawing conclusions in comparison with experiment. This variation is reduced with grid refinement. At a fixed angle of attack near design conditions, the QCR variant yielded decreased lift and drag compared with the linear eddy-viscosity model by an amount that was approximately constant with grid refinement. The k-kL-MEAH2015 turbulence model produced wing root junction flow behavior consistent with wind tunnel observations.

  19. A numerical study of confined turbulent jets

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T.-H.

    1993-01-01

    A numerical investigation is reported of turbulent incompressible jets confined in two ducts, one cylindrical and the other conical with a 5 degree divergence. In each case, three Craya-Curtet numbers are considered which correspond, respectively, to flow situations with no moderate and strong recirculation. Turbulence closure is achieved by using the k-epsilon model and a recently proposed realizable Reynolds stress algebraic equation model that relates the Reynolds stresses explicitly to the quadratic terms of the mean velocity gradients and ensures the positiveness of each component of the turbulent kinetic energy. Calculations are carried out with a finite-volume procedure using boundary-fitted curvilinear coordinates. A second-order accurate, bounded convection scheme and sufficiently fine grids are used to prevent the solutions from being contaminated by numerical diffusion. The calculated results are compared extensively with the available experimental data. It is shown that the numerical methods presented are capable of capturing the essential flow features observed in the experiments and that the realizable Reynolds stress algebraic equation model performs much better than the k-epsilon model for this class of flows of great practical importance.

  20. Navier-Stokes turbine heat transfer predictions using two-equation turbulence closures

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Arnone, Andrea

    1992-01-01

    Navier-Stokes calculations were carried out in order to predict the heat-transfer rates on turbine blades. The calculations were performed using TRAF2D which is a k-epsilon, explicit, finite volume mass-averaged Navier-Stokes solver. Turbulence was modeled using Coakley's q-omega and Chien's k-epsilon two-equation models and the Baldwin-Lomax algebraic model. The model equations along with the flow equations were solved explicitly on a nonperiodic C grid. Implicit residual smoothing (IRS) or a combination of multigrid technique and IRS was applied to enhance convergence rates. Calculations were performed to predict the Stanton number distributions on the first stage vane and blade row as well as the second stage vane row of the SSME high-pressure fuel turbine. The comparison serves to highlight the weaknesses of the turbulence models for use in turbomachinery heat-transfer calculations.

  1. On turbulent flows dominated by curvature effects

    NASA Technical Reports Server (NTRS)

    Cheng, G. C.; Farokhi, S.

    1992-01-01

    A technique for improving the numerical predictions of turbulent flows with the effect of streamline curvature is developed. Separated flows and the flow in a curved duct are examples of flowfields where streamline curvature plays a dominant role. New algebraic formulations for the eddy viscosity incorporating the k-epsilon turbulence model are proposed to account for various effects of streamline curvature. The loci of flow reversal of the separated flows over various backward-facing steps are employed to test the capability of the proposed turbulence model in capturing the effect of local curvature.

  2. Modeling of near wall turbulence and modeling of bypass transition

    NASA Technical Reports Server (NTRS)

    Yang, Z.

    1992-01-01

    The objectives for this project are as follows: (1) Modeling of the near wall turbulence: We aim to develop a second order closure for the near wall turbulence. As a first step of this project, we try to develop a kappa-epsilon model for near wall turbulence. We require the resulting model to be able to handle both near wall turbulence and turbulent flows away from the wall, computationally robust, and applicable for complex flow situations, flow with separation, for example, and (2) Modeling of the bypass transition: We aim to develop a bypass transition model which contains the effect of intermittency. Thus, the model can be used for both the transitional boundary layers and the turbulent boundary layers. We require the resulting model to give a good prediction of momentum and heat transfer within the transitional boundary and a good prediction of the effect of freestream turbulence on transitional boundary layers.

  3. A k-Omega Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1995-01-01

    A two-equation k-omega turbulence model has been developed and applied to a quasi-three-dimensional viscous analysis code for blade-to-blade flows in turbomachinery. the code includes the effects of rotation, radius change, and variable stream sheet thickness. The flow equations are given and the explicit runge-Kutta solution scheme is described. the k-omega model equations are also given and the upwind implicit approximate-factorization solution scheme is described. Three cases were calculated: transitional flow over a flat plate, a transonic compressor rotor, and transonic turbine vane with heat transfer. Results were compared to theory, experimental data, and to results using the Baldwin-Lomax turbulence model. The two models compared reasonably well with the data and surprisingly well with each other. Although the k-omega model behaves well numerically and simulates effects of transition, freestream turbulence, and wall roughness, it was not decisively better than the Baldwin-Lomax model for the cases considered here.

  4. Turbulent reacting flow computations including turbulence-chemistry interactions

    NASA Technical Reports Server (NTRS)

    Narayan, J. R.; Girimaji, S. S.

    1992-01-01

    A two-equation (k-epsilon) turbulence model has been extended to be applicable for compressible reacting flows. A compressibility correction model based on modeling the dilatational terms in the Reynolds stress equations has been used. A turbulence-chemistry interaction model is outlined. In this model, the effects of temperature and species mass concentrations fluctuations on the species mass production rates are decoupled. The effect of temperature fluctuations is modeled via a moment model, and the effect of concentration fluctuations is included using an assumed beta-pdf model. Preliminary results obtained using this model are presented. A two-dimensional reacting mixing layer has been used as a test case. Computations are carried out using the Navier-Stokes solver SPARK using a finite rate chemistry model for hydrogen-air combustion.

  5. Low Reynolds number kappa-epsilon and empirical transition models for oscillatory pipe flow and heat transfer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bauer, Christopher

    1993-01-01

    Stirling engine heat exchangers are shell-and-tube type with oscillatory flow (zero-mean velocity) for the inner fluid. This heat transfer process involves laminar-transition turbulent flow motions under oscillatory flow conditions. A low Reynolds number kappa-epsilon model, (Lam-Bremhorst form), was utilized in the present study to simulate fluid flow and heat transfer in a circular tube. An empirical transition model was used to activate the low Reynolds number k-e model at the appropriate time within the cycle for a given axial location within the tube. The computational results were compared with experimental flow and heat transfer data for: (1) velocity profiles, (2) kinetic energy of turbulence, (3) skin friction factor, (4) temperature profiles, and (5) wall heat flux. The experimental data were obtained for flow in a tube (38 mm diameter and 60 diameter long), with the maximum Reynolds number based on velocity being Re(sub max) = 11840, a dimensionless frequency (Valensi number) of Va = 80.2, at three axial locations X/D = 16, 30 and 44. The agreement between the computations and the experiment is excellent in the laminar portion of the cycle and good in the turbulent portion. Moreover, the location of transition was predicted accurately. The Low Reynolds Number kappa-epsilon model, together with an empirical transition model, is proposed herein to generate the wall heat flux values at different operating parameters than the experimental conditions. Those computational data can be used for testing the much simpler and less accurate one dimensional models utilized in 1-D Stirling Engine design codes.

  6. Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.

    2015-01-01

    The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.

  7. Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.

    2000-01-01

    USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.

  8. Two-Equation Low-Reynolds-Number Turbulence Modeling of Transitional Boundary Layer Flows Characteristic of Gas Turbine Blades. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Schmidt, Rodney C.; Patankar, Suhas V.

    1988-01-01

    The use of low Reynolds number (LRN) forms of the k-epsilon turbulence model in predicting transitional boundary layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two existing models; (2) the development of a modification to current LRN models; and (3) the extensive testing of the proposed model against experimental data. The prediction characteristics and capabilities of the Jones-Launder (1972) and Lam-Bremhorst (1981) LRN k-epsilon models are evaluated with respect to the prediction of transition on flat plates. Next, the mechanism by which the models simulate transition is considered and the need for additional constraints is discussed. Finally, the transition predictions of a new model are compared with a wide range of different experiments, including transitional flows with free-stream turbulence under conditions of flat plate constant velocity, flat plate constant acceleration, flat plate but strongly variable acceleration, and flow around turbine blade test cascades. In general, calculational procedure yields good agreement with most of the experiments.

  9. Modeling and calculation of turbulent lifted diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J.P.H.; Lamers, A.P.G.G.

    1994-01-01

    Liftoff heights of turbulent diffusion flames have been modeled using the laminar diffusion flamelet concept of Peters and Williams. The strain rate of the smallest eddies is used as the stretch describing parameter, instead of the more common scalar dissipation rate. The h(U) curve, which is the mean liftoff height as a function of fuel exit velocity can be accurately predicted, while this was impossible with the scalar dissipation rate. Liftoff calculations performed in the flames as well as in the equivalent isothermal jets, using a standard k-[epsilon] turbulence model yield approximately the same correct slope for the h(U) curvemore » while the offset has to be reproduced by choosing an appropriate coefficient in the strain rate model. For the flame calculations a model for the pdf of the fluctuating flame base is proposed. The results are insensitive to its width. The temperature field is qualitatively different from the field calculated by Bradley et al. who used a premixed flamelet model for diffusion flames.« less

  10. The fundamental parameters of the chromospherically active K2 dwarf Epsilon Eridani

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Smith, Geoffrey

    1993-01-01

    A silicon array detector was used to record regions exhibiting calcium and iron lines in the spectrum of the chromospherically active K2 dwarf Epsilon Eri at a resolution of 120,000 and with an SNR of not less than 200. The effective temperature, surface gravity, logarithmic iron and calcium abundances, and microturbulence are determined. Three high-excitation lines of Fe I were found to yield anomalously low iron abundances; it is postulated that the origin of the anomaly lies in the nonthermal excitation of the upper photosphere caused by chromospheric emission. It is shown that Epsilon Eri is in an evolutionary stage consistent with an M/solar mass of 0.85 theoretical zero-age main-sequence model. It is suggested that Epsilon Eri is almost certainly a young star of slightly less than one solar mass.

  11. Mimicking Natural Laminar to Turbulent Flow Transition: A Systematic CFD Study Using PAB3D

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    2005-01-01

    For applied aerodynamic computations using a general purpose Navier-Stokes code, the common practice of treating laminar to turbulent flow transition over a non-slip surface is somewhat arbitrary by either treating the entire flow as turbulent or forcing the flow to undergo transition at given trip locations in the computational domain. In this study, the possibility of using the PAB3D code, standard k-epsilon turbulence model, and the Girimaji explicit algebraic stresses model to mimic natural laminar to turbulent flow transition was explored. The sensitivity of flow transition with respect to two limiters in the standard k-epsilon turbulence model was examined using a flat plate and a 6:1 aspect ratio prolate spheroid for our computations. For the flat plate, a systematic dependence of transition Reynolds number on background turbulence intensity was found. For the prolate spheroid, the transition patterns in the three-dimensional boundary layer at different flow conditions were sensitive to the free stream turbulence viscosity limit, the reference Reynolds number and the angle of attack, but not to background turbulence intensity below a certain threshold value. The computed results showed encouraging agreements with the experimental measurements at the corresponding geometry and flow conditions.

  12. Effects of Turbulence Model and Numerical Time Steps on Von Karman Flow Behavior and Drag Accuracy of Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Amalia, E.; Moelyadi, M. A.; Ihsan, M.

    2018-04-01

    The flow of air passing around a circular cylinder on the Reynolds number of 250,000 is to show Von Karman Vortex Street Phenomenon. This phenomenon was captured well by using a right turbulence model. In this study, some turbulence models available in software ANSYS Fluent 16.0 was tested to simulate Von Karman vortex street phenomenon, namely k- epsilon, SST k-omega and Reynolds Stress, Detached Eddy Simulation (DES), and Large Eddy Simulation (LES). In addition, it was examined the effect of time step size on the accuracy of CFD simulation. The simulations are carried out by using two-dimensional and three- dimensional models and then compared with experimental data. For two-dimensional model, Von Karman Vortex Street phenomenon was captured successfully by using the SST k-omega turbulence model. As for the three-dimensional model, Von Karman Vortex Street phenomenon was captured by using Reynolds Stress Turbulence Model. The time step size value affects the smoothness quality of curves of drag coefficient over time, as well as affecting the running time of the simulation. The smaller time step size, the better inherent drag coefficient curves produced. Smaller time step size also gives faster computation time.

  13. A comparative study of several compressibility corrections to turbulence models applied to high-speed shear layers

    NASA Technical Reports Server (NTRS)

    Viegas, John R.; Rubesin, Morris W.

    1991-01-01

    Several recently published compressibility corrections to the standard k-epsilon turbulence model are used with the Navier-Stokes equations to compute the mixing region of a large variety of high speed flows. These corrections, specifically developed to address the weakness of higher order turbulence models to accurately predict the spread rate of compressible free shear flows, are applied to two stream flows of the same gas mixing under a large variety of free stream conditions. Results are presented for two types of flows: unconfined streams with either (1) matched total temperatures and static pressures, or (2) matched static temperatures and pressures, and a confined stream.

  14. Computation of turbulent boundary layer flows with an algebraic stress turbulence model

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Chen, Yen-Sen

    1986-01-01

    An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.

  15. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1987-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  16. A statistical model to estimate refractivity turbulence structure constant C sub n sup 2 in the free atmosphere

    NASA Technical Reports Server (NTRS)

    Warnock, J. M.; Vanzandt, T. E.

    1986-01-01

    A computer program has been tested and documented (Warnock and VanZandt, 1985) that estimates mean values of the refractivity turbulence structure constant in the stable free atmosphere from standard National Weather Service balloon data or an equivalent data set. The program is based on the statistical model for the occurrence of turbulence developed by VanZandt et al. (1981). Height profiles of the estimated refractivity turbulence structure constant agree well with profiles measured by the Sunset radar with a height resolution of about 1 km. The program also estimates the energy dissipation rate (epsilon), but because of the lack of suitable observations of epsilon, the model for epsilon has not yet been evaluated sufficiently to be used in routine applications. Vertical profiles of the refractivity turbulence structure constant were compared with profiles measured by both radar and optical remote sensors and good agreement was found. However, at times the scintillometer measurements were less than both the radar and model values.

  17. Comparison of two turbulence models in simulating an axisymmetric jet evolving into a tank

    NASA Astrophysics Data System (ADS)

    Zidouni Kendil, F.; Danciu, D.-V.; Lucas, D.; Bousbia Salah, A.; Mataoui, A.

    2011-12-01

    Experiments and computational fluid dynamics (CFD) simulations have been carried out to investigate a turbulent water jet plunging into a tank filled with the same liquid. To avoid air bubble entrainment which may be caused by surface instabilities, the free falling length of the jet is set to zero. For both impinging region and recirculation zone, measurements are made using Particle Image Velocimetry (PIV). Instantaneous- and time-averaged velocity fields are obtained. Numerical data is obtained on the basis of both κ - epsilon and SSG (Speziale, Sarkar and Gatski) of Reynolds Stresses Turbulent Model (RSM) in three dimensional frame and compared to experimental results via the axial velocity and turbulent kinetic energy. For axial distances lower than 5cm from the jet impact point, the axial velocity matches well the measurements, using both models. A progressive difference is found near the jet for higher axial distances from the jet impact point. Nevertheless, the turbulence kinetic energy agrees very well with the measurements when applying the SSG-RSM model for the lower part of the tank, whereas it is underestimated in the upper region. Inversely, the κ - epsilon model shows better results in the upper part of the water tank and underestimates results for the lower part of the water tank. From the overall results, it can be concluded that, for single phase flow, the κ - epsilon model describes well the average axial velocity, whereas the turbulence kinetic energy is better represented by the SSG-RSM model.

  18. The continuous adjoint approach to the kturbulence model for shape optimization and optimal active control of turbulent flows

    NASA Astrophysics Data System (ADS)

    Papoutsis-Kiachagias, E. M.; Zymaris, A. S.; Kavvadias, I. S.; Papadimitriou, D. I.; Giannakoglou, K. C.

    2015-03-01

    The continuous adjoint to the incompressible Reynolds-averaged Navier-Stokes equations coupled with the low Reynolds number Launder-Sharma kturbulence model is presented. Both shape and active flow control optimization problems in fluid mechanics are considered, aiming at minimum viscous losses. In contrast to the frequently used assumption of frozen turbulence, the adjoint to the turbulence model equations together with appropriate boundary conditions are derived, discretized and solved. This is the first time that the adjoint equations to the Launder-Sharma kmodel have been derived. Compared to the formulation that neglects turbulence variations, the impact of additional terms and equations is evaluated. Sensitivities computed using direct differentiation and/or finite differences are used for comparative purposes. To demonstrate the need for formulating and solving the adjoint to the turbulence model equations, instead of merely relying upon the 'frozen turbulence assumption', the gain in the optimization turnaround time offered by the proposed method is quantified.

  19. A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  20. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  1. Turbulence Scales, Rise Times, Caustics, and the Simulation of Sonic Boom Propagation

    NASA Technical Reports Server (NTRS)

    Pierce, Allan D.

    1996-01-01

    The general topic of atmospheric turbulence effects on sonic boom propagation is addressed with especial emphasis on taking proper and efficient account of the contributions of the portion oi the turbulence that is associated with extremely high wavenumber components. The recent work reported by Bart Lipkens in his doctoral thesis is reexamined to determine whether the good agreement between his measured rise times with the 1971 theory of the author is fortuitous. It is argued that Lipken's estimate of the distance to the first caustic was a gross overestimate because of the use of a sound speed correlation function shaped like a gaussian curve. In particular, it is argued that the expected distance to the first caustic varies with the kinematic viscosity nu and the energy epsilon dissipated per unit mass per unit time, and the sound speed c as : d(sub first caustic) = nu(exp 7/12) c(exp 2/3)/ epsilon(exp 5/12)(nu x epsilon/c(exp 4))(exp a), where the exponent a is greater than -7/12 and can be argued to be either O or 1/24. In any event, the surprising aspect of the relationship is that it actually goes to zero as the viscosity goes to zero with s held constant. It is argued that the apparent overabundance of caustics can be grossly reduced by a general computational and analytical perspective that partitions the turbulence into two parts, divided by a wavenumber k(sub c). Wavenumbers higher than kc correspond to small-scale turbulence, and the associated turbulence can be taken into account by a renormalization of the ambient sound speed so that the result has a small frequency dependence that results from a spatial averaging over of the smaller-scale turbulent fluctuations. Selection of k(sub c). can be made so large that only a very small number of caustics are encountered if one adopts the premise that the frequency dispersion of pulses is caused by that part of the turbulence spectrum which lies in the inertial range originally predicted by Kolmogoroff. The

  2. Applications of a new wall function to turbulent flow computations

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.

    1986-01-01

    A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.

  3. Application of a new K-tau model to near wall turbulent flows

    NASA Technical Reports Server (NTRS)

    Thangam, S.; Abid, R.; Speziale, Charles G.

    1991-01-01

    A recently developed K-tau model for near wall turbulent flows is applied to two severe test cases. The turbulent flows considered include the incompressible flat plate boundary layer with the adverse pressure gradients and incompressible flow past a backward facing step. Calculations are performed for this two-equation model using an anisotropic as well as isotropic eddy-viscosity. The model predictions are shown to compare quite favorably with experimental data.

  4. Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and LES turbulence model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, S; Longman, D. E.; Luo, Z

    2012-01-01

    Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well asmore » Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.« less

  5. Near-wall modelling of compressible turbulent flows

    NASA Technical Reports Server (NTRS)

    So, Ronald M. C.

    1990-01-01

    Work was carried out to extend the near-wall models formulated for the incompressible Reynolds stress equations to compressible flows. The idea of splitting the compressible dissipation function into a solenoidal part that is not sensitive to changes of compressibility indicators and a compressible part that is directly affected by these changes is adopted. This means that all models involving the dissipation rate could be expressed in terms of the solenoidal dissipation rate and an equation governing its transport could be formulated to close the set of compressible Reynolds stress equations. The near-wall modelling of the dissipation rate equation is investigated and its behavior near a wall is studied in detail using k-epsilon closure. It is found that all existing modelled equations give the wrong behavior for the dissipation rate near a wall. Improvements are suggested and the resultant behavior is found to be in good agreement with near-wall data. Furthermore, the present modified k-epsilon closure is used too calculate a flat plate boundary layer and the results are compared with four existing k-epsilon closures. These comparisons show that all closures tested give essentially the same flow properties, except in a region very close to the wall. In this region, the present k-epsilon closure calculations are in better agreement with measurements and direct simulation data; in particular, the behavior of the dissipation rate.

  6. An investigation into the numerical prediction of boundary layer transition using the K.Y. Chien turbulence model

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Crawford, Michael E.

    1990-01-01

    Assessments were made of the simulation capabilities of transition models developed at the University of Minnesota, as applied to the Launder-Sharma and Lam-Bremhorst two-equation turbulence models, and at The University of Texas at Austin, as applied to the K. Y. Chien two-equation turbulence model. A major shortcoming in the use of the basic K. Y. Chien turbulence model for low-Reynolds number flows was identified. The problem with the Chien model involved premature start of natural transition and a damped response as the simulation moved to fully turbulent flow at the end of transition. This is in contrast to the other two-equation turbulence models at comparable freestream turbulence conditions. The damping of the transition response of the Chien turbulence model leads to an inaccurate estimate of the start and end of transition for freestream turbulence levels greater than 1.0 percent and to difficulty in calculating proper model constants for the transition model.

  7. An analysis of supersonic flows with low-Reynolds number compressible two-equation turbulence models using LU finite volume implicit numerical techniques

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1994-01-01

    A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.

  8. Computation of Turbulent Recirculating Flow in Channels, and for Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Chang, Byong Hoon

    1992-01-01

    Fully elliptic forms of the transport equations have been solved numerically for two flow configurations. The first is turbulent flow in a channel with transverse rectangular ribs, and the second is impingement cooling of a plane surface. Both flows are relevant to proposed designs for active cooling of hypersonic vehicles using supercritical hydrogen as the coolant. Flow downstream of an abrupt pipe expansion and of a backward-facing step were also solved with various near-wall turbulence models as benchmark problems. A simple form of periodicity boundary condition was used for the channel flow with transverse rectangular ribs. The effects of various parameters on heat transfer in channel flow with transverse ribs and in impingement cooling were investigated using the Yap modified Jones and Launder low Reynolds number k-epsilon turbulence model. For the channel flow, predictions were in adequate agreement with experiment for constant property flow, with the results for friction superior to those for heat transfer. For impingement cooling, the agreement with experiment was generally good, but the results suggest that improved modelling of the dissipation rate of turbulence kinetic energy is required in order to obtain improved heat transfer prediction, especially near the stagnation point. The k-epsilon turbulence model was used to predict the mean flow and heat transfer for constant and variable property flows. The effect of variable properties for channel flow was investigated using the same turbulence model, but comparison with experiment yielded no clear conclusions. Also, the wall function method was modified for use in the variable properties flow with a non-adiabatic surface, and an empirical model is suggested to correctly account for the behavior of the viscous sublayer with heating.

  9. Experimental and mathematical modeling of flow in headboxes

    NASA Astrophysics Data System (ADS)

    Shariati, Mohammad Reza

    The fluid flow patterns in a paper-machine headbox have a strong influence on the quality of the paper produced by the machine. Due to increasing demand for high quality paper there is a need to investigate the details of the fluid flow in the paper machine headbox. The objective of this thesis is to use experimental and computational methods of modeling the flow inside a typical headbox in order to evaluate and understand the mean flow patterns and turbulence created there. In particular, spatial variations of the mean flow and of the turbulence quantities and the turbulence generated secondary flows are studied. In addition to the flow inside the headbox, the flow leaving the slice is also modeled both experimentally and computationally. Comparison of the experimental and numerical results indicated that streamwise mean components of the velocities in the headbox are predicted well by all the turbulence models considered in this study. However, the standard k-epsilon model and the algebraic turbulence models fail to predict the turbulence quantities accurately. Standard k-epsilon-model also fails to predict the direction and magnitude of the secondary flows. Significant improvements in the k-epsilon model predictions were achieved when the turbulence production term was artificially set to zero. This is justified by observations of the turbulent velocities from the experiments and by a consideration of the form of the kinetic energy equation. A better estimation of the Reynolds normal stress distribution and the degree of anisotropy of turbulence was achieved using the Reynolds stress turbulence model. Careful examination of the measured turbulence velocity results shows that after the initial decay of the turbulence in the headbox, there is a short region close to the exit, but inside the headbox, where the turbulent kinetic energy actually increases as a result of the distortion imposed by the contraction. The turbulence energy quickly resumes its decay in the

  10. A phenomenological treatment of rotating turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1995-01-01

    The strong similarity between the magnetohydrodynamic (MHD) turbulence and initially isotropic turbulence subject to rotation is noted. We then apply the MHD phenomenologies of Kraichnan and Matthaeus & Zhou to rotating turbulence. When the turbulence is subject to a strong rotation, the energy spectrum is found to scale as E(k) = C(sub Omega)(Omega(sub epsilon))(sup 1/2)k(sup -2), where Omega is the rotation rate, k is the wavenumber, and epsilon is the dissipation rate. This spectral form is consistent with a recent letter by Zeman. However, here the constant C(sub Omega) is found to be related to the Kolmogorov constant and is estimated in the range 1.22 - 1.87 for the typical values of the latter constant. A 'rule' that relates spectral transfer times to the eddy turnover time and the time scale for decay of the triple correlations is deduced. A hypothesis for the triple correlation decay rate leads to the spectral law which varies between the '-5/3' (without rotation) and '-2' laws (with strong rotation). For intermediate rotation rates, the spectrum varies according to the value of a dimensionless parameter that measures the strength of the rotation wavenumber k(sub Omega) = (Omega(sup 3)/epsiolon)(sup 1/2) relative to the wavenumber k. An eddy viscosity is derived with an explicit dependence on the rotation rate.

  11. The use of direct numerical simulation data in turbulence modeling

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.

    1991-01-01

    Direct numerical simulations (DNS) of turbulent flows provide a complete data base to develop and to test turbulence models. In this article, the progress made in developing models for the dissipation rate equation is reviewed. New scaling arguments for the various terms in the dissipation rate equation were tested using data from DNS of homogeneous shear flows. Modifications to the epsilon-equation model that take into account near-wall effects were developed using DNS of turbulent channel flows. Testing of new models for flows under mean compression was carried out using data from DNS of isotropically compressed turbulence. In all of these studies the data from the simulations was essential in guiding the model development. The next generation of DNS will be at higher Reynolds numbers, and will undoubtedly lead to improved models for computations of flows of practical interest.

  12. Partially-Averaged Navier Stokes Model for Turbulence: Implementation and Validation

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Abdol-Hamid, Khaled S.

    2005-01-01

    Partially-averaged Navier Stokes (PANS) is a suite of turbulence closure models of various modeled-to-resolved scale ratios ranging from Reynolds-averaged Navier Stokes (RANS) to Navier-Stokes (direct numerical simulations). The objective of PANS, like hybrid models, is to resolve large scale structures at reasonable computational expense. The modeled-to-resolved scale ratio or the level of physical resolution in PANS is quantified by two parameters: the unresolved-to-total ratios of kinetic energy (f(sub k)) and dissipation (f(sub epsilon)). The unresolved-scale stress is modeled with the Boussinesq approximation and modeled transport equations are solved for the unresolved kinetic energy and dissipation. In this paper, we first present a brief discussion of the PANS philosophy followed by a description of the implementation procedure and finally perform preliminary evaluation in benchmark problems.

  13. An Attempt to Derive the epsilon Equation from a Two-Point Closure

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    2010-01-01

    The goal of this paper is to derive the equation for the turbulence dissipation rate epsilon for a shear-driven flow. In 1961, Davydov used a one-point closure model to derive the epsilon equation from first principles but the final result contained undetermined terms and thus lacked predictive power. Both in 1987 and in 2001, attempts were made to derive the epsilon equation from first principles using a two-point closure, but their methods relied on a phenomenological assumption. The standard practice has thus been to employ a heuristic form of the equation that contains three empirical ingredients: two constants, c(sub 1 epsilon), and c(sub 2 epsilon), and a diffusion term D(sub epsilon) In this work, a two-point closure is employed, yielding the following results: 1) the empirical constants get replaced by c(sub 1), c(sub 2), which are now functions of Kappa and epsilon; 2) c(sub 1) and c(sub 2) are not independent because a general relation between the two that are valid for any Kappa and epsilon are derived; 3) c(sub 1), c(sub 2) become constant with values close to the empirical values c(sub 1 epsilon), c(sub epsilon 2), (i.e., homogenous flows); and 4) the empirical form of the diffusion term D(sub epsilon) is no longer needed because it gets substituted by the Kappa-epsilon dependence of c(sub 1), c(sub 2), which plays the role of the diffusion, together with the diffusion of the turbulent kinetic energy D(sub Kappa), which now enters the new equation (i.e., inhomogeneous flows). Thus, the three empirical ingredients c(sub 1 epsilon), c(sub epsilon 2), D (sub epsilon)are replaced by a single function c(sub 1)(Kappa, epsilon ) or c(sub 2)(Kappa, epsilon ), plus a D(sub Kappa)term. Three tests of the new equation for epsilon are presented: one concerning channel flow and two concerning the shear-driven planetary boundary layer (PBL).

  14. Assessments of a Turbulence Model Based on Menter's Modification to Rotta's Two-Equation Model

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.

    2013-01-01

    The main objective of this paper is to construct a turbulence model with a more reliable second equation simulating length scale. In the present paper, we assess the length scale equation based on Menter s modification to Rotta s two-equation model. Rotta shows that a reliable second equation can be formed in an exact transport equation from the turbulent length scale L and kinetic energy. Rotta s equation is well suited for a term-by-term modeling and shows some interesting features compared to other approaches. The most important difference is that the formulation leads to a natural inclusion of higher order velocity derivatives into the source terms of the scale equation, which has the potential to enhance the capability of Reynolds-averaged Navier-Stokes (RANS) to simulate unsteady flows. The model is implemented in the PAB3D solver with complete formulation, usage methodology, and validation examples to demonstrate its capabilities. The detailed studies include grid convergence. Near-wall and shear flows cases are documented and compared with experimental and Large Eddy Simulation (LES) data. The results from this formulation are as good or better than the well-known SST turbulence model and much better than k-epsilon results. Overall, the study provides useful insights into the model capability in predicting attached and separated flows.

  15. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.

    PubMed

    Tabe, Reza; Ghalichi, Farzan; Hossainpour, Siamak; Ghasemzadeh, Kamran

    2016-08-12

    Laminar, turbulent, transitional, or combine areas of all three types of viscous flow can occur downstream of a stenosis depending upon the Reynolds number and constriction shape parameter. Neither laminar flow solver nor turbulent models for instance the k-ω (k-omega), k-ε (k-epsilon), RANS or LES are opportune for this type of flow. In the present study attention has been focused vigorously on the effect of the constriction in the flow field with a unique way. It means that the laminar solver was employed from entry up to the beginning of the turbulent shear flow. The turbulent model (k-ω SST Transitional Flows) was utilized from starting of turbulence to relaminarization zone while the laminar model was applied again with onset of the relaminarization district. Stenotic flows, with 50 and 75% cross-sectional area, were simulated at Reynolds numbers range from 500 to 2000 employing FLUENT (v6.3.17). The flow was considered to be steady, axisymmetric, and incompressible. Achieving results were reported as axial velocity, disturbance velocity, wall shear stress and the outcomes were compared with previously experimental and CFD computations. The analogy of axial velocity profiles shows that they are in acceptable compliance with the empirical data. As well as disturbance velocity and wall shear stresses anticipated by this new approach, part by part simulation, are reasonably valid with the acceptable experimental studies.

  16. Turbulence modeling of free shear layers for high performance aircraft

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas

    1993-01-01

    In many flowfield computations, accuracy of the turbulence model employed is frequently a limiting factor in the overall accuracy of the computation. This is particularly true for complex flowfields such as those around full aircraft configurations. Free shear layers such as wakes, impinging jets (in V/STOL applications), and mixing layers over cavities are often part of these flowfields. Although flowfields have been computed for full aircraft, the memory and CPU requirements for these computations are often excessive. Additional computer power is required for multidisciplinary computations such as coupled fluid dynamics and conduction heat transfer analysis. Massively parallel computers show promise in alleviating this situation, and the purpose of this effort was to adapt and optimize CFD codes to these new machines. The objective of this research effort was to compute the flowfield and heat transfer for a two-dimensional jet impinging normally on a cool plate. The results of this research effort were summarized in an AIAA paper titled 'Parallel Implementation of the k-epsilon Turbulence Model'. Appendix A contains the full paper.

  17. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Benjanirat, Sarun

    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.

  18. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation.

    PubMed

    Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N

    2008-01-01

    Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.

  19. KTurbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution

    DOE PAGES

    DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...

    2017-06-09

    The kturbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the kmodel using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less

  20. Impact of turbulence anisotropy near walls in room airflow.

    PubMed

    Schälin, A; Nielsen, P V

    2004-06-01

    The influence of different turbulence models used in computational fluid dynamics predictions is studied in connection with room air movement. The turbulence models used are the high Re-number kappa-epsilon model and the high Re-number Reynolds stress model (RSM). The three-dimensional wall jet is selected for the work. The growth rate parallel to the wall in a three-dimensional wall jet is large compared with the growth rate perpendicular to the wall, and it is large compared with the growth rate in a free circular jet. It is shown that it is not possible to predict the high growth rate parallel with a surface in a three-dimensional wall jet by the kappa-epsilon turbulence model. Furthermore, it is shown that the growth rate can be predicted to a certain extent by the RSM with wall reflection terms. The flow in a deep room can be strongly influenced by details as the growth rate of a three-dimensional wall jet. Predictions by a kappa-epsilon model and RSM show large deviations in the occupied zone. Measurements and observations of streamline patterns in model experiments indicate that a reasonable solution is obtained by the RSM compared with the solution obtained by the kappa-epsilon model. Computational fluid dynamics (CFD) is often used for the prediction of air distribution in rooms and for the evaluation of thermal comfort and indoor air quality. The most used turbulence model in CFD is the kappa-epsilon model. This model often produces good results; however, some cases require more sophisticated models. The prediction of a three-dimensional wall jet is improved if it is made by a Reynolds stress model (RSM). This model improves the prediction of the velocity level in the jet and in some special cases it may influence the entire flow in the occupied zone.

  1. Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Compton, William B., III

    1996-01-01

    A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.

  2. Interpretation of f({epsilon}) measurements by T. Kimura, K. Akatsuka and K. Ohe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, M.

    1996-11-26

    This note describes my analysis of the measurement of the electron energy distribution function in a DC glow discharge reported by T. Kimura, K. Akatsuka, and K. Ohe, in `Experimental and theoretical investigations of DC glow discharges in argon-nitrogen mixtures,`J. Phys. D: Appl. Phys. 27 (1994) 1664-1671. T. Kimura of the Department of Systems Engineering at the Nagoya Institute of Technology sent me this paper in 1994, as well as `Electron Energy Distribution Function in Neon-Nitrogen Mixture Positive Column,` T. Kimura, and K. Ohe, Jpn. J. Appl. Phys. Vol. 3 1, Part 1, No. 12A, December 1992, pp. 4051- 4052.more » I base my analysis on the data for a pure N{sub 2} discharge at p=1 torr in the 1994 paper. Figures 2 and 3 in that paper show a discrepancy between f({epsilon}) as measured by Langmuir probing and f({epsilon}) as calculated from E/N based on the measured axial field. Kimura et. al. explain their observation of hotter than expected electrons on superelastic collisions with vibrationally excited nitrogen. My fundamental point is that the radial field generated by ambipolar diffusion significantly augments E/N above the contribution from the axial field in this experiment, and creates a higher than expected radially averaged electron energy.« less

  3. PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa

    2006-01-01

    This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.

  4. The occultation of Epsilon Geminorum by Mars - Analysis of McDonald data. [turbulent scintillation in light curves

    NASA Technical Reports Server (NTRS)

    Africano, J.; De Vaucouleurs, G.; Evans, D. S.; Finkel, B. E.; Nather, R. E.; Palm, C.; Silverberg, E.; Wiant, J.; Hubbard, W. B.; Jokipii, J. R.

    1977-01-01

    An analysis of observations of the occultation of Epsilon Gem by Mars on April 8, 1976, is presented. The data were obtained by three neighboring telescopes at McDonald Observatory. Intensity fluctuations on time scales of the order of 100 ms were observed simultaneously at the three telescopes. As the observations compare well with predictions of turbulent scintillation theory, it is concluded that such fluctuations were probably largely the effect of stellar scintillations in the Martian atmosphere. The stellar diameter is included as a parameter in the theory but in a way which differs from previously published interpretations of occultations of extended sources by planetary atmospheres. Scintillations govern the experimental uncertainty in the deduction of the scale height of the high Martian atmosphere. A density scale height of 9.9 + or - 2.5 km is obtained at an altitude of 74 + or - 8 km above the mean surface. For CO 2 gas, this result corresponds to a temperature of 190 + or - 50 K.

  5. Scaling laws for homogeneous turbulent shear flows in a rotating frame

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Mhuiris, Nessan Macgiolla

    1988-01-01

    The scaling properties of plane homogeneous turbulent shear flows in a rotating frame are examined mathematically by a direct analysis of the Navier-Stokes equations. It is proved that two such shear flows are dynamically similar if and only if their initial dimensionless energy spectrum E star (k star, 0), initial dimensionless shear rate SK sub 0/epsilon sub 0, initial Reynolds number K squared sub 0/nu epsilon sub 0, and the ration of the rotation rate to the shear rate omega/S are identical. Consequently, if universal equilibrium states exist, at high Reynolds numbers, they will only depend on the single parameter omega/S. The commonly assumed dependence of such equilibrium states on omega/S through the Richardson number Ri=-2(omega/S)(1-2 omega/S) is proven to be inconsistent with the full Navier-Stokes equations and to constitute no more than a weak approximation. To be more specific, Richardson number similarity is shown to only rigorously apply to certain low-order truncations of the Navier-Stokes equations (i.e., to certain second-order closure models) wherein closure is achieved at the second-moment level by assuming that the higher-order moments are a small perturbation of their isotropic states. The physical dependence of rotating turbulent shear flows on omega/S is discussed in detail along with the implications for turbulence modeling.

  6. Numerical Analysis of Turbulent Flows in Channels of Complex Geometry

    NASA Astrophysics Data System (ADS)

    Farbos De Luzan, Charles

    The current study proposes to follow a systematic validated approach to applied fluid mechanics problems in order to evaluate the ability of different computational fluid dynamics (CFD) to be a relevant design tool. This systematic approach involves different operations such as grid sensitivity analyses, turbulence models comparison and appropriate wall treatments, in order to define case-specific optimal parameters for industrial applications. A validation effort is performed on each study, with particle image velocimetry (PIV) experimental results as the validating metric. The first part of the dissertation lays down the principles of validation, and presents the details of a grid sensitivity analysis, as well as a turbulence models benchmark. The models are available in commercial solvers, and in most cases the default values of the equations constants are retained. The validation experimental data is taken with a hot wire, and has served as a reference to validate multiple turbulence models for turbulent flows in channels. In a second part, the study of a coaxial piping system will compare a set of different steady Reynolds-Averaged Navier Stokes (RANS) turbulence models, namely the one equation model Spalart-Almaras, and two-equation-models standard k-epsilon, k-epsilon realizable, k-epsilon RNG, standard k-omega, k-omega SST, and transition SST. The geometry of interest involves a transition from an annulus into a larger one, where highly turbulent phenomena occur, such as recirculation and jet impingement. Based on a set of constraints that are defined in the analysis, a chosen model will be tested on new designs in order to evaluate their performance. The third part of this dissertation will address the steady-state flow patterns in a Viscosity-Sensitive Fluidic Diode (VSFD). This device is used in a fluidics application, and its originality lies in the fact that it does not require a control fluid in order to operate. This section will discuss the

  7. An NPARC Turbulence Module with Wall Functions

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T.-H.

    1997-01-01

    The turbulence module recently developed for the NPARC code has been extended to include wall functions. The Van Driest transformation is used so that the wall functions can be applied to both incompressible and compressible flows. The module is equipped with three two-equation K-epsilon turbulence models: Chien, Shih-Lumley and CMOTR models. Details of the wall functions as well as their numerical implementation are reported. It is shown that the inappropriate artificial viscosity in the near-wall region has a big influence on the solution of the wall function approach. A simple way to eliminate this influence is proposed, which gives satisfactory results during the code validation. The module can be easily linked to the NPARC code for practical applications.

  8. Improved modeling of turbulent forced convection heat transfer in straight ducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokni, M.; Sunden, B.

    1999-08-01

    This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in their fully developed state at low Reynolds number. The authors have developed a low Reynolds number version of the nonlinear {kappa}-{epsilon} model combined with the heat flux models of simple eddy diffusivity (SED), low Reynolds number version of generalized gradient diffusion hypothesis (GGDH), and wealth {proportional_to} earning {times} time (WET) in general three-dimensional geometries. The numerical approach is based on the finite volume technique with a nonstaggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with the nonlinear {kappa}-{epsilon} model, combined with themore » Lam-Bremhorst and the Abe-Kondoh-Nagano damping functions for low Reynolds numbers.« less

  9. Elliptic flow computation by low Reynolds number two-equation turbulence models

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Shih, T.-H.

    1991-01-01

    A detailed comparison of ten low-Reynolds-number k-epsilon models is carried out. The flow solver, based on an implicit approximate factorization method, is designed for incompressible, steady two-dimensional flows. The conservation of mass is enforced by the artificial compressibility approach and the computational domain is discretized using centered finite differences. The turbulence model predictions of the flow past a hill are compared with experiments at Re = 10 exp 6. The effects of the grid spacing together with the numerical efficiency of the various formulations are investigated. The results show that the models provide a satisfactory prediction of the flow field in the presence of a favorable pressure gradient, while the accuracy rapidly deteriorates when a strong adverse pressure gradient is encountered. A newly proposed model form that does not explicitly depend on the wall distance seems promising for application to complex geometries.

  10. Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models.

    PubMed

    Tan, F P P; Soloperto, G; Bashford, S; Wood, N B; Thom, S; Hughes, A; Xu, X Y

    2008-12-01

    In this study, newly developed two-equation turbulence models and transitional variants are employed for the prediction of blood flow patterns in a diseased carotid artery where the growth, progression, and structure of the plaque at rupture are closely linked to low and oscillating wall shear stresses. Moreover, the laminar-turbulent transition in the poststenotic zone can alter the separation zone length, wall shear stress, and pressure distribution over the plaque, with potential implications for stresses within the plaque. Following the validation with well established experimental measurements and numerical studies, a magnetic-resonance (MR) image-based model of the carotid bifurcation with 70% stenosis was reconstructed and simulated using realistic patient-specific conditions. Laminar flow, a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport (SST) model and its "scale adaptive simulation" (SAS) variant were implemented in pulsatile simulations from which analyses of velocity profiles, wall shear stress, and turbulence intensity were conducted. In general, the transitional version of SST and its SAS variant are shown to give a better overall agreement than their standard counterparts with experimental data for pulsatile flow in an axisymmetric stenosed tube. For the patient-specific case reported, the wall shear stress analysis showed discernable differences between the laminar flow and SST transitional models but virtually no difference between the SST transitional model and its SAS variant.

  11. Application of an empirical saturation rule to TGLF to unify low-k and high-k turbulence dominated regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian, Xiang; Chan, Vincent S.; Chen, Jiale

    Here, we propose a phenomenological turbulence saturation model and apply it to the TGLF turbulence transport model, which captures the physics of interaction between low-k and high-k turbulence consistent with the multi-scale gyro-kinetic simulation result. The new model, TGLF-VX is tested with three discharges from DIII-D and EAST tokamak, which cover both low-k and high-k turbulence dominated regimes. It is found that the profile match can be substantially improved over previous models when evolving Te, Ti and ne simultaneously. Good agreement for all three discharges is obtained with one fixed parameter in the model when taking experimental uncertainties into consideration.more » Finally, TGLF-VX is applied to explore the sensitivity of the predicted CFETR steady-state performance to different transport models. Our result shows that a scenario using only RF auxiliary heating could be significantly affected.« less

  12. Application of an empirical saturation rule to TGLF to unify low-k and high-k turbulence dominated regimes

    DOE PAGES

    Jian, Xiang; Chan, Vincent S.; Chen, Jiale; ...

    2017-09-28

    Here, we propose a phenomenological turbulence saturation model and apply it to the TGLF turbulence transport model, which captures the physics of interaction between low-k and high-k turbulence consistent with the multi-scale gyro-kinetic simulation result. The new model, TGLF-VX is tested with three discharges from DIII-D and EAST tokamak, which cover both low-k and high-k turbulence dominated regimes. It is found that the profile match can be substantially improved over previous models when evolving Te, Ti and ne simultaneously. Good agreement for all three discharges is obtained with one fixed parameter in the model when taking experimental uncertainties into consideration.more » Finally, TGLF-VX is applied to explore the sensitivity of the predicted CFETR steady-state performance to different transport models. Our result shows that a scenario using only RF auxiliary heating could be significantly affected.« less

  13. Development of a recursion RNG-based turbulence model

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George; Thangam, S.

    1993-01-01

    Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.

  14. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    NASA Astrophysics Data System (ADS)

    Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.

  15. A k-omega multivariate beta PDF for supersonic turbulent combustion

    NASA Technical Reports Server (NTRS)

    Alexopoulos, G. A.; Baurle, R. A.; Hassan, H. A.

    1993-01-01

    In a recent attempt by the authors at predicting measurements in coaxial supersonic turbulent reacting mixing layers involving H2 and air, a number of discrepancies involving the concentrations and their variances were noted. The turbulence model employed was a one-equation model based on the turbulent kinetic energy. This required the specification of a length scale. In an attempt at detecting the cause of the discrepancy, a coupled k-omega joint probability density function (PDF) is employed in conjunction with a Navier-Stokes solver. The results show that improvements resulting from a k-omega model are quite modest.

  16. Comparison of liquid rocket engine base region heat flux computations using three turbulence models

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.

    1993-01-01

    The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.

  17. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-01-01

    Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.

  18. Evaluation of Turbulence-Model Performance in Jet Flows

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    2001-01-01

    The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are

  19. Ocean Turbulence. Paper 3; Two-Point Closure Model Momentum, Heat and Salt Vertical Diffusivities in the Presence of Shear

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.; Howard, A.; Cheng, Y.

    1999-01-01

    In papers 1 and 2 we have presented the results of the most updated 1-point closure model for the turbulent vertical diffusivities of momentum, heat and salt, K(sub m,h,s). In this paper, we derive the analytic expressions for K(sub m,h,s) using a new 2-point closure model that has recently been developed and successfully tested against some approx. 80 turbulence statistics for different flows. The new model has no free parameters. The expressions for K(sub m, h. s) are analytical functions of two stability parameters: the Turner number R(sub rho) (salinity gradient/temperature gradient) and the Richardson number R(sub i) (temperature gradient/shear). The turbulent kinetic energy K and its rate of dissipation may be taken local or non-local (K-epsilon model). Contrary to all previous models that to describe turbulent mixing below the mixed layer (ML) have adopted three adjustable "background diffusivities" for momentum. heat and salt, we propose a model that avoids such adjustable diffusivities. We assume that below the ML, K(sub m,h,s) have the same functional dependence on R(sub i) and R(sub rho) derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the model from adjustable background diffusivities and indeed we use the same model throughout the entire vertical extent of the ocean. Using the new K(sub m,h, s), we run an O-GCM and present a variety of results that we compare with Levitus and the KPP model. Since the traditional 1-point (used in papers 1 and 2) and the new 2-point closure models used here represent different modeling philosophies and procedures, testing them in an O-GCM is indispensable. The basic motivation is to show that the new 2-point closure model gives results that are overall superior to the 1-point closure in spite of the fact that the latter rely on several adjustable parameters while the new 2-point

  20. Direct numerical simulations and modeling of a spatially-evolving turbulent wake

    NASA Technical Reports Server (NTRS)

    Cimbala, John M.

    1994-01-01

    Understanding of turbulent free shear flows (wakes, jets, and mixing layers) is important, not only for scientific interest, but also because of their appearance in numerous practical applications. Turbulent wakes, in particular, have recently received increased attention by researchers at NASA Langley. The turbulent wake generated by a two-dimensional airfoil has been selected as the test-case for detailed high-resolution particle image velocimetry (PIV) experiments. This same wake has also been chosen to enhance NASA's turbulence modeling efforts. Over the past year, the author has completed several wake computations, while visiting NASA through the 1993 and 1994 ASEE summer programs, and also while on sabbatical leave during the 1993-94 academic year. These calculations have included two-equation (K-omega and K-epsilon) models, algebraic stress models (ASM), full Reynolds stress closure models, and direct numerical simulations (DNS). Recently, there has been mutually beneficial collaboration of the experimental and computational efforts. In fact, these projects have been chosen for joint presentation at the NASA Turbulence Peer Review, scheduled for September 1994. DNS calculations are presently underway for a turbulent wake at Re(sub theta) = 1000 and at a Mach number of 0.20. (Theta is the momentum thickness, which remains constant in the wake of a two dimensional body.) These calculations utilize a compressible DNS code written by M. M. Rai of NASA Ames, and modified for the wake by J. Cimbala. The code employs fifth-order accurate upwind-biased finite differencing for the convective terms, fourth-order accurate central differencing for the viscous terms, and an iterative-implicit time-integration scheme. The computational domain for these calculations starts at x/theta = 10, and extends to x/theta = 610. Fully developed turbulent wake profiles, obtained from experimental data from several wake generators, are supplied at the computational inlet, along with

  1. Low Reynolds number two-equation modeling of turbulent flows

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Shih, T.-H.

    1991-01-01

    A k-epsilon model that accounts for viscous and wall effects is presented. The proposed formulation does not contain the local wall distance thereby making very simple the application to complex geometries. The formulation is based on an existing k-epsilon model that proved to fit very well with the results of direct numerical simulation. The new form is compared with nine different two-equation models and with direct numerical simulation for a fully developed channel flow at Re = 3300. The simple flow configuration allows a comparison free from numerical inaccuracies. The computed results prove that few of the considered forms exhibit a satisfactory agreement with the channel flow data. The model shows an improvement with respect to the existing formulations.

  2. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    NASA Technical Reports Server (NTRS)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  3. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    NASA Astrophysics Data System (ADS)

    Zerkle, Ronald D.; Prakash, Chander

    1995-03-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  4. A 3-D turbulent flow analysis using finite elements with kmodel

    NASA Astrophysics Data System (ADS)

    Okuda, H.; Yagawa, G.; Eguchi, Y.

    1989-03-01

    This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The kturbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.

  5. Comparative Study of Advanced Turbulence Models for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Hadid, Ali H.; Sindir, Munir M.

    1996-01-01

    A computational study has been undertaken to study the performance of advanced phenomenological turbulence models coded in a modular form to describe incompressible turbulent flow behavior in two dimensional/axisymmetric and three dimensional complex geometry. The models include a variety of two equation models (single and multi-scale k-epsilon models with different near wall treatments) and second moment algebraic and full Reynolds stress closure models. These models were systematically assessed to evaluate their performance in complex flows with rotation, curvature and separation. The models are coded as self contained modules that can be interfaced with a number of flow solvers. These modules are stand alone satellite programs that come with their own formulation, finite-volume discretization scheme, solver and boundary condition implementation. They will take as input (from any generic Navier-Stokes solver) the velocity field, grid (structured H-type grid) and computational domain specification (boundary conditions), and will deliver, depending on the model used, turbulent viscosity, or the components of the Reynolds stress tensor. There are separate 2D/axisymmetric and/or 3D decks for each module considered. The modules are tested using Rocketdyn's proprietary code REACT. The code utilizes an efficient solution procedure to solve Navier-Stokes equations in a non-orthogonal body-fitted coordinate system. The differential equations are discretized over a finite-volume grid using a non-staggered variable arrangement and an efficient solution procedure based on the SIMPLE algorithm for the velocity-pressure coupling is used. The modules developed have been interfaced and tested using finite-volume, pressure-correction CFD solvers which are widely used in the CFD community. Other solvers can also be used to test these modules since they are independently structured with their own discretization scheme and solver methodology. Many of these modules have been

  6. Computation of oscillating airfoil flows with one- and two-equation turbulence models

    NASA Technical Reports Server (NTRS)

    Ekaterinaris, J. A.; Menter, F. R.

    1994-01-01

    The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds-averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. One- and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading-edge and where natural transition was allowed to occur naturally are considered. The more recently developed turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are observed. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading-edge transitional flow region to capture the correct physical mechanism that leads to dynamic stall.

  7. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Y.; Chou, W.; Liu, S.

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined bymore » studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder`s ASM incorporated with Sarkar`s modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield. 36 refs.« less

  8. Progress in hypersonic turbulence modeling

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1991-01-01

    A compressibility modification is developed for k-omega (Wilcox, 1988) and k-epsilon (Jones and Launder, 1972) models, that is similar to those of Sarkar et al. (1989) and Zeman (1990). Results of the perturbation solution for the compressible wall layer demonstrate why the Sarkar and Zeman terms yield inaccurate skin friction for the flat-plate boundary layer. A new compressibility term is developed which permits accurate predictions of the compressible mixing layer, flat-plate boundary layer, and shock separated flows.

  9. Turbulence intensity and spatial integral scale during compression and expansion strokes in a four-cycle reciprocating engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikegami, M.; Shioji, M.; Nishimoto, K.

    1987-01-01

    A laser homodyne technique is applied to measure turbulence intensities and spatial scales during compression and expansion strokes in a non-fired engine. By using this technique, relative fluid motion in a turbulent flow is detected directly without cyclic variation biases caused by fluctuation in the main flow. Experiments are performed at different engine speeds, compression ratios, and induction swirl ratios. In no-swirl cases the turbulence field near the compression end is almost uniform, whereas in swirled cases both the turbulence intensity and the scale near the cylinder axis are higher than those in the periphery. In addition, based on themore » measured results, the k-epsilon two-equation turbulence model under the influence of compression is discussed.« less

  10. Kurtosis parameter K of arbitrary electromagnetic beams propagating through non-Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Dan, Youquan; Yu, Jiayi; Cai, Yangjian

    2017-10-01

    General analytical formulae for the kurtosis parameters K (K parameters) of the arbitrary electromagnetic (AE) beams propagating through non-Kolmogorov turbulence are derived, and according to the unified theory of polarization and coherence, the effect of degree of polarization (DOP) of an electromagnetic beam on the K parameter is studied. The analytical formulae can be given by the second-order moments and fourth-order moments of the Wigner distribution function for AE beams at source plane, the two turbulence quantities relating to the spatial power spectrum, and the propagation distance. Our results can also be extended to the arbitrary beams and the arbitrary spatial power spectra of Kolmogorov turbulence or non-Kolmogorov turbulence. Taking the stochastic electromagnetic Gaussian Schell-model (SEGSM) beam as an example, the numerical examples indicate that the K parameters of a SEGSM beam in non-Kolmogorov turbulence depend on propagation distance, the beam parameters and turbulence parameters. The K parameter of a SEGM beam is more sensitive to effect of turbulence with smaller inner scale and generalized exponent parameter. A non-polarized light has the strongest ability of resisting turbulence (ART), however, a fully polarized SEGSM beam has the poorest ART.

  11. On the freestream matching condition for stagnation point turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.

    1989-01-01

    The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises from the standard kappa-epsilon model is not due to a defect in the model but results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production equals dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which does not reach such a simple equilibrium. Consequently, the adjustment that has been made in the constants of the epsilon-transport equation to eliminate this singularity is not self-consistent since it is tantamount to artificially imposing an equilibrium structure on a turbulent flow which is known not to have one.

  12. Application of Navier-Stokes code PAB3D with kappa-epsilon turbulence model to attached and separated flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Lakshmanan, B.; Carlson, John R.

    1995-01-01

    A three-dimensional Navier-Stokes solver was used to determine how accurately computations can predict local and average skin friction coefficients for attached and separated flows for simple experimental geometries. Algebraic and transport equation closures were used to model turbulence. To simulate anisotropic turbulence, the standard two-equation turbulence model was modified by adding nonlinear terms. The effects of both grid density and the turbulence model on the computed flow fields were also investigated and compared with available experimental data for subsonic and supersonic free-stream conditions.

  13. Computation of Separated and Unsteady Flows with One- and Two-Equation Turbulence Models

    NASA Technical Reports Server (NTRS)

    Ekaterinaris, John A.; Menter, Florian R.

    1994-01-01

    The ability of one- and two-equation turbulence models to predict unsteady separated flows over airfoils is evaluated. An implicit, factorized, upwind-biased numerical scheme is used for the integration of the compressible, Reynolds averaged Navier-Stokes equations. The turbulent eddy viscosity is obtained from the computed mean flowfield by integration of the turbulent field equations. The two-equation turbulence models are discretized in space with an upwind-biased, second order accurate total variation diminishing scheme. One and two-equation turbulence models are first tested for a separated airfoil flow at fixed angle of incidence. The same models are then applied to compute the unsteady flowfields about airfoils undergoing oscillatory motion at low subsonic Mach numbers. Experimental cases where the flow has been tripped at the leading edge and where natural transition was allowed to occur naturally are considered. The more recently developed field-equation turbulence models capture the physics of unsteady separated flow significantly better than the standard kappa-epsilon and kappa-omega models. However, certain differences in the hysteresis effects are obtained. For an untripped high-Reynolds-number flow, it was found necessary to take into account the leading edge transitional flow region in order to capture the correct physical mechanism that leads to dynamic stall.

  14. Validation and optimization of SST kturbulence model for pollutant dispersion within a building array

    NASA Astrophysics Data System (ADS)

    Yu, Hesheng; Thé, Jesse

    2016-11-01

    The prediction of the dispersion of air pollutants in urban areas is of great importance to public health, homeland security, and environmental protection. Computational Fluid Dynamics (CFD) emerges as an effective tool for pollutant dispersion modelling. This paper reports and quantitatively validates the shear stress transport (SST) kturbulence closure model and its transitional variant for pollutant dispersion under complex urban environment for the first time. Sensitivity analysis is performed to establish recommendation for the proper use of turbulence models in urban settings. The current SST k-ω simulation is validated rigorously by extensive experimental data using hit rate for velocity components, and the "factor of two" of observations (FAC2) and fractional bias (FB) for concentration field. The simulation results show that current SST kmodel can predict flow field nicely with an overall hit rate of 0.870, and concentration dispersion with FAC2 = 0.721 and FB = 0.045. The flow simulation of the current SST kmodel is slightly inferior to that of a detached eddy simulation (DES), but better than that of standard kmodel. However, the current study is the best among these three model approaches, when validated against measurements of pollutant dispersion in the atmosphere. This work aims to provide recommendation for proper use of CFD to predict pollutant dispersion in urban environment.

  15. A theoretical and experimental study of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent evaporating sprays, injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogeneous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. For all three models, a k-epsilon model as used to find the properties of the continuous phase. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well--with no modifications in the prescription of eddy properties from its original calibration.

  16. Effect of liquid droplets on turbulence in a round gaseous jet

    NASA Technical Reports Server (NTRS)

    Mostafa, A. A.; Elghobashi, S. E.

    1986-01-01

    The main objective of this investigation is to develop a two-equation turbulence model for dilute vaporizing sprays or in general for dispersed two-phase flows including the effects of phase changes. The model that accounts for the interaction between the two phases is based on rigorously derived equations for turbulence kinetic energy (K) and its dissipation rate epsilon of the carrier phase using the momentum equation of that phase. Closure is achieved by modeling the turbulent correlations, up to third order, in the equations of the mean motion, concentration of the vapor in the carrier phase, and the kinetic energy of turbulence and its dissipation rate for the carrier phase. The governing equations are presented in both the exact and the modeled formes. The governing equations are solved numerically using a finite-difference procedure to test the presented model for the flow of a turbulent axisymmetric gaseous jet laden with either evaporating liquid droplets or solid particles. The predictions include the distribution of the mean velocity, volume fractions of the different phases, concentration of the evaporated material in the carrier phase, turbulence intensity and shear stress of the carrier phase, droplet diameter distribution, and the jet spreading rate. The predictions are in good agreement with the experimental data.

  17. Retrospective cost adaptive Reynolds-averaged Navier-Stokes kmodel for data-driven unsteady turbulent simulations

    NASA Astrophysics Data System (ADS)

    Li, Zhiyong; Hoagg, Jesse B.; Martin, Alexandre; Bailey, Sean C. C.

    2018-03-01

    This paper presents a data-driven computational model for simulating unsteady turbulent flows, where sparse measurement data is available. The model uses the retrospective cost adaptation (RCA) algorithm to automatically adjust the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k- ω turbulence equations to improve agreement between the simulated flow and the measurements. The RCA-RANS k- ω model is verified for steady flow using a pipe-flow test case and for unsteady flow using a surface-mounted-cube test case. Measurements used for adaptation of the verification cases are obtained from baseline simulations with known closure coefficients. These verification test cases demonstrate that the RCA-RANS k- ω model can successfully adapt the closure coefficients to improve agreement between the simulated flow field and a set of sparse flow-field measurements. Furthermore, the RCA-RANS k- ω model improves agreement between the simulated flow and the baseline flow at locations at which measurements do not exist. The RCA-RANS k- ω model is also validated with experimental data from 2 test cases: steady pipe flow, and unsteady flow past a square cylinder. In both test cases, the adaptation improves agreement with experimental data in comparison to the results from a non-adaptive RANS k- ω model that uses the standard values of the k- ω closure coefficients. For the steady pipe flow, adaptation is driven by mean stream-wise velocity measurements at 24 locations along the pipe radius. The RCA-RANS k- ω model reduces the average velocity error at these locations by over 35%. For the unsteady flow over a square cylinder, adaptation is driven by time-varying surface pressure measurements at 2 locations on the square cylinder. The RCA-RANS k- ω model reduces the average surface-pressure error at these locations by 88.8%.

  18. Bounded energy states in homogeneous turbulent shear flow: An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, Peter S.; Speziale, Charles G.

    1990-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.

  19. On the calculation of turbulent heat transport downstream from an abrupt pipe expansion

    NASA Technical Reports Server (NTRS)

    Chieng, C. C.; Launder, B. E.

    1980-01-01

    A numerical study of flow and heat transfer in the separated flow region produced by an abrupt pipe explosion is reported, with emphasis on the region in the immediate vicinity of the wall where turbulent transport gives way to molecular conduction and diffusion. The analysis is based on a modified TEACH-2E program with the standard k-epsilon model of turbulence. Predictions of the experimental data of Zemanick and Dougall (1970) for a diameter ratio of 0.54 show generally encouraging agreement with experiment. At a diameter ratio of 0.43 different trends are discernable between measurement and calculation, though this appears to be due to effects unconnected with the wall region studied here.

  20. Modelling Epsilon Aurigae without solid particles

    NASA Technical Reports Server (NTRS)

    Cheng, A. Y. S.; Woolf, N. J.

    1985-01-01

    Three components can be expected to contribute to the emission of epsilon Aurigae. There is a primary F star. There is an opaque disk which occults it, and there is a gas stream which is observed to produce absorption lines. Evidence that the disk is not responsible for the gas stream lines comes both from the radial velocities, which are too small, and from the IR energy distribution out of eclipse, which shows free-free emission that would produce inadequate optical depth in electron scattering. The color temperature of the IR excess can give misleading indications of low temperature material. Free-free emission at 10,000 K between 10 and 20 microns has a color temperature of 350 K. Attempts to mold the system are discussed.

  1. Near-wall turbulence model and its application to fully developed turbulent channel and pipe flows

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1990-01-01

    A near-wall turbulence model and its incorporation into a multiple-timescale turbulence model are presented. The near-wall turbulence model is obtained from a k-equation turbulence model and a near-wall analysis. In the method, the equations for the conservation of mass, momentum, and turbulent kinetic energy are integrated up to the wall, and the energy transfer and the dissipation rates inside the near-wall layer are obtained from algebraic equations. Fully developed turbulent channel and pipe flows are solved using a finite element method. The computational results compare favorably with experimental data. It is also shown that the turbulence model can resolve the overshoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.

  2. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  3. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  4. Ultraviolet observations of cool stars. IV - Intensities of Lyman-alpha and Mg II in epsilon Pegasi and epsilon Eridani, and line width-luminosity correlations

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1975-01-01

    A spectrometer on the Copernicus satellite has been used to confirm the existence of a line width-luminosity relation for the Ly-alpha and Mg II 2800-A chromospheric emission lines in K-type stars by observation of a K2 dwarf (epsilon Eri) and a K2 supergiant (epsilon Peg). Combined with previously reported observations of lines in three K giants (alpha Boo, alpha Tau, and beta Gem), the data are consistent with an identical dependence of line width on absolute visual magnitude for the Ca II K, Ly-alpha, and Mg II 2795-A lines. Surface fluxes of Ly-alpha, Mg II 2800-A, and O V 1218-A (upper limit) for epsilon Eri, and of Mg II 2800-A for epsilon Peg are also compared with values reported previously for the three giant stars.

  5. Applications of the k – ω Model in Stellar Evolutionary Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan, E-mail: ly@ynao.ac.cn

    The k – ω model for turbulence was first proposed by Kolmogorov. A new k – ω model for stellar convection was developed by Li, which could reasonably describe turbulent convection not only in the convectively unstable zone, but also in the overshooting regions. We revised the k – ω model by improving several model assumptions (including the macro-length of turbulence, convective heat flux, and turbulent mixing diffusivity, etc.), making it applicable not only for convective envelopes, but also for convective cores. Eight parameters are introduced in the revised k – ω model. It should be noted that the Reynoldsmore » stress (turbulent pressure) is neglected in the equation of hydrostatic support. We applied it into solar models and 5 M {sub ⊙} stellar models to calibrate the eight model parameters, as well as to investigate the effects of the convective overshooting on the Sun and intermediate mass stellar models.« less

  6. Apparent Transition Behavior of Widely-Used Turbulence Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2007-01-01

    The Spalart-Allmaras and the Menter SST k-omega turbulence models are shown to have the undesirable characteristic that, for fully turbulent computations, a transition region can occur whose extent varies with grid density. Extremely fine two-dimensional grids over the front portion of an airfoil are used to demonstrate the effect. As the grid density is increased, the laminar region near the nose becomes larger. In the Spalart-Allmaras model this behavior is due to convergence to a laminar-behavior fixed point that occurs in practice when freestream turbulence is below some threshold. It is the result of a feature purposefully added to the original model in conjunction with a special trip function. This degenerate fixed point can also cause non-uniqueness regarding where transition initiates on a given grid. Consistent fully turbulent results can easily be achieved by either using a higher freestream turbulence level or by making a simple change to one of the model constants. Two-equation k-omega models, including the SST model, exhibit strong sensitivity to numerical resolution near the area where turbulence initiates. Thus, inconsistent apparent transition behavior with grid refinement in this case does not appear to stem from the presence of a degenerate fixed point. Rather, it is a fundamental property of the k-omega model itself, and is not easily remedied.

  7. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    NASA Astrophysics Data System (ADS)

    Bomela, Christian Loangola

    The overall industrial gas turbine efficiency is known to be influenced by the pressure recovery in the exhaust system. The design and, subsequently, the performance of an industrial gas turbine exhaust diffuser largely depend on its inflow conditions dictated by the turbine last stage exit flow state and the restraints of the diffuser internal geometry. Recent advances in Computational Fluid Dynamics (CFD) tools and the availability of computer hardware at an affordable cost made the virtual tool a very attractive one for the analysis of fluid flow through devices like a diffuser. In this backdrop, CFD analyses of a typical industrial gas turbine hybrid exhaust diffuser, consisting of an annular diffuser followed by a conical portion, have been carried out with the purpose of improving the performance of these thermal devices using an open-source CFD code "OpenFOAM". The first phase in the research involved the validation of the CFD approach using OpenFOAM by comparing CFD results against published benchmark experimental data. The numerical results closely captured the flow reversal and the separated boundary layer at the shroud wall where a steep velocity gradient has been observed. The standard k --epsilon turbulence model slightly over-predicted the mean velocity profile in the casing boundary layer while slightly under-predicted it in the reversed flow region. A reliable prediction of flow characteristics in this region is very important as the presence of the annular diffuser inclined wall has the most dominant effect on the downstream flow development. The core flow region and the presence of the hub wall have only a minor influence as reported by earlier experimental studies. Additional simulations were carried out in the second phase to test the veracity of other turbulence models; these include RNG k--epsilon, the SST k--o, and the Spalart-Allmaras turbulence models. It was found that a high resolution case with 47.5 million cells using the SST k

  8. 3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...

  9. Towards CFD modeling of turbulent pipeline material transportation

    NASA Astrophysics Data System (ADS)

    Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph

    2013-04-01

    Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended

  10. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  11. Streamwise Vorticity Generation in Laminar and Turbulent Jets

    NASA Technical Reports Server (NTRS)

    Demuren, Aodeji O.; Wilson, Robert V.

    1999-01-01

    Complex streamwise vorticity fields are observed in the evolution of non-circular jets. Generation mechanisms are investigated via Reynolds-averaged (RANS), large-eddy (LES) and direct numerical (DNS) simulations of laminar and turbulent rectangular jets. Complex vortex interactions are found in DNS of laminar jets, but axis-switching is observed only when a single instability mode is present in the incoming mixing layer. With several modes present, the structures are not coherent and no axis-switching occurs, RANS computations also produce no axis-switching. On the other hand, LES of high Reynolds number turbulent jets produce axis-switching even for cases with several instability modes in the mixing layer. Analysis of the source terms of the mean streamwise vorticity equation through post-processing of the instantaneous results shows that, complex interactions of gradients of the normal and shear Reynolds stresses are responsible for the generation of streamwise vorticity which leads to axis-switching. RANS computations confirm these results. k - epsilon turbulence model computations fail to reproduce the phenomenon, whereas algebraic Reynolds stress model (ASM) computations, in which the secondary normal and shear stresses are computed explicitly, succeeded in reproducing the phenomenon accurately.

  12. Nonuniversal star formation efficiency in turbulent ISM

    DOE PAGES

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2016-07-29

    Here, we present a study of a star formation prescription in which star formation efficiency depends on local gas density and turbulent velocity dispersion, as suggested by direct simulations of SF in turbulent giant molecular clouds (GMCs). We test the model using a simulation of an isolated Milky Way-sized galaxy with a self-consistent treatment of turbulence on unresolved scales. We show that this prescription predicts a wide variation of local star formation efficiency per free-fall time,more » $$\\epsilon_{\\rm ff} \\sim 0.1 - 10\\%$$, and gas depletion time, $$t_{\\rm dep} \\sim 0.1 - 10$$ Gyr. In addition, it predicts an effective density threshold for star formation due to suppression of $$\\epsilon_{\\rm ff}$$ in warm diffuse gas stabilized by thermal pressure. We show that the model predicts star formation rates in agreement with observations from the scales of individual star-forming regions to the kiloparsec scales. This agreement is non-trivial, as the model was not tuned in any way and the predicted star formation rates on all scales are determined by the distribution of the GMC-scale densities and turbulent velocities $$\\sigma$$ in the cold gas within the galaxy, which is shaped by galactic dynamics. The broad agreement of the star formation prescription calibrated in the GMC-scale simulations with observations, both gives credence to such simulations and promises to put star formation modeling in galaxy formation simulations on a much firmer theoretical footing.« less

  13. Validation of the k- ω turbulence model for the thermal boundary layer profile of effusive cooled walls

    NASA Astrophysics Data System (ADS)

    Hink, R.

    2015-09-01

    The choice of materials for rocket chamber walls is limited by its thermal resistance. The thermal loads can be reduced substantially by the blowing out of gases through a porous surface. The k- ω-based turbulence models for computational fluid dynamic simulations are designed for smooth, non-permeable walls and have to be adjusted to account for the influence of injected fluids. Wilcox proposed therefore an extension for the k- ω turbulence model for the correct prediction of turbulent boundary layer velocity profiles. In this study, this extension is validated against experimental thermal boundary layer data from the Thermosciences Division of the Department of Mechanical Engineering from the Stanford University. All simulations are performed with a finite volume-based in-house code of the German Aerospace Center. Several simulations with different blowing settings were conducted and discussed in comparison to the results of the original model and in comparison to an additional roughness implementation. This study has permitted to understand that velocity profile corrections are necessary in contrast to additional roughness corrections to predict the correct thermal boundary layer profile of effusive cooled walls. Finally, this approach is applied to a two-dimensional simulation of an effusive cooled rocket chamber wall.

  14. Reynolds stress closure modeling in wall-bounded flows

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1993-01-01

    This report describes two projects. Firstly, a Reynolds stress closure for near-wall turbulence is described. It was motivated by the simpler k-epsilon-(v-bar(exp 2)) model described in last year's annual research brief. Direct Numerical Simulation of three-dimensional channel flow shows a curious decrease of the turbulent kinetic energy. The second topic of this report is a model which reproduces this effect. That model is described and used to discuss the relevance of the three dimensional channel flow simulation to swept wing boundary layers.

  15. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.

    PubMed

    Mihaescu, Mihai; Murugappan, Shanmugam; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim

    2008-07-19

    Computational fluid dynamics techniques employing primarily steady Reynolds-Averaged Navier-Stokes (RANS) methodology have been recently used to characterize the transitional/turbulent flow field in human airways. The use of RANS implies that flow phenomena are averaged over time, the flow dynamics not being captured. Further, RANS uses two-equation turbulence models that are not adequate for predicting anisotropic flows, flows with high streamline curvature, or flows where separation occurs. A more accurate approach for such flow situations that occur in the human airway is Large Eddy Simulation (LES). The paper considers flow modeling in a pharyngeal airway model reconstructed from cross-sectional magnetic resonance scans of a patient with obstructive sleep apnea. The airway model is characterized by a maximum narrowing at the site of retropalatal pharynx. Two flow-modeling strategies are employed: steady RANS and the LES approach. In the RANS modeling framework both k-epsilon and k-omega turbulence models are used. The paper discusses the differences between the airflow characteristics obtained from the RANS and LES calculations. The largest discrepancies were found in the axial velocity distributions downstream of the minimum cross-sectional area. This region is characterized by flow separation and large radial velocity gradients across the developed shear layers. The largest difference in static pressure distributions on the airway walls was found between the LES and the k-epsilon data at the site of maximum narrowing in the retropalatal pharynx.

  16. Prediction of Turbulence-Generated Noise in Unheated Jets. Part 2; JeNo Users' Manual (Version 1.0)

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Wolter, John D.; Koch, L. Danielle

    2009-01-01

    JeNo (Version 1.0) is a Fortran90 computer code that calculates the far-field sound spectral density produced by axisymmetric, unheated jets at a user specified observer location and frequency range. The user must provide a structured computational grid and a mean flow solution from a Reynolds-Averaged Navier Stokes (RANS) code as input. Turbulence kinetic energy and its dissipation rate from a k-epsilon or k-omega turbulence model must also be provided. JeNo is a research code, and as such, its development is ongoing. The goal is to create a code that is able to accurately compute far-field sound pressure levels for jets at all observer angles and all operating conditions. In order to achieve this goal, current theories must be combined with the best practices in numerical modeling, all of which must be validated by experiment. Since the acoustic predictions from JeNo are based on the mean flow solutions from a RANS code, quality predictions depend on accurate aerodynamic input.This is why acoustic source modeling, turbulence modeling, together with the development of advanced measurement systems are the leading areas of research in jet noise research at NASA Glenn Research Center.

  17. Turbulence model development and application at Lockheed Fort Worth Company

    NASA Technical Reports Server (NTRS)

    Smith, Brian R.

    1995-01-01

    This viewgraph presentation demonstrates that computationally efficient k-l and k-kl turbulence models have been developed and implemented at Lockheed Fort Worth Company. Many years of experience have been gained applying two equation turbulence models to complex three-dimensional flows for design and analysis.

  18. The turbulent recirculating flow field in a coreless induction furnace. A comparison of theoretical predictions with measurements

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation for the electromagnetic force field and the fluid flow field in a coreless induction furnace is presented. The fluid flow field was represented by writing the axisymmetric turbulent Navier-Stokes equation, containing the electromagnetic body force term. The electromagnetic body force field was calculated by using a technique of mutual inductances. The kappa-epsilon model was employed for evaluating the turbulent viscosity and the resultant differential equations were solved numerically. Theoretically predicted velocity fields are in reasonably good agreement with the experimental measurements reported by Hunt and Moore; furthermore, the agreement regarding the turbulent intensities are essentially quantitative. These results indicate that the kappa-epsilon model provides a good engineering representation of the turbulent recirculating flows occurring in induction furnaces. At this stage it is not clear whether the discrepancies between measurements and the predictions, which were not very great in any case, are attributable either to the model or to the measurement techniques employed.

  19. Computational Study of the CC3 Impeller and Vaneless Diffuser Experiment

    NASA Technical Reports Server (NTRS)

    Kulkarni, Sameer; Beach, Timothy A.; Skoch, Gary J.

    2013-01-01

    Centrifugal compressors are compatible with the low exit corrected flows found in the high pressure compressor of turboshaft engines and may play an increasing role in turbofan engines as engine overall pressure ratios increase. Centrifugal compressor stages are difficult to model accurately with RANS CFD solvers. A computational study of the CC3 centrifugal impeller in its vaneless diffuser configuration was undertaken as part of an effort to understand potential causes of RANS CFD mis-prediction in these types of geometries. Three steady, periodic cases of the impeller and diffuser were modeled using the TURBO Parallel Version 4 code: 1) a k-epsilon turbulence model computation on a 6.8 million point grid using wall functions, 2) a k-epsilon turbulence model computation on a 14 million point grid integrating to the wall, and 3) a k-omega turbulence model computation on the 14 million point grid integrating to the wall. It was found that all three cases compared favorably to data from inlet to impeller trailing edge, but the k-epsilon and k-omega computations had disparate results beyond the trailing edge and into the vaneless diffuser. A large region of reversed flow was observed in the k-epsilon computations which extended from 70% to 100% span at the exit rating plane, whereas the k-omega computation had reversed flow from 95% to 100% span. Compared to experimental data at near-peak-efficiency, the reversed flow region in the k-epsilon case resulted in an under-prediction in adiabatic efficiency of 8.3 points, whereas the k-omega case was 1.2 points lower in efficiency.

  20. A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1988-01-01

    A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.

  1. epsilon-Hexachlorocyclohexane (epsilon-HC)

    Integrated Risk Information System (IRIS)

    epsilon - Hexachlorocyclohexane ( epsilon - HC ) ; CASRN 6108 - 10 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard

  2. Dynamic and Thermal Turbulent Time Scale Modelling for Homogeneous Shear Flows

    NASA Technical Reports Server (NTRS)

    Schwab, John R.; Lakshminarayana, Budugur

    1994-01-01

    A new turbulence model, based upon dynamic and thermal turbulent time scale transport equations, is developed and applied to homogeneous shear flows with constant velocity and temperature gradients. The new model comprises transport equations for k, the turbulent kinetic energy; tau, the dynamic time scale; k(sub theta), the fluctuating temperature variance; and tau(sub theta), the thermal time scale. It offers conceptually parallel modeling of the dynamic and thermal turbulence at the two equation level, and eliminates the customary prescription of an empirical turbulent Prandtl number, Pr(sub t), thus permitting a more generalized prediction capability for turbulent heat transfer in complex flows and geometries. The new model also incorporates constitutive relations, based upon invariant theory, that allow the effects of nonequilibrium to modify the primary coefficients for the turbulent shear stress and heat flux. Predictions of the new model, along with those from two other similar models, are compared with experimental data for decaying homogeneous dynamic and thermal turbulence, homogeneous turbulence with constant temperature gradient, and homogeneous turbulence with constant temperature gradient and constant velocity gradient. The new model offers improvement in agreement with the data for most cases considered in this work, although it was no better than the other models for several cases where all the models performed poorly.

  3. Computation and modeling of aero-thermal fields in turbine cascades and strongly curved ducts

    NASA Technical Reports Server (NTRS)

    Luo, J.; Lakshminarayana, B.

    1994-01-01

    Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existence of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flow in a strongly curved turn-around duct (TAD) has been carried out with a Reynolds stress model (RSM), an algebraic Reynolds stress model (ARSM) and a kappa-epsilon model. the RSM model and the ARSM model are found to capture the turbulence damping due to the convex curvature, but underpredict the turbulence enhancement caused by the concave curvature. To capture the concave curvature effects, it is necessary to modify the epsilon-equation. The modification of episilon-equation suggested by Launder, et.al, provides the correct trend, but over-corrects the curvature effects. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several low-Reynolds-number (LRN) kappa-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN kappa-epsilon models employed.

  4. Multifractal scaling of the kinetic energy flux in solar wind turbulence

    NASA Technical Reports Server (NTRS)

    Marsch, E.; Rosenbauer, H.; Tu, C.-Y.

    1995-01-01

    The geometrical and scaling properties of the energy flux of the turbulent kinetic energy in the solar wind have been studied. By present experimental technology in solar wind measurements, we cannot directly measure the real volumetric dissipation rate, epsilon(t), but are constrained to represent it by surrogating the energy flux near the dissipation range at the proton gyro scales. There is evidence for the multifractal nature of the so defined dissipation field epsilon(t), a result derived from the scaling exponents of its statistical q-th order moments. The related generalized dimension D(q) has been determined and reveals that the dissipation field has a multifractal structure. which is not compatible with a scale-invariant cascade. The associated multifractal spectrum f(alpha) has been estimated for the first time for MHD turbulence in the solar wind. Its features resemble those obtained for turbulent fluids and other nonlinear multifractal systems. The generalized dimension D(q) can, for turbulence in high-speed streams, be fitted well by the functional dependence of the p-model with a comparatively large parameter, p = 0.87. indicating a strongly intermittent multifractal energy cascade. The experimental value for D(p)/3, if used in the scaling exponent s(p) of the velocity structure function, gives an exponent that can describe some of the observations. The scaling exponent mu of the auto correlation function of epsilon(t) has also been directly evaluated. It has the value of 0.37. Finally. the mean dissipation rate was determined, which could be used in solar wind heating models.

  5. Validation of a Pseudo-Sound Theory for the Pressure-Dilatation in DNS of Compressible Turbulence

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.; Blaisdell, G. A.

    1997-01-01

    The results of an asymptotic theory for statistical closures for compressible turbulence are explored and validated with the direct numerical simulation of the isotropic decay and the homogeneous shear. An excellent collapse of the data is seen. The slow portion is found to scale, as predicted by the theory, with the quantity M(sub t)(sup 2) and epsilon(sub s). The rapid portion has an unambiguous scaling with alpha(sup 2)M(sub t)(sup s)epsilon(sub s)[P(sub k)/epsilon - l](Sk/epsilon)(sup 2). Implicit in the scaling is a dependence, as has been noted by others, on the gradient Mach number. A new feature of the effects of compressibility, that of the Kolmogorov scaling coefficient, alpha, is discussed. It is suggested that alpha may contain flow specific physics associated with large scales that might provide further insight into the structural effects of compressibility.

  6. Computation of the sound generated by isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Hussaini, M. Y.

    1993-01-01

    The acoustic radiation from isotropic turbulence is computed numerically. A hybrid direct numerical simulation approach which combines direct numerical simulation (DNS) of the turbulent flow with the Lighthill acoustic analogy is utilized. It is demonstrated that the hybrid DNS method is a feasible approach to the computation of sound generated by turbulent flows. The acoustic efficiency in the simulation of isotropic turbulence appears to be substantially less than that in subsonic jet experiments. The dominant frequency of the computed acoustic pressure is found to be somewhat larger than the dominant frequency of the energy-containing scales of motion. The acoustic power in the simulations is proportional to epsilon (M(sub t))(exp 5) where epsilon is the turbulent dissipation rate and M(sub t) is the turbulent Mach number. This is in agreement with the analytical result of Proudman (1952), but the constant of proportionality is smaller than the analytical result. Two different methods of computing the acoustic power from the DNS data bases yielded consistent results.

  7. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.

    PubMed

    Sivalingam, G; Madras, Giridhar

    2004-01-01

    Enzymatic ring-opening polymerization of epsilon-caprolactone by various lipases was investigated in toluene at various temperatures. The determination of molecular weight and structural identification was carried out with gel permeation chromatography and proton NMR, respectively. Among the various lipases employed, an immobilized lipase from Candida antartica B (Novozym 435) showed the highest catalytic activity. The polymerization of epsilon-caprolactone by Novozym 435 showed an optimal temperature of 65 degrees C and an optimum toluene content of 50/50 v/v of toluene and epsilon-caprolactone. As lipases can degrade polyesters, a maximum in the molecular weight with time was obtained due to the competition of ring opening polymerization and degradation by specific chain end scission. The optimum temperature, toluene content, and the variation of molecular weight with time are consistent with earlier observations. A comprehensive model based on continuous distribution kinetics was developed to model these phenomena. The model accounts for simultaneous polymerization, degradation and enzyme deactivation and provides a technique to determine the rate coefficients for these processes. The dependence of these rate coefficients with temperature and monomer concentration is also discussed.

  8. A Computer Code for Swirling Turbulent Axisymmetric Recirculating Flows in Practical Isothermal Combustor Geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Rhode, D. L.

    1982-01-01

    A primitive pressure-velocity variable finite difference computer code was developed to predict swirling recirculating inert turbulent flows in axisymmetric combustors in general, and for application to a specific idealized combustion chamber with sudden or gradual expansion. The technique involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation k-epsilon turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. A user's manual, dealing with the computational problem, showing how the mathematical basis and computational scheme may be translated into a computer program is presented. A flow chart, FORTRAN IV listing, notes about various subroutines and a user's guide are supplied as an aid to prospective users of the code.

  9. Sharply curved turn around duct flow predictions using spectral partitioning of the turbulent kinetic energy and a pressure modified wall law

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1986-01-01

    Computational predictions of turbulent flow in sharply curved 180 degree turn around ducts are presented. The CNS2D computer code is used to solve the equations of motion for two-dimensional incompressible flows transformed to a nonorthogonal body-fitted coordinate system. This procedure incorporates the pressure velocity correction algorithm SIMPLE-C to iteratively solve a discretized form of the transformed equations. A multiple scale turbulence model based on simplified spectral partitioning is employed to obtain closure. Flow field predictions utilizing the multiple scale model are compared to features predicted by the traditional single scale k-epsilon model. Tuning parameter sensitivities of the multiple scale model applied to turn around duct flows are also determined. In addition, a wall function approach based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients is tested. Turn around duct flow characteristics utilizing this modified wall law are presented and compared to results based on a standard wall treatment.

  10. Development and validation of a turbulent-mix model for variable-density and compressible flows.

    PubMed

    Banerjee, Arindam; Gore, Robert A; Andrews, Malcolm J

    2010-10-01

    The modeling of buoyancy driven turbulent flows is considered in conjunction with an advanced statistical turbulence model referred to as the BHR (Besnard-Harlow-Rauenzahn) k-S-a model. The BHR k-S-a model is focused on variable-density and compressible flows such as Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) driven mixing. The BHR k-S-a turbulence mix model has been implemented in the RAGE hydro-code, and model constants are evaluated based on analytical self-similar solutions of the model equations. The results are then compared with a large test database available from experiments and direct numerical simulations (DNS) of RT, RM, and KH driven mixing. Furthermore, we describe research to understand how the BHR k-S-a turbulence model operates over a range of moderate to high Reynolds number buoyancy driven flows, with a goal of placing the modeling of buoyancy driven turbulent flows at the same level of development as that of single phase shear flows.

  11. Two-point spectral model for variable density homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Pal, Nairita; Kurien, Susan; Clark, Timothy; Aslangil, Denis; Livescu, Daniel

    2017-11-01

    We present a comparison between a two-point spectral closure model for buoyancy-driven variable density homogeneous turbulence, with Direct Numerical Simulation (DNS) data of the same system. We wish to understand how well a suitable spectral model might capture variable density effects and the transition to turbulence from an initially quiescent state. Following the BHRZ model developed by Besnard et al. (1990), the spectral model calculation computes the time evolution of two-point correlations of the density fluctuations with the momentum and the specific-volume. These spatial correlations are expressed as function of wavenumber k and denoted by a (k) and b (k) , quantifying mass flux and turbulent mixing respectively. We assess the accuracy of the model, relative to a full DNS of the complete hydrodynamical equations, using a and b as metrics. Work at LANL was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396.

  12. Stellar model chromospheres. IV - The formation of the H-epsilon feature in the sun /G2 V/ and Arcturus /K2 III/

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Linsky, J. L.

    1975-01-01

    The formation of the Balmer-series member H-epsilon in the near-red wing of the Ca II H line is discussed for two cases: the sun (H-epsilon absorption profile) and Arcturus (H-epsilon emission profile). It is shown that although the H-epsilon source functions in both stars are dominated by the Balmer-continuum radiation field through photoionizations, the line-formation problems in the two stars are quantitatively different, owing to a substantial difference in the relative importance of the stellar chromosphere temperature inversion as compared with the stellar photosphere.

  13. Turbulence modeling for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1992-01-01

    The objective of the present work is to develop, verify, and incorporate two equation turbulence models which account for the effect of compressibility at high speeds into a three dimensional Reynolds averaged Navier-Stokes code and to provide documented model descriptions and numerical procedures so that they can be implemented into the National Aerospace Plane (NASP) codes. A summary of accomplishments is listed: (1) Four codes have been tested and evaluated against a flat plate boundary layer flow and an external supersonic flow; (2) a code named RANS was chosen because of its speed, accuracy, and versatility; (3) the code was extended from thin boundary layer to full Navier-Stokes; (4) the K-omega two equation turbulence model has been implemented into the base code; (5) a 24 degree laminar compression corner flow has been simulated and compared to other numerical simulations; and (6) work is in progress in writing the numerical method of the base code including the turbulence model.

  14. Performance of four turbulence closure models implemented using a generic length scale method

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P.

    2005-01-01

    A two-equation turbulence model (one equation for turbulence kinetic energy and a second for a generic turbulence length-scale quantity) proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235] is implemented in a three-dimensional oceanographic model (Regional Oceanographic Modeling System; ROMS v2.0). These two equations, along with several stability functions, can represent many popular turbulence closures, including the k-kl (Mellor-Yamada Level 2.5), k-??, and k-?? schemes. The implementation adds flexibility to the model by providing an unprecedented range of turbulence closure selections in a single 3D oceanographic model and allows comparison and evaluation of turbulence models in an otherwise identical numerical environment. This also allows evaluation of the effect of turbulence models on other processes such as suspended-sediment distribution or ecological processes. Performance of the turbulence models and sediment-transport schemes is investigated with three test cases for (1) steady barotropic flow in a rectangular channel, (2) wind-induced surface mixed-layer deepening in a stratified fluid, and (3) oscillatory stratified pressure-gradient driven flow (estuarine circulation) in a rectangular channel. Results from k-??, k-??, and gen (a new closure proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235]) are very similar for these cases, but the k-kl closure results depend on a wall-proximity function that must be chosen to suit the flow. Greater variations appear in simulations of suspended-sediment concentrations than in salinity simulations because the transport of suspended-sediment amplifies minor variations in the methods. The amplification is caused by the added physics of a vertical settling rate, bottom stress dependent resuspension, and diffusive transport of sediment in regions of well mixed salt and temperature. Despite the amplified sensitivity of sediment to turbulence models in the estuary test case, the four

  15. Development of a One-Equation Eddy Viscosity Turbulence Model for Application to Complex Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Wray, Timothy J.

    Computational fluid dynamics (CFD) is routinely used in performance prediction and design of aircraft, turbomachinery, automobiles, and in many other industrial applications. Despite its wide range of use, deficiencies in its prediction accuracy still exist. One critical weakness is the accurate simulation of complex turbulent flows using the Reynolds-Averaged Navier-Stokes equations in conjunction with a turbulence model. The goal of this research has been to develop an eddy viscosity type turbulence model to increase the accuracy of flow simulations for mildly separated flows, flows with rotation and curvature effects, and flows with surface roughness. It is accomplished by developing a new zonal one-equation turbulence model which relies heavily on the flow physics; it is now known in the literature as the Wray-Agarwal one-equation turbulence model. The effectiveness of the new model is demonstrated by comparing its results with those obtained by the industry standard one-equation Spalart-Allmaras model and two-equation Shear-Stress-Transport k - o model and experimental data. Results for subsonic, transonic, and supersonic flows in and about complex geometries are presented. It is demonstrated that the Wray-Agarwal model can provide the industry and CFD researchers an accurate, efficient, and reliable turbulence model for the computation of a large class of complex turbulent flows.

  16. Model of the hydrodynamic loads applied on a rotating halfbridge belonging to a circular settling tank

    NASA Astrophysics Data System (ADS)

    Dascalescu, A. E.; Lazaroiu, G.; Scupi, A. A.; Oanta, E.

    2016-08-01

    The rotating half-bridge of a settling tank is employed to sweep the sludge from the wastewater and to vacuum and sent it to the central collector. It has a complex geometry but the main beam may be considered a slender bar loaded by the following category of forces: concentrated forces produced by the weight of the scrapping system of blades, suction pipes, local sludge collecting chamber, plus the sludge in the horizontal sludge transporting pipes; forces produced by the access bridge; buoyant forces produced by the floating barrels according to Archimedes’ principle; distributed forces produced by the weight of the main bridge; hydrodynamic forces. In order to evaluate the hydrodynamic loads we have conceived a numerical model based on the finite volume method, using the ANSYS-Fluent software. To model the flow we used the equations of Reynolds Averaged Navier-Stokes (RANS) for liquids together with Volume of Fluid model (VOF) for multiphase flows. For turbulent model k-epsilon we used the equation for turbulent kinetic energy k and dissipation epsilon. These results will be used to increase the accuracy of the loads’ sub-model in the theoretical models, e. the finite element model and the analytical model.

  17. Validation of numerical models for flow simulation in labyrinth seals

    NASA Astrophysics Data System (ADS)

    Frączek, D.; Wróblewski, W.

    2016-10-01

    CFD results were compared with the results of experiments for the flow through the labyrinth seal. RANS turbulence models (k-epsilon, k-omega, SST and SST-SAS) were selected for the study. Steady and transient results were analyzed. ANSYS CFX was used for numerical computation. The analysis included flow through sealing section with the honeycomb land. Leakage flows and velocity profiles in the seal were compared. In addition to the comparison of computational models, the divergence of modeling and experimental results has been determined. Tips for modeling these problems were formulated.

  18. Numerical study of a separating and reattaching flow by using Reynolds-stress tubulence closure

    NASA Technical Reports Server (NTRS)

    Amano, R. S.; Goel, P.

    1983-01-01

    The numerical study of the Reynolds-stress turbulence closure for separating, reattaching, recirculating and redeveloping flow is summarized. The calculations were made for two different closure models of pressure - strain correlation. The results were compared with the experimental data. Furthermore, these results were compared with the computations made by using the one layer and three layer treatment of k-epsilon turbulence model which were developed. Generally the computations by the Reynolds-stress model show better results than those by the k-epsilon model, in particular, some improvement was noticed in the redeveloping region of the separating and reattaching flow in a pipe with sudden expansion.

  19. Inference of turbulence parameters from a ROMS simulation using the k-ε closure scheme

    NASA Astrophysics Data System (ADS)

    Thyng, Kristen M.; Riley, James J.; Thomson, Jim

    2013-12-01

    Comparisons between high resolution turbulence data from Admiralty Inlet, WA (USA), and a 65-meter horizontal grid resolution simulation using the hydrostatic ocean modelling code, Regional Ocean Modeling System (ROMS), show that the model's kturbulence closure scheme performs reasonably well. Turbulent dissipation rates and Reynolds stresses agree within a factor of two, on average. Turbulent kinetic energy (TKE) also agrees within a factor of two, but only for motions within the observed inertial sub-range of frequencies (i.e., classic approximately isotropic turbulence). TKE spectra from the observations indicate that there is significant energy at lower frequencies than the inertial sub-range; these scales are not captured by the model closure scheme nor the model grid resolution. To account for scales not present in the model, the inertial sub-range is extrapolated to lower frequencies and then integrated to obtain an inferred, diagnostic total TKE, with improved agreement with the observed total TKE. The realistic behavior of the dissipation rate and Reynolds stress, combined with the adjusted total TKE, imply that ROMS simulations can be used to understand and predict spatial and temporal variations in turbulence. The results are suggested for application to siting tidal current turbines.

  20. Turbulence Model Selection for Low Reynolds Number Flows

    PubMed Central

    2016-01-01

    One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil’s surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail. PMID:27104354

  1. Turbulence Model Selection for Low Reynolds Number Flows.

    PubMed

    Aftab, S M A; Mohd Rafie, A S; Razak, N A; Ahmad, K A

    2016-01-01

    One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil's surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail.

  2. Comparative Study on the Prediction of Aerodynamic Characteristics of Aircraft with Turbulence Models

    NASA Astrophysics Data System (ADS)

    Jang, Yujin; Huh, Jinbum; Lee, Namhun; Lee, Seungsoo; Park, Youngmin

    2018-04-01

    The RANS equations are widely used to analyze complex flows over aircraft. The equations require a turbulence model for turbulent flow analyses. A suitable turbulence must be selected for accurate predictions of aircraft aerodynamic characteristics. In this study, numerical analyses of three-dimensional aircraft are performed to compare the results of various turbulence models for the prediction of aircraft aerodynamic characteristics. A 3-D RANS solver, MSAPv, is used for the aerodynamic analysis. The four turbulence models compared are the Sparlart-Allmaras (SA) model, Coakley's q-ω model, Huang and Coakley's kmodel, and Menter's k-ω SST model. Four aircrafts are considered: an ARA-M100, DLR-F6 wing-body, DLR-F6 wing-body-nacelle-pylon from the second drag prediction workshop, and a high wing aircraft with nacelles. The CFD results are compared with experimental data and other published computational results. The details of separation patterns, shock positions, and Cp distributions are discussed to find the characteristics of the turbulence models.

  3. Turbine Engine Research Center (TERC) Data System Enhancement and Test Article Evaluation. Delivery Order 0002: TERC Aeromechanical Characterization

    DTIC Science & Technology

    2005-06-01

    test, the entire turbulence model was changed from standard k- epsilon to Spalart- Allmaras. Using these different tools of turbulence models, a few...this research, leaving only pre-existing finite element models to be used. At some point a NASTRAN model was developed for vibrations analysis but

  4. Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models

    NASA Technical Reports Server (NTRS)

    Abid, Ridha; Morrison, Joseph H.; Gatski, Thomas B.; Speziale, Charles G.

    1996-01-01

    An explicit algebraic stress equation, developed by Gatski and Speziale, is used in the framework of K-epsilon formulation to predict complex aerodynamic turbulent flows. The nonequilibrium effects are modeled through coefficients that depend nonlinearly on both rotational and irrotational strains. The proposed model was implemented in the ISAAC Navier-Stokes code. Comparisons with the experimental data are presented which clearly demonstrate that explicit algebraic stress models can predict the correct response to nonequilibrium flow.

  5. Summary of EASM Turbulence Models in CFL3D With Validation Test Cases

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.

    2003-01-01

    This paper summarizes the Explicit Algebraic Stress Model in k-omega form (EASM-ko) and in k-epsilon form (EASM-ke) in the Reynolds-averaged Navier-Stokes code CFL3D. These models have been actively used over the last several years in CFL3D, and have undergone some minor modifications during that time. Details of the equations and method for coding the latest versions of the models are given, and numerous validation cases are presented. This paper serves as a validation archive for these models.

  6. An investigation of implicit turbulence modeling for laminar-turbulent transition in natural convection

    NASA Astrophysics Data System (ADS)

    Li, Chunggang; Tsubokura, Makoto; Wang, Weihsiang

    2017-11-01

    The automatic dissipation adjustment (ADA) model based on truncated Navier-Stokes equations is utilized to investigate the feasibility of using implicit large eddy simulation (ILES) with ADA model on the transition in natural convection. Due to the high Rayleigh number coming from the larger temperature difference (300K), Roe scheme modified for low Mach numbers coordinating ADA model is used to resolve the complicated flow field. Based on the qualitative agreement of the comparisons with DNS and experimental results and the capability of numerically predicating a -3 decay law for the temporal power spectrum of the temperature fluctuation, this study thus validates the feasibility of ILES with ADA model on turbulent natural convection. With the advantages of ease of implementation because no explicit modeling terms are needed and nearly free of tuning parameters, ADA model offers to become a promising tool for turbulent thermal convection. Part of the results is obtained using the K computer at the RIKEN Advanced Institute for Computational Science (Proposal number hp160232).

  7. Development of renormalization group analysis of turbulence

    NASA Technical Reports Server (NTRS)

    Smith, L. M.

    1990-01-01

    The renormalization group (RG) procedure for nonlinear, dissipative systems is now quite standard, and its applications to the problem of hydrodynamic turbulence are becoming well known. In summary, the RG method isolates self similar behavior and provides a systematic procedure to describe scale invariant dynamics in terms of large scale variables only. The parameterization of the small scales in a self consistent manner has important implications for sub-grid modeling. This paper develops the homogeneous, isotropic turbulence and addresses the meaning and consequence of epsilon-expansion. The theory is then extended to include a weak mean flow and application of the RG method to a sequence of models is shown to converge to the Navier-Stokes equations.

  8. The dynamics of turbulent premixed flames: Mechanisms and models for turbulence-flame interaction

    NASA Astrophysics Data System (ADS)

    Steinberg, Adam M.

    The use of turbulent premixed combustion in engines has been garnering renewed interest due to its potential to reduce NOx emissions. However there are many aspects of turbulence-flame interaction that must be better understood before such flames can be accurately modeled. The focus of this dissertation is to develop an improved understanding for the manner in which turbulence interacts with a premixed flame in the 'thin flamelet regime'. To do so, two new diagnostics were developed and employed in a turbulent slot Bunsen flame. These diagnostics, Cinema-Stereoscopic Particle Image Velocimetry and Orthogonal-Plane Cinema-Stereoscopic Particle Image Velocimetry, provided temporally resolved velocity and flame surface measurements in two- and three-dimensions with rates of up to 3 kHz and spatial resolutions as low as 280 mum. Using these measurements, the mechanisms with which turbulence generates flame surface area were studied. It was found that the previous concept that flame stretch is characterized by counter-rotating vortex pairs does not accurately describe real turbulence-flame interactions. Analysis of the experimental data showed that the straining of the flame surface is determined by coherent structures of fluid dynamic strain rate, while the wrinkling is caused by vortical structures. Furthermore, it was shown that the canonical vortex pair configuration is not an accurate reflection of the real interaction geometry. Hence, models developed based on this geometry are unlikely to be accurate. Previous models for the strain rate, curvature stretch rate, and turbulent burning velocity were evaluated. It was found that the previous models did not accurately predict the measured data for a variety of reasons: the assumed interaction geometries did not encompass enough possibilities to describe the possible effects of real turbulence, the turbulence was not properly characterized, and the transport of flame surface area was not always considered. New models

  9. Influence of Mean-Density Gradient on Small-Scale Turbulence Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2000-01-01

    A physics-based methodology is described to predict jet-mixing noise due to small-scale turbulence. Both self- and shear-noise source teens of Lilley's equation are modeled and the far-field aerodynamic noise is expressed as an integral over the jet volume of the source multiplied by an appropriate Green's function which accounts for source convection and mean-flow refraction. Our primary interest here is to include transverse gradients of the mean density in the source modeling. It is shown that, in addition to the usual quadrupole type sources which scale to the fourth-power of the acoustic wave number, additional dipole and monopole sources are present that scale to lower powers of wave number. Various two-point correlations are modeled and an approximate solution to noise spectra due to multipole sources of various orders is developed. Mean flow and turbulence information is provided through RANS-k(epsilon) solution. Numerical results are presented for a subsonic jet at a range of temperatures and Mach numbers. Predictions indicated a decrease in high frequency noise with added heat, while changes in the low frequency noise depend on jet velocity and observer angle.

  10. Testing of RANS Turbulence Models for Stratified Flows Based on DNS Data

    NASA Technical Reports Server (NTRS)

    Venayagamoorthy, S. K.; Koseff, J. R.; Ferziger, J. H.; Shih, L. H.

    2003-01-01

    In most geophysical flows, turbulence occurs at the smallest scales and one of the two most important additional physical phenomena to account for is strati cation (the other being rotation). In this paper, the main objective is to investigate proposed changes to RANS turbulence models which include the effects of stratifi- cation more explicitly. These proposed changes were developed using a DNS database on strati ed and sheared homogenous turbulence developed by Shih et al. (2000) and are described more fully in Ferziger et al. (2003). The data generated by Shih, et al. (2000) (hereinafter referred to as SKFR) are used to study the parameters in the k- model as a function of the turbulent Froude number, Frk. A modified version of the standard k- model based on the local turbulent Froude number is proposed. The proposed model is applied to a stratified open channel flow, a test case that differs significantly from the flows from which the modified parameters were derived. The turbulence modeling and results are discussed in the next two sections followed by suggestions for future work.

  11. The use of transition region characteristics to improve the numerical simulation of heat transfer in bypass transitional flows

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.

    1993-01-01

    A method is presented for improving the numerical prediction of bypass transition heat transfer on a flat plate in a high-disturbance environment with zero or favorable pressure gradient. The method utilizes low Reynolds number k-epsilon turbulence models in combination with the characteristic parameters of the transition region. The parameters representing the characteristics of the transition region used are the intermittency, transition length and turbulent spot properties. An analysis is made of the transition length in terms of turbulent spot variables. The nondimensional spot formation rate, required for the prediction of the transition length, is shown by the analysis to be a function of the spot spreading angle, the dimensionless spot velocity ratio and the dimensionless spot area ratio. The intermittency form of the k-epsilon equations were derived from conditionally averaged equations which have been shown to be an improvement over global-time-averaged equations for the numerical calculation of the transition region. The numerical predictions are in general good agreement with the experimental data and indicate the potential use of the method in accelerating flows. Turbulence models of the k-epsilon type are known to underpredict the transition length. The present work demonstrates how incorporating transition region characteristics improves the ability of two-equation turbulence models to simulate bypass transition for flat plates with potential application to turbine vanes and blades.

  12. Flow interaction experiment. Volume 2: Aerothermal modeling, phase 2

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Sullivan, J. P.; Murthy, S. N. B.

    1993-01-01

    An experimental and computational study is reported for the flow of a turbulent jet discharging into a rectangular enclosure. The experimental configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets are investigated to provide a better understanding of the flow field in an annular combustor. A laser Doppler velocimeter is used to measure mean velocity and Reynolds stress components. Major features of the flow field include recirculation, primary and annular jet interaction, and high turbulence. A significant result from this study is the effect the primary jets have on the flow field. The primary jets are seen to create statistically larger recirculation zones and higher turbulence levels. In addition, a technique called marker nephelometry is used to provide mean concentration values in the model combustor. Computations are performed using three levels of turbulence closures, namely k-epsilon model, algebraic second moment (ASM), and differential second moment (DSM) closure. Two different numerical schemes are applied. One is the lower-order power-law differencing scheme (PLDS) and the other is the higher-order flux-spline differencing scheme (FSDS). A comparison is made of the performance of these schemes. The numerical results are compared with experimental data. For the cases considered in this study, the FSDS is more accurate than the PLDS. For a prescribed accuracy, the flux-spline scheme requires a far fewer number of grid points. Thus, it has the potential for providing a numerical error-free solution, especially for three-dimensional flows, without requiring an excessively fine grid. Although qualitatively good comparison with data was obtained, the deficiencies regarding the modeled dissipation rate (epsilon) equation, pressure-strain correlation model, and the inlet epsilon profile and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to

  13. Flow interaction experiment. Volume 1: Aerothermal modeling, phase 2

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Sullivan, J. P.; Murthy, S. N. B.

    1993-01-01

    An experimental and computational study is reported for the flow of a turbulent jet discharging into a rectangular enclosure. The experimental configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets are investigated to provide a better understanding of the flow field in an annular combustor. A laser Doppler velocimeter is used to measure mean velocity and Reynolds stress components. Major features of the flow field include recirculation, primary and annular jet interaction, and high turbulence. A significant result from this study is the effect the primary jets have on the flow field. The primary jets are seen to create statistically larger recirculation zones and higher turbulence levels. In addition, a technique called marker nephelometry is used to provide mean concentration values in the model combustor. Computations are performed using three levels of turbulence closures, namely k-epsilon model, algebraic second moment (ASM), and differential second moment (DSM) closure. Two different numerical schemes are applied. One is the lower-order power-law differencing scheme (PLDS) and the other is the higher-order flux-spline differencing scheme (FSDS). A comparison is made of the performance of these schemes. The numerical results are compared with experimental data. For the cases considered in this study, the FSDS is more accurate than the PLDS. For a prescribed accuracy, the flux-spline scheme requires a far fewer number of grid points. Thus, it has the potential for providing a numerical error-free solution, especially for three-dimensional flows, without requiring an excessively fine grid. Although qualitatively good comparison with data was obtained, the deficiencies regarding the modeled dissipation rate (epsilon) equation, pressure-strain correlation model, and the inlet epsilon profile and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to

  14. Turbulent flow separation in three-dimensional asymmetric diffusers

    NASA Astrophysics Data System (ADS)

    Jeyapaul, Elbert

    2011-12-01

    Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow

  15. Institute for Aviation Research and Development Research Project

    DTIC Science & Technology

    1989-01-01

    Symbolics Artificial Intelligence * Vision Systems * Finite Element Modeling ( NASTRAN ) * Aerodynamic Paneling (VSAERO) Projects: * Software...34Wall Functions for k and epsilon for Turbulent Flow Through Rough and Smooth Pipes," Eleventh International Symposium on Turbulence, October 17-19, 1988

  16. DNS, LES and Stochastic Modeling of Turbulent Reacting Flows

    DTIC Science & Technology

    1994-03-01

    NY, 1972. 3 [181 Miller , R. S., Frankel, S. H., Madnia, C. K., and Givi, P., Johnson-Edgeworth Trans- lation for Probability Modeling of Binary Mixing...Givi, " Modeling of Isotropic are also grateful to Richard Miller for many useful discussions. This Reacting Turbulence by a Hybrid Mapping-EDQNM...United State of America * Johnson-Edgeworth Translation for Probability Modeling of Binary Scalar Mixing in Turbulent Flows I R. S. MILLER , S. H

  17. Numerical prediction of transitional features of turbulent forced gas flows in circular tubes with strong heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezato, K.; Shehata, A.M.; Kunugi, T.

    1999-08-01

    In order to treat strongly heated, forced gas flows at low Reynolds numbers in vertical circular tubes, the {kappa}-{epsilon} turbulence model of Abe, Kondoh, and Nagano (1994), developed for forced turbulent flow between parallel plates with the constant property idealization, has been successfully applied. For thermal energy transport, the turbulent Prandtl number model of Kays and Crawford (1993) was adopted. The capability to handle these flows was assessed via calculations at the conditions of experiments by Shehata (1984), ranging from essentially turbulent to laminarizing due to the heating. Predictions forecast the development of turbulent transport quantities, Reynolds stress, and turbulentmore » heat flux, as well as turbulent viscosity and turbulent kinetic energy. Overall agreement between the calculations and the measured velocity and temperature distributions is good, establishing confidence in the values of the forecast turbulence quantities--and the model which produced them. Most importantly, the model yields predictions which compare well with the measured wall heat transfer parameters and the pressure drop.« less

  18. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    NASA Astrophysics Data System (ADS)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the

  19. Modelling thermal radiation in buoyant turbulent diffusion flames

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified kmodel with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  20. The Dissipation Rate Transport Equation and Subgrid-Scale Models in Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Ye, Zhou

    1997-01-01

    The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The difficulties arc increased when external agencies like rotation prevent straightforward dimensional analysis from determining the correct form of the modelled equation. In this work, the dissipation rate transport equation and subgrid scale models for rotating turbulence are derived from an analytical statistical theory of rotating turbulence. In the strong rotation limit, the theory predicts a turbulent steady state in which the inertial range energy spectrum scales as k(sup -2) and the turbulent time scale is the inverse rotation rate. This scaling has been derived previously by heuristic arguments.

  1. The effects of streamline curvature and swirl on turbulent flows in curved ducts

    NASA Technical Reports Server (NTRS)

    Cheng, Chih-Hsiung; Farokhi, Saeed

    1990-01-01

    A technique for improving the numerical predictions of turbulent flows with the effect of streamline curvature is developed. Separated flows, the flow in a curved duct, and swirling flows are examples of flow fields where streamline curvature plays a dominant role. A comprehensive literature review on the effect of streamline curvature was conducted. New algebraic formulations for the eddy viscosity incorporating the kappa-epsilon turbulence model are proposed to account for various effects of streamline curvature. The loci of flow reversal of the separated flows over various backward-facing steps are employed to test the capability of the proposed turbulence model in capturing the effect of local curvature. The inclusion of the effect of longitudinal curvature in the proposed turbulence model is validated by predicting the distributions of the static pressure coefficients in an S-bend duct and in 180 degree turn-around ducts. The proposed turbulence model embedded with transverse curvature modification is substantiated by predicting the decay of the axial velocities in the confined swirling flows. The numerical predictions of different curvature effects by the proposed turbulence models are also reported.

  2. Turbulence and transition modeling for high-speed flows

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1993-01-01

    Research conducted during the past three and a half years aimed at developing and testing a turbulence/transition model applicable to high-speed turbulent flows is summarized. The first two years of the project focused on fully turbulent flows, while emphasis shifted to boundary-layer development in the transition region during the final year and a half. A brief summary of research accomplished during the first three years is included and publications that describe research results in greater detail are cited. Research conducted during the final six months of the period of performance is summarized. The primary results of the last six months of the project are elimination of the k-omega model's sensitivity to the freestream value of omega and development of a method for triggering transition at a specified location, independent of the freestream turbulence level.

  3. Classical closure theory and Lam's interpretation of epsilon-RNG

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1995-01-01

    Lam's phenomenological epsilon-renormalization group (RNG) model is quite different from the other members of that group. It does not make use of the correspondence principle and the epsilon-expansion procedure. We demonstrate that Lam's epsilon-RNG model is essentially the physical space version of the classical closure theory in spectral space and consider the corresponding treatment of the eddy viscosity and energy backscatter.

  4. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  5. Magnetism-Structure Correlations during the epsilon ->tau Transformation in Rapidly-Solidified MnAl Nanostructured Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Villacorta, F; Marion, JL; Oldham, JT

    2014-01-21

    Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF) epsilon-phase to the target ferromagnetic (FM) L1(0) tau-phase are investigated. The as-solidified material exhibits a majority hexagonal epsilon-MnAl phase revealing a large exchange bias shift below a magnetic blocking temperature T-B similar to 95 K (H-ex similar to 13 kOe at 10 K), ascribed to the presence of compositional fluctuations in this antiferromagnetic phase. Heat treatment at a relatively low annealing temperature T-anneal approximate to 568 K (295 degrees C) promotes the nucleation of the metastable L1(0) tau-MnAl phase at the expensemore » of the parent epsilon-phase, donating an increasingly hard ferromagnetic character. The onset of the epsilon ->tau transformation occurs at a temperature that is similar to 100 K lower than that reported in the literature, highlighting the benefits of applying rapid solidification for synthesis of the rapidly-solidified parent alloy.« less

  6. Comparative assessment of turbulence model in predicting airflow over a NACA 0010 airfoil

    NASA Astrophysics Data System (ADS)

    Panday, Shoyon; Khan, Nafiz Ahmed; Rasel, Md; Faisal, Kh. Md.; Salam, Md. Abdus

    2017-06-01

    Nowadays the role of computational fluid dynamics to predict the flow behavior over airfoil is quite prominent. Most often a 2-D subsonic flow simulation is carried out over an airfoil at a certain Reynolds number and various angles of attack obtained by different turbulence models those are based on governing equations. The commonly used turbulence models are K-ɛpsilon, K-omega, Spalart Allmaras etc. Variation in turbulence model effectively influences the result of analysis. Here a comparative study is represented to show the effect of different turbulence models for a 2-D flow analysis over a National Advisory Committee for Aeronautics (NACA) airfoil 0010. This airfoil was analysed at 200000 Re number in 10 different angle of attacks at a constant speed of 21.6 m/s. Numbers of two dimensional flow simulation was run by changing the turbulence model, for each AOA. In accordance with the variation of result for different turbulence model, it was also found that for which model, attained result is close enough to experimental outcome from a low subsonic wind tunnel AF100. This paper also documents the effect of high and low angle of attack on the flow behaviour over an airfoil.

  7. Three-dimensional kinetic simulations of whistler turbulence in solar wind on parallel supercomputers

    NASA Astrophysics Data System (ADS)

    Chang, Ouliang

    spectral indices from simulated wavevector energy spectra do not match the frequency spectral indices from observations due to the inapplicability of Taylor's hypothesis. In contrast, the direct comparison of simulated frequency energy spectra and solar wind observations shows a closer similarity. Electron density fluctuations power spectra also exhibit a close similarity to solar wind observations and MHD predications, both qualitatively and quantitatively. Linear damping represents an intermediate fraction of the total dissipation of whistler turbulence over a wide range of betae and epsilone. The relative importance of linear damping by comparison to nonlinear dissipation increases with increasing beta e but decreases with increasing epsilone. Correlation coefficient calculations imply that the nonlinear dissipation processes in our simulation are primarily associated with dissipation in regions of intermittent current sheet structures. The simulation results suggest that whistler fluctuations could be the substantial constituent of solar wind turbulence at higher frequencies and short wavelengths, and support the magnetosonic-whistler interpretation of the quasilinear scenario. An even larger scale 3D whistler turbulence simulation exhibits both a forward cascade to shorter wavelengths with wavevectors preferentially k⊥ > k∥, and an inverse cascade to longer wavelengths with wavevectors k ≳ k⊥. The inverse cascade process is primarily driven by the nonlinear wave-wave interaction. It is shown that the energy inverse cascade rate is similar to the energy forward cascade rate at early times although the overall energy in the two cascades is very different. The presence of inverse cascade process does not affect qualitative conclusions established from the whistler turbulence forward cascade simulations.

  8. Modeling of turbulence and transition

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing

    1992-01-01

    The first objective is to evaluate current two-equation and second order closure turbulence models using available direct numerical simulations and experiments, and to identify the models which represent the state of the art in turbulence modeling. The second objective is to study the near-wall behavior of turbulence, and to develop reliable models for an engineering calculation of turbulence and transition. The third objective is to develop a two-scale model for compressible turbulence.

  9. Turbulence modeling: Near-wall turbulence and effects of rotation on turbulence

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.

    1990-01-01

    Many Reynolds averaged Navier-Stokes solvers use closure models in conjunction with 'the law of the wall', rather than deal with a thin, viscous sublayer near the wall. This work is motivated by the need for better models to compute near wall turbulent flow. The authors use direct numerical simulation of fully developed channel flow and one of three dimensional turbulent boundary layer flow to develop new models. These direct numerical simulations provide detailed data that experimentalists have not been able to measure directly. Another objective of the work is to examine analytically the effects of rotation on turbulence, using Rapid Distortion Theory (RDT). This work was motivated by the observation that the pressure strain models in all current second order closure models are unable to predict the effects of rotation on turbulence.

  10. Confined turbulent swirling recirculating flow predictions. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.; Lilley, D. G.

    1985-01-01

    The capability and the accuracy of the STARPIC computer code in predicting confined turbulent swirling recirculating flows is presented. Inlet flow boundary conditions were demonstrated to be extremely important in simulating a flowfield via numerical calculations. The degree of swirl strength and expansion ratio have strong effects on the characteristics of swirling flow. In a nonswirling flow, a large corner recirculation zone exists in the flowfield with an expansion ratio greater than one. However, as the degree of inlet swirl increases, the size of this zone decreases and a central recirculation zone appears near the inlet. Generally, the size of the central zone increased with swirl strength and expansion ratio. Neither the standard k-epsilon turbulence mode nor its previous extensions show effective capability for predicting confined turbulent swirling recirculating flows. However, either reduced optimum values of three parameters in the mode or the empirical C sub mu formulation obtained via careful analysis of available turbulence measurements, can provide more acceptable accuracy in the prediction of these swirling flows.

  11. Parametrization of turbulence models using 3DVAR data assimilation in laboratory conditions

    NASA Astrophysics Data System (ADS)

    Olbert, A. I.; Nash, S.; Ragnoli, E.; Hartnett, M.

    2013-12-01

    In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation kmodel were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation kmodel, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. Such analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows. This research further demonstrates how 3DVAR can be utilized to identify and quantify shortcomings of the numerical model and consequently to improve forecasting by correct parameterization of the turbulence models. Such improvements may greatly benefit physical oceanography in terms of

  12. Clostridium perfringens epsilon toxin: a malevolent molecule for animals and man?

    PubMed

    Stiles, Bradley G; Barth, Gillian; Barth, Holger; Popoff, Michel R

    2013-11-12

    Clostridium perfringens is a prolific, toxin-producing anaerobe causing multiple diseases in humans and animals. One of these toxins is epsilon, a 33 kDa protein produced by Clostridium perfringens (types B and D) that induces fatal enteric disease of goats, sheep and cattle. Epsilon toxin (Etx) belongs to the aerolysin-like toxin family. It contains three distinct domains, is proteolytically-activated and forms oligomeric pores on cell surfaces via a lipid raft-associated protein(s). Vaccination controls Etx-induced disease in the field. However, therapeutic measures are currently lacking. This review initially introduces C. perfringens toxins, subsequently focusing upon the Etx and its biochemistry, disease characteristics in various animals that include laboratory models (in vitro and in vivo), and finally control mechanisms (vaccines and therapeutics).

  13. On the modeling of wave-enhanced turbulence nearshore

    NASA Astrophysics Data System (ADS)

    Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth

    2016-07-01

    A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.

  14. Numerical prediction of an axisymmetric turbulent mixing layer using two turbulence models

    NASA Astrophysics Data System (ADS)

    Johnson, Richard W.

    1992-01-01

    Nuclear power, once considered and then rejected (in the U. S.) for application to space vehicle propulsion, is being reconsidered for powering space rockets, especially for interplanetary travel. The gas core reactor, a high risk, high payoff nuclear engine concept, is one that was considered in the 1960s and 70s. As envisioned then, the gas core reactor would consist of a heavy, slow moving core of fissioning uranium vapor surrounded by a fast moving outer stream of hydrogen propellant. Satisfactory operation of such a configuration would require stable nuclear reaction kinetics to occur simultaneously with a stable, coflowing, probably turbulent fluid system having a dense inner stream and a light outer stream. The present study examines the behavior of two turbulence models in numerically simulating an idealized version of the above coflowing fluid system. The two models are the standard k˜ɛ model and a thin shear algebraic stress model (ASM). The idealized flow system can be described as an axisymmetric mixing layer of constant density. Predictions for the radial distribution of the mean streamwise velocity and shear stress for several axial stations are compared with experiment. Results for the k˜ɛe predictions are broadly satisfactory while those for the ASM are distinctly poorer.

  15. Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.

    1984-01-01

    Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.

  16. A Non-Incompressible Non-Boussinesq (NINB) framework for studying atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yan, C.; Archer, C. L.; Xie, S.; Ghaisas, N.

    2015-12-01

    The incompressible assumption is widely used for studying the turbulent atmospheric boundary layer (ABL) and is generally accepted when the Mach number < ~0.3 (velocity < ~100 m/s). Since the tips of modern wind turbine blades can reach and exceed this threshold, neglecting air compressibility will introduce errors. In addition, if air incompressibility does not hold, then the Boussinesq approximation, by which air density is treated as a constant except in the gravity term of the Navier-Stokes equation, is also invalidated. Here, we propose a new theoretical framework, called NINB for Non-Incompressible Non-Boussinesq, in which air is not considered incompressible and air density is treated as a non-turbulent 4D variable. First, the NINB mass, momentum, and energy conservation equations are developed using Reynolds averaging. Second, numerical simulations of the NINB equations, coupled with a k-epsilon turbulence model, are performed with the finite-volume method. Wind turbines are modeled with the actuator-line model using SOWFA (Software for Offshore/onshore Wind Farm Applications). Third, NINB results are compared with the traditional incompressible buoyant simulations performed by SOWFA with the same set up. The results show differences between NINB and traditional simulations in the neutral atmosphere with a wind turbine. The largest differences in wind speed (up to 1 m/s), turbulent kinetic energy (~10%), dissipation rate (~5%), and shear stress (~10%) occur near the turbine tip region. The power generation differences are 5-15% (depending on setup). These preliminary results suggest that compressibility effects are non-negligible around wind turbines and should be taken into account when forecasting wind power. Since only a few extra terms are introduced, the NINB framework may be an alternative to the traditional incompressible Boussinesq framework for studying the turbulent ABL in general (i.e., without turbines) in the absence of shock waves.

  17. PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVEN-WAVE TURBULENCE IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandran, Benjamin D. G.; Germaschewski, Kai; Li Bo

    We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies {omega} smaller than the ion cyclotron frequency {Omega}. We focus on plasmas in which {beta} {approx}< 1, where {beta} is the ratio of plasma pressure to magnetic pressure. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments,more » we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity {epsilon} = {delta}v {sub {rho}/}v{sub perpendicular}, where v{sub perpendicular} (v {sub ||}) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B {sub 0}, and {delta}v {sub {rho}} ({delta}B {sub {rho}}) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when {epsilon} << {epsilon}{sub crit}, where {epsilon}{sub crit} is a constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when {epsilon}>{epsilon}{sub crit}, the proton heating rate exceeds half the cascade power that would be present in strong balanced KAW turbulence with the same value of {delta}v {sub {rho}}, and magnetic-moment conservation is violated even when {omega} << {Omega}. For the random-phase waves in our test-particle simulations, {epsilon}{sub crit} = 0.19. For protons in low-{beta} plasmas, {epsilon} {approx_equal} {beta}{sup -1/2{delta}}B{sub {rho}/}B {sub 0}, and {epsilon} can exceed

  18. Computations of Flow over a Hump Model Using Higher Order Method with Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2005-01-01

    Turbulent separated flow over a two-dimensional hump is computed by solving the RANS equations with k - omega (SST) turbulence model for the baseline, steady suction and oscillatory blowing/suction flow control cases. The flow equations and the turbulent model equations are solved using a fifth-order accurate weighted essentially. nonoscillatory (WENO) scheme for space discretization and a third order, total variation diminishing (TVD) Runge-Kutta scheme for time integration. Qualitatively the computed pressure distributions exhibit the same behavior as those observed in the experiments. The computed separation regions are much longer than those observed experimentally. However, the percentage reduction in the separation region in the steady suction case is closer to what was measured in the experiment. The computations did not predict the expected reduction in the separation length in the oscillatory case. The predicted turbulent quantities are two to three times smaller than the measured values pointing towards the deficiencies in the existing turbulent models when they are applied to strong steady/unsteady separated flows.

  19. Evaluation of transition-sensitive eddy-viscosity turbulence models for separated flow in OpenFOAM

    NASA Astrophysics Data System (ADS)

    Fadhila, H.; Medina, H.; Beechook, A.; Aleksandrova, S.; Benjamin, S.

    2017-07-01

    A recently published transition-sensitive turbulence model, k-kL-ω-υ2 [1], is implemented in the open-source CFD package OpenFOAM, and its performance is evaluated in comparison with k-kL-ω [2] and υ2- f [3] models. On T3A and T3B flat plate cases, the k-kL-ω-υ2 model gives accurate transitional predictions. On a flapped NACA 23012 aerofoil, it is found to give only a small improvement over the k-kL-ω model (under 5% reduction in error for lift coefficient) compared with experimental results obtained at the Coventry University wind tunnel, showing limited effects of the extra transport equation which was added to sensitise the model to rotation and curvature effects. Assessment of fluctuating kinetic energy and the new wall-normal turbulent velocity scale shows overprediction near the wall compared to the υ2- f model which indicates a delayed prediction of separation.

  20. Assessment of Different Turbulence Models for the Motion of Non-metallic Inclusion in Induction Crucible Furnace

    NASA Astrophysics Data System (ADS)

    Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-07-01

    Turbulent fluid flow due to the electromagnetic forces in induction crucible furnace (ICF) is modeled using k-ɛ, k-ω SST and Large Eddy Simulation (LES) turbulence models. Fluid flow patterns calculated by different turbulence models and their effects on the motion of non-metallic inclusions (NMI) in the bulk melt have been investigated. Results show that the conventional kmodel cannot solve the transient flow in ICF properly. With kmodel transient flow and oscillation behavior of the flow pattern can be solved, and the motion of NMI can be tracked fairly well. LES model delivers the best modeling result on both details of the transient flow pattern and motion trajectories of NMI without the limitation of NMI size. The drawback of LES model is the long calculation time. Therefore, for general purpose to estimate the dynamic behavior of NMI in ICF both k-ω SST and LES are recommended. For the precise calculation of the motion of NMI smaller than 10 μm only LES model is appropriate.

  1. Numerical simulations of the NREL S826 airfoil

    NASA Astrophysics Data System (ADS)

    Sagmo, KF; Bartl, J.; Sætran, L.

    2016-09-01

    2D and 3D steady state simulations were done using the commercial CFD package Star-CCM+ with three different RANS turbulence models. Lift and drag coefficients were simulated at different angles of attack for the NREL S826 airfoil at a Reynolds number of 100 000, and compared to experimental data obtained at NTNU and at DTU. The Spalart-Allmaras and the Realizable k-epsilon turbulence models reproduced experimental results for lift well in the 2D simulations. The 3D simulations with the Realizable two-layer k-epsilon model predicted essentially the same lift coefficients as the 2D Spalart-Allmaras simulations. A comparison between 2D and 3D simulations with the Realizable k-epsilon model showed a significantly lower prediction in drag by the 2D simulations. From the conducted 3D simulations surface pressure predictions along the wing span were presented, along with volumetric renderings of vorticity. Both showed a high degree of span wise flow variation when going into the stall region, and predicted a flow field resembling that of stall cells for angles of attack above peak lift.

  2. Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992

    NASA Technical Reports Server (NTRS)

    Liou, William W. (Editor)

    1992-01-01

    The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

  3. A representation for the turbulent mass flux contribution to Reynolds-stress and two-equation closures for compressible turbulence

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1993-01-01

    The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in the first and second moment equations of compressible kappa-epsilon and Reynolds stress closures. Mathematically it is the difference between the unweighted and density-weighted averages of the velocity field and is therefore a measure of the effects of compressibility through variations in density. It appears to be fundamental to an inhomogeneous compressible turbulence, in which it characterizes the effects of the mean density gradients, in the same way the anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution equation for the turbulent mass flux is derived. A truncation of this equation produces an algebraic expression for the mass flux. The mass flux is found to be proportional to the mean density gradients with a tensor eddy-viscosity that depends on both the mean deformation and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with notable results.

  4. Aircraft Dynamic Modeling in Turbulence

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunninham, Kevin

    2012-01-01

    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.

  5. Clostridium perfringens Epsilon Toxin: A Malevolent Molecule for Animals and Man?

    PubMed Central

    Stiles, Bradley G.; Barth, Gillian; Barth, Holger; Popoff, Michel R.

    2013-01-01

    Clostridium perfringens is a prolific, toxin-producing anaerobe causing multiple diseases in humans and animals. One of these toxins is epsilon, a 33 kDa protein produced by Clostridium perfringens (types B and D) that induces fatal enteric disease of goats, sheep and cattle. Epsilon toxin (Etx) belongs to the aerolysin-like toxin family. It contains three distinct domains, is proteolytically-activated and forms oligomeric pores on cell surfaces via a lipid raft-associated protein(s). Vaccination controls Etx-induced disease in the field. However, therapeutic measures are currently lacking. This review initially introduces C. perfringens toxins, subsequently focusing upon the Etx and its biochemistry, disease characteristics in various animals that include laboratory models (in vitro and in vivo), and finally control mechanisms (vaccines and therapeutics). PMID:24284826

  6. On the modelling of non-reactive and reactive turbulent combustor flows

    NASA Technical Reports Server (NTRS)

    Nikjooy, Mohammad; So, Ronald M. C.

    1987-01-01

    A study of non-reactive and reactive axisymmetric combustor flows with and without swirl is presented. Closure of the Reynolds equations is achieved by three models: kappa-epsilon, algebraic stress and Reynolds stress closure. Performance of two locally nonequilibrium and one equilibrium algebraic stress models is analyzed assuming four pressure strain models. A comparison is also made of the performance of a high and a low Reynolds number model for combustor flow calculations using Reynolds stress closures. Effects of diffusion and pressure-strain models on these closures are also investigated. Two models for the scalar transport are presented. One employs the second-moment closure which solves the transport equations for the scalar fluxes, while the other solves the algebraic equations for the scalar fluxes. In addition, two cases of non-premixed and one case of premixed combustion are considered. Fast- and finite-rate chemistry models are applied to non-premixed combustion. Both show promise for application in gas turbine combustors. However, finite rate chemistry models need to be examined to establish a suitable coupling of the heat release effects on turbulence field and rate constants.

  7. Numerical study of coupled turbulent flow and solidification for steel slab casters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aboutalebi, M.R.; Hasan, M.; Guthrie, R.I.L.

    1995-09-01

    A two-dimensional numerical modeling study was undertaken to account for coupled turbulent flow and heat transfer with solidification in the mold and submold regions of a steel slab coaster. Liquid steel is introduced into a water-cooled mold through a bifurcated submerged entry nozzle. Turbulence phenomena in the melt pool of the caster were accounted for, using a modified version of the low-Reynolds-number {kappa}-{epsilon} turbulence model of Launder and Sharma. The mushy region solidification, in the presence of turbulence, was taken into account by modifying the standard enthalpy-porosity technique, which is presently popular for modeling solidification problems. Thermocapillary and buoyancy effectsmore » have been considered in this model to evaluate the influences of the liquid surface tension gradient at the meniscus surface, and natural convection on flow patterns in the liquid pool. Parametric studies were carried out to evaluate the effects of typical variables, such as inlet superheat and casting speed, on the fluid flow and heat transfer results. The numerical predictions were compared with available experimental data.« less

  8. Characterizing the Severe Turbulence Environments Associated With Commercial Aviation Accidents: A Real-Time Turbulence Model (RTTM) Designed for the Operational Prediction of Hazardous Aviation Turbulence Environments

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lux, Kevin M.; Cetola, Jeffrey D.; Huffman, Allan W.; Riordan, Allen J.; Slusser, Sarah W.; Lin, Yuh-Lang; Charney, Joseph J.; Waight, Kenneth T.

    2004-01-01

    Real-time prediction of environments predisposed to producing moderate-severe aviation turbulence is studied. We describe the numerical model and its postprocessing system designed for said prediction of environments predisposed to severe aviation turbulence as well as presenting numerous examples of its utility. The numerical model is MASS version 5.13, which is integrated over three different grid matrices in real time on a university work station in support of NASA Langley Research Center s B-757 turbulence research flight missions. The postprocessing system includes several turbulence-related products, including four turbulence forecasting indices, winds, streamlines, turbulence kinetic energy, and Richardson numbers. Additionally, there are convective products including precipitation, cloud height, cloud mass fluxes, lifted index, and K-index. Furthermore, soundings, sounding parameters, and Froude number plots are also provided. The horizontal cross-section plot products are provided from 16 000 to 46 000 ft in 2000-ft intervals. Products are available every 3 hours at the 60- and 30-km grid interval and every 1.5 hours at the 15-km grid interval. The model is initialized from the NWS ETA analyses and integrated two times a day.

  9. Studies on free stream turbulence as related to gas turbine heat transfer. A review of authors' past work and future implications.

    PubMed

    Yavuzkurt, S; Iyer, G R

    2001-05-01

    A review of the past work done on free stream turbulence (FST) as applied to gas turbine heat transfer and its implications for future studies are presented. It is a comprehensive approach to the results of many individual studies in order to derive the general conclusions that could be inferred from all rather than discussing the results of each individual study. Three experimental and four modeling studies are reviewed. The first study was on prediction of heat transfer for film cooled gas turbine blades. An injection model was devised and used along with a 2-D low Reynolds number k-epsilon model of turbulence for the calculations. Reasonable predictions of heat transfer coefficients were obtained for turbulence intensity levels up to 7%. Following this modeling study a series of experimental studies were undertaken. The objective of these studies was to gain a fundamental understanding of mechanisms through which FST augments the surface heat transfer. Experiments were carried out in the boundary layer and in the free stream downstream of a gas turbine combustor simulator, which produced initial FST levels of 25.7% and large length scales (About 5-10 cm for a boundary layer 4-5 cm thick). This result showed that one possible mechanism through which FST caused an increase in heat transfer is by increasing the number of ejection events. In a number of modeling studies several well-known k-epsilon models were compared for their predictive capability of heat transfer and skin friction coefficients under moderate and high FST. Two data sets, one with moderate levels of FST (about 7%) and one with high levels of FST (about 25%) were used for this purpose. Although the models did fine in their predictions of cases with no FST (baseline cases) they failed one by one as FST levels were increased. Under high FST (25.7% initial intensity) predictions of Stanton number were between 35-100% in error compared to the measured values. Later a new additional production term

  10. Intercomparison of granular stress and turbulence models for unidirectional sheet flow applications

    NASA Astrophysics Data System (ADS)

    Chauchat, J.; Cheng, Z.; Hsu, T. J.

    2016-12-01

    The intergranular stresses are one of the key elements in two-phase sediment transport models. There are two main existing approaches, the kinetic theory of granular flows (Jenkins and Hanes, 1998; Hsu et al., 2004) and the phenomenological rheology such as the one proposed by Bagnold (Hanes and Bowen, 1985) or the μ(I) dense granular flow rheology (Revil-Baudard and Chauchat, 2013). Concerning the turbulent Reynolds stress, mixing length and kturbulence models have been validated by previous studies (Revil-Baudard and Chauchat, 2013; Hsu et al., 2004). Recently, sedFoam was developed based on kinetic theory of granular flows and kturbulence models (Cheng and Hsu, 2014). In this study, we further extended sedFoam by implementing the mixing length and the dense granular flow rheology by following Revil-Baudard and Chauchat (2013). This allows us to objectively compare the different combinations of intergranular stresses (kinetic theory or the dense granular flow rheology) and turbulence models (mixing length or k-ɛ) under unidirectional sheet flow conditions. We found that the calibrated mixing length and kmodels predicts similar velocity and concentration profiles. The differences observed between the kinetic theory and the dense granular flow rheology requires further investigation. In particular, we hypothesize that the extended kinetic theory proposed by Berzi (2011) would probably improve the existing combination of the kinetic theory with a simple Coulomb frictional model in sedFoam. A semi-analytical solution proposed by Berzi and Fraccarollo(2013) for sediment transport rate and sheet layer thickness versus the Shields number is compared with the results obtained by using the dense granular flow rheology and the mixing length model. The results are similar which demonstrate that both the extended kinetic theory and the dense granular flow rheology can be used to model intergranular stresses under sheet flow conditions.

  11. Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

    NASA Astrophysics Data System (ADS)

    Wu, Mingliang; Yang, Fei; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei; Liu, Zirui; Guo, Anxiang

    2016-04-01

    This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case

  12. Turbulent heat transfer performance of single stage turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, R.S.; Song, B.

    1999-07-01

    To increase the efficiency and the power of modern power plant gas turbines, designers are continually trying to raise the maximum turbine inlet temperature. Here, a numerical study based on the Navier-Stokes equations on a three-dimensional turbulent flow in a single stage turbine stator/rotor passage has been conducted and reported in this paper. The full Reynolds-stress closure model (RSM) was used for the computations and the results were also compared with the computations made by using the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} model. The computational results obtained using these models were compared in order to investigate the turbulence effect in the near-wallmore » region. The set of the governing equations in a generalized curvilinear coordinate system was discretized by using the finite volume method with non-staggered grids. The numerical modeling was performed to interact between the stator and rotor blades.« less

  13. Computational Fluid Dynamic simulations of pipe elbow flow.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homicz, Gregory Francis

    2004-08-01

    One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and meshmore » were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline

  14. Ocean Turbulence, III: New GISS Vertical Mixing Scheme

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Howard, A. M.; Cheng, Y.; Muller, C. J.; Leboissetier, A.; Jayne, S. R.

    2010-01-01

    We have found a new way to express the solutions of the RSM (Reynolds Stress Model) equations that allows us to present the turbulent diffusivities for heat, salt and momentum in a way that is considerably simpler and thus easier to implement than in previous work. The RSM provides the dimensionless mixing efficiencies Gamma-alpha (alpha stands for heat, salt and momentum). However, to compute the diffusivities, one needs additional information, specifically, the dissipation Epsilon. Since a dynamic equation for the latter that includes the physical processes relevant to the ocean is still not available, one must resort to different sources of information outside the RSM to obtain a complete Mixing Scheme usable in OGCMs. As for the RSM results, we show that the Gamma-alpha s are functions of both Ri and Rq (Richardson number and density ratio representing double diffusion, DD); the Gamma-alpha are different for heat, salt and momentum; in the case of heat, the traditional value Gamma-h = 0.2 is valid only in the presence of strong shear (when DD is inoperative) while when shear subsides, NATRE data show that Gamma-h can be three times as large, a result that we reproduce. The salt Gamma-s is given in terms of Gamma-h. The momentum Gamma-m has thus far been guessed with different prescriptions while the RSM provides a well defined expression for Gamma-m(Ri,R-rho). Having tested Gamma-h, we then test the momentum Gamma-m by showing that the turbulent Prandtl number Gamma-m/Gamma-h vs. Ri reproduces the available data quite well. As for the dissipation epsilon, we use different representations, one for the mixed layer (ML), one for the thermocline and one for the ocean;s bottom. For the ML, we adopt a procedure analogous to the one successfully used in PB (planetary boundary layer) studies; for the thermocline, we employ an expression for the variable epsilon/N(exp 2) from studies of the internal gravity waves spectra which includes a latitude dependence; for the

  15. Workshop on Computational Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Shabbir, A. (Compiler); Shih, T.-H. (Compiler); Povinelli, L. A. (Compiler)

    1994-01-01

    The purpose of this meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Various turbulence models have been developed and applied to different turbulent flows over the past several decades and it is becoming more and more urgent to assess their performance in various complex situations. In order to help users in selecting and implementing appropriate models in their engineering calculations, it is important to identify the capabilities as well as the deficiencies of these models. This also benefits turbulence modelers by permitting them to further improve upon the existing models. This workshop was designed for exchanging ideas and enhancing collaboration between different groups in the Lewis community who are using turbulence models in propulsion related CFD. In this respect this workshop will help the Lewis goal of excelling in propulsion related research. This meeting had seven sessions for presentations and one panel discussion over a period of two days. Each presentation session was assigned to one or two branches (or groups) to present their turbulence related research work. Each group was asked to address at least the following points: current status of turbulence model applications and developments in the research; progress and existing problems; and requests about turbulence modeling. The panel discussion session was designed for organizing committee members to answer management and technical questions from the audience and to make concluding remarks.

  16. Turbulence Modeling Workshop

    NASA Technical Reports Server (NTRS)

    Rubinstein, R. (Editor); Rumsey, C. L. (Editor); Salas, M. D. (Editor); Thomas, J. L. (Editor); Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Advances in turbulence modeling are needed in order to calculate high Reynolds number flows near the onset of separation and beyond. To this end, the participants in this workshop made the following recommendations. (1) A national/international database and standards for turbulence modeling assessment should be established. Existing experimental data sets should be reviewed and categorized. Advantage should be taken of other efforts already under-way, such as that of the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) consortium. Carefully selected "unit" experiments will be needed, as well as advances in instrumentation, to fill the gaps in existing datasets. A high priority should be given to document existing turbulence model capabilities in a standard form, including numerical implementation issues such as grid quality and resolution. (2) NASA should support long-term research on Algebraic Stress Models and Reynolds Stress Models. The emphasis should be placed on improving the length-scale equation, since it is the least understood and is a key component of two-equation and higher models. Second priority should be given to the development of improved near-wall models. Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) would provide valuable guidance in developing and validating new Reynolds-averaged Navier-Stokes (RANS) models. Although not the focus of this workshop, DNS, LES, and hybrid methods currently represent viable approaches for analysis on a limited basis. Therefore, although computer limitations require the use of RANS methods for realistic configurations at high Reynolds number in the foreseeable future, a balanced effort in turbulence modeling development, validation, and implementation should include these approaches as well.

  17. The present state and future directions of PDF methods

    NASA Technical Reports Server (NTRS)

    Pope, S. B.

    1992-01-01

    The objectives of the workshop are presented in viewgraph format, as is this entire article. The objectives are to discuss the present status and the future direction of various levels of engineering turbulence modeling related to Computational Fluid Dynamics (CFD) computations for propulsion; to assure that combustion is an essential part of propulsion; and to discuss Probability Density Function (PDF) methods for turbulent combustion. Essential to the integration of turbulent combustion models is the development of turbulent model, chemical kinetics, and numerical method. Some turbulent combustion models typically used in industry are the k-epsilon turbulent model, the equilibrium/mixing limited combustion, and the finite volume codes.

  18. On the RNG theory of turbulence

    NASA Technical Reports Server (NTRS)

    Lam, S. H.

    1992-01-01

    The Yakhot and Orszag (1986) renormalization group (RNG) theory of turbulence has generated a number of scaling law constants in reasonable quantitative agreement with experiments. The theory itself is highly mathematical, and its assumptions and approximations are not easily appreciated. The present paper reviews the RNG theory and recasts it in more conventional terms using a distinctly different viewpoint. A new formulation based on an alternative interpretation of the origin of the random force is presented, showing that the artificially introduced epsilon in the original theory is an adjustable parameter, thus offering a plausible explanation for the remarkable record of quantitative success of the so-called epsilon-expansion procedure.

  19. Performance of Reynolds Averaged Navier-Stokes Models in Predicting Separated Flows: Study of the Hump Flow Model Problem

    NASA Technical Reports Server (NTRS)

    Cappelli, Daniele; Mansour, Nagi N.

    2012-01-01

    Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump.

  20. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  1. Turbulence Modeling Verification and Validation

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2014-01-01

    Computational fluid dynamics (CFD) software that solves the Reynolds-averaged Navier-Stokes (RANS) equations has been in routine use for more than a quarter of a century. It is currently employed not only for basic research in fluid dynamics, but also for the analysis and design processes in many industries worldwide, including aerospace, automotive, power generation, chemical manufacturing, polymer processing, and petroleum exploration. A key feature of RANS CFD is the turbulence model. Because the RANS equations are unclosed, a model is necessary to describe the effects of the turbulence on the mean flow, through the Reynolds stress terms. The turbulence model is one of the largest sources of uncertainty in RANS CFD, and most models are known to be flawed in one way or another. Alternative methods such as direct numerical simulations (DNS) and large eddy simulations (LES) rely less on modeling and hence include more physics than RANS. In DNS all turbulent scales are resolved, and in LES the large scales are resolved and the effects of the smallest turbulence scales are modeled. However, both DNS and LES are too expensive for most routine industrial usage on today's computers. Hybrid RANS-LES, which blends RANS near walls with LES away from walls, helps to moderate the cost while still retaining some of the scale-resolving capability of LES, but for some applications it can still be too expensive. Even considering its associated uncertainties, RANS turbulence modeling has proved to be very useful for a wide variety of applications. For example, in the aerospace field, many RANS models are considered to be reliable for computing attached flows. However, existing turbulence models are known to be inaccurate for many flows involving separation. Research has been ongoing for decades in an attempt to improve turbulence models for separated and other nonequilibrium flows. When developing or improving turbulence models, both verification and validation are important

  2. RAS one-equation turbulence model with non-singular eddy-viscosity coefficient

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Agarwal, R. K.; Siikonen, T.

    2016-02-01

    A simplified consistency formulation for Pk/ε (production to dissipation ratio) is devised to obtain a non-singular Cμ (coefficient of eddy-viscosity) in the explicit algebraic Reynolds stress model of Gatski and Speziale. The coefficient Cμ depends non-linearly on both rotational/irrotational strains and is used in the framework of an improved RAS (Rahman-Agarwal-Siikonen) one-equation turbulence model to calculate a few well-documented turbulent flows, yielding predictions in good agreement with the direct numerical simulation and experimental data. The strain-dependent Cμ assists the RAS model in constructing the coefficients and functions such as to benefit complex flows with non-equilibrium turbulence. Comparisons with the Spalart-Allmaras one-equation model and the shear stress transport kmodel demonstrate that Cμ improves the response of RAS model to non-equilibrium effects.

  3. Modeling of the heat transfer in bypass transitional boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  4. Wave turbulence in shallow water models.

    PubMed

    Clark di Leoni, P; Cobelli, P J; Mininni, P D

    2014-06-01

    We study wave turbulence in shallow water flows in numerical simulations using two different approximations: the shallow water model and the Boussinesq model with weak dispersion. The equations for both models were solved using periodic grids with up to 2048{2} points. In all simulations, the Froude number varies between 0.015 and 0.05, while the Reynolds number and level of dispersion are varied in a broader range to span different regimes. In all cases, most of the energy in the system remains in the waves, even after integrating the system for very long times. For shallow flows, nonlinear waves are nondispersive and the spectrum of potential energy is compatible with ∼k{-2} scaling. For deeper (Boussinesq) flows, the nonlinear dispersion relation as directly measured from the wave and frequency spectrum (calculated independently) shows signatures of dispersion, and the spectrum of potential energy is compatible with predictions of weak turbulence theory, ∼k{-4/3}. In this latter case, the nonlinear dispersion relation differs from the linear one and has two branches, which we explain with a simple qualitative argument. Finally, we study probability density functions of the surface height and find that in all cases the distributions are asymmetric. The probability density function can be approximated by a skewed normal distribution as well as by a Tayfun distribution.

  5. Turbulent transport models for scramjet flowfields

    NASA Technical Reports Server (NTRS)

    Sindir, M. M.; Harsha, P. T.

    1984-01-01

    Turbulence modeling approaches were examined from the standpoint of their capability to predict the complex flowfield features observed in scramjet combustions. Thus, for example, the accuracy of each turbulence model, with respect to the prediction of recirculating flows, was examined. It was observed that for large diameter ratio axisymmetric sudden expansion flows, a choice of turbulence model was not critical because of the domination of their flowfields by pressure forces. For low diameter ratio axisymmetric sudden expansions and planar backward-facing steps flows, where turbulent shear stresses are of greater significance, the algebraic Reynolds stress approach, modified to increase its sensitivity to streamline curvature, was found to provide the best results. Results of the study also showed that strongly swirling flows provide a stringent test of turbulence model assumptions. Thus, although flows with very high swirl are not of great practical interest, they are useful for turbulence model development. Finally, it was also noted that numerical flowfields solution techniques have a strong interrelation with turbulence models, particularly with the turbulent transport models which involve source-dominated transport equations.

  6. A small-scale turbulence model

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1992-01-01

    A model for the small-scale structure of turbulence is reformulated in such a way that it may be conveniently computed. The model is an ensemble of randomly oriented structured two dimensional vortices stretched by an axially symmetric strain flow. The energy spectrum of the resulting flow may be expressed as a time integral involving only the enstrophy spectrum of the time evolving two-dimensional cross section flow, which may be obtained numerically. Examples are given in which a k(exp -5/3) spectrum is obtained by this method without using large wave number asymptotic analysis. The k(exp -5/3) inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the two-dimensional enstrophy spectrum. The results are insensitive to time dependence of the strain-rate, including even intermittent on-or-off strains.

  7. Controls on Turbulent Mixing in a Strongly Stratified and Sheared Tidal River Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurisa, Joseph T.; Nash, Jonathan D.; Moum, James N.

    Considerable effort has been made to parameterize turbulent kinetic energy (TKE) dissipation rate ..epsilon.. and mixing in buoyant plumes and stratified shear flows. Here, a parameterization based on Kunze et al. is examined, which estimates ..epsilon.. as the amount of energy contained in an unstable shear layer (Ri < Ric) that must be dissipated to increase the Richardson number Ri = N2/S2 to a critical value Ric within a turbulent decay time scale. Observations from the tidal Columbia River plume are used to quantitatively assess the relevant parameters controlling ..epsilon.. over a range of tidal and river discharge forcings. Observedmore » ..epsilon.. is found to be characterized by Kunze et al.'s form within a factor of 2, while exhibiting slightly decreased skill near Ri = Ric. Observed dissipation rates are compared to estimates from a constant interfacial drag formulation that neglects the direct effects of stratification. This is found to be appropriate in energetic regimes when the bulk-averaged Richardson number Rib is less than Ric/4. However, when Rib > Ric/4, the effects of stratification must be included. Similarly, ..epsilon.. scaled by the bulk velocity and density differences over the plume displays a clear dependence on Rib, decreasing as Rib approaches Ric. The Kunze et al. ..epsilon.. parameterization is modified to form an expression for the nondimensional dissipation rate that is solely a function of Rib, displaying good agreement with the observations. It is suggested that this formulation is broadly applicable for unstable to marginally unstable stratified shear flows.« less

  8. Ion distribution effects of turbulence on a kinetic auroral arc model

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.; Chiu, Y. T.

    1982-01-01

    An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.

  9. Use of Navier-Stokes methods for the calculation of high-speed nozzle flow fields

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.

    1994-01-01

    Flows through three reference nozzles have been calculated to determine the capabilities and limitations of the widely used Navier-Stokes solver, PARC. The nozzles examined have similar dominant flow characteristics as those considered for supersonic transport programs. Flows from an inverted velocity profile (IVP) nozzle, an under expanded nozzle, and an ejector nozzle were examined. PARC calculations were obtained with its standard algebraic turbulence model, Thomas, and the two-equation turbulence model, Chien k-epsilon. The Thomas model was run with the default coefficient of mixing set at both 0.09 and a larger value of 0.13 to improve the mixing prediction. Calculations using the default value substantially underpredicted the mixing for all three flows. The calculations obtained with the higher mixing coefficient better predicted mixing in the IVP and underexpanded nozzle flows but adversely affected PARC's convergence characteristics for the IVP nozzle case. The ejector nozzle case did not converge with the Thomas model and the higher mixing coefficient. The Chien k-epsilon results were in better agreement with the experimental data overall than were those of the Thomas run with the default mixing coefficient, but the default boundary conditions for k and epsilon underestimated the levels of mixing near the nozzle exits.

  10. Workshop on Engineering Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)

    1992-01-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  11. Numerical study of turbulence-influence mechanism on arc characteristics in an air direct current circuit breaker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Mingliang; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Rong, Mingzhe

    This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case ismore » much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model

  12. USM3D Unstructured Grid Solutions for CAWAPI at NASA LaRC

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Abdol-Hamid, Khaled S.

    2007-01-01

    In support the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) to improve the Technology Readiness Level of flow solvers by comparing results with measured F-16XL-1 flight data, NASA Langley employed the TetrUSS unstructured grid solver, USM3D, to obtain solutions for all seven flight conditions of interest. A newly available solver version that incorporates a number of turbulence models, including the two-equation linear and non-linear k-epsilon, was used in this study. As a first test, a choice was made to utilize only a single grid resolution with the solver for the simulation of the different flight conditions. Comparisons are presented with three turbulence models in USM3D, flight data for surface pressure, boundary-layer profiles, and skin-friction results, as well as limited predictions from other solvers. A result of these comparisons is that the USM3D solver can be used in an engineering environment to predict flow physics on a complex configuration at flight Reynolds numbers with a two-equation linear k-epsilon turbulence model.

  13. Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Olsen, W. A., Jr.

    1986-01-01

    To correctly simulate flight in natural icing conditions, the turbulence in an icing simulator must be as low as possible. But some turbulence is required to mix the droplets from the spray nozzles and achieve an icing cloud of uniform liquid water content. The goal for any spray system is to obtain the widest possible spray cloud with the lowest possible turbulence in the test section of a icing tunnel. This investigation reports the measurement of turbulence and the three-dimensional spread of the cloud from a single spray nozzle. The task was to determine how the air turbulence and cloud width are affected by spray bars of quite different drag coefficients, by changes in the turbulence upstream of the spray, the droplet size, and the atomizing air. An ice accretion grid, located 6.3 m downstream of the single spray nozzle, was used to measure cloud spread. Both the spray bar and the grid were located in the constant velocity test section. Three spray bar shapes were tested: the short blunt spray bar used in the NASA Lewis Icing Research Tunnel, a thin 14.6 cm chord airfoil, and a 53 cm chord NACA 0012 airfoil. At the low airspeed (56 km/hr) the ice accretion pattern was axisymmetric and was not affected by the shape of the spray bar. At the high airspeed (169 km/hr) the spread was 30 percent smaller than at the low airspeed. For the widest cloud the spray bars should be located as far upstream in the low velocity plenum of the icing tunnel. Good comparison is obtained between the cloud spread data and predicitons from a two-dimensional cloud mixing computer code using the two equation turbulence (k epsilon g) model.

  14. A comparative study of various inflow boundary conditions and turbulence models for wind turbine wake predictions

    NASA Astrophysics Data System (ADS)

    Tian, Lin-Lin; Zhao, Ning; Song, Yi-Lei; Zhu, Chun-Ling

    2018-05-01

    This work is devoted to perform systematic sensitivity analysis of different turbulence models and various inflow boundary conditions in predicting the wake flow behind a horizontal axis wind turbine represented by an actuator disc (AD). The tested turbulence models are the standard k-𝜀 model and the Reynolds Stress Model (RSM). A single wind turbine immersed in both uniform flows and in modeled atmospheric boundary layer (ABL) flows is studied. Simulation results are validated against the field experimental data in terms of wake velocity and turbulence intensity.

  15. Turbulence Model Effects on RANS Simulations of the HIFiRE Flight 2 Ground Test Configurations

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Mankbadi, Mina R.; Vyas, Manan A.

    2014-01-01

    The Wind-US Reynolds-averaged Navier-Stokes solver was applied to the Hypersonic International Flight Research Experimentation (HIFiRE) Flight 2 scramjet ground test configuration. Two test points corresponding to flight Mach numbers of 5.9 and 8.9 were examined. The emphasis was examining turbulence model effects on the prediction of flow path pressures. Three variants of the Menter k-omega turbulence model family were investigated. These include the baseline (BSL) and shear stress transport (SST) as well as a modified SST model where the shear stress limiter was altered. Variations in the turbulent Schmidt number were also considered. Choice of turbulence model had a substantial effect on prediction of the flow path pressures. The BSL model produced the highest pressures and the SST model produced the lowest pressures. As expected, the settings for the turbulent Schmidt number also had significant effects on predicted pressures. Small values for the turbulent Schmidt number enabled more rapid mass transfer, faster combustion, and in turn higher flowpath pressures. Optimal settings for turbulence model and turbulent Schmidt number were found to be rather case dependent, as has been concluded in other scramjet investigations.

  16. A Realizable Reynolds Stress Algebraic Equation Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1993-01-01

    The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.

  17. Comparison of turbulence models and CFD solution options for a plain pipe

    NASA Astrophysics Data System (ADS)

    Canli, Eyub; Ates, Ali; Bilir, Sefik

    2018-06-01

    Present paper is partly a declaration of state of a currently ongoing PhD work about turbulent flow in a thick walled pipe in order to analyze conjugate heat transfer. An ongoing effort on CFD investigation of this problem using cylindrical coordinates and dimensionless governing equations is identified alongside a literature review. The mentioned PhD work will be conducted using an in-house developed code. However it needs preliminary evaluation by means of commercial codes available in the field. Accordingly ANSYS CFD was utilized in order to evaluate mesh structure needs and asses the turbulence models and solution options in terms of computational power versus difference signification. Present work contains a literature survey, an arrangement of governing equations of the PhD work, CFD essentials of the preliminary analysis and findings about the mesh structure and solution options. Mesh element number was changed between 5,000 and 320,000. k-ɛ, k-ω, Spalart-Allmaras and Viscous-Laminar models were compared. Reynolds number was changed between 1,000 and 50,000. As it may be expected due to the literature, k-ɛ yields more favorable results near the pipe axis and k-ωyields more convenient results near the wall. However k-ɛ is found sufficient to give turbulent structures for a conjugate heat transfer problem in a thick walled plain pipe.

  18. Wavelet Analysis of Turbulent Spots and Other Coherent Structures in Unsteady Transition

    NASA Technical Reports Server (NTRS)

    Lewalle, Jacques

    1998-01-01

    This is a secondary analysis of a portion of the Halstead data. The hot-film traces from an embedded stage of a low pressure turbine have been extensively analyzed by Halstead et al. In this project, wavelet analysis is used to develop the quantitative characterization of individual coherent structures in terms of size, amplitude, phase, convection speed, etc., as well as phase-averaged time scales. The purposes of the study are (1) to extract information about turbulent time scales for comparison with unsteady model results (e.g. k/epsilon). Phase-averaged maps of dominant time scales will be presented; and (2) to evaluate any differences between wake-induced and natural spots that might affect model performance. Preliminary results, subject to verification with data at higher frequency resolution, indicate that spot properties are independent of their phase relative to the wake footprints: therefore requirements for the physical content of models are kept relatively simple. Incidentally, we also observed that spot substructures can be traced over several stations; further study will examine their possible impact.

  19. Afterbody External Aerodynamic and Performance Prediction at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1999-01-01

    This CFD experiment concludes that the potential difference between the flow between a flight Reynolds number test and a sub-scale wind tunnel test are substantial for this particular nozzle boattail geometry. The early study was performed using a linear k-epsilon turbulence model. The present study was performed using the Girimaji formulation of a algebraic Reynolds stress turbulent simulation.

  20. Ocean Turbulence. Paper 2; One-Point Closure Model Momentum, Heat and Salt Vertical Diffusivities in the Presence of Shear

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.

    1999-01-01

    We develop and test a 1-point closure turbulence model with the following features: 1) we include the salinity field and derive the expression for the vertical turbulent diffusivities of momentum K(sub m) , heat K(sub h) and salt K(sub s) as a function of two stability parameters: the Richardson number R(sub i) (stratification vs. shear) and the Turner number R(sub rho) (salinity gradient vs. temperature gradient). 2) to describe turbulent mixing below the mixed layer (ML), all previous models have adopted three adjustable "background diffusivities" for momentum, heat and salt. We propose a model that avoids such adjustable diffusivities. We assume that below the ML, the three diffusivities have the same functional dependence on R( sub i) and R(sub rho) as derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking.measured by Gargett et al. The procedure frees the model from adjustable background diffusivities and indeed we employ the same model throughout the entire vertical extent of the ocean. 3) in the local model, the turbulent diffusivities K(sub m,h,s) are given as analytical functions of R(sub i) and R(sub rho). 5) the model is used in an O-GCM and several results are presented to exhibit the effect of double diffusion processes. 6) the code is available upon request.

  1. Epsilon Eridani Inner Asteroid Belt

    NASA Image and Video Library

    2017-09-14

    SCI2017_0004: Artist's illustration of the Epsilon Eridani system showing Epsilon Eridani b, right foreground, a Jupiter-mass planet orbiting its parent star at the outside edge of an asteroid belt. In the background can be seen another narrow asteroid or comet belt plus an outermost belt similar in size to our solar system's Kuiper Belt. The similarity of the structure of the Epsilon Eridani system to our solar system is remarkable, although Epsilon Eridani is much younger than our sun. SOFIA observations confirmed the existence of the asteroid belt adjacent to the orbit of the Jovian planet. Credit: NASA/SOFIA/Lynette Cook

  2. Shell models of magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Plunian, Franck; Stepanov, Rodion; Frick, Peter

    2013-02-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfvén waves and the Hall effect.

  3. Comparison of fluid dynamic numerical models for a clinical ventricular assist device and experimental validation

    PubMed Central

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.

    2012-01-01

    With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681

  4. Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto

    1990-01-01

    The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.

  5. Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2015-01-01

    Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.

  6. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.

    PubMed

    Ghalichi, Farzan; Deng, Xiaoyan

    2003-01-01

    The pulsatile blood flow in a partially blocked artery is significantly altered as the flow regime changes through the cardiac cycle. This paper reports on the application of a low-Reynolds turbulence model for computation of physiological pulsatile flow in a healthy and stenosed carotid artery bifurcation. The human carotid artery was chosen since it has received much attention because atherosclerotic lesions are frequently observed. The Wilcox low-Re k-omega turbulence model was used for the simulation since it has proven to be more accurate in describing transition from laminar to turbulent flow. Using the FIDAP finite element code a validation showed very good agreement between experimental and numerical results for a steady laminar to turbulent flow transition as reported in a previous publication by the same authors. Since no experimental or numerical results were available in the literature for a pulsatile and turbulent flow regime, a comparison between laminar and low-Re turbulent calculations was made to further validate the turbulence model. The results of this study showed a very good agreement for velocity profiles and wall shear stress values for this imposed pulsatile laminar flow regime. To explore further the medical aspect, the calculations showed that even in a healthy or non-stenosed artery, small instabilities could be found at least for a portion of the pulse cycle and in different sections. The 40% and 55% diameter reduction stenoses did not significantly change the turbulence characteristics. Further results showed that the presence of 75% stenoses changed the flow properties from laminar to turbulent flow for a good portion of the cardiac pulse. A full 3D simulation with this low-Re-turbulence model, coupled with Doppler ultrasound, can play a significant role in assessing the degree of stenosis for cardiac patients with mild conditions.

  7. On Thermodynamic Constraints upon Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ning; Durst, Franz

    2000-11-01

    Turbulence is a continuum phenomenon which can be described within the framework of continuum mechanics. Such foundation has the potential for improving turbulence modeling, making it less heuristic and more rational. In the present research, we consider the compatibility of turbulence modeling with the second law of thermodynamics. We show that the Clausius-Planck inequality, as an expression of the principle of entropy growth, places a thermodynamic restriction upon the turbulence modeling of an incompressible Navier-Stokes fluid in an isothermal temperature field. This thermodynamic restriction is given in the form of an inequality, which ensures non-negativeness of the mean internal dissipation. As an illustration, we show the thermodynamic constraints on the modeling of a few typical homogeneous turbulent flows.

  8. Whistler turbulence heating of electrons and ions: Three-dimensional particle-in-cell simuations

    DOE PAGES

    Gary, S. Peter; Hughes, R. Scott; Wang, Joseph

    2016-01-14

    In this study, the decay of whistler turbulence in a collisionless, homogeneous, magnetized plasma is studied using three-dimensional particle-in-cell simulations. The simulations are initialized with a narrowband, relatively isotropic distribution of long wavelength whistler modes. A first ensemble of simulations at electron betamore » $${\\beta }_{{\\rm{e}}}$$ = 0.25 and ion-to-electron mass ratio $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}$$ = 400 is carried out on a domain cube of dimension $$L{\\omega }_{\\mathrm{pi}}$$/c = 5.12 where $${\\omega }_{\\mathrm{pi}}$$ is the ion plasma frequency. The simulations begin with a range of dimensionless fluctuating field energy densities, $${\\epsilon }_{{\\rm{o}}}$$, and follow the fluctuations as they cascade to broadband, anisotropic turbulence which dissipates at shorter wavelengths, heating both electrons and ions. The electron heating is stronger and preferentially parallel/antiparallel to the background magnetic field $${{\\boldsymbol{B}}}_{{\\rm{o}}};$$ the ion energy gain is weaker and is preferentially in directions perpendicular to $${{\\boldsymbol{B}}}_{{\\rm{o}}}$$. The important new results here are that, over 0.01 < $${\\epsilon }_{{\\rm{o}}}$$ < 0.25, the maximum rate of electron heating scales approximately as $${\\epsilon }_{{\\rm{o}}}$$, and the maximum rate of ion heating scales approximately as $${\\epsilon }_{{\\rm{o}}}^{1.5}$$. A second ensemble of simulations at $${\\epsilon }_{{\\rm{o}}}$$ = 0.10 and $${\\beta }_{{\\rm{e}}}$$ = 0.25 shows that, over 25 < $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}\\;$$< 1836, the ratio of the maximum ion heating rate to the maximum electron heating rate scales approximately as $${m}_{{\\rm{e}}}$$/$${m}_{{\\rm{i}}}$$.« less

  9. Turbulence Modeling for Shock Wave/Turbulent Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Lillard, Randolph P.

    2011-01-01

    Accurate aerodynamic computational predictions are essential for the safety of space vehicles, but these computations are of limited accuracy when large pressure gradients are present in the flow. The goal of the current project is to improve the state of compressible turbulence modeling for high speed flows with shock wave / turbulent boundary layer interactions (SWTBLI). Emphasis will be placed on models that can accurately predict the separated region caused by the SWTBLI. These flows are classified as nonequilibrium boundary layers because of the very large and variable adverse pressure gradients caused by the shock waves. The lag model was designed to model these nonequilibrium flows by incorporating history effects. Standard one- and two-equation models (Spalart Allmaras and SST) and the lag model will be run and compared to a new lag model. This new model, the Reynolds stress tensor lag model (lagRST), will be assessed against multiple wind tunnel tests and correlations. The basis of the lag and lagRST models are to preserve the accuracy of the standard turbulence models in equilibrium turbulence, when the Reynolds stresses are linearly related to the mean strain rates, but create a lag between mean strain rate effects and turbulence when nonequilibrium effects become important, such as in large pressure gradients. The affect this lag has on the results for SWBLI and massively separated flows will be determined. These computations will be done with a modified version of the OVERFLOW code. This code solves the RANS equations on overset grids. It was used for this study for its ability to input very complex geometries into the flow solver, such as the Space Shuttle in the full stack configuration. The model was successfully implemented within two versions of the OVERFLOW code. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWBLI assessed. Separation predictions are not as good as the

  10. Nonuniversal k-3 energy spectrum in stationary two-dimensional homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Kaneda, Yukio; Ishihara, Takashi

    2001-05-01

    A spectral closure analysis and numerical simulations suggest that there may be a class of two-dimensional turbulence in which the energy spectrum E(k) scales with the wave number k like E(k)=Ak-3 in the enstrophy transfer range in accordance with the Kraichnan-Leith-Batchelor (KLB) spectrum, but the prefactor A is different from the KLB spectrum and depends in a nontrivial way on the flow conditions at large scales.

  11. Turbulence Modelling in Wind Turbine Wakes =

    NASA Astrophysics Data System (ADS)

    Olivares Espinosa, Hugo

    With the expansion of the wind energy industry, wind parks have become a common appearance in our landscapes. Owing to restrictions of space or to economic reasons, wind turbines are located close to each other in wind farms. This causes interference problems which reduce the efficiency of the array. In particular, the wind turbine wakes increase the level of turbulence and cause a momentum defect that may lead to an increase of mechanical loads and to a reduction of power output. Thus, it is important for the wind energy industry to predict the characteristics of the turbulence field in the wakes with the purpose of increasing the efficiency of the power extraction. Since this is a phenomenon of intrinsically non-linear nature, it can only be accurately described by the full set of the Navier-Stokes equations. Furthermore, a proper characterization of turbulence cannot be made without resolving the turbulent motions, so neither linearized models nor the widely used Reynolds-Averaged Navier-Stokes model can be employed. Instead, Large-Eddy Simulations (LES) provide a feasible alternative, where the energy containing fluctuations of the velocity field are resolved and the effects of the smaller eddies are modelled through a sub-grid scale component. The objective of this work is the modelling of turbulence in wind turbine wakes in a homogeneous turbulence inflow. A methodology has been developed to fulfill this objective. Firstly, a synthetic turbulence field is introduced into a computational domain where LES are performed to simulate a decaying turbulence flow. Secondly, the Actuator Disk (AD) technique is employed to simulate the effect of a rotor in the incoming flow and produce a turbulent wake. The implementation is carried out in OpenFOAM, an open-source CFD platform, resembling a well documented procedure previously used for wake flow simulations. Results obtained with the proposed methodology are validated by comparing with values obtained from wind tunnel

  12. A variable turbulent Prandtl and Schmidt number model study for scramjet applications

    NASA Astrophysics Data System (ADS)

    Keistler, Patrick

    A turbulence model that allows for the calculation of the variable turbulent Prandtl (Prt) and Schmidt (Sct) numbers as part of the solution is presented. The model also accounts for the interactions between turbulence and chemistry by modeling the corresponding terms. Four equations are added to the baseline k-zeta turbulence model: two equations for enthalpy variance and its dissipation rate to calculate the turbulent diffusivity, and two equations for the concentrations variance and its dissipation rate to calculate the turbulent diffusion coefficient. The underlying turbulence model already accounts for compressibility effects. The variable Prt /Sct turbulence model is validated and tuned by simulating a wide variety of experiments. Included in the experiments are two-dimensional, axisymmetric, and three-dimensional mixing and combustion cases. The combustion cases involved either hydrogen and air, or hydrogen, ethylene, and air. Two chemical kinetic models are employed for each of these situations. For the hydrogen and air cases, a seven species/seven reaction model where the reaction rates are temperature dependent and a nine species/nineteen reaction model where the reaction rates are dependent on both pressure and temperature are used. For the cases involving ethylene, a 15 species/44 reaction reduced model that is both pressure and temperature dependent is used, along with a 22 species/18 global reaction reduced model that makes use of the quasi-steady-state approximation. In general, fair to good agreement is indicated for all simulated experiments. The turbulence/chemistry interaction terms are found to have a significant impact on flame location for the two-dimensional combustion case, with excellent experimental agreement when the terms are included. In most cases, the hydrogen chemical mechanisms behave nearly identically, but for one case, the pressure dependent model would not auto-ignite at the same conditions as the experiment and the other

  13. Mathematical Modeling of an Oscillating Droplet

    NASA Technical Reports Server (NTRS)

    Berry, S.; Hyers, R. W.; Racz, L. M.; Abedian, B.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Oscillating droplets are of interest in a number of disciplines. A practical application is the oscillating drop method, which is a technique for measuring surface tension and viscosity of liquid metals. It is especially suited to undercooled and highly reactive metals, because it is performed by electromagnetic levitation. The natural oscillation frequency of the droplets is related to the surface tension of the material, and the decay of oscillations is related to its viscosity. The fluid flow inside the droplet must be laminar in order for this technique to yield good results. Because no experimental method has yet been developed to visualize flow in electromagnetically-levitated oscillating metal droplets, mathematical modeling is required to determine whether or not turbulence occurs. Three mathematical models of the flow: (1) assuming laminar conditions, (2) using the k-epsilon turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity.

  14. Analysis of flow patterns in a patient-specific aortic dissection model.

    PubMed

    Cheng, Z; Tan, F P P; Riga, C V; Bicknell, C D; Hamady, M S; Gibbs, R G J; Wood, N B; Xu, X Y

    2010-05-01

    Aortic dissection is the most common acute catastrophic event affecting the thoracic aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent aneurysmal dilatation of the thoracic aorta. This study aimed at gaining more detailed knowledge of the flow phenomena associated with this condition. Morphological features and flow patterns in a dissected aortic segment of a presurgery type B dissection patient were analyzed based on computed tomography images acquired from the patient. Computational simulations of blood flow in the patient-specific model were performed by employing a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport turbulence model implemented in ANSYS CFX 11. Our results show that the dissected aorta is dominated by locally highly disturbed, and possibly turbulent, flow with strong recirculation. A significant proportion (about 80%) of the aortic flow enters the false lumen, which may further increase the dilatation of the aorta. High values of wall shear stress have been found around the tear on the true lumen wall, perhaps increasing the likelihood of expanding the tear. Turbulence intensity in the tear region reaches a maximum of 70% at midsystolic deceleration phase. Incorporating the non-Newtonian behavior of blood into the same transitional flow model has yielded a slightly lower peak wall shear stress and higher maximum turbulence intensity without causing discernible changes to the distribution patterns. Comparisons between the laminar and turbulent flow simulations show a qualitatively similar distribution of wall shear stress but a significantly higher magnitude with the transitional turbulence model.

  15. Vector Third Moment of Turbulent MHD Fluctuations: Theory and Interpretation

    NASA Astrophysics Data System (ADS)

    Forman, M. A.; MacBride, B. T.; Smith, C. W.

    2006-12-01

    We call attention to the fact that a certain vector third moment of turbulent MHD fluctuations, even if they are anisotropic, obeys an exact scaling relation in the inertial range. Politano and Pouquet (1998, PP) proved it from the MHD equations specifically. It is a direct analog of the long-known von Karman-Howarth-Monin (KHM) vector relation in anisotropic hydrodynamic turbulence, which follows from the Navier-Stokes equations (see Frisch, 1995). The relevant quantities in MHD are the plus and minus Elsasser vectors and their fluctuations over vector spatial differences. These are used in the mixed vector third moment S+/-(r). The mixed moment is essential, because in the MHD equations for the Elsasser variables, the z + and z- are mixed in the non-linear term. The PP relation is div (S+/-(r))= -4*(epsilon +/-) where (epsilon +/-) is the turbulent energy dissipation rate in the +/- cascade, in Joules/(kg-sec). Of the many possible vector and tensor third moments of MHD vector fluctuations, S+/-(r) is the only one known to have an exact (although vector differential) scaling valid in anisotropic MHD in the inertial range. The PP scaling of a distinctly non-zero third moment indicates that an inertial range cascade is present. The PP scaling does NOT simply result from a dimensional argument, but is derived directly from the MHD equations. A power-law power spectrum alone does not necessarily imply an inertial cascade is present. Furthermore, only the scaling of S+/-(r) gives the epsilon +/- directly. Earlier methods of determining epsilon +/-, based on the amplitude of the power spectrum, make assumptions about isotropy, Alfvenicity and scaling that are not exact. Thus, the observation of a finite S+/-(r) and its scaling with vector r, are fundamental to MHD turbulence in the solar wind, or in any magnetized plasma. We are engaged in evaluating S+/-(r )and its anisotropic scaling in the solar wind, beginning with ACE field and plasma data. For this, we are using

  16. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    NASA Technical Reports Server (NTRS)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  17. A new hybrid turbulence modelling strategy for industrial CFD

    NASA Astrophysics Data System (ADS)

    Basara, B.; Jakirlic, S.

    2003-05-01

    This paper presents a new strategy for turbulence model employment with emphasis on the model's applicability for industrial computational fluid dynamics (CFD). In the hybrid modelling strategy proposed here, the Reynolds stress and mean rate of strain tensors are coupled via Boussinesq's formula as in the standard k-model. However, the turbulent kinetic energy is calculated as the sum of the normal Reynolds-stress components, representing the solutions of the appropriate transport equations. The equations governing the Reynolds-stress tensor and dissipation rate have been solved in the framework of a background second-moment closure model. Furthermore, the structure parameter C-? has been re-calculated from a newly proposed functional dependency rather than kept constant. This new definition of C-? has been assessed by using direct numerical simulation (DNS) results of several generic flow configurations featuring different phenomena such as separation, reattachment and rotation. Comparisons show a large departure of C-? from the commonly used value of 0.09. The model proposed is computationally validated in a number of well-proven fluid flow benchmarks, e.g. backward-facing step, 180° turn-around duct, rotating pipe, impinging jet and three-dimensional (3D) Ahmed body. The obtained results confirm that the present hybrid model delivers a robust solution procedure while preserving most of the physical advantages of the Reynolds-stress model over simple k-models. A low Reynolds number version of the hybrid model is also proposed and discussed.

  18. Modeling near-wall turbulent flows

    NASA Astrophysics Data System (ADS)

    Marusic, Ivan; Mathis, Romain; Hutchins, Nicholas

    2010-11-01

    The near-wall region of turbulent boundary layers is a crucial region for turbulence production, but it is also a region that becomes increasing difficult to access and make measurements in as the Reynolds number becomes very high. Consequently, it is desirable to model the turbulence in this region. Recent studies have shown that the classical description, with inner (wall) scaling alone, is insufficient to explain the behaviour of the streamwise turbulence intensities with increasing Reynolds number. Here we will review our recent near-wall model (Marusic et al., Science 329, 2010), where the near-wall turbulence is predicted given information from only the large-scale signature at a single measurement point in the logarithmic layer, considerably far from the wall. The model is consistent with the Townsend attached eddy hypothesis in that the large-scale structures associated with the log-region are felt all the way down to the wall, but also includes a non-linear amplitude modulation effect of the large structures on the near-wall turbulence. Detailed predicted spectra across the entire near- wall region will be presented, together with other higher order statistics over a large range of Reynolds numbers varying from laboratory to atmospheric flows.

  19. Improved engineering models for turbulent wall flows

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Chen, Xi; Zou, Hong-Yue; Hussain, Fazle

    2015-11-01

    We propose a new approach, called structural ensemble dynamics (SED), involving new concepts to describe the mean quantities in wall-bounded flows, and its application to improving the existing engineering turbulence models, as well as its physical interpretation. First, a revised k - ω model for pipe flows is obtained, which accurately predicts, for the first time, both mean velocity and (streamwise) kinetic energy for a wide range of the Reynolds number (Re), validated by Princeton experimental data. In particular, a multiplicative factor is introduced in the dissipation term to model an anomaly in the energy cascade in a meso-layer, predicting the outer peak of agreeing with data. Secondly, a new one-equation model is obtained for compressible turbulent boundary layers (CTBL), building on a multi-layer formula of the stress length function and a generalized temperature-velocity relation. The former refines the multi-layer description - viscous sublayer, buffer layer, logarithmic layer and a newly defined bulk zone - while the latter characterizes a parabolic relation between the mean velocity and temperature. DNS data show our predictions to have a 99% accuracy for several Mach numbers Ma = 2.25, 4.5, improving, up to 10%, a previous similar one-equation model (Baldwin & Lomax, 1978). Our results promise notable improvements in engineering models.

  20. A small-scale turbulence model

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1993-01-01

    A previously derived analytical model for the small-scale structure of turbulence is reformulated in such a way that the energy spectrum may be computed. The model is an ensemble of two-dimensional (2D) vortices with internal spiral structure, each stretched by an axially symmetric strain flow. Stretching and differential rotation produce an energy cascade to smaller scales in which the stretching represents the effect of instabilities and the spiral structure is the source of dissipation at the end of the cascade. The energy spectrum of the resulting flow may be expressed as a time integration involving only the enstrophy spectrum of the time evolving 2D cross section flow, which may be obtained numerically. Examples are given in which a k exp -5/3 spectrum is obtained by this method. The k exp -5/3 inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the 2D enstrophy spectrum. The results are found to be insensitive to time dependence of the strain rate, including even intermittent on-or-off strains.

  1. Numerical Solutions for the CAWAPI Configuration on Structured Grids at NASA LaRC, United States. Chapter 7

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Abdol-Hamid, Khaled S.; Massey, Steven J.

    2009-01-01

    In this chapter numerical simulations of the flow around F-16XL are performed as a contribution to the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) using the PAB3D CFD code. Two turbulence models are used in the calculations: a standard k-epsilon model, and the Shih-Zhu-Lumley (SZL) algebraic stress model. Seven flight conditions are simulated for the flow around the F-16XL where the free stream Mach number varies from 0.242 to 0.97. The range of angles of attack varies from 0 deg to 20 deg. Computational results, surface static pressure, boundary layer velocity profiles, and skin friction are presented and compared with flight data. Numerical results are generally in good agreement with flight data, considering that only one grid resolution is utilized for the different flight conditions simulated in this study. The Algebraic Stress Model (ASM) results are closer to the flight data than the k-epsilon model results. The ASM predicted a stronger primary vortex, however, the origin of the vortex and footprint is approximately the same as in the k-epsilon predictions.

  2. Conformal Field Theories in the Epsilon and 1/N Expansions

    NASA Astrophysics Data System (ADS)

    Fei, Lin

    In this thesis, we study various conformal field theories in two different approximation schemes - the epsilon-expansion in dimensional continuation, and the large N expansion. We first propose a cubic theory in d = 6 - epsilon as the UV completion of the quartic scalar O(N) theory in d > 4. We study this theory to three-loop order and show that various operator dimensions are consistent with large-N results. This theory possesses an IR stable fixed point at real couplings for N > 1038, suggesting the existence of a perturbatively unitary interacting O(N) symmetric CFT in d = 5. Extending this model to Sp(N) symmetric theories, we find an interacting non-unitary CFT in d = 5. For the special case of Sp(2), the IR fixed point possesses an enhanced symmetry given by the supergroup OSp(1|2). We also observe that various operator dimensions of the Sp(2) theory match those from the 0-state Potts model. We provide a graph theoretic proof showing that the zero, two, and three-point functions in the Sp(2) model and the 0-state Potts model indeed match to all orders in perturbation theory, strongly suggesting their equivalence. We then study two fermionic theories in d = 2 + epsilon - the Gross-Neveu model and the Nambu-Jona-Lasinio model, together with their UV completions in d = 4 - epsilon given by the Gross-Neveu-Yukawa and the Nambu-Jona-Lasinio-Yukawa theories. We compute their sphere free energy and certain operator dimensions, passing all checks against large- N results. We use two sided Pade approximations with our epsilon-expansion results to obtain estimates of various quantities in the physical dimension d = 3. Finally, we provide evidence that the N=1 Gross-Neveu-Yukawa model which contains a 2-component Majorana fermion, and the N= 2 Nambu-Jona-Lasinion-Yukawa model which contains a 2-component Dirac fermion, both have emergent supersymmetry.

  3. Approximate Model for Turbulent Stagnation Point Flow.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near themore » stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.« less

  4. MESA models of the evolutionary state of the interacting binary epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Gibson, Justus L.; Stencel, Robert E.

    2018-06-01

    Using MESA code (Modules for Experiments in Stellar Astrophysics, version 9575), an evaluation was made of the evolutionary state of the epsilon Aurigae binary system (HD 31964, F0Iap + disc). We sought to satisfy several observational constraints: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C/13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 M⊙, with a 100 d initial period, produces a 1.2 + 10.6 M⊙ result having a 547 d period, and a single digit 12C/13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main-sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long-period binary stars.

  5. A proposed experimental test to distinguish waves from 2-D turbulence

    NASA Technical Reports Server (NTRS)

    Dewan, E. M.

    1986-01-01

    A theory of buoyancy range turbulence that leads to a unique scale, K sub B, that allows one to differentiate between waves and turbulence for the special case of theta = 0 (i.e., horizontally propagating waves) is discussed. The theory does not seem to lead to a practical empirical distinction for the general situation. This is due to the fact that, as theta is increased, one has the ever-increasing presence of BRT for longer wavelengths. The fact that the numerical values of epsilon prime are not yet available compounds the difficulty. In addition, it does not appear possible to encompass true 2-D turbulence in the theory. We are thus driven to a test which circumvents all these difficulties. A proposed test is based on the idea that waves are coherent and propagate, while in turbulence we have the opposite situation. In particular, the test is suggested by the following quotation from MULLER (1984), on the nature of such turbulence: The turbulence in each horizontal plane is independent from the turbulence in the other planes. If this statement were to be taken literally, it would imply that the temporal coherence between horizontal speeds, separated only in altitude, would be zero. Any vertical separation would be forced to take into account the effects of viscosity: that is to say, a specific finite vertical separation would be needed to destroy coherence. In order to estimate this distance, L, one can use L = C(v/S) (1/2) were v is the kinematic viscosity, S is the shear scale, and C is a constant of order unity.

  6. Clinical Significance of Epsilon Waves in Arrhythmogenic Cardiomyopathy.

    PubMed

    Protonotarios, Alexandros; Anastasakis, Aris; Tsatsopoulou, Adalena; Antoniades, Loizos; Prappa, Efstathia; Syrris, Petros; Tousoulis, Dimitrios; McKENNA, William J; Protonotarios, Nikos

    2015-07-16

    Epsilon waves are hallmark features of arrhythmogenic cardiomyopathy (ACM) but information about their clinical significance is variable. We evaluated epsilon wave prevalence, characteristics, and their clinical significance in an ACM population. Eighty-six unselected patients fulfilling the 2010 Task Force criteria were enrolled. Seventy-six of them were carriers of desmosomal mutations. All subjects were serially evaluated with standard 12-lead ECG and 2-dimensional echocardiography. Epsilon waves were evaluated in all precordial and inferior leads. Novel parameters assessed included their duration and precordial/inferior lead extension. Twenty-five subjects (29%) had epsilon waves that were present in lead V3 and beyond in 9, and in the inferior leads in 7. Epsilon waves were associated with right ventricular outflow tract (RVOT) (P = 0.001) but not RV posterior wall (P = 0.21), RV apex (P = 0.30), or left ventricular (P = 0.94) wall motion abnormalities. Patients with epsilon waves had increased RVOT diameter (P < 0.0001). Extension of epsilon waves in lead V3 and beyond was associated with increased epsilon wave duration (P = 0.002) and RVOT diameter (P = 0.04). The duration of epsilon waves was positively correlated with RVOT diameter (r = 0.70, P = 0.0001). Epsilon waves were also associated with episodes of sustained ventricular tachycardia (P = 0.004) but not with heart failure (P = 0.41) or sudden cardiac death (P = 0.31). Detection of epsilon waves on 12-lead ECG reflects significant RVOT involvement, which was associated with episodes of sustained ventricular tachycardia but not sudden cardiac death. © 2015 Wiley Periodicals, Inc.

  7. PDF turbulence modeling and DNS

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.

    1992-01-01

    The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.

  8. A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I. P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  9. A two-dimensional numerical study of the flow inside the combustion chamber of a motored rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I-P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  10. A composition joint PDF method for the modeling of spray flames

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1995-01-01

    This viewgraph presentation discusses an extension of the probability density function (PDF) method to the modeling of spray flames to evaluate the limitations and capabilities of this method in the modeling of gas-turbine combustor flows. The comparisons show that the general features of the flowfield are correctly predicted by the present solution procedure. The present solution appears to provide a better representation of the temperature field, particularly, in the reverse-velocity zone. The overpredictions in the centerline velocity could be attributed to the following reasons: (1) the use of k-epsilon turbulence model is known to be less precise in highly swirling flows and (2) the swirl number used here is reported to be estimated rather than measured.

  11. Analysis of Fc(epsilon)RI-mediated mast cell stimulation by surface-carried antigens.

    PubMed Central

    Schweitzer-Stenner, R; Tamir, I; Pecht, I

    1997-01-01

    Clustering of the type I receptor for IgE (Fc[epsilon]RI) on mast cells initiates a cascade of biochemical processes that result in secretion of inflammatory mediators. To determine the Fc(epsilon)RI proximity, cluster size, and mobility requirements for initiating the Fc(epsilon)RI cascade, a novel experimental protocol has been developed in which mast cells are reacted with glass surfaces carrying different densities of both antigen and bound IgE, and the cell's secretory response to these stimuli is measured. The results have been analyzed in terms of a model based on the following assumptions: 1) the glass surface antigen distribution and consequently that of the bound IgE are random; 2) Fc(epsilon)RI binding to these surface-bound IgEs immobilizes the former and saturates the latter; 3) the cell surface is formally divided into small elements, which function as a secretory stimulus unit when occupied by two or more immobilized IgE-Fc(epsilon)RI complexes; 4) alternatively, similar stimulatory units can be formed by binding of surface-carried IgE dimers to two Fc(epsilon)RI. This model yielded a satisfactory and self-consistent fitting of all of the different experimental data sets. Hence the present results establish the essential role of Fc(epsilon)RI immobilization for initiating its signaling cascade. Moreover, it provides independent support for the notion that as few as two Fc(epsilon)RIs immobilized at van der Waals contact constitute an "elementary stimulatory unit" leading to mast cell (RBL-2H3 line) secretory response. PMID:9168023

  12. Two-fluid models of turbulence

    NASA Technical Reports Server (NTRS)

    Spalding, D. B.

    1985-01-01

    The defects of turbulence models are summarized and the importance of so-called nongradient diffusion in turbulent fluxes is discussed. The mathematical theory of the flow of two interpenetrating continua is reviewed, and the mathematical formulation of the two fluid model is outlined. Results from plane wake, axisymmetric jet, and combustion studies are shown.

  13. Laminar flamelet modeling of turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; Kosaly, G.; Planche, O.; Poinsot, T.; Ferziger, J. H.

    1990-01-01

    In modeling turbulent combustion, decoupling the chemistry from the turbulence is of great practical significance. In cases in which the equilibrium chemistry model breaks down, laminar flamelet modeling (LFM) is a promising approach to decoupling. Here, the validity of this approach is investigated using direct numerical simulation of a simple chemical reaction in two-dimensional turbulence.

  14. Collaborative testing of turbulence models

    NASA Technical Reports Server (NTRS)

    Bradshaw, Peter; Launder, Brian E.; Lumley, John L.

    1991-01-01

    A review is given of an ongoing international project, in which data from experiments on, and simulations of, turbulent flows are distributed to developers of (time-averaged) engineering turbulence models. The predictions of each model are sent to the organizers and redistributed to all the modelers, plus some experimentalists and other experts (total approx. 120), for comment. The 'reaction time' of modelers has proved to be much longer than anticipated, partly because the comparisons with data have prompted many modelers to improve their models or numerics.

  15. Including electromagnetism in K → ππ decay calculations

    NASA Astrophysics Data System (ADS)

    Christ, Norman; Feng, Xu

    2018-03-01

    Because of the small size of the ratio A2/A0 of the I = 2 to I = 0 K → ππ decay amplitudes (the ΔI = 1/2 rule) the effects of electromagnetism on A2 may be a factor of 20 larger than given by a naive O(±EM) estimate. Thus, if future calculations of A2 and epsilon'/epsilon are to achieve 10% accuracy, these effects need to be included. Here we present the first steps toward including electromagnetism in a calculation of the standard model K → ππ decay amplitudes using lattice QCD.

  16. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1995-01-01

    The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.

  17. Protein kinase C epsilon, which sensitizes skin to sun's UV radiation-induced cutaneous damage and development of squamous cell carcinomas, associates with Stat3.

    PubMed

    Aziz, Moammir H; Manoharan, Herbert T; Verma, Ajit K

    2007-02-01

    Chronic exposure to UV radiation (UVR) is the major etiologic factor in the development of human skin cancers including squamous cell carcinoma (SCC). We have shown that protein kinase C(epsilon) (PKC(epsilon)), a Ca(2+)-independent, phospholipid-dependent serine/threonine kinase, is an endogenous photosensitizer. PKC(epsilon) is among the six isoforms (alpha, delta, epsilon, eta, mu, and zeta) expressed in both mouse and human skin. PKC(epsilon) transgenic mice, which overexpress PKC(epsilon) in the basal epidermal cells and cells of the hair follicle, are highly sensitive to UVR-induced cutaneous damage and development of SCC. We now present that PKC(epsilon)-overexpressing, but not PKC(delta)-overexpressing, transgenic mice, when exposed to a single (4 kJ/m(2)) or repeated (four doses, 2 kJ/m(2)/dose, thrice weekly) UVR, emitted by Kodacel-filtered FS-40 sun lamps, elicit constitutive phosphorylation of signal transducers and activators of transcription 3 (Stat3) at both Tyr705 and Ser727 residues. UVR-induced phosphorylation of Stat3 accompanied increased expression of Stat3-regulated genes (c-myc, cyclin D1, cdc25A, and COX-2). In reciprocal immunoprecipitation/blotting experiments, phosphorylated Stat3 co-immunoprecipitated with PKC(epsilon). As observed in vivo using PKC(epsilon) knockout mice and in vitro in an immunocomplex kinase assay, PKC(epsilon) phosphorylated Stat3 at Ser727 residue. These results indicate for the first time that (a) PKC(epsilon) is a Stat3Ser727 kinase; (b) PKC(epsilon)-mediated phosphorylation of StatSer727 may be essential for transcriptional activity of Stat3; and (c) UVR-induced phosphorylation of Ser727 may be a key component of the mechanism by which PKC(epsilon) imparts sensitivity to UVR-induced development of SCC.

  18. Navier-Stokes computation of compressible turbulent flows with a second order closure, part 1

    NASA Technical Reports Server (NTRS)

    Haminh, Hieu; Kollmann, Wolfgang; Vandromme, Dany

    1990-01-01

    A second order closure turbulence model for compressible flows is developed and implemented in a 2D Reynolds-averaged Navier-Stokes solver. From the beginning where a kappa-epsilon turbulence model was implemented in the bidiagonal implicit method of MACCORMACK (referred to as the MAC3 code) to the final stage of implementing a full second order closure in the efficient line Gauss-Seidel algorithm, numerous work was done, individually and collectively. Besides the collaboration itself, the final product of this work is a second order closure derived from the Launder, Reece, and Rodi model to account for near wall effects, which has been called FRAME model, which stands for FRench-AMerican-Effort. During the reporting period, two different problems were worked out. The first was to provide Ames researchers with a reliable compressible boundary layer code including a wide collection of turbulence models for quick testing of new terms, both in two equations and in second order closure (LRR and FRAME). The second topic was to complete the implementation of the FRAME model in the MAC5 code. The work related to these two different contributions is reported. dilatation in presence of stron shocks. This work, which has been conducted during a work at the Center for Turbulence Research with Zeman aimed also to cros-check earlier assumptions by Rubesin and Vandromme.

  19. A kmodel for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Bonnet, Michel

    1990-09-01

    A kmodel for turbulent mixing induced by Rayleigh-Taylor instability is described. The classical linear closure relations are supplemented with algebraic relations in order to be valid under strong gradients. Calibrations were made against two shock-tube experiments (Andronov et al. [Sov. Phys. JETP 44, 424 (1976); Sov. Phys. Dokl. 27, 393 (1982)] and Houas et al. [Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes (Stanford U.P., Stanford, CA, 1986)]) using the same set of constants. The new interpretation of the experimental data of Brouillette and Sturtevant [Physica D 37, 248 (1989)], where the mixing length is discriminated from the wall jet, requires a different numerical value for the Rayleigh-Taylor source term coefficient. A detailed physical study is given in both cases. It turns out that the spectrum is narrower in the Brouillette and Sturtevant case than in the Andronov et al. case but the small length scales are of the same magnitude.

  20. Computational fluid dynamics investigation of turbulence models for non-newtonian fluid flow in anaerobic digesters.

    PubMed

    Wu, Binxin

    2010-12-01

    In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number kmodels, (2) six low-Reynolds-number kmodels, (3) two kmodels, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number kmodel performs better than the other models in predicting the frictional pressure drops while the standard kmodel has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.

  1. Structure and modeling of turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, E.A.

    The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scalemore » motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).« less

  2. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    NASA Technical Reports Server (NTRS)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  3. Performance analysis of dual-hop optical wireless communication systems over k-distribution turbulence channel with pointing error

    NASA Astrophysics Data System (ADS)

    Mishra, Neha; Sriram Kumar, D.; Jha, Pranav Kumar

    2017-06-01

    In this paper, we investigate the performance of the dual-hop free space optical (FSO) communication systems under the effect of strong atmospheric turbulence together with misalignment effects (pointing error). We consider a relay assisted link using decode and forward (DF) relaying protocol between source and destination with the assumption that Channel State Information is available at both transmitting and receiving terminals. The atmospheric turbulence channels are modeled by k-distribution with pointing error impairment. The exact closed form expression is derived for outage probability and bit error rate and illustrated through numerical plots. Further BER results are compared for the different modulation schemes.

  4. Inducer analysis/pump model development

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.

    1994-03-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  5. Inducer analysis/pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.

    1994-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  6. Philosophies and fallacies in turbulence modeling

    NASA Astrophysics Data System (ADS)

    Spalart, Philippe R.

    2015-04-01

    We present a set of positions, likely to be controversial, on turbulence modeling for the Reynolds-Averaged Navier Stokes (RANS) equations. The paper has three themes. First is what we call the "fundamental paradox" of turbulence modeling, between the local character of the Partial Differential Equations strongly favored by CFD methods and the nonlocal physical nature of turbulence. Second, we oppose two philosophies. The "Systematic" philosophy attempts to model the exact transport equations for the Reynolds stresses or possibly higher moments term by term, gradually relegating the Closure Problem to higher moments and invoking the "Principle of Receding Influence" (although rarely formulating it). In contrast, the "Openly Empirical" philosophy produces models which satisfy strict constraints such as Galilean invariance, but lack an explicit connection with terms in the exact turbulence equations. The prime example is the eddy-viscosity assumption. Third, we explain a series of what we perceive as fallacies, many of them widely held and by senior observers, in turbulence knowledge, leading to turbulence models. We divide them into "hard" fallacies for which a short mathematical argument demonstrates that a particular statement is wrong or meaningless, and "soft" fallacies for which approximate physical arguments can be opposed, but we contend that a clear debate is overdue and wishful thinking has been involved. Some fallacies appear to be "intermediate." An example in the hard class is the supposed isotropy of the diagonal Reynolds stresses. Examples in the soft class are the need to match the decay rate of isotropic turbulence, and the value of realizability in a model. Our hope is to help the direct effort in this field away from simplistic and hopeless lines of work, and to foster debates.

  7. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  8. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE PAGES

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    2018-01-10

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  9. Implementation of different turbulence model to find proper model to estimate aerodynamic properties of airfoils

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2018-02-01

    In this paper, aerodynamic calculations of NACA 4 series airfoil of 0012 are performed by using Finite-Volume Method and obtained results are compared with experimental data to correlate the numerical accuracy of CFD approximation. Then other airfoils are simulated with k-ɛ, k-w Spalart-Allmaras and SST model. The governing equations are the Reynolds-Averaged-Navier-Stokes (RANS) equations. The performance of different airfoils (NACA 0008, 0009, 0010, 0012, 0015, 0018, 0021, 0024) at different angle of attack are investigated and compared with most used turbulence models for industrial applications. According to the results of the comparison of numerical calculations and experimental data, k-w and SST models are considered to be closest to experimental results for the calculation of the lift coefficient.

  10. Flame-Vortex Interactions in Microgravity to Improve Models of Turbulent Combustion

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.

    1999-01-01

    A unique flame-vortex interaction experiment is being operated in microgravity in order to obtain fundamental data to assess the Theory of Flame Stretch which will be used to improve models of turbulent combustion. The experiment provides visual images of the physical process by which an individual eddy in a turbulent flow increases the flame surface area, changes the local flame propagation speed, and can extinguish the reaction. The high quality microgravity images provide benchmark data that are free from buoyancy effects. Results are used to assess Direct Numerical Simulations of Dr. K. Kailasanath at NRL, which were run for the same conditions.

  11. Effect of initial conditions on constant pressure mixing between two turbulent streams

    NASA Astrophysics Data System (ADS)

    Kangovi, S.

    1983-02-01

    It is pointed out that a study of the process of mixing between two dissimilar streams has varied applications in different fields. The applications include the design of an after burner in a high by-pass ratio aircraft engine and the disposal of effluents in a stream. The mixing process determines important quantities related to the energy transfer from main stream to the secondary stream, the temperature and velocity profiles, and the local kinematic and dissipative structure within the mixing region, and the growth of the mixing layer. Hill and Page (1968) have proposed the employment of an 'assumed epsilon' method in which the eddy viscosity model of Goertler (1942) is modified to account for the initial boundary layer. The present investigation is concerned with the application of the assumed epsilon technique to the study of the effect of initial conditions on the development of the turbulent mixing layer between two compressible, nonisoenergetic streams at constant pressure.

  12. A multiple-scale turbulence model for incompressible flow

    NASA Technical Reports Server (NTRS)

    Duncan, B. S.; Liou, W. W.; Shih, T. H.

    1993-01-01

    A multiple-scale eddy viscosity model is described. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model was calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.

  13. Modeling of Turbulence Effect on Liquid Jet Atomization

    NASA Technical Reports Server (NTRS)

    Trinh, H. P.

    2007-01-01

    Recent studies indicate that turbulence behaviors within a liquid jet have considerable effect on the atomization process. Such turbulent flow phenomena are encountered in most practical applications of common liquid spray devices. This research aims to model the effects of turbulence occurring inside a cylindrical liquid jet to its atomization process. The two widely used atomization models Kelvin-Helmholtz (KH) instability of Reitz and the Taylor analogy breakup (TAB) of O'Rourke and Amsden portraying primary liquid jet disintegration and secondary droplet breakup, respectively, are examined. Additional terms are formulated and appropriately implemented into these two models to account for the turbulence effect. Results for the flow conditions examined in this study indicate that the turbulence terms are significant in comparison with other terms in the models. In the primary breakup regime, the turbulent liquid jet tends to break up into large drops while its intact core is slightly shorter than those without turbulence. In contrast, the secondary droplet breakup with the inside liquid turbulence consideration produces smaller drops. Computational results indicate that the proposed models provide predictions that agree reasonably well with available measured data.

  14. Computation of turbulent flow in a thin liquid layer of fluid involving a hydraulic jump

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1991-01-01

    Numerically computed flow fields and free surface height distributions are presented for the flow of a thin layer of liquid adjacent to a solid horizontal surface that encounters a hydraulic jump. Two kinds of flow configurations are considered: two-dimensional plane flow and axisymmetric radial flow. The computations used a boundary-fitted moving grid method with a k-epsilon model for the closure of turbulence. The free surface height was determined by an optimization procedure which minimized the error in the pressure distribution on the free surface. It was also checked against an approximate procedure involving integration of the governing equations and use of the MacCormack predictor-corrector method. The computed film height also compared reasonably well with previous experiments. A region of recirculating flow was found to be present adjacent to the solid boundary near the location of the jump, which was caused by a rapid deceleration of the flow.

  15. Expression and purification of functional Clostridium perfringens alpha and epsilon toxins in Escherichia coli.

    PubMed

    Zhao, Yao; Kang, Lin; Gao, Shan; Zhou, Yang; Su, Libo; Xin, Wenwen; Su, Yuxin; Wang, Jinglin

    2011-06-01

    The alpha and epsilon toxins are 2 of the 4 major lethal toxins of the pathogen Clostridium perfringens. In this study, the expression of the epsilon toxin (etx) gene of C. perfringens was optimized by replacing rare codons with high-frequency codons, and the optimized gene was synthesized using overlapping PCR. Then, the etx gene or the alpha-toxin gene (cpa) was individually inserted into the pTIG-Trx expression vector with a hexahistidine tag and a thioredoxin (Trx) to facilitate their purification and induce the expression of soluble proteins. The recombinant alpha toxin (rCPA) and epsilon toxin (rETX) were highly expressed as soluble forms in the recipient Escherichia coli BL21 strain, respectively. The rCPA and rETX were purified using Ni(2+)-chelating chromatography and size-exclusion chromatography. And the entire purification process recovered about 40% of each target protein from the starting materials. The purified target toxins formed single band at about 42kDa (rCPA) or 31kDa (rETX) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their functional activity was confirmed by bioactivity assays. We have shown that the production of large amounts of soluble and functional proteins by using the pTIG-Trx vector in E. coli is a good alternative for the production of native alpha and epsilon toxins and could also be useful for the production of other toxic proteins with soluble forms. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. A finite element computation of turbulent boundary layer flows with an algebraic stress turbulence model

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Chen, Yen-Sen

    1988-01-01

    An algebraic stress turbulence model and a computational procedure for turbulent boundary layer flows which is based on the semidiscrete Galerkin FEM are discussed. In the algebraic stress turbulence model, the eddy viscosity expression is obtained from the Reynolds stress turbulence model, and the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale. Good agreement with experimental data is found for the examples of a fully developed channel flow, a fully developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a circular jet exhausting into a moving stream, and a wall jet flow.

  17. Wall-resolved spectral cascade-transport turbulence model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  18. Wall-resolved spectral cascade-transport turbulence model

    DOE PAGES

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.; ...

    2017-07-08

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  19. Turbulent motion of mass flows. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana

    2016-04-01

    New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362

  20. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases.

    PubMed

    Cunningham, F X; Gantt, E

    2001-02-27

    Carotenoids in the photosynthetic membranes of plants typically contain two beta-rings (e.g., beta-carotene and zeaxanthin) or one epsilon- and one beta-ring (e.g., lutein). Carotenoids with two epsilon-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene epsilon-cyclase (LCYe) adds one epsilon-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene beta-cyclase (LCYb) adds two beta-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two epsilon-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic epsilon-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis epsilon-cyclases involved in the determination of ring number were mapped by analysis of chimeric epsilon-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one epsilon-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two epsilon-rings. An R residue in this position also yields a bi-epsilon-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures.

  1. Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Miller, Joseph D.; Jiang, Naibo; Slipchenko, Mikhail N.; Mance, Jason G.; Meyer, Terrence R.; Roy, Sukesh; Gord, James R.

    2016-12-01

    100-kHz particle image velocimetry (PIV) is demonstrated using a double-pulsed, burst-mode laser with a burst duration up to 100 ms. This enables up to 10,000 time-sequential vector fields for capturing a temporal dynamic range spanning over three orders of magnitude in high-speed turbulent flows. Pulse doublets with inter-pulse spacing of 2 µs and repetition rate of 100 kHz are generated using a fiber-based oscillator and amplified through an all-diode-pumped, burst-mode amplifier. A physics-based model of pulse doublet amplification in the burst-mode amplifier is developed and used to accurately predict oscillator pulse width and pulse intensity inputs required to generate equal-energy pulse doublets at 532 nm for velocity measurements. The effect of PIV particle response and high-speed-detector limitations on the spatial and temporal resolution are estimated in subsonic turbulent jets. An effective spatial resolution of 266-275 µm and temporal resolution of 10 µs are estimated from the 8 × 8 pixel correlation window and inter-doublet time spacing, respectively. This spatiotemporal resolution is sufficient for quantitative assessment of integral time and length scales in highly turbulent jets with Reynolds numbers in the range 15,000-50,000. The temporal dynamic range of the burst-mode PIV measurement is 1200, limited by the 85-ms high-energy portion of the burst and 30-kHz high-frequency noise limit.

  2. A multiple-scale turbulence model for incompressible flow

    NASA Technical Reports Server (NTRS)

    Duncan, B. S.; Liou, W. W.; Shih, T. H.

    1993-01-01

    A multiple-scale eddy viscosity model is described in this paper. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model has been calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.

  3. Phenomenology of wall-bounded Newtonian turbulence.

    PubMed

    L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Zilitinkevich, Sergej S

    2006-01-01

    We construct a simple analytic model for wall-bounded turbulence, containing only four adjustable parameters. Two of these parameters are responsible for the viscous dissipation of the components of the Reynolds stress tensor. The other two parameters control the nonlinear relaxation of these objects. The model offers an analytic description of the profiles of the mean velocity and the correlation functions of velocity fluctuations in the entire boundary region, from the viscous sublayer, through the buffer layer, and further into the log-law turbulent region. In particular, the model predicts a very simple distribution of the turbulent kinetic energy in the log-law region between the velocity components: the streamwise component contains a half of the total energy whereas the wall-normal and cross-stream components contain a quarter each. In addition, the model predicts a very simple relation between the von Kármán slope k and the turbulent velocity in the log-law region v+ (in wall units): v+=6k. These predictions are in excellent agreement with direct numerical simulation data and with recent laboratory experiments.

  4. Gyrofluid Modeling of Turbulent, Kinetic Physics

    NASA Astrophysics Data System (ADS)

    Despain, Kate Marie

    2011-12-01

    Gyrofluid models to describe plasma turbulence combine the advantages of fluid models, such as lower dimensionality and well-developed intuition, with those of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows gyrofluid models to be more tractable computationally while still capturing much of the physics related to the FLR of the particles. We present a gyrofluid model derived to capture the behavior of slow solar wind turbulence and describe the computer code developed to implement the model. In addition, we describe the modifications we made to a gyrofluid model and code that simulate plasma turbulence in tokamak geometries. Specifically, we describe a nonlinear phase mixing phenomenon, part of the E x B term, that was previously missing from the model. An inherently FLR effect, it plays an important role in predicting turbulent heat flux and diffusivity levels for the plasma. We demonstrate this importance by comparing results from the updated code to studies done previously by gyrofluid and gyrokinetic codes. We further explain what would be necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport code, thus allowing gryffin to play a role in predicting profiles for fusion devices such as ITER and to explore novel fusion configurations. Such a coupling would require the use of Graphical Processing Units (GPUs) to make the modeling process fast enough to be viable. Consequently, we also describe our experience with GPU computing and demonstrate that we are poised to complete a gryffin port to this innovative architecture.

  5. Physical and mathematical modelling of ladle metallurgy operations. [steelmaking

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    Experimental measurements are reported, on the velocity fields and turbulence parameters on a water model of an argon stirred ladle. These velocity measurements are complemented by direct heat transfer measurements, obtained by studying the rate at which ice rods immersed into the system melt, at various locations. The theoretical work undertaken involved the use of the turbulence Navier-Stokes equations in conjunction with the kappa-epsilon model to predict the local velocity fields and the maps of the turbulence parameters. Theoretical predictions were in reasonably good agreement with the experimentally measured velocity fields; the agreement between the predicted and the measured turbulence parameters was less perfect, but still satisfactory. The implications of these findings to the modelling of ladle metallurgical operations are discussed.

  6. Multifractal Characteristics of Axisymmetric Jet Turbulence Intensity from Rans Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Seo, Yongwon; Ko, Haeng Sik; Son, Sangyoung

    A turbulent jet bears diverse physical characteristics that have been unveiled yet. Of particular interest is to analyze the turbulent intensity, which has been a key factor to assess and determine turbulent jet performance since diffusive and mixing conditions are largely dependent on it. Multifractal measures are useful in terms of identifying characteristics of a physical quantity distributed over a spatial domain. This study examines the multifractal exponents of jet turbulence intensities obtained through numerical simulation. We acquired the turbulence intensities from numerical jet discharge experiments, where two types of nozzle geometry were tested based on a Reynolds-Averaged Navier-Stokes (RANS) equations. The k-𝜀 model and kmodel were used for turbulence closure models. The results showed that the RANS model successfully regenerates transversal velocity profile, which is almost identical to an analytical solution. The RANS model also shows the decay of turbulence intensity in the longitudinal direction but it depends on the outfall nozzle lengths. The result indicates the existence of a common multifractal spectrum for turbulence intensity obtained from numerical simulation. Although the transverse velocity profiles are similar for two different turbulence models, the minimum Lipschitz-Hölder exponent (αmin) and entropy dimension (α1) are different. These results suggest that the multifractal exponents capture the difference in turbulence structures of hierarchical turbulence intensities produced by different turbulence models.

  7. Structural pierce into molecular mechanism underlying Clostridium perfringens Epsilon toxin function.

    PubMed

    Khalili, Saeed; Jahangiri, Abolfazl; Hashemi, Zahra Sadat; Khalesi, Bahman; Mard-Soltani, Maysam; Amani, Jafar

    2017-03-01

    Epsilon toxin of the Clostridium perfringens garnered a lot of attention due to its potential for toxicity in humans, extreme potency for cytotoxicity in mice and lack of any approved therapeutics prescribed for human. However, the intricacies of the Epsilon toxin action mechanism are yet to be understood. In this regard, various in silico tools have been exploited to model and refine the 3D structure of the toxin and its two receptors. The receptor proteins were embedded into designed lipid membranes within an aqueous and ionized environment. Thereafter, the modeled structures subjected to series of consecutive molecular dynamics runs to achieve the most natural like coordination for each model. Ultimately, protein-protein interaction analyses were performed to understand the probable action mechanism. The obtained results successfully confirmed the accuracy of employed methods to achieve high quality models for the toxin and its receptors within their lipid bilayers. Molecular dynamics analyses lead the structures to a more native like coordination. Moreover, the results of previous empirical studies were confirmed, while new insights for action mechanisms including the detailed roles of Hepatitis A virus cellular receptor 1 (HAVCR1) and Myelin and lymphocyte protein (MAL) proteins were achieved. In light of previous and our observations, we suggested novel models which elucidated the existing interplay between potential players of Epsilon toxin action mechanism with detailed structural evidences. These models would pave the way to have more robust understanding of the Epsilon toxin biology, more precise vaccine construction and more successful drug (inhibitor) design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. 1H and 13C NMR studies of molecular dynamics in the biocopolymer of glycolide and epsilon-caprolactone.

    PubMed

    Nozirov, Farhod; Szczesniak, Eugeniusz; Fojud, Zbigniew; Dobrzynski, Piotr; Klinowski, Jacek; Jurga, Stefan

    2002-08-01

    Copolymers of glycolide and epsilon-caprolactone were studied using differential scanning calorimetry and solid-state NMR. The variation of the T1 relaxation time with temperature reflects local disorder and can be quantified in terms of the distribution of correlation times predicted by the Davidson-Cole model. T, relaxation is dominated by trans-gauche isomerisation, with an activation energy of 34-35 kJ mol(-1).

  9. Middle atmosphere measurements of small-scale electron density irregularities and ion properties during the MAC/Epsilon campaign

    NASA Technical Reports Server (NTRS)

    Blood, S. P.; Mitchell, J. D.; Croskey, C. L.

    1989-01-01

    Rocket payloads designed to measure small scale electron density irregularities and ion properties in the middle atmosphere were flown with each of the three main salvos of the MAC/Epsilon campaign conducted at the Andoya Rocket Range, Norway, during October to November 1987. Fixed bias, hemispheric nose tip probes measured small scale electron density irregularities, indicative of neutral air turbulence, during the rocket's ascent; and subsequently, parachute-borne Gerdien condensers measured the region's polar electrical conductivity, ion mobility and density. One rocket was launched during daylight (October 15, 1052:20 UT), and the other two launches occurred at night (October 21, 2134 UT: November 12, 0021:40 UT) under moderately disturbed conditions which enhanced the detection and measurement of turbulence structures. A preliminary analysis of the real time data displays indicates the presence of small scale electron density irregularities in the altitude range of 60 to 90 km. Ongoing data reduction will determine turbulence parameters and also the region's electrical properties below 90 km.

  10. Turbulence modeling for compressible flows

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.

    1977-01-01

    Material prepared for a course on Applications and Fundamentals of Turbulence given at the University of Tennessee Space Institute, January 10 and 11, 1977, is presented. A complete concept of turbulence modeling is described, and examples of progess for its use in computational aerodynimics are given. Modeling concepts, experiments, and computations using the concepts are reviewed in a manner that provides an up-to-date statement on the status of this problem for compressible flows.

  11. Second-order closure models for supersonic turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu

    1991-01-01

    Recent work by the authors on the development of a second-order closure model for high-speed compressible flows is reviewed. This turbulence closure is based on the solution of modeled transport equations for the Favre-averaged Reynolds stress tensor and the solenoidal part of the turbulent dissipation rate. A new model for the compressible dissipation is used along with traditional gradient transport models for the Reynolds heat flux and mass flux terms. Consistent with simple asymptotic analyses, the deviatoric part of the remaining higher-order correlations in the Reynolds stress transport equation are modeled by a variable density extension of the newest incompressible models. The resulting second-order closure model is tested in a variety of compressible turbulent flows which include the decay of isotropic turbulence, homogeneous shear flow, the supersonic mixing layer, and the supersonic flat-plate turbulent boundary layer. Comparisons between the model predictions and the results of physical and numerical experiments are quite encouraging.

  12. Second-order closure models for supersonic turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu

    1991-01-01

    Recent work on the development of a second-order closure model for high-speed compressible flows is reviewed. This turbulent closure is based on the solution of modeled transport equations for the Favre-averaged Reynolds stress tensor and the solenoidal part of the turbulent dissipation rate. A new model for the compressible dissipation is used along with traditional gradient transport models for the Reynolds heat flux and mass flux terms. Consistent with simple asymptotic analyses, the deviatoric part of the remaining higher-order correlations in the Reynolds stress transport equations are modeled by a variable density extension of the newest incompressible models. The resulting second-order closure model is tested in a variety of compressible turbulent flows which include the decay of isotropic turbulence, homogeneous shear flow, the supersonic mixing layer, and the supersonic flat-plate turbulent boundary layer. Comparisons between the model predictions and the results of physical and numerical experiments are quite encouraging.

  13. A LES-Langevin model for turbulence

    NASA Astrophysics Data System (ADS)

    Dolganov, Rostislav; Dubrulle, Bérengère; Laval, Jean-Philippe

    2006-11-01

    The rationale for Large Eddy Simulation is rooted in our inability to handle all degrees of freedom (N˜10^16 for Re˜10^7). ``Deterministic'' models based on eddy-viscosity seek to reproduce the intensification of the energy transport. However, they fail to reproduce backward energy transfer (backscatter) from small to large scale, which is an essentiel feature of the turbulence near wall or in boundary layer. To capture this backscatter, ``stochastic'' strategies have been developed. In the present talk, we shall discuss such a strategy, based on a Rapid Distorsion Theory (RDT). Specifically, we first divide the small scale contribution to the Reynolds Stress Tensor in two parts: a turbulent viscosity and the pseudo-Lamb vector, representing the nonlinear cross terms of resolved and sub-grid scales. We then estimate the dynamics of small-scale motion by the RDT applied to Navier-Stockes equation. We use this to model the cross term evolution by a Langevin equation, in which the random force is provided by sub-grid pressure terms. Our LES model is thus made of a truncated Navier-Stockes equation including the turbulent force and a generalized Langevin equation for the latter, integrated on a twice-finer grid. The backscatter is automatically included in our stochastic model of the pseudo-Lamb vector. We apply this model to the case of homogeneous isotropic turbulence and turbulent channel flow.

  14. Turbulence and modeling in transonic flow

    NASA Technical Reports Server (NTRS)

    Rubesin, Morris W.; Viegas, John R.

    1989-01-01

    A review is made of the performance of a variety of turbulence models in the evaluation of a particular well documented transonic flow. This is done to supplement a previous attempt to calibrate and verify transonic airfoil codes by including many more turbulence models than used in the earlier work and applying the calculations to an experiment that did not suffer from uncertainties in angle of attack and was free of wind tunnel interference. It is found from this work, as well as in the earlier study, that the Johnson-King turbulence model is superior for transonic flows over simple aerodynamic surfaces, including moderate separation. It is also shown that some field equation models with wall function boundary conditions can be competitive with it.

  15. TEMPEST code simulations of hydrogen distribution in reactor containment structures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Eyler, L.L.

    The mass transport version of the TEMPEST computer code was used to simulate hydrogen distribution in geometric configurations relevant to reactor containment structures. Predicted results of Battelle-Frankfurt hydrogen distribution tests 1 to 6, and 12 are presented. Agreement between predictions and experimental data is good. Best agreement is obtained using the k-epsilon turbulence model in TEMPEST in flow cases where turbulent diffusion and stable stratification are dominant mechanisms affecting transport. The code's general analysis capabilities are summarized.

  16. Optimal Length Scale for a Turbulent Dynamo.

    PubMed

    Sadek, Mira; Alexakis, Alexandros; Fauve, Stephan

    2016-02-19

    We demonstrate that there is an optimal forcing length scale for low Prandtl number dynamo flows that can significantly reduce the required energy injection rate. The investigation is based on simulations of the induction equation in a periodic box of size 2πL. The flows considered are the laminar and turbulent ABC flows forced at different forcing wave numbers k_{f}, where the turbulent case is simulated using a subgrid turbulence model. At the smallest allowed forcing wave number k_{f}=k_{min}=1/L the laminar critical magnetic Reynolds number Rm_{c}^{lam} is more than an order of magnitude smaller than the turbulent critical magnetic Reynolds number Rm_{c}^{turb} due to the hindering effect of turbulent fluctuations. We show that this hindering effect is almost suppressed when the forcing wave number k_{f} is increased above an optimum wave number k_{f}L≃4 for which Rm_{c}^{turb} is minimum. At this optimal wave number, Rm_{c}^{turb} is smaller by more than a factor of 10 than the case forced in k_{f}=1. This leads to a reduction of the energy injection rate by 3 orders of magnitude when compared to the case where the system is forced at the largest scales and thus provides a new strategy for the design of a fully turbulent experimental dynamo.

  17. Statistical modeling of compressible turbulence - Shock-wave/turbulence interactions and buoyancy effects

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akira

    1991-12-01

    A mass-weighted mean compressible turbulence model is presented with the aid of the results from a two-scale DIA. This model aims at dealing with two typical aspects in compressible flows: the interaction of a shock wave with turbulence in high-speed flows and strong buoyancy effects in thermally-driven flows as in stellar convection and conflagration. The former is taken into account through the effect of turbulent dilatation that is related to the density fluctuation and leads to the enhanced kinetic-energy dissipation. The latter is incorporated through the interaction between the gravitational and density-fluctuation effects.

  18. A turbulence model for pulsatile arterial flows.

    PubMed

    Younis, B A; Berger, S A

    2004-10-01

    Difficulties in predicting the behavior of some high Reynolds number flows in the circulatory system stem in part from the severe requirements placed on the turbulence model chosen to close the time-averaged equations of fluid motion. In particular, the successful turbulence model is required to (a) correctly capture the "nonequilibrium" effects wrought by the interactions of the organized mean-flow unsteadiness with the random turbulence, (b) correctly reproduce the effects of the laminar-turbulent transitional behavior that occurs at various phases of the cardiac cycle, and (c) yield good predictions of the near-wall flow behavior in conditions where the universal logarithmic law of the wall is known to be not valid. These requirements are not immediately met by standard models of turbulence that have been developed largely with reference to data from steady, fully turbulent flows in approximate local equilibrium. The purpose of this paper is to report on the development of a turbulence model suited for use in arterial flows. The model is of the two-equation eddy-viscosity variety with dependent variables that are zero-valued at a solid wall and vary linearly with distance from it. The effects of transition are introduced by coupling this model to the local value of the intermittency and obtaining the latter from the solution of a modeled transport equation. Comparisons with measurements obtained in oscillatory transitional flows in circular tubes show that the model produces substantial improvements over existing closures. Further pulsatile-flow predictions, driven by a mean-flow wave form obtained in a diseased human carotid artery, indicate that the intermittency-modified model yields much reduced levels of wall shear stress compared to the original, unmodified model. This result, which is attributed to the rapid growth in the thickness of the viscous sublayer arising from the severe acceleration of systole, argues in favor of the use of the model for the

  19. Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.

    2012-01-01

    This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.

  20. Status of turbulence modeling for hypersonic propulsion flowpaths

    NASA Astrophysics Data System (ADS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.

    2014-06-01

    This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer methods such as large eddy simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath, including laminar-to-turbulent boundary layer transition, shock wave/turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers), and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.

  1. Review and assessment of turbulence models for hypersonic flows

    NASA Astrophysics Data System (ADS)

    Roy, Christopher J.; Blottner, Frederick G.

    2006-10-01

    Accurate aerodynamic prediction is critical for the design and optimization of hypersonic vehicles. Turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating for these systems. The first goal of this article is to update the previous comprehensive review of hypersonic shock/turbulent boundary-layer interaction experiments published in 1991 by Settles and Dodson (Hypersonic shock/boundary-layer interaction database. NASA CR 177577, 1991). In their review, Settles and Dodson developed a methodology for assessing experiments appropriate for turbulence model validation and critically surveyed the existing hypersonic experiments. We limit the scope of our current effort by considering only two-dimensional (2D)/axisymmetric flows in the hypersonic flow regime where calorically perfect gas models are appropriate. We extend the prior database of recommended hypersonic experiments (on four 2D and two 3D shock-interaction geometries) by adding three new geometries. The first two geometries, the flat plate/cylinder and the sharp cone, are canonical, zero-pressure gradient flows which are amenable to theory-based correlations, and these correlations are discussed in detail. The third geometry added is the 2D shock impinging on a turbulent flat plate boundary layer. The current 2D hypersonic database for shock-interaction flows thus consists of nine experiments on five different geometries. The second goal of this study is to review and assess the validation usage of various turbulence models on the existing experimental database. Here we limit the scope to one- and two-equation turbulence models where integration to the wall is used (i.e., we omit studies involving wall functions). A methodology for validating turbulence models is given, followed by an extensive evaluation of the turbulence models on the current hypersonic experimental database. A total of 18 one- and two-equation turbulence models are reviewed

  2. Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester.

    PubMed

    Coughtrie, A R; Borman, D J; Sleigh, P A

    2013-06-01

    Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-ω Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-∊, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-∊ models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A comparative study of turbulence models for overset grids

    NASA Technical Reports Server (NTRS)

    Renze, Kevin J.; Buning, Pieter G.; Rajagopalan, R. G.

    1992-01-01

    The implementation of two different types of turbulence models for a flow solver using the Chimera overset grid method is examined. Various turbulence model characteristics, such as length scale determination and transition modeling, are found to have a significant impact on the computed pressure distribution for a multielement airfoil case. No inherent problem is found with using either algebraic or one-equation turbulence models with an overset grid scheme, but simulation of turbulence for multiple-body or complex geometry flows is very difficult regardless of the gridding method. For complex geometry flowfields, modification of the Baldwin-Lomax turbulence model is necessary to select the appropriate length scale in wall-bounded regions. The overset grid approach presents no obstacle to use of a one- or two-equation turbulence model. Both Baldwin-Lomax and Baldwin-Barth models have problems providing accurate eddy viscosity levels for complex multiple-body flowfields such as those involving the Space Shuttle.

  4. Two-Equation Turbulence Models for Prediction of Heat Transfer on a Transonic Turbine Blade

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Ameri, Ali A.; Gaugler, R. E. (Technical Monitor)

    2001-01-01

    Two versions of the two-equation k-omega model and a shear stress transport (SST) model are used in a three-dimensional, multi-block, Navier-Stokes code to compare the detailed heat transfer measurements on a transonic turbine blade. It is found that the SST model resolves the passage vortex better on the suction side of the blade, thus yielding a better comparison with the experimental data than either of the k-w models. However, the comparison is still deficient on the suction side of the blade. Use of the SST model does require the computation of distance from a wall, which for a multiblock grid, such as in the present case, can be complicated. However, a relatively easy fix for this problem was devised. Also addressed are issues such as (1) computation of the production term in the turbulence equations for aerodynamic applications, and (2) the relation between the computational and experimental values for the turbulence length scale, and its influence on the passage vortex on the suction side of the turbine blade.

  5. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  6. An Initial Investigation of the Effects of Turbulence Models on the Convergence of the RK/Implicit Scheme

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Rossow, C.-C.

    2008-01-01

    A three-stage Runge-Kutta (RK) scheme with multigrid and an implicit preconditioner has been shown to be an effective solver for the fluid dynamic equations. This scheme has been applied to both the compressible and essentially incompressible Reynolds-averaged Navier-Stokes (RANS) equations using the algebraic turbulence model of Baldwin and Lomax (BL). In this paper we focus on the convergence of the RK/implicit scheme when the effects of turbulence are represented by either the Spalart-Allmaras model or the Wilcox k-! model, which are frequently used models in practical fluid dynamic applications. Convergence behavior of the scheme with these turbulence models and the BL model are directly compared. For this initial investigation we solve the flow equations and the partial differential equations of the turbulence models indirectly coupled. With this approach we examine the convergence behavior of each system. Both point and line symmetric Gauss-Seidel are considered for approximating the inverse of the implicit operator of the flow solver. To solve the turbulence equations we use a diagonally dominant alternating direction implicit (DDADI) scheme. Computational results are presented for three airfoil flow cases and comparisons are made with experimental data. We demonstrate that the two-dimensional RANS equations and transport-type equations for turbulence modeling can be efficiently solved with an indirectly coupled algorithm that uses the RK/implicit scheme for the flow equations.

  7. Biodistribution and catabolism of 18F-labeled N-epsilon-fructoselysine as a model of Amadori products.

    PubMed

    Hultsch, Christina; Hellwig, Michael; Pawelke, Beate; Bergmann, Ralf; Rode, Katrin; Pietzsch, Jens; Krause, René; Henle, Thomas

    2006-10-01

    Amadori products are formed in the early stage of the so-called Maillard reaction between reducing sugars and amino acids or proteins. Such nonenzymatic glycosylation may occur during the heating or storage of foods, but also under physiological conditions. N-epsilon-fructoselysine is formed via this reaction between the epsilon-amino group of peptide-bound lysine and glucose. Despite the fact that, in certain heated foods, up to 50% of lysyl moieties may be modified to such lysine derivatives, up to now, very little is known about the metabolic fate of alimentary administered Amadori compounds. In the present study, N-succinimidyl-4-[18F]fluorobenzoate was used to modify N-epsilon-fructoselysine at the alpha-amino group of the lysyl moiety. The in vitro stability of the resulting 4-[18F]fluorobenzoylated derivative was tested in different tissue homogenates. Furthermore, the 4-[18F]fluorobenzoylated N-epsilon-fructoselysine was used in positron emission tomography studies, as well as in studies concerning biodistribution and catabolism. The results show that the 4-[18F]fluorobenzoylated N-epsilon-fructoselysine is phosphorylated in vitro, as well as in vivo. This phosphorylation is caused by fructosamine 3-kinases and occurs in vivo, particularly in the kidneys. Despite the action of these enzymes, it was shown that a large part of the intravenously applied radiolabeled N-epsilon-fructoselysine was excreted nearly unchanged in the urine. Therefore, it was concluded that the predominant part of peptide-bound lysine that was fructosylated during food processing is not available for nutrition.

  8. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model.

    PubMed

    Yu, Hesheng; Thé, Jesse

    2017-05-01

    The dispersion of gaseous pollutant around buildings is complex due to complex turbulence features such as flow detachment and zones of high shear. Computational fluid dynamics (CFD) models are one of the most promising tools to describe the pollutant distribution in the near field of buildings. Reynolds-averaged Navier-Stokes (RANS) models are the most commonly used CFD techniques to address turbulence transport of the pollutant. This research work studies the use of [Formula: see text] closure model for the gas dispersion around a building by fully resolving the viscous sublayer for the first time. The performance of standard [Formula: see text] model is also included for comparison, along with results of an extensively validated Gaussian dispersion model, the U.S. Environmental Protection Agency (EPA) AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model). This study's CFD models apply the standard [Formula: see text] and the [Formula: see text] turbulence models to obtain wind flow field. A passive concentration transport equation is then calculated based on the resolved flow field to simulate the distribution of pollutant concentrations. The resultant simulation of both wind flow and concentration fields are validated rigorously by extensive data using multiple validation metrics. The wind flow field can be acceptably modeled by the [Formula: see text] model. However, the [Formula: see text] model fails to simulate the gas dispersion. The [Formula: see text] model outperforms [Formula: see text] in both flow and dispersion simulations, with higher hit rates for dimensionless velocity components and higher "factor of 2" of observations (FAC2) for normalized concentration. All these validation metrics of [Formula: see text] model pass the quality assurance criteria recommended by The Association of German Engineers (Verein Deutscher Ingenieure, VDI) guideline. Furthermore, these metrics are better than or the same as those

  9. Computation of Turbulent Heat Transfer on the Walls of a 180 Degree Turn Channel With a Low Reynolds Number Reynolds Stress Model

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Rigby, D. L.; Steinthorsson, E.; Gaugler, Raymond (Technical Monitor)

    2002-01-01

    The Low Reynolds number version of the Stress-omega model and the two equation k-omega model of Wilcox were used for the calculation of turbulent heat transfer in a 180 degree turn simulating an internal coolant passage. The Stress-omega model was chosen for its robustness. The turbulent thermal fluxes were calculated by modifying and using the Generalized Gradient Diffusion Hypothesis. The results showed that using this Reynolds Stress model allowed better prediction of heat transfer compared to the k-omega two equation model. This improvement however required a finer grid and commensurately more CPU time.

  10. On the Subgrid-Scale Modeling of Compressible Turbulence

    NASA Technical Reports Server (NTRS)

    Squires, Kyle; Zeman, Otto

    1990-01-01

    A new sub-grid scale model is presented for the large-eddy simulation of compressible turbulence. In the proposed model, compressibility contributions have been incorporated in the sub-grid scale eddy viscosity which, in the incompressible limit, reduce to a form originally proposed by Smagorinsky (1963). The model has been tested against a simple extension of the traditional Smagorinsky eddy viscosity model using simulations of decaying, compressible homogeneous turbulence. Simulation results show that the proposed model provides greater dissipation of the compressive modes of the resolved-scale velocity field than does the Smagorinsky eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, simulations performed using the Smagorinsky model become physically unrealizable (i.e., negative energies) because of the inability of the model to sufficiently dissipate fluctuations due to resolved scale velocity dilations. The proposed model is able to provide the necessary dissipation of this energy and maintain the realizability of the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate energy independent of the Kolmogorov energy cascade. A possible parameterization of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.

  11. Horizontal atmospheric turbulence, beam propagation, and modeling

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.

    2017-05-01

    The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.

  12. Description of a Website Resource for Turbulence Modeling Verification and Validation

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Smith, Brian R.; Huang, George P.

    2010-01-01

    The activities of the Turbulence Model Benchmarking Working Group - which is a subcommittee of the American Institute of Aeronautics and Astronautics (AIAA) Fluid Dynamics Technical Committee - are described. The group s main purpose is to establish a web-based repository for Reynolds-averaged Navier-Stokes turbulence model documentation, including verification and validation cases. This turbulence modeling resource has been established based on feedback from a survey on what is needed to achieve consistency and repeatability in turbulence model implementation and usage, and to document and disseminate information on new turbulence models or improvements to existing models. The various components of the website are described in detail: description of turbulence models, turbulence model readiness rating system, verification cases, validation cases, validation databases, and turbulence manufactured solutions. An outline of future plans of the working group is also provided.

  13. Theoretical and experimental studies on alpha/epsilon-hybrid peptides: design of a 14/12-helix from peptides with alternating (S)-C-linked carbo-epsilon-amino acid [(S)-epsilon-Caa((x))] and L-ala.

    PubMed

    Sharma, Gangavaram V M; Babu, Bommagani Shoban; Chatterjee, Deepak; Ramakrishna, Kallaganti V S; Kunwar, Ajit C; Schramm, Peter; Hofmann, Hans-Jörg

    2009-09-04

    An (S)-C-linked carbo-epsilon-amino acid [(S)-epsilon-Caa((x))] was prepared from the known (S)-delta-Caa. This monomer was utilized together with l-Ala to give novel alpha/epsilon-hybrid peptides in 1:1 alternation. Conformational analysis on penta- and hexapeptides by NMR (in CDCl(3)), CD, and MD studies led to the identification of robust 14/12-mixed helices. This is in agreement with the data from a theoretical conformational analysis on the basis of ab initio MO theory providing a complete overview on all formally possible hydrogen-bonded helix patterns of alpha/epsilon-hybrid peptides with 1:1 backbone alternation. The "new motif" of a mixed 14/12-helix was predicted as most stable in vacuum. Obviously, the formation of ordered secondary structures is also possible in peptide foldamers with amino acid constituents of considerable backbone lengths. Thus, alpha/epsilon-hybrid peptides expand the domain of foldamers and allow the introduction of desired functionalities via the alpha-amino acid constituents.

  14. Numerical modeling for dilute and dense sprays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  15. Flame-conditioned turbulence modeling for reacting flows

    NASA Astrophysics Data System (ADS)

    Macart, Jonathan F.; Mueller, Michael E.

    2017-11-01

    Conventional approaches to turbulence modeling in reacting flows rely on unconditional averaging or filtering, that is, consideration of the momentum equations only in physical space, implicitly assuming that the flame only weakly affects the turbulence, aside from a variation in density. Conversely, for scalars, which are strongly coupled to the flame structure, their evolution equations are often projected onto a reduced-order manifold, that is, conditionally averaged or filtered, on a flame variable such as a mixture fraction or progress variable. Such approaches include Conditional Moment Closure (CMC) and related variants. However, recent observations from Direct Numerical Simulation (DNS) have indicated that the flame can strongly affect turbulence in premixed combustion at low Karlovitz number. In this work, a new approach to turbulence modeling for reacting flows is investigated in which conditionally averaged or filtered equations are evolved for the momentum. The conditionally-averaged equations for the velocity and its covariances are derived, and budgets are evaluated from DNS databases of turbulent premixed planar jet flames. The most important terms in these equations are identified, and preliminary closure models are proposed.

  16. Apparent Transition Behavior of Widely-Used Turbulence Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2006-01-01

    The Spalart-Allmaras and the Menter SST kappa-omega turbulence models are shown to have the undesirable characteristic that, for fully turbulent computations, a transition region can occur whose extent varies with grid density. Extremely fine two-dimensional grids over the front portion of an airfoil are used to demonstrate the effect. As the grid density is increased, the laminar region near the nose becomes larger. In the Spalart-Allmaras model this behavior is due to convergence to a laminar-behavior fixed point that occurs in practice when freestream turbulence is below some threshold. It is the result of a feature purposefully added to the original model in conjunction with a special trip function. This degenerate fixed point can also cause nonuniqueness regarding where transition initiates on a given grid. Consistent fully turbulent results can easily be achieved by either using a higher freestream turbulence level or by making a simple change to one of the model constants. Two-equation kappa-omega models, including the SST model, exhibit strong sensitivity to numerical resolution near the area where turbulence initiates. Thus, inconsistent apparent transition behavior with grid refinement in this case does not appear to stem from the presence of a degenerate fixed point. Rather, it is a fundamental property of the kappa-omega model itself, and is not easily remedied.

  17. Assessment of turbulent models for scramjet flowfields

    NASA Technical Reports Server (NTRS)

    Sindir, M. M.; Harsha, P. T.

    1982-01-01

    The behavior of several turbulence models applied to the prediction of scramjet combustor flows is described. These models include the basic two equation model, the multiple dissipation length scale variant of the two equation model, and the algebraic stress model (ASM). Predictions were made of planar backward facing step flows and axisymmetric sudden expansion flows using each of these approaches. The formulation of each of these models are discussed, and the application of the different approaches to supersonic flows is described. A modified version of the ASM is found to provide the best prediction of the planar backward facing step flow in the region near the recirculation zone, while the basic ASM provides the best results downstream of the recirculation. Aspects of the interaction of numerica modeling and turbulences modeling as they affect the assessment of turbulence models are discussed.

  18. Finite-element numerical modeling of atmospheric turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  19. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Chen, C. P.

    2004-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. For certain flow regimes, it has been observed that the liquid jet surface is highly turbulent. This turbulence characteristic plays a key role on the breakup of the liquid jet near to the injector exit. Other experiments also showed that the breakup length of the liquid core is sharply shortened as the liquid jet is changed from the laminar to the turbulent flow conditions. In the numerical and physical modeling arena, most of commonly used atomization models do not include the turbulence effect. Limited attempts have been made in modeling the turbulence phenomena on the liquid jet disintegration. The subject correlation and models treat the turbulence either as an only source or a primary driver in the breakup process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. In the course of this study, two widely used models, Reitz's primary atomization (blob) and Taylor-Analogy-Break (TAB) secondary droplet breakup by O Rourke et al. are examined. Additional terms are derived and implemented appropriately into these two models to account for the turbulence effect on the atomization process. Since this enhancement effort is based on a framework of the two existing atomization models, it is appropriate to denote the two present models as T-blob and T-TAB for the primary and secondary atomization predictions, respectively. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic time scales and the initial flow conditions. This treatment offers a balance of contributions of individual physical phenomena on the liquid breakup process. For the secondary breakup, an addition turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size

  20. Research activities at the Center for Modeling of Turbulence and Transition

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing

    1993-01-01

    The main research activities at the Center for Modeling of Turbulence and Transition (CMOTT) are described. The research objective of CMOTT is to improve and/or develop turbulence and transition models for propulsion systems. The flows of interest in propulsion systems can be both compressible and incompressible, three dimensional, bounded by complex wall geometries, chemically reacting, and involve 'bypass' transition. The most relevant turbulence and transition models for the above flows are one- and two-equation eddy viscosity models, Reynolds stress algebraic- and transport-equation models, pdf models, and multiple-scale models. All these models are classified as one-point closure schemes since only one-point (in time and space) turbulent correlations, such as second moments (Reynolds stresses and turbulent heat fluxes) and third moments, are involved. In computational fluid dynamics, all turbulent quantities are one-point correlations. Therefore, the study of one-point turbulent closure schemes is the focus of our turbulence research. However, other research, such as the renormalization group theory, the direct interaction approximation method, and numerical simulations are also pursued to support the development of turbulence modeling.

  1. Studying Turbulence Using Numerical Simulation Databases. Proceedings of the 1987 Summer Program

    NASA Technical Reports Server (NTRS)

    Moin, Parviz (Editor); Reynolds, William C. (Editor); Kim, John (Editor)

    1987-01-01

    The focus was on the use of databases obtained from direct numerical simulations of turbulent flows, for study of turbulence physics and modeling. Topics addressed included: stochastic decomposition/chaos/bifurcation; two-point closure (or k-space) modeling; scalar transport/reacting flows; Reynolds stress modeling; and structure of turbulent boundary layers.

  2. Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion

    NASA Astrophysics Data System (ADS)

    Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Grundestam, O.; Johansson, A. V.

    2016-02-01

    A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. ["A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation," Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with "local mean acceleration" which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper

  3. Modeling of Turbulent Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.

    2013-01-01

    The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.

  4. Analysis of turbulent heat and momentum transfer in a transitionally rough turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Doosttalab, Ali; Dharmarathne, Suranga; Tutkun, Murat; Adrian, Ronald; Castillo, Luciano

    2016-11-01

    A zero-pressure-gradient (ZPG) turbulent boundary layer over a transitionally rough surface is studied using direct numerical simulation (DNS). The rough surface is modeled as 24-grit sandpaper which corresponds to k+ 11 , where k+ is roughness height. Reynolds number based on momentum thickness is approximately 2400. The walls are isothermal and turbulent flow Prandtl number is 0.71. We simulate temperature as passive scalar. We compute the inner product of net turbulent force (d (u1ui) / dxi) and net turbulent heat flux (d (ui θ / dxi)) in order to investigate (i) the correlation between these vectorial quantities, (II) size of the projection of these fields on each other and (IIi) alignment of momentum and hear flux. The inner product in rough case results in larger projection and better alignment. In addition, our study on the vortices shows that surface roughness promotes production of vortical structures which affects the thermal transport near the wall.

  5. Distribution of Clostridium perfringens epsilon toxin in the brains of acutely intoxicated mice and its effect upon glial cells.

    PubMed

    Soler-Jover, Alex; Dorca, Jonatan; Popoff, Michel R; Gibert, Maryse; Saura, Josep; Tusell, Josep Maria; Serratosa, Joan; Blasi, Juan; Martín-Satué, Mireia

    2007-09-15

    Epsilon toxin (epsilon-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxaemia in livestock. The disease is principally manifested as severe and often fatal neurological disturbance. Oedema of several organs, including the brain, is also a clinical sign related to microvascular damage. Recombinant epsilon-toxin-green fluorescence protein (epsilon-toxin-GFP) and epsilon-prototoxin-GFP have already been characterised as useful tools to track their distribution in intravenously injected mice, by means of direct fluorescence microscopy detection. The results shown here, using an acutely intoxicated mouse model, strongly suggest that epsilon-toxin-GFP, but not epsilon-prototoxin-GFP, not only causes oedema but is also able to cross the blood-brain barrier and accumulate in brain tissue. In some brain areas, epsilon-toxin-GFP is found bound to glial cells, both astrocytes and microglia. Moreover, cytotoxicity assays, performed with mixed glial primary cultures, demonstrate the cytotoxic effect of epsilon-toxin upon both astrocytes and microglial cells.

  6. Benchmark studies of thermal jet mixing in SFRs using a two-jet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omotowa, O. A.; Skifton, R.; Tokuhiro, A.

    To guide the modeling, simulations and design of Sodium Fast Reactors (SFRs), we explore and compare the predictive capabilities of two numerical solvers COMSOL and OpenFOAM in the thermal jet mixing of two buoyant jets typical of the outlet flow from a SFR tube bundle. This process will help optimize on-going experimental efforts at obtaining high resolution data for V and V of CFD codes as anticipated in next generation nuclear systems. Using the k-{epsilon} turbulence models of both codes as reference, their ability to simulate the turbulence behavior in similar environments was first validated for single jet experimental datamore » reported in literature. This study investigates the thermal mixing of two parallel jets having a temperature difference (hot-to-cold) {Delta}T{sub hc}= 5 deg. C, 10 deg. C and velocity ratios U{sub c}/U{sub h} = 0.5, 1. Results of the computed turbulent quantities due to convective mixing and the variations in flow field along the axial position are presented. In addition, this study also evaluates the effect of spacing ratio between jets in predicting the flow field and jet behavior in near and far fields. (authors)« less

  7. Clostridium perfringens epsilon toxin inhibits the gastrointestinal transit in mice.

    PubMed

    Losada-Eaton, D M; Fernandez-Miyakawa, M E

    2010-12-01

    Epsilon toxin produced by Clostridium perfringens type B and D is a potent toxin that is responsible for a highly fatal enterotoxemia in sheep and goats. In vitro, epsilon toxin produces contraction of the rat ileum as the result of an indirect action, presumably mediated through the autonomic nervous system. To examine the impact of epsilon toxin in the intestinal transit, gastric emptying (GE) and gastrointestinal transit (GIT) were evaluated after intravenous and oral administration of epsilon toxin in mice. Orally administered epsilon toxin produced a delay on the GIT. Inhibition of the small intestinal transit was observed as early as 1 h after the toxin was administered orally but the effects were not observed after 1 week. Epsilon toxin also produced an inhibition in GE and a delay on the GIT when relatively high toxin concentrations were given intravenously. These results indicate that epsilon toxin administered orally or intravenously to mice transitorily inhibits the GIT. The delay in the GIT induced by epsilon toxin could be relevant in the pathogenesis of C. perfringens type B and D enterotoxemia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. A minimal model of self-sustaining turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Vaughan L.; Gayme, Dennice F.; Farrell, Brian F.

    2015-10-15

    In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL) model of plane Couette flow. This model is a computationally efficient approximation of the second order statistical state dynamics obtained by partitioning the flow into a streamwise averaged mean flow and perturbations about that mean, a closure referred to herein as the RNL{sub ∞} model. The RNL model investigated here employs a single member of the infinite ensemble that comprises the covariance of the RNL{sub ∞} dynamics. The RNL system has previously been shown to support self-sustaining turbulence with a mean flow and structural features that aremore » consistent with direct numerical simulations (DNS). Regardless of the number of streamwise Fourier components used in the simulation, the RNL system’s self-sustaining turbulent state is supported by a small number of streamwise varying modes. Remarkably, further truncation of the RNL system’s support to as few as one streamwise varying mode can suffice to sustain the turbulent state. The close correspondence between RNL simulations and DNS that has been previously demonstrated along with the results presented here suggest that the fundamental mechanisms underlying wall-turbulence can be analyzed using these highly simplified RNL systems.« less

  9. Desired Precision in Multi-Objective Optimization: Epsilon Archiving or Rounding Objectives?

    NASA Astrophysics Data System (ADS)

    Asadzadeh, M.; Sahraei, S.

    2016-12-01

    Multi-objective optimization (MO) aids in supporting the decision making process in water resources engineering and design problems. One of the main goals of solving a MO problem is to archive a set of solutions that is well-distributed across a wide range of all the design objectives. Modern MO algorithms use the epsilon dominance concept to define a mesh with pre-defined grid-cell size (often called epsilon) in the objective space and archive at most one solution at each grid-cell. Epsilon can be set to the desired precision level of each objective function to make sure that the difference between each pair of archived solutions is meaningful. This epsilon archiving process is computationally expensive in problems that have quick-to-evaluate objective functions. This research explores the applicability of a similar but computationally more efficient approach to respect the desired precision level of all objectives in the solution archiving process. In this alternative approach each objective function is rounded to the desired precision level before comparing any new solution to the set of archived solutions that already have rounded objective function values. This alternative solution archiving approach is compared to the epsilon archiving approach in terms of efficiency and quality of archived solutions for solving mathematical test problems and hydrologic model calibration problems.

  10. Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.

    2016-01-01

    In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with available data for wall heat transfer and profile measurements of mean temperature, the root-mean-square (RMS) fluctuating temperature, turbulent heat flux and turbulent Prandtl number. For wall-bounded problems, the algebraic models are found to best predict the rise in turbulent Prandtl number near the wall as well as the log-layer temperature profile, while the thermal variance models provide a good representation of the RMS temperature fluctuations. In jet flows, the algebraic models provide no benefit over a constant turbulent Prandtl number approach. Application of the thermal variance models finds that some significantly overpredict the temperature variance in the plume and most underpredict the thermal growth rate of the jet. The models yield very similar fluctuating temperature intensities in jets from straight pipes and smooth contraction nozzles, in contrast to data that indicate the latter should have noticeably higher values. For the particular low subsonic heated jet cases examined, changes in the turbulent Prandtl number had no effect on the centerline velocity decay.

  11. Turbulence Modeling: Progress and Future Outlook

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.; Huang, George P.

    1996-01-01

    Progress in the development of the hierarchy of turbulence models for Reynolds-averaged Navier-Stokes codes used in aerodynamic applications is reviewed. Steady progress is demonstrated, but transfer of the modeling technology has not kept pace with the development and demands of the computational fluid dynamics (CFD) tools. An examination of the process of model development leads to recommendations for a mid-course correction involving close coordination between modelers, CFD developers, and application engineers. In instances where the old process is changed and cooperation enhanced, timely transfer is realized. A turbulence modeling information database is proposed to refine the process and open it to greater participation among modeling and CFD practitioners.

  12. ‘Postage-stamp PIV’: small velocity fields at 400 kHz for turbulence spectra measurements

    NASA Astrophysics Data System (ADS)

    Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Spitzer, Seth M.

    2018-03-01

    Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4000 frames but for an array of only 128  ×  120 pixels, giving the moniker of ‘postage-stamp PIV’. The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 120 kHz, at which point a noise floor emerges whose magnitude is dependent on the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. The frequency response of the present measurement configuration exceeds nearly all previous velocimetry measurements in high speed flow.

  13. Gasdynamic model of turbulent combustion in an explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A.L.; Ferguson, R.E.; Chien, K.Y.

    1994-08-31

    Proposed here is a gasdynamic model of turbulent combustion in explosions. It is used to investigate turbulent mixing aspects of afterburning found in TNT charges detonated in air. Evolution of the turbulent velocity field was calculated by a high-order Godunov solution of the gasdynamic equations. Adaptive Mesh Refinement (AMR) was used to follow convective-mixing processes on the computational grid. Combustion was then taken into account by a simplified sub-grid model, demonstrating that it was controlled by turbulent mixing. The rate of fuel consumption decayed inversely with time, and was shown to be insensitive to grid resolution.

  14. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.

    2011-08-26

    Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2more » teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.« less

  15. Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2017-12-21

    Here, we present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, which may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L 2, with L the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression.more » The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.« less

  16. Modeling turbulent energy behavior and sudden viscous dissipation in compressing plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovits, Seth; Fisch, Nathaniel J.

    Here, we present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, which may exist in various inertial confinement fusion experiments or astrophysical settings. The plasma viscosity depends on both the temperature and the ionization state, for which many possible scalings with compression are possible. For example, in an adiabatic compression the temperature scales as 1/L 2, with L the linear compression ratio, but if thermal energy loss mechanisms are accounted for, the temperature scaling may be weaker. As such, the viscosity has a wide range of net dependencies on the compression.more » The model presented here, with no parameter changes, agrees well with numerical simulations for a range of these dependencies. This model permits the prediction of the partition of injected energy between thermal and turbulent energy in a compressing plasma.« less

  17. On the Conditioning of Machine-Learning-Assisted Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng

    2017-11-01

    Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.

  18. Scaling and modeling of turbulent suspension flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1989-01-01

    Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.

  19. Non-Equilibrium Turbulence Modeling for High Lift Aerodynamics

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1998-01-01

    This phase is discussed in ('Non linear kappa - epsilon - upsilon(sup 2) modeling with application to high lift', Application of the kappa - epsilon -upsilon(sup 2) model to multi-component airfoils'). Further results are presented in 'Non-linear upsilon(sup 2) - f modeling with application to high-lift' The ADI solution method in the initial implementation was very slow to converge on multi-zone chimera meshes. I modified the INS implementation to use GMRES. This provided improved convergence and less need for user intervention in the solution process. There were some difficulties with implementation into the NASA compressible codes, due to their use of approximate factorization. The Helmholtz equation for f is not an evolution equation, so it is not of the form assumed by the approximate factorization method. Although The Kalitzin implementation involved a new solution algorithm ('An implementation of the upsilon(sup 2) - f model with application to transonic flows'). The algorithm involves introducing a relaxation term in the f-equation so that it can be factored. The factorization can be into a plane and a line, with GMRES used in the plane. The NASA code already evaluated coefficients in planes, so no additional memory is required except that associated the the GMRES algorithm. So the scope of this project has expanded via these interactions. . The high-lift work has dovetailed into turbine applications.

  20. Turbulence modeling and experiments

    NASA Technical Reports Server (NTRS)

    Shabbir, Aamir

    1992-01-01

    The best way of verifying turbulence is to do a direct comparison between the various terms and their models. The success of this approach depends upon the availability of the data for the exact correlations (both experimental and DNS). The other approach involves numerically solving the differential equations and then comparing the results with the data. The results of such a computation will depend upon the accuracy of all the modeled terms and constants. Because of this it is sometimes difficult to find the cause of a poor performance by a model. However, such a calculation is still meaningful in other ways as it shows how a complete Reynolds stress model performs. Thirteen homogeneous flows are numerically computed using the second order closure models. We concentrate only on those models which use a linear (or quasi-linear) model for the rapid term. This, therefore, includes the Launder, Reece and Rodi (LRR) model; the isotropization of production (IP) model; and the Speziale, Sarkar, and Gatski (SSG) model. Which of the three models performs better is examined along with what are their weaknesses, if any. The other work reported deal with the experimental balances of the second moment equations for a buoyant plume. Despite the tremendous amount of activity toward the second order closure modeling of turbulence, very little experimental information is available about the budgets of the second moment equations. Part of the problem stems from our inability to measure the pressure correlations. However, if everything else appearing in these equations is known from the experiment, pressure correlations can be obtained as the closing terms. This is the closest we can come to in obtaining these terms from experiment, and despite the measurement errors which might be present in such balances, the resulting information will be extremely useful for the turbulence modelers. The purpose of this part of the work was to provide such balances of the Reynolds stress and heat

  1. A theoretical and experimental study of turbulent particle-laden jets

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Zhang, Q. F.; Faeth, G. M.

    1983-01-01

    Mean and fluctuating velocities of both phases, particle mass fluxes, particle size distributions in turbulent particle-laden jets were measured. The following models are considered: (1) a locally homogeneous flow (LHF) model, where slip between the phases was neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of particle dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model. The SSF model performed reasonably well with no modifications in the prescriptions for eddy properties from its original calibration. A modified k- model, incorporating direct contributions of interphase transport on turbulence properties (turbulence modulation), was developed within the framework of the SSF model.

  2. Comparison of in situ microstructure measurements to different turbulence closure schemes in a 3-D numerical ocean circulation model

    NASA Astrophysics Data System (ADS)

    Costa, Andrea; Doglioli, Andrea M.; Marsaleix, Patrick; Petrenko, Anne A.

    2017-12-01

    In situ measurements of kinetic energy dissipation rate ε and estimates of eddy viscosity KZ from the Gulf of Lion (NW Mediterranean Sea) are used to assess the ability of k - ɛ and k - ℓ closure schemes to predict microscale turbulence in a 3-D numerical ocean circulation model. Two different surface boundary conditions are considered in order to investigate their influence on each closure schemes' performance. The effect of two types of stability functions and optical schemes on the k - ɛ scheme is also explored. Overall, the 3-D model predictions are much closer to the in situ data in the surface mixed layer as opposed to below it. Above the mixed layer depth, we identify one model's configuration that outperforms all the other ones. Such a configuration employs a k - ɛ scheme with Canuto A stability functions, surface boundary conditions parameterizing wave breaking and an appropriate photosynthetically available radiation attenuation length. Below the mixed layer depth, reliability is limited by the model's resolution and the specification of a hard threshold on the minimum turbulent kinetic energy.

  3. Finite-mode spectral model of homogeneous and isotropic Navier-stokes turbulence: a rapidly depleted energy cascade.

    PubMed

    Lévêque, E; Koudella, C R

    2001-04-30

    An eddy-viscous term is added to Navier-Stokes dynamics at wave numbers k greater than the inflection point kc of the energy flux F(log(k)). The eddy viscosity is fixed so that the energy spectrum satisfies E(k) = E(kc) (k/kc)(-3) for k>kc. This resulting forcing induces a rapid depletion of the energy cascade at k>kc. It is observed numerically that the model reproduces turbulence energetics at k< or =kc and statistics of two-point velocity correlations at scales r>lambda (Taylor microscale). Compared to a direct numerical simulation of R(lambda) = 130 an equivalent run with the present model results in a gain of a factor 20 in CPU time.

  4. Industry-Wide Workshop on Computational Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Shabbir, Aamir (Compiler)

    1995-01-01

    This publication contains the presentations made at the Industry-Wide Workshop on Computational Turbulence Modeling which took place on October 6-7, 1994. The purpose of the workshop was to initiate the transfer of technology developed at Lewis Research Center to industry and to discuss the current status and the future needs of turbulence models in industrial CFD.

  5. An abbreviated Reynolds stress turbulence model for airfoil flows

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.

    1990-01-01

    An abbreviated Reynolds stress turbulence model is presented for solving turbulent flow over airfoils. The model consists of two partial differential equations, one for the Reynolds shear stress and the other for the turbulent kinetic energy. The normal stresses and the dissipation rate of turbulent kinetic energy are computed from algebraic relationships having the correct asymptotic near wall behavior. This allows the model to be integrated all the way to the wall without the use of wall functions. Results for a flat plate at zero angle of attack, a NACA 0012 airfoil and a RAE 2822 airfoil are presented.

  6. Piloted Evaluation of a UH-60 Mixer Equivalent Turbulence Simulation Model

    NASA Technical Reports Server (NTRS)

    Lusardi, Jeff A.; Blanken, Chris L.; Tischeler, Mark B.

    2002-01-01

    A simulation study of a recently developed hover/low speed Mixer Equivalent Turbulence Simulation (METS) model for the UH-60 Black Hawk helicopter was conducted in the NASA Ames Research Center Vertical Motion Simulator (VMS). The experiment was a continuation of previous work to develop a simple, but validated, turbulence model for hovering rotorcraft. To validate the METS model, two experienced test pilots replicated precision hover tasks that had been conducted in an instrumented UH-60 helicopter in turbulence. Objective simulation data were collected for comparison with flight test data, and subjective data were collected that included handling qualities ratings and pilot comments for increasing levels of turbulence. Analyses of the simulation results show good analytic agreement between the METS model and flight test data, with favorable pilot perception of the simulated turbulence. Precision hover tasks were also repeated using the more complex rotating-frame SORBET (Simulation Of Rotor Blade Element Turbulence) model to generate turbulence. Comparisons of the empirically derived METS model with the theoretical SORBET model show good agreement providing validation of the more complex blade element method of simulating turbulence.

  7. Collaborative testing of turbulence models

    NASA Astrophysics Data System (ADS)

    Bradshaw, P.

    1992-12-01

    This project, funded by AFOSR, ARO, NASA, and ONR, was run by the writer with Profs. Brian E. Launder, University of Manchester, England, and John L. Lumley, Cornell University. Statistical data on turbulent flows, from lab. experiments and simulations, were circulated to modelers throughout the world. This is the first large-scale project of its kind to use simulation data. The modelers returned their predictions to Stanford, for distribution to all modelers and to additional participants ('experimenters')--over 100 in all. The object was to obtain a consensus on the capabilities of present-day turbulence models and identify which types most deserve future support. This was not completely achieved, mainly because not enough modelers could produce results for enough test cases within the duration of the project. However, a clear picture of the capabilities of various modeling groups has appeared, and the interaction has been helpful to the modelers. The results support the view that Reynolds-stress transport models are the most accurate.

  8. A new turbulence-based model for sand transport

    NASA Astrophysics Data System (ADS)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical

  9. Model-free simulations of turbulent reactive flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1989-01-01

    The current computational methods for solving transport equations of turbulent reacting single-phase flows are critically reviewed, with primary attention given to those methods that lead to model-free simulations. In particular, consideration is given to direct numerical simulations using spectral (Galerkin) and pseudospectral (collocation) methods, spectral element methods, and Lagrangian methods. The discussion also covers large eddy simulations and turbulence modeling.

  10. Particle-laden weakly swirling free jets: Measurements and predictions. Ph.D. Thesis - Pennsylvania State Univ.

    NASA Technical Reports Server (NTRS)

    Bulzan, Daniel L.

    1988-01-01

    A theoretical and experimental investigation of particle-laden, weakly swirling, turbulent free jets was conducted. Glass particles, having a Sauter mean diameter of 39 microns, with a standard deviation of 15 microns, were used. A single loading ratio (the mass flow rate of particles per unit mass flow rate of air) of 0.2 was used in the experiments. Measurements are reported for three swirl numbers, ranging from 0 to 0.33. The measurements included mean and fluctuating velocities of both phases, and particle mass flux distributions. Measurements were also completed for single-phase non-swirling and swirling jets, as baselines. Measurements were compared with predictions from three types of multiphase flow analysis, as follows: (1) locally homogeneous flow (LHF) where slip between the phases was neglected; (2) deterministic separated flow (DSF), where slip was considered but effects of turbulence/particle interactions were neglected; and (3) stochastic separated flow (SSF), where effects of both interphase slip and turbulence/particle interactions were considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. Single-phase weakly swirling jets were considered first. Predictions using a standard k-epsilon turbulence model, as well as two versions modified to account for effects of streamline curvature, were compared with measurements. Predictions using a streamline curvature modification based on the flux Richardson number gave better agreement with measurements for the single-phase swirling jets than the standard k-epsilon model. For the particle-laden jets, the LHF and DSF models did not provide very satisfactory predictions. The LHF model generally overestimated the rate of decay of particle mean axial and angular velocities with streamwise distance, and predicted particle mass fluxes also showed poor agreement with measurements, due to the assumption of no-slip between phases. The DSF model also

  11. Determination of the turbulence integral model parameters for a case of a coolant angular flow in regular rod-bundle

    NASA Astrophysics Data System (ADS)

    Bayaskhalanov, M. V.; Vlasov, M. N.; Korsun, A. S.; Merinov, I. G.; Philippov, M. Ph

    2017-11-01

    Research results of “k-ε” turbulence integral model (TIM) parameters dependence on the angle of a coolant flow in regular smooth cylindrical rod-bundle are presented. TIM is intended for the definition of efficient impulse and heat transport coefficients in the averaged equations of a heat and mass transfer in the regular rod structures in an anisotropic porous media approximation. The TIM equations are received by volume-averaging of the “k-ε” turbulence model equations on periodic cell of rod-bundle. The water flow across rod-bundle under angles from 15 to 75 degrees was simulated by means of an ANSYS CFX code. Dependence of the TIM parameters on flow angle was as a result received.

  12. Eddy interaction model for turbulent suspension in Reynolds-averaged Euler-Lagrange simulations of steady sheet flow

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Chauchat, Julien; Hsu, Tian-Jian; Calantoni, Joseph

    2018-01-01

    A Reynolds-averaged Euler-Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected k - ω turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value C0 = 3 was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.

  13. Experimental Study of a Three-Dimensional Shear-Driven Turbulent Boundary Layer with Streamwise Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Johnston, James P.

    1990-01-01

    The effects of a strong adverse pressure gradient on a three-dimensional turbulent boundary layer are studied in an axisymmetric spinning cylinder geometry. Velocity measurements made with a three-component laser Doppler velocimeter include all three mean flow components, all six Reynolds stress components, and all ten triple-product correlations. Reynolds stress diminishes as the flow becomes three-dimensional. Lower levels of shear stress were seen to persist under adverse pressure gradient conditions. This low level of stress was seen to roughly correlate with the magnitude of cross-flow (relative to free stream flow) for this experiment as well as most of the other experiments in the literature. Variations in pressure gradient do not appear to alter this correlation. For this reason, it is hypothesized that a three-dimensional boundary layer is more prone to separate than a two-dimensional boundary layer, although it could not be directly shown here. None of the computations performed with either a Prandtl mixing length, k-epsilon, or a Launder-Reece-Rodi full Reynolds-stress model were able to predict the reduction in Reynolds stress.

  14. A geometrical optics approach for modeling atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Atia, Walid; Davis, Christopher C.

    2005-08-01

    Atmospheric turbulence has a significant impact on the quality of a laser beam propagating through the atmosphere over long distances. Turbulence causes the optical phasefront to become distorted from propagation through turbulent eddies of varying sizes and refractive index. Turbulence also results in intensity scintillation and beam wander, which can severely impair the operation of target designation and free space optical (FSO) communications systems. We have developed a new model to assess the effects of turbulence on laser beam propagation in such applications. We model the atmosphere along the laser beam propagation path as a spatial distribution of spherical bubbles or curved interfaces. The size and refractive index discontinuity represented by each bubble are statistically distributed according to various models. For each statistical representation of the atmosphere, the path of a single ray, or a bundle of rays, is analyzed using geometrical optics. These Monte Carlo techniques allow us to assess beam wander, beam spread, and phase shifts along the path. An effective Cn2 can be determined by correlating beam wander behavior with the path length. This model has already proved capable of assessing beam wander, in particular the (Range)3 dependence of mean-squared beam wander, and in estimating lateral phase decorrelations that develop across the laser phasefront as it propagates through turbulence. In addition, we have developed efficient computational techniques for various correlation functions that are important in assessing the effects of turbulence. The Monte Carlo simulations are compared and show good agreement with the predictions of wave theory.

  15. SIMULATING THE EFFECTS OF UPSTREAM TURBULENCE ON DISPERSION AROUND A BUILDING

    EPA Science Inventory

    The effects of high turbulence versus no turbulence in a sheared boundary-layer flow approaching a building are being investigated by a turbulent kinetic energy/dissipation (k-e) model (TEMPEST). The effects on both the mean flow and the concentration field around a cubical build...

  16. Development of comprehensive numerical schemes for predicting evaporating gas-droplets flow processes of a liquid-fueled combustor

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1990-01-01

    An existing Computational Fluid Dynamics code for simulating complex turbulent flows inside a liquid rocket combustion chamber was validated and further developed. The Advanced Rocket Injector/Combustor Code (ARICC) is simplified and validated against benchmark flow situations for laminar and turbulent flows. The numerical method used in ARICC Code is re-examined for incompressible flow calculations. For turbulent flows, both the subgrid and the two equation k-epsilon turbulence models are studied. Cases tested include idealized Burger's equation in complex geometries and boundaries, a laminar pipe flow, a high Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The accuracy of the algorithm is examined by comparing the numerical results with the analytical solutions as well as experimented data with different grid sizes.

  17. Dynamics of quantum turbulence of different spectra

    PubMed Central

    Walmsley, Paul; Zmeev, Dmitry; Pakpour, Fatemeh; Golov, Andrei

    2014-01-01

    Turbulence in a superfluid in the zero-temperature limit consists of a dynamic tangle of quantized vortex filaments. Different types of turbulence are possible depending on the level of correlations in the orientation of vortex lines. We provide an overview of turbulence in superfluid 4He with a particular focus on recent experiments probing the decay of turbulence in the zero-temperature regime below 0.5 K. We describe extensive measurements of the vortex line density during the free decay of different types of turbulence: ultraquantum and quasiclassical turbulence in both stationary and rotating containers. The observed decays and the effective dissipation as a function of temperature are compared with theoretical models and numerical simulations. PMID:24704876

  18. Modelling Detailed-Chemistry Effects on Turbulent Diffusion Flames using a Parallel Solution-Adaptive Scheme

    NASA Astrophysics Data System (ADS)

    Jha, Pradeep Kumar

    Capturing the effects of detailed-chemistry on turbulent combustion processes is a central challenge faced by the numerical combustion community. However, the inherent complexity and non-linear nature of both turbulence and chemistry require that combustion models rely heavily on engineering approximations to remain computationally tractable. This thesis proposes a computationally efficient algorithm for modelling detailed-chemistry effects in turbulent diffusion flames and numerically predicting the associated flame properties. The cornerstone of this combustion modelling tool is the use of parallel Adaptive Mesh Refinement (AMR) scheme with the recently proposed Flame Prolongation of Intrinsic low-dimensional manifold (FPI) tabulated-chemistry approach for modelling complex chemistry. The effect of turbulence on the mean chemistry is incorporated using a Presumed Conditional Moment (PCM) approach based on a beta-probability density function (PDF). The two-equation k-w turbulence model is used for modelling the effects of the unresolved turbulence on the mean flow field. The finite-rate of methane-air combustion is represented here by using the GRI-Mech 3.0 scheme. This detailed mechanism is used to build the FPI tables. A state of the art numerical scheme based on a parallel block-based solution-adaptive algorithm has been developed to solve the Favre-averaged Navier-Stokes (FANS) and other governing partial-differential equations using a second-order accurate, fully-coupled finite-volume formulation on body-fitted, multi-block, quadrilateral/hexahedral mesh for two-dimensional and three-dimensional flow geometries, respectively. A standard fourth-order Runge-Kutta time-marching scheme is used for time-accurate temporal discretizations. Numerical predictions of three different diffusion flames configurations are considered in the present work: a laminar counter-flow flame; a laminar co-flow diffusion flame; and a Sydney bluff-body turbulent reacting flow

  19. Functional identification of a novel 14-3-3 epsilon splicing variant suggests dimerization is not necessary for 14-3-3 epsilon to inhibit UV-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Dingding; Ye, Guangming; Liu, Tingting

    2010-05-28

    14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1' insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal {alpha}-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3more » epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.« less

  20. Second order closure modeling of turbulent buoyant wall plumes

    NASA Technical Reports Server (NTRS)

    Zhu, Gang; Lai, Ming-Chia; Shih, Tsan-Hsing

    1992-01-01

    Non-intrusive measurements of scalar and momentum transport in turbulent wall plumes, using a combined technique of laser Doppler anemometry and laser-induced fluorescence, has shown some interesting features not present in the free jet or plumes. First, buoyancy-generation of turbulence is shown to be important throughout the flow field. Combined with low-Reynolds-number turbulence and near-wall effect, this may raise the anisotropic turbulence structure beyond the prediction of eddy-viscosity models. Second, the transverse scalar fluxes do not correspond only to the mean scalar gradients, as would be expected from gradient-diffusion modeling. Third, higher-order velocity-scalar correlations which describe turbulent transport phenomena could not be predicted using simple turbulence models. A second-order closure simulation of turbulent adiabatic wall plumes, taking into account the recent progress in scalar transport, near-wall effect and buoyancy, is reported in the current study to compare with the non-intrusive measurements. In spite of the small velocity scale of the wall plumes, the results showed that low-Reynolds-number correction is not critically important to predict the adiabatic cases tested and cannot be applied beyond the maximum velocity location. The mean and turbulent velocity profiles are very closely predicted by the second-order closure models. but the scalar field is less satisfactory, with the scalar fluctuation level underpredicted. Strong intermittency of the low-Reynolds-number flow field is suspected of these discrepancies. The trends in second- and third-order velocity-scalar correlations, which describe turbulent transport phenomena, are also predicted in general, with the cross-streamwise correlations better than the streamwise one. Buoyancy terms modeling the pressure-correlation are shown to improve the prediction slightly. The effects of equilibrium time-scale ratio and boundary condition are also discussed.

  1. Dissipation in quantum turbulence in superfluid 4He above 1 K

    NASA Astrophysics Data System (ADS)

    Gao, J.; Guo, W.; Yui, S.; Tsubota, M.; Vinen, W. F.

    2018-05-01

    There are two commonly discussed forms of quantum turbulence in superfluid 4He above 1 K: in one there is a random tangle of quantized vortex lines, existing in the presence of a nonturbulent normal fluid; in the second there is a coupled turbulent motion of the two fluids, often exhibiting quasiclassical characteristics on scales larger than the separation between the quantized vortex lines in the superfluid component. The decay of vortex line density, L , in the former case is often described by the equation d L /d t =-χ2(κ /2 π ) L2 , where κ is the quantum of circulation and χ2 is a dimensionless parameter of order unity. The decay of total turbulent energy, E , in the second case is often characterized by an effective kinematic viscosity, ν', such that d E /d t =-ν'κ2L2 . We present values of χ2 derived from numerical simulations and from experiment, which we compare with those derived from a theory developed by Vinen and Niemela. We summarize what is presently known about the values of ν' from experiment, and we present a brief introductory discussion of the relationship between χ2 and ν', leaving a more detailed discussion to a later paper.

  2. Modeling molecular mixing in a spatially inhomogeneous turbulent flow

    NASA Astrophysics Data System (ADS)

    Meyer, Daniel W.; Deb, Rajdeep

    2012-02-01

    Simulations of spatially inhomogeneous turbulent mixing in decaying grid turbulence with a joint velocity-concentration probability density function (PDF) method were conducted. The inert mixing scenario involves three streams with different compositions. The mixing model of Meyer ["A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows," Phys. Fluids 22(3), 035103 (2010)], the interaction by exchange with the mean (IEM) model and its velocity-conditional variant, i.e., the IECM model, were applied. For reference, the direct numerical simulation data provided by Sawford and de Bruyn Kops ["Direct numerical simulation and lagrangian modeling of joint scalar statistics in ternary mixing," Phys. Fluids 20(9), 095106 (2008)] was used. It was found that velocity conditioning is essential to obtain accurate concentration PDF predictions. Moreover, the model of Meyer provides significantly better results compared to the IECM model at comparable computational expense.

  3. Apolipoprotein E-epsilon 4 allele and familial risk in Alzheimer's disease.

    PubMed

    Li, G; Silverman, J M; Altstiel, L D; Haroutunian, V; Perl, D P; Purohit, D; Birstein, S; Lantz, M; Mohs, R C; Davis, K L

    1996-01-01

    Recent studies have found an association between presence of apolipoprotein E (APOE) epsilon 4 allele and Alzheimer's disease (AD). The present study compared the cumulative risk of primary progressive dementia (PPD) in relatives of AD probands carrying at least one copy of the epsilon 4 allele with the relatives of AD probands not carrying epsilon 4 and with relatives of non-demented controls. Our aim was to determine whether the familial aggregation of PPD in relatives of AD probands is primarily due to those carrying epsilon 4. Seventy-seven neuropathologically diagnosed AD patients were obtained as probands through our Alzheimer's Disease Research Center Brain Bank. AD probands were genotyped for APOE. As a comparison group, 198 non-demented probands were also included. Through family informants, demographic and diagnostic data were collected on 382 first-degree relatives (age > or = 45 years) of AD probands and 848 relatives of the controls. We found that the cumulative risk of PPD in both relatives of AD probands with and without the epsilon 4 allele was significantly higher than that in the relatives of non-demented controls. However, the increased risk in the relatives of AD probands with the epsilon 4 allele was marginally, but not significantly, lower than the risk in the relatives of probands without epsilon 4. A greater likelihood of death by heart diseases over developing PPD in relatives of AD probands with epsilon 4 (3.1-fold increase) was found compared to relatives of probands without epsilon 4 (1.7-fold increase), especially prior to age 70, although the difference was not statistically significant. The increased familial risk for PPD in the relatives of AD probands with the APOE-epsilon 4 allele relative to controls suggests that familial factors in addition to APOE-epsilon 4 are risk factors for AD. Differential censorship from increased mortality of heart diseases may have prevented a higher incidence of PPD among the relatives of probands with

  4. Turbulence modeling of gas-solid suspension flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1988-01-01

    The purpose here is to discuss and review advances in two-phase turbulent modeling techniques and their applications in various gas-solid suspension flow situations. In addition to the turbulence closures, heat transfer effect, particle dispersion and wall effects are partially covered.

  5. Gyrokinetic simulation of residual turbulence in transport barriers

    NASA Astrophysics Data System (ADS)

    Jenko, Frank; Told, Daniel; Goerler, Tobias; Brunner, Stephan; Sautter, Olivier

    2011-10-01

    One of the ultimate aims for gyrokinetic simulation is to describe the formation and evolution of transport barriers. An important step in that direction is the study of the residual turbulence in established barriers - a challenging task in itself, given that a wide range of spatio-temporal scales can be involved. In the present work, we employ the physically comprehensive, nonlocal gyrokinetic turbulence code GENE to study turbulence in both core and edge transport barriers. First, we apply GENE to a set of discharges in the TCV tokamak which exhibit electron ITBs. Nonlinear gyrokinetic simulations are used to examine the influence of a varying current profile on the strength of the barrier. For each case, the transport spectra reveal how much transport (for each channel) is done in the low-k, medium-k, and high-k regimes, respectively. The role of ETG turbulence is discussed. Second, we explore the role of ETG turbulence in a typical ASDEX Upgrade H-mode discharge. Numerical convergence is carefully examined, and new insights on the characteristics of ETG turbulence in the edge will be discussed, focusing particularly on the role of streamers, which had been found to be a necessary ingredient for experimentally relevant ETG transport in core plasmas. The radial dependence of the resulting electron heat diffusivity is also examined and a simple ETG model is presented which can be used in future edge modeling efforts.

  6. Chaotic Lagrangian models for turbulent relative dispersion.

    PubMed

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  7. Chaotic Lagrangian models for turbulent relative dispersion

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  8. Effects of shock strength on shock turbulence interaction

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan

    1993-01-01

    Direct numerical simulation (DNS) and linear analysis (LIA) of isotropic turbulence interacting with a shock wave are performed for several upstream shock normal Mach numbers (M(sub 1)). Turbulence kinetic energy (TKE) is amplified across the shock wave, but this amplification tends to saturate beyond M(sub 1) = 3.0. TKE amplification and Reynolds stress anisotropy obtained in DNS are consistent with LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave persists for all shock strengths and is attributed to the transfer between kinetic and potential modes of turbulence energy through acoustic fluctuations. Changes in energy spectra and various length scales across the shock wave are predicted by LIA, which is consistent with DNS results. Most turbulence length scales decrease across the shock. Dissipation length scale (rho-bar q(exp 3) / epsilon), however, increases slightly for shock waves with M(sub 1) less than 1.65. Fluctuations in thermodynamic variables behind the shock wave stay nearly isentropic for M(sub 1) less than 1.2 and deviate significantly from isentropy for the stronger shock waves due to large entropy fluctuation generated through the interaction.

  9. Model development and verification for mass transport to Escherichia coli cells in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Hondzo, Miki; Al-Homoud, Amer

    2007-08-01

    Theoretical studies imply that fluid motion does not significantly increase the molecular diffusive mass flux toward and away from microscopic organisms. This study presents experimental and theoretical evidence that small-scale turbulence modulates enhanced mass transport to Escherichia coli cells in a turbulent flow. Using the technique of inner region and outer region expansions, a model for dissolved oxygen and glucose uptake by E. coli was developed. The mass transport to the E. coli was modeled by the Sherwood (Sh)-Péclet (Pe) number relationship with redefined characteristic length and velocity scales. The model Sh = (1 + Pe1/2 + Pe) agreed with the laboratory measurements well. The Péclet number that quantifies the role and function of small-scale turbulence on E. coli metabolism is defined by Pe = (?) where Ezz is the root mean square of fluid extension in the direction of local vorticity, ηK is the Kolmogorov length scale, Lc is the length scale of E. coli, and D is the molecular diffusion coefficient. An alternative formulation for the redefined Pe is given by Pe = (?) where ? = 0.5(ɛν)1/4 is the Kolmogorov velocity averaged over the Kolmogorov length scale, ɛ is dissipation of turbulent kinetic energy, and ν is the kinematic viscosity of fluid. The dissipation of turbulent kinetic energy was estimated directly from measured velocity gradients and was within the reported range in engineered and natural aquatic ecosytems. The specific growth of E. coli was up to 5 times larger in a turbulent flow in comparison to the still water controls. Dissolved oxygen and glucose uptake were enhanced with increased ɛ in the turbulent flow.

  10. Turbulent particulate transportation during electrostatic precipitation

    NASA Astrophysics Data System (ADS)

    Choi, Bum Seog

    The generation of secondary flows and turbulence by a corona discharge influences particle transport in an electrostatic precipitator (ESP), and is known to play an important role in the particle collection process. However, it is difficult to characterise theoretically and experimentally the ``turbulent'' fluctuations of the gas flow produced by negative tuft corona. Because of this difficulty, only limited studies have been undertaken previously to understand the structure of corona-induced turbulence and its influence on particle transport in ESPs. The present study is aimed at modelling electrohydrodynamic turbulent flows and particle transport, and at establishing an unproved understanding of them. For a multiply interactive coupling of electrostatics, fluid dynamics and particle dynamics, a strongly coupled system of the governing equations has been solved. The present computer model has considered the most important interaction mechanisms including an ionic wind, corona- induced turbulence and the particle space charge effect. Numerical simulations have been performed for the extensive validation of the numerical and physical models. To account for electrically excited turbulence associated with the inhomogeneous and unsteady characteristics of negative corona discharges, a new turbulence model (called the electrostatic turbulence model) has been developed. In this, an additional production or destruction term is included into the turbulent kinetic energy and dissipation rate equations. It employs a gradient type model of the current density and an electrostatic diffusivity concept. The results of the computation show that the electrostatic turbulence model gives much better agreement with the experimental data than the conventional RNG kturbulence model when predicting turbulent gas flows and particle distributions in an ESP. Computations of turbulent particulate two-phase flows for both mono-dispersed and poly-dispersed particles have been performed

  11. Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Spalart, Philippe R.

    2008-01-01

    The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave transitionally in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.

  12. Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Spalart, Philippe R.

    2008-01-01

    The behaviors of the widely-used Spalart-Allmaras (SA) and Menter shear-stress transport (SST) turbulence models at low Reynolds numbers and under conditions conducive to relaminarization are documented. The flows used in the investigation include 2-D zero pressure gradient flow over a flat plate from subsonic to hypersonic Mach numbers, 2-D airfoil flow from subsonic to supersonic Mach numbers, 2-D subsonic sink-flow, and 3-D subsonic flow over an infinite swept wing (particularly its leading-edge region). Both models exhibit a range over which they behave 'transitionally' in the sense that the flow is neither laminar nor fully turbulent, but these behaviors are different: the SST model typically has a well-defined transition location, whereas the SA model does not. Both models are predisposed to delayed activation of turbulence with increasing freestream Mach number. Also, both models can be made to achieve earlier activation of turbulence by increasing their freestream levels, but too high a level can disturb the turbulent solution behavior. The technique of maintaining freestream levels of turbulence without decay in the SST model, introduced elsewhere, is shown here to be useful in reducing grid-dependence of the model's transitional behavior. Both models are demonstrated to be incapable of predicting relaminarization; eddy viscosities remain weakly turbulent in accelerating or laterally-strained boundary layers for which experiment and direct simulations indicate turbulence suppression. The main conclusion is that these models are intended for fully turbulent high Reynolds number computations, and using them for transitional (e.g., low Reynolds number) or relaminarizing flows is not appropriate.

  13. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed bymore » the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.« less

  14. Binding of epsilon-toxin from Clostridium perfringens in the nervous system.

    PubMed

    Dorca-Arévalo, Jonatan; Soler-Jover, Alex; Gibert, Maryse; Popoff, Michel R; Martín-Satué, Mireia; Blasi, Juan

    2008-09-18

    Epsilon-toxin (epsilon-toxin), produced by Clostridium perfringens type D, is the main agent responsible for enterotoxaemia in livestock. Neurological disorders are a characteristic of the onset of toxin poisoning. Epsilon-Toxin accumulates specifically in the central nervous system, where it produces a glutamatergic-mediated excitotoxic effect. However, no detailed study of putative binding structures in the nervous tissue has been carried out to date. Here we attempt to identify specific acceptor moieties and cell targets for epsilon-toxin, not only in the mouse nervous system but also in the brains of sheep and cattle. An epsilon-toxin-GFP fusion protein was produced and used to incubate brain sections, which were then analyzed by confocal microscopy. The results clearly show specific binding of epsilon-toxin to myelin structures. epsilon-Prototoxin-GFP and epsilon-toxin-GFP, the inactive and active forms of the toxin, respectively, showed identical results. By means of pronase E treatment, we found that the binding was mainly associated to a protein component of the myelin. Myelinated peripheral nerve fibres were also stained by epsilon-toxin. Moreover, the binding to myelin was not only restricted to rodents, but was also found in humans, sheep and cattle. Curiously, in the brains of both sheep and cattle, the toxin strongly stained the vascular endothelium, a result that may explain the differences in potency and effect between species. Although the binding of epsilon-toxin to myelin does not directly explain its neurotoxic effect, this feature opens up a new line of enquiry into its mechanism of toxicity and establishes the usefulness of this toxin for the study of the mammalian nervous system.

  15. Naturally acquired antibodies against Clostridium perfringens epsilon toxin in goats.

    PubMed

    Veschi, Josir Laine A; Bruzzone, Octavio A; Losada-Eaton, Daniela M; Dutra, Iveraldo S; Fernandez-Miyakawa, Mariano E

    2008-09-15

    Clostridium perfringens type D-producing epsilon toxin is a common cause of death in sheep and goats worldwide. Although anti-epsilon toxin serum antibodies have been detected in healthy non-vaccinated sheep, the information regarding naturally acquired antibodies in ruminants is scanty. The objective of the present report was to characterize the development of naturally acquired antibodies against C. perfringens epsilon toxin in goats. The levels of anti-epsilon toxin antibodies in blood serum of goat kids from two different herds were examined continuously for 14 months. Goats were not vaccinated against any clostridial disease and received heterologous colostrums from cows that were not vaccinated against any clostridial disease. During the survey one of these flocks suffered an unexpectedly severe C. perfringens type D enterotoxemia outbreak. The results showed that natural acquired antibodies against C. perfringens epsilon toxin can appear as early as 6 weeks in young goats and increase with the age without evidence of clinical disease. The enterotoxemia outbreak was coincident with a significant increase in the level of anti-epsilon toxin antibodies.

  16. Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice.

    PubMed

    Losada-Eaton, D M; Uzal, F A; Fernández Miyakawa, M E

    2008-06-01

    Clostridium perfringens epsilon toxin is a potent toxin responsible for a rapidly fatal enterotoxaemia in several animal species. The pathogenesis of epsilon toxin includes toxicity to endothelial cells and neurons. Although epsilon toxin is absorbed from the gastrointestinal tract, the intestinal regions where the toxin is absorbed and the conditions favoring epsilon toxin absorption are unknown. The aim of this paper was to determine the toxicity of epsilon toxin absorbed from different gastrointestinal segments of mice and to evaluate the influence of the intestinal environment in the absorption of this toxin. Epsilon toxin diluted in one of several different saline solutions was surgically introduced into ligated stomach or intestinal segments of mice. Comparison of the toxicity of epsilon toxin injected in different sections of the gastrointestinal tract showed that this toxin can be absorbed from the small and the large intestine but not from the stomach of mice. The lethality of epsilon toxin was higher when this toxin was injected in the colon than in the small intestine. Low pH, and Na(+) and glucose added to the saline solution increased the toxicity of epsilon toxin injected into the small intestine. This study shows that absorption of epsilon toxin can occur in any intestinal segment of mice and that the physicochemical characteristics of the intestinal content can affect the absorption of this toxin.

  17. Tunable magnetization of infrared epsilon-near-zero media via field-effect modulation

    NASA Astrophysics Data System (ADS)

    Salary, Mohammad Mahdi; Mosallaei, Hossein

    2018-04-01

    In this letter, we demonstrate that field effect modulation enables electrical tuning of the effective permeability of epsilon-near-zero (ENZ) media at infrared frequencies. In particular, hexagonal silicon carbide (6H-SiC) is incorporated as an epsilon-near-zero host in a gated 6H-SiC/SiO2/Si heterostructure. The change in the applied voltage leads to a change in the carrier concentration of the accumulation layer formed at the interface of 6H-SiC and SiO2 which can alter the effective permeability of the heterostructure by virtue of the photonic doping effect. We will rigorously model and analyze the structure by linking charge transport and electromagnetic models. The presented mechanism allows for tuning the impedance and magnetization of ENZ materials in real-time while capturing extreme cases of epsilon-and-mu-near-zero and magnetic conductor. As such, it can be used for various applications such as real-time engineering of thermal emission, dynamic switching, reconfigurable tunneling, and holography.

  18. Fractional Order Modeling of Atmospheric Turbulence - A More Accurate Modeling Methodology for Aero Vehicles

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2014-01-01

    The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.

  19. Turbulent transport modeling of shear flows around an aerodynamic wing. Development of turbulent near-wall model and its application to recirculating flows

    NASA Technical Reports Server (NTRS)

    Amano, R. S.

    1982-01-01

    Progress in implementing and refining two near-wall turbulence models in which the near-wall region is divided into either two or three zones is outlined. These models were successfully applied to the computation of recirculating flows. The research was further extended to obtaining experimental results of two different recirculating flow conditions in order to check the validity of the present models. Two different experimental apparatuses were set up: axisymmetric turbulent impinging jets on a flat plate, and turbulent flows in a circular pipe with a abrupt pipe expansion. It is shown that generally better results are obtained by using the present near-wall models, and among the models the three-zone model is superior to the two-zone model.

  20. Analysis of turbulent mixing in Dewakang Sill, Southern Makassar Strait

    NASA Astrophysics Data System (ADS)

    Risko; Atmadipoera, A. S.; Jaya, I.; Sudjono, E. H.

    2017-01-01

    Dewakang Sill is located in southern Makassar Strait, conveying major path of Indonesian Throughflow (ITF), as a confluence region of different water masses, such as salty Pacific water and fresh Java Sea water. Its depth is about 680 m which blocks the ITF flow below this depth into Flores Sea. This research aimed to estimate turbulent mixing in the Dewakang Sill by applying Thorpe analysis using 24 hours “yoyo” CTD data sets, acquired from MAJAFLOX Cruise in August 2015. The results showed that stratification of water masses is dominated by Pacific water origin. Those are North Pacific Subtropical thermocline and Intermediate water masses. Mean dissipation of turbulent kinetic energy (ɛ) and turbulent vertical diffusivity (Kρ ) value in the Dewakang Sill are of O(1.08 × 10-6)Wkg-1, and O(2.84 × 10-4) m2s-1 respectively. High correlation between epsilon and internal waves oscillation suggested that internal tidal waves activities are the major forcing for turbulent mixing in the study area.

  1. The analysis and modelling of dilatational terms in compressible turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.

    1991-01-01

    It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.

  2. The analysis and modeling of dilatational terms in compressible turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.

    1989-01-01

    It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.

  3. Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model

    DOE PAGES

    Sun, Guangyuan; Lignell, David O.; Hewson, John C.; ...

    2014-10-09

    Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introducesmore » a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.« less

  4. A review of Reynolds stress models for turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1995-01-01

    A detailed review of recent developments in Reynolds stress modeling for incompressible turbulent shear flows is provided. The mathematical foundations of both two-equation models and full second-order closures are explored in depth. It is shown how these models can be systematically derived for two-dimensional mean turbulent flows that are close to equilibrium. A variety of examples are provided to demonstrate how well properly calibrated versions of these models perform for such flows. However, substantial problems remain for the description of more complex turbulent flows where there are large departures from equilibrium. Recent efforts to extend Reynolds stress models to nonequilibrium turbulent flows are discussed briefly along with the major modeling issues relevant to practical naval hydrodynamics applications.

  5. Coupled turbulence and aerosol dynamics modeling of vehicle exhaust plumes using the CTAG model

    NASA Astrophysics Data System (ADS)

    Wang, Yan Jason; Zhang, K. Max

    2012-11-01

    This paper presents the development and evaluation of an environmental turbulent reacting flow model, the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model. CTAG is designed to simulate transport and transformation of multiple air pollutants, e.g., from emission sources to ambient background. For the on-road and near-road applications, CTAG explicitly couples the major turbulent mixing processes, i.e., vehicle-induced turbulence (VIT), road-induced turbulence (RIT) and atmospheric boundary layer turbulence with gas-phase chemistry and aerosol dynamics. CTAG's transport model is referred to as CFD-VIT-RIT. This paper presents the evaluation of the CTAG model in simulating the dynamics of individual plumes in the “tailpipe-to-road” stage, i.e., VIT behind a moving van and aerosol dynamics in the wake of a diesel car by comparing the modeling results against the respective field measurements. Combined with sensitivity studies, we analyze the relative roles of VIT, sulfuric acid induced nucleation, condensation of organic compounds and presence of soot-mode particles in capturing the dynamics of exhaust plumes as well as their implications in vehicle emission controls.

  6. The Use of DNS in Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Merriam, Marshal (Technical Monitor)

    1997-01-01

    The use of Direct numerical simulations (DNS) data in developing and testing turbulence models is reviewed. The data is used to test turbulence models at all levels: algebraic, one-equation, two-equation and full Reynolds stress models were tested. Particular examples on the development of models for the dissipation rate equation are presented. Homogeneous flows are used to test new scaling arguments for the various terms in the dissipation rate equation. The channel flow data is used to develop modifications to the equation model that take into account near-wall effects. DNS of compressible flows under mean compression are used in testing new compressible modifications to the two-equation models.

  7. Helicity statistics in homogeneous and isotropic turbulence and turbulence models

    NASA Astrophysics Data System (ADS)

    Sahoo, Ganapati; De Pietro, Massimo; Biferale, Luca

    2017-02-01

    We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small scales, i.e., chiral terms are subleading and they are well captured by a dimensional argument plus anomalous corrections. These findings are also supported by a high Reynolds numbers study of helical shell models with the same chiral symmetry of Navier-Stokes equations.

  8. The Lag Model, a Turbulence Model for Wall Bounded Flows Including Separation

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Coakley, Thomas J.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A new class of turbulence model is described for wall bounded, high Reynolds number flows. A specific turbulence model is demonstrated, with results for favorable and adverse pressure gradient flowfields. Separation predictions are as good or better than either Spalart Almaras or SST models, do not require specification of wall distance, and have similar or reduced computational effort compared with these models.

  9. Numerical modelling of flow and heat transfer in the rotating disc cavities of a turboprop engine.

    PubMed

    Faragher, J; Ooi, A

    2001-05-01

    A numerical analysis of the flow and heat transfer in the cavity between two co-rotating discs with axial inlet and radial outflow of fluid, a configuration common in gas turbine engines, is described. The results are compared with the experimental data of Northrop and Owen. The effectiveness of the k-epsilon turbulence model with the two-layer zonal model for near-wall treatment of Chen and Patel is tested for this type of flow. Using three-dimensional models it is shown that modelling discrete holes at the outlet as opposed to a continuous slot, which is the approximation inherent in the two-dimensional axisymmetric model, has little effect on the predicted Nusselt number distribution along the disc surface. Results of a conjugate heat transfer analysis of a spacer in the turbine section of a turboprop engine are then presented.

  10. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less

  11. Compressible Turbulent Channel Flows: DNS Results and Modeling

    NASA Technical Reports Server (NTRS)

    Huang, P. G.; Coleman, G. N.; Bradshaw, P.; Rai, Man Mohan (Technical Monitor)

    1994-01-01

    The present paper addresses some topical issues in modeling compressible turbulent shear flows. The work is based on direct numerical simulation of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional time-and Favre-averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that the compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation is so successful in correlating compressible boundary layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.

  12. Three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon with thermal effects.

    PubMed

    Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing

    2005-08-01

    Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.

  13. Modeling of turbulent transport as a volume process

    NASA Technical Reports Server (NTRS)

    Jennings, Mark J.; Morel, Thomas

    1987-01-01

    An alternative type of modeling was proposed for the turbulent transport terms in Reynolds-averaged equations. One particular implementation of the model was considered, based on the two-point velocity correlations. The model was found to reproduce the trends but not the magnitude of the nonisotropic behavior of the turbulent transport. Some interesting insights were developed concerning the shape of the contracted two-point correlation volume. This volume is strongly deformed by mean shear from the spherical shape found in unstrained flows. Of particular interest is the finding that the shape is sharply waisted, indicating preferential lines of communication, which should have a direct effect on turbulent transfer and on other processes.

  14. Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling

    PubMed Central

    Baker, Matthew L.; Hryc, Corey F.; Zhang, Qinfen; Wu, Weimin; Jakana, Joanita; Haase-Pettingell, Cameron; Afonine, Pavel V.; Adams, Paul D.; King, Jonathan A.; Jiang, Wen; Chiu, Wah

    2013-01-01

    High-resolution structures of viruses have made important contributions to modern structural biology. Bacteriophages, the most diverse and abundant organisms on earth, replicate and infect all bacteria and archaea, making them excellent potential alternatives to antibiotics and therapies for multidrug-resistant bacteria. Here, we improved upon our previous electron cryomicroscopy structure of Salmonella bacteriophage epsilon15, achieving a resolution sufficient to determine the tertiary structures of both gp7 and gp10 protein subunits that form the T = 7 icosahedral lattice. This study utilizes recently established best practice for near-atomic to high-resolution (3–5 Å) electron cryomicroscopy data evaluation. The resolution and reliability of the density map were cross-validated by multiple reconstructions from truly independent data sets, whereas the models of the individual protein subunits were validated adopting the best practices from X-ray crystallography. Some sidechain densities are clearly resolved and show the subunit–subunit interactions within and across the capsomeres that are required to stabilize the virus. The presence of the canonical phage and jellyroll viral protein folds, gp7 and gp10, respectively, in the same virus suggests that epsilon15 may have emerged more recently relative to other bacteriophages. PMID:23840063

  15. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  16. Consequences of Symmetries on the Analysis and Construction of Turbulence Models

    NASA Astrophysics Data System (ADS)

    Razafindralandy, Dina; Hamdouni, Aziz

    2006-05-01

    Since they represent fundamental physical properties in turbulence (conservation laws, wall laws, Kolmogorov energy spectrum, ...), symmetries are used to analyse common turbulence models. A class of symmetry preserving turbulence models is proposed. This class is refined such that the models respect the second law of thermodynamics. Finally, an example of model belonging to the class is numerically tested.

  17. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  18. Analysis of Unsteady Simulations to Inform Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Vyas, Manan; Waindim, Mbu; Gaitonde, Datta

    2016-01-01

    In this work, budgets of the turbulent kinetic energy are presented for a two-dimensional shock wave boundary-layer interaction (SBLI). The work should be of interest to the SBLI research and turbulence modeling community.

  19. Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Ahn, B-K.; Graham, W. R.; Rizzi, S. A.

    2004-01-01

    As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.

  20. One-equation near-wall turbulence modeling with the aid of direct simulation data

    NASA Technical Reports Server (NTRS)

    Rodi, W.; Mansour, N. N.

    1990-01-01

    The length scales appearing in the relations for the eddy viscosity and dissipation rate in one-equation models were evaluated from direct numerical simulation data for developed channel and boundary-layer flow at two Reynolds numbers each. To prepare the ground for the evaluation, the distribution of the most relevant mean-flow and turbulence quantities is presented and discussed with respect to Reynolds-number influence and to differences between channel and boundary-layer flow. An alternative model is also examined in which bar-(v'(exp 2))(exp 1/2) is used as velocity scale instead of k(exp 1/2). With this velocity scale, the length scales now appearing in the model follow very closely a linear relationship near the wall so that no damping is necessary. For the determination of bar-v'(exp 2) in the context of a one-equation model, a correlation is provided between bar-(v'(exp 2))/k and bar-(u'v')/k.

  1. The production of premixed flame surface area in turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Trouve, A.

    1993-01-01

    In the present work, we use three-dimensional Direct Numerical Simulation (DNS) of premixed flames in turbulent shear flow to characterize the effect of a mean shear motion on flame surface production. The shear is uniform in the unburnt gas, and simulations are performed for different values of the mean shear rate, S. The data base is then used to estimate and compare the different terms appearing in the Sigma-equation as a function of S. The analysis gives in particular the relative weights f the turbulent flow and mean flow components, a(sub T) and A(sub T), of the flame surface production term. This comparison indicates whether the dominant effects of a mean flow velocity gradient on flame surface area are implicit and scale with the modified turbulent flow parameters, kappa and epsilon, or explicit and scale directly with the rate of deformation.

  2. Short wavelength turbulence generated by shear in the quiescent H-mode edge on DIII–D [Short wavelength turbulence generated by shear in the QH-mode edge on DIII-D

    DOE PAGES

    Rost, Jon C.; Porkolab, Miklos; Dorris, James R.; ...

    2014-06-17

    A region of turbulence with large radial wavenumber (k rρ s > 1) is found in the high-shear portion of the plasma edge in Quiescent H-mode (QH-mode) on DIII{D using the Phase Contrast Imaging (PCI) diagnostic. At its peak outside the minimum of the E r well, the turbulence exhibits large amplitudemore » $$\\tilde{n}$$/n ~ 40%, with large radial wavenumber |$$\\bar{k}$$ r/ $$\\bar{k}$$ θ| ~ 11 and short radial correlation length L r/ρ i ~ 0.2. The turbulence inside the E r well minimum is characterized by the opposite sign in radial wavenumber from that of turbulence outside the minimum, consistent with the expected effects of velocity shear. The PCI diagnostic provides a line-integrated measurement of density uctuations, so data is taken during a scan of plasma position at constant parameters to allow the PCI to sample a range in k r/k θ . Analysis of the Doppler Shift and plasma geometry allows the turbulence to be localized to a narrow region 3 mm inside the last closed flux surface (LCFS), outside the minimum of the E r well. The turbulence amplitude and radial wavenumber and correlation length are determined by fitting the PCI results with a simple non-isotropic turbulence model with two regions of turbulence. Finally, these PCI observations, made in QH-mode, are qualitatively similar to those made in standard ELM-free H-mode and between edge localized modes (ELMs), suggesting a similar role for large k r turbulence there.« less

  3. Recent Developments on the Turbulence Modeling Resource Website (Invited)

    NASA Technical Reports Server (NTRS)

    Rumssey, Christopher L.

    2015-01-01

    The NASA Langley Turbulence Model Resource (TMR) website has been active for over five years. Its main goal of providing a one-stop, easily accessible internet site for up-to-date information on Reynolds-averaged Navier-Stokes turbulence models remains unchanged. In particular, the site strives to provide an easy way for users to verify their own implementations of widely-used turbulence models, and to compare the results from different models for a variety of simple unit problems covering a range of flow physics. Some new features have been recently added to the website. This paper documents the site's features, including recent developments, future plans, and open questions.

  4. A second-order modelling of a stably stratified sheared turbulence submitted to a non-vertical shear

    NASA Astrophysics Data System (ADS)

    Bouzaiane, Mounir; Ben Abdallah, Hichem; Lili, Taieb

    2004-09-01

    In this work, the evolution of homogeneous stably stratified turbulence submitted to a non-vertical shear is studied using second-order closure models. Two cases of turbulent flows are considered. Firstly, the case of a purely horizontal shear is considered. In this case, the evolution of the turbulence is studied according to the Richardson number Ri which is varied from 0.2 to 2.0 when other parameters are kept constant. In the second case, two components of shear are present. The turbulence is submitted to a vertical component Sv = partU1/partx3 = S cos(thgr) and a horizontal component Sh = partU1/partx2 = S sin(thgr). In this case, we study the influence of shear inclination angle thgr on the evolution of turbulence. In both cases, we are referred respectively to the recent direct numerical simulations of Jacobitz (2002 J. Turbulence 3 055) and Jacobitz and Sarkar (1998 Phys. Fluids 10 1158-68) which are, to our knowledge, the most recent results of the above-mentioned flows. Transport equations of second-order moments \\overline{u_{i} u_{j}} , \\overline{u_{i} \\rho } , \\overline{\\rho^{2}} are derived. The Shih-Lumley (SL) (Shih T H 1996 Turbulence Transition and Modeling ed H D S Henningson, A V Johansson and P H Alfredsson (Dordrecht: Kluwer); Shih and Lumley J L 1989 27th Aerospace Meeting 9-12 January, Center of Turbulent Research, Nevada) and the Craft-Launder (CL) (Craft T J and Launder B E 1989 Turbulent Shear Flow Stanford University, USA, pp 12-1-12-6 Launder B E 1996 Turbulence Transition and Modeling ed H D S Henningson, A V Johansson and P H Alfredsson (Dordrecht: Kluwer)) second-order models are retained for the pressure-strain correlation phgrij and the pressure-scalar gradient correlation phgrirgr. The corresponding models are also retained for the dissipation egr of the turbulent kinetic energy and an algebraic model is retained for the dissipation egrrgrrgr of the variance of the scalar. A fourth-order Runge-Kutta method is used for the

  5. A gyrofluid description of Alfvenic turbulence and its parallel electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, N. H.; Kontar, E. P.

    2010-06-15

    Anisotropic Alfvenic fluctuations with k{sub ||}/k{sub perpendicular}<<1 remain at frequencies much smaller than the ion cyclotron frequency in the presence of a strong background magnetic field. Based on the simplest truncation of the electromagnetic gyrofluid equations in a homogeneous plasma, a model for the energy cascade produced by Alfvenic turbulence is constructed, which smoothly connects the large magnetohydrodynamics scales and the small 'kinetic' scales. Scaling relations are obtained for the electromagnetic fluctuations, as a function of k{sub perpendicular} and k{sub ||}. Moreover, a particular attention is paid to the spectral structure of the parallel electric field which is produced bymore » Alfvenic turbulence. The reason is the potential implication of this parallel electric field in turbulent acceleration and transport of particles. For electromagnetic turbulence, this issue was raised some time ago in Hasegawa and Mima [J. Geophys. Res. 83, 1117 (1978)].« less

  6. Investigation of detailed kinetic scheme performance on modelling of turbulent non-premixed sooting flames

    NASA Astrophysics Data System (ADS)

    Yunardi, Y.; Darmadi, D.; Hisbullah, H.; Fairweather, M.

    2011-12-01

    This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model representing soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a standard kturbulence model. A number of five reaction kinetic mechanisms having 50-100 species and 200-1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels.

  7. The significance of turbulent flow representation in single-continuum models

    USGS Publications Warehouse

    Reimann, T.; Rehrl, C.; Shoemaker, W.B.; Geyer, T.; Birk, S.

    2011-01-01

    Karst aquifers exhibit highly conductive features caused from rock dissolution processes. Flow within these structures can become turbulent and therefore can be expressed by nonlinear gradient functions. One way to account for these effects is by coupling a continuum model with a conduit network. Alternatively, turbulent flow can be considered by adapting the hydraulic conductivity within the continuum model. Consequently, the significance of turbulent flow on the dynamic behavior of karst springs is investigated by an enhanced single-continuum model that results in conduit-type flow in continuum cells (CTFC). The single-continuum approach CTFC represents laminar and turbulent flow as well as more complex hybrid models that require additional programming and numerical efforts. A parameter study is conducted to investigate the effects of turbulent flow on the response of karst springs to recharge events using the new CTFC approach, existing hybrid models, and MODFLOW-2005. Results reflect the importance of representing (1) turbulent flow in karst conduits and (2) the exchange between conduits and continuum cells. More specifically, laminar models overestimate maximum spring discharge and underestimate hydraulic gradients within the conduit. It follows that aquifer properties inferred from spring hydrographs are potentially impaired by ignoring flow effects due to turbulence. The exchange factor used for hybrid models is necessary to account for the scale dependency between hydraulic properties of the matrix continuum and conduits. This functionality, which is not included in CTFC, can be mimicked by appropriate use of the Horizontal Flow Barrier package for MODFLOW. Copyright 2011 by the American Geophysical Union.

  8. Potential capabilities of Reynolds stress turbulence model in the COMMIX-RSM code

    NASA Technical Reports Server (NTRS)

    Chang, F. C.; Bottoni, M.

    1994-01-01

    A Reynolds stress turbulence model has been implemented in the COMMIX code, together with transport equations describing turbulent heat fluxes, variance of temperature fluctuations, and dissipation of turbulence kinetic energy. The model has been verified partially by simulating homogeneous turbulent shear flow, and stable and unstable stratified shear flows with strong buoyancy-suppressing or enhancing turbulence. This article outlines the model, explains the verifications performed thus far, and discusses potential applications of the COMMIX-RSM code in several domains, including, but not limited to, analysis of thermal striping in engineering systems, simulation of turbulence in combustors, and predictions of bubbly and particulate flows.

  9. Report on PDF Models for Turbulence Chemistry Interaction

    DTIC Science & Technology

    2014-03-01

    significantly within the flowfield (like rocket plumes or scramjet combustors). For multi-species flows turbulence can increase the apparent mass...Variable Turbulent Schmidt-Number Formulation for Scramjet Applications, AIAA Journal, 44(3), 593–599. [12] Xiao, X., Hassan, H.A., and Baurle, R.A...2006), Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers. AIAA Paper 2006-128. [13] Xiao, X., Hassan, H.A., and Baurle, R.A

  10. Fan noise caused by the ingestion of anisotropic turbulence - A model based on axisymmetric turbulence theory

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Gliebe, P. R.

    1980-01-01

    An analytical model of fan noise caused by inflow turbulence, a generalization of earlier work by Mani, is presented. Axisymmetric turbulence theory is used to develop a statistical representation of the inflow turbulence valid for a wide range of turbulence properties. Both the dipole source due to rotor blade unsteady forces and the quadrupole source resulting from the interaction of the turbulence with the rotor potential field are considered. The effects of variations in turbulence properties and fan operating conditions are evaluated. For turbulence axial integral length scales much larger than the blade spacing, the spectrum is shown to consist of sharp peaks at the blade passing frequency and its harmonics, with negligible broadband content. The analysis can then be simplified considerably and the total sound power contained within each spectrum peak becomes independent of axial length scale, while the width of the peak is inversely proportional to this parameter. Large axial length scales are characteristic of static fan test facilities, where the transverse contraction of the inlet flow produces highly anisotropic turbulence. In this situation, the rotor/turbulence interaction noise is mainly caused by the transverse component of turbulent velocity.

  11. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    NASA Astrophysics Data System (ADS)

    Reffray, G.; Bourdalle-Badie, R.; Calone, C.

    2014-08-01

    Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k + l from Blanke and Delecluse, 1993 and two equation models: Generic Lengh Scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a one-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.

  12. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    NASA Astrophysics Data System (ADS)

    Reffray, G.; Bourdalle-Badie, R.; Calone, C.

    2015-01-01

    Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.

  13. Effect of Turbulence Modeling on Hovering Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Chaderjian, Neal M.; Pulliam, Thomas H.; Holst, Terry L.

    2015-01-01

    The effect of turbulence models in the off-body grids on the accuracy of solutions for rotor flows in hover has been investigated. Results from the Reynolds-Averaged Navier-Stokes and Laminar Off-Body models are compared. Advection of turbulent eddy viscosity has been studied to find the mechanism leading to inaccurate solutions. A coaxial rotor result is also included.

  14. An Evaluation of Parameters Influencing Jet Mixing Using the WIND Navier-stokes Code

    NASA Technical Reports Server (NTRS)

    Dembowski, Mary Ann; Georgiadis, Nicholas J.

    2002-01-01

    The WIND code, a Reynolds-averaged Navier-Stokes solver used for a variety of aerospace flow simulations, was investigated for a Mach 2 nozzle at a series of nozzle stagnation temperatures. Comparisons of WIND calculations are made to experimental measurements of axial velocity, Mach number, and stagnation temperature along the jet centerline. The primary objective was to investigate the capabilities of the two-equation turbulence models available in WIND, version 4.0, for the analysis of heated supersonic nozzle flows. The models examined were the Menter Shear Stress Transport (SST) model and the Chien k-epsilon model, with and without the compressibility correction due to Sarkar. It was observed that all of the turbulence models investigated produced solutions that did not agree well with the experimental measurements. The effects of freestream Mach number and turbulent Prandtl number specifications were also investigated.

  15. An assessment and application of turbulence models for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Coakley, T. J.; Viegas, J. R.; Huang, P. G.; Rubesin, M. W.

    1990-01-01

    The current approach to the Accurate Computation of Complex high-speed flows is to solve the Reynolds averaged Navier-Stokes equations using finite difference methods. An integral part of this approach consists of development and applications of mathematical turbulence models which are necessary in predicting the aerothermodynamic loads on the vehicle and the performance of the propulsion plant. Computations of several high speed turbulent flows using various turbulence models are described and the models are evaluated by comparing computations with the results of experimental measurements. The cases investigated include flows over insulated and cooled flat plates with Mach numbers ranging from 2 to 8 and wall temperature ratios ranging from 0.2 to 1.0. The turbulence models investigated include zero-equation, two-equation, and Reynolds-stress transport models.

  16. On explicit algebraic stress models for complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Speziale, C. G.

    1992-01-01

    Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

  17. Progress in modeling hypersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Zeman, Otto

    1993-01-01

    A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements.

  18. One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models

    USGS Publications Warehouse

    Puleo, J.A.; Mouraenko, O.; Hanes, D.M.

    2004-01-01

    Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.

  19. Modifiying shallow-water equations as a model for wave-vortex turbulence

    NASA Astrophysics Data System (ADS)

    Mohanan, A. V.; Augier, P.; Lindborg, E.

    2017-12-01

    The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic

  20. Tracer Gas Transport under Mixed Convection Conditions in anExperimental Atrium: Comparison Between Experiments and CFDPredictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, Buvaneswari; Finlayson, Elizabeth U.; Sohn, MichaelD.

    We compare computational fluid dynamics (CFD) predictions using a steady-state Reynolds Averaged Navier-Stokes (RANS) model with experimental data on airflow and pollutant dispersion under mixed-convection conditions in a 7 x 9 x 11m high experimental facility. The Rayleigh number, based on height, was O(10{sup 11}) and the atrium was mechanically ventilated. We released tracer gas in the atrium and measured the spatial distribution of concentrations; we then modeled the experiment using four different levels of modeling detail. The four computational models differ in the choice of temperature boundary conditions and the choice of turbulence model. Predictions from a low-Reynolds-number k-{var_epsilon}more » model with detailed boundary conditions agreed well with the data using three different model-measurement comparison metrics. Results from the same model with a single temperature prescribed for each wall also agreed well with the data. Predictions of a standard k-{var_epsilon} model were about the same as those of an isothermal model; neither performed well. Implications of the results for practical applications are discussed.« less

  1. One-dimensional Turbulence Models of Type I X-ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Chen

    Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection.more » Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.« less

  2. The Dependence of Heat and Gas Transfer Velocities on Wind-Generated and Mechanically Generated Aqueous-Phase Turbulence

    NASA Astrophysics Data System (ADS)

    Liang, H.; Mukto, M.; Loewen, M.; Zappa, C.; Litchendorf, T.; Asher, W.; Jessup, A.

    2006-12-01

    The air-sea flux, F, of a sparingly soluble nonreactive gas can be expressed as F = kG( CS-CW), where kG is the gas transfer velocity, CS is the concentration of gas that would be expected in the water if the system were in Henry`s Gas Law equilibrium, and CW is the actual concentration of the gas in the water. An analogous relationship for the net heat flux can also be written using the heat transfer velocity, kH, and the bulk-skin temperature difference in the aqueous phase. Hydrodynamical models of gas and heat exchange based on surface renewal theory predict that kG and kH will scale as the square root of the inverse of a timescale of the turbulence. Furthermore, if surface renewal provides an accurate conceptual model for both transfer processes, then both kG and kH should behave identically as turbulence conditions change. Here we report on recent laboratory experiments in which we measured turbulence, heat fluxes, kG, and kH in a 0.5 m by 0.5 m by 1 m deep tank in the presence of turbulence generated mechanically using a random synthetic jet array. The turbulence tank was embedded in a small wind tunnel so that kG and kH could be studied as a function of the mechanically generated turbulence but also turbulence generated by wind stress. Net heat transfer velocities were measured using Active Controlled Flux Technique and estimated from measurements of the latent and sensible heat fluxes combined with direct measurements of the bulk-skin temperature difference. Gas transfer velocities were determined by measuring the evasion rates of sulfur hexafluoride and helium. The length and velocity scales of the aqueous-phase turbulence were measured using a Digital Particle-Image Velocimetry system. These combined data sets are used to study how kG and kH depend on system turbulence, whether this dependence is consonant with that predicted using surface renewal, and whether there is a quantitative difference between mechanically generated turbulence and turbulence

  3. Modeling of Fine-Particle Formation in Turbulent Flames

    NASA Astrophysics Data System (ADS)

    Raman, Venkat; Fox, Rodney O.

    2016-01-01

    The generation of nanostructured particles in high-temperature flames is important both for the control of emissions from combustion devices and for the synthesis of high-value chemicals for a variety of applications. The physiochemical processes that lead to the production of fine particles in turbulent flames are highly sensitive to the flow physics and, in particular, the history of thermochemical compositions and turbulent features they encounter. Consequently, it is possible to change the characteristic size, structure, composition, and yield of the fine particles by altering the flow configuration. This review describes the complex multiscale interactions among turbulent fluid flow, gas-phase chemical reactions, and solid-phase particle evolution. The focus is on modeling the generation of soot particles, an unwanted pollutant from automobile and aircraft engines, as well as metal oxides, a class of high-value chemicals sought for specialized applications, including emissions control. Issues arising due to the numerical methods used to approximate the particle number density function, the modeling of turbulence-chemistry interactions, and model validation are also discussed.

  4. Transition Heat Transfer Modeling Based on the Characteristics of Turbulent Spots

    NASA Technical Reports Server (NTRS)

    Simon, Fred; Boyle, Robert

    1998-01-01

    While turbulence models are being developed which show promise for simulating the transition region on a turbine blade or vane, it is believed that the best approach with the greatest potential for practical use is the use of models which incorporate the physics of turbulent spots present in the transition region. This type of modeling results in the prediction of transition region intermittency which when incorporated in turbulence models give a good to excellent prediction of the transition region heat transfer. Some models are presented which show how turbulent spot characteristics and behavior can be employed to predict the effect of pressure gradient and Mach number on the transition region. The models predict the spot formation rate which is needed, in addition to the transition onset location, in the Narasimha concentrated breakdown intermittency equation. A simplified approach is taken for modeling turbulent spot growth and interaction in the transition region which utilizes the turbulent spot variables governing transition length and spot generation rate. The models are expressed in terms of spot spreading angle, dimensionless spot velocity, dimensionless spot area, disturbance frequency and Mach number. The models are used in conjunction with a computer code to predict the effects of pressure gradient and Mach number on the transition region and compared with VKI experimental turbine data.

  5. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.

    PubMed

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-13

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  6. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence

    PubMed Central

    2017-01-01

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167576

  7. Turbulence Model Comparisons for a High-Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Wahls, Richard A.

    1999-01-01

    Four turbulence models are described and evaluated for transonic flows over the High-Speed Research/industry baseline configuration known as Reference H by using the thin-layer, upwind, Navier-Stokes solver known as CFL3D. The turbulence models studied are the equilibrium model of Baldwin-Lomax (B-L) with the Degani-Schiff (D-S) modifications, the one-equation Baldwin-Barth (B-B) model, the one-equation Spalart-Allmaras (S-A) model, and Menter's two-equation Shear Stress Transport (SST) model. The flow conditions, which correspond to tests performed in the National Transonic Facility (NTF) at Langley Research Center, are a Mach number of 0.90 and a Reynolds number of 30 x 10 (exp. 6) based on mean aerodynamic chord for angles of attack of 1 deg., 5 deg., and 10 deg. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Computed forces and surface pressures compare reasonably well with the experimental data for all four turbulence models.

  8. Evaluation of Turbulence-Model Performance as Applied to Jet-Noise Prediction

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    1998-01-01

    The accurate prediction of jet noise is possible only if the jet flow field can be predicted accurately. Predictions for the mean velocity and turbulence quantities in the jet flowfield are typically the product of a Reynolds-averaged Navier-Stokes solver coupled with a turbulence model. To evaluate the effectiveness of solvers and turbulence models in predicting those quantities most important to jet noise prediction, two CFD codes and several turbulence models were applied to a jet configuration over a range of jet temperatures for which experimental data is available.

  9. Regularization method for large eddy simulations of shock-turbulence interactions

    NASA Astrophysics Data System (ADS)

    Braun, N. O.; Pullin, D. I.; Meiron, D. I.

    2018-05-01

    The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k - 5 / 3, and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.

  10. Distinct families of cis-acting RNA replication elements epsilon from hepatitis B viruses

    PubMed Central

    Chen, Augustine; Brown, Chris

    2012-01-01

    The hepadnavirus encapsidation signal, epsilon (ε), is an RNA structure located at the 5′ end of the viral pregenomic RNA. It is essential for viral replication and functions in polymerase protein binding and priming. This structure could also have potential regulatory roles in controlling the expression of viral replicative proteins. In addition to its structure, the primary sequence of this RNA element has crucial functional roles in the viral lifecycle. Although the ε elements in hepadnaviruses share common critical functions, there are some significant differences in mammalian and avian hepadnaviruses, which include both sequence and structural variations.   Here we present several covariance models for ε elements from the Hepadnaviridae. The model building included experimentally determined data from previous studies using chemical probing and NMR analysis. These models have sufficient similarity to comprise a clan. The clan has in common a highly conserved overall structure consisting of a lower-stem, bulge, upper-stem and apical-loop. The models differ in functionally critical regions—notably the two types of avian ε elements have a tetra-loop (UGUU) including a non-canonical UU base pair, while the hepatitis B virus (HBV) epsilon has a tri-loop (UGU). The avian epsilon elements have a less stable dynamic structure in the upper stem. Comparisons between these models and all other Rfam models, and searches of genomes, showed these structures are specific to the Hepadnaviridae. Two family models and the clan are available from the Rfam database. PMID:22418844

  11. Implementation of Dryden Continuous Turbulence Model into Simulink for LSA-02 Flight Test Simulation

    NASA Astrophysics Data System (ADS)

    Ichwanul Hakim, Teuku Mohd; Arifianto, Ony

    2018-04-01

    Turbulence is a movement of air on small scale in the atmosphere that caused by instabilities of pressure and temperature distribution. Turbulence model is integrated into flight mechanical model as an atmospheric disturbance. Common turbulence model used in flight mechanical model are Dryden and Von Karman model. In this minor research, only Dryden continuous turbulence model were made. Dryden continuous turbulence model has been implemented, it refers to the military specification MIL-HDBK-1797. The model was implemented into Matlab Simulink. The model will be integrated with flight mechanical model to observe response of the aircraft when it is flight through turbulence field. The turbulence model is characterized by multiplying the filter which are generated from power spectral density with band-limited Gaussian white noise input. In order to ensure that the model provide a good result, model verification has been done by comparing the implemented model with the similar model that is provided in aerospace blockset. The result shows that there are some difference for 2 linear velocities (vg and wg), and 3 angular rate (pg, qg and rg). The difference is instantly caused by different determination of turbulence scale length which is used in aerospace blockset. With the adjustment of turbulence length in the implemented model, both model result the similar output.

  12. Near-wall modeling of compressible turbulent flow

    NASA Technical Reports Server (NTRS)

    So, Ronald M. C.

    1991-01-01

    A near-wall two-equation model for compressible flows is proposed. The model is formulated by relaxing the assumption of dynamic field similarity between compressible and incompressible flows. A postulate is made to justify the extension of incompressible models to ammount for compressibility effects. This requires formulation the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilatational part, which is directly affected by these changes. A model with an explicit dependence on the turbulent Mach number is proposed for the dilatational dissipation rate.

  13. On the Connection Between One-and Two-Equation Models of Turbulence

    NASA Technical Reports Server (NTRS)

    Menter, F. R.; Rai, Man Mohan (Technical Monitor)

    1994-01-01

    A formalism will be presented that allows the transformation of two-equation eddy viscosity turbulence models into one-equation models. The transformation is based on an assumption that is widely accepted over a large range of boundary layer flows and that has been shown to actually improve predictions when incorporated into two-equation models of turbulence. Based on that assumption, a new one-equation turbulence model will be derived. The new model will be tested in great detail against a previously introduced one-equation model and against its parent two-equation model.

  14. Analysis of the characteristics of DC nozzle arcs in air and guidance for the search of SF6 replacement gas

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, Q.; Yan, J. D.; Zhong, J.; Fang, M. T. C.

    2016-11-01

    It is shown that the arc model based on laminar flow cannot predict satisfactorily the voltage of an air arc burning in a supersonic nozzle. The Prandtl mixing length model (PML) and a modified k-epsilon turbulence model (MKE) are used to introduce turbulence enhanced momentum and energy transport. Arc voltages predicted by these two turbulence models are in good agreement with experiments at the stagnation pressure (P 0) of 10 bar. The predicted arc voltages by MKE for P 0  =  13 bar and 7 bar are in better agreement with experiments than those predicted by PML. MKE is therefore a preferred turbulence model for an air nozzle arc. There are two peaks in ρC P of air at 4000 K and 7000 K due, respectively, to the dissociation of oxygen and that of nitrogen. These peaks produce corresponding peaks in turbulent thermal conductivity, which results in very broad radial temperature profile and a large arc radius. Thus, turbulence indirectly enhances axial enthalpy transport, which becomes the dominant energy transport process for the overall energy balance of the arc column at high currents. When the current reduces, turbulent thermal conduction gradually becomes dominant. The temperature dependence of ρC P has a decisive influence on the radial temperature profile of a turbulent arc, thus the thermal interruption capability of a gas. Comparison between ρC P for air and SF6 shows that ρC P for SF6 has peaks below 4000 K. This renders a distinctive arc core and a small arc radius for turbulent SF6, thus superior arc quenching capability. It is suggested, for the first time, that ρC P provides guidance for the search of a replacement switching gas for SF6.

  15. Application of Self-Similarity Constrained Reynolds-Averaged Turbulence Models to Rayleigh-Taylor and Richtmyer-Meshkov Unstable Turbulent Mixing

    NASA Astrophysics Data System (ADS)

    Hartland, Tucker A.; Schilling, Oleg

    2016-11-01

    Analytical self-similar solutions corresponding to Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instability are combined with observed values of the growth parameters in these instabilities to derive coefficient sets for K- ɛ and K- L- a Reynolds-averaged turbulence models. It is shown that full numerical solutions of the model equations give mixing layer widths, fields, and budgets in good agreement with the corresponding self-similar quantities for small Atwood number. Both models are then applied to Rayleigh-Taylor instability with increasing density contrasts to estimate the Atwood number above which the self-similar solutions become invalid. The models are also applied to a reshocked Richtmyer-Meshkov instability, and the predictions are compared with data. The expressions for the growth parameters obtained from the similarity analysis are used to develop estimates for the sensitivity of their values to changes in important model coefficients. Numerical simulations using these modified coefficient values are then performed to provide bounds on the model predictions associated with uncertainties in these coefficient values. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the 2016 LLNL High-Energy-Density Physics Summer Student Program.

  16. Multifractal Modeling of Turbulent Mixing

    NASA Astrophysics Data System (ADS)

    Samiee, Mehdi; Zayernouri, Mohsen; Meerschaert, Mark M.

    2017-11-01

    Stochastic processes in random media are emerging as interesting tools for modeling anomalous transport phenomena. Applications include intermittent passive scalar transport with background noise in turbulent flows, which are observed in atmospheric boundary layers, turbulent mixing in reactive flows, and long-range dependent flow fields in disordered/fractal environments. In this work, we propose a nonlocal scalar transport equation involving the fractional Laplacian, where the corresponding fractional index is linked to the multifractal structure of the nonlinear passive scalar power spectrum. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).

  17. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of themore » observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.« less

  18. A dynamical model of plasma turbulence in the solar wind

    PubMed Central

    Howes, G. G.

    2015-01-01

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075

  19. Stochastic modeling of turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Fox, R. O.; Hill, J. C.; Gao, F.; Moser, R. D.; Rogers, M. M.

    1992-01-01

    Direct numerical simulations of a single-step irreversible chemical reaction with non-premixed reactants in forced isotropic turbulence at R(sub lambda) = 63, Da = 4.0, and Sc = 0.7 were made using 128 Fourier modes to obtain joint probability density functions (pdfs) and other statistical information to parameterize and test a Fokker-Planck turbulent mixing model. Preliminary results indicate that the modeled gradient stretching term for an inert scalar is independent of the initial conditions of the scalar field. The conditional pdf of scalar gradient magnitudes is found to be a function of the scalar until the reaction is largely completed. Alignment of concentration gradients with local strain rate and other features of the flow were also investigated.

  20. Development of Turbulence Models for Shear Flows by a Double Expansion technique.

    DTIC Science & Technology

    1991-07-01

    Let us introduce the dimensionless variables 7 = -; I -_o E ~ Ko where S = (2Sij Sij)112 and K0 is the initial turbulent kinetic energy. In...simulation of Bardina eta 1 4 for co/ SKo = 0.296 Figure 2 19 IlI H- L -1 y x Turbulent flow over a backward facing step Figure 3 20 BACKWARD-FACING STEP