The global Minmax k-means algorithm.
Wang, Xiaoyan; Bai, Yanping
2016-01-01
The global k -means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k -means to minimize the sum of the intra-cluster variances. However the global k -means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k -means algorithm. In this paper, we modified the global k -means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k -means clustering error method to global k -means algorithm to overcome the effect of bad initialization, proposed the global Minmax k -means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k -means algorithm, the global k -means algorithm and the MinMax k -means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.
Reducing the time requirement of k-means algorithm.
Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou
2012-01-01
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space R(d) and an integer k. The problem is to determine a set of k points in R(d), called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARI(HA)). We found that when k is close to d, the quality is good (ARI(HA)>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARI(HA)>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data.
Reducing the Time Requirement of k-Means Algorithm
Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou
2012-01-01
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space Rd and an integer k. The problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARIHA). We found that when k is close to d, the quality is good (ARIHA>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARIHA>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data. PMID:23239974
Application of hybrid clustering using parallel k-means algorithm and DIANA algorithm
NASA Astrophysics Data System (ADS)
Umam, Khoirul; Bustamam, Alhadi; Lestari, Dian
2017-03-01
DNA is one of the carrier of genetic information of living organisms. Encoding, sequencing, and clustering DNA sequences has become the key jobs and routine in the world of molecular biology, in particular on bioinformatics application. There are two type of clustering, hierarchical clustering and partitioning clustering. In this paper, we combined two type clustering i.e. K-Means (partitioning clustering) and DIANA (hierarchical clustering), therefore it called Hybrid clustering. Application of hybrid clustering using Parallel K-Means algorithm and DIANA algorithm used to clustering DNA sequences of Human Papillomavirus (HPV). The clustering process is started with Collecting DNA sequences of HPV are obtained from NCBI (National Centre for Biotechnology Information), then performing characteristics extraction of DNA sequences. The characteristics extraction result is store in a matrix form, then normalize this matrix using Min-Max normalization and calculate genetic distance using Euclidian Distance. Furthermore, the hybrid clustering is applied by using implementation of Parallel K-Means algorithm and DIANA algorithm. The aim of using Hybrid Clustering is to obtain better clusters result. For validating the resulted clusters, to get optimum number of clusters, we use Davies-Bouldin Index (DBI). In this study, the result of implementation of Parallel K-Means clustering is data clustered become 5 clusters with minimal IDB value is 0.8741, and Hybrid Clustering clustered data become 13 sub-clusters with minimal IDB values = 0.8216, 0.6845, 0.3331, 0.1994 and 0.3952. The IDB value of hybrid clustering less than IBD value of Parallel K-Means clustering only that perform at 1ts stage. Its means clustering using Hybrid Clustering have the better result to clustered DNA sequence of HPV than perform parallel K-Means Clustering only.
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm
Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong
2016-01-01
In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.
Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong
2016-01-01
In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.
Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.
Wang, Haizhou; Song, Mingzhou
2011-12-01
The heuristic k -means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp . We demonstrate its advantage in optimality and runtime over the standard iterative k -means algorithm.
Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means
NASA Astrophysics Data System (ADS)
Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.
2018-04-01
This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.
Canonical PSO Based K-Means Clustering Approach for Real Datasets.
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
"Clustering" the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms.
Canonical PSO Based K-Means Clustering Approach for Real Datasets
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
“Clustering” the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms. PMID:27355083
Android Malware Classification Using K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A parallelization of the k-means++ seed selection algorithm on three distinct hardware platforms: GPU, multicore CPU, and multithreaded architecture. K-means++ was developed by David Arthur and Sergei Vassilvitskii in 2007 as an extension of the k-means data clustering technique. These algorithms allow people to cluster multidimensional data, by attempting to minimize the mean distance of data points within a cluster. K-means++ improved upon traditional k-means by using a more intelligent approach to selecting the initial seeds for the clustering process. While k-means++ has become a popular alternative to traditional k-means clustering, little work has been done to parallelize this technique.more » We have developed original C++ code for parallelizing the algorithm on three unique hardware architectures: GPU using NVidia's CUDA/Thrust framework, multicore CPU using OpenMP, and the Cray XMT multithreaded architecture. By parallelizing the process for these platforms, we are able to perform k-means++ clustering much more quickly than it could be done before.« less
Identify High-Quality Protein Structural Models by Enhanced K-Means.
Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang
2017-01-01
Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.
Identify High-Quality Protein Structural Models by Enhanced K-Means
Li, Haiou; Chen, Cheng; Lv, Qiang; Wu, Chuang
2017-01-01
Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K-means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K-means clustering (SK-means), whereas the other employs squared distance to optimize the initial centroids (K-means++). Our results showed that SK-means and K-means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K-means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK-means and K-means++ demonstrated substantial improvements relative to results from SPICKER and classical K-means. PMID:28421198
A Modified MinMax k-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
NASA Astrophysics Data System (ADS)
Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna
2017-12-01
The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.
Implementation of spectral clustering on microarray data of carcinoma using k-means algorithm
NASA Astrophysics Data System (ADS)
Frisca, Bustamam, Alhadi; Siswantining, Titin
2017-03-01
Clustering is one of data analysis methods that aims to classify data which have similar characteristics in the same group. Spectral clustering is one of the most popular modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c-means, and k-means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k-means algorithm provide better accuracy than PAM algorithm. So in this paper we use k-means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset. Microarray data is a small-sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The purpose of this research is to classify the data that have high similarity in the same group and the data that have low similarity in the others. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k-means algorithm is two clusters.
Zhang, Junfeng; Chen, Wei; Gao, Mingyi; Shen, Gangxiang
2017-10-30
In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.
Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.
Deb, Suash; Yang, Xin-She
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
A novel harmony search-K means hybrid algorithm for clustering gene expression data
Nazeer, KA Abdul; Sebastian, MP; Kumar, SD Madhu
2013-01-01
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms. PMID:23390351
A novel harmony search-K means hybrid algorithm for clustering gene expression data.
Nazeer, Ka Abdul; Sebastian, Mp; Kumar, Sd Madhu
2013-01-01
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.
A Modified MinMax k-Means Algorithm Based on PSO
2016-01-01
The MinMax k-means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k-means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k-means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k-means algorithm and the original MinMax k-means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically. PMID:27656201
A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering
ERIC Educational Resources Information Center
Chahine, Firas Safwan
2012-01-01
Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…
Long-term surface EMG monitoring using K-means clustering and compressive sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza; Krishnan, Sridhar
2015-05-01
In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.
Research on retailer data clustering algorithm based on Spark
NASA Astrophysics Data System (ADS)
Huang, Qiuman; Zhou, Feng
2017-03-01
Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.
Chen, Zhaoxue; Yu, Haizhong; Chen, Hao
2013-12-01
To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.
A Comparative Evaluation of Anomaly Detection Algorithms for Maritime Video Surveillance
2011-01-01
of k-means clustering and the k- NN Localized p-value Estimator ( KNN -LPE). K-means is a popular distance-based clustering algorithm while KNN -LPE...implemented the sparse cluster identification rule we described in Section 3.1. 2. k-NN Localized p-value Estimator ( KNN -LPE): We implemented this using...Average Density ( KNN -NAD): This was implemented as described in Section 3.4. Algorithm Parameter Settings The global and local density-based anomaly
A hybrid monkey search algorithm for clustering analysis.
Chen, Xin; Zhou, Yongquan; Luo, Qifang
2014-01-01
Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis.
Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.
Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang
2015-01-01
Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.
Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network
NASA Astrophysics Data System (ADS)
Wang, Zhen-yu; Zhang, Li-jie
2017-10-01
Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s
Automatic detection of erythemato-squamous diseases using k-means clustering.
Ubeyli, Elif Derya; Doğdu, Erdoğan
2010-04-01
A new approach based on the implementation of k-means clustering is presented for automated detection of erythemato-squamous diseases. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. The studied domain contained records of patients with known diagnosis. The k-means clustering algorithm's task was to classify the data points, in this case the patients with attribute data, to one of the five clusters. The algorithm was used to detect the five erythemato-squamous diseases when 33 features defining five disease indications were used. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the k-means clustering algorithm's task achieved high classification accuracies for only five erythemato-squamous diseases.
An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.
Zou, Hui; Zou, Zhihong; Wang, Xiaojing
2015-11-12
The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.
Timmerman, Marieke E; Ceulemans, Eva; De Roover, Kim; Van Leeuwen, Karla
2013-12-01
To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning approaches. To evaluate subspace K-means, we performed a comparative simulation study, in which we manipulated the overlap of subspaces, the between-cluster variance, and the error variance. The study shows that the subspace K-means algorithm is sensitive to local minima but that the problem can be reasonably dealt with by using partitions of various cluster procedures as a starting point for the algorithm. Subspace K-means performs very well in recovering the true clustering across all conditions considered and appears to be superior to its competitor methods: K-means, reduced K-means, factorial K-means, mixtures of factor analyzers (MFA), and MCLUST. The best competitor method, MFA, showed a performance similar to that of subspace K-means in easy conditions but deteriorated in more difficult ones. Using data from a study on parental behavior, we show that subspace K-means analysis provides a rich insight into the cluster characteristics, in terms of both the relative positions of the clusters (via the centroids) and the shape of the clusters (via the within-cluster residuals).
Elastic K-means using posterior probability.
Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris
2017-01-01
The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model.
Wang, Xueyi
2012-02-08
The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.
Srinivasan, A; Galbán, C J; Johnson, T D; Chenevert, T L; Ross, B D; Mukherji, S K
2010-04-01
Does the K-means algorithm do a better job of differentiating benign and malignant neck pathologies compared to only mean ADC? The objective of our study was to analyze the differences between ADC partitions to evaluate whether the K-means technique can be of additional benefit to whole-lesion mean ADC alone in distinguishing benign and malignant neck pathologies. MR imaging studies of 10 benign and 10 malignant proved neck pathologies were postprocessed on a PC by using in-house software developed in Matlab. Two neuroradiologists manually contoured the lesions, with the ADC values within each lesion clustered into 2 (low, ADC-ADC(L); high, ADC-ADC(H)) and 3 partitions (ADC(L); intermediate, ADC-ADC(I); ADC(H)) by using the K-means clustering algorithm. An unpaired 2-tailed Student t test was performed for all metrics to determine statistical differences in the means of the benign and malignant pathologies. A statistically significant difference between the mean ADC(L) clusters in benign and malignant pathologies was seen in the 3-cluster models of both readers (P = .03 and .022, respectively) and the 2-cluster model of reader 2 (P = .04), with the other metrics (ADC(H), ADC(I); whole-lesion mean ADC) not revealing any significant differences. ROC curves demonstrated the quantitative differences in mean ADC(H) and ADC(L) in both the 2- and 3-cluster models to be predictive of malignancy (2 clusters: P = .008, area under curve = 0.850; 3 clusters: P = .01, area under curve = 0.825). The K-means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared with whole-lesion mean ADC alone.
Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2013-01-01
The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.
An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China
Zou, Hui; Zou, Zhihong; Wang, Xiaojing
2015-01-01
The increase and the complexity of data caused by the uncertain environment is today’s reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006–2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality. PMID:26569283
Elastic K-means using posterior probability
Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris
2017-01-01
The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model. PMID:29240756
NASA Astrophysics Data System (ADS)
Sirait, Kamson; Tulus; Budhiarti Nababan, Erna
2017-12-01
Clustering methods that have high accuracy and time efficiency are necessary for the filtering process. One method that has been known and applied in clustering is K-Means Clustering. In its application, the determination of the begining value of the cluster center greatly affects the results of the K-Means algorithm. This research discusses the results of K-Means Clustering with starting centroid determination with a random and KD-Tree method. The initial determination of random centroid on the data set of 1000 student academic data to classify the potentially dropout has a sse value of 952972 for the quality variable and 232.48 for the GPA, whereas the initial centroid determination by KD-Tree has a sse value of 504302 for the quality variable and 214,37 for the GPA variable. The smaller sse values indicate that the result of K-Means Clustering with initial KD-Tree centroid selection have better accuracy than K-Means Clustering method with random initial centorid selection.
What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm.
Raykov, Yordan P; Boukouvalas, Alexis; Baig, Fahd; Little, Max A
The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism.
What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm
Baig, Fahd; Little, Max A.
2016-01-01
The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism. PMID:27669525
A Fast Implementation of the ISOCLUS Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2003-01-01
Unsupervised clustering is a fundamental tool in numerous image processing and remote sensing applications. For example, unsupervised clustering is often used to obtain vegetation maps of an area of interest. This approach is useful when reliable training data are either scarce or expensive, and when relatively little a priori information about the data is available. Unsupervised clustering methods play a significant role in the pursuit of unsupervised classification. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points (or samples) in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute a set of cluster centers in d-space. Although there is no specific optimization criterion, the algorithm is similar in spirit to the well known k-means clustering method in which the objective is to minimize the average squared distance of each point to its nearest center, called the average distortion. One significant feature of ISOCLUS over k-means is that clusters may be merged or split, and so the final number of clusters may be different from the number k supplied as part of the input. This algorithm will be described in later in this paper. The ISOCLUS algorithm can run very slowly, particularly on large data sets. Given its wide use in remote sensing, its efficient computation is an important goal. We have developed a fast implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm, the filtering algorithm, by Kanungo et al.. They showed that, by storing the data in a kd-tree, it was possible to significantly reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm. For technical reasons, which are explained later, it is necessary to make a minor modification to the ISOCLUS specification. We provide empirical evidence, on both synthetic and Landsat image data sets, that our algorithm's performance is essentially the same as that of ISOCLUS, but with significantly lower running times. We show that our algorithm runs from 3 to 30 times faster than a straightforward implementation of ISOCLUS. Our adaptation of the filtering algorithm involves the efficient computation of a number of cluster statistics that are needed for ISOCLUS, but not for k-means.
Nidheesh, N; Abdul Nazeer, K A; Ameer, P M
2017-12-01
Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.
A clustering method of Chinese medicine prescriptions based on modified firefly algorithm.
Yuan, Feng; Liu, Hong; Chen, Shou-Qiang; Xu, Liang
2016-12-01
This paper is aimed to study the clustering method for Chinese medicine (CM) medical cases. The traditional K-means clustering algorithm had shortcomings such as dependence of results on the selection of initial value, trapping in local optimum when processing prescriptions form CM medical cases. Therefore, a new clustering method based on the collaboration of firefly algorithm and simulated annealing algorithm was proposed. This algorithm dynamically determined the iteration of firefly algorithm and simulates sampling of annealing algorithm by fitness changes, and increased the diversity of swarm through expansion of the scope of the sudden jump, thereby effectively avoiding premature problem. The results from confirmatory experiments for CM medical cases suggested that, comparing with traditional K-means clustering algorithms, this method was greatly improved in the individual diversity and the obtained clustering results, the computing results from this method had a certain reference value for cluster analysis on CM prescriptions.
Weighted graph cuts without eigenvectors a multilevel approach.
Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian
2007-11-01
A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.
Mining the National Career Assessment Examination Result Using Clustering Algorithm
NASA Astrophysics Data System (ADS)
Pagudpud, M. V.; Palaoag, T. T.; Padirayon, L. M.
2018-03-01
Education is an essential process today which elicits authorities to discover and establish innovative strategies for educational improvement. This study applied data mining using clustering technique for knowledge extraction from the National Career Assessment Examination (NCAE) result in the Division of Quirino. The NCAE is an examination given to all grade 9 students in the Philippines to assess their aptitudes in the different domains. Clustering the students is helpful in identifying students’ learning considerations. With the use of the RapidMiner tool, clustering algorithms such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN), k-means, k-medoid, expectation maximization clustering, and support vector clustering algorithms were analyzed. The silhouette indexes of the said clustering algorithms were compared, and the result showed that the k-means algorithm with k = 3 and silhouette index equal to 0.196 is the most appropriate clustering algorithm to group the students. Three groups were formed having 477 students in the determined group (cluster 0), 310 proficient students (cluster 1) and 396 developing students (cluster 2). The data mining technique used in this study is essential in extracting useful information from the NCAE result to better understand the abilities of students which in turn is a good basis for adopting teaching strategies.
Clustering Binary Data in the Presence of Masking Variables
ERIC Educational Resources Information Center
Brusco, Michael J.
2004-01-01
A number of important applications require the clustering of binary data sets. Traditional nonhierarchical cluster analysis techniques, such as the popular K-means algorithm, can often be successfully applied to these data sets. However, the presence of masking variables in a data set can impede the ability of the K-means algorithm to recover the…
MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering
Kim, Eun-Youn; Kim, Seon-Young; Ashlock, Daniel; Nam, Dougu
2009-01-01
Background Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focus on clusters with compact shapes and do not reflect the geometric complexity of the high dimensional microarray clusters, which limits their performance. Results We present a cluster-number-based ensemble clustering algorithm, called MULTI-K, for microarray sample classification, which demonstrates remarkable accuracy. The method amalgamates multiple k-means runs by varying the number of clusters and identifies clusters that manifest the most robust co-memberships of elements. In addition to the original algorithm, we newly devised the entropy-plot to control the separation of singletons or small clusters. MULTI-K, unlike the simple k-means or other widely used methods, was able to capture clusters with complex and high-dimensional structures accurately. MULTI-K outperformed other methods including a recently developed ensemble clustering algorithm in tests with five simulated and eight real gene-expression data sets. Conclusion The geometric complexity of clusters should be taken into account for accurate classification of microarray data, and ensemble clustering applied to the number of clusters tackles the problem very well. The C++ code and the data sets tested are available from the authors. PMID:19698124
ERIC Educational Resources Information Center
Xu, Beijie; Recker, Mimi; Qi, Xiaojun; Flann, Nicholas; Ye, Lei
2013-01-01
This article examines clustering as an educational data mining method. In particular, two clustering algorithms, the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and multiple data…
NASA Astrophysics Data System (ADS)
Syakur, M. A.; Khotimah, B. K.; Rochman, E. M. S.; Satoto, B. D.
2018-04-01
Clustering is a data mining technique used to analyse data that has variations and the number of lots. Clustering was process of grouping data into a cluster, so they contained data that is as similar as possible and different from other cluster objects. SMEs Indonesia has a variety of customers, but SMEs do not have the mapping of these customers so they did not know which customers are loyal or otherwise. Customer mapping is a grouping of customer profiling to facilitate analysis and policy of SMEs in the production of goods, especially batik sales. Researchers will use a combination of K-Means method with elbow to improve efficient and effective k-means performance in processing large amounts of data. K-Means Clustering is a localized optimization method that is sensitive to the selection of the starting position from the midpoint of the cluster. So choosing the starting position from the midpoint of a bad cluster will result in K-Means Clustering algorithm resulting in high errors and poor cluster results. The K-means algorithm has problems in determining the best number of clusters. So Elbow looks for the best number of clusters on the K-means method. Based on the results obtained from the process in determining the best number of clusters with elbow method can produce the same number of clusters K on the amount of different data. The result of determining the best number of clusters with elbow method will be the default for characteristic process based on case study. Measurement of k-means value of k-means has resulted in the best clusters based on SSE values on 500 clusters of batik visitors. The result shows the cluster has a sharp decrease is at K = 3, so K as the cut-off point as the best cluster.
A Fast Implementation of the ISOCLUS Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2003-01-01
Unsupervised clustering is a fundamental building block in numerous image processing applications. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute the coordinates of a set of cluster centers in d-space, such that those centers minimize the mean squared distance from each data point to its nearest center. This clustering algorithm is similar to another well-known clustering method, called k-means. One significant feature of ISOCLUS over k-means is that the actual number of clusters reported might be fewer or more than the number supplied as part of the input. The algorithm uses different heuristics to determine whether to merge lor split clusters. As ISOCLUS can run very slowly, particularly on large data sets, there has been a growing .interest in the remote sensing community in computing it efficiently. We have developed a faster implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm of Kanungo, et al. They showed that, by using a kd-tree data structure for storing the data, it is possible to reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm, and we show that it is possible to achieve essentially the same results as ISOCLUS on large data sets, but with significantly lower running times. This adaptation involves computing a number of cluster statistics that are needed for ISOCLUS but not for k-means. Both the k-means and ISOCLUS algorithms are based on iterative schemes, in which nearest neighbors are calculated until some convergence criterion is satisfied. Each iteration requires that the nearest center for each data point be computed. Naively, this requires O(kn) time, where k denotes the current number of centers. Traditional techniques for accelerating nearest neighbor searching involve storing the k centers in a data structure. However, because of the iterative nature of the algorithm, this data structure would need to be rebuilt with each new iteration. Our approach is to store the data points in a kd-tree data structure. The assignment of points to nearest neighbors is carried out by a filtering process, which successively eliminates centers that can not possibly be the nearest neighbor for a given region of space. This algorithm is significantly faster, because large groups of data points can be assigned to their nearest center in a single operation. Preliminary results on a number of real Landsat datasets show that our revised ISOCLUS-like scheme runs about twice as fast.
A Parametric k-Means Algorithm
Tarpey, Thaddeus
2007-01-01
Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692
Srinivasan, A.; Galbán, C.J.; Johnson, T.D.; Chenevert, T.L.; Ross, B.D.; Mukherji, S.K.
2014-01-01
Purpose The objective of our study was to analyze the differences between apparent diffusion coefficient (ADC) partitions (created using the K-Means algorithm) between benign and malignant neck lesions and evaluate its benefit in distinguishing these entities. Material and methods MRI studies of 10 benign and 10 malignant proven neck pathologies were post-processed on a PC using in-house software developed in MATLAB (The MathWorks, Inc., Natick, MA). Lesions were manually contoured by two neuroradiologists with the ADC values within each lesion clustered into two (low ADC-ADCL, high ADC-ADCH) and three partitions (ADCL, intermediate ADC-ADCI, ADCH) using the K-Means clustering algorithm. An unpaired two-tailed Student’s t-test was performed for all metrics to determine statistical differences in the means between the benign and malignant pathologies. Results Statistically significant difference between the mean ADCL clusters in benign and malignant pathologies was seen in the 3 cluster models of both readers (p=0.03, 0.022 respectively) and the 2 cluster model of reader 2 (p=0.04) with the other metrics (ADCH, ADCI, whole lesion mean ADC) not revealing any significant differences. Receiver operating characteristics curves demonstrated the quantitative difference in mean ADCH and ADCL in both the 2 and 3 cluster models to be predictive of malignancy (2 clusters: p=0.008, area under curve=0.850, 3 clusters: p=0.01, area under curve=0.825). Conclusion The K-Means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared to whole lesion mean ADC alone. PMID:20007723
NASA Astrophysics Data System (ADS)
Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan
2017-12-01
Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.
Rajab, Maher I
2011-11-01
Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.
Yock, Adam D; Kim, Gwe-Ya
2017-09-01
To present the k-means clustering algorithm as a tool to address treatment planning considerations characteristic of stereotactic radiosurgery using a single isocenter for multiple targets. For 30 patients treated with stereotactic radiosurgery for multiple brain metastases, the geometric centroids and radii of each met were determined from the treatment planning system. In-house software used this as well as weighted and unweighted versions of the k-means clustering algorithm to group the targets to be treated with a single isocenter, and to position each isocenter. The algorithm results were evaluated using within-cluster sum of squares as well as a minimum target coverage metric that considered the effect of target size. Both versions of the algorithm were applied to an example patient to demonstrate the prospective determination of the appropriate number and location of isocenters. Both weighted and unweighted versions of the k-means algorithm were applied successfully to determine the number and position of isocenters. Comparing the two, both the within-cluster sum of squares metric and the minimum target coverage metric resulting from the unweighted version were less than those from the weighted version. The average magnitudes of the differences were small (-0.2 cm 2 and 0.1% for the within cluster sum of squares and minimum target coverage, respectively) but statistically significant (Wilcoxon signed-rank test, P < 0.01). The differences between the versions of the k-means clustering algorithm represented an advantage of the unweighted version for the within-cluster sum of squares metric, and an advantage of the weighted version for the minimum target coverage metric. While additional treatment planning considerations have a large influence on the final treatment plan quality, both versions of the k-means algorithm provide automatic, consistent, quantitative, and objective solutions to the tasks associated with SRS treatment planning using a single isocenter for multiple targets. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
An improved initialization center k-means clustering algorithm based on distance and density
NASA Astrophysics Data System (ADS)
Duan, Yanling; Liu, Qun; Xia, Shuyin
2018-04-01
Aiming at the problem of the random initial clustering center of k means algorithm that the clustering results are influenced by outlier data sample and are unstable in multiple clustering, a method of central point initialization method based on larger distance and higher density is proposed. The reciprocal of the weighted average of distance is used to represent the sample density, and the data sample with the larger distance and the higher density are selected as the initial clustering centers to optimize the clustering results. Then, a clustering evaluation method based on distance and density is designed to verify the feasibility of the algorithm and the practicality, the experimental results on UCI data sets show that the algorithm has a certain stability and practicality.
NASA Astrophysics Data System (ADS)
Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.
2014-06-01
The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test Γ coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.
Basic firefly algorithm for document clustering
NASA Astrophysics Data System (ADS)
Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza
2015-12-01
The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).
GDPC: Gravitation-based Density Peaks Clustering algorithm
NASA Astrophysics Data System (ADS)
Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin
2018-07-01
The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.
Convalescing Cluster Configuration Using a Superlative Framework
Sabitha, R.; Karthik, S.
2015-01-01
Competent data mining methods are vital to discover knowledge from databases which are built as a result of enormous growth of data. Various techniques of data mining are applied to obtain knowledge from these databases. Data clustering is one such descriptive data mining technique which guides in partitioning data objects into disjoint segments. K-means algorithm is a versatile algorithm among the various approaches used in data clustering. The algorithm and its diverse adaptation methods suffer certain problems in their performance. To overcome these issues a superlative algorithm has been proposed in this paper to perform data clustering. The specific feature of the proposed algorithm is discretizing the dataset, thereby improving the accuracy of clustering, and also adopting the binary search initialization method to generate cluster centroids. The generated centroids are fed as input to K-means approach which iteratively segments the data objects into respective clusters. The clustered results are measured for accuracy and validity. Experiments conducted by testing the approach on datasets from the UC Irvine Machine Learning Repository evidently show that the accuracy and validity measure is higher than the other two approaches, namely, simple K-means and Binary Search method. Thus, the proposed approach proves that discretization process will improve the efficacy of descriptive data mining tasks. PMID:26543895
An improved K-means clustering method for cDNA microarray image segmentation.
Wang, T N; Li, T J; Shao, G F; Wu, S X
2015-07-14
Microarray technology is a powerful tool for human genetic research and other biomedical applications. Numerous improvements to the standard K-means algorithm have been carried out to complete the image segmentation step. However, most of the previous studies classify the image into two clusters. In this paper, we propose a novel K-means algorithm, which first classifies the image into three clusters, and then one of the three clusters is divided as the background region and the other two clusters, as the foreground region. The proposed method was evaluated on six different data sets. The analyses of accuracy, efficiency, expression values, special gene spots, and noise images demonstrate the effectiveness of our method in improving the segmentation quality.
Fuzzy Document Clustering Approach using WordNet Lexical Categories
NASA Astrophysics Data System (ADS)
Gharib, Tarek F.; Fouad, Mohammed M.; Aref, Mostafa M.
Text mining refers generally to the process of extracting interesting information and knowledge from unstructured text. This area is growing rapidly mainly because of the strong need for analysing the huge and large amount of textual data that reside on internal file systems and the Web. Text document clustering provides an effective navigation mechanism to organize this large amount of data by grouping their documents into a small number of meaningful classes. In this paper we proposed a fuzzy text document clustering approach using WordNet lexical categories and Fuzzy c-Means algorithm. Some experiments are performed to compare efficiency of the proposed approach with the recently reported approaches. Experimental results show that Fuzzy clustering leads to great performance results. Fuzzy c-means algorithm overcomes other classical clustering algorithms like k-means and bisecting k-means in both clustering quality and running time efficiency.
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Liu, Wenfen
2017-01-01
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447
Internal Cluster Validation on Earthquake Data in the Province of Bengkulu
NASA Astrophysics Data System (ADS)
Rini, D. S.; Novianti, P.; Fransiska, H.
2018-04-01
K-means method is an algorithm for cluster n object based on attribute to k partition, where k < n. There is a deficiency of algorithms that is before the algorithm is executed, k points are initialized randomly so that the resulting data clustering can be different. If the random value for initialization is not good, the clustering becomes less optimum. Cluster validation is a technique to determine the optimum cluster without knowing prior information from data. There are two types of cluster validation, which are internal cluster validation and external cluster validation. This study aims to examine and apply some internal cluster validation, including the Calinski-Harabasz (CH) Index, Sillhouette (S) Index, Davies-Bouldin (DB) Index, Dunn Index (D), and S-Dbw Index on earthquake data in the Bengkulu Province. The calculation result of optimum cluster based on internal cluster validation is CH index, S index, and S-Dbw index yield k = 2, DB Index with k = 6 and Index D with k = 15. Optimum cluster (k = 6) based on DB Index gives good results for clustering earthquake in the Bengkulu Province.
Noise-enhanced clustering and competitive learning algorithms.
Osoba, Osonde; Kosko, Bart
2013-01-01
Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
*K-means and cluster models for cancer signatures.
Kakushadze, Zura; Yu, Willie
2017-09-01
We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means' computational cost is a fraction of NMF's. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.
[Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm].
Xiao, Shuyuan; Wang, Bei; Zhang, Jian; Zhang, Qunfeng; Zou, Junzhong
2016-10-01
Sleep stage scoring is a hotspot in the field of medicine and neuroscience.Visual inspection of sleep is laborious and the results may be subjective to different clinicians.Automatic sleep stage classification algorithm can be used to reduce the manual workload.However,there are still limitations when it encounters complicated and changeable clinical cases.The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data.In the proposed improved K-means clustering algorithm,points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm.Meanwhile,the cluster centers were updated according to the‘Three-Sigma Rule’during the iteration to abate the influence of the outliers.The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure(CPAP)treatment.The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%.With the analysis of morphological diversity of sleep data,it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.
Ju, Chunhua; Xu, Chonghuan
2013-01-01
Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods.
Ju, Chunhua
2013-01-01
Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods. PMID:24381525
An improved K-means clustering algorithm in agricultural image segmentation
NASA Astrophysics Data System (ADS)
Cheng, Huifeng; Peng, Hui; Liu, Shanmei
Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.
Support Vector Data Descriptions and k-Means Clustering: One Class?
Gornitz, Nico; Lima, Luiz Alberto; Muller, Klaus-Robert; Kloft, Marius; Nakajima, Shinichi
2017-09-27
We present ClusterSVDD, a methodology that unifies support vector data descriptions (SVDDs) and k-means clustering into a single formulation. This allows both methods to benefit from one another, i.e., by adding flexibility using multiple spheres for SVDDs and increasing anomaly resistance and flexibility through kernels to k-means. In particular, our approach leads to a new interpretation of k-means as a regularized mode seeking algorithm. The unifying formulation further allows for deriving new algorithms by transferring knowledge from one-class learning settings to clustering settings and vice versa. As a showcase, we derive a clustering method for structured data based on a one-class learning scenario. Additionally, our formulation can be solved via a particularly simple optimization scheme. We evaluate our approach empirically to highlight some of the proposed benefits on artificially generated data, as well as on real-world problems, and provide a Python software package comprising various implementations of primal and dual SVDD as well as our proposed ClusterSVDD.
NASA Astrophysics Data System (ADS)
Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira
Authors proposed the estimation method combining k-means algorithm and NN for evaluating massage. However, this estimation method has a problem that discrimination ratio is decreased to new user. There are two causes of this problem. One is that generalization of NN is bad. Another one is that clustering result by k-means algorithm has not high correlation coefficient in a class. Then, this research proposes k-means algorithm according to correlation coefficient and incremental learning for NN. The proposed k-means algorithm is method included evaluation function based on correlation coefficient. Incremental learning is method that NN is learned by new data and initialized weight based on the existing data. The effect of proposed methods are verified by estimation result using EEG data when testee is given massage.
A New Soft Computing Method for K-Harmonic Means Clustering.
Yeh, Wei-Chang; Jiang, Yunzhi; Chen, Yee-Fen; Chen, Zhe
2016-01-01
The K-harmonic means clustering algorithm (KHM) is a new clustering method used to group data such that the sum of the harmonic averages of the distances between each entity and all cluster centroids is minimized. Because it is less sensitive to initialization than K-means (KM), many researchers have recently been attracted to studying KHM. In this study, the proposed iSSO-KHM is based on an improved simplified swarm optimization (iSSO) and integrates a variable neighborhood search (VNS) for KHM clustering. As evidence of the utility of the proposed iSSO-KHM, we present extensive computational results on eight benchmark problems. From the computational results, the comparison appears to support the superiority of the proposed iSSO-KHM over previously developed algorithms for all experiments in the literature.
Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering.
Chah, E; Hok, V; Della-Chiesa, A; Miller, J J H; O'Mara, S M; Reilly, R B
2011-02-01
This study presents a new automatic spike sorting method based on feature extraction by Laplacian eigenmaps combined with k-means clustering. The performance of the proposed method was compared against previously reported algorithms such as principal component analysis (PCA) and amplitude-based feature extraction. Two types of classifier (namely k-means and classification expectation-maximization) were incorporated within the spike sorting algorithms, in order to find a suitable classifier for the feature sets. Simulated data sets and in-vivo tetrode multichannel recordings were employed to assess the performance of the spike sorting algorithms. The results show that the proposed algorithm yields significantly improved performance with mean sorting accuracy of 73% and sorting error of 10% compared to PCA which combined with k-means had a sorting accuracy of 58% and sorting error of 10%.A correction was made to this article on 22 February 2011. The spacing of the title was amended on the abstract page. No changes were made to the article PDF and the print version was unaffected.
[Cluster analysis in biomedical researches].
Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D
2013-01-01
Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.
A ground truth based comparative study on clustering of gene expression data.
Zhu, Yitan; Wang, Zuyi; Miller, David J; Clarke, Robert; Xuan, Jianhua; Hoffman, Eric P; Wang, Yue
2008-05-01
Given the variety of available clustering methods for gene expression data analysis, it is important to develop an appropriate and rigorous validation scheme to assess the performance and limitations of the most widely used clustering algorithms. In this paper, we present a ground truth based comparative study on the functionality, accuracy, and stability of five data clustering methods, namely hierarchical clustering, K-means clustering, self-organizing maps, standard finite normal mixture fitting, and a caBIG toolkit (VIsual Statistical Data Analyzer--VISDA), tested on sample clustering of seven published microarray gene expression datasets and one synthetic dataset. We examined the performance of these algorithms in both data-sufficient and data-insufficient cases using quantitative performance measures, including cluster number detection accuracy and mean and standard deviation of partition accuracy. The experimental results showed that VISDA, an interactive coarse-to-fine maximum likelihood fitting algorithm, is a solid performer on most of the datasets, while K-means clustering and self-organizing maps optimized by the mean squared compactness criterion generally produce more stable solutions than the other methods.
K-mean clustering algorithm for processing signals from compound semiconductor detectors
NASA Astrophysics Data System (ADS)
Tada, Tsutomu; Hitomi, Keitaro; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo
2011-12-01
The K-mean clustering algorithm was employed for processing signal waveforms from TlBr detectors. The signal waveforms were classified based on its shape reflecting the charge collection process in the detector. The classified signal waveforms were processed individually to suppress the pulse height variation of signals due to the charge collection loss. The obtained energy resolution of a 137Cs spectrum measured with a 0.5 mm thick TlBr detector was 1.3% FWHM by employing 500 clusters.
Research on hotspot discovery in internet public opinions based on improved K-means.
Wang, Gensheng
2013-01-01
How to discover hotspot in the Internet public opinions effectively is a hot research field for the researchers related which plays a key role for governments and corporations to find useful information from mass data in the Internet. An improved K-means algorithm for hotspot discovery in internet public opinions is presented based on the analysis of existing defects and calculation principle of original K-means algorithm. First, some new methods are designed to preprocess website texts, select and express the characteristics of website texts, and define the similarity between two website texts, respectively. Second, clustering principle and the method of initial classification centers selection are analyzed and improved in order to overcome the limitations of original K-means algorithm. Finally, the experimental results verify that the improved algorithm can improve the clustering stability and classification accuracy of hotspot discovery in internet public opinions when used in practice.
Research on Hotspot Discovery in Internet Public Opinions Based on Improved K-Means
2013-01-01
How to discover hotspot in the Internet public opinions effectively is a hot research field for the researchers related which plays a key role for governments and corporations to find useful information from mass data in the Internet. An improved K-means algorithm for hotspot discovery in internet public opinions is presented based on the analysis of existing defects and calculation principle of original K-means algorithm. First, some new methods are designed to preprocess website texts, select and express the characteristics of website texts, and define the similarity between two website texts, respectively. Second, clustering principle and the method of initial classification centers selection are analyzed and improved in order to overcome the limitations of original K-means algorithm. Finally, the experimental results verify that the improved algorithm can improve the clustering stability and classification accuracy of hotspot discovery in internet public opinions when used in practice. PMID:24106496
Contributions to "k"-Means Clustering and Regression via Classification Algorithms
ERIC Educational Resources Information Center
Salman, Raied
2012-01-01
The dissertation deals with clustering algorithms and transforming regression problems into classification problems. The main contributions of the dissertation are twofold; first, to improve (speed up) the clustering algorithms and second, to develop a strict learning environment for solving regression problems as classification tasks by using…
Self-organization and clustering algorithms
NASA Technical Reports Server (NTRS)
Bezdek, James C.
1991-01-01
Kohonen's feature maps approach to clustering is often likened to the k or c-means clustering algorithms. Here, the author identifies some similarities and differences between the hard and fuzzy c-Means (HCM/FCM) or ISODATA algorithms and Kohonen's self-organizing approach. The author concludes that some differences are significant, but at the same time there may be some important unknown relationships between the two methodologies. Several avenues of research are proposed.
Finding reproducible cluster partitions for the k-means algorithm
2013-01-01
K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also the closest that k-means can provide to true structure, when applied to synthetic data. We show that this is generally the case for small numbers of clusters, but for values of k that are still of theoretical and practical interest, similar values of SSQ can correspond to markedly different cluster partitions. This paper extends stability measures previously presented in the context of finding optimal values of cluster number, into a component of a 2-d map of the local minima found by the k-means algorithm, from which not only can values of k be identified for further analysis but, more importantly, it is made clear whether the best SSQ is a suitable solution or whether obtaining a consistently good partition requires further application of the stability index. The proposed method is illustrated by application to five synthetic datasets replicating a real world breast cancer dataset with varying data density, and a large bioinformatics dataset. PMID:23369085
Finding reproducible cluster partitions for the k-means algorithm.
Lisboa, Paulo J G; Etchells, Terence A; Jarman, Ian H; Chambers, Simon J
2013-01-01
K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also the closest that k-means can provide to true structure, when applied to synthetic data. We show that this is generally the case for small numbers of clusters, but for values of k that are still of theoretical and practical interest, similar values of SSQ can correspond to markedly different cluster partitions. This paper extends stability measures previously presented in the context of finding optimal values of cluster number, into a component of a 2-d map of the local minima found by the k-means algorithm, from which not only can values of k be identified for further analysis but, more importantly, it is made clear whether the best SSQ is a suitable solution or whether obtaining a consistently good partition requires further application of the stability index. The proposed method is illustrated by application to five synthetic datasets replicating a real world breast cancer dataset with varying data density, and a large bioinformatics dataset.
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida
2015-05-01
Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.
Lei, Yang; Yu, Dai; Bin, Zhang; Yang, Yang
2017-01-01
Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor's knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K -means clustering method to improve the user's satisfactions towards the result. The core of this method is to get the user's feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user's business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user's requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm.
NASA Astrophysics Data System (ADS)
Chang, Bingguo; Chen, Xiaofei
2018-05-01
Ultrasonography is an important examination for the diagnosis of chronic liver disease. The doctor gives the liver indicators and suggests the patient's condition according to the description of ultrasound report. With the rapid increase in the amount of data of ultrasound report, the workload of professional physician to manually distinguish ultrasound results significantly increases. In this paper, we use the spectral clustering method to cluster analysis of the description of the ultrasound report, and automatically generate the ultrasonic diagnostic diagnosis by machine learning. 110 groups ultrasound examination report of chronic liver disease were selected as test samples in this experiment, and the results were validated by spectral clustering and compared with k-means clustering algorithm. The results show that the accuracy of spectral clustering is 92.73%, which is higher than that of k-means clustering algorithm, which provides a powerful ultrasound-assisted diagnosis for patients with chronic liver disease.
NASA Astrophysics Data System (ADS)
Yu, Miao; Li, Yan; Shu, Tong; Zhang, Yifan; Hong, Xiaobin; Qiu, Jifang; Zuo, Yong; Guo, Hongxiang; Li, Wei; Wu, Jian
2018-02-01
A method of recognizing 16QAM signal based on k-means clustering algorithm is proposed to mitigate the impact of transmitter finite extinction ratio. There are pilot symbols with 0.39% overhead assigned to be regarded as initial centroids of k-means clustering algorithm. Simulation result in 10 GBaud 16QAM system shows that the proposed method obtains higher precision of identification compared with traditional decision method for finite ER and IQ mismatch. Specially, the proposed method improves the required OSNR by 5.5 dB, 4.5 dB, 4 dB and 3 dB at FEC limit with ER= 12 dB, 16 dB, 20 dB and 24 dB, respectively, and the acceptable bias error and IQ mismatch range is widened by 767% and 360% with ER =16 dB, respectively.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed. PMID:25972896
Seman, Ali; Sapawi, Azizian Mohd; Salleh, Mohd Zaki
2015-06-01
Y-chromosome short tandem repeats (Y-STRs) are genetic markers with practical applications in human identification. However, where mass identification is required (e.g., in the aftermath of disasters with significant fatalities), the efficiency of the process could be improved with new statistical approaches. Clustering applications are relatively new tools for large-scale comparative genotyping, and the k-Approximate Modal Haplotype (k-AMH), an efficient algorithm for clustering large-scale Y-STR data, represents a promising method for developing these tools. In this study we improved the k-AMH and produced three new algorithms: the Nk-AMH I (including a new initial cluster center selection), the Nk-AMH II (including a new dominant weighting value), and the Nk-AMH III (combining I and II). The Nk-AMH III was the superior algorithm, with mean clustering accuracy that increased in four out of six datasets and remained at 100% in the other two. Additionally, the Nk-AMH III achieved a 2% higher overall mean clustering accuracy score than the k-AMH, as well as optimal accuracy for all datasets (0.84-1.00). With inclusion of the two new methods, the Nk-AMH III produced an optimal solution for clustering Y-STR data; thus, the algorithm has potential for further development towards fully automatic clustering of any large-scale genotypic data.
Parallel k-means++ for Multiple Shared-Memory Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, Patrick S.; Lewis, Robert R.
2016-09-22
In recent years k-means++ has become a popular initialization technique for improved k-means clustering. To date, most of the work done to improve its performance has involved parallelizing algorithms that are only approximations of k-means++. In this paper we present a parallelization of the exact k-means++ algorithm, with a proof of its correctness. We develop implementations for three distinct shared-memory architectures: multicore CPU, high performance GPU, and the massively multithreaded Cray XMT platform. We demonstrate the scalability of the algorithm on each platform. In addition we present a visual approach for showing which platform performed k-means++ the fastest for varyingmore » data sizes.« less
Balouchestani, Mohammadreza; Krishnan, Sridhar
2014-01-01
Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.
An adaptive enhancement algorithm for infrared video based on modified k-means clustering
NASA Astrophysics Data System (ADS)
Zhang, Linze; Wang, Jingqi; Wu, Wen
2016-09-01
In this paper, we have proposed a video enhancement algorithm to improve the output video of the infrared camera. Sometimes the video obtained by infrared camera is very dark since there is no clear target. In this case, infrared video should be divided into frame images by frame extraction, in order to carry out the image enhancement. For the first frame image, which can be divided into k sub images by using K-means clustering according to the gray interval it occupies before k sub images' histogram equalization according to the amount of information per sub image, we used a method to solve a problem that final cluster centers close to each other in some cases; and for the other frame images, their initial cluster centers can be determined by the final clustering centers of the previous ones, and the histogram equalization of each sub image will be carried out after image segmentation based on K-means clustering. The histogram equalization can make the gray value of the image to the whole gray level, and the gray level of each sub image is determined by the ratio of pixels to a frame image. Experimental results show that this algorithm can improve the contrast of infrared video where night target is not obvious which lead to a dim scene, and reduce the negative effect given by the overexposed pixels adaptively in a certain range.
Iris recognition using image moments and k-means algorithm.
Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed
2014-01-01
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.
Iris Recognition Using Image Moments and k-Means Algorithm
Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed
2014-01-01
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%. PMID:24977221
An AK-LDMeans algorithm based on image clustering
NASA Astrophysics Data System (ADS)
Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan
2018-03-01
Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.
A diabetic retinopathy detection method using an improved pillar K-means algorithm.
Gogula, Susmitha Valli; Divakar, Ch; Satyanarayana, Ch; Rao, Allam Appa
2014-01-01
The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.
A Survey on Sentiment Classification in Face Recognition
NASA Astrophysics Data System (ADS)
Qian, Jingyu
2018-01-01
Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.
Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing
2016-03-03
This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.
Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means
NASA Astrophysics Data System (ADS)
Yangmin, GUO; Yun, TANG; Yu, DU; Shisong, TANG; Lianbo, GUO; Xiangyou, LI; Yongfeng, LU; Xiaoyan, ZENG
2018-06-01
Laser-induced breakdown spectroscopy (LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions. The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers. To prevent the interference from metallic elements, three atomic emission lines (C I 247.86 nm , H I 656.3 nm, and O I 777.3 nm) and one molecular line C–N (0, 0) 388.3 nm were used. The cluster analysis results were obtained through an iterative process. The Davies–Bouldin index was employed to determine the initial number of clusters. The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion. With the proposed approach, the classification accuracy for twenty kinds of industrial polymers achieved 99.6%. The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.
Learner Typologies Development Using OIndex and Data Mining Based Clustering Techniques
ERIC Educational Resources Information Center
Luan, Jing
2004-01-01
This explorative data mining project used distance based clustering algorithm to study 3 indicators, called OIndex, of student behavioral data and stabilized at a 6-cluster scenario following an exhaustive explorative study of 4, 5, and 6 cluster scenarios produced by K-Means and TwoStep algorithms. Using principles in data mining, the study…
Armstrong, Joshua J; Zhu, Mu; Hirdes, John P; Stolee, Paul
2012-12-01
To examine the heterogeneity of home care clients who use rehabilitation services by using the K-means algorithm to identify previously unknown patterns of clinical characteristics. Observational study of secondary data. Home care system. Assessment information was collected on 150,253 home care clients using the provincially mandated Resident Assessment Instrument-Home Care (RAI-HC) data system. Not applicable. Assessment information from every long-stay (>60 d) home care client that entered the home care system between 2005 and 2008 and used rehabilitation services within 3 months of their initial assessment was analyzed. The K-means clustering algorithm was applied using 37 variables from the RAI-HC assessment. The K-means cluster analysis resulted in the identification of 7 relatively homogeneous subgroups that differed on characteristics such as age, sex, cognition, and functional impairment. Client profiles were created to illustrate the diversity of this geriatric population. The K-means algorithm provided a useful way to segment a heterogeneous rehabilitation client population into more homogeneous subgroups. This analysis provides an enhanced understanding of client characteristics and needs, and could enable more appropriate targeting of rehabilitation services for home care clients. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A roadmap of clustering algorithms: finding a match for a biomedical application.
Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael
2009-05-01
Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.
Using Grey Wolf Algorithm to Solve the Capacitated Vehicle Routing Problem
NASA Astrophysics Data System (ADS)
Korayem, L.; Khorsid, M.; Kassem, S. S.
2015-05-01
The capacitated vehicle routing problem (CVRP) is a class of the vehicle routing problems (VRPs). In CVRP a set of identical vehicles having fixed capacities are required to fulfill customers' demands for a single commodity. The main objective is to minimize the total cost or distance traveled by the vehicles while satisfying a number of constraints, such as: the capacity constraint of each vehicle, logical flow constraints, etc. One of the methods employed in solving the CVRP is the cluster-first route-second method. It is a technique based on grouping of customers into a number of clusters, where each cluster is served by one vehicle. Once clusters are formed, a route determining the best sequence to visit customers is established within each cluster. The recently bio-inspired grey wolf optimizer (GWO), introduced in 2014, has proven to be efficient in solving unconstrained, as well as, constrained optimization problems. In the current research, our main contributions are: combining GWO with the traditional K-means clustering algorithm to generate the ‘K-GWO’ algorithm, deriving a capacitated version of the K-GWO algorithm by incorporating a capacity constraint into the aforementioned algorithm, and finally, developing 2 new clustering heuristics. The resulting algorithm is used in the clustering phase of the cluster-first route-second method to solve the CVR problem. The algorithm is tested on a number of benchmark problems with encouraging results.
Quantum annealing for combinatorial clustering
NASA Astrophysics Data System (ADS)
Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph
2018-02-01
Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.
Are judgments a form of data clustering? Reexamining contrast effects with the k-means algorithm.
Boillaud, Eric; Molina, Guylaine
2015-04-01
A number of theories have been proposed to explain in precise mathematical terms how statistical parameters and sequential properties of stimulus distributions affect category ratings. Various contextual factors such as the mean, the midrange, and the median of the stimuli; the stimulus range; the percentile rank of each stimulus; and the order of appearance have been assumed to influence judgmental contrast. A data clustering reinterpretation of judgmental relativity is offered wherein the influence of the initial choice of centroids on judgmental contrast involves 2 combined frequency and consistency tendencies. Accounts of the k-means algorithm are provided, showing good agreement with effects observed on multiple distribution shapes and with a variety of interaction effects relating to the number of stimuli, the number of response categories, and the method of skewing. Experiment 1 demonstrates that centroid initialization accounts for contrast effects obtained with stretched distributions. Experiment 2 demonstrates that the iterative convergence inherent to the k-means algorithm accounts for the contrast reduction observed across repeated blocks of trials. The concept of within-cluster variance minimization is discussed, as is the applicability of a backward k-means calculation method for inferring, from empirical data, the values of the centroids that would serve as a representation of the judgmental context. (c) 2015 APA, all rights reserved.
Analysis of k-means clustering approach on the breast cancer Wisconsin dataset.
Dubey, Ashutosh Kumar; Gupta, Umesh; Jain, Sonal
2016-11-01
Breast cancer is one of the most common cancers found worldwide and most frequently found in women. An early detection of breast cancer provides the possibility of its cure; therefore, a large number of studies are currently going on to identify methods that can detect breast cancer in its early stages. This study was aimed to find the effects of k-means clustering algorithm with different computation measures like centroid, distance, split method, epoch, attribute, and iteration and to carefully consider and identify the combination of measures that has potential of highly accurate clustering accuracy. K-means algorithm was used to evaluate the impact of clustering using centroid initialization, distance measures, and split methods. The experiments were performed using breast cancer Wisconsin (BCW) diagnostic dataset. Foggy and random centroids were used for the centroid initialization. In foggy centroid, based on random values, the first centroid was calculated. For random centroid, the initial centroid was considered as (0, 0). The results were obtained by employing k-means algorithm and are discussed with different cases considering variable parameters. The calculations were based on the centroid (foggy/random), distance (Euclidean/Manhattan/Pearson), split (simple/variance), threshold (constant epoch/same centroid), attribute (2-9), and iteration (4-10). Approximately, 92 % average positive prediction accuracy was obtained with this approach. Better results were found for the same centroid and the highest variance. The results achieved using Euclidean and Manhattan were better than the Pearson correlation. The findings of this work provided extensive understanding of the computational parameters that can be used with k-means. The results indicated that k-means has a potential to classify BCW dataset.
NASA Astrophysics Data System (ADS)
Wei, B. G.; Huo, K. X.; Yao, Z. F.; Lou, J.; Li, X. Y.
2018-03-01
It is one of the difficult problems encountered in the research of condition maintenance technology of transformers to recognize partial discharge (PD) pattern. According to the main physical characteristics of PD, three models of oil-paper insulation defects were set up in laboratory to study the PD of transformers, and phase resolved partial discharge (PRPD) was constructed. By using least square method, the grey-scale images of PRPD were constructed and features of each grey-scale image were 28 box dimensions and 28 information dimensions. Affinity propagation algorithm based on manifold distance (AP-MD) for transformers PD pattern recognition was established, and the data of box dimension and information dimension were clustered based on AP-MD. Study shows that clustering result of AP-MD is better than the results of affinity propagation (AP), k-means and fuzzy c-means algorithm (FCM). By choosing different k values of k-nearest neighbor, we find clustering accuracy of AP-MD falls when k value is larger or smaller, and the optimal k value depends on sample size.
Detection of maize kernels breakage rate based on K-means clustering
NASA Astrophysics Data System (ADS)
Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping
2017-04-01
In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.
Orbit Clustering Based on Transfer Cost
NASA Technical Reports Server (NTRS)
Gustafson, Eric D.; Arrieta-Camacho, Juan J.; Petropoulos, Anastassios E.
2013-01-01
We propose using cluster analysis to perform quick screening for combinatorial global optimization problems. The key missing component currently preventing cluster analysis from use in this context is the lack of a useable metric function that defines the cost to transfer between two orbits. We study several proposed metrics and clustering algorithms, including k-means and the expectation maximization algorithm. We also show that proven heuristic methods such as the Q-law can be modified to work with cluster analysis.
Yin, Jiandong; Sun, Hongzan; Yang, Jiawen; Guo, Qiyong
2014-01-01
The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection.
Yin, Jiandong; Sun, Hongzan; Yang, Jiawen; Guo, Qiyong
2014-01-01
The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection. PMID:24503700
Inference from clustering with application to gene-expression microarrays.
Dougherty, Edward R; Barrera, Junior; Brun, Marcel; Kim, Seungchan; Cesar, Roberto M; Chen, Yidong; Bittner, Michael; Trent, Jeffrey M
2002-01-01
There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different underlying classes, whereas those in the same cluster come from the same class. Stochastically, the underlying classes represent different random processes. The inference is that clusters represent a partition of the sample points according to which process they belong. This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each random process is modeled as its mean plus independent noise, sample points are generated, the points are clustered, and the clustering error is the number of points clustered incorrectly according to the generating random processes. Various clustering algorithms are evaluated based on process variance and the key issue of the rate at which algorithmic performance improves with increasing numbers of experimental replications. The model means can be selected by hand to test the separability of expected types of biological expression patterns. Alternatively, the model can be seeded by real data to test the expected precision of that output or the extent of improvement in precision that replication could provide. In the latter case, a clustering algorithm is used to form clusters, and the model is seeded with the means and variances of these clusters. Other algorithms are then tested relative to the seeding algorithm. Results are averaged over various seeds. Output includes error tables and graphs, confusion matrices, principal-component plots, and validation measures. Five algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to gene-expression clustering based on cDNA microarrays using real data. Expression profile graphics are generated and error analysis is displayed within the context of these profile graphics. A large amount of generated output is available over the web.
Sleep stages identification in patients with sleep disorder using k-means clustering
NASA Astrophysics Data System (ADS)
Fadhlullah, M. U.; Resahya, A.; Nugraha, D. F.; Yulita, I. N.
2018-05-01
Data mining is a computational intelligence discipline where a large dataset processed using a certain method to look for patterns within the large dataset. This pattern then used for real time application or to develop some certain knowledge. This is a valuable tool to solve a complex problem, discover new knowledge, data analysis and decision making. To be able to get the pattern that lies inside the large dataset, clustering method is used to get the pattern. Clustering is basically grouping data that looks similar so a certain pattern can be seen in the large data set. Clustering itself has several algorithms to group the data into the corresponding cluster. This research used data from patients who suffer sleep disorders and aims to help people in the medical world to reduce the time required to classify the sleep stages from a patient who suffers from sleep disorders. This study used K-Means algorithm and silhouette evaluation to find out that 3 clusters are the optimal cluster for this dataset which means can be divided to 3 sleep stages.
A scalable and practical one-pass clustering algorithm for recommender system
NASA Astrophysics Data System (ADS)
Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali
2015-12-01
KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.
Optimized data fusion for K-means Laplacian clustering
Yu, Shi; Liu, Xinhai; Tranchevent, Léon-Charles; Glänzel, Wolfgang; Suykens, Johan A. K.; De Moor, Bart; Moreau, Yves
2011-01-01
Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix. Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html. Contact: shiyu@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20980271
Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks.
Aadil, Farhan; Raza, Ali; Khan, Muhammad Fahad; Maqsood, Muazzam; Mehmood, Irfan; Rho, Seungmin
2018-05-03
Flying ad-hoc networks (FANETs) are a very vibrant research area nowadays. They have many military and civil applications. Limited battery energy and the high mobility of micro unmanned aerial vehicles (UAVs) represent their two main problems, i.e., short flight time and inefficient routing. In this paper, we try to address both of these problems by means of efficient clustering. First, we adjust the transmission power of the UAVs by anticipating their operational requirements. Optimal transmission range will have minimum packet loss ratio (PLR) and better link quality, which ultimately save the energy consumed during communication. Second, we use a variant of the K-Means Density clustering algorithm for selection of cluster heads. Optimal cluster heads enhance the cluster lifetime and reduce the routing overhead. The proposed model outperforms the state of the art artificial intelligence techniques such as Ant Colony Optimization-based clustering algorithm and Grey Wolf Optimization-based clustering algorithm. The performance of the proposed algorithm is evaluated in term of number of clusters, cluster building time, cluster lifetime and energy consumption.
Text grouping in patent analysis using adaptive K-means clustering algorithm
NASA Astrophysics Data System (ADS)
Shanie, Tiara; Suprijadi, Jadi; Zulhanif
2017-03-01
Patents are one of the Intellectual Property. Analyzing patent is one requirement in knowing well the development of technology in each country and in the world now. This study uses the patent document coming from the Espacenet server about Green Tea. Patent documents related to the technology in the field of tea is still widespread, so it will be difficult for users to information retrieval (IR). Therefore, it is necessary efforts to categorize documents in a specific group of related terms contained therein. This study uses titles patent text data with the proposed Green Tea in Statistical Text Mining methods consists of two phases: data preparation and data analysis stage. The data preparation phase uses Text Mining methods and data analysis stage is done by statistics. Statistical analysis in this study using a cluster analysis algorithm, the Adaptive K-Means Clustering Algorithm. Results from this study showed that based on the maximum value Silhouette, generate 87 clusters associated fifteen terms therein that can be utilized in the process of information retrieval needs.
An Improved Clustering Algorithm of Tunnel Monitoring Data for Cloud Computing
Zhong, Luo; Tang, KunHao; Li, Lin; Yang, Guang; Ye, JingJing
2014-01-01
With the rapid development of urban construction, the number of urban tunnels is increasing and the data they produce become more and more complex. It results in the fact that the traditional clustering algorithm cannot handle the mass data of the tunnel. To solve this problem, an improved parallel clustering algorithm based on k-means has been proposed. It is a clustering algorithm using the MapReduce within cloud computing that deals with data. It not only has the advantage of being used to deal with mass data but also is more efficient. Moreover, it is able to compute the average dissimilarity degree of each cluster in order to clean the abnormal data. PMID:24982971
Block clustering based on difference of convex functions (DC) programming and DC algorithms.
Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai
2013-10-01
We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
PCA based clustering for brain tumor segmentation of T1w MRI images.
Kaya, Irem Ersöz; Pehlivanlı, Ayça Çakmak; Sekizkardeş, Emine Gezmez; Ibrikci, Turgay
2017-03-01
Medical images are huge collections of information that are difficult to store and process consuming extensive computing time. Therefore, the reduction techniques are commonly used as a data pre-processing step to make the image data less complex so that a high-dimensional data can be identified by an appropriate low-dimensional representation. PCA is one of the most popular multivariate methods for data reduction. This paper is focused on T1-weighted MRI images clustering for brain tumor segmentation with dimension reduction by different common Principle Component Analysis (PCA) algorithms. Our primary aim is to present a comparison between different variations of PCA algorithms on MRIs for two cluster methods. Five most common PCA algorithms; namely the conventional PCA, Probabilistic Principal Component Analysis (PPCA), Expectation Maximization Based Principal Component Analysis (EM-PCA), Generalize Hebbian Algorithm (GHA), and Adaptive Principal Component Extraction (APEX) were applied to reduce dimensionality in advance of two clustering algorithms, K-Means and Fuzzy C-Means. In the study, the T1-weighted MRI images of the human brain with brain tumor were used for clustering. In addition to the original size of 512 lines and 512 pixels per line, three more different sizes, 256 × 256, 128 × 128 and 64 × 64, were included in the study to examine their effect on the methods. The obtained results were compared in terms of both the reconstruction errors and the Euclidean distance errors among the clustered images containing the same number of principle components. According to the findings, the PPCA obtained the best results among all others. Furthermore, the EM-PCA and the PPCA assisted K-Means algorithm to accomplish the best clustering performance in the majority as well as achieving significant results with both clustering algorithms for all size of T1w MRI images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms.
Sari, Murat; Tuna, Can; Akogul, Serkan
2018-03-28
The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.
Clustering Millions of Faces by Identity.
Otto, Charles; Wang, Dayong; Jain, Anil K
2018-02-01
Given a large collection of unlabeled face images, we address the problem of clustering faces into an unknown number of identities. This problem is of interest in social media, law enforcement, and other applications, where the number of faces can be of the order of hundreds of million, while the number of identities (clusters) can range from a few thousand to millions. To address the challenges of run-time complexity and cluster quality, we present an approximate Rank-Order clustering algorithm that performs better than popular clustering algorithms (k-Means and Spectral). Our experiments include clustering up to 123 million face images into over 10 million clusters. Clustering results are analyzed in terms of external (known face labels) and internal (unknown face labels) quality measures, and run-time. Our algorithm achieves an F-measure of 0.87 on the LFW benchmark (13 K faces of 5,749 individuals), which drops to 0.27 on the largest dataset considered (13 K faces in LFW + 123M distractor images). Additionally, we show that frames in the YouTube benchmark can be clustered with an F-measure of 0.71. An internal per-cluster quality measure is developed to rank individual clusters for manual exploration of high quality clusters that are compact and isolated.
EXPLORING FUNCTIONAL CONNECTIVITY IN FMRI VIA CLUSTERING.
Venkataraman, Archana; Van Dijk, Koene R A; Buckner, Randy L; Golland, Polina
2009-04-01
In this paper we investigate the use of data driven clustering methods for functional connectivity analysis in fMRI. In particular, we consider the K-Means and Spectral Clustering algorithms as alternatives to the commonly used Seed-Based Analysis. To enable clustering of the entire brain volume, we use the Nyström Method to approximate the necessary spectral decompositions. We apply K-Means, Spectral Clustering and Seed-Based Analysis to resting-state fMRI data collected from 45 healthy young adults. Without placing any a priori constraints, both clustering methods yield partitions that are associated with brain systems previously identified via Seed-Based Analysis. Our empirical results suggest that clustering provides a valuable tool for functional connectivity analysis.
Sequence spaces [Formula: see text] and [Formula: see text] with application in clustering.
Khan, Mohd Shoaib; Alamri, Badriah As; Mursaleen, M; Lohani, Qm Danish
2017-01-01
Distance measures play a central role in evolving the clustering technique. Due to the rich mathematical background and natural implementation of [Formula: see text] distance measures, researchers were motivated to use them in almost every clustering process. Beside [Formula: see text] distance measures, there exist several distance measures. Sargent introduced a special type of distance measures [Formula: see text] and [Formula: see text] which is closely related to [Formula: see text]. In this paper, we generalized the Sargent sequence spaces through introduction of [Formula: see text] and [Formula: see text] sequence spaces. Moreover, it is shown that both spaces are BK -spaces, and one is a dual of another. Further, we have clustered the two-moon dataset by using an induced [Formula: see text]-distance measure (induced by the Sargent sequence space [Formula: see text]) in the k-means clustering algorithm. The clustering result established the efficacy of replacing the Euclidean distance measure by the [Formula: see text]-distance measure in the k-means algorithm.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
A cluster analysis on road traffic accidents using genetic algorithms
NASA Astrophysics Data System (ADS)
Saharan, Sabariah; Baragona, Roberto
2017-04-01
The analysis of traffic road accidents is increasingly important because of the accidents cost and public road safety. The availability or large data sets makes the study of factors that affect the frequency and severity accidents are viable. However, the data are often highly unbalanced and overlapped. We deal with the data set of the road traffic accidents recorded in Christchurch, New Zealand, from 2000-2009 with a total of 26440 accidents. The data is in a binary set and there are 50 factors road traffic accidents with four level of severity. We used genetic algorithm for the analysis because we are in the presence of a large unbalanced data set and standard clustering like k-means algorithm may not be suitable for the task. The genetic algorithm based on clustering for unknown K, (GCUK) has been used to identify the factors associated with accidents of different levels of severity. The results provided us with an interesting insight into the relationship between factors and accidents severity level and suggest that the two main factors that contributes to fatal accidents are "Speed greater than 60 km h" and "Did not see other people until it was too late". A comparison with the k-means algorithm and the independent component analysis is performed to validate the results.
Enhanced K-means clustering with encryption on cloud
NASA Astrophysics Data System (ADS)
Singh, Iqjot; Dwivedi, Prerna; Gupta, Taru; Shynu, P. G.
2017-11-01
This paper tries to solve the problem of storing and managing big files over cloud by implementing hashing on Hadoop in big-data and ensure security while uploading and downloading files. Cloud computing is a term that emphasis on sharing data and facilitates to share infrastructure and resources.[10] Hadoop is an open source software that gives us access to store and manage big files according to our needs on cloud. K-means clustering algorithm is an algorithm used to calculate distance between the centroid of the cluster and the data points. Hashing is a algorithm in which we are storing and retrieving data with hash keys. The hashing algorithm is called as hash function which is used to portray the original data and later to fetch the data stored at the specific key. [17] Encryption is a process to transform electronic data into non readable form known as cipher text. Decryption is the opposite process of encryption, it transforms the cipher text into plain text that the end user can read and understand well. For encryption and decryption we are using Symmetric key cryptographic algorithm. In symmetric key cryptography are using DES algorithm for a secure storage of the files. [3
Ichikawa, Kazuki; Morishita, Shinichi
2014-01-01
K-means clustering has been widely used to gain insight into biological systems from large-scale life science data. To quantify the similarities among biological data sets, Pearson correlation distance and standardized Euclidean distance are used most frequently; however, optimization methods have been largely unexplored. These two distance measurements are equivalent in the sense that they yield the same k-means clustering result for identical sets of k initial centroids. Thus, an efficient algorithm used for one is applicable to the other. Several optimization methods are available for the Euclidean distance and can be used for processing the standardized Euclidean distance; however, they are not customized for this context. We instead approached the problem by studying the properties of the Pearson correlation distance, and we invented a simple but powerful heuristic method for markedly pruning unnecessary computation while retaining the final solution. Tests using real biological data sets with 50-60K vectors of dimensions 10-2001 (~400 MB in size) demonstrated marked reduction in computation time for k = 10-500 in comparison with other state-of-the-art pruning methods such as Elkan's and Hamerly's algorithms. The BoostKCP software is available at http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/boostKCP/.
NASA Astrophysics Data System (ADS)
Sutanto, G. R.; Kim, S.; Kim, D.; Sutanto, H.
2018-03-01
One of the problems in dealing with capacitated facility location problem (CFLP) is occurred because of the difference between the capacity numbers of facilities and the number of customers that needs to be served. A facility with small capacity may result in uncovered customers. These customers need to be re-allocated to another facility that still has available capacity. Therefore, an approach is proposed to handle CFLP by using k-means clustering algorithm to handle customers’ allocation. And then, if customers’ re-allocation is needed, is decided by the overall average distance between customers and the facilities. This new approach is benchmarked to the existing approach by Liao and Guo which also use k-means clustering algorithm as a base idea to decide the facilities location and customers’ allocation. Both of these approaches are benchmarked by using three clustering evaluation methods with connectedness, compactness, and separations factors.
The software application and classification algorithms for welds radiograms analysis
NASA Astrophysics Data System (ADS)
Sikora, R.; Chady, T.; Baniukiewicz, P.; Grzywacz, B.; Lopato, P.; Misztal, L.; Napierała, L.; Piekarczyk, B.; Pietrusewicz, T.; Psuj, G.
2013-01-01
The paper presents a software implementation of an Intelligent System for Radiogram Analysis (ISAR). The system has to support radiologists in welds quality inspection. The image processing part of software with a graphical user interface and a welds classification part are described with selected classification results. Classification was based on a few algorithms: an artificial neural network, a k-means clustering, a simplified k-means and a rough sets theory.
Wolf, Antje; Kirschner, Karl N
2013-02-01
With improvements in computer speed and algorithm efficiency, MD simulations are sampling larger amounts of molecular and biomolecular conformations. Being able to qualitatively and quantitatively sift these conformations into meaningful groups is a difficult and important task, especially when considering the structure-activity paradigm. Here we present a study that combines two popular techniques, principal component (PC) analysis and clustering, for revealing major conformational changes that occur in molecular dynamics (MD) simulations. Specifically, we explored how clustering different PC subspaces effects the resulting clusters versus clustering the complete trajectory data. As a case example, we used the trajectory data from an explicitly solvated simulation of a bacteria's L11·23S ribosomal subdomain, which is a target of thiopeptide antibiotics. Clustering was performed, using K-means and average-linkage algorithms, on data involving the first two to the first five PC subspace dimensions. For the average-linkage algorithm we found that data-point membership, cluster shape, and cluster size depended on the selected PC subspace data. In contrast, K-means provided very consistent results regardless of the selected subspace. Since we present results on a single model system, generalization concerning the clustering of different PC subspaces of other molecular systems is currently premature. However, our hope is that this study illustrates a) the complexities in selecting the appropriate clustering algorithm, b) the complexities in interpreting and validating their results, and c) by combining PC analysis with subsequent clustering valuable dynamic and conformational information can be obtained.
Applying reconfigurable hardware to the analysis of multispectral and hyperspectral imagery
NASA Astrophysics Data System (ADS)
Leeser, Miriam E.; Belanovic, Pavle; Estlick, Michael; Gokhale, Maya; Szymanski, John J.; Theiler, James P.
2002-01-01
Unsupervised clustering is a powerful technique for processing multispectral and hyperspectral images. Last year, we reported on an implementation of k-means clustering for multispectral images. Our implementation in reconfigurable hardware processed 10 channel multispectral images two orders of magnitude faster than a software implementation of the same algorithm. The advantage of using reconfigurable hardware to accelerate k-means clustering is clear; the disadvantage is the hardware implementation worked for one specific dataset. It is a non-trivial task to change this implementation to handle a dataset with different number of spectral channels, bits per spectral channel, or number of pixels; or to change the number of clusters. These changes required knowledge of the hardware design process and could take several days of a designer's time. Since multispectral data sets come in many shapes and sizes, being able to easily change the k-means implementation for these different data sets is important. For this reason, we have developed a parameterized implementation of the k-means algorithm. Our design is parameterized by the number of pixels in an image, the number of channels per pixel, and the number of bits per channel as well as the number of clusters. These parameters can easily be changed in a few minutes by someone not familiar with the design process. The resulting implementation is very close in performance to the original hardware implementation. It has the added advantage that the parameterized design compiles approximately three times faster than the original.
A highly efficient multi-core algorithm for clustering extremely large datasets
2010-01-01
Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922
Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means
Sabit, Hakilo; Al-Anbuky, Adnan
2014-01-01
Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495
Optimal Partitioning of a Data Set Based on the "p"-Median Model
ERIC Educational Resources Information Center
Brusco, Michael J.; Kohn, Hans-Friedrich
2008-01-01
Although the "K"-means algorithm for minimizing the within-cluster sums of squared deviations from cluster centroids is perhaps the most common method for applied cluster analyses, a variety of other criteria are available. The "p"-median model is an especially well-studied clustering problem that requires the selection of "p" objects to serve as…
Chaotic map clustering algorithm for EEG analysis
NASA Astrophysics Data System (ADS)
Bellotti, R.; De Carlo, F.; Stramaglia, S.
2004-03-01
The non-parametric chaotic map clustering algorithm has been applied to the analysis of electroencephalographic signals, in order to recognize the Huntington's disease, one of the most dangerous pathologies of the central nervous system. The performance of the method has been compared with those obtained through parametric algorithms, as K-means and deterministic annealing, and supervised multi-layer perceptron. While supervised neural networks need a training phase, performed by means of data tagged by the genetic test, and the parametric methods require a prior choice of the number of classes to find, the chaotic map clustering gives a natural evidence of the pathological class, without any training or supervision, thus providing a new efficient methodology for the recognition of patterns affected by the Huntington's disease.
Load Weight Classification of The Quayside Container Crane Based On K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Zhang, Bingqian; Hu, Xiong; Tang, Gang; Wang, Yide
2017-07-01
The precise knowledge of the load weight of each operation of the quayside container crane is important for accurately assessing the service life of the crane. The load weight is directly related to the vibration intensity. Through the study on the vibration of the hoist motor of the crane in radial and axial directions, we can classify the load using K-means clustering algorithm and quantitative statistical analysis. Vibration in radial direction is significantly and positively correlated with that in axial direction by correlation analysis, which means that we can use the data only in one of the directions to carry out the study improving then the efficiency without degrading the accuracy of load classification. The proposed method can well represent the real-time working condition of the crane.
NASA Astrophysics Data System (ADS)
Sa, Qila; Wang, Zhihui
2018-03-01
At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.
Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong
2013-01-01
This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875
Linear regression models and k-means clustering for statistical analysis of fNIRS data.
Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro
2015-02-01
We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.
Linear regression models and k-means clustering for statistical analysis of fNIRS data
Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro
2015-01-01
We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets. PMID:25780751
Study of parameters of the nearest neighbour shared algorithm on clustering documents
NASA Astrophysics Data System (ADS)
Mustika Rukmi, Alvida; Budi Utomo, Daryono; Imro’atus Sholikhah, Neni
2018-03-01
Document clustering is one way of automatically managing documents, extracting of document topics and fastly filtering information. Preprocess of clustering documents processed by textmining consists of: keyword extraction using Rapid Automatic Keyphrase Extraction (RAKE) and making the document as concept vector using Latent Semantic Analysis (LSA). Furthermore, the clustering process is done so that the documents with the similarity of the topic are in the same cluster, based on the preprocesing by textmining performed. Shared Nearest Neighbour (SNN) algorithm is a clustering method based on the number of "nearest neighbors" shared. The parameters in the SNN Algorithm consist of: k nearest neighbor documents, ɛ shared nearest neighbor documents and MinT minimum number of similar documents, which can form a cluster. Characteristics The SNN algorithm is based on shared ‘neighbor’ properties. Each cluster is formed by keywords that are shared by the documents. SNN algorithm allows a cluster can be built more than one keyword, if the value of the frequency of appearing keywords in document is also high. Determination of parameter values on SNN algorithm affects document clustering results. The higher parameter value k, will increase the number of neighbor documents from each document, cause similarity of neighboring documents are lower. The accuracy of each cluster is also low. The higher parameter value ε, caused each document catch only neighbor documents that have a high similarity to build a cluster. It also causes more unclassified documents (noise). The higher the MinT parameter value cause the number of clusters will decrease, since the number of similar documents can not form clusters if less than MinT. Parameter in the SNN Algorithm determine performance of clustering result and the amount of noise (unclustered documents ). The Silhouette coeffisient shows almost the same result in many experiments, above 0.9, which means that SNN algorithm works well with different parameter values.
Hebbian self-organizing integrate-and-fire networks for data clustering.
Landis, Florian; Ott, Thomas; Stoop, Ruedi
2010-01-01
We propose a Hebbian learning-based data clustering algorithm using spiking neurons. The algorithm is capable of distinguishing between clusters and noisy background data and finds an arbitrary number of clusters of arbitrary shape. These properties render the approach particularly useful for visual scene segmentation into arbitrarily shaped homogeneous regions. We present several application examples, and in order to highlight the advantages and the weaknesses of our method, we systematically compare the results with those from standard methods such as the k-means and Ward's linkage clustering. The analysis demonstrates that not only the clustering ability of the proposed algorithm is more powerful than those of the two concurrent methods, the time complexity of the method is also more modest than that of its generally used strongest competitor.
Finding gene clusters for a replicated time course study
2014-01-01
Background Finding genes that share similar expression patterns across samples is an important question that is frequently asked in high-throughput microarray studies. Traditional clustering algorithms such as K-means clustering and hierarchical clustering base gene clustering directly on the observed measurements and do not take into account the specific experimental design under which the microarray data were collected. A new model-based clustering method, the clustering of regression models method, takes into account the specific design of the microarray study and bases the clustering on how genes are related to sample covariates. It can find useful gene clusters for studies from complicated study designs such as replicated time course studies. Findings In this paper, we applied the clustering of regression models method to data from a time course study of yeast on two genotypes, wild type and YOX1 mutant, each with two technical replicates, and compared the clustering results with K-means clustering. We identified gene clusters that have similar expression patterns in wild type yeast, two of which were missed by K-means clustering. We further identified gene clusters whose expression patterns were changed in YOX1 mutant yeast compared to wild type yeast. Conclusions The clustering of regression models method can be a valuable tool for identifying genes that are coordinately transcribed by a common mechanism. PMID:24460656
Dudik, Joshua M; Kurosu, Atsuko; Coyle, James L; Sejdić, Ervin
2015-04-01
Cervical auscultation with high resolution sensors is currently under consideration as a method of automatically screening for specific swallowing abnormalities. To be clinically useful without human involvement, any devices based on cervical auscultation should be able to detect specified swallowing events in an automatic manner. In this paper, we comparatively analyze the density-based spatial clustering of applications with noise algorithm (DBSCAN), a k-means based algorithm, and an algorithm based on quadratic variation as methods of differentiating periods of swallowing activity from periods of time without swallows. These algorithms utilized swallowing vibration data exclusively and compared the results to a gold standard measure of swallowing duration. Data was collected from 23 subjects that were actively suffering from swallowing difficulties. Comparing the performance of the DBSCAN algorithm with a proven segmentation algorithm that utilizes k-means clustering demonstrated that the DBSCAN algorithm had a higher sensitivity and correctly segmented more swallows. Comparing its performance with a threshold-based algorithm that utilized the quadratic variation of the signal showed that the DBSCAN algorithm offered no direct increase in performance. However, it offered several other benefits including a faster run time and more consistent performance between patients. All algorithms showed noticeable differentiation from the endpoints provided by a videofluoroscopy examination as well as reduced sensitivity. In summary, we showed that the DBSCAN algorithm is a viable method for detecting the occurrence of a swallowing event using cervical auscultation signals, but significant work must be done to improve its performance before it can be implemented in an unsupervised manner. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dudik, Joshua M.; Kurosu, Atsuko; Coyle, James L
2015-01-01
Background Cervical auscultation with high resolution sensors is currently under consideration as a method of automatically screening for specific swallowing abnormalities. To be clinically useful without human involvement, any devices based on cervical auscultation should be able to detect specified swallowing events in an automatic manner. Methods In this paper, we comparatively analyze the density-based spatial clustering of applications with noise algorithm (DBSCAN), a k-means based algorithm, and an algorithm based on quadratic variation as methods of differentiating periods of swallowing activity from periods of time without swallows. These algorithms utilized swallowing vibration data exclusively and compared the results to a gold standard measure of swallowing duration. Data was collected from 23 subjects that were actively suffering from swallowing difficulties. Results Comparing the performance of the DBSCAN algorithm with a proven segmentation algorithm that utilizes k-means clustering demonstrated that the DBSCAN algorithm had a higher sensitivity and correctly segmented more swallows. Comparing its performance with a threshold-based algorithm that utilized the quadratic variation of the signal showed that the DBSCAN algorithm offered no direct increase in performance. However, it offered several other benefits including a faster run time and more consistent performance between patients. All algorithms showed noticeable differen-tiation from the endpoints provided by a videofluoroscopy examination as well as reduced sensitivity. Conclusions In summary, we showed that the DBSCAN algorithm is a viable method for detecting the occurrence of a swallowing event using cervical auscultation signals, but significant work must be done to improve its performance before it can be implemented in an unsupervised manner. PMID:25658505
Clustering approach for unsupervised segmentation of malarial Plasmodium vivax parasite
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Mohamed, Zeehaida
2017-10-01
Malaria is a global health problem, particularly in Africa and south Asia where it causes countless deaths and morbidity cases. Efficient control and prompt of this disease require early detection and accurate diagnosis due to the large number of cases reported yearly. To achieve this aim, this paper proposes an image segmentation approach via unsupervised pixel segmentation of malaria parasite to automate the diagnosis of malaria. In this study, a modified clustering algorithm namely enhanced k-means (EKM) clustering, is proposed for malaria image segmentation. In the proposed EKM clustering, the concept of variance and a new version of transferring process for clustered members are used to assist the assignation of data to the proper centre during the process of clustering, so that good segmented malaria image can be generated. The effectiveness of the proposed EKM clustering has been analyzed qualitatively and quantitatively by comparing this algorithm with two popular image segmentation techniques namely Otsu's thresholding and k-means clustering. The experimental results show that the proposed EKM clustering has successfully segmented 100 malaria images of P. vivax species with segmentation accuracy, sensitivity and specificity of 99.20%, 87.53% and 99.58%, respectively. Hence, the proposed EKM clustering can be considered as an image segmentation tool for segmenting the malaria images.
Semi-supervised clustering methods.
Bair, Eric
2013-01-01
Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as "semi-supervised clustering" methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided.
NASA Astrophysics Data System (ADS)
Husein, A. M.; Harahap, M.; Aisyah, S.; Purba, W.; Muhazir, A.
2018-03-01
Medication planning aim to get types, amount of medicine according to needs, and avoid the emptiness medicine based on patterns of disease. In making the medicine planning is still rely on ability and leadership experience, this is due to take a long time, skill, difficult to obtain a definite disease data, need a good record keeping and reporting, and the dependence of the budget resulted in planning is not going well, and lead to frequent lack and excess of medicines. In this research, we propose Adaptive Neuro Fuzzy Inference System (ANFIS) method to predict medication needs in 2016 and 2017 based on medical data in 2015 and 2016 from two source of hospital. The framework of analysis using two approaches. The first phase is implementing ANFIS to a data source, while the second approach we keep using ANFIS, but after the process of clustering from K-Means algorithm, both approaches are calculated values of Root Mean Square Error (RMSE) for training and testing. From the testing result, the proposed method with better prediction rates based on the evaluation analysis of quantitative and qualitative compared with existing systems, however the implementation of K-Means Algorithm against ANFIS have an effect on the timing of the training process and provide a classification accuracy significantly better without clustering.
NASA Astrophysics Data System (ADS)
Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.
2015-07-01
Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.
Semi-supervised clustering methods
Bair, Eric
2013-01-01
Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as “semi-supervised clustering” methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided. PMID:24729830
NASA Astrophysics Data System (ADS)
Lu, Siqi; Wang, Xiaorong; Wu, Junyong
2018-01-01
The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.
Deeper Insights into the Circumgalactic Medium using Multivariate Analysis Methods
NASA Astrophysics Data System (ADS)
Lewis, James; Churchill, Christopher W.; Nielsen, Nikole M.; Kacprzak, Glenn
2017-01-01
Drawing from a database of galaxies whose surrounding gas has absorption from MgII, called the MgII-Absorbing Galaxy Catalog (MAGIICAT, Neilsen et al 2013), we studied the circumgalactic medium (CGM) for a sample of 47 galaxies. Using multivariate analysis, in particular the k-means clustering algorithm, we determined that simultaneously examining column density (N), rest-frame B-K color, virial mass, and azimuthal angle (the projected angle between the galaxy major axis and the quasar line of sight) yields two distinct populations: (1) bluer, lower mass galaxies with higher column density along the minor axis, and (2) redder, higher mass galaxies with lower column density along the major axis. We support this grouping by running (i) two-sample, two-dimensional Kolmogorov-Smirnov (KS) tests on each of the six bivariate planes and (ii) two-sample KS tests on each of the four variables to show that the galaxies significantly cluster into two independent populations. To account for the fact that 16 of our 47 galaxies have upper limits on N, we performed Monte-Carlo tests whereby we replaced upper limits with random deviates drawn from a Schechter distribution fit, f(N). These tests strengthen the results of the KS tests. We examined the behavior of the MgII λ2796 absorption line equivalent width and velocity width for each galaxy population. We find that equivalent width and velocity width do not show similar characteristic distinctions between the two galaxy populations. We discuss the k-means clustering algorithm for optimizing the analysis of populations within datasets as opposed to using arbitrary bivariate subsample cuts. We also discuss the power of the k-means clustering algorithm in extracting deeper physical insight into the CGM in relationship to host galaxies.
A Novel Artificial Bee Colony Based Clustering Algorithm for Categorical Data
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data. PMID:25993469
A novel artificial bee colony based clustering algorithm for categorical data.
Ji, Jinchao; Pang, Wei; Zheng, Yanlin; Wang, Zhe; Ma, Zhiqiang
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data.
Abualhaj, Bedor; Weng, Guoyang; Ong, Melissa; Attarwala, Ali Asgar; Molina, Flavia; Büsing, Karen; Glatting, Gerhard
2017-01-01
Dynamic [ 18 F]fluoro-ethyl-L-tyrosine positron emission tomography ([ 18 F]FET-PET) is used to identify tumor lesions for radiotherapy treatment planning, to differentiate glioma recurrence from radiation necrosis and to classify gliomas grading. To segment different regions in the brain k-means cluster analysis can be used. The main disadvantage of k-means is that the number of clusters must be pre-defined. In this study, we therefore compared different cluster validity indices for automated and reproducible determination of the optimal number of clusters based on the dynamic PET data. The k-means algorithm was applied to dynamic [ 18 F]FET-PET images of 8 patients. Akaike information criterion (AIC), WB, I, modified Dunn's and Silhouette indices were compared on their ability to determine the optimal number of clusters based on requirements for an adequate cluster validity index. To check the reproducibility of k-means, the coefficients of variation CVs of the objective function values OFVs (sum of squared Euclidean distances within each cluster) were calculated using 100 random centroid initialization replications RCI 100 for 2 to 50 clusters. k-means was performed independently on three neighboring slices containing tumor for each patient to investigate the stability of the optimal number of clusters within them. To check the independence of the validity indices on the number of voxels, cluster analysis was applied after duplication of a slice selected from each patient. CVs of index values were calculated at the optimal number of clusters using RCI 100 to investigate the reproducibility of the validity indices. To check if the indices have a single extremum, visual inspection was performed on the replication with minimum OFV from RCI 100 . The maximum CV of OFVs was 2.7 × 10 -2 from all patients. The optimal number of clusters given by modified Dunn's and Silhouette indices was 2 or 3 leading to a very poor segmentation. WB and I indices suggested in median 5, [range 4-6] and 4, [range 3-6] clusters, respectively. For WB, I, modified Dunn's and Silhouette validity indices the suggested optimal number of clusters was not affected by the number of the voxels. The maximum coefficient of variation of WB, I, modified Dunn's, and Silhouette validity indices were 3 × 10 -2 , 1, 2 × 10 -1 and 3 × 10 -3 , respectively. WB-index showed a single global maximum, whereas the other indices showed also local extrema. From the investigated cluster validity indices, the WB-index is best suited for automated determination of the optimal number of clusters for [ 18 F]FET-PET brain images for the investigated image reconstruction algorithm and the used scanner: it yields meaningful results allowing better differentiation of tissues with higher number of clusters, it is simple, reproducible and has an unique global minimum. © 2016 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Wagstaff, Kiri L.
2012-03-01
On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained clustering, in which some partial information about item assignments or other components of the resulting output are already known and must be accommodated by the solution. Some algorithms seek a partition of the data set into distinct clusters, while others build a hierarchy of nested clusters that can capture taxonomic relationships. Some produce a single optimal solution, while others construct a probabilistic model of cluster membership. More formally, clustering algorithms operate on a data set X composed of items represented by one or more features (dimensions). These could include physical location, such as right ascension and declination, as well as other properties such as brightness, color, temporal change, size, texture, and so on. Let D be the number of dimensions used to represent each item, xi ∈ RD. The clustering goal is to produce an organization P of the items in X that optimizes an objective function f : P -> R, which quantifies the quality of solution P. Often f is defined so as to maximize similarity within a cluster and minimize similarity between clusters. To that end, many algorithms make use of a measure d : X x X -> R of the distance between two items. A partitioning algorithm produces a set of clusters P = {c1, . . . , ck} such that the clusters are nonoverlapping (c_i intersected with c_j = empty set, i != j) subsets of the data set (Union_i c_i=X). Hierarchical algorithms produce a series of partitions P = {p1, . . . , pn }. For a complete hierarchy, the number of partitions n’= n, the number of items in the data set; the top partition is a single cluster containing all items, and the bottom partition contains n clusters, each containing a single item. For model-based clustering, each cluster c_j is represented by a model m_j , such as the cluster center or a Gaussian distribution. The wide array of available clustering algorithms may seem bewildering, and covering all of them is beyond the scope of this chapter. Choosing among them for a particular application involves considerations of the kind of data being analyzed, algorithm runtime efficiency, and how much prior knowledge is available about the problem domain, which can dictate the nature of clusters sought. Fundamentally, the clustering method and its representations of clusters carries with it a definition of what a cluster is, and it is important that this be aligned with the analysis goals for the problem at hand. In this chapter, I emphasize this point by identifying for each algorithm the cluster representation as a model, m_j , even for algorithms that are not typically thought of as creating a “model.” This chapter surveys a basic collection of clustering methods useful to any practitioner who is interested in applying clustering to a new data set. The algorithms include k-means (Section 25.2), EM (Section 25.3), agglomerative (Section 25.4), and spectral (Section 25.5) clustering, with side mentions of variants such as kernel k-means and divisive clustering. The chapter also discusses each algorithm’s strengths and limitations and provides pointers to additional in-depth reading for each subject. Section 25.6 discusses methods for incorporating domain knowledge into the clustering process. This chapter concludes with a brief survey of interesting applications of clustering methods to astronomy data (Section 25.7). The chapter begins with k-means because it is both generally accessible and so widely used that understanding it can be considered a necessary prerequisite for further work in the field. EM can be viewed as a more sophisticated version of k-means that uses a generative model for each cluster and probabilistic item assignments. Agglomerative clustering is the most basic form of hierarchical clustering and provides a basis for further exploration of algorithms in that vein. Spectral clustering permits a departure from feature-vector-based clustering and can operate on data sets instead represented as affinity, or similarity matrices—cases in which only pairwise information is known. The list of algorithms covered in this chapter is representative of those most commonly in use, but it is by no means comprehensive. There is an extensive collection of existing books on clustering that provide additional background and depth. Three early books that remain useful today are Anderberg’s Cluster Analysis for Applications [3], Hartigan’s Clustering Algorithms [25], and Gordon’s Classification [22]. The latter covers basics on similarity measures, partitioning and hierarchical algorithms, fuzzy clustering, overlapping clustering, conceptual clustering, validations methods, and visualization or data reduction techniques such as principal components analysis (PCA),multidimensional scaling, and self-organizing maps. More recently, Jain et al. provided a useful and informative survey [27] of a variety of different clustering algorithms, including those mentioned here as well as fuzzy, graph-theoretic, and evolutionary clustering. Everitt’s Cluster Analysis [19] provides a modern overview of algorithms, similarity measures, and evaluation methods.
Spadone, Sara; de Pasquale, Francesco; Mantini, Dante; Della Penna, Stefania
2012-09-01
Independent component analysis (ICA) is typically applied on functional magnetic resonance imaging, electroencephalographic and magnetoencephalographic (MEG) data due to its data-driven nature. In these applications, ICA needs to be extended from single to multi-session and multi-subject studies for interpreting and assigning a statistical significance at the group level. Here a novel strategy for analyzing MEG independent components (ICs) is presented, Multivariate Algorithm for Grouping MEG Independent Components K-means based (MAGMICK). The proposed approach is able to capture spatio-temporal dynamics of brain activity in MEG studies by running ICA at subject level and then clustering the ICs across sessions and subjects. Distinctive features of MAGMICK are: i) the implementation of an efficient set of "MEG fingerprints" designed to summarize properties of MEG ICs as they are built on spatial, temporal and spectral parameters; ii) the implementation of a modified version of the standard K-means procedure to improve its data-driven character. This algorithm groups the obtained ICs automatically estimating the number of clusters through an adaptive weighting of the parameters and a constraint on the ICs independence, i.e. components coming from the same session (at subject level) or subject (at group level) cannot be grouped together. The performances of MAGMICK are illustrated by analyzing two sets of MEG data obtained during a finger tapping task and median nerve stimulation. The results demonstrate that the method can extract consistent patterns of spatial topography and spectral properties across sessions and subjects that are in good agreement with the literature. In addition, these results are compared to those from a modified version of affinity propagation clustering method. The comparison, evaluated in terms of different clustering validity indices, shows that our methodology often outperforms the clustering algorithm. Eventually, these results are confirmed by a comparison with a MEG tailored version of the self-organizing group ICA, which is largely used for fMRI IC clustering. Copyright © 2012 Elsevier Inc. All rights reserved.
Jothi, R; Mohanty, Sraban Kumar; Ojha, Aparajita
2016-04-01
Gene expression data clustering is an important biological process in DNA microarray analysis. Although there have been many clustering algorithms for gene expression analysis, finding a suitable and effective clustering algorithm is always a challenging problem due to the heterogeneous nature of gene profiles. Minimum Spanning Tree (MST) based clustering algorithms have been successfully employed to detect clusters of varying shapes and sizes. This paper proposes a novel clustering algorithm using Eigenanalysis on Minimum Spanning Tree based neighborhood graph (E-MST). As MST of a set of points reflects the similarity of the points with their neighborhood, the proposed algorithm employs a similarity graph obtained from k(') rounds of MST (k(')-MST neighborhood graph). By studying the spectral properties of the similarity matrix obtained from k(')-MST graph, the proposed algorithm achieves improved clustering results. We demonstrate the efficacy of the proposed algorithm on 12 gene expression datasets. Experimental results show that the proposed algorithm performs better than the standard clustering algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Clustering Of Left Ventricular Wall Motion Patterns
NASA Astrophysics Data System (ADS)
Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.
1982-11-01
A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.
On the problem of earthquake correlation in space and time over large distances
NASA Astrophysics Data System (ADS)
Georgoulas, G.; Konstantaras, A.; Maravelakis, E.; Katsifarakis, E.; Stylios, C. D.
2012-04-01
A quick examination of geographical maps with the epicenters of earthquakes marked on them reveals a strong tendency of these points to form compact clusters of irregular shapes and various sizes often traversing with other clusters. According to [Saleur et al. 1996] "earthquakes are correlated in space and time over large distances". This implies that seismic sequences are not formatted randomly but they follow a spatial pattern with consequent triggering of events. Seismic cluster formation is believed to be due to underlying geological natural hazards, which: a) act as the energy storage elements of the phenomenon, and b) tend to form a complex network of numerous interacting faults [Vallianatos and Tzanis, 1998]. Therefore it is imperative to "isolate" meaningful structures (clusters) in order to mine information regarding the underlying mechanism and at a second stage to test the causality effect implied by what is known as the Domino theory [Burgman, 2009]. Ongoing work by Konstantaras et al. 2011 and Katsifarakis et al. 2011 on clustering seismic sequences in the area of the Southern Hellenic Arc and progressively throughout the Greek vicinity and the entire Mediterranean region based on an explicit segmentation of the data based both on their temporal and spatial stamp, following modelling assumptions proposed by Dobrovolsky et al. 1989 and Drakatos et al. 2001, managed to identify geologically validated seismic clusters. These results suggest that that the time component should be included as a dimension during the clustering process as seismic cluster formation is dynamic and the emerging clusters propagate in time. Another issue that has not been investigated yet explicitly is the role of the magnitude of each seismic event. In other words the major seismic event should be treated differently compared to pre or post seismic sequences. Moreover the sometimes irregular and elongated shapes that appear on geophysical maps means that clustering algorithms such as the well known k-means that tend to form "well-shaped" clusters may not suffice for the problem at hand and other families of unsupervised pattern recognition methods might be a better choice. One such algorithm is the DBSCAN algorithm which is based on the notion of density. In this proposed version the density is not estimated solely on the number of seismic events occurring at a specific spatio-temporal area, but also takes into account the size of the seismic event. A second method proposes the use of a modified measure of proximity that will also account for the size of the earthquake along with traditional clustering schemes such as k-means and agglomerative clustering (k-means is seeded with a quite large number for k and the results are fed to the hierarchical algorithm in order to alleviate the memory requirements on one hand and also allow for irregular shapes on the other hand). Preliminary results of seismic cluster formation using these algorithms appear promising as they are in agreement with geophysical observations on distinct seismic regions, such as those of the neighbouring regions in the Ionian sea and that of the southern Hellenic seismic arc; as well as by the location and orientation of the mapped network of underlying natural hazards beneath each clusters vicinity.
CLUSTERING OF INTERICTAL SPIKES BY DYNAMIC TIME WARPING AND AFFINITY PROPAGATION
Thomas, John; Jin, Jing; Dauwels, Justin; Cash, Sydney S.; Westover, M. Brandon
2018-01-01
Epilepsy is often associated with the presence of spikes in electroencephalograms (EEGs). The spike waveforms vary vastly among epilepsy patients, and also for the same patient across time. In order to develop semi-automated and automated methods for detecting spikes, it is crucial to obtain a better understanding of the various spike shapes. In this paper, we develop several approaches to extract exemplars of spikes. We generate spike exemplars by applying clustering algorithms to a database of spikes from 12 patients. As similarity measures for clustering, we consider the Euclidean distance and Dynamic Time Warping (DTW). We assess two clustering algorithms, namely, K-means clustering and affinity propagation. The clustering methods are compared based on the mean squared error, and the similarity measures are assessed based on the number of generated spike clusters. Affinity propagation with DTW is shown to be the best combination for clustering epileptic spikes, since it generates fewer spike templates and does not require to pre-specify the number of spike templates. PMID:29527130
Lu, Chi-Jie; Chang, Chi-Chang
2014-01-01
Sales forecasting plays an important role in operating a business since it can be used to determine the required inventory level to meet consumer demand and avoid the problem of under/overstocking. Improving the accuracy of sales forecasting has become an important issue of operating a business. This study proposes a hybrid sales forecasting scheme by combining independent component analysis (ICA) with K-means clustering and support vector regression (SVR). The proposed scheme first uses the ICA to extract hidden information from the observed sales data. The extracted features are then applied to K-means algorithm for clustering the sales data into several disjoined clusters. Finally, the SVR forecasting models are applied to each group to generate final forecasting results. Experimental results from information technology (IT) product agent sales data reveal that the proposed sales forecasting scheme outperforms the three comparison models and hence provides an efficient alternative for sales forecasting.
2014-01-01
Sales forecasting plays an important role in operating a business since it can be used to determine the required inventory level to meet consumer demand and avoid the problem of under/overstocking. Improving the accuracy of sales forecasting has become an important issue of operating a business. This study proposes a hybrid sales forecasting scheme by combining independent component analysis (ICA) with K-means clustering and support vector regression (SVR). The proposed scheme first uses the ICA to extract hidden information from the observed sales data. The extracted features are then applied to K-means algorithm for clustering the sales data into several disjoined clusters. Finally, the SVR forecasting models are applied to each group to generate final forecasting results. Experimental results from information technology (IT) product agent sales data reveal that the proposed sales forecasting scheme outperforms the three comparison models and hence provides an efficient alternative for sales forecasting. PMID:25045738
Research on Abnormal Detection Based on Improved Combination of K - means and SVDD
NASA Astrophysics Data System (ADS)
Hao, Xiaohong; Zhang, Xiaofeng
2018-01-01
In order to improve the efficiency of network intrusion detection and reduce the false alarm rate, this paper proposes an anomaly detection algorithm based on improved K-means and SVDD. The algorithm first uses the improved K-means algorithm to cluster the training samples of each class, so that each class is independent and compact in class; Then, according to the training samples, the SVDD algorithm is used to construct the minimum superspheres. The subordinate relationship of the samples is determined by calculating the distance of the minimum superspheres constructed by SVDD. If the test sample is less than the center of the hypersphere, the test sample belongs to this class, otherwise it does not belong to this class, after several comparisons, the final test of the effective detection of the test sample.In this paper, we use KDD CUP99 data set to simulate the proposed anomaly detection algorithm. The results show that the algorithm has high detection rate and low false alarm rate, which is an effective network security protection method.
Stream Clustering of Growing Objects
NASA Astrophysics Data System (ADS)
Siddiqui, Zaigham Faraz; Spiliopoulou, Myra
We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of
Exploratory Item Classification Via Spectral Graph Clustering
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2017-01-01
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire. PMID:29033476
Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set
NASA Astrophysics Data System (ADS)
Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif
2018-03-01
Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.
Model-based clustering for RNA-seq data.
Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P
2014-01-15
RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org
Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses
ERIC Educational Resources Information Center
Huang, Guan-Hua; Wang, Su-Mei; Hsu, Chung-Chu
2011-01-01
Statisticians typically estimate the parameters of latent class and latent profile models using the Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fitting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent classes that best satisfy the…
Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering.
Xia, Yong; Han, Junze; Wang, Kuanquan
2015-01-01
Based on the idea of telemedicine, 24-hour uninterrupted monitoring on electrocardiograms (ECG) has started to be implemented. To create an intelligent ECG monitoring system, an efficient and quick detection algorithm for the characteristic waveforms is needed. This paper aims to give a quick and effective method for detecting QRS-complexes and R-waves in ECGs. The real ECG signal from the MIT-BIH Arrhythmia Database is used for the performance evaluation. The method proposed combined a wavelet transform and the K-means clustering algorithm. A wavelet transform is adopted in the data analysis and preprocessing. Then, based on the slope information of the filtered data, a segmented K-means clustering method is adopted to detect the QRS region. Detection of the R-peak is based on comparing the local amplitudes in each QRS region, which is different from other approaches, and the time cost of R-wave detection is reduced. Of the tested 8 records (total 18201 beats) from the MIT-BIH Arrhythmia Database, an average R-peak detection sensitivity of 99.72 and a positive predictive value of 99.80% are gained; the average time consumed detecting a 30-min original signal is 5.78s, which is competitive with other methods.
Reconstruction of a digital core containing clay minerals based on a clustering algorithm.
He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling
2017-10-01
It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
Fully convolutional network with cluster for semantic segmentation
NASA Astrophysics Data System (ADS)
Ma, Xiao; Chen, Zhongbi; Zhang, Jianlin
2018-04-01
At present, image semantic segmentation technology has been an active research topic for scientists in the field of computer vision and artificial intelligence. Especially, the extensive research of deep neural network in image recognition greatly promotes the development of semantic segmentation. This paper puts forward a method based on fully convolutional network, by cluster algorithm k-means. The cluster algorithm using the image's low-level features and initializing the cluster centers by the super-pixel segmentation is proposed to correct the set of points with low reliability, which are mistakenly classified in great probability, by the set of points with high reliability in each clustering regions. This method refines the segmentation of the target contour and improves the accuracy of the image segmentation.
NASA Astrophysics Data System (ADS)
Arimbi, Mentari Dian; Bustamam, Alhadi; Lestari, Dian
2017-03-01
Data clustering can be executed through partition or hierarchical method for many types of data including DNA sequences. Both clustering methods can be combined by processing partition algorithm in the first level and hierarchical in the second level, called hybrid clustering. In the partition phase some popular methods such as PAM, K-means, or Fuzzy c-means methods could be applied. In this study we selected partitioning around medoids (PAM) in our partition stage. Furthermore, following the partition algorithm, in hierarchical stage we applied divisive analysis algorithm (DIANA) in order to have more specific clusters and sub clusters structures. The number of main clusters is determined using Davies Bouldin Index (DBI) value. We choose the optimal number of clusters if the results minimize the DBI value. In this work, we conduct the clustering on 1252 HPV DNA sequences data from GenBank. The characteristic extraction is initially performed, followed by normalizing and genetic distance calculation using Euclidean distance. In our implementation, we used the hybrid PAM and DIANA using the R open source programming tool. In our results, we obtained 3 main clusters with average DBI value is 0.979, using PAM in the first stage. After executing DIANA in the second stage, we obtained 4 sub clusters for Cluster-1, 9 sub clusters for Cluster-2 and 2 sub clusters in Cluster-3, with the BDI value 0.972, 0.771, and 0.768 for each main cluster respectively. Since the second stage produce lower DBI value compare to the DBI value in the first stage, we conclude that this hybrid approach can improve the accuracy of our clustering results.
Enhanced Trajectory Based Similarity Prediction with Uncertainty Quantification
2014-10-02
challenge by obtaining the highest score by using a data-driven prognostics method to predict the RUL of a turbofan engine (Saxena & Goebel, PHM08...process for multi-regime health assessment. To illustrate multi-regime partitioning, the “ Turbofan Engine Degradation simulation” data set from...hence the name k- means. Figure 3 shows the results of the k-means clustering algorithm on the “ Turbofan Engine Degradation simulation” data set. As
Mwangi, Benson; Soares, Jair C; Hasan, Khader M
2014-10-30
Neuroimaging machine learning studies have largely utilized supervised algorithms - meaning they require both neuroimaging scan data and corresponding target variables (e.g. healthy vs. diseased) to be successfully 'trained' for a prediction task. Noticeably, this approach may not be optimal or possible when the global structure of the data is not well known and the researcher does not have an a priori model to fit the data. We set out to investigate the utility of an unsupervised machine learning technique; t-distributed stochastic neighbour embedding (t-SNE) in identifying 'unseen' sample population patterns that may exist in high-dimensional neuroimaging data. Multimodal neuroimaging scans from 92 healthy subjects were pre-processed using atlas-based methods, integrated and input into the t-SNE algorithm. Patterns and clusters discovered by the algorithm were visualized using a 2D scatter plot and further analyzed using the K-means clustering algorithm. t-SNE was evaluated against classical principal component analysis. Remarkably, based on unlabelled multimodal scan data, t-SNE separated study subjects into two very distinct clusters which corresponded to subjects' gender labels (cluster silhouette index value=0.79). The resulting clusters were used to develop an unsupervised minimum distance clustering model which identified 93.5% of subjects' gender. Notably, from a neuropsychiatric perspective this method may allow discovery of data-driven disease phenotypes or sub-types of treatment responders. Copyright © 2014 Elsevier B.V. All rights reserved.
Clustering approaches to identifying gene expression patterns from DNA microarray data.
Do, Jin Hwan; Choi, Dong-Kug
2008-04-30
The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.
Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis
NASA Astrophysics Data System (ADS)
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-01-01
To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.
NASA Astrophysics Data System (ADS)
Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.
2015-05-01
The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.
Sarrafzadeh, Omid; Dehnavi, Alireza Mehri
2015-01-01
Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection.
Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing
Sarrafzadeh, Omid; Dehnavi, Alireza Mehri
2015-01-01
Background: Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. Materials and Methods: The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. Results: The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. Conclusions: In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection. PMID:26605213
NASA Astrophysics Data System (ADS)
Ma, Xiaoke; Wang, Bingbo; Yu, Liang
2018-01-01
Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.
Lanying Lin; Sheng He; Feng Fu; Xiping Wang
2015-01-01
Wood failure percentage (WFP) is an important index for evaluating the bond strength of plywood. Currently, the method used for detecting WFP is visual inspection, which lacks efficiency. In order to improve it, image processing methods are applied to wood failure detection. The present study used thresholding and K-means clustering algorithms in wood failure detection...
Sensitivity evaluation of dynamic speckle activity measurements using clustering methods.
Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H
2010-07-01
We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.
Machine learning in APOGEE. Unsupervised spectral classification with K-means
NASA Astrophysics Data System (ADS)
Garcia-Dias, Rafael; Allende Prieto, Carlos; Sánchez Almeida, Jorge; Ordovás-Pascual, Ignacio
2018-05-01
Context. The volume of data generated by astronomical surveys is growing rapidly. Traditional analysis techniques in spectroscopy either demand intensive human interaction or are computationally expensive. In this scenario, machine learning, and unsupervised clustering algorithms in particular, offer interesting alternatives. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) offers a vast data set of near-infrared stellar spectra, which is perfect for testing such alternatives. Aims: Our research applies an unsupervised classification scheme based on K-means to the massive APOGEE data set. We explore whether the data are amenable to classification into discrete classes. Methods: We apply the K-means algorithm to 153 847 high resolution spectra (R ≈ 22 500). We discuss the main virtues and weaknesses of the algorithm, as well as our choice of parameters. Results: We show that a classification based on normalised spectra captures the variations in stellar atmospheric parameters, chemical abundances, and rotational velocity, among other factors. The algorithm is able to separate the bulge and halo populations, and distinguish dwarfs, sub-giants, RC, and RGB stars. However, a discrete classification in flux space does not result in a neat organisation in the parameters' space. Furthermore, the lack of obvious groups in flux space causes the results to be fairly sensitive to the initialisation, and disrupts the efficiency of commonly-used methods to select the optimal number of clusters. Our classification is publicly available, including extensive online material associated with the APOGEE Data Release 12 (DR12). Conclusions: Our description of the APOGEE database can help greatly with the identification of specific types of targets for various applications. We find a lack of obvious groups in flux space, and identify limitations of the K-means algorithm in dealing with this kind of data. Full Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A98
Application of k-means clustering algorithm in grouping the DNA sequences of hepatitis B virus (HBV)
NASA Astrophysics Data System (ADS)
Bustamam, A.; Tasman, H.; Yuniarti, N.; Frisca, Mursidah, I.
2017-07-01
Based on WHO data, an estimated of 15 millions people worldwide who are infected with hepatitis B (HBsAg+), which is caused by HBV virus, are also infected by hepatitis D, which is caused by HDV virus. Hepatitis D infection can occur simultaneously with hepatitis B (co infection) or after a person is exposed to chronic hepatitis B (super infection). Since HDV cannot live without HBV, HDV infection is closely related to HBV infection, hence it is very realistic that every effort of prevention against hepatitis B can indirectly prevent hepatitis D. This paper presents clustering of HBV DNA sequences by using k-means clustering algorithm and R programming. Clustering processes are started with collecting HBV DNA sequences from GenBank, then performing extraction HBV DNA sequences using n-mers frequency and furthermore the extraction results are collected as a matrix and normalized using the min-max normalization with interval [0, 1] which will later be used as an input data. The number of clusters is two and the initial centroid selected of the cluster is chosen randomly. In each iteration, the distance of every object to each centroid are calculated using the Euclidean distance and the minimum distance is selected to determine the membership in a cluster until two convergent clusters are created. As the result, the HBV viruses in the first cluster is more virulent than the HBV viruses in the second cluster, so the HBV viruses in the first cluster can potentially evolve with HDV viruses that cause hepatitis D.
Self-similarity Clustering Event Detection Based on Triggers Guidance
NASA Astrophysics Data System (ADS)
Zhang, Xianfei; Li, Bicheng; Tian, Yuxuan
Traditional method of Event Detection and Characterization (EDC) regards event detection task as classification problem. It makes words as samples to train classifier, which can lead to positive and negative samples of classifier imbalance. Meanwhile, there is data sparseness problem of this method when the corpus is small. This paper doesn't classify event using word as samples, but cluster event in judging event types. It adopts self-similarity to convergence the value of K in K-means algorithm by the guidance of event triggers, and optimizes clustering algorithm. Then, combining with named entity and its comparative position information, the new method further make sure the pinpoint type of event. The new method avoids depending on template of event in tradition methods, and its result of event detection can well be used in automatic text summarization, text retrieval, and topic detection and tracking.
A Highly Efficient Design Strategy for Regression with Outcome Pooling
Mitchell, Emily M.; Lyles, Robert H.; Manatunga, Amita K.; Perkins, Neil J.; Schisterman, Enrique F.
2014-01-01
The potential for research involving biospecimens can be hindered by the prohibitive cost of performing laboratory assays on individual samples. To mitigate this cost, strategies such as randomly selecting a portion of specimens for analysis or randomly pooling specimens prior to performing laboratory assays may be employed. These techniques, while effective in reducing cost, are often accompanied by a considerable loss of statistical efficiency. We propose a novel pooling strategy based on the k-means clustering algorithm to reduce laboratory costs while maintaining a high level of statistical efficiency when predictor variables are measured on all subjects, but the outcome of interest is assessed in pools. We perform simulations motivated by the BioCycle study to compare this k-means pooling strategy with current pooling and selection techniques under simple and multiple linear regression models. While all of the methods considered produce unbiased estimates and confidence intervals with appropriate coverage, pooling under k-means clustering provides the most precise estimates, closely approximating results from the full data and losing minimal precision as the total number of pools decreases. The benefits of k-means clustering evident in the simulation study are then applied to an analysis of the BioCycle dataset. In conclusion, when the number of lab tests is limited by budget, pooling specimens based on k-means clustering prior to performing lab assays can be an effective way to save money with minimal information loss in a regression setting. PMID:25220822
A highly efficient design strategy for regression with outcome pooling.
Mitchell, Emily M; Lyles, Robert H; Manatunga, Amita K; Perkins, Neil J; Schisterman, Enrique F
2014-12-10
The potential for research involving biospecimens can be hindered by the prohibitive cost of performing laboratory assays on individual samples. To mitigate this cost, strategies such as randomly selecting a portion of specimens for analysis or randomly pooling specimens prior to performing laboratory assays may be employed. These techniques, while effective in reducing cost, are often accompanied by a considerable loss of statistical efficiency. We propose a novel pooling strategy based on the k-means clustering algorithm to reduce laboratory costs while maintaining a high level of statistical efficiency when predictor variables are measured on all subjects, but the outcome of interest is assessed in pools. We perform simulations motivated by the BioCycle study to compare this k-means pooling strategy with current pooling and selection techniques under simple and multiple linear regression models. While all of the methods considered produce unbiased estimates and confidence intervals with appropriate coverage, pooling under k-means clustering provides the most precise estimates, closely approximating results from the full data and losing minimal precision as the total number of pools decreases. The benefits of k-means clustering evident in the simulation study are then applied to an analysis of the BioCycle dataset. In conclusion, when the number of lab tests is limited by budget, pooling specimens based on k-means clustering prior to performing lab assays can be an effective way to save money with minimal information loss in a regression setting. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua
2017-05-01
With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.
Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique
2018-02-01
The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1
Efficient similarity-based data clustering by optimal object to cluster reallocation.
Rossignol, Mathias; Lagrange, Mathieu; Cont, Arshia
2018-01-01
We present an iterative flat hard clustering algorithm designed to operate on arbitrary similarity matrices, with the only constraint that these matrices be symmetrical. Although functionally very close to kernel k-means, our proposal performs a maximization of average intra-class similarity, instead of a squared distance minimization, in order to remain closer to the semantics of similarities. We show that this approach permits the relaxing of some conditions on usable affinity matrices like semi-positiveness, as well as opening possibilities for computational optimization required for large datasets. Systematic evaluation on a variety of data sets shows that compared with kernel k-means and the spectral clustering methods, the proposed approach gives equivalent or better performance, while running much faster. Most notably, it significantly reduces memory access, which makes it a good choice for large data collections. Material enabling the reproducibility of the results is made available online.
A local search for a graph clustering problem
NASA Astrophysics Data System (ADS)
Navrotskaya, Anna; Il'ev, Victor
2016-10-01
In the clustering problems one has to partition a given set of objects (a data set) into some subsets (called clusters) taking into consideration only similarity of the objects. One of most visual formalizations of clustering is graph clustering, that is grouping the vertices of a graph into clusters taking into consideration the edge structure of the graph whose vertices are objects and edges represent similarities between the objects. In the graph k-clustering problem the number of clusters does not exceed k and the goal is to minimize the number of edges between clusters and the number of missing edges within clusters. This problem is NP-hard for any k ≥ 2. We propose a polynomial time (2k-1)-approximation algorithm for graph k-clustering. Then we apply a local search procedure to the feasible solution found by this algorithm and hold experimental research of obtained heuristics.
Open source clustering software.
de Hoon, M J L; Imoto, S; Nolan, J; Miyano, S
2004-06-12
We have implemented k-means clustering, hierarchical clustering and self-organizing maps in a single multipurpose open-source library of C routines, callable from other C and C++ programs. Using this library, we have created an improved version of Michael Eisen's well-known Cluster program for Windows, Mac OS X and Linux/Unix. In addition, we generated a Python and a Perl interface to the C Clustering Library, thereby combining the flexibility of a scripting language with the speed of C. The C Clustering Library and the corresponding Python C extension module Pycluster were released under the Python License, while the Perl module Algorithm::Cluster was released under the Artistic License. The GUI code Cluster 3.0 for Windows, Macintosh and Linux/Unix, as well as the corresponding command-line program, were released under the same license as the original Cluster code. The complete source code is available at http://bonsai.ims.u-tokyo.ac.jp/mdehoon/software/cluster. Alternatively, Algorithm::Cluster can be downloaded from CPAN, while Pycluster is also available as part of the Biopython distribution.
A clustering algorithm for sample data based on environmental pollution characteristics
NASA Astrophysics Data System (ADS)
Chen, Mei; Wang, Pengfei; Chen, Qiang; Wu, Jiadong; Chen, Xiaoyun
2015-04-01
Environmental pollution has become an issue of serious international concern in recent years. Among the receptor-oriented pollution models, CMB, PMF, UNMIX, and PCA are widely used as source apportionment models. To improve the accuracy of source apportionment and classify the sample data for these models, this study proposes an easy-to-use, high-dimensional EPC algorithm that not only organizes all of the sample data into different groups according to the similarities in pollution characteristics such as pollution sources and concentrations but also simultaneously detects outliers. The main clustering process consists of selecting the first unlabelled point as the cluster centre, then assigning each data point in the sample dataset to its most similar cluster centre according to both the user-defined threshold and the value of similarity function in each iteration, and finally modifying the clusters using a method similar to k-Means. The validity and accuracy of the algorithm are tested using both real and synthetic datasets, which makes the EPC algorithm practical and effective for appropriately classifying sample data for source apportionment models and helpful for better understanding and interpreting the sources of pollution.
Multi-Scale Voxel Segmentation for Terrestrial Lidar Data within Marshes
NASA Astrophysics Data System (ADS)
Nguyen, C. T.; Starek, M. J.; Tissot, P.; Gibeaut, J. C.
2016-12-01
The resilience of marshes to a rising sea is dependent on their elevation response. Terrestrial laser scanning (TLS) is a detailed topographic approach for accurate, dense surface measurement with high potential for monitoring of marsh surface elevation response. The dense point cloud provides a 3D representation of the surface, which includes both terrain and non-terrain objects. Extraction of topographic information requires filtering of the data into like-groups or classes, therefore, methods must be incorporated to identify structure in the data prior to creation of an end product. A voxel representation of three-dimensional space provides quantitative visualization and analysis for pattern recognition. The objectives of this study are threefold: 1) apply a multi-scale voxel approach to effectively extract geometric features from the TLS point cloud data, 2) investigate the utility of K-means and Self Organizing Map (SOM) clustering algorithms for segmentation, and 3) utilize a variety of validity indices to measure the quality of the result. TLS data were collected at a marsh site along the central Texas Gulf Coast using a Riegl VZ 400 TLS. The site consists of both exposed and vegetated surface regions. To characterize structure of the point cloud, octree segmentation is applied to create a tree data structure of voxels containing the points. The flexibility of voxels in size and point density makes this algorithm a promising candidate to locally extract statistical and geometric features of the terrain including surface normal and curvature. The characteristics of the voxel itself such as the volume and point density are also computed and assigned to each point as are laser pulse characteristics. The features extracted from the voxelization are then used as input for clustering of the points using the K-means and SOM clustering algorithms. Optimal number of clusters are then determined based on evaluation of cluster separability criterions. Results for different combinations of the feature space vector and differences between K-means and SOM clustering will be presented. The developed method provides a novel approach for compressing TLS scene complexity in marshes, such as for vegetation biomass studies or erosion monitoring.
A hybrid approach to select features and classify diseases based on medical data
NASA Astrophysics Data System (ADS)
AbdelLatif, Hisham; Luo, Jiawei
2018-03-01
Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms
Effective traffic features selection algorithm for cyber-attacks samples
NASA Astrophysics Data System (ADS)
Li, Yihong; Liu, Fangzheng; Du, Zhenyu
2018-05-01
By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.
NASA Astrophysics Data System (ADS)
Juniati, D.; Khotimah, C.; Wardani, D. E. K.; Budayasa, K.
2018-01-01
The heart abnormalities can be detected from heart sound. A heart sound can be heard directly with a stethoscope or indirectly by a phonocardiograph, a machine of the heart sound recording. This paper presents the implementation of fractal dimension theory to make a classification of phonocardiograms into a normal heart sound, a murmur, or an extrasystole. The main algorithm used to calculate the fractal dimension was Higuchi’s Algorithm. There were two steps to make a classification of phonocardiograms, feature extraction, and classification. For feature extraction, we used Discrete Wavelet Transform to decompose the signal of heart sound into several sub-bands depending on the selected level. After the decomposition process, the signal was processed using Fast Fourier Transform (FFT) to determine the spectral frequency. The fractal dimension of the FFT output was calculated using Higuchi Algorithm. The classification of fractal dimension of all phonocardiograms was done with KNN and Fuzzy c-mean clustering methods. Based on the research results, the best accuracy obtained was 86.17%, the feature extraction by DWT decomposition level 3 with the value of kmax 50, using 5-fold cross validation and the number of neighbors was 5 at K-NN algorithm. Meanwhile, for fuzzy c-mean clustering, the accuracy was 78.56%.
Improving data retrieval quality: Evidence based medicine perspective.
Kamalov, M; Dobrynin, V; Balykina, J; Kolbin, A; Verbitskaya, E; Kasimova, M
2015-01-01
The actively developing approach in modern medicine is the approach focused on principles of evidence-based medicine. The assessment of quality and reliability of studies is needed. However, in some cases studies corresponding to the first level of evidence may contain errors in randomized control trials (RCTs). Solution of the problem is the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Studies both in the fields of medicine and information retrieval are conducted for developing search engines for the MEDLINE database [1]; combined techniques for summarization and information retrieval targeted to solving problems of finding the best medication based on the levels of evidence are being developed [2]. Based on the relevance and demand for studies both in the field of medicine and information retrieval, it was decided to start the development of a search engine for the MEDLINE database search on the basis of the Saint-Petersburg State University with the support of Pavlov First Saint-Petersburg State Medical University and Tashkent Institute of Postgraduate Medical Education. Novelty and value of the proposed system are characterized by the use of ranking method of relevant abstracts. It is suggested that the system will be able to perform ranking based on studies level of evidence and to apply GRADE criteria for system evaluation. The assigned task falls within the domain of information retrieval and machine learning. Based on the results of implementation from previous work [3], in which the main goal was to cluster abstracts from MEDLINE database by subtypes of medical interventions, a set of algorithms for clustering in this study was selected: K-means, K-means ++, EM from the sklearn (http://scikit-learn.org) and WEKA (http://www.cs.waikato.ac.nz/~ml/weka/) libraries, together with the methods of Latent Semantic Analysis (LSA) [4] choosing the first 210 facts and the model "bag of words" [5] to represent clustered documents. During the process of abstracts classification, few algorithms were tested including: Complement Naive Bayes [6], Sequential Minimal Optimization (SMO) [7] and non linear SVM from the WEKA library. The first step of this study was to markup abstracts of articles from the MEDLINE by containing and not containing a medical intervention. For this purpose, based on our previous work [8] a web-crawler was modified to perform the necessary markuping. The next step was to evaluate the clustering algorithms at the markup abstracts. As a result of clustering abstracts by two groups, when applying the LSA and choosing first 210 facts, the following results were obtained:1) K-means: Purity = 0,5598, Normalized Entropy = 0.5994;2)K-means ++: Purity = 0,6743, Normalized Entropy = 0.4996;3)EM: Purity = 0,5443, Normalized Entropy = 0.6344.When applying the model "bag of words":1)K-means: Purity = 0,5134, Normalized Entropy = 0.6254;2)K-means ++: Purity = 0,5645, Normalized Entropy = 0.5299;3)EM: Purity = 0,5247, Normalized Entropy = 0.6345.Then, studies which contain medical intervention have been considered and classified by the subtypes of medical interventions. At the process of classification abstracts by subtypes of medical interventions, abstracts were presented as a "bag of words" model with the removal of stop words. 1)Complement Naive Bayes: macro F-measure = 0.6934, micro F-measure = 0.7234;2)Sequantial Minimal Optimization: macro F-measure = 0.6543, micro F-measure = 0.7042;3)Non linear SVM: macro F-measure = 0.6835, micro F-measure = 0.7642. Based on the results of computational experiments, the best results of abstract clustering by containing and not containing medical intervention were obtained using the K-Means ++ algorithm together with LSA, choosing the first 210 facts. The quality of classification abstracts by subtypes of medical interventions value for existing ones [8] has been improved using non linear SVM algorithm, with "bag of words" model and the removal of stop words. The results of clustering obtained in this study will help in grouping abstracts by levels of evidence, using the classification by subtypes of medical interventions and it will be possible to extract information from the abstracts on specific types of interventions.
Nagwani, Naresh Kumar; Deo, Shirish V
2014-01-01
Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm.
Nagwani, Naresh Kumar; Deo, Shirish V.
2014-01-01
Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm. PMID:25374939
Hybrid analysis for indicating patients with breast cancer using temperature time series.
Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura
2016-07-01
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Convex Clustering: An Attractive Alternative to Hierarchical Clustering
Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth
2015-01-01
The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340
Convex clustering: an attractive alternative to hierarchical clustering.
Chen, Gary K; Chi, Eric C; Ranola, John Michael O; Lange, Kenneth
2015-05-01
The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/.
New clinical grading scales and objective measurement for conjunctival injection.
Park, In Ki; Chun, Yeoun Sook; Kim, Kwang Gi; Yang, Hee Kyung; Hwang, Jeong-Min
2013-08-05
To establish a new clinical grading scale and objective measurement method to evaluate conjunctival injection. Photographs of conjunctival injection with variable ocular diseases in 429 eyes were reviewed. Seventy-three images with concordance by three ophthalmologists were classified into a 4-step and 10-step subjective grading scale, and used as standard photographs. Each image was quantified in four ways: the relative magnitude of the redness component of each red-green-blue (RGB) pixel; two different algorithms based on the occupied area by blood vessels (K-means clustering with LAB color model and contrast-limited adaptive histogram equalization [CLAHE] algorithm); and the presence of blood vessel edges, based on the Canny edge-detection algorithm. Area under the receiver operating characteristic curves (AUCs) were calculated to summarize diagnostic accuracies of the four algorithms. The RGB color model, K-means clustering with LAB color model, and CLAHE algorithm showed good correlation with the clinical 10-step grading scale (R = 0.741, 0.784, 0.919, respectively) and with the clinical 4-step grading scale (R = 0.645, 0.702, 0.838, respectively). The CLAHE method showed the largest AUC, best distinction power (P < 0.001, ANOVA, Bonferroni multiple comparison test), and high reproducibility (R = 0.996). CLAHE algorithm showed the best correlation with the 10-step and 4-step subjective clinical grading scales together with high distinction power and reproducibility. CLAHE algorithm can be a useful for method for assessment of conjunctival injection.
A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...
Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis
NASA Astrophysics Data System (ADS)
Yen, Chi-Fu; Sivasankar, Sanjeevi
2018-03-01
Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.
Implementation of K-Means Clustering Method for Electronic Learning Model
NASA Astrophysics Data System (ADS)
Latipa Sari, Herlina; Suranti Mrs., Dewi; Natalia Zulita, Leni
2017-12-01
Teaching and Learning process at SMK Negeri 2 Bengkulu Tengah has applied e-learning system for teachers and students. The e-learning was based on the classification of normative, productive, and adaptive subjects. SMK Negeri 2 Bengkulu Tengah consisted of 394 students and 60 teachers with 16 subjects. The record of e-learning database was used in this research to observe students’ activity pattern in attending class. K-Means algorithm in this research was used to classify students’ learning activities using e-learning, so that it was obtained cluster of students’ activity and improvement of student’s ability. Implementation of K-Means Clustering method for electronic learning model at SMK Negeri 2 Bengkulu Tengah was conducted by observing 10 students’ activities, namely participation of students in the classroom, submit assignment, view assignment, add discussion, view discussion, add comment, download course materials, view article, view test, and submit test. In the e-learning model, the testing was conducted toward 10 students that yielded 2 clusters of membership data (C1 and C2). Cluster 1: with membership percentage of 70% and it consisted of 6 members, namely 1112438 Anggi Julian, 1112439 Anis Maulita, 1112441 Ardi Febriansyah, 1112452 Berlian Sinurat, 1112460 Dewi Anugrah Anwar and 1112467 Eka Tri Oktavia Sari. Cluster 2:with membership percentage of 30% and it consisted of 4 members, namely 1112463 Dosita Afriyani, 1112471 Erda Novita, 1112474 Eskardi and 1112477 Fachrur Rozi.
Identifying protein complexes based on brainstorming strategy.
Shen, Xianjun; Zhou, Jin; Yi, Li; Hu, Xiaohua; He, Tingting; Yang, Jincai
2016-11-01
Protein complexes comprising of interacting proteins in protein-protein interaction network (PPI network) play a central role in driving biological processes within cells. Recently, more and more swarm intelligence based algorithms to detect protein complexes have been emerging, which have become the research hotspot in proteomics field. In this paper, we propose a novel algorithm for identifying protein complexes based on brainstorming strategy (IPC-BSS), which is integrated into the main idea of swarm intelligence optimization and the improved K-means algorithm. Distance between the nodes in PPI network is defined by combining the network topology and gene ontology (GO) information. Inspired by human brainstorming process, IPC-BSS algorithm firstly selects the clustering center nodes, and then they are separately consolidated with the other nodes with short distance to form initial clusters. Finally, we put forward two ways of updating the initial clusters to search optimal results. Experimental results show that our IPC-BSS algorithm outperforms the other classic algorithms on yeast and human PPI networks, and it obtains many predicted protein complexes with biological significance. Copyright © 2016 Elsevier Inc. All rights reserved.
Kurczynska, Monika; Kotulska, Malgorzata
2018-01-01
Mirror protein structures are often considered as artifacts in modeling protein structures. However, they may soon become a new branch of biochemistry. Moreover, methods of protein structure reconstruction, based on their residue-residue contact maps, need methodology to differentiate between models of native and mirror orientation, especially regarding the reconstructed backbones. We analyzed 130 500 structural protein models obtained from contact maps of 1 305 SCOP domains belonging to all 7 structural classes. On average, the same numbers of native and mirror models were obtained among 100 models generated for each domain. Since their structural features are often not sufficient for differentiating between the two types of model orientations, we proposed to apply various energy terms (ETs) from PyRosetta to separate native and mirror models. To automate the procedure for differentiating these models, the k-means clustering algorithm was applied. Using total energy did not allow to obtain appropriate clusters-the accuracy of the clustering for class A (all helices) was no more than 0.52. Therefore, we tested a series of different k-means clusterings based on various combinations of ETs. Finally, applying two most differentiating ETs for each class allowed to obtain satisfying results. To unify the method for differentiating between native and mirror models, independent of their structural class, the two best ETs for each class were considered. Finally, the k-means clustering algorithm used three common ETs: probability of amino acid assuming certain values of dihedral angles Φ and Ψ, Ramachandran preferences and Coulomb interactions. The accuracies of clustering with these ETs were in the range between 0.68 and 0.76, with sensitivity and selectivity in the range between 0.68 and 0.87, depending on the structural class. The method can be applied to all fully-automated tools for protein structure reconstruction based on contact maps, especially those analyzing big sets of models.
Towards a PTAS for the generalized TSP in grid clusters
NASA Astrophysics Data System (ADS)
Khachay, Michael; Neznakhina, Katherine
2016-10-01
The Generalized Traveling Salesman Problem (GTSP) is a combinatorial optimization problem, which is to find a minimum cost cycle visiting one point (city) from each cluster exactly. We consider a geometric case of this problem, where n nodes are given inside the integer grid (in the Euclidean plane), each grid cell is a unit square. Clusters are induced by cells `populated' by nodes of the given instance. Even in this special setting, the GTSP remains intractable enclosing the classic Euclidean TSP on the plane. Recently, it was shown that the problem has (1.5+8√2+ɛ)-approximation algorithm with complexity bound depending on n and k polynomially, where k is the number of clusters. In this paper, we propose two approximation algorithms for the Euclidean GTSP on grid clusters. For any fixed k, both algorithms are PTAS. Time complexity of the first one remains polynomial for k = O(log n) while the second one is a PTAS, when k = n - O(log n).
A system for learning statistical motion patterns.
Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve
2006-09-01
Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.
SLIC superpixels compared to state-of-the-art superpixel methods.
Achanta, Radhakrishna; Shaji, Appu; Smith, Kevin; Lucchi, Aurelien; Fua, Pascal; Süsstrunk, Sabine
2012-11-01
Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
A semi-supervised classification algorithm using the TAD-derived background as training data
NASA Astrophysics Data System (ADS)
Fan, Lei; Ambeau, Brittany; Messinger, David W.
2013-05-01
In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.
Kamali, Tahereh; Stashuk, Daniel
2016-10-01
Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright © 2016 Elsevier B.V. All rights reserved.
m-BIRCH: an online clustering approach for computer vision applications
NASA Astrophysics Data System (ADS)
Madan, Siddharth K.; Dana, Kristin J.
2015-03-01
We adapt a classic online clustering algorithm called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), to incrementally cluster large datasets of features commonly used in multimedia and computer vision. We call the adapted version modified-BIRCH (m-BIRCH). The algorithm uses only a fraction of the dataset memory to perform clustering, and updates the clustering decisions when new data comes in. Modifications made in m-BIRCH enable data driven parameter selection and effectively handle varying density regions in the feature space. Data driven parameter selection automatically controls the level of coarseness of the data summarization. Effective handling of varying density regions is necessary to well represent the different density regions in data summarization. We use m-BIRCH to cluster 840K color SIFT descriptors, and 60K outlier corrupted grayscale patches. We use the algorithm to cluster datasets consisting of challenging non-convex clustering patterns. Our implementation of the algorithm provides an useful clustering tool and is made publicly available.
The composite sequential clustering technique for analysis of multispectral scanner data
NASA Technical Reports Server (NTRS)
Su, M. Y.
1972-01-01
The clustering technique consists of two parts: (1) a sequential statistical clustering which is essentially a sequential variance analysis, and (2) a generalized K-means clustering. In this composite clustering technique, the output of (1) is a set of initial clusters which are input to (2) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum likelihood classification techniques. The mathematical algorithms for the composite sequential clustering program and a detailed computer program description with job setup are given.
Small target detection using objectness and saliency
NASA Astrophysics Data System (ADS)
Zhang, Naiwen; Xiao, Yang; Fang, Zhiwen; Yang, Jian; Wang, Li; Li, Tao
2017-10-01
We are motived by the need for generic object detection algorithm which achieves high recall for small targets in complex scenes with acceptable computational efficiency. We propose a novel object detection algorithm, which has high localization quality with acceptable computational cost. Firstly, we obtain the objectness map as in BING[1] and use NMS to get the top N points. Then, k-means algorithm is used to cluster them into K classes according to their location. We set the center points of the K classes as seed points. For each seed point, an object potential region is extracted. Finally, a fast salient object detection algorithm[2] is applied to the object potential regions to highlight objectlike pixels, and a series of efficient post-processing operations are proposed to locate the targets. Our method runs at 5 FPS on 1000*1000 images, and significantly outperforms previous methods on small targets in cluttered background.
Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Liu, Ti C.; Mitra, Sunanda
1996-06-01
Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.
Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi
2017-01-01
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986
Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong
2017-01-01
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
NASA Astrophysics Data System (ADS)
Gu, Hui; Zhu, Hongxia; Cui, Yanfeng; Si, Fengqi; Xue, Rui; Xi, Han; Zhang, Jiayu
2018-06-01
An integrated combustion optimization scheme is proposed for the combined considering the restriction in coal-fired boiler combustion efficiency and outlet NOx emissions. Continuous attribute discretization and reduction techniques are handled as optimization preparation by E-Cluster and C_RED methods, in which the segmentation numbers don't need to be provided in advance and can be continuously adapted with data characters. In order to obtain results of multi-objections with clustering method for mixed data, a modified K-prototypes algorithm is then proposed. This algorithm can be divided into two stages as K-prototypes algorithm for clustering number self-adaptation and clustering for multi-objective optimization, respectively. Field tests were carried out at a 660 MW coal-fired boiler to provide real data as a case study for controllable attribute discretization and reduction in boiler system and obtaining optimization parameters considering [ maxηb, minyNOx ] multi-objective rule.
NASA Astrophysics Data System (ADS)
Farsadnia, F.; Rostami Kamrood, M.; Moghaddam Nia, A.; Modarres, R.; Bray, M. T.; Han, D.; Sadatinejad, J.
2014-02-01
One of the several methods in estimating flood quantiles in ungauged or data-scarce watersheds is regional frequency analysis. Amongst the approaches to regional frequency analysis, different clustering techniques have been proposed to determine hydrologically homogeneous regions in the literature. Recently, Self-Organization feature Map (SOM), a modern hydroinformatic tool, has been applied in several studies for clustering watersheds. However, further studies are still needed with SOM on the interpretation of SOM output map for identifying hydrologically homogeneous regions. In this study, two-level SOM and three clustering methods (fuzzy c-mean, K-mean, and Ward's Agglomerative hierarchical clustering) are applied in an effort to identify hydrologically homogeneous regions in Mazandaran province watersheds in the north of Iran, and their results are compared with each other. Firstly the SOM is used to form a two-dimensional feature map. Next, the output nodes of the SOM are clustered by using unified distance matrix algorithm and three clustering methods to form regions for flood frequency analysis. The heterogeneity test indicates the four regions achieved by the two-level SOM and Ward approach after adjustments are sufficiently homogeneous. The results suggest that the combination of SOM and Ward is much better than the combination of either SOM and FCM or SOM and K-mean.
A fast parallel clustering algorithm for molecular simulation trajectories.
Zhao, Yutong; Sheong, Fu Kit; Sun, Jian; Sander, Pedro; Huang, Xuhui
2013-01-15
We implemented a GPU-powered parallel k-centers algorithm to perform clustering on the conformations of molecular dynamics (MD) simulations. The algorithm is up to two orders of magnitude faster than the CPU implementation. We tested our algorithm on four protein MD simulation datasets ranging from the small Alanine Dipeptide to a 370-residue Maltose Binding Protein (MBP). It is capable of grouping 250,000 conformations of the MBP into 4000 clusters within 40 seconds. To achieve this, we effectively parallelized the code on the GPU and utilize the triangle inequality of metric spaces. Furthermore, the algorithm's running time is linear with respect to the number of cluster centers. In addition, we found the triangle inequality to be less effective in higher dimensions and provide a mathematical rationale. Finally, using Alanine Dipeptide as an example, we show a strong correlation between cluster populations resulting from the k-centers algorithm and the underlying density. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Paraskevopoulou, Sivylla E; Wu, Di; Eftekhar, Amir; Constandinou, Timothy G
2014-09-30
This work presents a novel unsupervised algorithm for real-time adaptive clustering of neural spike data (spike sorting). The proposed Hierarchical Adaptive Means (HAM) clustering method combines centroid-based clustering with hierarchical cluster connectivity to classify incoming spikes using groups of clusters. It is described how the proposed method can adaptively track the incoming spike data without requiring any past history, iteration or training and autonomously determines the number of spike classes. Its performance (classification accuracy) has been tested using multiple datasets (both simulated and recorded) achieving a near-identical accuracy compared to k-means (using 10-iterations and provided with the number of spike classes). Also, its robustness in applying to different feature extraction methods has been demonstrated by achieving classification accuracies above 80% across multiple datasets. Last but crucially, its low complexity, that has been quantified through both memory and computation requirements makes this method hugely attractive for future hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.
Clustering molecular dynamics trajectories for optimizing docking experiments.
De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.
Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Hayden, David; Thompson, David R.; Castano, Rebecca
2013-01-01
Many current and future NASA missions are capable of collecting enormous amounts of data, of which only a small portion can be transmitted to Earth. Communications are limited due to distance, visibility constraints, and competing mission downlinks. Long missions and high-resolution, multispectral imaging devices easily produce data exceeding the available bandwidth. To address this situation computationally efficient algorithms were developed for analyzing science imagery onboard the spacecraft. These algorithms autonomously cluster the data into classes of similar imagery, enabling selective downlink of representatives of each class, and a map classifying the terrain imaged rather than the full dataset, reducing the volume of the downlinked data. A range of approaches was examined, including k-means clustering using image features based on color, texture, temporal, and spatial arrangement
Kurczynska, Monika
2018-01-01
Mirror protein structures are often considered as artifacts in modeling protein structures. However, they may soon become a new branch of biochemistry. Moreover, methods of protein structure reconstruction, based on their residue-residue contact maps, need methodology to differentiate between models of native and mirror orientation, especially regarding the reconstructed backbones. We analyzed 130 500 structural protein models obtained from contact maps of 1 305 SCOP domains belonging to all 7 structural classes. On average, the same numbers of native and mirror models were obtained among 100 models generated for each domain. Since their structural features are often not sufficient for differentiating between the two types of model orientations, we proposed to apply various energy terms (ETs) from PyRosetta to separate native and mirror models. To automate the procedure for differentiating these models, the k-means clustering algorithm was applied. Using total energy did not allow to obtain appropriate clusters–the accuracy of the clustering for class A (all helices) was no more than 0.52. Therefore, we tested a series of different k-means clusterings based on various combinations of ETs. Finally, applying two most differentiating ETs for each class allowed to obtain satisfying results. To unify the method for differentiating between native and mirror models, independent of their structural class, the two best ETs for each class were considered. Finally, the k-means clustering algorithm used three common ETs: probability of amino acid assuming certain values of dihedral angles Φ and Ψ, Ramachandran preferences and Coulomb interactions. The accuracies of clustering with these ETs were in the range between 0.68 and 0.76, with sensitivity and selectivity in the range between 0.68 and 0.87, depending on the structural class. The method can be applied to all fully-automated tools for protein structure reconstruction based on contact maps, especially those analyzing big sets of models. PMID:29787567
Machine-learned cluster identification in high-dimensional data.
Ultsch, Alfred; Lötsch, Jörn
2017-02-01
High-dimensional biomedical data are frequently clustered to identify subgroup structures pointing at distinct disease subtypes. It is crucial that the used cluster algorithm works correctly. However, by imposing a predefined shape on the clusters, classical algorithms occasionally suggest a cluster structure in homogenously distributed data or assign data points to incorrect clusters. We analyzed whether this can be avoided by using emergent self-organizing feature maps (ESOM). Data sets with different degrees of complexity were submitted to ESOM analysis with large numbers of neurons, using an interactive R-based bioinformatics tool. On top of the trained ESOM the distance structure in the high dimensional feature space was visualized in the form of a so-called U-matrix. Clustering results were compared with those provided by classical common cluster algorithms including single linkage, Ward and k-means. Ward clustering imposed cluster structures on cluster-less "golf ball", "cuboid" and "S-shaped" data sets that contained no structure at all (random data). Ward clustering also imposed structures on permuted real world data sets. By contrast, the ESOM/U-matrix approach correctly found that these data contain no cluster structure. However, ESOM/U-matrix was correct in identifying clusters in biomedical data truly containing subgroups. It was always correct in cluster structure identification in further canonical artificial data. Using intentionally simple data sets, it is shown that popular clustering algorithms typically used for biomedical data sets may fail to cluster data correctly, suggesting that they are also likely to perform erroneously on high dimensional biomedical data. The present analyses emphasized that generally established classical hierarchical clustering algorithms carry a considerable tendency to produce erroneous results. By contrast, unsupervised machine-learned analysis of cluster structures, applied using the ESOM/U-matrix method, is a viable, unbiased method to identify true clusters in the high-dimensional space of complex data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Envelopment filter and K-means for the detection of QRS waveforms in electrocardiogram.
Merino, Manuel; Gómez, Isabel María; Molina, Alberto J
2015-06-01
The electrocardiogram (ECG) is a well-established technique for determining the electrical activity of the heart and studying its diseases. One of the most common pieces of information that can be read from the ECG is the heart rate (HR) through the detection of its most prominent feature: the QRS complex. This paper describes an offline version and a real-time implementation of a new algorithm to determine QRS localization in the ECG signal based on its envelopment and K-means clustering algorithm. The envelopment is used to obtain a signal with only QRS complexes, deleting P, T, and U waves and baseline wander. Two moving average filters are applied to smooth data. The K-means algorithm classifies data into QRS and non-QRS. The technique is validated using 22 h of ECG data from five Physionet databases. These databases were arbitrarily selected to analyze different morphologies of QRS complexes: three stored data with cardiac pathologies, and two had data with normal heartbeats. The algorithm has a low computational load, with no decision thresholds. Furthermore, it does not require any additional parameter. Sensitivity, positive prediction and accuracy from results are over 99.7%. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Lu, Jing; Chen, Lei; Yin, Jun; Huang, Tao; Bi, Yi; Kong, Xiangyin; Zheng, Mingyue; Cai, Yu-Dong
2016-01-01
Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer.
Vertebra identification using template matching modelmp and K-means clustering.
Larhmam, Mohamed Amine; Benjelloun, Mohammed; Mahmoudi, Saïd
2014-03-01
Accurate vertebra detection and segmentation are essential steps for automating the diagnosis of spinal disorders. This study is dedicated to vertebra alignment measurement, the first step in a computer-aided diagnosis tool for cervical spine trauma. Automated vertebral segment alignment determination is a challenging task due to low contrast imaging and noise. A software tool for segmenting vertebrae and detecting subluxations has clinical significance. A robust method was developed and tested for cervical vertebra identification and segmentation that extracts parameters used for vertebra alignment measurement. Our contribution involves a novel combination of a template matching method and an unsupervised clustering algorithm. In this method, we build a geometric vertebra mean model. To achieve vertebra detection, manual selection of the region of interest is performed initially on the input image. Subsequent preprocessing is done to enhance image contrast and detect edges. Candidate vertebra localization is then carried out by using a modified generalized Hough transform (GHT). Next, an adapted cost function is used to compute local voted centers and filter boundary data. Thereafter, a K-means clustering algorithm is applied to obtain clusters distribution corresponding to the targeted vertebrae. These clusters are combined with the vote parameters to detect vertebra centers. Rigid segmentation is then carried out by using GHT parameters. Finally, cervical spine curves are extracted to measure vertebra alignment. The proposed approach was successfully applied to a set of 66 high-resolution X-ray images. Robust detection was achieved in 97.5 % of the 330 tested cervical vertebrae. An automated vertebral identification method was developed and demonstrated to be robust to noise and occlusion. This work presents a first step toward an automated computer-aided diagnosis system for cervical spine trauma detection.
A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis
Liu, Jingxian; Wu, Kefeng
2017-01-01
The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with traditional spectral clustering and fast affinity propagation clustering. Experimental results have illustrated its superior performance in terms of quantitative and qualitative evaluations. PMID:28777353
Huo, Zhiguang; Tseng, George
2017-01-01
Cancer subtypes discovery is the first step to deliver personalized medicine to cancer patients. With the accumulation of massive multi-level omics datasets and established biological knowledge databases, omics data integration with incorporation of rich existing biological knowledge is essential for deciphering a biological mechanism behind the complex diseases. In this manuscript, we propose an integrative sparse K-means (is-K means) approach to discover disease subtypes with the guidance of prior biological knowledge via sparse overlapping group lasso. An algorithm using an alternating direction method of multiplier (ADMM) will be applied for fast optimization. Simulation and three real applications in breast cancer and leukemia will be used to compare is-K means with existing methods and demonstrate its superior clustering accuracy, feature selection, functional annotation of detected molecular features and computing efficiency. PMID:28959370
Huo, Zhiguang; Tseng, George
2017-06-01
Cancer subtypes discovery is the first step to deliver personalized medicine to cancer patients. With the accumulation of massive multi-level omics datasets and established biological knowledge databases, omics data integration with incorporation of rich existing biological knowledge is essential for deciphering a biological mechanism behind the complex diseases. In this manuscript, we propose an integrative sparse K -means (is- K means) approach to discover disease subtypes with the guidance of prior biological knowledge via sparse overlapping group lasso. An algorithm using an alternating direction method of multiplier (ADMM) will be applied for fast optimization. Simulation and three real applications in breast cancer and leukemia will be used to compare is- K means with existing methods and demonstrate its superior clustering accuracy, feature selection, functional annotation of detected molecular features and computing efficiency.
Shi, Weifang; Zeng, Weihua
2013-01-01
Reducing human vulnerability to chemical hazards in the industrialized city is a matter of great urgency. Vulnerability mapping is an alternative approach for providing vulnerability-reducing interventions in a region. This study presents a method for mapping human vulnerability to chemical hazards by using clustering analysis for effective vulnerability reduction. Taking the city of Shanghai as the study area, we measure human exposure to chemical hazards by using the proximity model with additionally considering the toxicity of hazardous substances, and capture the sensitivity and coping capacity with corresponding indicators. We perform an improved k-means clustering approach on the basis of genetic algorithm by using a 500 m × 500 m geographical grid as basic spatial unit. The sum of squared errors and silhouette coefficient are combined to measure the quality of clustering and to determine the optimal clustering number. Clustering result reveals a set of six typical human vulnerability patterns that show distinct vulnerability dimension combinations. The vulnerability mapping of the study area reflects cluster-specific vulnerability characteristics and their spatial distribution. Finally, we suggest specific points that can provide new insights in rationally allocating the limited funds for the vulnerability reduction of each cluster. PMID:23787337
Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.
Zhu, Lin; Chung, Fu-Lai; Wang, Shitong
2009-06-01
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
Mining association rule based on the diseases population for recommendation of medicine need
NASA Astrophysics Data System (ADS)
Harahap, M.; Husein, A. M.; Aisyah, S.; Lubis, F. R.; Wijaya, B. A.
2018-04-01
Selection of medicines that is inappropriate will lead to an empty result at medicines, this has an impact on medical services and economic value in hospital. The importance of an appropriate medicine selection process requires an automated way to select need based on the development of the patient's illness. In this study, we analyzed patient prescriptions to identify the relationship between the disease and the medicine used by the physician in treating the patient's illness. The analytical framework includes: (1) patient prescription data collection, (2) applying k-means clustering to classify the top 10 diseases, (3) applying Apriori algorithm to find association rules based on support, confidence and lift value. The results of the tests of patient prescription datasets in 2015-2016, the application of the k-means algorithm for the clustering of 10 dominant diseases significantly affects the value of trust and support of all association rules on the Apriori algorithm making it more consistent with finding association rules of disease and related medicine. The value of support, confidence and the lift value of disease and related medicine can be used as recommendations for appropriate medicine selection. Based on the conditions of disease progressions of the hospital, there is so more optimal medicine procurement.
Grouping by proximity and the visual impression of approximate number in random dot arrays.
Im, Hee Yeon; Zhong, Sheng-Hua; Halberda, Justin
2016-09-01
We address the challenges of how to model human perceptual grouping in random dot arrays and how perceptual grouping affects human number estimation in these arrays. We introduce a modeling approach relying on a modified k-means clustering algorithm to formally describe human observers' grouping behavior. We found that a default grouping window size of approximately 4° of visual angle describes human grouping judgments across a range of random dot arrays (i.e., items within 4° are grouped together). This window size was highly consistent across observers and images, and was also stable across stimulus durations, suggesting that the k-means model captured a robust signature of perceptual grouping. Further, the k-means model outperformed other models (e.g., CODE) at describing human grouping behavior. Next, we found that the more the dots in a display are clustered together, the more human observers tend to underestimate the numerosity of the dots. We demonstrate that this effect is independent of density, and the modified k-means model can predict human observers' numerosity judgments and underestimation. Finally, we explored the robustness of the relationship between clustering and dot number underestimation and found that the effects of clustering remain, but are greatly reduced, when participants receive feedback on every trial. Together, this work suggests some promising avenues for formal models of human grouping behavior, and it highlights the importance of a 4° window of perceptual grouping. Lastly, it reveals a robust, somewhat plastic, relationship between perceptual grouping and number estimation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study on Adaptive Parameter Determination of Cluster Analysis in Urban Management Cases
NASA Astrophysics Data System (ADS)
Fu, J. Y.; Jing, C. F.; Du, M. Y.; Fu, Y. L.; Dai, P. P.
2017-09-01
The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object's highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data's spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.
Identification of piecewise affine systems based on fuzzy PCA-guided robust clustering technique
NASA Astrophysics Data System (ADS)
Khanmirza, Esmaeel; Nazarahari, Milad; Mousavi, Alireza
2016-12-01
Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available, some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper, we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated. Furthermore, this modified clustering technique enables us to determine the number of subsystems without any prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator. Simulation together with experiment analysis has proved the effectiveness of the proposed method.
Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.
Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar
2017-03-01
This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8 × 800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.
Real-time implementation of logo detection on open source BeagleBoard
NASA Astrophysics Data System (ADS)
George, M.; Kehtarnavaz, N.; Estevez, L.
2011-03-01
This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.
NASA Astrophysics Data System (ADS)
Mathavan, Senthan; Kumar, Akash; Kamal, Khurram; Nieminen, Michael; Shah, Hitesh; Rahman, Mujib
2016-09-01
Thousands of pavement images are collected by road authorities daily for condition monitoring surveys. These images typically have intensity variations and texture nonuniformities that make their segmentation challenging. The automated segmentation of such pavement images is crucial for accurate, thorough, and expedited health monitoring of roads. In the pavement monitoring area, well-known texture descriptors, such as gray-level co-occurrence matrices and local binary patterns, are often used for surface segmentation and identification. These, despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to partition the feature space, limiting the human subjectivity in the process. Data classification, hence image segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both MATLAB® and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly showing the advantages of the proposed method. Furthermore, the OpenCV-based segmentation shows a 100% increase in processing speed when compared to the fastest algorithm available in literature.
Clustering of Variables for Mixed Data
NASA Astrophysics Data System (ADS)
Saracco, J.; Chavent, M.
2016-05-01
This chapter presents clustering of variables which aim is to lump together strongly related variables. The proposed approach works on a mixed data set, i.e. on a data set which contains numerical variables and categorical variables. Two algorithms of clustering of variables are described: a hierarchical clustering and a k-means type clustering. A brief description of PCAmix method (that is a principal component analysis for mixed data) is provided, since the calculus of the synthetic variables summarizing the obtained clusters of variables is based on this multivariate method. Finally, the R packages ClustOfVar and PCAmixdata are illustrated on real mixed data. The PCAmix and ClustOfVar approaches are first used for dimension reduction (step 1) before applying in step 2 a standard clustering method to obtain groups of individuals.
Consensus-Based Sorting of Neuronal Spike Waveforms
Fournier, Julien; Mueller, Christian M.; Shein-Idelson, Mark; Hemberger, Mike
2016-01-01
Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained “ground truth” data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data. PMID:27536990
Consensus-Based Sorting of Neuronal Spike Waveforms.
Fournier, Julien; Mueller, Christian M; Shein-Idelson, Mark; Hemberger, Mike; Laurent, Gilles
2016-01-01
Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained "ground truth" data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data.
Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.
Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi
2016-01-01
The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children.
Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks
Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.
2010-01-01
Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less
Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach
Kudisthalert, Wasu
2018-01-01
Machine learning techniques are becoming popular in virtual screening tasks. One of the powerful machine learning algorithms is Extreme Learning Machine (ELM) which has been applied to many applications and has recently been applied to virtual screening. We propose the Weighted Similarity ELM (WS-ELM) which is based on a single layer feed-forward neural network in a conjunction of 16 different similarity coefficients as activation function in the hidden layer. It is known that the performance of conventional ELM is not robust due to random weight selection in the hidden layer. Thus, we propose a Clustering-based WS-ELM (CWS-ELM) that deterministically assigns weights by utilising clustering algorithms i.e. k-means clustering and support vector clustering. The experiments were conducted on one of the most challenging datasets–Maximum Unbiased Validation Dataset–which contains 17 activity classes carefully selected from PubChem. The proposed algorithms were then compared with other machine learning techniques such as support vector machine, random forest, and similarity searching. The results show that CWS-ELM in conjunction with support vector clustering yields the best performance when utilised together with Sokal/Sneath(1) coefficient. Furthermore, ECFP_6 fingerprint presents the best results in our framework compared to the other types of fingerprints, namely ECFP_4, FCFP_4, and FCFP_6. PMID:29652912
Effect of data truncation in an implementation of pixel clustering on a custom computing machine
NASA Astrophysics Data System (ADS)
Leeser, Miriam E.; Theiler, James P.; Estlick, Michael; Kitaryeva, Natalya V.; Szymanski, John J.
2000-10-01
We investigate the effect of truncating the precision of hyperspectral image data for the purpose of more efficiently segmenting the image using a variant of k-means clustering. We describe the implementation of the algorithm on field-programmable gate array (FPGA) hardware. Truncating the data to only a few bits per pixel in each spectral channel permits a more compact hardware design, enabling greater parallelism, and ultimately a more rapid execution. It also enables the storage of larger images in the onboard memory. In exchange for faster clustering, however, one trades off the quality of the produced segmentation. We find, however, that the clustering algorithm can tolerate considerable data truncation with little degradation in cluster quality. This robustness to truncated data can be extended by computing the cluster centers to a few more bits of precision than the data. Since there are so many more pixels than centers, the more aggressive data truncation leads to significant gains in the number of pixels that can be stored in memory and processed in hardware concurrently.
Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments
De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.
2015-01-01
Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944
Hsu, David
2015-09-27
Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression,more » also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes.« less
Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold
2014-12-01
In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.
Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc
2017-07-01
Dynamic CT perfusion (CTP) consists in repeated acquisitions of the same volume in different time steps, slightly before, during and slightly afterwards the injection of contrast media. Important functional information can be derived for each voxel, which reflect the local hemodynamic properties and hence the metabolism of the tissue. Different approaches are being investigated to exploit data redundancy and prior knowledge for noise reduction of such datasets, ranging from iterative reconstruction schemes to high dimensional filters. We propose a new spatial bilateral filter which makes use of the k-means clustering algorithm and of an optimal calculated guiding image. We named the proposed filter as k-means clustering guided bilateral filter (KMGB). In this study, the KMGB filter is compared with the partial temporal non-local means filter (PATEN), with the time-intensity profile similarity (TIPS) filter, and with a new version derived from it, by introducing the guiding image (GB-TIPS). All the filters were tested on a digital in-house developed brain CTP phantom, were noise was added to simulate 80 kV and 200 mAs (default scanning parameters), 100 mAs and 30 mAs. Moreover, the filters performances were tested on 7 noisy clinical datasets with different pathologies in different body regions. The original contribution of our work is two-fold: first we propose an efficient algorithm to calculate a guiding image to improve the results of the TIPS filter, secondly we propose the introduction of the k-means clustering step and demonstrate how this can potentially replace the TIPS part of the filter obtaining better results at lower computational efforts. As expected, in the GB-TIPS, the introduction of the guiding image limits the over-smoothing of the TIPS filter, improving spatial resolution by more than 50%. Furthermore, replacing the time-intensity profile similarity calculation with a fuzzy k-means clustering strategy (KMGB) allows to control the edge preserving features of the filter, resulting in improved spatial resolution and CNR both for CT images and for functional maps. In the phantom study, the PATEN filter showed overall the poorest results, while the other filters showed comparable performances in terms of perfusion values preservation, with the KMGB filter having overall the best image quality. In conclusion, the KMGB filter leads to superior results for CT images and functional maps quality improvement, in significantly shorter computational times compared to the other filters. Our results suggest that the KMGB filter might be a more robust solution for halved-dose CTP datasets. For all the filters investigated, some artifacts start to appear on the BF maps if one sixth of the dose is simulated, suggesting that no one of the filters investigated in this study might be optimal for such a drastic dose reduction scenario. © 2017 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Stauffer, Ryan M.; Thompson, Anne M.; Young, George S.
2016-01-01
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. A recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found that clusters of O3 mixing ratio profiles are an excellent way to capture O3variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g., convection, subsidence, cloud cover, and transported pollution. Here the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; and Wallops Island, VA) with4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3 3 SOM (nine clusters). Ateach site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies.For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 1316 of profiles, mostly in winter and spring.Large midtropospheric deviations from monthly means (6 ppbv, +710 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 3639 of profiles). These two clusters contain distinctly polluted(summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics.
Stauffer, Ryan M.; Thompson, Anne M.; Young, George S.
2018-01-01
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O3 mixing ratio profiles are an excellent way to capture O3 variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies. For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 13 – 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (−6 ppbv, +7 – 10 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 36 – 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics. PMID:29619288
Stauffer, Ryan M; Thompson, Anne M; Young, George S
2016-02-16
Sonde-based climatologies of tropospheric ozone (O 3 ) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O 3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O 3 mixing ratio profiles are an excellent way to capture O 3 variability and link meteorological influences to O 3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O 3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O 3 . Cluster means are compared to monthly O 3 climatologies. For all four sites, near-tropopause O 3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O 3 mixing ratio in three clusters that contain 13 - 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (-6 ppbv, +7 - 10 ppbv O 3 at 6 km) are found in two of the most populated clusters (combined 36 - 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O 3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O 3 averages are often poor representations of U.S. O 3 profile statistics.
The Classification of Diabetes Mellitus Using Kernel k-means
NASA Astrophysics Data System (ADS)
Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.
2018-01-01
Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.
A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising
NASA Astrophysics Data System (ADS)
Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua
2018-04-01
In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.
Yousef, Malik; Khalifa, Waleed; AbdAllah, Loai
2016-12-01
The performance of many learning and data mining algorithms depends critically on suitable metrics to assess efficiency over the input space. Learning a suitable metric from examples may, therefore, be the key to successful application of these algorithms. We have demonstrated that the k-nearest neighbor (kNN) classification can be significantly improved by learning a distance metric from labeled examples. The clustering ensemble is used to define the distance between points in respect to how they co-cluster. This distance is then used within the framework of the kNN algorithm to define a classifier named ensemble clustering kNN classifier (EC-kNN). In many instances in our experiments we achieved highest accuracy while SVM failed to perform as well. In this study, we compare the performance of a two-class classifier using EC-kNN with different one-class and two-class classifiers. The comparison was applied to seven different plant microRNA species considering eight feature selection methods. In this study, the averaged results show that EC-kNN outperforms all other methods employed here and previously published results for the same data. In conclusion, this study shows that the chosen classifier shows high performance when the distance metric is carefully chosen.
Research on classified real-time flood forecasting framework based on K-means cluster and rough set.
Xu, Wei; Peng, Yong
2015-01-01
This research presents a new classified real-time flood forecasting framework. In this framework, historical floods are classified by a K-means cluster according to the spatial and temporal distribution of precipitation, the time variance of precipitation intensity and other hydrological factors. Based on the classified results, a rough set is used to extract the identification rules for real-time flood forecasting. Then, the parameters of different categories within the conceptual hydrological model are calibrated using a genetic algorithm. In real-time forecasting, the corresponding category of parameters is selected for flood forecasting according to the obtained flood information. This research tests the new classified framework on Guanyinge Reservoir and compares the framework with the traditional flood forecasting method. It finds that the performance of the new classified framework is significantly better in terms of accuracy. Furthermore, the framework can be considered in a catchment with fewer historical floods.
Mitigation of time-varying distortions in Nyquist-WDM systems using machine learning
NASA Astrophysics Data System (ADS)
Granada Torres, Jhon J.; Varughese, Siddharth; Thomas, Varghese A.; Chiuchiarelli, Andrea; Ralph, Stephen E.; Cárdenas Soto, Ana M.; Guerrero González, Neil
2017-11-01
We propose a machine learning-based nonsymmetrical demodulation technique relying on clustering to mitigate time-varying distortions derived from several impairments such as IQ imbalance, bias drift, phase noise and interchannel interference. Experimental results show that those impairments cause centroid movements in the received constellations seen in time-windows of 10k symbols in controlled scenarios. In our demodulation technique, the k-means algorithm iteratively identifies the cluster centroids in the constellation of the received symbols in short time windows by means of the optimization of decision thresholds for a minimum BER. We experimentally verified the effectiveness of this computationally efficient technique in multicarrier 16QAM Nyquist-WDM systems over 270 km links. Our nonsymmetrical demodulation technique outperforms the conventional QAM demodulation technique, reducing the OSNR requirement up to ∼0.8 dB at a BER of 1 × 10-2 for signals affected by interchannel interference.
NASA Astrophysics Data System (ADS)
Ekin, Ahmet; Jasinschi, Radu; van der Grond, Jeroen; van Buchem, Mark A.; van Muiswinkel, Arianne
2006-03-01
This paper introduces image processing methods to automatically detect the 3D volume-of-interest (VOI) and 2D region-of-interest (ROI) for deep gray matter organs (thalamus, globus pallidus, putamen, and caudate nucleus) of patients with suspected iron deposition from MR dual echo images. Prior to the VOI and ROI detection, cerebrospinal fluid (CSF) region is segmented by a clustering algorithm. For the segmentation, we automatically determine the cluster centers with the mean shift algorithm that can quickly identify the modes of a distribution. After the identification of the modes, we employ the K-Harmonic means clustering algorithm to segment the volumetric MR data into CSF and non-CSF. Having the CSF mask and observing that the frontal lobe of the lateral ventricle has more consistent shape accross age and pathological abnormalities, we propose a shape-directed landmark detection algorithm to detect the VOI in a speedy manner. The proposed landmark detection algorithm utilizes a novel shape model of the front lobe of the lateral ventricle for the slices where thalamus, globus pallidus, putamen, and caudate nucleus are expected to appear. After this step, for each slice in the VOI, we use horizontal and vertical projections of the CSF map to detect the approximate locations of the relevant organs to define the ROI. We demonstrate the robustness of the proposed VOI and ROI localization algorithms to pathologies, including severe amounts of iron accumulation as well as white matter lesions, and anatomical variations. The proposed algorithms achieved very high detection accuracy, 100% in the VOI detection , over a large set of a challenging MR dataset.
Fast divide-and-conquer algorithm for evaluating polarization in classical force fields
NASA Astrophysics Data System (ADS)
Nocito, Dominique; Beran, Gregory J. O.
2017-03-01
Evaluation of the self-consistent polarization energy forms a major computational bottleneck in polarizable force fields. In large systems, the linear polarization equations are typically solved iteratively with techniques based on Jacobi iterations (JI) or preconditioned conjugate gradients (PCG). Two new variants of JI are proposed here that exploit domain decomposition to accelerate the convergence of the induced dipoles. The first, divide-and-conquer JI (DC-JI), is a block Jacobi algorithm which solves the polarization equations within non-overlapping sub-clusters of atoms directly via Cholesky decomposition, and iterates to capture interactions between sub-clusters. The second, fuzzy DC-JI, achieves further acceleration by employing overlapping blocks. Fuzzy DC-JI is analogous to an additive Schwarz method, but with distance-based weighting when averaging the fuzzy dipoles from different blocks. Key to the success of these algorithms is the use of K-means clustering to identify natural atomic sub-clusters automatically for both algorithms and to determine the appropriate weights in fuzzy DC-JI. The algorithm employs knowledge of the 3-D spatial interactions to group important elements in the 2-D polarization matrix. When coupled with direct inversion in the iterative subspace (DIIS) extrapolation, fuzzy DC-JI/DIIS in particular converges in a comparable number of iterations as PCG, but with lower computational cost per iteration. In the end, the new algorithms demonstrated here accelerate the evaluation of the polarization energy by 2-3 fold compared to existing implementations of PCG or JI/DIIS.
Data Mining Methods for Recommender Systems
NASA Astrophysics Data System (ADS)
Amatriain, Xavier; Jaimes*, Alejandro; Oliver, Nuria; Pujol, Josep M.
In this chapter, we give an overview of the main Data Mining techniques used in the context of Recommender Systems. We first describe common preprocessing methods such as sampling or dimensionality reduction. Next, we review the most important classification techniques, including Bayesian Networks and Support Vector Machines. We describe the k-means clustering algorithm and discuss several alternatives. We also present association rules and related algorithms for an efficient training process. In addition to introducing these techniques, we survey their uses in Recommender Systems and present cases where they have been successfully applied.
Abelian non-global logarithms from soft gluon clustering
NASA Astrophysics Data System (ADS)
Kelley, Randall; Walsh, Jonathan R.; Zuberi, Saba
2012-09-01
Most recombination-style jet algorithms cluster soft gluons in a complex way. This leads to previously identified correlations in the soft gluon phase space and introduces logarithmic corrections to jet cross sections, which are known as clustering logarithms. The leading Abelian clustering logarithms occur at least at next-to leading logarithm (NLL) in the exponent of the distribution. Using the framework of Soft Collinear Effective Theory (SCET), we show that new clustering effects contributing at NLL arise at each order. While numerical resummation of clustering logs is possible, it is unlikely that they can be analytically resummed to NLL. Clustering logarithms make the anti-kT algorithm theoretically preferred, for which they are power suppressed. They can arise in Abelian and non-Abelian terms, and we calculate the Abelian clustering logarithms at O ( {α_s^2} ) for the jet mass distribution using the Cambridge/Aachen and kT algorithms, including jet radius dependence, which extends previous results. We find that clustering logarithms can be naturally thought of as a class of non-global logarithms, which have traditionally been tied to non-Abelian correlations in soft gluon emission.
Data Analytics for Smart Parking Applications.
Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele
2016-09-23
We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset.
Data Analytics for Smart Parking Applications
Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele
2016-01-01
We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset. PMID:27669259
A super resolution framework for low resolution document image OCR
NASA Astrophysics Data System (ADS)
Ma, Di; Agam, Gady
2013-01-01
Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.
A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set
Peng, Yi; Zhang, Yong; Kou, Gang; Shi, Yong
2012-01-01
Determining the number of clusters in a data set is an essential yet difficult step in cluster analysis. Since this task involves more than one criterion, it can be modeled as a multiple criteria decision making (MCDM) problem. This paper proposes a multiple criteria decision making (MCDM)-based approach to estimate the number of clusters for a given data set. In this approach, MCDM methods consider different numbers of clusters as alternatives and the outputs of any clustering algorithm on validity measures as criteria. The proposed method is examined by an experimental study using three MCDM methods, the well-known clustering algorithm–k-means, ten relative measures, and fifteen public-domain UCI machine learning data sets. The results show that MCDM methods work fairly well in estimating the number of clusters in the data and outperform the ten relative measures considered in the study. PMID:22870181
Yousef, Malik; Khalifa, Waleed; AbedAllah, Loai
2016-12-22
The performance of many learning and data mining algorithms depends critically on suitable metrics to assess efficiency over the input space. Learning a suitable metric from examples may, therefore, be the key to successful application of these algorithms. We have demonstrated that the k-nearest neighbor (kNN) classification can be significantly improved by learning a distance metric from labeled examples. The clustering ensemble is used to define the distance between points in respect to how they co-cluster. This distance is then used within the framework of the kNN algorithm to define a classifier named ensemble clustering kNN classifier (EC-kNN). In many instances in our experiments we achieved highest accuracy while SVM failed to perform as well. In this study, we compare the performance of a two-class classifier using EC-kNN with different one-class and two-class classifiers. The comparison was applied to seven different plant microRNA species considering eight feature selection methods. In this study, the averaged results show that ECkNN outperforms all other methods employed here and previously published results for the same data. In conclusion, this study shows that the chosen classifier shows high performance when the distance metric is carefully chosen.
Gray, Calum; MacGillivray, Thomas J; Eeley, Clare; Stephens, Nathan A; Beggs, Ian; Fearon, Kenneth C; Greig, Carolyn A
2011-02-01
Sarcopenia and cachexia are characterized by infiltration of non-contractile tissue within muscle which influences area and volume measurements. We applied a statistical clustering (k-means) technique to magnetic resonance (MR) images of the quadriceps of young and elderly healthy women and women with cancer to objectively separate the contractile and non-contractile tissue compartments. MR scans of the thigh were obtained for 34 women (n = 16 young, (median) age 26 y; n = 9 older, age 80 y; n = 9 upper gastrointestinal cancer patients, age 65 y). Segmented regions of consecutive axial images were used to calculate cross-sectional area and (gross) volume. The k-means unsupervised algorithm was subsequently applied to the MR binary mask image array data with resultant volumes compared between groups. Older women and women with cancer had 37% and 48% less quadriceps muscle respectively than young women (p < 0.001). Application of k-means subtracted a significant 9%, 14% and 20% non-contractile tissue from the quadriceps of young, older and patient groups respectively (p < 0.001). There was a significant effect of group (i.e., cancer vs healthy) when controlling for age as a covariate (p = 0.003). K-means objectively separates contractile and non-contractile tissue components. Women with upper GI cancer have significant fatty infiltration throughout whole muscle groups which is maintained when controlling for age. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing
2018-01-01
For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.
Das, Shyama; Idicula, Sumam Mary
2011-01-01
The goal of biclustering in gene expression data matrix is to find a submatrix such that the genes in the submatrix show highly correlated activities across all conditions in the submatrix. A measure called mean squared residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within the submatrix. MSR difference is the incremental increase in MSR when a gene or condition is added to the bicluster. In this chapter, three biclustering algorithms using MSR threshold (MSRT) and MSR difference threshold (MSRDT) are experimented and compared. All these methods use seeds generated from K-Means clustering algorithm. Then these seeds are enlarged by adding more genes and conditions. The first algorithm makes use of MSRT alone. Both the second and third algorithms make use of MSRT and the newly introduced concept of MSRDT. Highly coherent biclusters are obtained using this concept. In the third algorithm, a different method is used to calculate the MSRDT. The results obtained on bench mark datasets prove that these algorithms are better than many of the metaheuristic algorithms.
Biclustering of gene expression data using reactive greedy randomized adaptive search procedure.
Dharan, Smitha; Nair, Achuthsankar S
2009-01-30
Biclustering algorithms belong to a distinct class of clustering algorithms that perform simultaneous clustering of both rows and columns of the gene expression matrix and can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse. Cheng and Church have introduced a measure called mean squared residue score to evaluate the quality of a bicluster and has become one of the most popular measures to search for biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP)-construction and local search phases and propose a new method which is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP) to detect significant biclusters from large microarray datasets. The method has two major steps. First, high quality bicluster seeds are generated by means of k-means clustering. In the second step, these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found previously. We performed statistical and biological validations of the biclusters obtained and evaluated the method against the results of basic GRASP and as well as with the classic work of Cheng and Church. The experimental results indicate that the Reactive GRASP approach outperforms the basic GRASP algorithm and Cheng and Church approach. The Reactive GRASP approach for the detection of significant biclusters is robust and does not require calibration efforts.
NASA Astrophysics Data System (ADS)
Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan
2006-03-01
Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.
Computer program documentation: ISOCLS iterative self-organizing clustering program, program C094
NASA Technical Reports Server (NTRS)
Minter, R. T. (Principal Investigator)
1972-01-01
The author has identified the following significant results. This program implements an algorithm which, ideally, sorts a given set of multivariate data points into similar groups or clusters. The program is intended for use in the evaluation of multispectral scanner data; however, the algorithm could be used for other data types as well. The user may specify a set of initial estimated cluster means to begin the procedure, or he may begin with the assumption that all the data belongs to one cluster. The procedure is initiatized by assigning each data point to the nearest (in absolute distance) cluster mean. If no initial cluster means were input, all of the data is assigned to cluster 1. The means and standard deviations are calculated for each cluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Saqib; Wang, Guojun; Cottrell, Roger Leslie
PingER (Ping End-to-End Reporting) is a worldwide end-to-end Internet performance measurement framework. It was developed by the SLAC National Accelerator Laboratory, Stanford, USA and running from the last 20 years. It has more than 700 monitoring agents and remote sites which monitor the performance of Internet links around 170 countries of the world. At present, the size of the compressed PingER data set is about 60 GB comprising of 100,000 flat files. The data is publicly available for valuable Internet performance analyses. However, the data sets suffer from missing values and anomalies due to congestion, bottleneck links, queuing overflow, networkmore » software misconfiguration, hardware failure, cable cuts, and social upheavals. Therefore, the objective of this paper is to detect such performance drops or spikes labeled as anomalies or outliers for the PingER data set. In the proposed approach, the raw text files of the data set are transformed into a PingER dimensional model. The missing values are imputed using the k-NN algorithm. The data is partitioned into similar instances using the k-means clustering algorithm. Afterward, clustering is integrated with the Local Outlier Factor (LOF) using the Cluster Based Local Outlier Factor (CBLOF) algorithm to detect the anomalies or outliers from the PingER data. Lastly, anomalies are further analyzed to identify the time frame and location of the hosts generating the major percentage of the anomalies in the PingER data set ranging from 1998 to 2016.« less
Ali, Saqib; Wang, Guojun; Cottrell, Roger Leslie; ...
2018-05-28
PingER (Ping End-to-End Reporting) is a worldwide end-to-end Internet performance measurement framework. It was developed by the SLAC National Accelerator Laboratory, Stanford, USA and running from the last 20 years. It has more than 700 monitoring agents and remote sites which monitor the performance of Internet links around 170 countries of the world. At present, the size of the compressed PingER data set is about 60 GB comprising of 100,000 flat files. The data is publicly available for valuable Internet performance analyses. However, the data sets suffer from missing values and anomalies due to congestion, bottleneck links, queuing overflow, networkmore » software misconfiguration, hardware failure, cable cuts, and social upheavals. Therefore, the objective of this paper is to detect such performance drops or spikes labeled as anomalies or outliers for the PingER data set. In the proposed approach, the raw text files of the data set are transformed into a PingER dimensional model. The missing values are imputed using the k-NN algorithm. The data is partitioned into similar instances using the k-means clustering algorithm. Afterward, clustering is integrated with the Local Outlier Factor (LOF) using the Cluster Based Local Outlier Factor (CBLOF) algorithm to detect the anomalies or outliers from the PingER data. Lastly, anomalies are further analyzed to identify the time frame and location of the hosts generating the major percentage of the anomalies in the PingER data set ranging from 1998 to 2016.« less
Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN
NASA Astrophysics Data System (ADS)
Pradhan, Nandita; Sinha, A. K.
2008-03-01
This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K
2013-03-01
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
Insights into quasar UV spectra using unsupervised clustering analysis
NASA Astrophysics Data System (ADS)
Tammour, A.; Gallagher, S. C.; Daley, M.; Richards, G. T.
2016-06-01
Machine learning techniques can provide powerful tools to detect patterns in multidimensional parameter space. We use K-means - a simple yet powerful unsupervised clustering algorithm which picks out structure in unlabelled data - to study a sample of quasar UV spectra from the Quasar Catalog of the 10th Data Release of the Sloan Digital Sky Survey (SDSS-DR10) of Paris et al. Detecting patterns in large data sets helps us gain insights into the physical conditions and processes giving rise to the observed properties of quasars. We use K-means to find clusters in the parameter space of the equivalent width (EW), the blue- and red-half-width at half-maximum (HWHM) of the Mg II 2800 Å line, the C IV 1549 Å line, and the C III] 1908 Å blend in samples of broad absorption line (BAL) and non-BAL quasars at redshift 1.6-2.1. Using this method, we successfully recover correlations well-known in the UV regime such as the anti-correlation between the EW and blueshift of the C IV emission line and the shape of the ionizing spectra energy distribution (SED) probed by the strength of He II and the Si III]/C III] ratio. We find this to be particularly evident when the properties of C III] are used to find the clusters, while those of Mg II proved to be less strongly correlated with the properties of the other lines in the spectra such as the width of C IV or the Si III]/C III] ratio. We conclude that unsupervised clustering methods (such as K-means) are powerful methods for finding `natural' binning boundaries in multidimensional data sets and discuss caveats and future work.
NASA Astrophysics Data System (ADS)
Ghaffarian, Saman; Ghaffarian, Salar
2014-11-01
This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.
NASA Astrophysics Data System (ADS)
Chen, Y.; Ho, C.; Chang, L.
2011-12-01
In previous decades, the climate change caused by global warming increases the occurrence frequency of extreme hydrological events. Water supply shortages caused by extreme events create great challenges for water resource management. To evaluate future climate variations, general circulation models (GCMs) are the most wildly known tools which shows possible weather conditions under pre-defined CO2 emission scenarios announced by IPCC. Because the study area of GCMs is the entire earth, the grid sizes of GCMs are much larger than the basin scale. To overcome the gap, a statistic downscaling technique can transform the regional scale weather factors into basin scale precipitations. The statistic downscaling technique can be divided into three categories include transfer function, weather generator and weather type. The first two categories describe the relationships between the weather factors and precipitations respectively based on deterministic algorithms, such as linear or nonlinear regression and ANN, and stochastic approaches, such as Markov chain theory and statistical distributions. In the weather type, the method has ability to cluster weather factors, which are high dimensional and continuous variables, into weather types, which are limited number of discrete states. In this study, the proposed downscaling model integrates the weather type, using the K-means clustering algorithm, and the weather generator, using the kernel density estimation. The study area is Shihmen basin in northern of Taiwan. In this study, the research process contains two steps, a calibration step and a synthesis step. Three sub-steps were used in the calibration step. First, weather factors, such as pressures, humidities and wind speeds, obtained from NCEP and the precipitations observed from rainfall stations were collected for downscaling. Second, the K-means clustering grouped the weather factors into four weather types. Third, the Markov chain transition matrixes and the conditional probability density function (PDF) of precipitations approximated by the kernel density estimation are calculated respectively for each weather types. In the synthesis step, 100 patterns of synthesis data are generated. First, the weather type of the n-th day are determined by the results of K-means clustering. The associated transition matrix and PDF of the weather type were also determined for the usage of the next sub-step in the synthesis process. Second, the precipitation condition, dry or wet, can be synthesized basing on the transition matrix. If the synthesized condition is dry, the quantity of precipitation is zero; otherwise, the quantity should be further determined in the third sub-step. Third, the quantity of the synthesized precipitation is assigned as the random variable of the PDF defined above. The synthesis efficiency compares the gap of the monthly mean curves and monthly standard deviation curves between the historical precipitation data and the 100 patterns of synthesis data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, R. Michael
Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.
Ghane, Narjes; Vard, Alireza; Talebi, Ardeshir; Nematollahy, Pardis
2017-01-01
Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.
Two generalizations of Kohonen clustering
NASA Technical Reports Server (NTRS)
Bezdek, James C.; Pal, Nikhil R.; Tsao, Eric C. K.
1993-01-01
The relationship between the sequential hard c-means (SHCM), learning vector quantization (LVQ), and fuzzy c-means (FCM) clustering algorithms is discussed. LVQ and SHCM suffer from several major problems. For example, they depend heavily on initialization. If the initial values of the cluster centers are outside the convex hull of the input data, such algorithms, even if they terminate, may not produce meaningful results in terms of prototypes for cluster representation. This is due in part to the fact that they update only the winning prototype for every input vector. The impact and interaction of these two families with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering method, but which often leads ideas to clustering algorithms is discussed. Then two generalizations of LVQ that are explicitly designed as clustering algorithms are presented; these algorithms are referred to as generalized LVQ = GLVQ; and fuzzy LVQ = FLVQ. Learning rules are derived to optimize an objective function whose goal is to produce 'good clusters'. GLVQ/FLVQ (may) update every node in the clustering net for each input vector. Neither GLVQ nor FLVQ depends upon a choice for the update neighborhood or learning rate distribution - these are taken care of automatically. Segmentation of a gray tone image is used as a typical application of these algorithms to illustrate the performance of GLVQ/FLVQ.
Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images
Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.
2012-01-01
SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773
Investigation of a novel image segmentation method dedicated to forest fire applications
NASA Astrophysics Data System (ADS)
Rudz, S.; Chetehouna, K.; Hafiane, A.; Laurent, H.; Séro-Guillaume, O.
2013-07-01
To face fire it is crucial to understand its behaviour in order to maximize fighting means. To achieve this task, the development of a metrological tool is necessary for estimating both geometrical and physical parameters involved in forest fire modelling. A key parameter is to estimate fire positions accurately. In this paper an image processing tool especially dedicated to an accurate extraction of fire from an image is presented. In this work, the clustering on several colour spaces is investigated and it appears that the blue chrominance Cb from the YCbCr colour space is the most appropriate. As a consequence, a new segmentation algorithm dedicated to forest fire applications has been built using first an optimized k-means clustering in the Cb-channel and then some properties of fire pixels in the RGB colour space. Next, the performance of the proposed method is evaluated using three supervised evaluation criteria and then compared to other existing segmentation algorithms in the literature. Finally a conclusion is drawn, assessing the good behaviour of the developed algorithm. This paper is dedicated to the memory of Dr Olivier Séro-Guillaume (1950-2013), CNRS Research Director.
Li, Weizhong
2018-02-12
San Diego Supercomputer Center's Weizhong Li on "Effective Analysis of NGS Metagenomic Data with Ultra-fast Clustering Algorithms" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
Identifying multiple influential spreaders based on generalized closeness centrality
NASA Astrophysics Data System (ADS)
Liu, Huan-Li; Ma, Chuang; Xiang, Bing-Bing; Tang, Ming; Zhang, Hai-Feng
2018-02-01
To maximize the spreading influence of multiple spreaders in complex networks, one important fact cannot be ignored: the multiple spreaders should be dispersively distributed in networks, which can effectively reduce the redundance of information spreading. For this purpose, we define a generalized closeness centrality (GCC) index by generalizing the closeness centrality index to a set of nodes. The problem converts to how to identify multiple spreaders such that an objective function has the minimal value. By comparing with the K-means clustering algorithm, we find that the optimization problem is very similar to the problem of minimizing the objective function in the K-means method. Therefore, how to find multiple nodes with the highest GCC value can be approximately solved by the K-means method. Two typical transmission dynamics-epidemic spreading process and rumor spreading process are implemented in real networks to verify the good performance of our proposed method.
A spectral k-means approach to bright-field cell image segmentation.
Bradbury, Laura; Wan, Justin W L
2010-01-01
Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images.
Accelerating Information Retrieval from Profile Hidden Markov Model Databases.
Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem
2016-01-01
Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.
Vision based obstacle detection and grouping for helicopter guidance
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Chatterji, Gano
1993-01-01
Electro-optical sensors can be used to compute range to objects in the flight path of a helicopter. The computation is based on the optical flow/motion at different points in the image. The motion algorithms provide a sparse set of ranges to discrete features in the image sequence as a function of azimuth and elevation. For obstacle avoidance guidance and display purposes, these discrete set of ranges, varying from a few hundreds to several thousands, need to be grouped into sets which correspond to objects in the real world. This paper presents a new method for object segmentation based on clustering the sparse range information provided by motion algorithms together with the spatial relation provided by the static image. The range values are initially grouped into clusters based on depth. Subsequently, the clusters are modified by using the K-means algorithm in the inertial horizontal plane and the minimum spanning tree algorithms in the image plane. The object grouping allows interpolation within a group and enables the creation of dense range maps. Researchers in robotics have used densely scanned sequence of laser range images to build three-dimensional representation of the outside world. Thus, modeling techniques developed for dense range images can be extended to sparse range images. The paper presents object segmentation results for a sequence of flight images.
NASA Astrophysics Data System (ADS)
Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan
2018-04-01
Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.
Geometry-based populated chessboard recognition
NASA Astrophysics Data System (ADS)
Xie, Youye; Tang, Gongguo; Hoff, William
2018-04-01
Chessboards are commonly used to calibrate cameras, and many robust methods have been developed to recognize the unoccupied boards. However, when the chessboard is populated with chess pieces, such as during an actual game, the problem of recognizing the board is much harder. Challenges include occlusion caused by the chess pieces, the presence of outlier lines and low viewing angles of the chessboard. In this paper, we present a novel approach to address the above challenges and recognize the chessboard. The Canny edge detector and Hough transform are used to capture all possible lines in the scene. The k-means clustering and a k-nearest-neighbors inspired algorithm are applied to cluster and reject the outlier lines based on their Euclidean distances to the nearest neighbors in a scaled Hough transform space. Finally, based on prior knowledge of the chessboard structure, a geometric constraint is used to find the correspondences between image lines and the lines on the chessboard through the homography transformation. The proposed algorithm works for a wide range of the operating angles and achieves high accuracy in experiments.
Manoharan, Sujatha C; Ramakrishnan, Swaminathan
2009-10-01
In this work, prediction of forced expiratory volume in pulmonary function test, carried out using spirometry and neural networks is presented. The pulmonary function data were recorded from volunteers using commercial available flow volume spirometer in standard acquisition protocol. The Radial Basis Function neural networks were used to predict forced expiratory volume in 1 s (FEV1) from the recorded flow volume curves. The optimal centres of the hidden layer of radial basis function were determined by k-means clustering algorithm. The performance of the neural network model was evaluated by computing their prediction error statistics of average value, standard deviation, root mean square and their correlation with the true data for normal, restrictive and obstructive cases. Results show that the adopted neural networks are capable of predicting FEV1 in both normal and abnormal cases. Prediction accuracy was more in obstructive abnormality when compared to restrictive cases. It appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.
Removal of impulse noise clusters from color images with local order statistics
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly
2017-09-01
This paper proposes a novel algorithm for restoring images corrupted with clusters of impulse noise. The noise clusters often occur when the probability of impulse noise is very high. The proposed noise removal algorithm consists of detection of bulky impulse noise in three color channels with local order statistics followed by removal of the detected clusters by means of vector median filtering. With the help of computer simulation we show that the proposed algorithm is able to effectively remove clustered impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.
A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters
Wang, Zhihao; Yi, Jing
2016-01-01
For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291
Profiling Local Optima in K-Means Clustering: Developing a Diagnostic Technique
ERIC Educational Resources Information Center
Steinley, Douglas
2006-01-01
Using the cluster generation procedure proposed by D. Steinley and R. Henson (2005), the author investigated the performance of K-means clustering under the following scenarios: (a) different probabilities of cluster overlap; (b) different types of cluster overlap; (c) varying samples sizes, clusters, and dimensions; (d) different multivariate…
Inflation data clustering of some cities in Indonesia
NASA Astrophysics Data System (ADS)
Setiawan, Adi; Susanto, Bambang; Mahatma, Tundjung
2017-06-01
In this paper, it is presented how to cluster inflation data of cities in Indonesia by using k-means cluster method and fuzzy c-means method. The data that are used is limited to the monthly inflation data from 15 cities across Indonesia which have highest weight of donations and is supplemented with 5 cities used in the calculation of inflation in Indonesia. When they are applied into two clusters with k = 2 for k-means cluster method and c = 2, w = 1.25 for fuzzy c-means cluster method, Ambon, Manado and Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). However, if they are applied into two clusters with c=2, w=1.5, Surabaya, Medan, Makasar, Samarinda, Makasar, Manado, Ambon dan Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). Furthermore, when we use two clusters with k=3 for k-means cluster method and c=3, w = 1.25 for fuzzy c-means cluster method, Ambon tends to become member of first cluster (high inflation), Manado and Jayapura tend to become member of second cluster (moderate inflation), other cities tend to become members of third cluster (low inflation). If it is applied c=3, w = 1.5, Ambon, Manado and Jayapura tend to become member of first cluster (high inflation), Surabaya, Bandung, Medan, Makasar, Banyuwangi, Denpasar, Samarinda dan Mataram tend to become members of second cluster (moderate inflation), meanwhile other cities tend to become members of third cluster (low inflation). Similarly, interpretation can be made to the results of applying 5 clusters.
A MULTICORE BASED PARALLEL IMAGE REGISTRATION METHOD
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.
2012-01-01
Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform. PMID:19964921
Nguyen, Huyen T; Jia, Guang; Shah, Zarine K; Pohar, Kamal; Mortazavi, Amir; Zynger, Debra L; Wei, Lai; Yang, Xiangyu; Clark, Daniel; Knopp, Michael V
2015-05-01
To apply k-means clustering of two pharmacokinetic parameters derived from 3T dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the chemotherapeutic response in bladder cancer at the mid-cycle timepoint. With the predetermined number of three clusters, k-means clustering was performed on nondimensionalized Amp and kep estimates of each bladder tumor. Three cluster volume fractions (VFs) were calculated for each tumor at baseline and mid-cycle. The changes of three cluster VFs from baseline to mid-cycle were correlated with the tumor's chemotherapeutic response. Receiver-operating-characteristics curve analysis was used to evaluate the performance of each cluster VF change as a biomarker of chemotherapeutic response in bladder cancer. The k-means clustering partitioned each bladder tumor into cluster 1 (low kep and low Amp), cluster 2 (low kep and high Amp), cluster 3 (high kep and low Amp). The changes of all three cluster VFs were found to be associated with bladder tumor response to chemotherapy. The VF change of cluster 2 presented with the highest area-under-the-curve value (0.96) and the highest sensitivity/specificity/accuracy (96%/100%/97%) with a selected cutoff value. The k-means clustering of the two DCE-MRI pharmacokinetic parameters can characterize the complex microcirculatory changes within a bladder tumor to enable early prediction of the tumor's chemotherapeutic response. © 2014 Wiley Periodicals, Inc.
Nguyen, Huyen T.; Jia, Guang; Shah, Zarine K.; Pohar, Kamal; Mortazavi, Amir; Zynger, Debra L.; Wei, Lai; Yang, Xiangyu; Clark, Daniel; Knopp, Michael V.
2015-01-01
Purpose To apply k-means clustering of two pharmacokinetic parameters derived from 3T DCE-MRI to predict chemotherapeutic response in bladder cancer at the mid-cycle time-point. Materials and Methods With the pre-determined number of 3 clusters, k-means clustering was performed on non-dimensionalized Amp and kep estimates of each bladder tumor. Three cluster volume fractions (VFs) were calculated for each tumor at baseline and mid-cycle. The changes of three cluster VFs from baseline to mid-cycle were correlated with the tumor’s chemotherapeutic response. Receiver-operating-characteristics curve analysis was used to evaluate the performance of each cluster VF change as a biomarker of chemotherapeutic response in bladder cancer. Results k-means clustering partitioned each bladder tumor into cluster 1 (low kep and low Amp), cluster 2 (low kep and high Amp), cluster 3 (high kep and low Amp). The changes of all three cluster VFs were found to be associated with bladder tumor response to chemotherapy. The VF change of cluster 2 presented with the highest area-under-the-curve value (0.96) and the highest sensitivity/specificity/accuracy (96%/100%/97%) with a selected cutoff value. Conclusion k-means clustering of the two DCE-MRI pharmacokinetic parameters can characterize the complex microcirculatory changes within a bladder tumor to enable early prediction of the tumor’s chemotherapeutic response. PMID:24943272
On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms.
Chen, Chunlei; He, Li; Zhang, Huixiang; Zheng, Hao; Wang, Lei
2017-01-01
Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.
The effect of mining data k-means clustering toward students profile model drop out potential
NASA Astrophysics Data System (ADS)
Purba, Windania; Tamba, Saut; Saragih, Jepronel
2018-04-01
The high of student success and the low of student failure can reflect the quality of a college. One of the factors of fail students was drop out. To solve the problem, so mining data with K-means Clustering was applied. K-Means Clustering method would be implemented to clustering the drop out students potentially. Firstly the the result data would be clustering to get the information of all students condition. Based on the model taken was found that students who potentially drop out because of the unexciting students in learning, unsupported parents, diffident students and less of students behavior time. The result of process of K-Means Clustering could known that students who more potentially drop out were in Cluster 1 caused Credit Total System, Quality Total, and the lowest Grade Point Average (GPA) compared between cluster 2 and 3.
Merging K-means with hierarchical clustering for identifying general-shaped groups.
Peterson, Anna D; Ghosh, Arka P; Maitra, Ranjan
2018-01-01
Clustering partitions a dataset such that observations placed together in a group are similar but different from those in other groups. Hierarchical and K -means clustering are two approaches but have different strengths and weaknesses. For instance, hierarchical clustering identifies groups in a tree-like structure but suffers from computational complexity in large datasets while K -means clustering is efficient but designed to identify homogeneous spherically-shaped clusters. We present a hybrid non-parametric clustering approach that amalgamates the two methods to identify general-shaped clusters and that can be applied to larger datasets. Specifically, we first partition the dataset into spherical groups using K -means. We next merge these groups using hierarchical methods with a data-driven distance measure as a stopping criterion. Our proposal has the potential to reveal groups with general shapes and structure in a dataset. We demonstrate good performance on several simulated and real datasets.
Satisfiability of logic programming based on radial basis function neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged
2014-07-10
In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We appliedmore » the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.« less
Biclustering of gene expression data using reactive greedy randomized adaptive search procedure
Dharan, Smitha; Nair, Achuthsankar S
2009-01-01
Background Biclustering algorithms belong to a distinct class of clustering algorithms that perform simultaneous clustering of both rows and columns of the gene expression matrix and can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse. Cheng and Church have introduced a measure called mean squared residue score to evaluate the quality of a bicluster and has become one of the most popular measures to search for biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP)-construction and local search phases and propose a new method which is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP) to detect significant biclusters from large microarray datasets. The method has two major steps. First, high quality bicluster seeds are generated by means of k-means clustering. In the second step, these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found previously. Results We performed statistical and biological validations of the biclusters obtained and evaluated the method against the results of basic GRASP and as well as with the classic work of Cheng and Church. The experimental results indicate that the Reactive GRASP approach outperforms the basic GRASP algorithm and Cheng and Church approach. Conclusion The Reactive GRASP approach for the detection of significant biclusters is robust and does not require calibration efforts. PMID:19208127
Mutation Clusters from Cancer Exome.
Kakushadze, Zura; Yu, Willie
2017-08-15
We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stable. They are also out-of-sample stable when applied to 1389 published genome samples across 14 cancer types. In contrast, we find in- and out-of-sample instabilities in cancer signatures extracted from exome samples via nonnegative matrix factorization (NMF), a computationally-costly and non-deterministic method. Extracting stable mutation structures from exome data could have important implications for speed and cost, which are critical for early-stage cancer diagnostics, such as novel blood-test methods currently in development.
Mutation Clusters from Cancer Exome
Kakushadze, Zura; Yu, Willie
2017-01-01
We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stable. They are also out-of-sample stable when applied to 1389 published genome samples across 14 cancer types. In contrast, we find in- and out-of-sample instabilities in cancer signatures extracted from exome samples via nonnegative matrix factorization (NMF), a computationally-costly and non-deterministic method. Extracting stable mutation structures from exome data could have important implications for speed and cost, which are critical for early-stage cancer diagnostics, such as novel blood-test methods currently in development. PMID:28809811
NASA Astrophysics Data System (ADS)
Lestari, A. W.; Rustam, Z.
2017-07-01
In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.
Short-term Power Load Forecasting Based on Balanced KNN
NASA Astrophysics Data System (ADS)
Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei
2018-03-01
To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.
Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.
Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage controlmore » problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.« less
Ruiz, Duncan D. A.; Norberto de Souza, Osmar
2015-01-01
Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward’s, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill biologically relevant information from MD trajectories, especially for docking purposes. PMID:26218832
De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D A; Norberto de Souza, Osmar
2015-01-01
Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward's, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill biologically relevant information from MD trajectories, especially for docking purposes.
Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian
2017-06-01
In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.
Anandakrishnan, Ramu; Onufriev, Alexey
2008-03-01
In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.
Radial basis function neural networks applied to NASA SSME data
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Dhawan, Atam P.
1993-01-01
This paper presents a brief report on the application of Radial Basis Function Neural Networks (RBFNN) to the prediction of sensor values for fault detection and diagnosis of the Space Shuttle's Main Engines (SSME). The location of the Radial Basis Function (RBF) node centers was determined with a K-means clustering algorithm. A neighborhood operation about these center points was used to determine the variances of the individual processing notes.
NASA Astrophysics Data System (ADS)
Andryani, Diyah Septi; Bustamam, Alhadi; Lestari, Dian
2017-03-01
Clustering aims to classify the different patterns into groups called clusters. In this clustering method, we use n-mers frequency to calculate the distance matrix which is considered more accurate than using the DNA alignment. The clustering results could be used to discover biologically important sub-sections and groups of genes. Many clustering methods have been developed, while hard clustering methods considered less accurate than fuzzy clustering methods, especially if it is used for outliers data. Among fuzzy clustering methods, fuzzy c-means is one the best known for its accuracy and simplicity. Fuzzy c-means clustering uses membership function variable, which refers to how likely the data could be members into a cluster. Fuzzy c-means clustering works using the principle of minimizing the objective function. Parameters of membership function in fuzzy are used as a weighting factor which is also called the fuzzier. In this study we implement hybrid clustering using fuzzy c-means and divisive algorithm which could improve the accuracy of cluster membership compare to traditional partitional approach only. In this study fuzzy c-means is used in the first step to find partition results. Furthermore divisive algorithms will run on the second step to find sub-clusters and dendogram of phylogenetic tree. To find the best number of clusters is determined using the minimum value of Davies Bouldin Index (DBI) of the cluster results. In this research, the results show that the methods introduced in this paper is better than other partitioning methods. Finally, we found 3 clusters with DBI value of 1.126628 at first step of clustering. Moreover, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.
NASA Astrophysics Data System (ADS)
Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Amirul Abdullah, Muhammad; Hasnun Arif Hassan, Mohd; Khalil, Zubair
2018-04-01
The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. The bio-physiological variables namely resting heart rate, resting respiratory rate, resting diastolic blood pressure, resting systolic blood pressure, as well as calories intake, were measured prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models i.e. linear, quadratic and cubic kernel functions, were trained on the aforementioned variables. The k-means clustered the archers into high (HPA) and low potential archers (LPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy with a classification accuracy of 94% in comparison the other tested models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected bio-physiological variables examined.
SAIL: Summation-bAsed Incremental Learning for Information-Theoretic Text Clustering.
Cao, Jie; Wu, Zhiang; Wu, Junjie; Xiong, Hui
2013-04-01
Information-theoretic clustering aims to exploit information-theoretic measures as the clustering criteria. A common practice on this topic is the so-called Info-Kmeans, which performs K-means clustering with KL-divergence as the proximity function. While expert efforts on Info-Kmeans have shown promising results, a remaining challenge is to deal with high-dimensional sparse data such as text corpora. Indeed, it is possible that the centroids contain many zero-value features for high-dimensional text vectors, which leads to infinite KL-divergence values and creates a dilemma in assigning objects to centroids during the iteration process of Info-Kmeans. To meet this challenge, in this paper, we propose a Summation-bAsed Incremental Learning (SAIL) algorithm for Info-Kmeans clustering. Specifically, by using an equivalent objective function, SAIL replaces the computation of KL-divergence by the incremental computation of Shannon entropy. This can avoid the zero-feature dilemma caused by the use of KL-divergence. To improve the clustering quality, we further introduce the variable neighborhood search scheme and propose the V-SAIL algorithm, which is then accelerated by a multithreaded scheme in PV-SAIL. Our experimental results on various real-world text collections have shown that, with SAIL as a booster, the clustering performance of Info-Kmeans can be significantly improved. Also, V-SAIL and PV-SAIL indeed help improve the clustering quality at a lower cost of computation.
Using Cluster Analysis and ICP-MS to Identify Groups of Ecstasy Tablets in Sao Paulo State, Brazil.
Maione, Camila; de Oliveira Souza, Vanessa Cristina; Togni, Loraine Rezende; da Costa, José Luiz; Campiglia, Andres Dobal; Barbosa, Fernando; Barbosa, Rommel Melgaço
2017-11-01
The variations found in the elemental composition in ecstasy samples result in spectral profiles with useful information for data analysis, and cluster analysis of these profiles can help uncover different categories of the drug. We provide a cluster analysis of ecstasy tablets based on their elemental composition. Twenty-five elements were determined by ICP-MS in tablets apprehended by Sao Paulo's State Police, Brazil. We employ the K-means clustering algorithm along with C4.5 decision tree to help us interpret the clustering results. We found a better number of two clusters within the data, which can refer to the approximated number of sources of the drug which supply the cities of seizures. The C4.5 model was capable of differentiating the ecstasy samples from the two clusters with high prediction accuracy using the leave-one-out cross-validation. The model used only Nd, Ni, and Pb concentration values in the classification of the samples. © 2017 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Chen, Dan; Guo, Lin-yuan; Wang, Chen-hao; Ke, Xi-zheng
2017-07-01
Equalization can compensate channel distortion caused by channel multipath effects, and effectively improve convergent of modulation constellation diagram in optical wireless system. In this paper, the subspace blind equalization algorithm is used to preprocess M-ary phase shift keying (MPSK) subcarrier modulation signal in receiver. Mountain clustering is adopted to get the clustering centers of MPSK modulation constellation diagram, and the modulation order is automatically identified through the k-nearest neighbor (KNN) classifier. The experiment has been done under four different weather conditions. Experimental results show that the convergent of constellation diagram is improved effectively after using the subspace blind equalization algorithm, which means that the accuracy of modulation recognition is increased. The correct recognition rate of 16PSK can be up to 85% in any kind of weather condition which is mentioned in paper. Meanwhile, the correct recognition rate is the highest in cloudy and the lowest in heavy rain condition.
A Digital Staining Algorithm for Optical Coherence Tomography Images of the Optic Nerve Head
Mari, Jean-Martial; Aung, Tin; Cheng, Ching-Yu; Strouthidis, Nicholas G.; Girard, Michaël J. A.
2017-01-01
Purpose To digitally stain spectral-domain optical coherence tomography (OCT) images of the optic nerve head (ONH), and highlight either connective or neural tissues. Methods OCT volumes of the ONH were acquired from one eye of 10 healthy subjects. We processed all volumes with adaptive compensation to remove shadows and enhance deep tissue visibility. For each ONH, we identified the four most dissimilar pixel-intensity histograms, each of which was assumed to represent a tissue group. These four histograms formed a vector basis on which we ‘projected' each OCT volume in order to generate four digitally stained volumes P1 to P4. Digital staining was also verified using a digital phantom, and compared with k-means clustering for three and four clusters. Results Digital staining was able to isolate three regions of interest from the proposed phantom. For the ONH, the digitally stained images P1 highlighted mostly connective tissues, as demonstrated through an excellent contrast increase across the anterior lamina cribrosa boundary (3.6 ± 0.6 times). P2 highlighted the nerve fiber layer and the prelamina, P3 the remaining layers of the retina, and P4 the image background. Further, digital staining was able to separate ONH tissue layers that were not well separated by k-means clustering. Conclusion We have described an algorithm that can digitally stain connective and neural tissues in OCT images of the ONH. Translational Relevance Because connective and neural tissues are considerably altered in glaucoma, digital staining of the ONH tissues may be of interest in the clinical management of this pathology. PMID:28174676
Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
NASA Astrophysics Data System (ADS)
Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li
2016-06-01
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
Alternative Parameterizations for Cluster Editing
NASA Astrophysics Data System (ADS)
Komusiewicz, Christian; Uhlmann, Johannes
Given an undirected graph G and a nonnegative integer k, the NP-hard Cluster Editing problem asks whether G can be transformed into a disjoint union of cliques by applying at most k edge modifications. In the field of parameterized algorithmics, Cluster Editing has almost exclusively been studied parameterized by the solution size k. Contrastingly, in many real-world instances it can be observed that the parameter k is not really small. This observation motivates our investigation of parameterizations of Cluster Editing different from the solution size k. Our results are as follows. Cluster Editing is fixed-parameter tractable with respect to the parameter "size of a minimum cluster vertex deletion set of G", a typically much smaller parameter than k. Cluster Editing remains NP-hard on graphs with maximum degree six. A restricted but practically relevant version of Cluster Editing is fixed-parameter tractable with respect to the combined parameter "number of clusters in the target graph" and "maximum number of modified edges incident to any vertex in G". Many of our results also transfer to the NP-hard Cluster Deletion problem, where only edge deletions are allowed.
Optimization of Support Vector Machine (SVM) for Object Classification
NASA Technical Reports Server (NTRS)
Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin
2012-01-01
The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.
A robust fuzzy local Information c-means clustering algorithm with noise detection
NASA Astrophysics Data System (ADS)
Shang, Jiayu; Li, Shiren; Huang, Junwei
2018-04-01
Fuzzy c-means clustering (FCM), especially with spatial constraints (FCM_S), is an effective algorithm suitable for image segmentation. Its reliability contributes not only to the presentation of fuzziness for belongingness of every pixel but also to exploitation of spatial contextual information. But these algorithms still remain some problems when processing the image with noise, they are sensitive to the parameters which have to be tuned according to prior knowledge of the noise. In this paper, we propose a new FCM algorithm, combining the gray constraints and spatial constraints, called spatial and gray-level denoised fuzzy c-means (SGDFCM) algorithm. This new algorithm conquers the parameter disadvantages mentioned above by considering the possibility of noise of each pixel, which aims to improve the robustness and obtain more detail information. Furthermore, the possibility of noise can be calculated in advance, which means the algorithm is effective and efficient.
Performance Analysis of Entropy Methods on K Means in Clustering Process
NASA Astrophysics Data System (ADS)
Dicky Syahputra Lubis, Mhd.; Mawengkang, Herman; Suwilo, Saib
2017-12-01
K Means is a non-hierarchical data clustering method that attempts to partition existing data into one or more clusters / groups. This method partitions the data into clusters / groups so that data that have the same characteristics are grouped into the same cluster and data that have different characteristics are grouped into other groups.The purpose of this data clustering is to minimize the objective function set in the clustering process, which generally attempts to minimize variation within a cluster and maximize the variation between clusters. However, the main disadvantage of this method is that the number k is often not known before. Furthermore, a randomly chosen starting point may cause two points to approach the distance to be determined as two centroids. Therefore, for the determination of the starting point in K Means used entropy method where this method is a method that can be used to determine a weight and take a decision from a set of alternatives. Entropy is able to investigate the harmony in discrimination among a multitude of data sets. Using Entropy criteria with the highest value variations will get the highest weight. Given this entropy method can help K Means work process in determining the starting point which is usually determined at random. Thus the process of clustering on K Means can be more quickly known by helping the entropy method where the iteration process is faster than the K Means Standard process. Where the postoperative patient dataset of the UCI Repository Machine Learning used and using only 12 data as an example of its calculations is obtained by entropy method only with 2 times iteration can get the desired end result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Sánchez, Tania; Gómez-Lázaro, Emilio; Muljadi, E.
An alternative approach to characterise real voltage dips is proposed and evaluated in this study. The proposed methodology is based on voltage-space vector solutions, identifying parameters for ellipses trajectories by using the least-squares algorithm applied on a sliding window along the disturbance. The most likely patterns are then estimated through a clustering process based on the k-means algorithm. The objective is to offer an efficient and easily implemented alternative to characterise faults and visualise the most likely instantaneous phase-voltage evolution during events through their corresponding voltage-space vector trajectories. This novel solution minimises the data to be stored but maintains extensivemore » information about the dips including starting and ending transients. The proposed methodology has been applied satisfactorily to real voltage dips obtained from intensive field-measurement campaigns carried out in a Spanish wind power plant up to a time period of several years. A comparison to traditional minimum root mean square-voltage and time-duration classifications is also included in this study.« less
Hybrid Tracking Algorithm Improvements and Cluster Analysis Methods.
1982-02-26
UPGMA ), and Ward’s method. Ling’s papers describe a (k,r) clustering method. Each of these methods have individual characteristics which make them...Reference 7), UPGMA is probably the most frequently used clustering strategy. UPGMA tries to group new points into an existing cluster by using an
On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms
He, Li; Zheng, Hao; Wang, Lei
2017-01-01
Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions. PMID:29123546
Clustering Categorical Data Using Community Detection Techniques
2017-01-01
With the advent of the k-modes algorithm, the toolbox for clustering categorical data has an efficient tool that scales linearly in the number of data items. However, random initialization of cluster centers in k-modes makes it hard to reach a good clustering without resorting to many trials. Recently proposed methods for better initialization are deterministic and reduce the clustering cost considerably. A variety of initialization methods differ in how the heuristics chooses the set of initial centers. In this paper, we address the clustering problem for categorical data from the perspective of community detection. Instead of initializing k modes and running several iterations, our scheme, CD-Clustering, builds an unweighted graph and detects highly cohesive groups of nodes using a fast community detection technique. The top-k detected communities by size will define the k modes. Evaluation on ten real categorical datasets shows that our method outperforms the existing initialization methods for k-modes in terms of accuracy, precision, and recall in most of the cases. PMID:29430249
A tripartite clustering analysis on microRNA, gene and disease model.
Shen, Chengcheng; Liu, Ying
2012-02-01
Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.
Method for exploratory cluster analysis and visualisation of single-trial ERP ensembles.
Williams, N J; Nasuto, S J; Saddy, J D
2015-07-30
The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. We propose a complete pipeline for the cluster analysis of ERP data. To increase the signal-to-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA) to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). After validating the pipeline on simulated data, we tested it on data from two experiments - a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership. Our analysis operates on denoised single-trials, the number of clusters are determined in a principled manner and the results are presented through an intuitive visualisation. Given the cluster structure in some experimental conditions, we suggest application of cluster analysis as a preliminary step before ensemble averaging. Copyright © 2015 Elsevier B.V. All rights reserved.
Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella
2015-10-30
The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms.
Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella
2015-01-01
The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms. PMID:26528984
Fault Identification by Unsupervised Learning Algorithm
NASA Astrophysics Data System (ADS)
Nandan, S.; Mannu, U.
2012-12-01
Contemporary fault identification techniques predominantly rely on the surface expression of the fault. This biased observation is inadequate to yield detailed fault structures in areas with surface cover like cities deserts vegetation etc and the changes in fault patterns with depth. Furthermore it is difficult to estimate faults structure which do not generate any surface rupture. Many disastrous events have been attributed to these blind faults. Faults and earthquakes are very closely related as earthquakes occur on faults and faults grow by accumulation of coseismic rupture. For a better seismic risk evaluation it is imperative to recognize and map these faults. We implement a novel approach to identify seismically active fault planes from three dimensional hypocenter distribution by making use of unsupervised learning algorithms. We employ K-means clustering algorithm and Expectation Maximization (EM) algorithm modified to identify planar structures in spatial distribution of hypocenter after filtering out isolated events. We examine difference in the faults reconstructed by deterministic assignment in K- means and probabilistic assignment in EM algorithm. The method is conceptually identical to methodologies developed by Ouillion et al (2008, 2010) and has been extensively tested on synthetic data. We determined the sensitivity of the methodology to uncertainties in hypocenter location, density of clustering and cross cutting fault structures. The method has been applied to datasets from two contrasting regions. While Kumaon Himalaya is a convergent plate boundary, Koyna-Warna lies in middle of the Indian Plate but has a history of triggered seismicity. The reconstructed faults were validated by examining the fault orientation of mapped faults and the focal mechanism of these events determined through waveform inversion. The reconstructed faults could be used to solve the fault plane ambiguity in focal mechanism determination and constrain the fault orientations for finite source inversions. The faults produced by the method exhibited good correlation with the fault planes obtained by focal mechanism solutions and previously mapped faults.
WordCluster: detecting clusters of DNA words and genomic elements
2011-01-01
Background Many k-mers (or DNA words) and genomic elements are known to be spatially clustered in the genome. Well established examples are the genes, TFBSs, CpG dinucleotides, microRNA genes and ultra-conserved non-coding regions. Currently, no algorithm exists to find these clusters in a statistically comprehensible way. The detection of clustering often relies on densities and sliding-window approaches or arbitrarily chosen distance thresholds. Results We introduce here an algorithm to detect clusters of DNA words (k-mers), or any other genomic element, based on the distance between consecutive copies and an assigned statistical significance. We implemented the method into a web server connected to a MySQL backend, which also determines the co-localization with gene annotations. We demonstrate the usefulness of this approach by detecting the clusters of CAG/CTG (cytosine contexts that can be methylated in undifferentiated cells), showing that the degree of methylation vary drastically between inside and outside of the clusters. As another example, we used WordCluster to search for statistically significant clusters of olfactory receptor (OR) genes in the human genome. Conclusions WordCluster seems to predict biological meaningful clusters of DNA words (k-mers) and genomic entities. The implementation of the method into a web server is available at http://bioinfo2.ugr.es/wordCluster/wordCluster.php including additional features like the detection of co-localization with gene regions or the annotation enrichment tool for functional analysis of overlapped genes. PMID:21261981
Security and Correctness Analysis on Privacy-Preserving k-Means Clustering Schemes
NASA Astrophysics Data System (ADS)
Su, Chunhua; Bao, Feng; Zhou, Jianying; Takagi, Tsuyoshi; Sakurai, Kouichi
Due to the fast development of Internet and the related IT technologies, it becomes more and more easier to access a large amount of data. k-means clustering is a powerful and frequently used technique in data mining. Many research papers about privacy-preserving k-means clustering were published. In this paper, we analyze the existing privacy-preserving k-means clustering schemes based on the cryptographic techniques. We show those schemes will cause the privacy breach and cannot output the correct results due to the faults in the protocol construction. Furthermore, we analyze our proposal as an option to improve such problems but with intermediate information breach during the computation.
A comparison of latent class, K-means, and K-median methods for clustering dichotomous data.
Brusco, Michael J; Shireman, Emilie; Steinley, Douglas
2017-09-01
The problem of partitioning a collection of objects based on their measurements on a set of dichotomous variables is a well-established problem in psychological research, with applications including clinical diagnosis, educational testing, cognitive categorization, and choice analysis. Latent class analysis and K-means clustering are popular methods for partitioning objects based on dichotomous measures in the psychological literature. The K-median clustering method has recently been touted as a potentially useful tool for psychological data and might be preferable to its close neighbor, K-means, when the variable measures are dichotomous. We conducted simulation-based comparisons of the latent class, K-means, and K-median approaches for partitioning dichotomous data. Although all 3 methods proved capable of recovering cluster structure, K-median clustering yielded the best average performance, followed closely by latent class analysis. We also report results for the 3 methods within the context of an application to transitive reasoning data, in which it was found that the 3 approaches can exhibit profound differences when applied to real data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A hybrid algorithm for clustering of time series data based on affinity search technique.
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.
A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966
NASA Astrophysics Data System (ADS)
Shen, Fei; Chen, Chao; Yan, Ruqiang
2017-05-01
Classical bearing fault diagnosis methods, being designed according to one specific task, always pay attention to the effectiveness of extracted features and the final diagnostic performance. However, most of these approaches suffer from inefficiency when multiple tasks exist, especially in a real-time diagnostic scenario. A fault diagnosis method based on Non-negative Matrix Factorization (NMF) and Co-clustering strategy is proposed to overcome this limitation. Firstly, some high-dimensional matrixes are constructed using the Short-Time Fourier Transform (STFT) features, where the dimension of each matrix equals to the number of target tasks. Then, the NMF algorithm is carried out to obtain different components in each dimension direction through optimized matching, such as Euclidean distance and divergence distance. Finally, a Co-clustering technique based on information entropy is utilized to realize classification of each component. To verity the effectiveness of the proposed approach, a series of bearing data sets were analysed in this research. The tests indicated that although the diagnostic performance of single task is comparable to traditional clustering methods such as K-mean algorithm and Guassian Mixture Model, the accuracy and computational efficiency in multi-tasks fault diagnosis are improved.
Deep linear autoencoder and patch clustering-based unified one-dimensional coding of image and video
NASA Astrophysics Data System (ADS)
Li, Honggui
2017-09-01
This paper proposes a unified one-dimensional (1-D) coding framework of image and video, which depends on deep learning neural network and image patch clustering. First, an improved K-means clustering algorithm for image patches is employed to obtain the compact inputs of deep artificial neural network. Second, for the purpose of best reconstructing original image patches, deep linear autoencoder (DLA), a linear version of the classical deep nonlinear autoencoder, is introduced to achieve the 1-D representation of image blocks. Under the circumstances of 1-D representation, DLA is capable of attaining zero reconstruction error, which is impossible for the classical nonlinear dimensionality reduction methods. Third, a unified 1-D coding infrastructure for image, intraframe, interframe, multiview video, three-dimensional (3-D) video, and multiview 3-D video is built by incorporating different categories of videos into the inputs of patch clustering algorithm. Finally, it is shown in the results of simulation experiments that the proposed methods can simultaneously gain higher compression ratio and peak signal-to-noise ratio than those of the state-of-the-art methods in the situation of low bitrate transmission.
Automated rice leaf disease detection using color image analysis
NASA Astrophysics Data System (ADS)
Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.
2011-06-01
In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.
Scalable Nearest Neighbor Algorithms for High Dimensional Data.
Muja, Marius; Lowe, David G
2014-11-01
For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.
Rezaee, Kh; Haddadnia, J
2013-09-01
Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic images require accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive K-means techniques to transmute the medical images implement the tumor estimation and detect breast cancer tumors in mammograms in early stages. It also allows the rapid processing of the input data. In the first step, after designing a filter, the discrete wavelet transform is applied to the input images and the approximate coefficients of scaling components are constructed. Then, the different parts of image are classified in continuous spectrum. In the next step, by using adaptive K-means algorithm for initializing and smart choice of clusters' number, the appropriate threshold is selected. Finally, the suspicious cancerous mass is separated by implementing the image processing techniques. We Received 120 mammographic images in LJPEG format, which had been scanned in Gray-Scale with 50 microns size, 3% noise and 20% INU from clinical data taken from two medical databases (mini-MIAS and DDSM). The proposed algorithm detected tumors at an acceptable level with an average accuracy of 92.32% and sensitivity of 90.24%. Also, the Kappa coefficient was approximately 0.85, which proved the suitable reliability of the system performance. The exact positioning of the cancerous tumors allows the radiologist to determine the stage of disease progression and suggest an appropriate treatment in accordance with the tumor growth. The low PPV and high NPV of the system is a warranty of the system and both clinical specialists and patients can trust its output.
Choosing the Number of Clusters in K-Means Clustering
ERIC Educational Resources Information Center
Steinley, Douglas; Brusco, Michael J.
2011-01-01
Steinley (2007) provided a lower bound for the sum-of-squares error criterion function used in K-means clustering. In this article, on the basis of the lower bound, the authors propose a method to distinguish between 1 cluster (i.e., a single distribution) versus more than 1 cluster. Additionally, conditional on indicating there are multiple…
Applications of wavelet-based compression to multidimensional Earth science data
NASA Technical Reports Server (NTRS)
Bradley, Jonathan N.; Brislawn, Christopher M.
1993-01-01
A data compression algorithm involving vector quantization (VQ) and the discrete wavelet transform (DWT) is applied to two different types of multidimensional digital earth-science data. The algorithms (WVQ) is optimized for each particular application through an optimization procedure that assigns VQ parameters to the wavelet transform subbands subject to constraints on compression ratio and encoding complexity. Preliminary results of compressing global ocean model data generated on a Thinking Machines CM-200 supercomputer are presented. The WVQ scheme is used in both a predictive and nonpredictive mode. Parameters generated by the optimization algorithm are reported, as are signal-to-noise (SNR) measurements of actual quantized data. The problem of extrapolating hydrodynamic variables across the continental landmasses in order to compute the DWT on a rectangular grid is discussed. Results are also presented for compressing Landsat TM 7-band data using the WVQ scheme. The formulation of the optimization problem is presented along with SNR measurements of actual quantized data. Postprocessing applications are considered in which the seven spectral bands are clustered into 256 clusters using a k-means algorithm and analyzed using the Los Alamos multispectral data analysis program, SPECTRUM, both before and after being compressed using the WVQ program.
Computational intelligence techniques for biological data mining: An overview
NASA Astrophysics Data System (ADS)
Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari
2014-10-01
Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.
Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging
NASA Astrophysics Data System (ADS)
Spinelli, Antonello E.; Boschi, Federico
2011-12-01
Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with 32P-ATP and 18F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was implemented using interactive data language 8.1. We show that cluster analysis allows us to obtain good agreement between the clustered and the corresponding emission regions like the bladder, the liver, and the tumor. We also show a good correspondence between the time activity curves of the different regions obtained by using CA and manual region of interest analysis on dCLIT and PCA images. We conclude that CA provides an automatic unsupervised method for the analysis of preclinical dynamic Cerenkov luminescence image data.
A network model for biofilm development in Escherichia coli K-12.
Shalá, Andrew A; Restrepo, Silvia; González Barrios, Andrés F
2011-09-22
In nature, bacteria often exist as biofilms. Biofilms are communities of microorganisms attached to a surface. It is clear that biofilm-grown cells harbor properties remarkably distinct from planktonic cells. Biofilms frequently complicate treatments of infections by protecting bacteria from the immune system, decreasing antibiotic efficacy and dispersing planktonic cells to distant body sites. In this work, we employed enhanced Boolean algebra to model biofilm formation. The network obtained describes biofilm formation successfully, assuming - in accordance with the literature - that when the negative regulators (RscCD and EnvZ/OmpR) are off, the positive regulator (FlhDC) is on. The network was modeled under three different conditions through time with satisfactory outcomes. Each cluster was constructed using the K-means/medians Clustering Support algorithm on the basis of published Affymetrix microarray gene expression data from biofilm-forming bacteria and the planktonic state over four time points for Escherichia coli K-12. The different phenotypes obtained demonstrate that the network model of biofilm formation can simulate the formation or repression of biofilm efficiently in E. coli K-12.
Comparison of segmentation algorithms for fluorescence microscopy images of cells.
Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L
2011-07-01
The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.
Intelligent screening of electrofusion-polyethylene joints based on a thermal NDT method
NASA Astrophysics Data System (ADS)
Doaei, Marjan; Tavallali, M. Sadegh
2018-05-01
The combinations of infrared thermal images and artificial intelligence methods have opened new avenues for pushing the boundaries of available testing methods. Hence, in the current study, a novel thermal non-destructive testing method for polyethylene electrofusion joints was combined with k-means clustering algorithms as an intelligent screening tool. The experiments focused on ovality of pipes in the coupler, as well as misalignment of pipes-couplers in 25 mm diameter joints. The temperature responses of each joint to an internal heat pulse were recorded by an IR thermal camera, and further processed to identify the faulty joints. The results represented clustering accuracy of 92%, as well as more than 90% abnormality detection capabilities.
Pivot method for global optimization: A study of structures and phase changes in water clusters
NASA Astrophysics Data System (ADS)
Nigra, Pablo Fernando
In this thesis, we have carried out a study of water clusters. The research work has been developed in two stages. In the first stage, we have investigated the properties of water clusters at zero temperature by means of global optimization. The clusters were modeled by using two well known pairwise potentials having distinct characteristics. One is the Matsuoka-Clementi-Yoshimine potential (MCY) that is an ab initio fitted function based on a rigid-molecule model, the other is the Sillinger-Rahman potential (SR) which is an empirical function based on a flexible-molecule model. The algorithm used for the global optimization of the clusters was the pivot method, which was developed in our group. The results have shown that, under certain conditions, the pivot method may yield optimized structures which are related to one another in such a way that they seem to form structural families. The structures in a family can be thought of as formed from the aggregation of single units. The particular types of structures we have found are quasi-one dimensional tubes built from stacking cyclic units such as tetramers, pentamers, and hexamers. The binding energies of these tubes form sequences that span smooth curves with clear asymptotic behavior; therefore, we have also studied the sequences applying the Bulirsch-Stoer (BST) algorithm to accelerate convergence. In the second stage of the research work, we have studied the thermodynamic properties of a typical water cluster at finite temperatures. The selected cluster was the water octamer which exhibits a definite solid-liquid phase change. The water octamer also has several low lying energy cubic structures with large energetic barriers that cause ergodicity breaking in regular Monte Carlo simulations. For that reason we have simulated the octamer using paralell tempering Monte Carlo combined with the multihistogram method. This has permited us to calculate the heat capacity from very low temperatures up to T = 230 K. We have found the melting temperature to be 178.5 K. In addition, we have been able to estimate at 12 K the onset temperature of a solid-solid phase change between the two lowest energy lying isomers.
Clustering Module in OLAP for Horticultural Crops using SpagoBI
NASA Astrophysics Data System (ADS)
Putri, D.; Sitanggang, I. S.
2017-03-01
Horticultural crops data are organized by the Ministry of Agriculture, Republic of Indonesia. The data are presented annually in a tabular form and result a large data set. This situation makes users difficult to obtain summaries of horticultural crops data. This study aims to develop a clustering module in the SOLAP system for the distribution of horticultural crops in Indonesia and to visualize the results of clustering in a map using SpagoBI. The algorithm used for clustering is K-Means. Horticultural crops data include vegetables, ornamental plants, medicinal plants, and fruits from 2000 to 2013. The clustering module displays clustering results of horticultural crops in the form of text and table on SpagoBI. This module can also visualize the distribution of horticultural crops in the form of map on the HTML page. The application is expected to be useful for users in order to easily obtain summaries of the horticultural crops distribution data and its clusters. The summaries and clusters can be beneficial for the stakeholders to determine potential areas in Indonesia for horticultural crops.
NASA Astrophysics Data System (ADS)
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-04-01
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-03-13
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
NASA Astrophysics Data System (ADS)
Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.
2017-09-01
Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.
NASA Astrophysics Data System (ADS)
Mokdad, Fatiha; Haddad, Boualem
2017-06-01
In this paper, two new infrared precipitation estimation approaches based on the concept of k-means clustering are first proposed, named the NAW-Kmeans and the GPI-Kmeans methods. Then, they are adapted to the southern Mediterranean basin, where the subtropical climate prevails. The infrared data (10.8 μm channel) acquired by MSG-SEVIRI sensor in winter and spring 2012 are used. Tests are carried out in eight areas distributed over northern Algeria: Sebra, El Bordj, Chlef, Blida, Bordj Menael, Sidi Aich, Beni Ourthilane, and Beni Aziz. The validation is performed by a comparison of the estimated rainfalls to rain gauges observations collected by the National Office of Meteorology in Dar El Beida (Algeria). Despite the complexity of the subtropical climate, the obtained results indicate that the NAW-Kmeans and the GPI-Kmeans approaches gave satisfactory results for the considered rain rates. Also, the proposed schemes lead to improvement in precipitation estimation performance when compared to the original algorithms NAW (Nagri, Adler, and Wetzel) and GPI (GOES Precipitation Index).
Semi-supervised clustering for parcellating brain regions based on resting state fMRI data
NASA Astrophysics Data System (ADS)
Cheng, Hewei; Fan, Yong
2014-03-01
Many unsupervised clustering techniques have been adopted for parcellating brain regions of interest into functionally homogeneous subregions based on resting state fMRI data. However, the unsupervised clustering techniques are not able to take advantage of exiting knowledge of the functional neuroanatomy readily available from studies of cytoarchitectonic parcellation or meta-analysis of the literature. In this study, we propose a semi-supervised clustering method for parcellating amygdala into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented under the framework of graph partitioning, and adopts prior information and spatial consistent constraints to obtain a spatially contiguous parcellation result. The graph partitioning problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated for parcellating amygdala into 3 subregions based on resting state fMRI data of 28 subjects. The experiment results have demonstrated that the proposed method is more robust than unsupervised clustering and able to parcellate amygdala into centromedial, laterobasal, and superficial parts with improved functionally homogeneity compared with the cytoarchitectonic parcellation result. The validity of the parcellation results is also supported by distinctive functional and structural connectivity patterns of the subregions and high consistency between coactivation patterns derived from a meta-analysis and functional connectivity patterns of corresponding subregions.
Engels, Michael F M; Gibbs, Alan C; Jaeger, Edward P; Verbinnen, Danny; Lobanov, Victor S; Agrafiotis, Dimitris K
2006-01-01
We report on the structural comparison of the corporate collections of Johnson & Johnson Pharmaceutical Research & Development (JNJPRD) and 3-Dimensional Pharmaceuticals (3DP), performed in the context of the recent acquisition of 3DP by JNJPRD. The main objective of the study was to assess the druglikeness of the 3DP library and the extent to which it enriched the chemical diversity of the JNJPRD corporate collection. The two databases, at the time of acquisition, collectively contained more than 1.1 million compounds with a clearly defined structural description. The analysis was based on a clustering approach and aimed at providing an intuitive quantitative estimate and visual representation of this enrichment. A novel hierarchical clustering algorithm called divisive k-means was employed in combination with Kelley's cluster-level selection method to partition the combined data set into clusters, and the diversity contribution of each library was evaluated as a function of the relative occupancy of these clusters. Typical 3DP chemotypes enriching the diversity of the JNJPRD collection were catalogued and visualized using a modified maximum common substructure algorithm. The joint collection of JNJPRD and 3DP compounds was also compared to other databases of known medicinally active or druglike compounds. The potential of the methodology for the analysis of very large chemical databases is discussed.
Liu, Wen; Fu, Xiao; Deng, Zhongliang
2016-12-02
Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.
Liu, Wen; Fu, Xiao; Deng, Zhongliang
2016-01-01
Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means. PMID:27918454
Testing of the Support Vector Machine for Binary-Class Classification
NASA Technical Reports Server (NTRS)
Scholten, Matthew
2011-01-01
The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results
Cazade, Pierre-André; Zheng, Wenwei; Prada-Gracia, Diego; Berezovska, Ganna; Rao, Francesco; Clementi, Cecilia; Meuwly, Markus
2015-01-14
The ligand migration network for O2-diffusion in truncated Hemoglobin N is analyzed based on three different clustering schemes. For coordinate-based clustering, the conventional k-means and the kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion map (LSDMap) method is a collective-variable-based approach. It is found that all three methods agree well in their geometrical definition of the most important docking site, and all experimentally known docking sites are recovered by all three methods. Also, for most of the states, their population coincides quite favourably, whereas the kinetics of and between the states differs. One of the major differences between k-means and MCL clustering on the one hand and LSDMap on the other is that the latter finds one large primary cluster containing the Xe1a, IS1, and ENT states. This is related to the fact that the motion within the state occurs on similar time scales, whereas structurally the state is found to be quite diverse. In agreement with previous explicit atomistic simulations, the Xe3 pocket is found to be a highly dynamical site which points to its potential role as a hub in the network. This is also highlighted in the fact that LSDMap cannot identify this state. First passage time distributions from MCL clusterings using a one- (ligand-position) and two-dimensional (ligand-position and protein-structure) descriptor suggest that ligand- and protein-motions are coupled. The benefits and drawbacks of the three methods are discussed in a comparative fashion and highlight that depending on the questions at hand the best-performing method for a particular data set may differ.
An extended affinity propagation clustering method based on different data density types.
Zhao, XiuLi; Xu, WeiXiang
2015-01-01
Affinity propagation (AP) algorithm, as a novel clustering method, does not require the users to specify the initial cluster centers in advance, which regards all data points as potential exemplars (cluster centers) equally and groups the clusters totally by the similar degree among the data points. But in many cases there exist some different intensive areas within the same data set, which means that the data set does not distribute homogeneously. In such situation the AP algorithm cannot group the data points into ideal clusters. In this paper, we proposed an extended AP clustering algorithm to deal with such a problem. There are two steps in our method: firstly the data set is partitioned into several data density types according to the nearest distances of each data point; and then the AP clustering method is, respectively, used to group the data points into clusters in each data density type. Two experiments are carried out to evaluate the performance of our algorithm: one utilizes an artificial data set and the other uses a real seismic data set. The experiment results show that groups are obtained more accurately by our algorithm than OPTICS and AP clustering algorithm itself.
Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-Means Cluster Analysis
ERIC Educational Resources Information Center
de Craen, Saskia; Commandeur, Jacques J. F.; Frank, Laurence E.; Heiser, Willem J.
2006-01-01
K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these…
Lalonde, Michel; Wells, R Glenn; Birnie, David; Ruddy, Terrence D; Wassenaar, Richard
2014-07-01
Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster analysis results were similar to SPECT RNA phase analysis (ROC AUC = 0.78, p = 0.73 vs cluster AUC; sensitivity/specificity = 59%/89%) and PET scar size analysis (ROC AUC = 0.73, p = 1.0 vs cluster AUC; sensitivity/specificity = 76%/67%). A SPECT RNA cluster analysis algorithm was developed for the prediction of CRT outcome. Cluster analysis results produced results equivalent to those obtained from Fourier and scar analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalonde, Michel, E-mail: mlalonde15@rogers.com; Wassenaar, Richard; Wells, R. Glenn
2014-07-15
Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: Aboutmore » 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster analysis results were similar to SPECT RNA phase analysis (ROC AUC = 0.78, p = 0.73 vs cluster AUC; sensitivity/specificity = 59%/89%) and PET scar size analysis (ROC AUC = 0.73, p = 1.0 vs cluster AUC; sensitivity/specificity = 76%/67%). Conclusions: A SPECT RNA cluster analysis algorithm was developed for the prediction of CRT outcome. Cluster analysis results produced results equivalent to those obtained from Fourier and scar analysis.« less
Knowledge discovery of drug data on the example of adverse reaction prediction
2014-01-01
Background Antibiotics are the widely prescribed drugs for children and most likely to be related with adverse reactions. Record on adverse reactions and allergies from antibiotics considerably affect the prescription choices. We consider this a biomedical decision-making problem and explore hidden knowledge in survey results on data extracted from a big data pool of health records of children, from the Health Center of Osijek, Eastern Croatia. Results We applied and evaluated a k-means algorithm to the dataset to generate some clusters which have similar features. Our results highlight that some type of antibiotics form different clusters, which insight is most helpful for the clinician to support better decision-making. Conclusions Medical professionals can investigate the clusters which our study revealed, thus gaining useful knowledge and insight into this data for their clinical studies. PMID:25079450
A Variable-Selection Heuristic for K-Means Clustering.
ERIC Educational Resources Information Center
Brusco, Michael J.; Cradit, J. Dennis
2001-01-01
Presents a variable selection heuristic for nonhierarchical (K-means) cluster analysis based on the adjusted Rand index for measuring cluster recovery. Subjected the heuristic to Monte Carlo testing across more than 2,200 datasets. Results indicate that the heuristic is extremely effective at eliminating masking variables. (SLD)
Big Data GPU-Driven Parallel Processing Spatial and Spatio-Temporal Clustering Algorithms
NASA Astrophysics Data System (ADS)
Konstantaras, Antonios; Skounakis, Emmanouil; Kilty, James-Alexander; Frantzeskakis, Theofanis; Maravelakis, Emmanuel
2016-04-01
Advances in graphics processing units' technology towards encompassing parallel architectures [1], comprised of thousands of cores and multiples of parallel threads, provide the foundation in terms of hardware for the rapid processing of various parallel applications regarding seismic big data analysis. Seismic data are normally stored as collections of vectors in massive matrices, growing rapidly in size as wider areas are covered, denser recording networks are being established and decades of data are being compiled together [2]. Yet, many processes regarding seismic data analysis are performed on each seismic event independently or as distinct tiles [3] of specific grouped seismic events within a much larger data set. Such processes, independent of one another can be performed in parallel narrowing down processing times drastically [1,3]. This research work presents the development and implementation of three parallel processing algorithms using Cuda C [4] for the investigation of potentially distinct seismic regions [5,6] present in the vicinity of the southern Hellenic seismic arc. The algorithms, programmed and executed in parallel comparatively, are the: fuzzy k-means clustering with expert knowledge [7] in assigning overall clusters' number; density-based clustering [8]; and a selves-developed spatio-temporal clustering algorithm encompassing expert [9] and empirical knowledge [10] for the specific area under investigation. Indexing terms: GPU parallel programming, Cuda C, heterogeneous processing, distinct seismic regions, parallel clustering algorithms, spatio-temporal clustering References [1] Kirk, D. and Hwu, W.: 'Programming massively parallel processors - A hands-on approach', 2nd Edition, Morgan Kaufman Publisher, 2013 [2] Konstantaras, A., Valianatos, F., Varley, M.R. and Makris, J.P.: 'Soft-Computing Modelling of Seismicity in the Southern Hellenic Arc', Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [3] Papadakis, S. and Diamantaras, K.: 'Programming and architecture of parallel processing systems', 1st Edition, Eds. Kleidarithmos, 2011 [4] NVIDIA.: 'NVidia CUDA C Programming Guide', version 5.0, NVidia (reference book) [5] Konstantaras, A.: 'Classification of Distinct Seismic Regions and Regional Temporal Modelling of Seismicity in the Vicinity of the Hellenic Seismic Arc', IEEE Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6 (4), pp. 1857-1863, 2013 [6] Konstantaras, A. Varley, M.R.,. Valianatos, F., Collins, G. and Holifield, P.: 'Recognition of electric earthquake precursors using neuro-fuzzy models: methodology and simulation results', Proc. IASTED International Conference on Signal Processing Pattern Recognition and Applications (SPPRA 2002), Crete, Greece, 2002, pp 303-308, 2002 [7] Konstantaras, A., Katsifarakis, E., Maravelakis, E., Skounakis, E., Kokkinos, E. and Karapidakis, E.: 'Intelligent Spatial-Clustering of Seismicity in the Vicinity of the Hellenic Seismic Arc', Earth Science Research, vol. 1 (2), pp. 1-10, 2012 [8] Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C.D., Maravelakis, E. and Vachtsevanos, G.: '"Seismic-Mass" Density-based Algorithm for Spatio-Temporal Clustering', Expert Systems with Applications, vol. 40 (10), pp. 4183-4189, 2013 [9] Konstantaras, A. J.: 'Expert knowledge-based algorithm for the dynamic discrimination of interactive natural clusters', Earth Science Informatics, 2015 (In Press, see: www.scopus.com) [10] Drakatos, G. and Latoussakis, J.: 'A catalog of aftershock sequences in Greece (1971-1997): Their spatial and temporal characteristics', Journal of Seismology, vol. 5, pp. 137-145, 2001
Spatial correlation analysis of urban traffic state under a perspective of community detection
NASA Astrophysics Data System (ADS)
Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan
2018-05-01
Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.
Simultaneous Two-Way Clustering of Multiple Correspondence Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Dillon, William R.
2010-01-01
A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which "k"-means is…
NASA Astrophysics Data System (ADS)
Di, Nur Faraidah Muhammad; Satari, Siti Zanariah
2017-05-01
Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.
Fast Image Texture Classification Using Decision Trees
NASA Technical Reports Server (NTRS)
Thompson, David R.
2011-01-01
Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.
Determining the Number of Clusters in a Data Set Without Graphical Interpretation
NASA Technical Reports Server (NTRS)
Aguirre, Nathan S.; Davies, Misty D.
2011-01-01
Cluster analysis is a data mining technique that is meant ot simplify the process of classifying data points. The basic clustering process requires an input of data points and the number of clusters wanted. The clustering algorithm will then pick starting C points for the clusters, which can be either random spatial points or random data points. It then assigns each data point to the nearest C point where "nearest usually means Euclidean distance, but some algorithms use another criterion. The next step is determining whether the clustering arrangement this found is within a certain tolerance. If it falls within this tolerance, the process ends. Otherwise the C points are adjusted based on how many data points are in each cluster, and the steps repeat until the algorithm converges,
Community detection in complex networks using deep auto-encoded extreme learning machine
NASA Astrophysics Data System (ADS)
Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing
2018-06-01
Community detection has long been a fascinating topic in complex networks since the community structure usually unveils valuable information of interest. The prevalence and evolution of deep learning and neural networks have been pushing forward the advancement in various research fields and also provide us numerous useful and off the shelf techniques. In this paper, we put the cascaded stacked autoencoders and the unsupervised extreme learning machine (ELM) together in a two-level embedding process and propose a novel community detection algorithm. Extensive comparison experiments in circumstances of both synthetic and real-world networks manifest the advantages of the proposed algorithm. On one hand, it outperforms the k-means clustering in terms of the accuracy and stability thus benefiting from the determinate dimensions of the ELM block and the integration of sparsity restrictions. On the other hand, it endures smaller complexity than the spectral clustering method on account of the shrinkage in time spent on the eigenvalue decomposition procedure.
An efficient 3D R-tree spatial index method for virtual geographic environments
NASA Astrophysics Data System (ADS)
Zhu, Qing; Gong, Jun; Zhang, Yeting
A three-dimensional (3D) spatial index is required for real time applications of integrated organization and management in virtual geographic environments of above ground, underground, indoor and outdoor objects. Being one of the most promising methods, the R-tree spatial index has been paid increasing attention in 3D geospatial database management. Since the existing R-tree methods are usually limited by their weakness of low efficiency, due to the critical overlap of sibling nodes and the uneven size of nodes, this paper introduces the k-means clustering method and employs the 3D overlap volume, 3D coverage volume and the minimum bounding box shape value of nodes as the integrative grouping criteria. A new spatial cluster grouping algorithm and R-tree insertion algorithm is then proposed. Experimental analysis on comparative performance of spatial indexing shows that by the new method the overlap of R-tree sibling nodes is minimized drastically and a balance in the volumes of the nodes is maintained.
Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI
NASA Astrophysics Data System (ADS)
Gupta, Anjali; Pahuja, Gunjan
2017-08-01
The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).
Ab initio metadynamics simulations of oxygen/ligand interactions in organoaluminum clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alnemrat, Sufian; Hooper, Joseph P., E-mail: jphooper@nps.edu
2014-10-14
Car-Parrinello molecular dynamics combined with a metadynamics algorithm is used to study the initial interaction of O{sub 2} with the low-valence organoaluminum clusters Al{sub 4}Cp{sub 4} (Cp=C{sub 5}H{sub 5}) and Al{sub 4}Cp{sub 4}{sup *} (Cp{sup *}=C{sub 5}[CH{sub 3}]{sub 5}). Prior to reaction with the aluminum core, simulations suggest that the oxygen undergoes a hindered crossing of the steric barrier presented by the outer ligand monolayer. A combination of two collective variables based on aluminum/oxygen distance and lateral oxygen displacement was found to produce distinct reactant, product, and transition states for this process. In the methylated cluster with Cp{sup *} ligands,more » a broad transition state of 45 kJ/mol was observed due to direct steric interactions with the ligand groups and considerable oxygen reorientation. In the non-methylated cluster the ligands distort away from the oxidizer, resulting in a barrier of roughly 34 kJ/mol with minimal O{sub 2} reorientation. A study of the oxygen/cluster system fixed in a triplet multiplicity suggests that the spin state does not affect the initial steric interaction with the ligands. The metadynamics approach appears to be a promising means of analyzing the initial steps of such oxidation reactions for ligand-protected clusters.« less
Application of K-Mean Algorithm for Medicine Data Clustering in Puskesmas Rumbai
NASA Astrophysics Data System (ADS)
Taslim; Fajrizal; Toresa, Dafwen
2017-12-01
Through the government’s health insurance program, efforts are made to ensure the health of the community through Puskesmas or community clinics. One of the most important components in health is the availability of medicines. The availability of medicines should be well managed to ensure that the medicines needed by the community are always available in sufficient quantities. Clustering on Data mining can be used to analyze the use of medicines during this time at a Puskesmas to be used as one of considerations for the Puskesmas to submit the demand of medicines in the period to come. The results of this study are expected to classify the level of medicines used in the pharmacy of Puskesmas in Rumbai Bukit Pekanbaru.
Hsu, Chien-Chang; Cheng, Ching-Wen; Chiu, Yi-Shiuan
2017-02-15
Electroencephalograms can record wave variations in any brain activity. Beta waves are produced when an external stimulus induces logical thinking, computation, and reasoning during consciousness. This work uses the beta wave of major scale working memory N-back tasks to analyze the differences between young musicians and non-musicians. After the feature analysis uses signal filtering, Hilbert-Huang transformation, and feature extraction methods to identify differences, k-means clustering algorithm are used to group them into different clusters. The results of feature analysis showed that beta waves significantly differ between young musicians and non-musicians from the low memory load of working memory task. Copyright © 2017 Elsevier B.V. All rights reserved.
A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times
NASA Astrophysics Data System (ADS)
Li, Xin; Fung, Richard Y. K.
2018-02-01
This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.
A comparison of heuristic and model-based clustering methods for dietary pattern analysis.
Greve, Benjamin; Pigeot, Iris; Huybrechts, Inge; Pala, Valeria; Börnhorst, Claudia
2016-02-01
Cluster analysis is widely applied to identify dietary patterns. A new method based on Gaussian mixture models (GMM) seems to be more flexible compared with the commonly applied k-means and Ward's method. In the present paper, these clustering approaches are compared to find the most appropriate one for clustering dietary data. The clustering methods were applied to simulated data sets with different cluster structures to compare their performance knowing the true cluster membership of observations. Furthermore, the three methods were applied to FFQ data assessed in 1791 children participating in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants) Study to explore their performance in practice. The GMM outperformed the other methods in the simulation study in 72 % up to 100 % of cases, depending on the simulated cluster structure. Comparing the computationally less complex k-means and Ward's methods, the performance of k-means was better in 64-100 % of cases. Applied to real data, all methods identified three similar dietary patterns which may be roughly characterized as a 'non-processed' cluster with a high consumption of fruits, vegetables and wholemeal bread, a 'balanced' cluster with only slight preferences of single foods and a 'junk food' cluster. The simulation study suggests that clustering via GMM should be preferred due to its higher flexibility regarding cluster volume, shape and orientation. The k-means seems to be a good alternative, being easier to use while giving similar results when applied to real data.
Automated Snow Extent Mapping Based on Orthophoto Images from Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Spallek, Waldemar; Witek-Kasprzak, Matylda
2018-04-01
The paper presents the application of the k-means clustering in the process of automated snow extent mapping using orthophoto images generated using the Structure-from-Motion (SfM) algorithm from oblique aerial photographs taken by unmanned aerial vehicle (UAV). A simple classification approach has been implemented to discriminate between snow-free and snow-covered terrain. The procedure uses the k-means clustering and classifies orthophoto images based on the three-dimensional space of red-green-blue (RGB) or near-infrared-red-green (NIRRG) or near-infrared-green-blue (NIRGB) bands. To test the method, several field experiments have been carried out, both in situations when snow cover was continuous and when it was patchy. The experiments have been conducted using three fixed-wing UAVs (swinglet CAM by senseFly, eBee by senseFly, and Birdie by FlyTech UAV) on 10/04/2015, 23/03/2016, and 16/03/2017 within three test sites in the Izerskie Mountains in southwestern Poland. The resulting snow extent maps, produced automatically using the classification method, have been validated against real snow extents delineated through a visual analysis and interpretation offered by human analysts. For the simplest classification setup, which assumes two classes in the k-means clustering, the extent of snow patches was estimated accurately, with areal underestimation of 4.6% (RGB) and overestimation of 5.5% (NIRGB). For continuous snow cover with sparse discontinuities at places where trees or bushes protruded from snow, the agreement between automatically produced snow extent maps and observations was better, i.e. 1.5% (underestimation with RGB) and 0.7-0.9% (overestimation, either with RGB or with NIRRG). Shadows on snow were found to be mainly responsible for the misclassification.
Tchagang, Alain B; Phan, Sieu; Famili, Fazel; Shearer, Heather; Fobert, Pierre; Huang, Yi; Zou, Jitao; Huang, Daiqing; Cutler, Adrian; Liu, Ziying; Pan, Youlian
2012-04-04
Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space. We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster), for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP) concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (Plasmodium chabaudi), systemic acquired resistance in Arabidopsis thaliana, similarities and differences between inner and outer cotyledon in Brassica napus during seed development, and to Brassica napus whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples. Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.
Class imbalance in unsupervised change detection - A diagnostic analysis from urban remote sensing
NASA Astrophysics Data System (ADS)
Leichtle, Tobias; Geiß, Christian; Lakes, Tobia; Taubenböck, Hannes
2017-08-01
Automatic monitoring of changes on the Earth's surface is an intrinsic capability and simultaneously a persistent methodological challenge in remote sensing, especially regarding imagery with very-high spatial resolution (VHR) and complex urban environments. In order to enable a high level of automatization, the change detection problem is solved in an unsupervised way to alleviate efforts associated with collection of properly encoded prior knowledge. In this context, this paper systematically investigates the nature and effects of class distribution and class imbalance in an unsupervised binary change detection application based on VHR imagery over urban areas. For this purpose, a diagnostic framework for sensitivity analysis of a large range of possible degrees of class imbalance is presented, which is of particular importance with respect to unsupervised approaches where the content of images and thus the occurrence and the distribution of classes are generally unknown a priori. Furthermore, this framework can serve as a general technique to evaluate model transferability in any two-class classification problem. The applied change detection approach is based on object-based difference features calculated from VHR imagery and subsequent unsupervised two-class clustering using k-means, genetic k-means and self-organizing map (SOM) clustering. The results from two test sites with different structural characteristics of the built environment demonstrated that classification performance is generally worse in imbalanced class distribution settings while best results were reached in balanced or close to balanced situations. Regarding suitable accuracy measures for evaluating model performance in imbalanced settings, this study revealed that the Kappa statistics show significant response to class distribution while the true skill statistic was widely insensitive to imbalanced classes. In general, the genetic k-means clustering algorithm achieved the most robust results with respect to class imbalance while the SOM clustering exhibited a distinct optimization towards a balanced distribution of classes.
From virtual clustering analysis to self-consistent clustering analysis: a mathematical study
NASA Astrophysics Data System (ADS)
Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam
2018-03-01
In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.
NASA Astrophysics Data System (ADS)
Elbakary, M. I.; Alam, M. S.; Aslan, M. S.
2008-03-01
In a FLIR image sequence, a target may disappear permanently or may reappear after some frames and crucial information such as direction, position and size related to the target are lost. If the target reappears at a later frame, it may not be tracked again because the 3D orientation, size and location of the target might be changed. To obtain information about the target before disappearing and to detect the target after reappearing, distance classifier correlation filter (DCCF) is trained manualy by selecting a number of chips randomly. This paper introduces a novel idea to eliminates the manual intervention in training phase of DCCF. Instead of selecting the training chips manually and selecting the number of the training chips randomly, we adopted the K-means algorithm to cluster the training frames and based on the number of clusters we select the training chips such that a training chip for each cluster. To detect and track the target after reappearing in the field-ofview ,TBF and DCCF are employed. The contduced experiemnts using real FLIR sequences show results similar to the traditional agorithm but eleminating the manual intervention is the advantage of the proposed algorithm.
Designing a robust activity recognition framework for health and exergaming using wearable sensors.
Alshurafa, Nabil; Xu, Wenyao; Liu, Jason J; Huang, Ming-Chun; Mortazavi, Bobak; Roberts, Christian K; Sarrafzadeh, Majid
2014-09-01
Detecting human activity independent of intensity is essential in many applications, primarily in calculating metabolic equivalent rates and extracting human context awareness. Many classifiers that train on an activity at a subset of intensity levels fail to recognize the same activity at other intensity levels. This demonstrates weakness in the underlying classification method. Training a classifier for an activity at every intensity level is also not practical. In this paper, we tackle a novel intensity-independent activity recognition problem where the class labels exhibit large variability, the data are of high dimensionality, and clustering algorithms are necessary. We propose a new robust stochastic approximation framework for enhanced classification of such data. Experiments are reported using two clustering techniques, K-Means and Gaussian Mixture Models. The stochastic approximation algorithm consistently outperforms other well-known classification schemes which validate the use of our proposed clustered data representation. We verify the motivation of our framework in two applications that benefit from intensity-independent activity recognition. The first application shows how our framework can be used to enhance energy expenditure calculations. The second application is a novel exergaming environment aimed at using games to reward physical activity performed throughout the day, to encourage a healthy lifestyle.
Modified fuzzy c-means applied to a Bragg grating-based spectral imager for material clustering
NASA Astrophysics Data System (ADS)
Rodríguez, Aida; Nieves, Juan Luis; Valero, Eva; Garrote, Estíbaliz; Hernández-Andrés, Javier; Romero, Javier
2012-01-01
We have modified the Fuzzy C-Means algorithm for an application related to segmentation of hyperspectral images. Classical fuzzy c-means algorithm uses Euclidean distance for computing sample membership to each cluster. We have introduced a different distance metric, Spectral Similarity Value (SSV), in order to have a more convenient similarity measure for reflectance information. SSV distance metric considers both magnitude difference (by the use of Euclidean distance) and spectral shape (by the use of Pearson correlation). Experiments confirmed that the introduction of this metric improves the quality of hyperspectral image segmentation, creating spectrally more dense clusters and increasing the number of correctly classified pixels.
NASA Astrophysics Data System (ADS)
Tian, Fuyang; Cao, Dong; Dong, Xiaoning; Zhao, Xinqiang; Li, Fade; Wang, Zhonghua
2017-06-01
Behavioral features recognition was an important effect to detect oestrus and sickness in dairy herds and there is a need for heat detection aid. The detection method was based on the measure of the individual behavioural activity, standing time, and temperature of dairy using vibrational sensor and temperature sensor in this paper. The data of behavioural activity index, standing time, lying time and walking time were sent to computer by lower power consumption wireless communication system. The fast approximate K-means algorithm (FAKM) was proposed to deal the data of the sensor for behavioral features recognition. As a result of technical progress in monitoring cows using computers, automatic oestrus detection has become possible.
Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi
2016-01-01
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers.
Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi
2016-01-01
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers. PMID:27610177
Buried landmine detection using multivariate normal clustering
NASA Astrophysics Data System (ADS)
Duston, Brian M.
2001-10-01
A Bayesian classification algorithm is presented for discriminating buried land mines from buried and surface clutter in Ground Penetrating Radar (GPR) signals. This algorithm is based on multivariate normal (MVN) clustering, where feature vectors are used to identify populations (clusters) of mines and clutter objects. The features are extracted from two-dimensional images created from ground penetrating radar scans. MVN clustering is used to determine the number of clusters in the data and to create probability density models for target and clutter populations, producing the MVN clustering classifier (MVNCC). The Bayesian Information Criteria (BIC) is used to evaluate each model to determine the number of clusters in the data. An extension of the MVNCC allows the model to adapt to local clutter distributions by treating each of the MVN cluster components as a Poisson process and adaptively estimating the intensity parameters. The algorithm is developed using data collected by the Mine Hunter/Killer Close-In Detector (MH/K CID) at prepared mine lanes. The Mine Hunter/Killer is a prototype mine detecting and neutralizing vehicle developed for the U.S. Army to clear roads of anti-tank mines.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
Fast segmentation of satellite images using SLIC, WebGL and Google Earth Engine
NASA Astrophysics Data System (ADS)
Donchyts, Gennadii; Baart, Fedor; Gorelick, Noel; Eisemann, Elmar; van de Giesen, Nick
2017-04-01
Google Earth Engine (GEE) is a parallel geospatial processing platform, which harmonizes access to petabytes of freely available satellite images. It provides a very rich API, allowing development of dedicated algorithms to extract useful geospatial information from these images. At the same time, modern GPUs provide thousands of computing cores, which are mostly not utilized in this context. In the last years, WebGL became a popular and well-supported API, allowing fast image processing directly in web browsers. In this work, we will evaluate the applicability of WebGL to enable fast segmentation of satellite images. A new implementation of a Simple Linear Iterative Clustering (SLIC) algorithm using GPU shaders will be presented. SLIC is a simple and efficient method to decompose an image in visually homogeneous regions. It adapts a k-means clustering approach to generate superpixels efficiently. While this approach will be hard to scale, due to a significant amount of data to be transferred to the client, it should significantly improve exploratory possibilities and simplify development of dedicated algorithms for geoscience applications. Our prototype implementation will be used to improve surface water detection of the reservoirs using multispectral satellite imagery.
Scalable Algorithms for Clustering Large Geospatiotemporal Data Sets on Manycore Architectures
NASA Astrophysics Data System (ADS)
Mills, R. T.; Hoffman, F. M.; Kumar, J.; Sreepathi, S.; Sripathi, V.
2016-12-01
The increasing availability of high-resolution geospatiotemporal data sets from sources such as observatory networks, remote sensing platforms, and computational Earth system models has opened new possibilities for knowledge discovery using data sets fused from disparate sources. Traditional algorithms and computing platforms are impractical for the analysis and synthesis of data sets of this size; however, new algorithmic approaches that can effectively utilize the complex memory hierarchies and the extremely high levels of available parallelism in state-of-the-art high-performance computing platforms can enable such analysis. We describe a massively parallel implementation of accelerated k-means clustering and some optimizations to boost computational intensity and utilization of wide SIMD lanes on state-of-the art multi- and manycore processors, including the second-generation Intel Xeon Phi ("Knights Landing") processor based on the Intel Many Integrated Core (MIC) architecture, which includes several new features, including an on-package high-bandwidth memory. We also analyze the code in the context of a few practical applications to the analysis of climatic and remotely-sensed vegetation phenology data sets, and speculate on some of the new applications that such scalable analysis methods may enable.
Visual based laser speckle pattern recognition method for structural health monitoring
NASA Astrophysics Data System (ADS)
Park, Kyeongtaek; Torbol, Marco
2017-04-01
This study performed the system identification of a target structure by analyzing the laser speckle pattern taken by a camera. The laser speckle pattern is generated by the diffuse reflection of the laser beam on a rough surface of the target structure. The camera, equipped with a red filter, records the scattered speckle particles of the laser light in real time and the raw speckle image of the pixel data is fed to the graphic processing unit (GPU) in the system. The algorithm for laser speckle contrast analysis (LASCA) computes: the laser speckle contrast images and the laser speckle flow images. The k-mean clustering algorithm is used to classify the pixels in each frame and the clusters' centroids, which function as virtual sensors, track the displacement between different frames in time domain. The fast Fourier transform (FFT) and the frequency domain decomposition (FDD) compute the modal properties of the structure: natural frequencies and damping ratios. This study takes advantage of the large scale computational capability of GPU. The algorithm is written in Compute Unifies Device Architecture (CUDA C) that allows the processing of speckle images in real time.
User clustering in smartphone applications.
Schaefers, Klaus; Ribeiro, David
2012-01-01
In the context of mobile health applications usability is a crucial factor to achieve user acceptance. The successful user interface (UI) design requires a deep understanding of the needs and requirements of the targeted audience. This paper explores the application of the K-Means algorithm on smartphone usage data in order to offer Human Computer Interaction (HCI) specialists a better insight into their user group. Two different feature space representations are introduced and used to identify persona like stereotypes in a real world data set, which was obtained from a public available smartphone application.
Adaptive density trajectory cluster based on time and space distance
NASA Astrophysics Data System (ADS)
Liu, Fagui; Zhang, Zhijie
2017-10-01
There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.
Granado, Laura Carmilo; Ranvaud, Ronald; Peláez, Javier Ropero
2007-01-01
We describe a new arachnophobia therapy that is specially suited for those individuals with severe arachnophobia who are reluctant to undergo direct or even virtual exposure treatments. In this therapy, patients attend a computer presentation of images that, while not being spiders, have a subset of the characteristics of spiders. The Atomium of Brussels is an example of such an image. The treatment group (n = 13) exhibited a significant improvement (time × group interaction: P = .0026) when compared to the placebo group (n = 12) in a repeated measures multivariate ANOVA. A k-means clustering algorithm revealed that, after 4 weeks of treatment, 42% of the patients moved from the arachnophobic to the nonarachnophobic cluster. Six months after concluding the treatment, a follow-up study showed a substantial consolidation of the recovery process where 92% of the arachnophobic patients moved to the nonarachnophobic cluster. PMID:17713595
Topic Identification and Categorization of Public Information in Community-Based Social Media
NASA Astrophysics Data System (ADS)
Kusumawardani, RP; Basri, MH
2017-01-01
This paper presents a work on a semi-supervised method for topic identification and classification of short texts in the social media, and its application on tweets containing dialogues in a large community of dwellers in a city, written mostly in Indonesian. These dialogues comprise a wealth of information about the city, shared in real-time. We found that despite the high irregularity of the language used, and the scarcity of suitable linguistic resources, a meaningful identification of topics could be performed by clustering the tweets using the K-Means algorithm. The resulting clusters are found to be robust enough to be the basis of a classification. On three grouping schemes derived from the clusters, we get accuracy of 95.52%, 95.51%, and 96.7 using linear SVMs, reflecting the applicability of applying this method for generating topic identification and classification on such data.
Using Machine Learning for Advanced Anomaly Detection and Classification
NASA Astrophysics Data System (ADS)
Lane, B.; Poole, M.; Camp, M.; Murray-Krezan, J.
2016-09-01
Machine Learning (ML) techniques have successfully been used in a wide variety of applications to automatically detect and potentially classify changes in activity, or a series of activities by utilizing large amounts data, sometimes even seemingly-unrelated data. The amount of data being collected, processed, and stored in the Space Situational Awareness (SSA) domain has grown at an exponential rate and is now better suited for ML. This paper describes development of advanced algorithms to deliver significant improvements in characterization of deep space objects and indication and warning (I&W) using a global network of telescopes that are collecting photometric data on a multitude of space-based objects. The Phase II Air Force Research Laboratory (AFRL) Small Business Innovative Research (SBIR) project Autonomous Characterization Algorithms for Change Detection and Characterization (ACDC), contracted to ExoAnalytic Solutions Inc. is providing the ability to detect and identify photometric signature changes due to potential space object changes (e.g. stability, tumble rate, aspect ratio), and correlate observed changes to potential behavioral changes using a variety of techniques, including supervised learning. Furthermore, these algorithms run in real-time on data being collected and processed by the ExoAnalytic Space Operations Center (EspOC), providing timely alerts and warnings while dynamically creating collection requirements to the EspOC for the algorithms that generate higher fidelity I&W. This paper will discuss the recently implemented ACDC algorithms, including the general design approach and results to date. The usage of supervised algorithms, such as Support Vector Machines, Neural Networks, k-Nearest Neighbors, etc., and unsupervised algorithms, for example k-means, Principle Component Analysis, Hierarchical Clustering, etc., and the implementations of these algorithms is explored. Results of applying these algorithms to EspOC data both in an off-line "pattern of life" analysis as well as using the algorithms on-line in real-time, meaning as data is collected, will be presented. Finally, future work in applying ML for SSA will be discussed.
Ma, Li; Fan, Suohai
2017-03-14
The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.
Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals
NASA Technical Reports Server (NTRS)
Thompson, David R.; Mandrake, Lukas; Green, Robert O.
2013-01-01
Mapping localized spectral features in large images demands sensitive and robust detection algorithms. Two aspects of large images that can harm matched-filter detection performance are addressed simultaneously. First, multimodal backgrounds may thwart the typical Gaussian model. Second, outlier features can trigger false detections from large projections onto the target vector. Two state-of-the-art approaches are combined that independently address outlier false positives and multimodal backgrounds. The background clustering models multimodal backgrounds, and the mixture tuned matched filter (MT-MF) addresses outliers. Combining the two methods captures significant additional performance benefits. The resulting mixture tuned clutter matched filter (MT-CMF) shows effective performance on simulated and airborne datasets. The classical MNF transform was applied, followed by k-means clustering. Then, each cluster s mean, covariance, and the corresponding eigenvalues were estimated. This yields a cluster-specific matched filter estimate as well as a cluster- specific feasibility score to flag outlier false positives. The technology described is a proof of concept that may be employed in future target detection and mapping applications for remote imaging spectrometers. It is of most direct relevance to JPL proposals for airborne and orbital hyperspectral instruments. Applications include subpixel target detection in hyperspectral scenes for military surveillance. Earth science applications include mineralogical mapping, species discrimination for ecosystem health monitoring, and land use classification.
Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine
2009-03-05
In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.
Focusing attention on objects of interest using multiple matched filters.
Stough, T M; Brodley, C E
2001-01-01
In order to be of use to scientists, large image databases need to be analyzed to create a catalog of the objects of interest. One approach is to apply a multiple tiered search algorithm that uses reduction techniques of increasing computational complexity to select the desired objects from the database. The first tier of this type of algorithm, often called a focus of attention (FOA) algorithm, selects candidate regions from the image data and passes them to the next tier of the algorithm. In this paper we present a new approach to FOA that employs multiple matched filters (MMF), one for each object prototype, to detect the regions of interest. The MMFs are formed using k-means clustering on a set of image patches identified by domain experts as positive examples of objects of interest. An innovation of the approach is to radically reduce the dimensionality of the feature space, used by the k-means algorithm, by taking block averages (spoiling) the sample image patches. The process of spoiling is analyzed and its applicability to other domains is discussed. The combination of the output of the MMFs is achieved through the projection of the detections back into an empty image and then thresholding. This research was motivated by the need to detect small volcanos in the Magellan probe data from Venus. An empirical evaluation of the approach illustrates that a combination of the MMF plus the average filter results in a higher likelihood of 100% detection of the objects of interest at a lower false positive rate than a single matched filter alone.
ARK: Aggregation of Reads by K-Means for Estimation of Bacterial Community Composition.
Koslicki, David; Chatterjee, Saikat; Shahrivar, Damon; Walker, Alan W; Francis, Suzanna C; Fraser, Louise J; Vehkaperä, Mikko; Lan, Yueheng; Corander, Jukka
2015-01-01
Estimation of bacterial community composition from high-throughput sequenced 16S rRNA gene amplicons is a key task in microbial ecology. Since the sequence data from each sample typically consist of a large number of reads and are adversely impacted by different levels of biological and technical noise, accurate analysis of such large datasets is challenging. There has been a recent surge of interest in using compressed sensing inspired and convex-optimization based methods to solve the estimation problem for bacterial community composition. These methods typically rely on summarizing the sequence data by frequencies of low-order k-mers and matching this information statistically with a taxonomically structured database. Here we show that the accuracy of the resulting community composition estimates can be substantially improved by aggregating the reads from a sample with an unsupervised machine learning approach prior to the estimation phase. The aggregation of reads is a pre-processing approach where we use a standard K-means clustering algorithm that partitions a large set of reads into subsets with reasonable computational cost to provide several vectors of first order statistics instead of only single statistical summarization in terms of k-mer frequencies. The output of the clustering is then processed further to obtain the final estimate for each sample. The resulting method is called Aggregation of Reads by K-means (ARK), and it is based on a statistical argument via mixture density formulation. ARK is found to improve the fidelity and robustness of several recently introduced methods, with only a modest increase in computational complexity. An open source, platform-independent implementation of the method in the Julia programming language is freely available at https://github.com/dkoslicki/ARK. A Matlab implementation is available at http://www.ee.kth.se/ctsoftware.
Zou, Ling; Guo, Qian; Xu, Yi; Yang, Biao; Jiao, Zhuqing; Xiang, Jianbo
2016-04-29
Functional magnetic resonance imaging (fMRI) is an important tool in neuroscience for assessing connectivity and interactions between distant areas of the brain. To find and characterize the coherent patterns of brain activity as a means of identifying brain systems for the cognitive reappraisal of the emotion task, both density-based k-means clustering and independent component analysis (ICA) methods can be applied to characterize the interactions between brain regions involved in cognitive reappraisal of emotion. Our results reveal that compared with the ICA method, the density-based k-means clustering method provides a higher sensitivity of polymerization. In addition, it is more sensitive to those relatively weak functional connection regions. Thus, the study concludes that in the process of receiving emotional stimuli, the relatively obvious activation areas are mainly distributed in the frontal lobe, cingulum and near the hypothalamus. Furthermore, density-based k-means clustering method creates a more reliable method for follow-up studies of brain functional connectivity.
Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean
2017-01-01
The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency−frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency−MARSE, and average frequency−peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes. PMID:29104245
Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean
2017-11-01
The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency-frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency-MARSE, and average frequency-peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes.
Zhang, Lu; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Popov, Sergei; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia
2018-04-01
We propose a spectrally efficient digitized radio-over-fiber (D-RoF) system by grouping highly correlated neighboring samples of the analog signals into multidimensional vectors, where the k-means clustering algorithm is adopted for adaptive quantization. A 30 Gbit/s D-RoF system is experimentally demonstrated to validate the proposed scheme, reporting a carrier aggregation of up to 40 100 MHz orthogonal frequency division multiplexing (OFDM) channels with quadrate amplitude modulation (QAM) order of 4 and an aggregation of 10 100 MHz OFDM channels with a QAM order of 16384. The equivalent common public radio interface rates from 37 to 150 Gbit/s are supported. Besides, the error vector magnitude (EVM) of 8% is achieved with the number of quantization bits of 4, and the EVM can be further reduced to 1% by increasing the number of quantization bits to 7. Compared with conventional pulse coding modulation-based D-RoF systems, the proposed D-RoF system improves the signal-to-noise-ratio up to ∼9 dB and greatly reduces the EVM, given the same number of quantization bits.
A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.
2013-01-01
Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014
Hierarchical trie packet classification algorithm based on expectation-maximization clustering.
Bi, Xia-An; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.
Lukashin, A V; Fuchs, R
2001-05-01
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.
O'Hagan, Steve; Kell, Douglas B
2018-01-01
Armed with the digital availability of two natural products libraries, amounting to some 195 885 molecular entities, we ask the question of how we can best sample from them to maximize their "representativeness" in smaller and more usable libraries of 96, 384, 1152, and 1920 molecules. The term "representativeness" is intended to include diversity, but for numerical reasons (and the likelihood of being able to perform a QSAR) it is necessary to focus on areas of chemical space that are more highly populated. Encoding chemical structures as fingerprints using the RDKit "patterned" algorithm, we first assess the granularity of the natural products space using a simple clustering algorithm, showing that there are major regions of "denseness" but also a great many very sparsely populated areas. We then apply a "hybrid" hierarchical K-means clustering algorithm to the data to produce more statistically robust clusters from which representative and appropriate numbers of samples may be chosen. There is necessarily again a trade-off between cluster size and cluster number, but within these constraints, libraries containing 384 or 1152 molecules can be found that come from clusters that represent some 18 and 30% of the whole chemical space, with cluster sizes of, respectively, 50 and 27 or above, just about sufficient to perform a QSAR. By using the online availability of molecules via the Molport system (www.molport.com), we are also able to construct (and, for the first time, provide the contents of) a small virtual library of available molecules that provided effective coverage of the chemical space described. Consistent with this, the average molecular similarities of the contents of the libraries developed is considerably smaller than is that of the original libraries. The suggested libraries may have use in molecular or phenotypic screening, including for determining possible transporter substrates. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Amin, Morteza Moradi; Kermani, Saeed; Talebi, Ardeshir; Oghli, Mostafa Ghelich
2015-01-01
Acute lymphoblastic leukemia is the most common form of pediatric cancer which is categorized into three L1, L2, and L3 and could be detected through screening of blood and bone marrow smears by pathologists. Due to being time-consuming and tediousness of the procedure, a computer-based system is acquired for convenient detection of Acute lymphoblastic leukemia. Microscopic images are acquired from blood and bone marrow smears of patients with Acute lymphoblastic leukemia and normal cases. After applying image preprocessing, cells nuclei are segmented by k-means algorithm. Then geometric and statistical features are extracted from nuclei and finally these cells are classified to cancerous and noncancerous cells by means of support vector machine classifier with 10-fold cross validation. These cells are also classified into their sub-types by multi-Support vector machine classifier. Classifier is evaluated by these parameters: Sensitivity, specificity, and accuracy which values for cancerous and noncancerous cells 98%, 95%, and 97%, respectively. These parameters are also used for evaluation of cell sub-types which values in mean 84.3%, 97.3%, and 95.6%, respectively. The results show that proposed algorithm could achieve an acceptable performance for the diagnosis of Acute lymphoblastic leukemia and its sub-types and can be used as an assistant diagnostic tool for pathologists.
NASA Astrophysics Data System (ADS)
Kim, Chan Moon; Parnichkun, Manukid
2017-11-01
Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system ( k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.
Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.
Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita
2014-04-01
Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.
HUGO: Hierarchical mUlti-reference Genome cOmpression for aligned reads
Li, Pinghao; Jiang, Xiaoqian; Wang, Shuang; Kim, Jihoon; Xiong, Hongkai; Ohno-Machado, Lucila
2014-01-01
Background and objective Short-read sequencing is becoming the standard of practice for the study of structural variants associated with disease. However, with the growth of sequence data largely surpassing reasonable storage capability, the biomedical community is challenged with the management, transfer, archiving, and storage of sequence data. Methods We developed Hierarchical mUlti-reference Genome cOmpression (HUGO), a novel compression algorithm for aligned reads in the sorted Sequence Alignment/Map (SAM) format. We first aligned short reads against a reference genome and stored exactly mapped reads for compression. For the inexact mapped or unmapped reads, we realigned them against different reference genomes using an adaptive scheme by gradually shortening the read length. Regarding the base quality value, we offer lossy and lossless compression mechanisms. The lossy compression mechanism for the base quality values uses k-means clustering, where a user can adjust the balance between decompression quality and compression rate. The lossless compression can be produced by setting k (the number of clusters) to the number of different quality values. Results The proposed method produced a compression ratio in the range 0.5–0.65, which corresponds to 35–50% storage savings based on experimental datasets. The proposed approach achieved 15% more storage savings over CRAM and comparable compression ratio with Samcomp (CRAM and Samcomp are two of the state-of-the-art genome compression algorithms). The software is freely available at https://sourceforge.net/projects/hierachicaldnac/with a General Public License (GPL) license. Limitation Our method requires having different reference genomes and prolongs the execution time for additional alignments. Conclusions The proposed multi-reference-based compression algorithm for aligned reads outperforms existing single-reference based algorithms. PMID:24368726
Huang, Z H; Li, N; Rao, K F; Liu, C T; Huang, Y; Ma, M; Wang, Z J
2018-03-01
Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.
Niukkanen, Anton; Arponen, Otso; Nykänen, Aki; Masarwah, Amro; Sutela, Anna; Liimatainen, Timo; Vanninen, Ritva; Sudah, Mazen
2017-10-18
Mammographic breast density (MBD) is the most commonly used method to assess the volume of fibroglandular tissue (FGT). However, MRI could provide a clinically feasible and more accurate alternative. There were three aims in this study: (1) to evaluate a clinically feasible method to quantify FGT with MRI, (2) to assess the inter-rater agreement of MRI-based volumetric measurements and (3) to compare them to measurements acquired using digital mammography and 3D tomosynthesis. This retrospective study examined 72 women (mean age 52.4 ± 12.3 years) with 105 disease-free breasts undergoing diagnostic 3.0-T breast MRI and either digital mammography or tomosynthesis. Two observers analyzed MRI images for breast and FGT volumes and FGT-% from T1-weighted images (0.7-, 2.0-, and 4.0-mm-thick slices) using K-means clustering, data from histogram, and active contour algorithms. Reference values were obtained with Quantra software. Inter-rater agreement for MRI measurements made with 2-mm-thick slices was excellent: for FGT-%, r = 0.994 (95% CI 0.990-0.997); for breast volume, r = 0.985 (95% CI 0.934-0.994); and for FGT volume, r = 0.979 (95% CI 0.958-0.989). MRI-based FGT-% correlated strongly with MBD in mammography (r = 0.819-0.904, P < 0.001) and moderately to high with MBD in tomosynthesis (r = 0.630-0.738, P < 0.001). K-means clustering-based assessments of the proportion of the fibroglandular tissue in the breast at MRI are highly reproducible. In the future, quantitative assessment of FGT-% to complement visual estimation of FGT should be performed on a more regular basis as it provides a component which can be incorporated into the individual's breast cancer risk stratification.
Generic Feature Selection with Short Fat Data
Clarke, B.; Chu, J.-H.
2014-01-01
SUMMARY Consider a regression problem in which there are many more explanatory variables than data points, i.e., p ≫ n. Essentially, without reducing the number of variables inference is impossible. So, we group the p explanatory variables into blocks by clustering, evaluate statistics on the blocks and then regress the response on these statistics under a penalized error criterion to obtain estimates of the regression coefficients. We examine the performance of this approach for a variety of choices of n, p, classes of statistics, clustering algorithms, penalty terms, and data types. When n is not large, the discrimination over number of statistics is weak, but computations suggest regressing on approximately [n/K] statistics where K is the number of blocks formed by a clustering algorithm. Small deviations from this are observed when the blocks of variables are of very different sizes. Larger deviations are observed when the penalty term is an Lq norm with high enough q. PMID:25346546
NASA Astrophysics Data System (ADS)
Ouillon, G.; Ducorbier, C.; Sornette, D.
2008-01-01
We propose a new pattern recognition method that is able to reconstruct the three-dimensional structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering (or k means) method, that partitions a set of data points into clusters, using a global minimization criterion of the variance of the hypocenters locations about their center of mass. The new method improves on the original k means method by taking into account the full spatial covariance tensor of each cluster in order to partition the data set into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size, and orientation. The main tunable parameter is the accuracy of the earthquake locations, which fixes the resolution, i.e., the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog: the better the resolution, the finer the structure of the reconstructed fault segments. The algorithm successfully reconstructs the fault segments of synthetic earthquake catalogs. Applied to the real catalog constituted of a subset of the aftershock sequence of the 28 June 1992 Landers earthquake in southern California, the reconstructed plane segments fully agree with faults already known on geological maps or with blind faults that appear quite obvious in longer-term catalogs. Future improvements of the method are discussed, as well as its potential use in the multiscale study of the inner structure of fault zones.
Momeni-Boroujeni, Amir; Yousefi, Elham; Somma, Jonathan
2017-12-01
Fine-needle aspiration (FNA) biopsy is an accurate method for the diagnosis of solid pancreatic masses. However, a significant number of cases still pose a diagnostic challenge. The authors have attempted to design a computer model to aid in the diagnosis of these biopsies. Images were captured of cell clusters on ThinPrep slides from 75 pancreatic FNA cases (20 malignant, 24 benign, and 31 atypical). A K-means clustering algorithm was used to segment the cell clusters into separable regions of interest before extracting features similar to those used for cytomorphologic assessment. A multilayer perceptron neural network (MNN) was trained and then tested for its ability to distinguish benign from malignant cases. A total of 277 images of cell clusters were obtained. K-means clustering identified 68,301 possible regions of interest overall. Features such as contour, perimeter, and area were found to be significantly different between malignant and benign images (P <.05). The MNN was 100% accurate for benign and malignant categories. The model's predictions from the atypical data set were 77% accurate. The results of the current study demonstrate that computer models can be used successfully to distinguish benign from malignant pancreatic cytology. The fact that the model can categorize atypical cases into benign or malignant with 77% accuracy highlights the great potential of this technology. Although further study is warranted to validate its clinical applications in pancreatic and perhaps other areas of cytology as well, the potential for improved patient outcomes using MNN for image analysis in pathology is significant. Cancer Cytopathol 2017;125:926-33. © 2017 American Cancer Society. © 2017 American Cancer Society.
Identifying synonymy between relational phrases using word embeddings.
Nguyen, Nhung T H; Miwa, Makoto; Tsuruoka, Yoshimasa; Tojo, Satoshi
2015-08-01
Many text mining applications in the biomedical domain benefit from automatic clustering of relational phrases into synonymous groups, since it alleviates the problem of spurious mismatches caused by the diversity of natural language expressions. Most of the previous work that has addressed this task of synonymy resolution uses similarity metrics between relational phrases based on textual strings or dependency paths, which, for the most part, ignore the context around the relations. To overcome this shortcoming, we employ a word embedding technique to encode relational phrases. We then apply the k-means algorithm on top of the distributional representations to cluster the phrases. Our experimental results show that this approach outperforms state-of-the-art statistical models including latent Dirichlet allocation and Markov logic networks. Copyright © 2015 Elsevier Inc. All rights reserved.
Eyler, Lauren; Hubbard, Alan; Juillard, Catherine
2016-10-01
Low and middle-income countries (LMICs) and the world's poor bear a disproportionate share of the global burden of injury. Data regarding disparities in injury are vital to inform injury prevention and trauma systems strengthening interventions targeted towards vulnerable populations, but are limited in LMICs. We aim to facilitate injury disparities research by generating a standardized methodology for assessing economic status in resource-limited country trauma registries where complex metrics such as income, expenditures, and wealth index are infeasible to assess. To address this need, we developed a cluster analysis-based algorithm for generating simple population-specific metrics of economic status using nationally representative Demographic and Health Surveys (DHS) household assets data. For a limited number of variables, g, our algorithm performs weighted k-medoids clustering of the population using all combinations of g asset variables and selects the combination of variables and number of clusters that maximize average silhouette width (ASW). In simulated datasets containing both randomly distributed variables and "true" population clusters defined by correlated categorical variables, the algorithm selected the correct variable combination and appropriate cluster numbers unless variable correlation was very weak. When used with 2011 Cameroonian DHS data, our algorithm identified twenty economic clusters with ASW 0.80, indicating well-defined population clusters. This economic model for assessing health disparities will be used in the new Cameroonian six-hospital centralized trauma registry. By describing our standardized methodology and algorithm for generating economic clustering models, we aim to facilitate measurement of health disparities in other trauma registries in resource-limited countries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Spatial-Temporal dynamics of Newtonian and viscoelastic turbulence
NASA Astrophysics Data System (ADS)
Wang, Sung-Ning; Graham, Michael
2015-11-01
Introducing a trace amount of polymer into liquid turbulent flows can result in substantial reduction of friction drag. This phenomenon has been widely used in fluid transport, such as the Alaska crude oil pipeline. However, the mechanism is not well understood. We conduct direct numerical simulations of Newtonian and viscoelastic turbulence in large domains, in which the flow shows different characteristics in different regions. In some areas the drag is low and vortex motions are quiescent, while in other areas the drag is higher and the motions are more active. To identify these regions, we apply a statistical method, k-means clustering, which partitions the observations into k clusters by assigning each observation to its nearest centroid. The resulting partition maximizes the between-cluster variance. In the simulations, the observations are the instantaneous wall shear rate. Regions with different levels of drag are automatically identified by the partitioning algorithm. We find that the velocity profiles of the centroids exhibit characteristics similar to the individual coherent structures observed in minimal domain simulations. In addition, as viscoelasticity increases, polymer stretch becomes strongly correlated with wall shear stress. This work was supported by NSF grant CBET-1510291.
Scaling deep learning on GPU and knights landing clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yang; Buluc, Aydin; Demmel, James
Training neural networks has become a big bottleneck. For example, training ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. We use both self-host Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From the algorithm aspect, we focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. We redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD,more » and Hogwild EASGD are faster than existing counter-part methods (Async SGD, Async MSGD, and Hogwild SGD) in all comparisons. Sync EASGD achieves 5.3X speedup over original EASGD on the same platform. We achieve 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less
2-Way k-Means as a Model for Microbiome Samples.
Jackson, Weston J; Agarwal, Ipsita; Pe'er, Itsik
2017-01-01
Motivation . Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k -means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project.
2-Way k-Means as a Model for Microbiome Samples
2017-01-01
Motivation. Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k-means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project. PMID:29177026
Hybrid Clustering-GWO-NARX neural network technique in predicting stock price
NASA Astrophysics Data System (ADS)
Das, Debashish; Safa Sadiq, Ali; Mirjalili, Seyedali; Noraziah, A.
2017-09-01
Prediction of stock price is one of the most challenging tasks due to nonlinear nature of the stock data. Though numerous attempts have been made to predict the stock price by applying various techniques, yet the predicted price is not always accurate and even the error rate is high to some extent. Consequently, this paper endeavours to determine an efficient stock prediction strategy by implementing a combinatorial method of Grey Wolf Optimizer (GWO), Clustering and Non Linear Autoregressive Exogenous (NARX) Technique. The study uses stock data from prominent stock market i.e. New York Stock Exchange (NYSE), NASDAQ and emerging stock market i.e. Malaysian Stock Market (Bursa Malaysia), Dhaka Stock Exchange (DSE). It applies K-means clustering algorithm to determine the most promising cluster, then MGWO is used to determine the classification rate and finally the stock price is predicted by applying NARX neural network algorithm. The prediction performance gained through experimentation is compared and assessed to guide the investors in making investment decision. The result through this technique is indeed promising as it has shown almost precise prediction and improved error rate. We have applied the hybrid Clustering-GWO-NARX neural network technique in predicting stock price. We intend to work with the effect of various factors in stock price movement and selection of parameters. We will further investigate the influence of company news either positive or negative in stock price movement. We would be also interested to predict the Stock indices.
Predictive modelling for startup and investor relationship based on crowdfunding platform data
NASA Astrophysics Data System (ADS)
Alamsyah, Andry; Buono Asto Nugroho, Tri
2018-03-01
Crowdfunding platform is a place where startup shows off publicly their idea for the purpose to get their project funded. Crowdfunding platform such as Kickstarter are becoming popular today, it provides the efficient way for startup to get funded without liabilities, it also provides variety project category that can be participated. There is an available safety procedure to ensure achievable low-risk environment. The startup promoted project must accomplish their funded goal target. If they fail to reach the target, then there is no investment activity take place. It motivates startup to be more active to promote or disseminate their project idea and it also protect investor from losing money. The study objective is to predict the successfulness of proposed project and mapping investor trend using data mining framework. To achieve the objective, we proposed 3 models. First model is to predict whether a project is going to be successful or failed using K-Nearest Neighbour (KNN). Second model is to predict the number of successful project using Artificial Neural Network (ANN). Third model is to map the trend of investor in investing the project using K-Means clustering algorithm. KNN gives 99.04% model accuracy, while ANN best configuration gives 16-14-1 neuron layers and 0.2 learning rate, and K-Means gives 6 best separation clusters. The results of those models can help startup or investor to make decision regarding startup investment.
Xia, Shang; Xue, Jing-Bo; Zhang, Xia; Hu, He-Hua; Abe, Eniola Michael; Rollinson, David; Bergquist, Robert; Zhou, Yibiao; Li, Shi-Zhu; Zhou, Xiao-Nong
2017-04-26
The prevalence of schistosomiasis remains a key public health issue in China. Jiangling County in Hubei Province is a typical lake and marshland endemic area. The pattern analysis of schistosomiasis prevalence in Jiangling County is of significant importance for promoting schistosomiasis surveillance and control in the similar endemic areas. The dataset was constructed based on the annual schistosomiasis surveillance as well the socio-economic data in Jiangling County covering the years from 2009 to 2013. A village clustering method modified from the K-mean algorithm was used to identify different types of endemic villages. For these identified village clusters, a matrix-based predictive model was developed by means of exploring the one-step backward temporal correlation inference algorithm aiming to estimate the predicative correlations of schistosomiasis prevalence among different years. Field sampling of faeces from domestic animals, as an indicator of potential schistosomiasis prevalence, was carried out and the results were used to validate the results of proposed models and methods. The prevalence of schistosomiasis in Jiangling County declined year by year. The total of 198 endemic villages in Jiangling County can be divided into four clusters with reference to the 5 years' occurrences of schistosomiasis in human, cattle and snail populations. For each identified village cluster, a predictive matrix was generated to characterize the relationships of schistosomiasis prevalence with the historic infection level as well as their associated impact factors. Furthermore, the results of sampling faeces from the front field agreed with the results of the identified clusters of endemic villages. The results of village clusters and the predictive matrix can be regard as the basis to conduct targeted measures for schistosomiasis surveillance and control. Furthermore, the proposed models and methods can be modified to investigate the schistosomiasis prevalence in other regions as well as be used for investigating other parasitic diseases.
Cloud classification from satellite data using a fuzzy sets algorithm: A polar example
NASA Technical Reports Server (NTRS)
Key, J. R.; Maslanik, J. A.; Barry, R. G.
1988-01-01
Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.
COVARIATE-ADAPTIVE CLUSTERING OF EXPOSURES FOR AIR POLLUTION EPIDEMIOLOGY COHORTS*
Keller, Joshua P.; Drton, Mathias; Larson, Timothy; Kaufman, Joel D.; Sandler, Dale P.; Szpiro, Adam A.
2017-01-01
Cohort studies in air pollution epidemiology aim to establish associations between health outcomes and air pollution exposures. Statistical analysis of such associations is complicated by the multivariate nature of the pollutant exposure data as well as the spatial misalignment that arises from the fact that exposure data are collected at regulatory monitoring network locations distinct from cohort locations. We present a novel clustering approach for addressing this challenge. Specifically, we present a method that uses geographic covariate information to cluster multi-pollutant observations and predict cluster membership at cohort locations. Our predictive k-means procedure identifies centers using a mixture model and is followed by multi-class spatial prediction. In simulations, we demonstrate that predictive k-means can reduce misclassification error by over 50% compared to ordinary k-means, with minimal loss in cluster representativeness. The improved prediction accuracy results in large gains of 30% or more in power for detecting effect modification by cluster in a simulated health analysis. In an analysis of the NIEHS Sister Study cohort using predictive k-means, we find that the association between systolic blood pressure (SBP) and long-term fine particulate matter (PM2.5) exposure varies significantly between different clusters of PM2.5 component profiles. Our cluster-based analysis shows that for subjects assigned to a cluster located in the Midwestern U.S., a 10 μg/m3 difference in exposure is associated with 4.37 mmHg (95% CI, 2.38, 6.35) higher SBP. PMID:28572869
NASA Astrophysics Data System (ADS)
Madonna, E.; Li, C.; Grams, C. M.; Woollings, T.
2017-12-01
Understanding the variability of the North Atlantic eddy-driven jet is key to unravelling the dynamics, predictability and climate change response of extratropical weather in the region. This study aims to 1) reconcile two perspectives on wintertime variability in the North Atlantic-European sector and 2) clarify their link to atmospheric blocking. Two common views of wintertime variability in the North Atlantic are the zonal-mean framework comprising three preferred locations of the eddy-driven jet (southern, central, northern), and the weather regime framework comprising four classical North Atlantic-European regimes (Atlantic ridge AR, zonal ZO, European/Scandinavian blocking BL, Greenland anticyclone GA). We use a k-means clustering algorithm to characterize the two-dimensional variability of the eddy-driven jet stream, defined by the lower tropospheric zonal wind in the ERA-Interim reanalysis. The first three clusters capture the central jet and northern jet, along with a new mixed jet configuration; a fourth cluster is needed to recover the southern jet. The mixed cluster represents a split or strongly tilted jet, neither of which is well described in the zonal-mean framework, and has a persistence of about one week, similar to the other clusters. Connections between the preferred jet locations and weather regimes are corroborated - southern to GA, central to ZO, and northern to AR. In addition, the new mixed cluster is found to be linked to European/Scandinavian blocking, whose relation to the eddy-driven jet was previously unclear. The results highlight the necessity of bridging from weather to climate scales for a deeper understanding of atmospheric circulation variability.
Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.
Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A
2012-02-01
Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.
Nasiri, Jaber; Naghavi, Mohammad Reza; Kayvanjoo, Amir Hossein; Nasiri, Mojtaba; Ebrahimi, Mansour
2015-03-07
For the first time, prediction accuracies of some supervised and unsupervised algorithms were evaluated in an SSR-based DNA fingerprinting study of a pea collection containing 20 cultivars and 57 wild samples. In general, according to the 10 attribute weighting models, the SSR alleles of PEAPHTAP-2 and PSBLOX13.2-1 were the two most important attributes to generate discrimination among eight different species and subspecies of genus Pisum. In addition, K-Medoids unsupervised clustering run on Chi squared dataset exhibited the best prediction accuracy (83.12%), while the lowest accuracy (25.97%) gained as K-Means model ran on FCdb database. Irrespective of some fluctuations, the overall accuracies of tree induction models were significantly high for many algorithms, and the attributes PSBLOX13.2-3 and PEAPHTAP could successfully detach Pisum fulvum accessions and cultivars from the others when two selected decision trees were taken into account. Meanwhile, the other used supervised algorithms exhibited overall reliable accuracies, even though in some rare cases, they gave us low amounts of accuracies. Our results, altogether, demonstrate promising applications of both supervised and unsupervised algorithms to provide suitable data mining tools regarding accurate fingerprinting of different species and subspecies of genus Pisum, as a fundamental priority task in breeding programs of the crop. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
Bi, Xia-an; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476
Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.
Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le
2013-01-01
Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real data sets, especially biomolecular data, and 2) the proposed approaches are able to provide more robust, stable, and accurate results when compared with the state-of-the-art single clustering algorithms and traditional cluster ensemble approaches.
Hierarchical video summarization
NASA Astrophysics Data System (ADS)
Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.
1998-12-01
We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.
Kopelman, Naama M; Mayzel, Jonathan; Jakobsson, Mattias; Rosenberg, Noah A; Mayrose, Itay
2015-09-01
The identification of the genetic structure of populations from multilocus genotype data has become a central component of modern population-genetic data analysis. Application of model-based clustering programs often entails a number of steps, in which the user considers different modelling assumptions, compares results across different predetermined values of the number of assumed clusters (a parameter typically denoted K), examines multiple independent runs for each fixed value of K, and distinguishes among runs belonging to substantially distinct clustering solutions. Here, we present Clumpak (Cluster Markov Packager Across K), a method that automates the postprocessing of results of model-based population structure analyses. For analysing multiple independent runs at a single K value, Clumpak identifies sets of highly similar runs, separating distinct groups of runs that represent distinct modes in the space of possible solutions. This procedure, which generates a consensus solution for each distinct mode, is performed by the use of a Markov clustering algorithm that relies on a similarity matrix between replicate runs, as computed by the software Clumpp. Next, Clumpak identifies an optimal alignment of inferred clusters across different values of K, extending a similar approach implemented for a fixed K in Clumpp and simplifying the comparison of clustering results across different K values. Clumpak incorporates additional features, such as implementations of methods for choosing K and comparing solutions obtained by different programs, models, or data subsets. Clumpak, available at http://clumpak.tau.ac.il, simplifies the use of model-based analyses of population structure in population genetics and molecular ecology. © 2015 John Wiley & Sons Ltd.
An effective fuzzy kernel clustering analysis approach for gene expression data.
Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao
2015-01-01
Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.
Identifying and Assessing Interesting Subgroups in a Heterogeneous Population.
Lee, Woojoo; Alexeyenko, Andrey; Pernemalm, Maria; Guegan, Justine; Dessen, Philippe; Lazar, Vladimir; Lehtiö, Janne; Pawitan, Yudi
2015-01-01
Biological heterogeneity is common in many diseases and it is often the reason for therapeutic failures. Thus, there is great interest in classifying a disease into subtypes that have clinical significance in terms of prognosis or therapy response. One of the most popular methods to uncover unrecognized subtypes is cluster analysis. However, classical clustering methods such as k-means clustering or hierarchical clustering are not guaranteed to produce clinically interesting subtypes. This could be because the main statistical variability--the basis of cluster generation--is dominated by genes not associated with the clinical phenotype of interest. Furthermore, a strong prognostic factor might be relevant for a certain subgroup but not for the whole population; thus an analysis of the whole sample may not reveal this prognostic factor. To address these problems we investigate methods to identify and assess clinically interesting subgroups in a heterogeneous population. The identification step uses a clustering algorithm and to assess significance we use a false discovery rate- (FDR-) based measure. Under the heterogeneity condition the standard FDR estimate is shown to overestimate the true FDR value, but this is remedied by an improved FDR estimation procedure. As illustrations, two real data examples from gene expression studies of lung cancer are provided.
Clustering-based spot segmentation of cDNA microarray images.
Uslan, Volkan; Bucak, Ihsan Ömür
2010-01-01
Microarrays are utilized as that they provide useful information about thousands of gene expressions simultaneously. In this study segmentation step of microarray image processing has been implemented. Clustering-based methods, fuzzy c-means and k-means, have been applied for the segmentation step that separates the spots from the background. The experiments show that fuzzy c-means have segmented spots of the microarray image more accurately than the k-means.
Detection of cracks on concrete surfaces by hyperspectral image processing
NASA Astrophysics Data System (ADS)
Santos, Bruno O.; Valença, Jonatas; Júlio, Eduardo
2017-06-01
All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly discretized for crack detection on concrete surfaces, considering cracking combined with the most usual concrete anomalies, namely biological colonization.
2011-01-01
Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc. Conclusions The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein functions from sequences. PMID:21342579
2013-01-01
Background Community-based health care planning and regulation necessitates grouping facilities and areal units into regions of similar health care use. Limited research has explored the methodologies used in creating these regions. We offer a new methodology that clusters facilities based on similarities in patient utilization patterns and geographic location. Our case study focused on Hospital Groups in Michigan, the allocation units used for predicting future inpatient hospital bed demand in the state’s Bed Need Methodology. The scientific, practical, and political concerns that were considered throughout the formulation and development of the methodology are detailed. Methods The clustering methodology employs a 2-step K-means + Ward’s clustering algorithm to group hospitals. The final number of clusters is selected using a heuristic that integrates both a statistical-based measure of cluster fit and characteristics of the resulting Hospital Groups. Results Using recent hospital utilization data, the clustering methodology identified 33 Hospital Groups in Michigan. Conclusions Despite being developed within the politically charged climate of Certificate of Need regulation, we have provided an objective, replicable, and sustainable methodology to create Hospital Groups. Because the methodology is built upon theoretically sound principles of clustering analysis and health care service utilization, it is highly transferable across applications and suitable for grouping facilities or areal units. PMID:23964905
Delamater, Paul L; Shortridge, Ashton M; Messina, Joseph P
2013-08-22
Community-based health care planning and regulation necessitates grouping facilities and areal units into regions of similar health care use. Limited research has explored the methodologies used in creating these regions. We offer a new methodology that clusters facilities based on similarities in patient utilization patterns and geographic location. Our case study focused on Hospital Groups in Michigan, the allocation units used for predicting future inpatient hospital bed demand in the state's Bed Need Methodology. The scientific, practical, and political concerns that were considered throughout the formulation and development of the methodology are detailed. The clustering methodology employs a 2-step K-means + Ward's clustering algorithm to group hospitals. The final number of clusters is selected using a heuristic that integrates both a statistical-based measure of cluster fit and characteristics of the resulting Hospital Groups. Using recent hospital utilization data, the clustering methodology identified 33 Hospital Groups in Michigan. Despite being developed within the politically charged climate of Certificate of Need regulation, we have provided an objective, replicable, and sustainable methodology to create Hospital Groups. Because the methodology is built upon theoretically sound principles of clustering analysis and health care service utilization, it is highly transferable across applications and suitable for grouping facilities or areal units.
Artificial neural networks for acoustic target recognition
NASA Astrophysics Data System (ADS)
Robertson, James A.; Mossing, John C.; Weber, Bruce A.
1995-04-01
Acoustic sensors can be used to detect, track and identify non-line-of-sight targets passively. Attempts to alter acoustic emissions often result in an undesirable performance degradation. This research project investigates the use of neural networks for differentiating between features extracted from the acoustic signatures of sources. Acoustic data were filtered and digitized using a commercially available analog-digital convertor. The digital data was transformed to the frequency domain for additional processing using the FFT. Narrowband peak detection algorithms were incorporated to select peaks above a user defined SNR. These peaks were then used to generate a set of robust features which relate specifically to target components in varying background conditions. The features were then used as input into a backpropagation neural network. A K-means unsupervised clustering algorithm was used to determine the natural clustering of the observations. Comparisons between a feature set consisting of the normalized amplitudes of the first 250 frequency bins of the power spectrum and a set of 11 harmonically related features were made. Initial results indicate that even though some different target types had a tendency to group in the same clusters, the neural network was able to differentiate the targets. Successful identification of acoustic sources under varying operational conditions with high confidence levels was achieved.
Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.
Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing
2012-04-01
This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.
Sotomayor, Gonzalo; Hampel, Henrietta; Vázquez, Raúl F
2018-03-01
A non-supervised (k-means) and a supervised (k-Nearest Neighbour in combination with genetic algorithm optimisation, k-NN/GA) pattern recognition algorithms were applied for evaluating and interpreting a large complex matrix of water quality (WQ) data collected during five years (2008, 2010-2013) in the Paute river basin (southern Ecuador). 21 physical, chemical and microbiological parameters collected at 80 different WQ sampling stations were examined. At first, the k-means algorithm was carried out to identify classes of sampling stations regarding their associated WQ status by considering three internal validation indexes, i.e., Silhouette coefficient, Davies-Bouldin and Caliński-Harabasz. As a result, two WQ classes were identified, representing low (C1) and high (C2) pollution. The k-NN/GA algorithm was applied on the available data to construct a classification model with the two WQ classes, previously defined by the k-means algorithm, as the dependent variables and the 21 physical, chemical and microbiological parameters being the independent ones. This algorithm led to a significant reduction of the multidimensional space of independent variables to only nine, which are likely to explain most of the structure of the two identified WQ classes. These parameters are, namely, electric conductivity, faecal coliforms, dissolved oxygen, chlorides, total hardness, nitrate, total alkalinity, biochemical oxygen demand and turbidity. Further, the land use cover of the study basin revealed a very good agreement with the WQ spatial distribution suggested by the k-means algorithm, confirming the credibility of the main results of the used WQ data mining approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift
NASA Astrophysics Data System (ADS)
Arfan Jaffar, M.
2017-01-01
In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-05-21
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.
NASA Astrophysics Data System (ADS)
Taha, Zahari; Muazu Musa, Rabiu; Majeed, A. P. P. Abdul; Razali Abdullah, Mohamad; Aizzat Zakaria, Muhammad; Muaz Alim, Muhammad; Arif Mat Jizat, Jessnor; Fauzi Ibrahim, Mohamad
2018-03-01
Support Vector Machine (SVM) has been revealed to be a powerful learning algorithm for classification and prediction. However, the use of SVM for prediction and classification in sport is at its inception. The present study classified and predicted high and low potential archers from a collection of psychological coping skills variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. Psychological coping skills inventory which evaluates the archers level of related coping skills were filled out by the archers prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models, i.e. linear and fine radial basis function (RBF) kernel functions, were trained on the psychological variables. The k-means clustered the archers into high psychologically prepared archers (HPPA) and low psychologically prepared archers (LPPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy and precision throughout the exercise with an accuracy of 92% and considerably fewer error rate for the prediction of the HPPA and the LPPA as compared to the fine RBF SVM. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected psychological coping skills variables examined which would consequently save time and energy during talent identification and development programme.
Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering
NASA Astrophysics Data System (ADS)
Onishi, Masaki; Yoda, Ikushi
In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.
Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms.
Ortegon, Patricia; Poot-Hernández, Augusto C; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya
2015-01-01
In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case.
Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms
Ortegon, Patricia; Poot-Hernández, Augusto C.; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya
2015-01-01
In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case. PMID:25973143
Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring
2012-01-01
Background Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. Results The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Conclusions Our results demonstrate that the method we present here using a k-modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family. PMID:22793672
Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring.
Durston, Kirk K; Chiu, David Ky; Wong, Andrew Kc; Li, Gary Cl
2012-07-13
Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Our results demonstrate that the method we present here using a k-modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting
NASA Astrophysics Data System (ADS)
Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.
2014-12-01
Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.
Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal
ERIC Educational Resources Information Center
Steinley, Douglas; Hubert, Lawrence
2008-01-01
This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…
Semiautomatic mapping of permafrost in the Yukon Flats, Alaska
NASA Astrophysics Data System (ADS)
Gulbrandsen, Mats Lundh; Minsley, Burke J.; Ball, Lyndsay B.; Hansen, Thomas Mejer
2016-12-01
Thawing of permafrost due to global warming can have major impacts on hydrogeological processes, climate feedback, arctic ecology, and local environments. To understand these effects and processes, it is crucial to know the distribution of permafrost. In this study we exploit the fact that airborne electromagnetic (AEM) data are sensitive to the distribution of permafrost and demonstrate how the distribution of permafrost in the Yukon Flats, Alaska, is mapped in an efficient (semiautomatic) way, using a combination of supervised and unsupervised (machine) learning algorithms, i.e., Smart Interpretation and K-means clustering. Clustering is used to sort unfrozen and frozen regions, and Smart Interpretation is used to predict the depth of permafrost based on expert interpretations. This workflow allows, for the first time, a quantitative and objective approach to efficiently map permafrost based on large amounts of AEM data.
Semiautomatic mapping of permafrost in the Yukon Flats, Alaska
Gulbrandsen, Mats Lundh; Minsley, Burke J.; Ball, Lyndsay B.; Hansen, Thomas Mejer
2016-01-01
Thawing of permafrost due to global warming can have major impacts on hydrogeological processes, climate feedback, arctic ecology, and local environments. To understand these effects and processes, it is crucial to know the distribution of permafrost. In this study we exploit the fact that airborne electromagnetic (AEM) data are sensitive to the distribution of permafrost and demonstrate how the distribution of permafrost in the Yukon Flats, Alaska, is mapped in an efficient (semiautomatic) way, using a combination of supervised and unsupervised (machine) learning algorithms, i.e., Smart Interpretation and K-means clustering. Clustering is used to sort unfrozen and frozen regions, and Smart Interpretation is used to predict the depth of permafrost based on expert interpretations. This workflow allows, for the first time, a quantitative and objective approach to efficiently map permafrost based on large amounts of AEM data.
Spot detection and image segmentation in DNA microarray data.
Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune
2005-01-01
Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.
NASA Astrophysics Data System (ADS)
Li, Hongsong; Lyu, Hang; Liao, Ningfang; Wu, Wenmin
2016-12-01
The bidirectional reflectance distribution function (BRDF) data in the ultraviolet (UV) band are valuable for many applications including cultural heritage, material analysis, surface characterization, and trace detection. We present a BRDF measurement instrument working in the near- and middle-UV spectral range. The instrument includes a collimated UV light source, a rotation stage, a UV imaging spectrometer, and a control computer. The data captured by the proposed instrument describe spatial, spectral, and angular variations of the light scattering from a sample surface. Such a multidimensional dataset of an example sample is captured by the proposed instrument and analyzed by a k-mean clustering algorithm to separate surface regions with same material but different surface roughnesses. The clustering results show that the angular dimension of the dataset can be exploited for surface roughness characterization. The two clustered BRDFs are fitted to a theoretical BRDF model. The fitting results show good agreement between the measurement data and the theoretical model.
Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskaran-Nair, Kiran; Ma, Wenjing; Krishnamoorthy, Sriram
2013-04-09
A novel parallel algorithm for non-iterative multireference coupled cluster (MRCC) theories, which merges recently introduced reference-level parallelism (RLP) [K. Bhaskaran-Nair, J.Brabec, E. Aprà, H.J.J. van Dam, J. Pittner, K. Kowalski, J. Chem. Phys. 137, 094112 (2012)] with the possibility of accelerating numerical calculations using graphics processing unit (GPU) is presented. We discuss the performance of this algorithm on the example of the MRCCSD(T) method (iterative singles and doubles and perturbative triples), where the corrections due to triples are added to the diagonal elements of the MRCCSD (iterative singles and doubles) effective Hamiltonian matrix. The performance of the combined RLP/GPU algorithmmore » is illustrated on the example of the Brillouin-Wigner (BW) and Mukherjee (Mk) state-specific MRCCSD(T) formulations.« less
NASA Astrophysics Data System (ADS)
Kel'manov, A. V.; Motkova, A. V.
2018-01-01
A strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters is considered. The solution criterion is the minimum of the sum (over both clusters) of weighted sums of squared distances from the elements of each cluster to its geometric center. The weights of the sums are equal to the cardinalities of the desired clusters. The center of one cluster is given as input, while the center of the other is unknown and is determined as the point of space equal to the mean of the cluster elements. A version of the problem is analyzed in which the cardinalities of the clusters are given as input. A polynomial-time 2-approximation algorithm for solving the problem is constructed.
A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems.
Shen, Lili; Guo, Jiming; Wang, Lei
2018-06-06
The network real-time kinematic (RTK) technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI), and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs), robotic equipment, etc.) require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC) approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC) according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS) data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.
Application of clustering for customer segmentation in private banking
NASA Astrophysics Data System (ADS)
Yang, Xuan; Chen, Jin; Hao, Pengpeng; Wang, Yanbo J.
2015-07-01
With fierce competition in banking industry, more and more banks have realised that accurate customer segmentation is of fundamental importance, especially for the identification of those high-value customers. In order to solve this problem, we collected real data about private banking customers of a commercial bank in China, conducted empirical analysis by applying K-means clustering technique. When determine the K value, we propose a mechanism that meet both academic requirements and practical needs. Through K-means clustering, we successfully segmented the customers into three categories, and features of each group have been illustrated in details.
Spatio-Temporal Clustering of Monitoring Network
NASA Astrophysics Data System (ADS)
Hussain, I.; Pilz, J.
2009-04-01
Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters existed. Soltani and Modarres (2006) classified the sites by using only average rainfall of sites, they did not consider time replications and spatial coordinates. Kerby et.al (2007) purposed spatial clustering method based on likelihood. They took account of the geographic locations through the variance covariance matrix. Their purposed method works like hierarchical clustering methods. Moreovere, it is inappropiriate for time replication data and could not perform well for large number of sites. Tuia.et.al (2008) used scan statistics for identifying spatio-temporal clusters for fire sequences in the Tuscany region in Italy. The scan statistics clustering method was developed by Kulldorff et al. (1997) to detect spatio-temporal clusters in epidemiology and assessing their significance. The purposed scan statistics method is used only for univariate discrete stochastic random variables. In this paper we make use of a very simple approach for spatio-temporal clustering which can create separable and homogeneous clusters. Most of the clustering methods are based on Euclidean distances. It is well known that geographic coordinates are spherical coordinates and estimating Euclidean distances from spherical coordinates is inappropriate. As a transformation from geographic coordinates to rectangular (D-plane) coordinates we use the Lambert projection method. The partition around medoids clustering method is incorporated on the data including D-plane coordinates. Ordinary kriging is taken as validity measure for the precipitation data. The kriging results for clusters are more accurate and have less variation compared to complete monitoring network precipitation data. References Casto.V.E and Murray.A.T (1997). Spatial Clustering with Data Mining with Genetic Algorithms. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.8573 Kaufman.L and Rousseeuw.P.J (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley series of Probability and Mathematical Statistics, New York. Kulldorf.M (1997). A spatial scan statistic. Commun. Stat.-Theor. Math. 26(6), 1481-1496 Kerby. A , Marx. D, Samal. A and Adamchuck. V. (2007). Spatial Clustering Using the Likelihood Function. Seventh IEEE International Conference on Data Mining - Workshops Steinhaus.H (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci., C1. III vol IV:801- 804 Snyder, J. P. (1987). Map Projection: A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 104-110 Sap.M.N and Awan. A.M (2005). Finding Spatio-Temporal Patterns in Climate Data Using Clustering. Proceedings of the International Conference on Cyberworlds (CW'05) Soltani.S and Modarres.R (2006). Classification of Spatio -Temporal Pattern of Rainfall in Iran: Using Hierarchical and Divisive Cluster Analysis. Journal of Spatial Hydrology Vol.6, No.2 Tuia.D, Ratle.F, Lasaponara.R, Telesca.L and Kanevski.M (2008). Scan Statistics Analysis for Forest Fire Clusters. Commun. in Nonlinear science and numerical simulation 13,1689-1694.
Predicting Flood in Perlis Using Ant Colony Optimization
NASA Astrophysics Data System (ADS)
Nadia Sabri, Syaidatul; Saian, Rizauddin
2017-06-01
Flood forecasting is widely being studied in order to reduce the effect of flood such as loss of property, loss of life and contamination of water supply. Usually flood occurs due to continuous heavy rainfall. This study used a variant of Ant Colony Optimization (ACO) algorithm named the Ant-Miner to develop the classification prediction model to predict flood. However, since Ant-Miner only accept discrete data, while rainfall data is a time series data, a pre-processing steps is needed to discretize the rainfall data initially. This study used a technique called the Symbolic Aggregate Approximation (SAX) to convert the rainfall time series data into discrete data. As an addition, Simple K-Means algorithm was used to cluster the data produced by SAX. The findings show that the predictive accuracy of the classification prediction model is more than 80%.
Lagrangian analysis by clustering. An example in the Nordic Seas.
NASA Astrophysics Data System (ADS)
Koszalka, Inga; Lacasce, Joseph H.
2010-05-01
We propose a new method for obtaining average velocities and eddy diffusivities from Lagrangian data. Rather than grouping the drifter-derived velocities in uniform geographical bins, as is commonly done, we group a specified number of nearest-neighbor velocities. This is done via a clustering algorithm operating on the instantaneous positions of the drifters. Thus it is the data distribution itself which determines the positions of the averages and the areal extent of the clusters. A major advantage is that because the number of members is essentially the same for all clusters, the statistical accuracy is more uniform than with geographical bins. We illustrate the technique using synthetic data from a stochastic model, employing a realistic mean flow. The latter is an accurate representation of the surface currents in the Nordic Seas and is strongly inhomogeneous in space. We use the clustering algorithm to extract the mean velocities and diffusivities (both of which are known from the stochastic model). We also compare the results to those obtained with fixed geographical bins. Clustering is more successful at capturing spatial variability of the mean flow and also improves convergence in the eddy diffusivity estimates. We discuss both the future prospects and shortcomings of the new method.
NASA Astrophysics Data System (ADS)
Salman, S. S.; Abbas, W. A.
2018-05-01
The goal of the study is to support analysis Enhancement of Resolution and study effect on classification methods on bands spectral information of specific and quantitative approaches. In this study introduce a method to enhancement resolution Landsat 8 of combining the bands spectral of 30 meters resolution with panchromatic band 8 of 15 meters resolution, because of importance multispectral imagery to extracting land - cover. Classification methods used in this study to classify several lands -covers recorded from OLI- 8 imagery. Two methods of Data mining can be classified as either supervised or unsupervised. In supervised methods, there is a particular predefined target, that means the algorithm learn which values of the target are associated with which values of the predictor sample. K-nearest neighbors and maximum likelihood algorithms examine in this work as supervised methods. In other hand, no sample identified as target in unsupervised methods, the algorithm of data extraction searches for structure and patterns between all the variables, represented by Fuzzy C-mean clustering method as one of the unsupervised methods, NDVI vegetation index used to compare the results of classification method, the percent of dense vegetation in maximum likelihood method give a best results.
Techniques to derive geometries for image-based Eulerian computations
Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.
2014-01-01
Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID:25750470
KmL3D: a non-parametric algorithm for clustering joint trajectories.
Genolini, C; Pingault, J B; Driss, T; Côté, S; Tremblay, R E; Vitaro, F; Arnaud, C; Falissard, B
2013-01-01
In cohort studies, variables are measured repeatedly and can be considered as trajectories. A classic way to work with trajectories is to cluster them in order to detect the existence of homogeneous patterns of evolution. Since cohort studies usually measure a large number of variables, it might be interesting to study the joint evolution of several variables (also called joint-variable trajectories). To date, the only way to cluster joint-trajectories is to cluster each trajectory independently, then to cross the partitions obtained. This approach is unsatisfactory because it does not take into account a possible co-evolution of variable-trajectories. KmL3D is an R package that implements a version of k-means dedicated to clustering joint-trajectories. It provides facilities for the management of missing values, offers several quality criteria and its graphic interface helps the user to select the best partition. KmL3D can work with any number of joint-variable trajectories. In the restricted case of two joint trajectories, it proposes 3D tools to visualize the partitioning and then export 3D dynamic rotating-graphs to PDF format. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
An Island Grouping Genetic Algorithm for Fuzzy Partitioning Problems
Salcedo-Sanz, S.; Del Ser, J.; Geem, Z. W.
2014-01-01
This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases. PMID:24977235
NASA Astrophysics Data System (ADS)
Saragih, Jepronel; Salim Sitompul, Opim; Situmorang, Zakaria
2017-12-01
One of the techniques known in Data Mining namely clustering. Image segmentation process does not always represent the actual image which is caused by a combination of algorithms as long as it has not been able to obtain optimal cluster centers. In this research will search for the smallest error with the counting result of a Fuzzy C Means process optimized with Cat swam Algorithm Optimization that has been developed by adding the weight of the energy in the process of Tracing Mode.So with the parameter can be determined the most optimal cluster centers and most closely with the data will be made the cluster. Weigh inertia in this research, namely: (0.1), (0.2), (0.3), (0.4), (0.5), (0.6), (0.7), (0.8) and (0.9). Then compare the results of each variable values inersia (W) which is different and taken the smallest results. Of this weighting analysis process can acquire the right produce inertia variable cost function the smallest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.; Gezari, S.; Heinis, S.
2015-03-20
We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g {sub P1}, r {sub P1}, i {sub P1}, and z {sub P1}. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and anmore » analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 AGNs and 812 SNe. With these two samples, we characterize their variability and host galaxy properties, and identify simple photometric priors that would enable their real-time identification in future wide-field synoptic surveys.« less
Marques, J M C; Llanio-Trujillo, J L; Albertí, M; Aguilar, A; Pirani, F
2013-08-22
We employ a recently developed methodology to study structural and energetic properties of the first solvation shells of the potassium ion in nonpolar environments due to aromatic rings, which is important to understand the selectivity of several biochemical phenomena. Our evolutionary algorithm is used in the global optimization study of clusters formed of K(+) solvated with hexafluorobenzene (HFBz) molecules. The global intermolecular interaction for these clusters has been decomposed in HFBz-HFBz and in K(+)-HFBz contributions, using a potential model based on different decompositions of the molecular polarizability of hexafluorobenzene. Putative global minimum structures of microsolvation clusters up to 21 hexafluorobenzene molecules were obtained and compared with the analogous K(+)-benzene clusters reported in our previous work (J. Phys. Chem. A 2012, 116, 4947-4956). We have found that both K(+)-(Bz)n and K(+)-(HFBz)n clusters show a strong magic number around the closure of the first solvation shell. Nonetheless, all K(+)-benzene clusters have essentially the same first solvation shell geometry with four solvent molecules around the ion, whereas the corresponding one for K(+)-(HFBz)n is completed with nine HFBz species, and its structural motif varies as n increases. This is attributed to the ion-solvent interaction that has a larger magnitude for K(+)-Bz than in the case of K(+)-HFBz. In addition, the ability of having more HFBz than Bz molecules around K(+) in the first solvation shell is intimately related to the inversion in the sign of the quadrupole moment of the two solvent species, which leads to a distinct ion-solvent geometry of approach.
Autonomous detection of ISO fade point with color laser printers
NASA Astrophysics Data System (ADS)
Yan, Ni; Maggard, Eric; Fothergill, Roberta; Jessome, Renee J.; Allebach, Jan P.
2015-01-01
Image quality assessment is a very important field in image processing. Human observation is slow and subjective, it also requires strict environment setup for the psychological test 1. Thus developing algorithms to match desired human experiments is always in need. Many studies have focused on detecting the fading phenomenon after the materials are printed, that is to monitor the persistence of the color ink 2-4. However, fading is also a common artifact produced by printing systems when the cartridges run low. We want to develop an automatic system to monitor cartridge life and report fading defects when they appear. In this paper, we first describe a psychological experiment that studies the human perspective on printed fading pages. Then we propose an algorithm based on Color Space Projection and K-means clustering to predict the visibility of fading defects. At last, we integrate the psychological experiment result with our algorithm to give a machine learning tool that monitors cartridge life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-02
This report consists of three separate but related reports. They are (1) Human Resource Development, (2) Carbon-based Structural Materials Research Cluster, and (3) Data Parallel Algorithms for Scientific Computing. To meet the objectives of the Human Resource Development plan, the plan includes K--12 enrichment activities, undergraduate research opportunities for students at the state`s two Historically Black Colleges and Universities, graduate research through cluster assistantships and through a traineeship program targeted specifically to minorities, women and the disabled, and faculty development through participation in research clusters. One research cluster is the chemistry and physics of carbon-based materials. The objective of thismore » cluster is to develop a self-sustaining group of researchers in carbon-based materials research within the institutions of higher education in the state of West Virginia. The projects will involve analysis of cokes, graphites and other carbons in order to understand the properties that provide desirable structural characteristics including resistance to oxidation, levels of anisotropy and structural characteristics of the carbons themselves. In the proposed cluster on parallel algorithms, research by four WVU faculty and three state liberal arts college faculty are: (1) modeling of self-organized critical systems by cellular automata; (2) multiprefix algorithms and fat-free embeddings; (3) offline and online partitioning of data computation; and (4) manipulating and rendering three dimensional objects. This cluster furthers the state Experimental Program to Stimulate Competitive Research plan by building on existing strengths at WVU in parallel algorithms.« less