Sample records for k-mer spectra models

  1. Robust k-mer frequency estimation using gapped k-mers

    PubMed Central

    Ghandi, Mahmoud; Mohammad-Noori, Morteza

    2013-01-01

    Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome. PMID:23861010

  2. Robust k-mer frequency estimation using gapped k-mers.

    PubMed

    Ghandi, Mahmoud; Mohammad-Noori, Morteza; Beer, Michael A

    2014-08-01

    Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome.

  3. Rare k-mer DNA: Identification of sequence motifs and prediction of CpG island and promoter.

    PubMed

    Mohamed Hashim, Ezzeddin Kamil; Abdullah, Rosni

    2015-12-21

    Empirical analysis on k-mer DNA has been proven as an effective tool in finding unique patterns in DNA sequences which can lead to the discovery of potential sequence motifs. In an extensive study of empirical k-mer DNA on hundreds of organisms, the researchers found unique multi-modal k-mer spectra occur in the genomes of organisms from the tetrapod clade only which includes all mammals. The multi-modality is caused by the formation of the two lowest modes where k-mers under them are referred as the rare k-mers. The suppression of the two lowest modes (or the rare k-mers) can be attributed to the CG dinucleotide inclusions in them. Apart from that, the rare k-mers are selectively distributed in certain genomic features of CpG Island (CGI), promoter, 5' UTR, and exon. We correlated the rare k-mers with hundreds of annotated features using several bioinformatic tools, performed further intrinsic rare k-mer analyses within the correlated features, and modeled the elucidated rare k-mer clustering feature into a classifier to predict the correlated CGI and promoter features. Our correlation results show that rare k-mers are highly associated with several annotated features of CGI, promoter, 5' UTR, and open chromatin regions. Our intrinsic results show that rare k-mers have several unique topological, compositional, and clustering properties in CGI and promoter features. Finally, the performances of our RWC (rare-word clustering) method in predicting the CGI and promoter features are ranked among the top three, in eight of the CGI and promoter evaluations, among eight of the benchmarked datasets. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features

    PubMed Central

    Mohammad-Noori, Morteza; Beer, Michael A.

    2014-01-01

    Abstract Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem. PMID:25033408

  5. Enhanced regulatory sequence prediction using gapped k-mer features.

    PubMed

    Ghandi, Mahmoud; Lee, Dongwon; Mohammad-Noori, Morteza; Beer, Michael A

    2014-07-01

    Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem.

  6. KAnalyze: a fast versatile pipelined k-mer toolkit.

    PubMed

    Audano, Peter; Vannberg, Fredrik

    2014-07-15

    Converting nucleotide sequences into short overlapping fragments of uniform length, k-mers, is a common step in many bioinformatics applications. While existing software packages count k-mers, few are optimized for speed, offer an application programming interface (API), a graphical interface or contain features that make it extensible and maintainable. We designed KAnalyze to compete with the fastest k-mer counters, to produce reliable output and to support future development efforts through well-architected, documented and testable code. Currently, KAnalyze can output k-mer counts in a sorted tab-delimited file or stream k-mers as they are read. KAnalyze can process large datasets with 2 GB of memory. This project is implemented in Java 7, and the command line interface (CLI) is designed to integrate into pipelines written in any language. As a k-mer counter, KAnalyze outperforms Jellyfish, DSK and a pipeline built on Perl and Linux utilities. Through extensive unit and system testing, we have verified that KAnalyze produces the correct k-mer counts over multiple datasets and k-mer sizes. KAnalyze is available on SourceForge: https://sourceforge.net/projects/kanalyze/. © The Author 2014. Published by Oxford University Press.

  7. Implementation of hierarchical clustering using k-mer sparse matrix to analyze MERS-CoV genetic relationship

    NASA Astrophysics Data System (ADS)

    Bustamam, A.; Ulul, E. D.; Hura, H. F. A.; Siswantining, T.

    2017-07-01

    Hierarchical clustering is one of effective methods in creating a phylogenetic tree based on the distance matrix between DNA (deoxyribonucleic acid) sequences. One of the well-known methods to calculate the distance matrix is k-mer method. Generally, k-mer is more efficient than some distance matrix calculation techniques. The steps of k-mer method are started from creating k-mer sparse matrix, and followed by creating k-mer singular value vectors. The last step is computing the distance amongst vectors. In this paper, we analyze the sequences of MERS-CoV (Middle East Respiratory Syndrome - Coronavirus) DNA by implementing hierarchical clustering using k-mer sparse matrix in order to perform the phylogenetic analysis. Our results show that the ancestor of our MERS-CoV is coming from Egypt. Moreover, we found that the MERS-CoV infection that occurs in one country may not necessarily come from the same country of origin. This suggests that the process of MERS-CoV mutation might not only be influenced by geographical factor.

  8. KAnalyze: a fast versatile pipelined K-mer toolkit

    PubMed Central

    Audano, Peter; Vannberg, Fredrik

    2014-01-01

    Motivation: Converting nucleotide sequences into short overlapping fragments of uniform length, k-mers, is a common step in many bioinformatics applications. While existing software packages count k-mers, few are optimized for speed, offer an application programming interface (API), a graphical interface or contain features that make it extensible and maintainable. We designed KAnalyze to compete with the fastest k-mer counters, to produce reliable output and to support future development efforts through well-architected, documented and testable code. Currently, KAnalyze can output k-mer counts in a sorted tab-delimited file or stream k-mers as they are read. KAnalyze can process large datasets with 2 GB of memory. This project is implemented in Java 7, and the command line interface (CLI) is designed to integrate into pipelines written in any language. Results: As a k-mer counter, KAnalyze outperforms Jellyfish, DSK and a pipeline built on Perl and Linux utilities. Through extensive unit and system testing, we have verified that KAnalyze produces the correct k-mer counts over multiple datasets and k-mer sizes. Availability and implementation: KAnalyze is available on SourceForge: https://sourceforge.net/projects/kanalyze/ Contact: fredrik.vannberg@biology.gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24642064

  9. Impact of defects on percolation in random sequential adsorption of linear k-mers on square lattices.

    PubMed

    Tarasevich, Yuri Yu; Laptev, Valeri V; Vygornitskii, Nikolai V; Lebovka, Nikolai I

    2015-01-01

    The effect of defects on the percolation of linear k-mers (particles occupying k adjacent sites) on a square lattice is studied by means of Monte Carlo simulation. The k-mers are deposited using a random sequential adsorption mechanism. Two models L(d) and K(d) are analyzed. In the L(d) model it is assumed that the initial square lattice is nonideal and some fraction of sites d is occupied by nonconducting point defects (impurities). In the K(d) model the initial square lattice is perfect. However, it is assumed that some fraction of the sites in the k-mers d consists of defects, i.e., is nonconducting. The length of the k-mers k varies from 2 to 256. Periodic boundary conditions are applied to the square lattice. The dependences of the percolation threshold concentration of the conducting sites p(c) vs the concentration of defects d are analyzed for different values of k. Above some critical concentration of defects d(m), percolation is blocked in both models, even at the jamming concentration of k-mers. For long k-mers, the values of d(m) are well fitted by the functions d(m)∝k(m)(-α)-k(-α) (α=1.28±0.01 and k(m)=5900±500) and d(m)∝log(10)(k(m)/k) (k(m)=4700±1000) for the L(d) and K(d) models, respectively. Thus, our estimation indicates that the percolation of k-mers on a square lattice is impossible even for a lattice without any defects if k⪆6×10(3).

  10. Turtle: identifying frequent k-mers with cache-efficient algorithms.

    PubMed

    Roy, Rajat Shuvro; Bhattacharya, Debashish; Schliep, Alexander

    2014-07-15

    Counting the frequencies of k-mers in read libraries is often a first step in the analysis of high-throughput sequencing data. Infrequent k-mers are assumed to be a result of sequencing errors. The frequent k-mers constitute a reduced but error-free representation of the experiment, which can inform read error correction or serve as the input to de novo assembly methods. Ideally, the memory requirement for counting should be linear in the number of frequent k-mers and not in the, typically much larger, total number of k-mers in the read library. We present a novel method that balances time, space and accuracy requirements to efficiently extract frequent k-mers even for high-coverage libraries and large genomes such as human. Our method is designed to minimize cache misses in a cache-efficient manner by using a pattern-blocked Bloom filter to remove infrequent k-mers from consideration in combination with a novel sort-and-compact scheme, instead of a hash, for the actual counting. Although this increases theoretical complexity, the savings in cache misses reduce the empirical running times. A variant of method can resort to a counting Bloom filter for even larger savings in memory at the expense of false-negative rates in addition to the false-positive rates common to all Bloom filter-based approaches. A comparison with the state-of-the-art shows reduced memory requirements and running times. The tools are freely available for download at http://bioinformatics.rutgers.edu/Software/Turtle and http://figshare.com/articles/Turtle/791582. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. K-mer Content, Correlation, and Position Analysis of Genome DNA Sequences for the Identification of Function and Evolutionary Features

    PubMed Central

    Sievers, Aaron; Bosiek, Katharina; Bisch, Marc; Dreessen, Chris; Riedel, Jascha; Froß, Patrick; Hausmann, Michael; Hildenbrand, Georg

    2017-01-01

    In genome analysis, k-mer-based comparison methods have become standard tools. However, even though they are able to deliver reliable results, other algorithms seem to work better in some cases. To improve k-mer-based DNA sequence analysis and comparison, we successfully checked whether adding positional resolution is beneficial for finding and/or comparing interesting organizational structures. A simple but efficient algorithm for extracting and saving local k-mer spectra (frequency distribution of k-mers) was developed and used. The results were analyzed by including positional information based on visualizations as genomic maps and by applying basic vector correlation methods. This analysis was concentrated on small word lengths (1 ≤ k ≤ 4) on relatively small viral genomes of Papillomaviridae and Herpesviridae, while also checking its usability for larger sequences, namely human chromosome 2 and the homologous chromosomes (2A, 2B) of a chimpanzee. Using this alignment-free analysis, several regions with specific characteristics in Papillomaviridae and Herpesviridae formerly identified by independent, mostly alignment-based methods, were confirmed. Correlations between the k-mer content and several genes in these genomes have been found, showing similarities between classified and unclassified viruses, which may be potentially useful for further taxonomic research. Furthermore, unknown k-mer correlations in the genomes of Human Herpesviruses (HHVs), which are probably of major biological function, are found and described. Using the chromosomes of a chimpanzee and human that are currently known, identities between the species on every analyzed chromosome were reproduced. This demonstrates the feasibility of our approach for large data sets of complex genomes. Based on these results, we suggest k-mer analysis with positional resolution as a method for closing a gap between the effectiveness of alignment-based methods (like NCBI BLAST) and the high pace of

  12. Electrical conductivity of a monolayer produced by random sequential adsorption of linear k -mers onto a square lattice

    NASA Astrophysics Data System (ADS)

    Tarasevich, Yuri Yu.; Goltseva, Valeria A.; Laptev, Valeri V.; Lebovka, Nikolai I.

    2016-10-01

    The electrical conductivity of a monolayer produced by the random sequential adsorption (RSA) of linear k -mers (particles occupying k adjacent adsorption sites) onto a square lattice was studied by means of computer simulation. Overlapping with predeposited k -mers and detachment from the surface were forbidden. The RSA process continued until the saturation jamming limit, pj. The isotropic (equiprobable orientations of k -mers along x and y axes) and anisotropic (all k -mers aligned along the y axis) depositions for two different models—of an insulating substrate and conducting k -mers (C model) and of a conducting substrate and insulating k -mers (I model)—were examined. The Frank-Lobb algorithm was applied to calculate the electrical conductivity in both the x and y directions for different lengths (k =1 - 128) and concentrations (p =0 - pj) of the k -mers. The "intrinsic electrical conductivity" and concentration dependence of the relative electrical conductivity Σ (p ) (Σ =σ /σm for the C model and Σ =σm/σ for the I model, where σm is the electrical conductivity of substrate) in different directions were analyzed. At large values of k the Σ (p ) curves became very similar and they almost coincided at k =128 . Moreover, for both models the greater the length of the k -mers the smoother the functions Σx y(p ) ,Σx(p ) and Σy(p ) . For the more practically important C model, the other interesting findings are (i) for large values of k (k =64 ,128 ), the values of Σx y and Σy increase rapidly with the initial increase of p from 0 to 0.1; (ii) for k ≥16 , all the Σx y(p ) and Σx(p ) curves intersect with each other at the same isoconductivity points; (iii) for anisotropic deposition, the percolation concentrations are the same in the x and y directions, whereas, at the percolation point the greater the length of the k -mers the larger the anisotropy of the electrical conductivity, i.e., the ratio σy/σx (>1 ).

  13. KMC 2: fast and resource-frugal k-mer counting.

    PubMed

    Deorowicz, Sebastian; Kokot, Marek; Grabowski, Szymon; Debudaj-Grabysz, Agnieszka

    2015-05-15

    Building the histogram of occurrences of every k-symbol long substring of nucleotide data is a standard step in many bioinformatics applications, known under the name of k-mer counting. Its applications include developing de Bruijn graph genome assemblers, fast multiple sequence alignment and repeat detection. The tremendous amounts of NGS data require fast algorithms for k-mer counting, preferably using moderate amounts of memory. We present a novel method for k-mer counting, on large datasets about twice faster than the strongest competitors (Jellyfish 2, KMC 1), using about 12 GB (or less) of RAM. Our disk-based method bears some resemblance to MSPKmerCounter, yet replacing the original minimizers with signatures (a carefully selected subset of all minimizers) and using (k, x)-mers allows to significantly reduce the I/O and a highly parallel overall architecture allows to achieve unprecedented processing speeds. For example, KMC 2 counts the 28-mers of a human reads collection with 44-fold coverage (106 GB of compressed size) in about 20 min, on a 6-core Intel i7 PC with an solid-state disk. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding

    PubMed Central

    Min, Xu; Zeng, Wanwen; Chen, Ning; Chen, Ting; Jiang, Rui

    2017-01-01

    Abstract Motivation: Experimental techniques for measuring chromatin accessibility are expensive and time consuming, appealing for the development of computational approaches to predict open chromatin regions from DNA sequences. Along this direction, existing methods fall into two classes: one based on handcrafted k-mer features and the other based on convolutional neural networks. Although both categories have shown good performance in specific applications thus far, there still lacks a comprehensive framework to integrate useful k-mer co-occurrence information with recent advances in deep learning. Results: We fill this gap by addressing the problem of chromatin accessibility prediction with a convolutional Long Short-Term Memory (LSTM) network with k-mer embedding. We first split DNA sequences into k-mers and pre-train k-mer embedding vectors based on the co-occurrence matrix of k-mers by using an unsupervised representation learning approach. We then construct a supervised deep learning architecture comprised of an embedding layer, three convolutional layers and a Bidirectional LSTM (BLSTM) layer for feature learning and classification. We demonstrate that our method gains high-quality fixed-length features from variable-length sequences and consistently outperforms baseline methods. We show that k-mer embedding can effectively enhance model performance by exploring different embedding strategies. We also prove the efficacy of both the convolution and the BLSTM layers by comparing two variations of the network architecture. We confirm the robustness of our model to hyper-parameters by performing sensitivity analysis. We hope our method can eventually reinforce our understanding of employing deep learning in genomic studies and shed light on research regarding mechanisms of chromatin accessibility. Availability and implementation: The source code can be downloaded from https://github.com/minxueric/ismb2017_lstm. Contact: tingchen@tsinghua.edu.cn or ruijiang

  15. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.

    PubMed

    Min, Xu; Zeng, Wanwen; Chen, Ning; Chen, Ting; Jiang, Rui

    2017-07-15

    Experimental techniques for measuring chromatin accessibility are expensive and time consuming, appealing for the development of computational approaches to predict open chromatin regions from DNA sequences. Along this direction, existing methods fall into two classes: one based on handcrafted k -mer features and the other based on convolutional neural networks. Although both categories have shown good performance in specific applications thus far, there still lacks a comprehensive framework to integrate useful k -mer co-occurrence information with recent advances in deep learning. We fill this gap by addressing the problem of chromatin accessibility prediction with a convolutional Long Short-Term Memory (LSTM) network with k -mer embedding. We first split DNA sequences into k -mers and pre-train k -mer embedding vectors based on the co-occurrence matrix of k -mers by using an unsupervised representation learning approach. We then construct a supervised deep learning architecture comprised of an embedding layer, three convolutional layers and a Bidirectional LSTM (BLSTM) layer for feature learning and classification. We demonstrate that our method gains high-quality fixed-length features from variable-length sequences and consistently outperforms baseline methods. We show that k -mer embedding can effectively enhance model performance by exploring different embedding strategies. We also prove the efficacy of both the convolution and the BLSTM layers by comparing two variations of the network architecture. We confirm the robustness of our model to hyper-parameters by performing sensitivity analysis. We hope our method can eventually reinforce our understanding of employing deep learning in genomic studies and shed light on research regarding mechanisms of chromatin accessibility. The source code can be downloaded from https://github.com/minxueric/ismb2017_lstm . tingchen@tsinghua.edu.cn or ruijiang@tsinghua.edu.cn. Supplementary materials are available at

  16. KMC 3: counting and manipulating k-mer statistics.

    PubMed

    Kokot, Marek; Dlugosz, Maciej; Deorowicz, Sebastian

    2017-09-01

    Counting all k -mers in a given dataset is a standard procedure in many bioinformatics applications. We introduce KMC3, a significant improvement of the former KMC2 algorithm together with KMC tools for manipulating k -mer databases. Usefulness of the tools is shown on a few real problems. Program is freely available at http://sun.aei.polsl.pl/REFRESH/kmc . sebastian.deorowicz@polsl.pl. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Phenetic Comparison of Prokaryotic Genomes Using k-mers

    PubMed Central

    Déraspe, Maxime; Raymond, Frédéric; Boisvert, Sébastien; Culley, Alexander; Roy, Paul H.; Laviolette, François; Corbeil, Jacques

    2017-01-01

    Abstract Bacterial genomics studies are getting more extensive and complex, requiring new ways to envision analyses. Using the Ray Surveyor software, we demonstrate that comparison of genomes based on their k-mer content allows reconstruction of phenetic trees without the need of prior data curation, such as core genome alignment of a species. We validated the methodology using simulated genomes and previously published phylogenomic studies of Streptococcus pneumoniae and Pseudomonas aeruginosa. We also investigated the relationship of specific genetic determinants with bacterial population structures. By comparing clusters from the complete genomic content of a genome population with clusters from specific functional categories of genes, we can determine how the population structures are correlated. Indeed, the strain clustering based on a subset of k-mers allows determination of its similarity with the whole genome clusters. We also applied this methodology on 42 species of bacteria to determine the correlational significance of five important bacterial genomic characteristics. For example, intrinsic resistance is more important in P. aeruginosa than in S. pneumoniae, and the former has increased correlation of its population structure with antibiotic resistance genes. The global view of the pangenome of bacteria also demonstrated the taxa-dependent interaction of population structure with antibiotic resistance, bacteriophage, plasmid, and mobile element k-mer data sets. PMID:28957508

  18. Simrank: Rapid and sensitive general-purpose k-mer search tool

    PubMed Central

    2011-01-01

    Background Terabyte-scale collections of string-encoded data are expected from consortia efforts such as the Human Microbiome Project http://nihroadmap.nih.gov/hmp. Intra- and inter-project data similarity searches are enabled by rapid k-mer matching strategies. Software applications for sequence database partitioning, guide tree estimation, molecular classification and alignment acceleration have benefited from embedded k-mer searches as sub-routines. However, a rapid, general-purpose, open-source, flexible, stand-alone k-mer tool has not been available. Results Here we present a stand-alone utility, Simrank, which allows users to rapidly identify database strings the most similar to query strings. Performance testing of Simrank and related tools against DNA, RNA, protein and human-languages found Simrank 10X to 928X faster depending on the dataset. Conclusions Simrank provides molecular ecologists with a high-throughput, open source choice for comparing large sequence sets to find similarity. PMID:21524302

  19. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches.

    PubMed

    Almutairy, Meznah; Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method.

  20. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

    PubMed Central

    Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method. PMID:29389989

  1. Kmerind: A Flexible Parallel Library for K-mer Indexing of Biological Sequences on Distributed Memory Systems.

    PubMed

    Pan, Tony; Flick, Patrick; Jain, Chirag; Liu, Yongchao; Aluru, Srinivas

    2017-10-09

    Counting and indexing fixed length substrings, or k-mers, in biological sequences is a key step in many bioinformatics tasks including genome alignment and mapping, genome assembly, and error correction. While advances in next generation sequencing technologies have dramatically reduced the cost and improved latency and throughput, few bioinformatics tools can efficiently process the datasets at the current generation rate of 1.8 terabases every 3 days. We present Kmerind, a high performance parallel k-mer indexing library for distributed memory environments. The Kmerind library provides a set of simple and consistent APIs with sequential semantics and parallel implementations that are designed to be flexible and extensible. Kmerind's k-mer counter performs similarly or better than the best existing k-mer counting tools even on shared memory systems. In a distributed memory environment, Kmerind counts k-mers in a 120 GB sequence read dataset in less than 13 seconds on 1024 Xeon CPU cores, and fully indexes their positions in approximately 17 seconds. Querying for 1% of the k-mers in these indices can be completed in 0.23 seconds and 28 seconds, respectively. Kmerind is the first k-mer indexing library for distributed memory environments, and the first extensible library for general k-mer indexing and counting. Kmerind is available at https://github.com/ParBLiSS/kmerind.

  2. Disk-based k-mer counting on a PC

    PubMed Central

    2013-01-01

    Background The k-mer counting problem, which is to build the histogram of occurrences of every k-symbol long substring in a given text, is important for many bioinformatics applications. They include developing de Bruijn graph genome assemblers, fast multiple sequence alignment and repeat detection. Results We propose a simple, yet efficient, parallel disk-based algorithm for counting k-mers. Experiments show that it usually offers the fastest solution to the considered problem, while demanding a relatively small amount of memory. In particular, it is capable of counting the statistics for short-read human genome data, in input gzipped FASTQ file, in less than 40 minutes on a PC with 16 GB of RAM and 6 CPU cores, and for long-read human genome data in less than 70 minutes. On a more powerful machine, using 32 GB of RAM and 32 CPU cores, the tasks are accomplished in less than half the time. No other algorithm for most tested settings of this problem and mammalian-size data can accomplish this task in comparable time. Our solution also belongs to memory-frugal ones; most competitive algorithms cannot efficiently work on a PC with 16 GB of memory for such massive data. Conclusions By making use of cheap disk space and exploiting CPU and I/O parallelism we propose a very competitive k-mer counting procedure, called KMC. Our results suggest that judicious resource management may allow to solve at least some bioinformatics problems with massive data on a commodity personal computer. PMID:23679007

  3. Influence of anisotropy on percolation and jamming of linear k-mers on square lattice with defects

    NASA Astrophysics Data System (ADS)

    Tarasevich, Yu Yu; Laptev, V. V.; Burmistrov, A. S.; Shinyaeva, T. S.

    2015-09-01

    By means of the Monte Carlo simulation, we study the layers produced by the random sequential adsorption of the linear rigid objects (k-mers also known as rigid or stiff rods, sticks, needles) onto the square lattice with defects in the presence of an external field. The value of k varies from 2 to 32. The point defects randomly and uniformly placed on the substrate hinder adsorption of the elongated objects. The external field affects isotropic deposition of the particles, consequently the deposited layers are anisotropic. We study the influence of the defect concentration, the length of the objects, and the external field on the percolation threshold and the jamming concentration. Our main findings are (i) the critical defect concentration at which the percolation never occurs even at jammed state decreases for short k-mers (k < 16) and increases for long k-mers (k > 16) as anisotropy increases, (ii) the corresponding critical k-mer concentration decreases with anisotropy growth, (iii) the jamming concentration decreases drastically with growth of k-mer length for any anisotropy, (iv) for short k-mers, the percolation threshold is almost insensitive to the defect concentration for any anisotropy.

  4. KGCAK: a K-mer based database for genome-wide phylogeny and complexity evaluation.

    PubMed

    Wang, Dapeng; Xu, Jiayue; Yu, Jun

    2015-09-16

    The K-mer approach, treating genomic sequences as simple characters and counting the relative abundance of each string upon a fixed K, has been extensively applied to phylogeny inference for genome assembly, annotation, and comparison. To meet increasing demands for comparing large genome sequences and to promote the use of the K-mer approach, we develop a versatile database, KGCAK ( http://kgcak.big.ac.cn/KGCAK/ ), containing ~8,000 genomes that include genome sequences of diverse life forms (viruses, prokaryotes, protists, animals, and plants) and cellular organelles of eukaryotic lineages. It builds phylogeny based on genomic elements in an alignment-free fashion and provides in-depth data processing enabling users to compare the complexity of genome sequences based on K-mer distribution. We hope that KGCAK becomes a powerful tool for exploring relationship within and among groups of species in a tree of life based on genomic data.

  5. kWIP: The k-mer weighted inner product, a de novo estimator of genetic similarity.

    PubMed

    Murray, Kevin D; Webers, Christfried; Ong, Cheng Soon; Borevitz, Justin; Warthmann, Norman

    2017-09-01

    Modern genomics techniques generate overwhelming quantities of data. Extracting population genetic variation demands computationally efficient methods to determine genetic relatedness between individuals (or "samples") in an unbiased manner, preferably de novo. Rapid estimation of genetic relatedness directly from sequencing data has the potential to overcome reference genome bias, and to verify that individuals belong to the correct genetic lineage before conclusions are drawn using mislabelled, or misidentified samples. We present the k-mer Weighted Inner Product (kWIP), an assembly-, and alignment-free estimator of genetic similarity. kWIP combines a probabilistic data structure with a novel metric, the weighted inner product (WIP), to efficiently calculate pairwise similarity between sequencing runs from their k-mer counts. It produces a distance matrix, which can then be further analysed and visualised. Our method does not require prior knowledge of the underlying genomes and applications include establishing sample identity and detecting mix-up, non-obvious genomic variation, and population structure. We show that kWIP can reconstruct the true relatedness between samples from simulated populations. By re-analysing several published datasets we show that our results are consistent with marker-based analyses. kWIP is written in C++, licensed under the GNU GPL, and is available from https://github.com/kdmurray91/kwip.

  6. Comparing K-mer based methods for improved classification of 16S sequences.

    PubMed

    Vinje, Hilde; Liland, Kristian Hovde; Almøy, Trygve; Snipen, Lars

    2015-07-01

    The need for precise and stable taxonomic classification is highly relevant in modern microbiology. Parallel to the explosion in the amount of sequence data accessible, there has also been a shift in focus for classification methods. Previously, alignment-based methods were the most applicable tools. Now, methods based on counting K-mers by sliding windows are the most interesting classification approach with respect to both speed and accuracy. Here, we present a systematic comparison on five different K-mer based classification methods for the 16S rRNA gene. The methods differ from each other both in data usage and modelling strategies. We have based our study on the commonly known and well-used naïve Bayes classifier from the RDP project, and four other methods were implemented and tested on two different data sets, on full-length sequences as well as fragments of typical read-length. The difference in classification error obtained by the methods seemed to be small, but they were stable and for both data sets tested. The Preprocessed nearest-neighbour (PLSNN) method performed best for full-length 16S rRNA sequences, significantly better than the naïve Bayes RDP method. On fragmented sequences the naïve Bayes Multinomial method performed best, significantly better than all other methods. For both data sets explored, and on both full-length and fragmented sequences, all the five methods reached an error-plateau. We conclude that no K-mer based method is universally best for classifying both full-length sequences and fragments (reads). All methods approach an error plateau indicating improved training data is needed to improve classification from here. Classification errors occur most frequent for genera with few sequences present. For improving the taxonomy and testing new classification methods, the need for a better and more universal and robust training data set is crucial.

  7. MicroRNA categorization using sequence motifs and k-mers.

    PubMed

    Yousef, Malik; Khalifa, Waleed; Acar, İlhan Erkin; Allmer, Jens

    2017-03-14

    Post-transcriptional gene dysregulation can be a hallmark of diseases like cancer and microRNAs (miRNAs) play a key role in the modulation of translation efficiency. Known pre-miRNAs are listed in miRBase, and they have been discovered in a variety of organisms ranging from viruses and microbes to eukaryotic organisms. The computational detection of pre-miRNAs is of great interest, and such approaches usually employ machine learning to discriminate between miRNAs and other sequences. Many features have been proposed describing pre-miRNAs, and we have previously introduced the use of sequence motifs and k-mers as useful ones. There have been reports of xeno-miRNAs detected via next generation sequencing. However, they may be contaminations and to aid that important decision-making process, we aimed to establish a means to differentiate pre-miRNAs from different species. To achieve distinction into species, we used one species' pre-miRNAs as the positive and another species' pre-miRNAs as the negative training and test data for the establishment of machine learned models based on sequence motifs and k-mers as features. This approach resulted in higher accuracy values between distantly related species while species with closer relation produced lower accuracy values. We were able to differentiate among species with increasing success when the evolutionary distance increases. This conclusion is supported by previous reports of fast evolutionary changes in miRNAs since even in relatively closely related species a fairly good discrimination was possible.

  8. NIPTmer: rapid k-mer-based software package for detection of fetal aneuploidies.

    PubMed

    Sauk, Martin; Žilina, Olga; Kurg, Ants; Ustav, Eva-Liina; Peters, Maire; Paluoja, Priit; Roost, Anne Mari; Teder, Hindrek; Palta, Priit; Brison, Nathalie; Vermeesch, Joris R; Krjutškov, Kaarel; Salumets, Andres; Kaplinski, Lauris

    2018-04-04

    Non-invasive prenatal testing (NIPT) is a recent and rapidly evolving method for detecting genetic lesions, such as aneuploidies, of a fetus. However, there is a need for faster and cheaper laboratory and analysis methods to make NIPT more widely accessible. We have developed a novel software package for detection of fetal aneuploidies from next-generation low-coverage whole genome sequencing data. Our tool - NIPTmer - is based on counting pre-defined per-chromosome sets of unique k-mers from raw sequencing data, and applying linear regression model on the counts. Additionally, the filtering process used for k-mer list creation allows one to take into account the genetic variance in a specific sample, thus reducing the source of uncertainty. The processing time of one sample is less than 10 CPU-minutes on a high-end workstation. NIPTmer was validated on a cohort of 583 NIPT samples and it correctly predicted 37 non-mosaic fetal aneuploidies. NIPTmer has the potential to reduce significantly the time and complexity of NIPT post-sequencing analysis compared to mapping-based methods. For non-commercial users the software package is freely available at http://bioinfo.ut.ee/NIPTMer/ .

  9. Deterministic and stochastic models for middle east respiratory syndrome (MERS)

    NASA Astrophysics Data System (ADS)

    Suryani, Dessy Rizki; Zevika, Mona; Nuraini, Nuning

    2018-03-01

    World Health Organization (WHO) data stated that since September 2012, there were 1,733 cases of Middle East Respiratory Syndrome (MERS) with 628 death cases that occurred in 27 countries. MERS was first identified in Saudi Arabia in 2012 and the largest cases of MERS outside Saudi Arabia occurred in South Korea in 2015. MERS is a disease that attacks the respiratory system caused by infection of MERS-CoV. MERS-CoV transmission occurs directly through direct contact between infected individual with non-infected individual or indirectly through contaminated object by the free virus. Suspected, MERS can spread quickly because of the free virus in environment. Mathematical modeling is used to illustrate the transmission of MERS disease using deterministic model and stochastic model. Deterministic model is used to investigate the temporal dynamic from the system to analyze the steady state condition. Stochastic model approach using Continuous Time Markov Chain (CTMC) is used to predict the future states by using random variables. From the models that were built, the threshold value for deterministic models and stochastic models obtained in the same form and the probability of disease extinction can be computed by stochastic model. Simulations for both models using several of different parameters are shown, and the probability of disease extinction will be compared with several initial conditions.

  10. Tungsten anode spectral model using interpolating cubic splines: unfiltered x-ray spectra from 20 kV to 640 kV.

    PubMed

    Hernandez, Andrew M; Boone, John M

    2014-04-01

    Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervals from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Using pairedt-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R(2)) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, "Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector," Phys. Med. Biol. 24, 505-517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 keV at 20 kV and 169 keV at 640 k

  11. Tungsten anode spectral model using interpolating cubic splines: Unfiltered x-ray spectra from 20 kV to 640 kV

    PubMed Central

    Hernandez, Andrew M.; Boone, John M.

    2014-01-01

    Purpose: Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. Methods: X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervals from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Results: Using paired t-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R2) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, “Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector,” Phys. Med. Biol. 24, 505–517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective energy was 9 ke

  12. Tungsten anode spectral model using interpolating cubic splines: Unfiltered x-ray spectra from 20 kV to 640 kV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Andrew M.; Boone, John M., E-mail: john.boone@ucdmc.ucdavis.edu

    Purpose: Monte Carlo methods were used to generate lightly filtered high resolution x-ray spectra spanning from 20 kV to 640 kV. Methods: X-ray spectra were simulated for a conventional tungsten anode. The Monte Carlo N-Particle eXtended radiation transport code (MCNPX 2.6.0) was used to produce 35 spectra over the tube potential range from 20 kV to 640 kV, and cubic spline interpolation procedures were used to create piecewise polynomials characterizing the photon fluence per energy bin as a function of x-ray tube potential. Using these basis spectra and the cubic spline interpolation, 621 spectra were generated at 1 kV intervalsmore » from 20 to 640 kV. The tungsten anode spectral model using interpolating cubic splines (TASMICS) produces minimally filtered (0.8 mm Be) x-ray spectra with 1 keV energy resolution. The TASMICS spectra were compared mathematically with other, previously reported spectra. Results: Using pairedt-test analyses, no statistically significant difference (i.e., p > 0.05) was observed between compared spectra over energy bins above 1% of peak bremsstrahlung fluence. For all energy bins, the correlation of determination (R{sup 2}) demonstrated good correlation for all spectral comparisons. The mean overall difference (MOD) and mean absolute difference (MAD) were computed over energy bins (above 1% of peak bremsstrahlung fluence) and over all the kV permutations compared. MOD and MAD comparisons with previously reported spectra were 2.7% and 9.7%, respectively (TASMIP), 0.1% and 12.0%, respectively [R. Birch and M. Marshall, “Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector,” Phys. Med. Biol. 24, 505–517 (1979)], 0.4% and 8.1%, respectively (Poludniowski), and 0.4% and 8.1%, respectively (AAPM TG 195). The effective energy of TASMICS spectra with 2.5 mm of added Al filtration ranged from 17 keV (at 20 kV) to 138 keV (at 640 kV); with 0.2 mm of added Cu filtration the effective

  13. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies.

    PubMed

    Mapleson, Daniel; Garcia Accinelli, Gonzalo; Kettleborough, George; Wright, Jonathan; Clavijo, Bernardo J

    2017-02-15

    De novo assembly of whole genome shotgun (WGS) next-generation sequencing (NGS) data benefits from high-quality input with high coverage. However, in practice, determining the quality and quantity of useful reads quickly and in a reference-free manner is not trivial. Gaining a better understanding of the WGS data, and how that data is utilized by assemblers, provides useful insights that can inform the assembly process and result in better assemblies. We present the K-mer Analysis Toolkit (KAT): a multi-purpose software toolkit for reference-free quality control (QC) of WGS reads and de novo genome assemblies, primarily via their k-mer frequencies and GC composition. KAT enables users to assess levels of errors, bias and contamination at various stages of the assembly process. In this paper we highlight KAT's ability to provide valuable insights into assembly composition and quality of genome assemblies through pairwise comparison of k-mers present in both input reads and the assemblies. KAT is available under the GPLv3 license at: https://github.com/TGAC/KAT . bernardo.clavijo@earlham.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  14. Identifying Group-Specific Sequences for Microbial Communities Using Long k-mer Sequence Signatures

    PubMed Central

    Wang, Ying; Fu, Lei; Ren, Jie; Yu, Zhaoxia; Chen, Ting; Sun, Fengzhu

    2018-01-01

    Comparing metagenomic samples is crucial for understanding microbial communities. For different groups of microbial communities, such as human gut metagenomic samples from patients with a certain disease and healthy controls, identifying group-specific sequences offers essential information for potential biomarker discovery. A sequence that is present, or rich, in one group, but absent, or scarce, in another group is considered “group-specific” in our study. Our main purpose is to discover group-specific sequence regions between control and case groups as disease-associated markers. We developed a long k-mer (k ≥ 30 bps)-based computational pipeline to detect group-specific sequences at strain resolution free from reference sequences, sequence alignments, and metagenome-wide de novo assembly. We called our method MetaGO: Group-specific oligonucleotide analysis for metagenomic samples. An open-source pipeline on Apache Spark was developed with parallel computing. We applied MetaGO to one simulated and three real metagenomic datasets to evaluate the discriminative capability of identified group-specific markers. In the simulated dataset, 99.11% of group-specific logical 40-mers covered 98.89% disease-specific regions from the disease-associated strain. In addition, 97.90% of group-specific numerical 40-mers covered 99.61 and 96.39% of differentially abundant genome and regions between two groups, respectively. For a large-scale metagenomic liver cirrhosis (LC)-associated dataset, we identified 37,647 group-specific 40-mer features. Any one of the features can predict disease status of the training samples with the average of sensitivity and specificity higher than 0.8. The random forests classification using the top 10 group-specific features yielded a higher AUC (from ∼0.8 to ∼0.9) than that of previous studies. All group-specific 40-mers were present in LC patients, but not healthy controls. All the assembled 11 LC-specific sequences can be mapped to two

  15. Designing small universal k-mer hitting sets for improved analysis of high-throughput sequencing

    PubMed Central

    Kingsford, Carl

    2017-01-01

    With the rapidly increasing volume of deep sequencing data, more efficient algorithms and data structures are needed. Minimizers are a central recent paradigm that has improved various sequence analysis tasks, including hashing for faster read overlap detection, sparse suffix arrays for creating smaller indexes, and Bloom filters for speeding up sequence search. Here, we propose an alternative paradigm that can lead to substantial further improvement in these and other tasks. For integers k and L > k, we say that a set of k-mers is a universal hitting set (UHS) if every possible L-long sequence must contain a k-mer from the set. We develop a heuristic called DOCKS to find a compact UHS, which works in two phases: The first phase is solved optimally, and for the second we propose several efficient heuristics, trading set size for speed and memory. The use of heuristics is motivated by showing the NP-hardness of a closely related problem. We show that DOCKS works well in practice and produces UHSs that are very close to a theoretical lower bound. We present results for various values of k and L and by applying them to real genomes show that UHSs indeed improve over minimizers. In particular, DOCKS uses less than 30% of the 10-mers needed to span the human genome compared to minimizers. The software and computed UHSs are freely available at github.com/Shamir-Lab/DOCKS/ and acgt.cs.tau.ac.il/docks/, respectively. PMID:28968408

  16. Temperature effects on quasi-isolated conjugated polymers as revealed by temperature-dependent optical spectra of 16-mer oligothiophene diluted in a sold matrix.

    PubMed

    Kanemoto, Katsuichi; Akai, Ichiro; Sugisaki, Mitsuru; Hashimoto, Hideki; Karasawa, Tsutomu; Negishi, Nobukazu; Aso, Yoshio

    2009-06-21

    Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.

  17. Recapitulating phylogenies using k-mers: from trees to networks.

    PubMed

    Bernard, Guillaume; Ragan, Mark A; Chan, Cheong Xin

    2016-01-01

    Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k -mers (subsequences at fixed length k ). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel's idea of ontogeny, we argue that genome phylogenies can be inferred using k -mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner.

  18. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certainmore » K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.« less

  19. GPI Spectra of HR8799 C, D, and E in H-K Bands with KLIP Forward Modeling

    NASA Technical Reports Server (NTRS)

    Greenbaum, Alexandra Z.; Pueyo, Laurent; Ruffio, Jean-Baptiste; Wang, Jason J.; De Rosa, Robert J.; Aguilar, Jonathan; Rameau, Julien; Barman, Travis; Marois, Christian; Marley, Mark S.; hide

    2018-01-01

    We demonstrate KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR8799, using PyKLIP. We report new and re-reduced spectrophotometry of HR8799 c, d, and e from H-K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting fake sources and recovering them over a range of parameters. The K1/K2 spectra for planets c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR8799e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We compare planets c, d, and e with M, L, and T-type field objects. All objects are consistent with low gravity mid-to-late L dwarfs, however, a lack of standard spectra for low gravity late L-type objects lead to poor fit for gravity. We place our results in context of atmospheric models presented in previous publications and discuss differences in the spectra of the three planets.

  20. Development of Animal Models Against Emerging Coronaviruses: From SARS to MERS coronavirus

    PubMed Central

    Sutton, Troy C; Subbarao, Kanta

    2016-01-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. PMID:25791336

  1. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    PubMed

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  2. A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach.

    PubMed

    Melicher, Dacotah; Torson, Alex S; Dworkin, Ian; Bowsher, Julia H

    2014-03-12

    The Sepsidae family of flies is a model for investigating how sexual selection shapes courtship and sexual dimorphism in a comparative framework. However, like many non-model systems, there are few molecular resources available. Large-scale sequencing and assembly have not been performed in any sepsid, and the lack of a closely related genome makes investigation of gene expression challenging. Our goal was to develop an automated pipeline for de novo transcriptome assembly, and to use that pipeline to assemble and analyze the transcriptome of the sepsid Themira biloba. Our bioinformatics pipeline uses cloud computing services to assemble and analyze the transcriptome with off-site data management, processing, and backup. It uses a multiple k-mer length approach combined with a second meta-assembly to extend transcripts and recover more bases of transcript sequences than standard single k-mer assembly. We used 454 sequencing to generate 1.48 million reads from cDNA generated from embryo, larva, and pupae of T. biloba and assembled a transcriptome consisting of 24,495 contigs. Annotation identified 16,705 transcripts, including those involved in embryogenesis and limb patterning. We assembled transcriptomes from an additional three non-model organisms to demonstrate that our pipeline assembled a higher-quality transcriptome than single k-mer approaches across multiple species. The pipeline we have developed for assembly and analysis increases contig length, recovers unique transcripts, and assembles more base pairs than other methods through the use of a meta-assembly. The T. biloba transcriptome is a critical resource for performing large-scale RNA-Seq investigations of gene expression patterns, and is the first transcriptome sequenced in this Dipteran family.

  3. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus.

    PubMed

    Sutton, Troy C; Subbarao, Kanta

    2015-05-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. Copyright © 2015. Published by Elsevier Inc.

  4. Properties of Martian Hematite at Meridiani Planum by Simultaneous Fitting of Mars Mossbauer Spectra

    NASA Technical Reports Server (NTRS)

    Agresti, D. G.; Fleischer, I.; Klingelhoefer, G.; Morris, R. V.

    2010-01-01

    Mossbauer spectrometers [1] on the two Mars Exploration Rovers (MERs) have been making measurements of surface rocks and soils since January 2004, recording spectra in 10-K-wide temperature bins ranging from 180 K to 290 K. Initial analyses focused on modeling individual spectra directly as acquired or, to increase statistical quality, as sums of single-rock or soil spectra over temperature or as sums over similar rock or soil type [2, 3]. Recently, we have begun to apply simultaneous fitting procedures [4] to Mars Mossbauer data [5-7]. During simultaneous fitting (simfitting), many spectra are modeled similarly and fit together to a single convergence criterion. A satisfactory simfit with parameter values consistent among all spectra is more likely than many single-spectrum fits of the same data because fitting parameters are shared among multiple spectra in the simfit. Consequently, the number of variable parameters, as well as the correlations among them, is greatly reduced. Here we focus on applications of simfitting to interpret the hematite signature in Moessbauer spectra acquired at Meridiani Planum, results of which were reported in [7]. The Spectra. We simfit two sets of spectra with large hematite content [7]: 1) 60 rock outcrop spectra from Eagle Crater; and 2) 46 spectra of spherule-rich lag deposits (Table 1). Spectra of 10 different targets acquired at several distinct temperatures are included in each simfit set. In the table, each Sol (martian day) represents a different target, NS is the number of spectra for a given sol, and NT is the number of spectra for a given temperature. The spectra are indexed to facilitate definition of parameter relations and constraints. An example spectrum is shown in Figure 1, together with a typical fitting model. Results. We have shown that simultaneous fitting is effective in analyzing a large set of related MER Mossbauer spectra. By using appropriate constraints, we derive target-specific quantities and the

  5. Building predictive models for MERS-CoV infections using data mining techniques.

    PubMed

    Al-Turaiki, Isra; Alshahrani, Mona; Almutairi, Tahani

    Recently, the outbreak of MERS-CoV infections caused worldwide attention to Saudi Arabia. The novel virus belongs to the coronaviruses family, which is responsible for causing mild to moderate colds. The control and command center of Saudi Ministry of Health issues a daily report on MERS-CoV infection cases. The infection with MERS-CoV can lead to fatal complications, however little information is known about this novel virus. In this paper, we apply two data mining techniques in order to better understand the stability and the possibility of recovery from MERS-CoV infections. The Naive Bayes classifier and J48 decision tree algorithm were used to build our models. The dataset used consists of 1082 records of cases reported between 2013 and 2015. In order to build our prediction models, we split the dataset into two groups. The first group combined recovery and death records. A new attribute was created to indicate the record type, such that the dataset can be used to predict the recovery from MERS-CoV. The second group contained the new case records to be used to predict the stability of the infection based on the current status attribute. The resulting recovery models indicate that healthcare workers are more likely to survive. This could be due to the vaccinations that healthcare workers are required to get on regular basis. As for the stability models using J48, two attributes were found to be important for predicting stability: symptomatic and age. Old patients are at high risk of developing MERS-CoV complications. Finally, the performance of all the models was evaluated using three measures: accuracy, precision, and recall. In general, the accuracy of the models is between 53.6% and 71.58%. We believe that the performance of the prediction models can be enhanced with the use of more patient data. As future work, we plan to directly contact hospitals in Riyadh in order to collect more information related to patients with MERS-CoV infections. Copyright © 2016

  6. Gaussian quadrature exponential sum modeling of near infrared methane laboratory spectra obtained at temperatures from 106 to 297 K

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Benner, D. C.; Tomasko, M. G.; Fink, U.; Kerola, D.

    1990-01-01

    Transmission measurements made on near-infrared laboratory methane spectra have previously been fit using a Malkmus band model. The laboratory spectra were obtained in three groups at temperatures averaging 112, 188, and 295 K; band model fitting was done separately for each temperature group. These band model parameters cannot be used directly in scattering atmosphere model computations, so an exponential sum model is being developed which includes pressure and temperature fitting parameters. The goal is to obtain model parameters by least square fits at 10/cm intervals from 3800 to 9100/cm. These results will be useful in the interpretation of current planetary spectra and also NIMS spectra of Jupiter anticipated from the Galileo mission.

  7. MerCat: a versatile k-mer counter and diversity estimator for database-independent property analysis obtained from metagenomic and/or metatranscriptomic sequencing data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Richard A.; Panyala, Ajay R.; Glass, Kevin A.

    MerCat is a parallel, highly scalable and modular property software package for robust analysis of features in next-generation sequencing data. MerCat inputs include assembled contigs and raw sequence reads from any platform resulting in feature abundance counts tables. MerCat allows for direct analysis of data properties without reference sequence database dependency commonly used by search tools such as BLAST and/or DIAMOND for compositional analysis of whole community shotgun sequencing (e.g. metagenomes and metatranscriptomes).

  8. A FASTQ compressor based on integer-mapped k-mer indexing for biologist.

    PubMed

    Zhang, Yeting; Patel, Khyati; Endrawis, Tony; Bowers, Autumn; Sun, Yazhou

    2016-03-15

    Next generation sequencing (NGS) technologies have gained considerable popularity among biologists. For example, RNA-seq, which provides both genomic and functional information, has been widely used by recent functional and evolutionary studies, especially in non-model organisms. However, storing and transmitting these large data sets (primarily in FASTQ format) have become genuine challenges, especially for biologists with little informatics experience. Data compression is thus a necessity. KIC, a FASTQ compressor based on a new integer-mapped k-mer indexing method, was developed (available at http://www.ysunlab.org/kic.jsp). It offers high compression ratio on sequence data, outstanding user-friendliness with graphic user interfaces, and proven reliability. Evaluated on multiple large RNA-seq data sets from both human and plants, it was found that the compression ratio of KIC had exceeded all major generic compressors, and was comparable to those of the latest dedicated compressors. KIC enables researchers with minimal informatics training to take advantage of the latest sequence compression technologies, easily manage large FASTQ data sets, and reduce storage and transmission cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations

    NASA Technical Reports Server (NTRS)

    Seah, Chin; Sierhuis, Maarten; Clancey, William J.

    2005-01-01

    A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.

  10. MER SPICE Interface

    NASA Technical Reports Server (NTRS)

    Sayfi, Elias

    2004-01-01

    MER SPICE Interface is a software module for use in conjunction with the Mars Exploration Rover (MER) mission and the SPICE software system of the Navigation and Ancillary Information Facility (NAIF) at NASA's Jet Propulsion Laboratory. (SPICE is used to acquire, record, and disseminate engineering, navigational, and other ancillary data describing circumstances under which data were acquired by spaceborne scientific instruments.) Given a Spacecraft Clock value, MER SPICE Interface extracts MER-specific data from SPICE kernels (essentially, raw data files) and calculates values for Planet Day Number, Local Solar Longitude, Local Solar Elevation, Local Solar Azimuth, and Local Solar Time (UTC). MER SPICE Interface was adapted from a subroutine, denoted m98SpiceIF written by Payam Zamani, that was intended to calculate SPICE values for the Mars Polar Lander. The main difference between MER SPICE Interface and m98SpiceIf is that MER SPICE Interface does not explicitly call CHRONOS, a time-conversion program that is part of a library of utility subprograms within SPICE. Instead, MER SPICE Interface mimics some portions of the CHRONOS code, the advantage being that it executes much faster and can efficiently be called from a pipeline of events in a parallel processing environment.

  11. The Mg II h and k lines. II - Comparison with synthesized profiles and Ca II K. [solar spectra

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Linsky, J. L.

    1976-01-01

    Measured high-dispersion center and limb profiles of the solar Mg II h and k resonance lines are compared with synthetic spectra computed with a partial-redistribution formalism and based on several upper-photosphere and lower-chromosphere temperature distributions. Profiles of the analogously formed Ca II K resonance line are also synthesized for the same atmospheric models. The spectrum-synthesis approach is outlined, and the collisional and fixed radiative rates appropriate to the adopted model atoms and solar atmosphere are discussed. It is found that the HSRA and VAL models predict systematically lower intensities in the h, k, and K inner wings than observed and that models with a somewhat higher minimum temperature (about 4450 K) can reproduce the measured inner wings and limb darkening. A 'Ca II' solar model with a minimum temperature of 4450 K is proposed as an alternative to the class of models based on continuum observations.

  12. Determining geographical spread pattern of MERS-CoV by distance method using Kimura model

    NASA Astrophysics Data System (ADS)

    Amiroch, Siti; Rohmatullah, Arif

    2017-03-01

    MERS-CoV or generally called as Middle East Respiratory Syndrome Coronavirus, a respiratory disease syndrome caused by a corona virus that attacks the respiratory tract ranging from mild to severe acute indication of fever, cough and shortness of breath. The cases happened relate to the countries in the Arabian Peninsula (Middle East) and there were 356 deaths have been reported due to the spread of the epidemic MERS. The data used in the case of MERS are the data DNA sequences taken from Genbank, the online database of the United States that stores the results of molecular biological experiments from all over the world (http://www.ncbi.nlm.nih.gov). In this case, bioinformatics plays an important role of reading sequences of DNA and genetic information by using the main device in the form of software that is supported by the availability of the Internet, while the analysis there in made and proven with mathematical methods. In similar research conducted by molecular biologists and physicians, the process of DNA sequencing is done with software that is already available like BLAST. In order to determine the MERS geographical distribution patterns in the Arabian Peninsula is done with program Clustal W, Bayesian, Phylip, etc. In this study, the writer use the Matlab simulation for all processes starting sequence alignment, counting the number of transitions and transversion substitutions for each sequence and its location up to the process of forming a phylogenetic tree that figures out the pattern of spread of the epidemic MERS. Mathematical analysis performed on a decline in the formula is to find Kimura evolutionary models and the process of forming a phylogenetic tree (the pattern of the epidemic MERS distribution) with neighbor joining algorithm. Finally it was obtained the pattern of geographical spread with 6 groups epidemic of MERS which ultimately turns out that all the MERS viruses that were spread in the Arabian Peninsula everything are almost the same as

  13. The effects of downwelling radiance on MER surface spectra: the evil that atmospheres do

    NASA Astrophysics Data System (ADS)

    Wolff, M.; Ghosh, A.; Arvidson, R.; Christensen, P.; Guinness, E.; Ruff, S.; Seelos, F.; Smith, M.; Athena Science

    2004-11-01

    While it may not be surprising to some that downwelling radiation in the martian atmosphere may contribute a non-negligible fraction of the radiance for a given surface scene, others remain shocked and surprised (and often dismayed) to discover this fact; particularly with regard to mini-TES observations. Naturally, the relative amplitude of this sky ``contamination'' is often a complicated function of meteorological conditions, viewing geometry, surface properties, and (for the IR) surface temperature. Ideally, one would use a specialized observations to mimic the actual hemispherical-directional nature of the problem. Despite repeated attempts to obtain Pancam complete sky observations and mini-TES sky octants, such observations are not available in the MER observational database. As a result, one is left with the less-enviable, though certainly more computationally intensive, task of connecting point observations (radiance and derived meteorological parameters) to a hemispherical integral of downwelling radiance. Naturally, one must turn to a radiative transfer analysis, despite oft-repeated attempts to assert otherwise. In our presentation, we offer insight into the conditions under which one must worry about atmospheric removal, as well as semi-empirical approaches (based upon said radiative transfer efforts) for producing the correction factors from the available MER atmospheric observations. This work is proudly supported by the MER program through NASA/JPL Contract No. 1242889 (MJW), as well as the contracts for the co-authors.

  14. An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV.

    PubMed

    Boone, J M; Seibert, J A

    1997-11-01

    A tungsten anode spectral model using interpolating polynomials (TASMIP) was used to compute x-ray spectra at 1 keV intervals over the range from 30 kV to 140 kV. The TASMIP is not semi-empirical and uses no physical assumptions regarding x-ray production, but rather interpolates measured constant potential x-ray spectra published by Fewell et al. [Handbook of Computed Tomography X-ray Spectra (U.S. Government Printing Office, Washington, D.C., 1981)]. X-ray output measurements (mR/mAs measured at 1 m) were made on a calibrated constant potential generator in our laboratory from 50 kV to 124 kV, and with 0-5 mm added aluminum filtration. The Fewell spectra were slightly modified (numerically hardened) and normalized based on the attenuation and output characteristics of a constant potential generator and metal-insert x-ray tube in our laboratory. Then, using the modified Fewell spectra of different kVs, the photon fluence phi at each 1 keV energy bin (E) over energies from 10 keV to 140 keV was characterized using polynomial functions of the form phi (E) = a0[E] + a1[E] kV + a2[E] kV2 + ... + a(n)[E] kVn. A total of 131 polynomial functions were used to calculate accurate x-ray spectra, each function requiring between two and four terms. The resulting TASMIP algorithm produced x-ray spectra that match both the quality and quantity characteristics of the x-ray system in our laboratory. For photon fluences above 10% of the peak fluence in the spectrum, the average percent difference (and standard deviation) between the modified Fewell spectra and the TASMIP photon fluence was -1.43% (3.8%) for the 50 kV spectrum, -0.89% (1.37%) for the 70 kV spectrum, and for the 80, 90, 100, 110, 120, 130 and 140 kV spectra, the mean differences between spectra were all less than 0.20% and the standard deviations were less than approximately 1.1%. The model was also extended to include the effects of generator-induced kV ripple. Finally, the x-ray photon fluence in the units of

  15. Silicon K-edge XANES spectra of silicate minerals

    NASA Astrophysics Data System (ADS)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  16. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  17. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  18. Progress in Noise Thermometry at 505 K and 693 K Using Quantized Voltage Noise Ratio Spectra

    NASA Astrophysics Data System (ADS)

    Tew, W. L.; Benz, S. P.; Dresselhaus, P. D.; Coakley, K. J.; Rogalla, H.; White, D. R.; Labenski, J. R.

    2010-09-01

    Technical advances and new results in noise thermometry at temperatures near the tin freezing point and the zinc freezing point using a quantized voltage noise source (QVNS) are reported. The temperatures are derived by comparing the power spectral density of QVNS synthesized noise with that of Johnson noise from a known resistance at both 505 K and 693 K. Reference noise is digitally synthesized so that the average power spectra of the QVNS match those of the thermal noise, resulting in ratios of power spectra close to unity in the low-frequency limit. Three-parameter models are used to account for differences in impedance-related time constants in the spectra. Direct comparison of noise temperatures to the International Temperature Scale of 1990 (ITS-90) is achieved in a comparison furnace with standard platinum resistance thermometers. The observed noise temperatures determined by operating the noise thermometer in both absolute and relative modes, and related statistics together with estimated uncertainties are reported. The relative noise thermometry results are combined with results from other thermodynamic determinations at temperatures near the tin freezing point to calculate a value of T - T 90 = +4(18) mK for temperatures near the zinc freezing point. These latest results achieve a lower uncertainty than that of our earlier efforts. The present value of T - T 90 is compared to other published determinations from noise thermometry and other methods.

  19. The Role of Exotic Molecules In Model Exoplanet Spectra

    NASA Astrophysics Data System (ADS)

    Chang, Caroline; Iyer, Nandini; Morley, Caroline; Fortney, Jonathan J.

    2016-01-01

    We present the absorption signatures of 21 elemental and molecular species normally found in observed planetary spectra. Fifty model exoplanet spectra that span temperatures from 400 to 2000 K, gravities from 100 to 1000 m/s2, and are 0.3-3 times solar metallicity composition are obtained by converting the pressure-temperature profiles through publicly available radiative transfer code (DISORT), assuming chemical equilibrium conditions. We explore the dependency of an individual specie's effect on a spectrum in the near-IR by removing its equilibrium abundance or enriching the specie's abundance. While testing for the individual effect of each species, it is found that the temperature is a key property for identifying absorption features in this diverse set of model spectra. Strong and abundant absorbers such as CO and CH4 are not as prevalent in high temperature models over 1200 K as H2O at 0.9-2.2 and 2.3-4.1 microns. In addition, we investigate the vertical mixing and disequilibrium of CO and CH4 and find features of these carbon species at 3.3-4.2 and 4.3-5.0 microns across all models. Trace species such as NH3 and Na exhibit prevalent signatures in cold planets (~400-800 K) at the 1-1.1, 1.3-1.5, and 1.6-1.8 micron ranges. A consistent PH3 feature is identified for 400 K spectra at 4-4.8 microns. In our hot model spectra with temperatures greater than 1400 K, TiO shows more significant absorption features than VO, suggesting that these molecules potentially play separate roles in determining thermal inversions. Hydrocarbons such as C2H2 with abundances higher than 10-4 exhibit prevalent absorption features at ~4.2-4.5 microns, indicating that photochemical reactions may be needed to further enrich these abundances. A table of these signatures at their respective temperatures, gravities, and metallicities is presented here. This research presented here was conducted by high-school students under the auspices of the University of California Santa Cruz's Science

  20. A k-mer-based barcode DNA classification methodology based on spectral representation and a neural gas network.

    PubMed

    Fiannaca, Antonino; La Rosa, Massimo; Rizzo, Riccardo; Urso, Alfonso

    2015-07-01

    In this paper, an alignment-free method for DNA barcode classification that is based on both a spectral representation and a neural gas network for unsupervised clustering is proposed. In the proposed methodology, distinctive words are identified from a spectral representation of DNA sequences. A taxonomic classification of the DNA sequence is then performed using the sequence signature, i.e., the smallest set of k-mers that can assign a DNA sequence to its proper taxonomic category. Experiments were then performed to compare our method with other supervised machine learning classification algorithms, such as support vector machine, random forest, ripper, naïve Bayes, ridor, and classification tree, which also consider short DNA sequence fragments of 200 and 300 base pairs (bp). The experimental tests were conducted over 10 real barcode datasets belonging to different animal species, which were provided by the on-line resource "Barcode of Life Database". The experimental results showed that our k-mer-based approach is directly comparable, in terms of accuracy, recall and precision metrics, with the other classifiers when considering full-length sequences. In addition, we demonstrate the robustness of our method when a classification is performed task with a set of short DNA sequences that were randomly extracted from the original data. For example, the proposed method can reach the accuracy of 64.8% at the species level with 200-bp fragments. Under the same conditions, the best other classifier (random forest) reaches the accuracy of 20.9%. Our results indicate that we obtained a clear improvement over the other classifiers for the study of short DNA barcode sequence fragments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Isomerization Reaction of mer- to fac-Tris(2-phenylpyridinato-N,C2')Iridium(III) Monitored by Using Surface-Enhanced Raman Spectroscopy.

    PubMed

    Wu, Bo-Han; Huang, Min-Jie; Lai, Cheng-Chang; Cheng, Chien-Hong; Chen, I-Chia

    2018-04-16

    We developed a new method by enclosing the complex tris(2-phenylpyridinato-N,C2')Iridium(III), Ir(ppy) 3 with surfactant cetyltrimethylammonium bromide (CATB), coated with a thin layer of silica then bonded to the surface of silver nanoparticle. These samples were used to acquire surface-enhanced Raman scattering (SERS) spectra. The thickness of silica layer was controlled to have efficient phosphorescence quenching and Raman enhancement by metal nanoparticle. The SERS spectra of fac- and mer-Ir(ppy) 3 , recorded at 633 nm excitation, display distinct ring breathing mode features because the total symmetric vibrational bands were enhanced. This provides a convenient means to differentiate these isomers with great sensitivity and to study their isomerization process. A direct conversion reaction of mer- to fac- isomerization is identified with time constant 3.1 min when mer was irradiated with Xe light. Via thermal activation, under moderate conditions (pH 5.5 and 343 K), we observed an intermediate particularly with new bands 320/662 cm -1 after heating for 17.5 h, and then those bands disappeared to form fac-Ir(ppy) 3 . On the basis of DFT calculations, the intermediate is proposed to contain octahedral N-N Ir(ppy) 3 -HO-silica structure; band at 320 cm -1 is assigned to iridium oxygen stretching mode ν Ir-O of this intermediate. Under acidic conditions, pH 1-2 catalyzed by silanol in silica, byproduct with band at 353 cm -1 was observed. According to the SERS bands and the calculation, this byproduct is assigned to be iridium(III) siloxide, and the new band is assigned to ν Ir-O .

  2. Predicting the binding preference of transcription factors to individual DNA k-mers.

    PubMed

    Alleyne, Trevis M; Peña-Castillo, Lourdes; Badis, Gwenael; Talukder, Shaheynoor; Berger, Michael F; Gehrke, Andrew R; Philippakis, Anthony A; Bulyk, Martha L; Morris, Quaid D; Hughes, Timothy R

    2009-04-15

    Recognition of specific DNA sequences is a central mechanism by which transcription factors (TFs) control gene expression. Many TF-binding preferences, however, are unknown or poorly characterized, in part due to the difficulty associated with determining their specificity experimentally, and an incomplete understanding of the mechanisms governing sequence specificity. New techniques that estimate the affinity of TFs to all possible k-mers provide a new opportunity to study DNA-protein interaction mechanisms, and may facilitate inference of binding preferences for members of a given TF family when such information is available for other family members. We employed a new dataset consisting of the relative preferences of mouse homeodomains for all eight-base DNA sequences in order to ask how well we can predict the binding profiles of homeodomains when only their protein sequences are given. We evaluated a panel of standard statistical inference techniques, as well as variations of the protein features considered. Nearest neighbour among functionally important residues emerged among the most effective methods. Our results underscore the complexity of TF-DNA recognition, and suggest a rational approach for future analyses of TF families.

  3. Carbon K-edge spectra of carbonate minerals.

    PubMed

    Brandes, Jay A; Wirick, Sue; Jacobsen, Chris

    2010-09-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  4. X-ray K-edge absorption spectra of Fe minerals and model compounds: II. EXAFS

    NASA Astrophysics Data System (ADS)

    Waychunas, Glenn A.; Brown, Gordon E.; Apted, Michael J.

    1986-01-01

    K-edge extended X-ray absorption fine structure (EXAFS) spectra of Fe in varying environments in a suite of well-characterized silicate and oxide minerals were collected using synchrotron radiation and analyzed using single scattering approximation theory to yield nearest neighbor Fe-O distances and coordination numbers. The partial inverse character of synthetic hercynite spinal was verified in this way. Comparison of the results from all samples with structural data from X-ray diffraction crystal structure refinements indicates that EXAFS-derived first neighbor distances are generally accurate to ±0.02 Å using only theoretically generated phase information, and may be improved over this if similar model compounds are used to determine EXAFS phase functions. Coordination numbers are accurate to ±20 percent and can be similarly improved using model compound EXAFS amplitude information. However, in particular cases the EXAFS-derived distances may be shortened, and the coordination number reduced, by the effects of static and thermal disorder or by partial overlap of the longer Fe-O first neighbor distances with second neighbor distances in the EXAFS structure function. In the former case the total information available in the EXAFS is limited by the disorder, while in the latter case more accurate results can in principle be obtained by multiple neighbor EXAFS analysis. The EXAFS and XANES spectra of Fe in Nain, Labrador osumulite and Lakeview, Oregon plagioclase are also analyzed as an example of the application of X-ray absorption spectroscopy to metal ion site occupation determination in minerals.

  5. MER Telemetry Processor

    NASA Technical Reports Server (NTRS)

    Lee, Hyun H.

    2012-01-01

    MERTELEMPROC processes telemetered data in data product format and generates Experiment Data Records (EDRs) for many instruments (HAZCAM, NAVCAM, PANCAM, microscopic imager, Moessbauer spectrometer, APXS, RAT, and EDLCAM) on the Mars Exploration Rover (MER). If the data is compressed, then MERTELEMPROC decompresses the data with an appropriate decompression algorithm. There are two compression algorithms (ICER and LOCO) used in MER. This program fulfills a MER specific need to generate Level 1 products within a 60-second time requirement. EDRs generated by this program are used by merinverter, marscahv, marsrad, and marsjplstereo to generate higher-level products for the mission operations. MERTELEPROC was the first GDS program to process the data product. Metadata of the data product is in XML format. The software allows user-configurable input parameters, per-product processing (not streambased processing), and fail-over is allowed if the leading image header is corrupted. It is used within the MER automated pipeline. MERTELEMPROC is part of the OPGS (Operational Product Generation Subsystem) automated pipeline, which analyzes images returned by in situ spacecraft and creates level 1 products to assist in operations, science, and outreach.

  6. Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Reed F., E-mail: johnsonreed@mail.nih.gov; Via, Laura E.; Kumar, Mia R.

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) continues to be a threat to human health in the Middle East. Development of countermeasures is ongoing; however, an animal model that faithfully recapitulates human disease has yet to be defined. A recent study indicated that inoculation of common marmosets resulted in inconsistent lethality. Based on these data we sought to compare two isolates of MERS-CoV. We followed disease progression in common marmosets after intratracheal exposure with: MERS-CoV-EMC/2012, MERS-CoV-Jordan-n3/2012, media, or inactivated virus. Our data suggest that common marmosets developed a mild to moderate non-lethal respiratory disease, which was quantifiable by computed tomography (CT),more » with limited other clinical signs. Based on CT data, clinical data, and virological data, MERS-CoV inoculation of common marmosets results in mild to moderate clinical signs of disease that are likely due to manipulations of the marmoset rather than as a result of robust viral replication. - Highlights: • Common marmosets infected with MERS-EMC and MERS-JOR did not develop lethal disease. • Infected subjects developed transient signs of clinical disease. • CT indicated few differences between the infected and control groups. • Marmosets do not faithfully replicate human MERS pathogenesis.« less

  7. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards.

    PubMed

    Kim, Sung-Han; Chang, So Young; Sung, Minki; Park, Ji Hoon; Bin Kim, Hong; Lee, Heeyoung; Choi, Jae-Phil; Choi, Won Suk; Min, Ji-Young

    2016-08-01

    The largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) outside the Middle East occurred in South Korea in 2015 and resulted in 186 laboratory-confirmed infections, including 36 (19%) deaths. Some hospitals were considered epicenters of infection and voluntarily shut down most of their operations after nearly half of all transmissions occurred in hospital settings. However, the ways that MERS-CoV is transmitted in healthcare settings are not well defined. We explored the possible contribution of contaminated hospital air and surfaces to MERS transmission by collecting air and swabbing environmental surfaces in 2 hospitals treating MERS-CoV patients. The samples were tested by viral culture with reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assay (IFA) using MERS-CoV Spike antibody, and electron microscopy (EM). The presence of MERS-CoV was confirmed by RT-PCR of viral cultures of 4 of 7 air samples from 2 patients' rooms, 1 patient's restroom, and 1 common corridor. In addition, MERS-CoV was detected in 15 of 68 surface swabs by viral cultures. IFA on the cultures of the air and swab samples revealed the presence of MERS-CoV. EM images also revealed intact particles of MERS-CoV in viral cultures of the air and swab samples. These data provide experimental evidence for extensive viable MERS-CoV contamination of the air and surrounding materials in MERS outbreak units. Thus, our findings call for epidemiologic investigation of the possible scenarios for contact and airborne transmission, and raise concern regarding the adequacy of current infection control procedures. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  8. Computational modeling of the bat HKU4 coronavirus 3CLpro inhibitors as a tool for the development of antivirals against the emerging Middle East respiratory syndrome (MERS) coronavirus.

    PubMed

    Abuhammad, Areej; Al-Aqtash, Rua'a A; Anson, Brandon J; Mesecar, Andrew D; Taha, Mutasem O

    2017-11-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that poses a major challenge to clinical management. The 3C-like protease (3CL pro ) is essential for viral replication and thus represents a potential target for antiviral drug development. Presently, very few data are available on MERS-CoV 3CL pro inhibition by small molecules. We conducted extensive exploration of the pharmacophoric space of a recently identified set of peptidomimetic inhibitors of the bat HKU4-CoV 3CL pro . HKU4-CoV 3CL pro shares high sequence identity (81%) with the MERS-CoV enzyme and thus represents a potential surrogate model for anti-MERS drug discovery. We used 2 well-established methods: Quantitative structure-activity relationship (QSAR)-guided modeling and docking-based comparative intermolecular contacts analysis. The established pharmacophore models highlight structural features needed for ligand recognition and revealed important binding-pocket regions involved in 3CL pro -ligand interactions. The best models were used as 3D queries to screen the National Cancer Institute database for novel nonpeptidomimetic 3CL pro inhibitors. The identified hits were tested for HKU4-CoV and MERS-CoV 3CL pro inhibition. Two hits, which share the phenylsulfonamide fragment, showed moderate inhibitory activity against the MERS-CoV 3CL pro and represent a potential starting point for the development of novel anti-MERS agents. To the best of our knowledge, this is the first pharmacophore modeling study supported by in vitro validation on the MERS-CoV 3CL pro . MERS-CoV is an emerging virus that is closely related to the bat HKU4-CoV. 3CL pro is a potential drug target for coronavirus infection. HKU4-CoV 3CL pro is a useful surrogate model for the identification of MERS-CoV 3CL pro enzyme inhibitors. dbCICA is a very robust modeling method for hit identification. The phenylsulfonamide scaffold represents a potential starting point for MERS coronavirus 3CL pro inhibitors

  9. Middle East Respiratory Syndrome (MERS)

    MedlinePlus

    Middle East Respiratory Syndrome Coronavirus; MERS-CoV; Novel coronavirus; nCoV ... for Disease Control and Prevention website. Middle East Respiratory Syndrome (MERS): Frequently asked questions and answers. www. ...

  10. Simulations of the Fe K α Energy Spectra from Gravitationally Microlensed Quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczynski, H.; Chartas, G., E-mail: krawcz@wustl.edu

    The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131−1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K α emission, selectively amplifying the emission from certain regions of the accretion disk with certain effective frequency shifts of the Fe K α line emission. In this paper, we combine detailed simulations of the emission of Fe K α photons from the accretion disk of a Kerr black hole with calculations of the effect of gravitational microlensing on the observed energy spectra. Themore » simulations show that microlensing can indeed produce multiply peaked energy spectra. We explore the dependence of the spectral characteristics on black hole spin, accretion disk inclination, corona height, and microlensing amplification factor and show that the measurements can be used to constrain these parameters. We find that the range of observed spectral peak energies of QSO RX J1131−1231 can only be reproduced for black hole inclinations exceeding 70° and for lamppost corona heights of less than 30 gravitational radii above the black hole. We conclude by emphasizing the scientific potential of studies of the microlensed Fe K α quasar emission and the need for more detailed modeling that explores how the results change for more realistic accretion disk and corona geometries and microlensing magnification patterns. A full analysis should furthermore model the signal-to-noise ratio of the observations and the resulting detection biases.« less

  11. K β X-Ray Emission Spectra of Phosphorus Oxo Acids and Anions

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1995-03-01

    With a high-resolution two-crystal vacuum spectrometer, the phosphorus Kβ emission spectra in fluorescence are measured for H3PO3 (= H2PHO3), H3PO4, Li3PO4, Na3PO4·12H2O, Na2HPO4, NaH2PO4, K3PO4·nH2O, K2HPO4, KH2PO4, Ca3(PO4)2, CaHPO4·2H2O, Ca(H2PO4)2·H2O, CaHPO3·H2O, Ca(H2PO2)2 and NH4H2PO4. In the phosphate compounds, a weak peak is observed on the high-energy side of the main peak Kβ1 and related to a molecular orbital of t2 symmetry in the PO43- ion. It is shown that the phosphorus Kβ emission spectra are influenced by ligand substitution and cations. The measured Kβ emission spectra of Li3PO4, Na3PO4·12H2O, K3PO4·nH2O and Ca3(PO4)2 are presented along with the previously reported P-K absorption spectra of these phosphate compounds. The emission and absorption spectra are interpreted in terms of available molecular orbitals of the PO43- ion.

  12. The MER/CIP Portal for Ground Operations

    NASA Technical Reports Server (NTRS)

    Chan, Louise; Desai, Sanjay; DOrtenzio, Matthew; Filman, Robtert E.; Heher, Dennis M.; Hubbard, Kim; Johan, Sandra; Keely, Leslie; Magapu, Vish; Mak, Ronald

    2003-01-01

    We developed the Mars Exploration Rover/Collaborative Information Portal (MER/CIP) to facilitate MER operations. MER/CIP provides a centralized, one-stop delivery platform integrating science and engineering data from several distributed heterogeneous data sources. Key issues for MER/CIP include: 1) Scheduling and schedule reminders; 2) Tracking the status of daily predicted outputs; 3) Finding and analyzing data products; 4) Collaboration; 5) Announcements; 6) Personalization.

  13. Middle East Respiratory Syndrome (MERS)

    MedlinePlus

    ... Controls Cancel Submit Search The CDC Middle East Respiratory Syndrome (MERS) Note: Javascript is disabled or is ... Recommend on Facebook Tweet Share Compartir Middle East Respiratory Syndrome (MERS) is viral respiratory illness that was ...

  14. Mineralogy of SNC Meteorite EET79001 by Simultaneous Fitting of Moessbauer Backscatter Spectra

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Agresti, D. G.

    2010-01-01

    We have acquired M ssbauer spectra for SNC meteorite EET79001 with a MIMOS II backscatter M ssbauer spectrometer [1] similar to those now operating on Mars as part of the Mars Exploration Rover (MER) missions. We are working to compare the Fe mineralogical composition of martian meteorites with in-situ measurements on Mars. Our samples were hand picked from the >1 mm size fraction of saw fines on the basis of lithology, color, and grain size (Table 1). The chips were individually analyzed at approx.300K by placing them on a piece of plastic that was in turn supported by the contact ring of the instrument (oriented vertically). Tungsten foil was used to mask certain areas from analysis. As shown in Figure 1, a variety of spectra was obtained, each resulting from different relative contributions of the Fe-bearing minerals present in the sample. Because the nine samples are reasonably mixtures of the same Fe-bearing phases in variable proportions, the nine spectra were fit simultaneously (simfit) with a common model, adjusting parameters to a single minimum chi-squared convergence criterion [2]. The starting point for the fitting model and values of hyperfine parameters was the work of Solberg and Burns [3], who identified olivine, pyroxene, and ferrous glass as major, and ilmenite and a ferric phase as minor (<5%), Fe-bearing phases in EET79001.

  15. Kα X-Ray Emission Spectra and K X-Ray Absorption-Edge Structures of Fluorine in 3d Transition-Metal Difluorides

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1991-08-01

    The fluorine Kα emission spectra in fluorescence from a series of 3d transition-metal difluorides MF2 (M=Mn, Fe, Co, Ni, Cu and Zn) have been measured with a high-resolution two-crystal vacuum spectrometer. It is shown that the observed FWHM of the Kα1,2 emission band is closely related to the difference in the electronegativity between the metal and fluorine atoms. The measured emission spectra are presented along with the UPS or XPS spectra of the valence bands and the fluorine K absorption spectra of the metal difluorides, reported previously. The structures at the fluorine K absorption edges are interpreted in terms of a molecular orbital (MO) model.

  16. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  17. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus.

    PubMed

    Vergara-Alert, Júlia; Vidal, Enric; Bensaid, Albert; Segalés, Joaquim

    2017-06-01

    Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013-2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  18. Estimation of the genome sizes of the chigger mites Leptotrombidium pallidum and Leptotrombidium scutellare based on quantitative PCR and k-mer analysis

    PubMed Central

    2014-01-01

    Background Leptotrombidium pallidum and Leptotrombidium scutellare are the major vector mites for Orientia tsutsugamushi, the causative agent of scrub typhus. Before these organisms can be subjected to whole-genome sequencing, it is necessary to estimate their genome sizes to obtain basic information for establishing the strategies that should be used for genome sequencing and assembly. Method The genome sizes of L. pallidum and L. scutellare were estimated by a method based on quantitative real-time PCR. In addition, a k-mer analysis of the whole-genome sequences obtained through Illumina sequencing was conducted to verify the mutual compatibility and reliability of the results. Results The genome sizes estimated using qPCR were 191 ± 7 Mb for L. pallidum and 262 ± 13 Mb for L. scutellare. The k-mer analysis-based genome lengths were estimated to be 175 Mb for L. pallidum and 286 Mb for L. scutellare. The estimates from these two independent methods were mutually complementary and within a similar range to those of other Acariform mites. Conclusions The estimation method based on qPCR appears to be a useful alternative when the standard methods, such as flow cytometry, are impractical. The relatively small estimated genome sizes should facilitate whole-genome analysis, which could contribute to our understanding of Arachnida genome evolution and provide key information for scrub typhus prevention and mite vector competence. PMID:24947244

  19. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.

    2015-12-01

    We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.

  20. 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Reed F., E-mail: johnsonreed@mail.nih.gov; Bagci, Ulas; Center for Research in Computer Vision

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was identified in 2012 as the causative agent of a severe, lethal respiratory disease occurring across several countries in the Middle East. To date there have been over 1600 laboratory confirmed cases of MERS-CoV in 26 countries with a case fatality rate of 36%. Given the endemic region, it is possible that MERS-CoV could spread during the annual Hajj pilgrimage, necessitating countermeasure development. In this report, we describe the clinical and radiographic changes of rhesus monkeys following infection with 5×10{sup 6} PFU MERS-CoV Jordan-n3/2012. Two groups of NHPs were treated with either a humanmore » anti-MERS monoclonal antibody 3B11-N or E410-N, an anti-HIV antibody. MERS-CoV Jordan-n3/2012 infection resulted in quantifiable changes by computed tomography, but limited other clinical signs of disease. 3B11-N treated subjects developed significantly reduced lung pathology when compared to infected, untreated subjects, indicating that this antibody may be a suitable MERS-CoV treatment. - Highlights: • MERS-CoV Jordan-n3/2012 challenge of rhesus monkeys results in a mild disease. • CT can be used to monitor disease progression to aid models of human disease. • Treatment with the human monoclonal antibody 3B11-N resulted in decreased disease.« less

  1. Effective inhibition of MERS-CoV infection by resveratrol.

    PubMed

    Lin, Shih-Chao; Ho, Chi-Tang; Chuo, Wen-Ho; Li, Shiming; Wang, Tony T; Lin, Chi-Chen

    2017-02-13

    Middle East Respiratory Syndrome coronavirus (MERS-CoV) is an emerging viral pathogen that causes severe morbidity and mortality. Up to date, there is no approved or licensed vaccine or antiviral medicines can be used to treat MERS-CoV-infected patients. Here, we analyzed the antiviral activities of resveratrol, a natural compound found in grape seeds and skin and in red wine, against MERS-CoV infection. We performed MTT and neutral red uptake assays to assess the survival rates of MERS-infected Vero E6 cells. In addition, quantitative PCR, western blotting, and immunofluorescent assays determined the intracellular viral RNA and protein expression. For viral productivity, we utilized plaque assays to confirm the antiviral properties of resveratrol against MERS-CoV. Resveratrol significantly inhibited MERS-CoV infection and prolonged cellular survival after virus infection. We also found that the expression of nucleocapsid (N) protein essential for MERS-CoV replication was decreased after resveratrol treatment. Furthermore, resveratrol down-regulated the apoptosis induced by MERS-CoV in vitro. By consecutive administration of resveratrol, we were able to reduce the concentration of resveratrol while achieving inhibitory effectiveness against MERS-CoV. In this study, we first demonstrated that resveratrol is a potent anti-MERS agent in vitro. We perceive that resveratrol can be a potential antiviral agent against MERS-CoV infection in the near future.

  2. Molecular interaction study of commercial cyclic peptides and MERS-COV papain-like protease as novel drug candidate for MERS-COV

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Azzuhdi, M. G.; Tambunan, U. S. F.

    2017-07-01

    Middle-east respiratory syndrome coronavirus (MERS-CoV) has become the current outbreak, MERS-CoV infection results in illness at the respiratory system, digestive, and even lead to death with an average mortality caused by MERS-CoV infection reaches 50 %. Until now, there is not any effective vaccine or drug to ward off MERS-CoV infection. Papain-like protease (PLpro) is responsible for cleavage of a nonstructural protein that is essential for viral maturation. Inhibition of PLpro with a ligand will block the cleavage process of nonstructural protein, thus reduce the infection of MERS-CoV. Through of bioinformatics study with molecular docking and binding interaction analysis of commercial cyclic peptides, aldosterone secretion inhibiting factor (1-35) (bovine) was obtained as an inhibitor for PLpro. Thus, aldosterone secretion inhibiting factor (1-35) (bovine) has a potential as a novel candidate drug for treating MERS-CoV.

  3. Identification of species based on DNA barcode using k-mer feature vector and Random forest classifier.

    PubMed

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Rao, A R

    2016-11-05

    DNA barcoding is a molecular diagnostic method that allows automated and accurate identification of species based on a short and standardized fragment of DNA. To this end, an attempt has been made in this study to develop a computational approach for identifying the species by comparing its barcode with the barcode sequence of known species present in the reference library. Each barcode sequence was first mapped onto a numeric feature vector based on k-mer frequencies and then Random forest methodology was employed on the transformed dataset for species identification. The proposed approach outperformed similarity-based, tree-based, diagnostic-based approaches and found comparable with existing supervised learning based approaches in terms of species identification success rate, while compared using real and simulated datasets. Based on the proposed approach, an online web interface SPIDBAR has also been developed and made freely available at http://cabgrid.res.in:8080/spidbar/ for species identification by the taxonomists. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Thermal Infrared Spectra of a Suite of Forsterite Samples and Ab-initio Modelling of theirs Spectra

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Stangarone, C.; Helbert, J.; Tribaudino, M.; Prencipe, M.

    2017-12-01

    Forsterite is the dominating component in olivine, a major constituent in ultrafemic rocks, as well as planetary bodies. Messenger X-ray spectrometer has shown that Mg-rich silicate minerals, such as enstatite and forsterite, dominate Mercury's surface (Weider et al 2012). A careful and detailed acquaintance with the forsterite spectral features and their dependence wrt environmental conditions on Mercury is needed to interpret the remote sensing data from previous and forthcoming missions. We propose an experimental vs calculation approach to reproduce and describe the spectral features of forsterite. TIR emissivity measurements are performed by the Planetary Spectroscopy Laboratory (PSL) of DLR. PSL offers the unique capability to measure the emissivity of samples at temperature up to 1000K under vacuum conditions. TIR emissivity and reflectance measurements are performed on 11 olivine samples having a different composition within the forsterite-fayalite series. When available, the sample has been measured in 2 different grain sizes (<25µm and 125-250µm ranges). Emissivity measurements are taken for temperatures from 300K to 900K step 100K in the 1-100µm spectral range. Modelling is based on ab initio calculation techniques, which allow reproducing properties of crystals, at any P/T condition, with the least possible amount of a priori empirical information. Spectra are calculated evaluating vibrational frequencies at different volume cell, here 0K, 300K and 1000K (extreme situations), taking into account zero point effects. The aim of this work is to study experimentally the effects of temperature, composition and grain sizes on emissivity band minima shifts. The outcomes will benefit the modelling of emissivity spectra with ab initio methods, already successfully enabling to foresee the bands shift due to temperature and composition, but not taking into account band shape due to grain size variations. Considering the chameleon-like effects of Mercury surface

  5. Viral phylogenomics using an alignment-free method: A three-step approach to determine optimal length of k-mer

    DOE PAGES

    Zhang, Qian; Jun, Se -Ran; Leuze, Michael; ...

    2017-01-19

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral tree of life . However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conservedmore » proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. Lastly, the resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.« less

  6. Viral phylogenomics using an alignment-free method: A three-step approach to determine optimal length of k-mer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qian; Jun, Se -Ran; Leuze, Michael

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral tree of life . However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conservedmore » proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. Lastly, the resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.« less

  7. Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer

    PubMed Central

    Zhang, Qian; Jun, Se-Ran; Leuze, Michael; Ussery, David; Nookaew, Intawat

    2017-01-01

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral “tree of life”. However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conserved proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. The resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses. PMID:28102365

  8. A predictive wheel-soil interaction model for planetary rovers validated in testbeds and against MER Mars rover performance data

    NASA Astrophysics Data System (ADS)

    Richter, L.; Ellery, A.; Gao, Y.; Michaud, S.; Schmitz, N.; Weiss, S.

    Successful designs of vehicles intended for operations on planetary objects outside the Earth demand, just as for terrestrial off-the-road vehicles, a careful assessment of the terrain relevant for the vehicle mission and predictions of the mobility performance to allow rational trade-off's to be made for the choice of the locomotion concept and sizing. Principal issues driving the chassis design for rovers are the stress-strain properties of the planetary surface soil, the distribution of rocks in the terrain representing potential obstacles to movement, and the gravity level on the celestial object in question. Thus far, planetary rovers have been successfully designed and operated for missions to the Earth's moon and to the planet Mars, including NASA's Mars Exploration Rovers (MER's) `Spirit' and `Opportunity' being in operation on Mars since their landings in January 2004. Here we report on the development of a wheel-soil interaction model with application to wheel sizes and wheel loads relevant to current and near-term robotic planetary rovers, i.e. wheel diameters being between about 200 and 500 mm and vertical quasistatic wheel loads in operation of roughly 100 to 200 N. Such a model clearly is indispensable for sizings of future rovers to analyse the aspect of rover mobility concerned with motion across soils. This work is presently funded by the European Space Agency (ESA) as part of the `Rover Chassis Evaluation Tools' (RCET) effort which has developed a set of S/W-implemented models for predictive mobility analysis of rovers in terms of movement on soils and across obstacles, coupled with dedicated testbeds to validate the wheel-soil models. In this paper, we outline the details of the wheel-soil modelling performed within the RCET work and present comparisons of predictions of wheel performance (motion resistance, torque vs. slip and drawbar pull vs. slip) for specific test cases with the corresponding measurements performed in the RCET single wheel

  9. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice.

    PubMed

    Li, Kun; Wohlford-Lenane, Christine L; Channappanavar, Rudragouda; Park, Jung-Eun; Earnest, James T; Bair, Thomas B; Bates, Amber M; Brogden, Kim A; Flaherty, Heather A; Gallagher, Tom; Meyerholz, David K; Perlman, Stanley; McCray, Paul B

    2017-04-11

    The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERS MA ) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERS MA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERS MA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERS MA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERS MA provide tools to investigate disease causes and develop new therapies.

  10. Complete Taiwanese Macaque (Macaca cyclopis) Mitochondrial Genome: Reference-Assisted de novo Assembly with Multiple k-mer Strategy.

    PubMed

    Huang, Yu-Feng; Midha, Mohit; Chen, Tzu-Han; Wang, Yu-Tai; Smith, David Glenn; Pei, Kurtis Jai-Chyi; Chiu, Kuo Ping

    2015-01-01

    The Taiwanese (Formosan) macaque (Macaca cyclopis) is the only nonhuman primate endemic to Taiwan. This primate species is valuable for evolutionary studies and as subjects in medical research. However, only partial fragments of the mitochondrial genome (mitogenome) of this primate species have been sequenced, not mentioning its nuclear genome. We employed next-generation sequencing to generate 2 x 90 bp paired-end reads, followed by reference-assisted de novo assembly with multiple k-mer strategy to characterize the M. cyclopis mitogenome. We compared the assembled mitogenome with that of other macaque species for phylogenetic analysis. Our results show that, the M. cyclopis mitogenome consists of 16,563 nucleotides encoding for 13 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNAs. Phylogenetic analysis indicates that M. cyclopis is most closely related to M. mulatta lasiota (Chinese rhesus macaque), supporting the notion of Asia-continental origin of M. cyclopis proposed in previous studies based on partial mitochondrial sequences. Our work presents a novel approach for assembling a mitogenome that utilizes the capabilities of de novo genome assembly with assistance of a reference genome. The availability of the complete Taiwanese macaque mitogenome will facilitate the study of primate evolution and the characterization of genetic variations for the potential usage of this species as a non-human primate model for medical research.

  11. From SARS to MERS: evidence and speculation.

    PubMed

    Gao, Hainv; Yao, Hangping; Yang, Shigui; Li, Lanjuan

    2016-12-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel zoonotic pathogen. In 2012, the infectious outbreak caused by MERS-CoV in Saudi Arabia has spread to more than 1600 patients in 26 countries, resulting in over 600 deaths.Without a travel history, few clinical and radiological features can reliably differentiate MERS from SARS. But in real world, comparing with SARS, MERS presents more vaguely defined epidemiology, more severe symptoms, and higher case fatality rate. In this review, we summarize the recent findings in the field of MERS-CoV, especially its molecular virology, interspecies mechanisms, clinical features, antiviral therapies, and the further investigation into this disease. As a newly emerging virus, many questions are not fully answered, including the exact mode of transmission chain, geographical distribution, and animal origins. Furthermore, a new protocol needs to be launched to rapidly evaluate the effects of unproven antiviral drugs and vaccine to fasten the clinical application of new drugs.

  12. MERS transmission and risk factors: a systematic review.

    PubMed

    Park, Ji-Eun; Jung, Soyoung; Kim, Aeran; Park, Ji-Eun

    2018-05-02

    Since Middle East respiratory syndrome (MERS) infection was first reported in 2012, many studies have analysed its transmissibility and severity. However, the methodology and results of these studies have varied, and there has been no systematic review of MERS. This study reviews the characteristics and associated risk factors of MERS. We searched international (PubMed, ScienceDirect, Cochrane) and Korean databases (DBpia, KISS) for English- or Korean-language articles using the terms "MERS" and "Middle East respiratory syndrome". Only human studies with > 20 participants were analysed to exclude studies with low representation. Epidemiologic studies with information on transmissibility and severity of MERS as well as studies containing MERS risk factors were included. A total of 59 studies were included. Most studies from Saudi Arabia reported higher mortality (22-69.2%) than those from South Korea (20.4%). While the R 0 value in Saudi Arabia was < 1 in all but one study, in South Korea, the R 0 value was 2.5-8.09 in the early stage and decreased to < 1 in the later stage. The incubation period was 4.5-5.2 days in Saudi Arabia and 6-7.8 days in South Korea. Duration from onset was 4-10 days to confirmation, 2.9-5.3 days to hospitalization, 11-17 days to death, and 14-20 days to discharge. Older age and concomitant disease were the most common factors related to MERS infection, severity, and mortality. The transmissibility and severity of MERS differed by outbreak region and patient characteristics. Further studies assessing the risk of MERS should consider these factors.

  13. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model.

    PubMed

    de Wilde, Adriaan H; Falzarano, Darryl; Zevenhoven-Dobbe, Jessika C; Beugeling, Corrine; Fett, Craig; Martellaro, Cynthia; Posthuma, Clara C; Feldmann, Heinz; Perlman, Stanley; Snijder, Eric J

    2017-01-15

    Currently, there is no registered treatment for infections with emerging zoonotic coronaviruses like SARS- and MERS-coronavirus. We here report that in cultured cells low-micromolar concentrations of alisporivir, a non-immunosuppressive cyclosporin A-analog, inhibit the replication of four different coronaviruses, including MERS- and SARS-coronavirus. Ribavirin was found to further potentiate the antiviral effect of alisporivir in these cell culture-based infection models, but this combination treatment was unable to improve the outcome of SARS-CoV infection in a mouse model. Nevertheless, our data provide a basis to further explore the potential of Cyp inhibitors as host-directed, broad-spectrum inhibitors of coronavirus replication. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The Synthesis and X-ray Structural Characterization of mer and fac isomers of the Technetium(I) Nitrosyl Complex [TcCl(2)(NO)(PNPpr)].

    PubMed

    Nicholson, T L; Mahmood, A; Refosco, F; Tisato, F; Müller, P; Jones, A G

    2009-08-01

    The nitrosyl complex H[TcNOCl(4)] reacts with the tridentate ligand bis[(2-diphenylphosphino)propyl]amine (PNPpr) to yield a mixture of the mer or fac isomers of [TcCl(2)(NO)(PNPpr)]. In acetonitrile, where the ligand is freely soluble, reaction occurs at room temperature to yield mostly the mer isomer with the linear nitrosyl ligand cis to the amine ligand; and the phosphine ligands arranged in a mutually trans orientation. The reaction in methanol requires reflux to dissolve the lipophilic ligand and generates the fac isomer of [TcCl2(NO)(PNPpr)] as the major product, with the tridentate ligand in a facial arrangement, leaving the chlorides and nitrosyl ligand in the remaining facial sites. The steric bulk of the tridentate ligand's diphenylphophino- moieties results in a significant distortion from octahedral geometry, with the P-Tc-P bond angle expanded to 99.48(4)°. The infrared spectra display absorptions from these nitrosyl ligands in the 1700 and 1800 cm(-1) regions for the fac and mer isomers respectively. The ESI(+) mass spectra each display the parent ion at 647 m/z.

  15. Deciphering MERS-CoV Evolution in Dromedary Camels.

    PubMed

    Du, Lin; Han, Guan-Zhu

    2016-02-01

    The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) poses a potential threat to global public health. Many aspects of the evolution and transmission of MERS-CoV in its animal reservoir remain unclear. A recent study provides new insights into the evolution and transmission of MERS-CoV in dromedary camels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study.

    PubMed

    Chowell, Gerardo; Abdirizak, Fatima; Lee, Sunmi; Lee, Jonggul; Jung, Eunok; Nishiura, Hiroshi; Viboud, Cécile

    2015-09-03

    The Middle East respiratory syndrome (MERS) coronavirus has caused recurrent outbreaks in the Arabian Peninsula since 2012. Although MERS has low overall human-to-human transmission potential, there is occasional amplification in the healthcare setting, a pattern reminiscent of the dynamics of the severe acute respiratory syndrome (SARS) outbreaks in 2003. Here we provide a head-to-head comparison of exposure patterns and transmission dynamics of large hospital clusters of MERS and SARS, including the most recent South Korean outbreak of MERS in 2015. To assess the unexpected nature of the recent South Korean nosocomial outbreak of MERS and estimate the probability of future large hospital clusters, we compared exposure and transmission patterns for previously reported hospital clusters of MERS and SARS, based on individual-level data and transmission tree information. We carried out simulations of nosocomial outbreaks of MERS and SARS using branching process models rooted in transmission tree data, and inferred the probability and characteristics of large outbreaks. A significant fraction of MERS cases were linked to the healthcare setting, ranging from 43.5 % for the nosocomial outbreak in Jeddah, Saudi Arabia, in 2014 to 100 % for both the outbreak in Al-Hasa, Saudi Arabia, in 2013 and the outbreak in South Korea in 2015. Both MERS and SARS nosocomial outbreaks are characterized by early nosocomial super-spreading events, with the reproduction number dropping below 1 within three to five disease generations. There was a systematic difference in the exposure patterns of MERS and SARS: a majority of MERS cases occurred among patients who sought care in the same facilities as the index case, whereas there was a greater concentration of SARS cases among healthcare workers throughout the outbreak. Exposure patterns differed slightly by disease generation, however, especially for SARS. Moreover, the distributions of secondary cases per single primary case varied

  17. Human Centered Design and Development for NASA's MerBoard

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2003-01-01

    This viewgraph presentation provides an overview of the design and development process for NASA's MerBoard. These devices are large interactive display screens which can be shown on the user's computer, which will allow scientists in many locations to interpret and evaluate mission data in real-time. These tools are scheduled to be used during the 2003 Mars Exploration Rover (MER) expeditions. Topics covered include: mission overview, Mer Human Centered Computers, FIDO 2001 observations and MerBoard prototypes.

  18. Inferences of Strength of Soil Deposits along MER Rover Traverses

    NASA Astrophysics Data System (ADS)

    Richter, L.; Schmitz, N.; Weiss, S.; Mer/Athena Team

    method to provide ground truth to thermal inertia determined from orbital thermal measurements of the MER landing sites (MGS TES, MODY THEMIS, MEX PFS & OMEGA), in addition to thermal inertia retrievals from the Athena Mini-TES instrument. Key results suggest different types of soils as judged from their strength, with most materials encountered being similar in consistency to terrestrial sandy loams. Relatively looser soils have been identified on the slopes of crater walls and in local 1 soil patches of smooth appearance, being interpreted as deposits of unconsolidated dust-like soils. Bulk densities for the different soils vary between ˜1100 and ˜1500 kgm-3 . Results of chemical measurements are currently being exploited to relate soil strength to inferred enrichments in salts possibly acting as cementing agents. Thermal inertias of the soil component obtained from the bulk density estimates range between ˜130 and ˜150 Jm-2 s-1/2 K-1 for the MER-A Gusev site and between ˜130 and ˜140 Jm-2 s-1/2 K-1 for the MER-B Meridiani site. 2

  19. Managing PV Power on Mars - MER Rovers

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard

    2009-01-01

    The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance

  20. Thermophilic Ferritin 24mer Assembly and Nanoparticle Encapsulation Modulated by Interdimer Electrostatic Repulsion.

    PubMed

    Pulsipher, Katherine W; Villegas, Jose A; Roose, Benjamin W; Hicks, Tacey L; Yoon, Jennifer; Saven, Jeffery G; Dmochowski, Ivan J

    2017-07-18

    Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a stable dimer of four-helix bundle proteins at a low ionic strength, and the protein forms a hollow assembly of 24 protomers at a high ionic strength (∼800 mM NaCl). This assembly process can also be initiated by highly charged gold nanoparticles (AuNPs) in solution, leading to encapsulation. These data suggest that salt solutions or charged AuNPs can shield unfavorable electrostatic interactions at AfFtn dimer-dimer interfaces, but specific "hot-spot" residues controlling assembly have not been identified. To investigate this further, we computationally designed three AfFtn mutants (E65R, D138K, and A127R) that introduce a single positive charge at sites along the dimer-dimer interface. These proteins exhibited different assembly kinetics and thermodynamics, which were ranked in order of increasing 24mer propensity: A127R < wild type < D138K ≪ E65R. E65R assembled into the 24mer across a wide range of ionic strengths (0-800 mM NaCl), and the dissociation temperature for the 24mer was 98 °C. X-ray crystal structure analysis of the E65R mutant identified a more compact, closed-pore cage geometry. A127R and D138K mutants exhibited wild-type ability to encapsulate and stabilize 5 nm AuNPs, whereas E65R did not encapsulate AuNPs at the same high yields. This work illustrates designed protein cages with distinct assembly and encapsulation properties.

  1. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    NASA Astrophysics Data System (ADS)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  2. SARS and MERS: recent insights into emerging coronaviruses.

    PubMed

    de Wit, Emmie; van Doremalen, Neeltje; Falzarano, Darryl; Munster, Vincent J

    2016-08-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002-2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses.

  3. Rapid detection of MERS coronavirus-like viruses in bats: pote1ntial for tracking MERS coronavirus transmission and animal origin.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Chen, Yixin; Wong, Emily Y M; Chan, Kwok-Hung; Chen, Honglin; Zhang, Libiao; Xia, Ningshao; Yuen, Kwok-Yung

    2018-03-07

    Recently, we developed a monoclonal antibody-based rapid nucleocapsid protein detection assay for diagnosis of MERS coronavirus (MERS-CoV) in humans and dromedary camels. In this study, we examined the usefulness of this assay to detect other lineage C betacoronaviruses closely related to MERS-CoV in bats. The rapid MERS-CoV nucleocapsid protein detection assay was tested positive in 24 (88.9%) of 27 Tylonycteris bat CoV HKU4 (Ty-BatCoV-HKU4) RNA-positive alimentary samples of Tylonycteris pachypus and 4 (19.0%) of 21 Pipistrellus bat CoV HKU5 (Pi-BatCoV-HKU5) RNA-positive alimentary samples of Pipistrellus abramus. There was significantly more Ty-BatCoV-HKU4 RNA-positive alimentary samples than Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive by the rapid MERS-CoV nucleocapsid protein detection assay (P < 0.001 by Chi-square test). The rapid assay was tested negative in all 51 alimentary samples RNA-positive for alphacoronaviruses (Rhinolophus bat CoV HKU2, Myotis bat CoV HKU6, Miniopterus bat CoV HKU8 and Hipposideros batCoV HKU10) and 32 alimentary samples positive for lineage B (SARS-related Rhinolophus bat CoV HKU3) and lineage D (Rousettus bat CoV HKU9) betacoronaviruses. No significant difference was observed between the viral loads of Ty-BatCoV-HKU4/Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive and negative by the rapid test (Mann-Witney U test). The rapid MERS-CoV nucleocapsid protein detection assay is able to rapidly detect lineage C betacoronaviruses in bats. It detected significantly more Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5 because MERS-CoV is more closely related to Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5. This assay will facilitate rapid on-site mass screening of animal samples for ancestors of MERS-CoV and tracking transmission in the related bat species.

  4. k-merSNP discovery: Software for alignment-and reference-free scalable SNP discovery, phylogenetics, and annotation for hundreds of microbial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and treesmore » determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.« less

  5. A Library of ATMO Forward Model Transmission Spectra for Hot Jupiter Exoplanets

    NASA Technical Reports Server (NTRS)

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; hide

    2017-01-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and X(exp 2) maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from approximately 0.56 to approximately 1-1.3 for equilibrium temperatures from approximately 900 to approximately 2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (approximately 460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  6. A library of ATMO forward model transmission spectra for hot Jupiter exoplanets

    NASA Astrophysics Data System (ADS)

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; Nikolov, Nikolay; Manners, James; Chabrier, Gilles; Hebrard, Eric

    2018-03-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and χ2 maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from ˜0.56 to ˜1-1.3 for equilibrium temperatures from ˜900 to ˜2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (˜460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  7. Nucleation and Growth Kinetics from LaMer Burst Data.

    PubMed

    Chu, Daniel B K; Owen, Jonathan S; Peters, Baron

    2017-10-12

    In LaMer burst nucleation, the individual nucleation events happen en masse, quasi-simultaneously, and at nearly identical homogeneous conditions. These properties make LaMer burst nucleation important for applications that require monodispersed particles and also for theoretical analyses. Sugimoto and co-workers predicted that the number of nuclei generated during a LaMer burst depends only on the solute supply rate and the growth rate, independent of the nucleation kinetics. Some experiments confirm that solute supply kinetics control the number of nuclei, but flaws in the original theoretical analysis raise questions about the predicted roles of growth and nucleation kinetics. We provide a rigorous analysis of the coupled equations that govern concentrations of nuclei and solutes. Our analysis confirms that the number of nuclei is largely determined by the solute supply and growth rates, but our predicted relationship differs from that of Sugimoto et al. Moreover, we find that additional nucleus size dependent corrections should emerge in systems with slow growth kinetics. Finally, we show how the nucleation kinetics determine the particle size distribution. We suggest that measured particle size distributions might therefore provide ways to test theoretical models of homogeneous nucleation kinetics.

  8. Environmental Conditions Constrain the Distribution and Diversity of Archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Wang, Y.; Boyd, E.; Crane, S.; Lu-Irving, P.; Krabbenhoft, D.; King, S.; Dighton, J.; Geesey, G.; Barkay, T.

    2011-01-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient. ?? 2011 Springer Science+Business Media, LLC.

  9. Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    PubMed

    Wang, Yanping; Boyd, Eric; Crane, Sharron; Lu-Irving, Patricia; Krabbenhoft, David; King, Susan; Dighton, John; Geesey, Gill; Barkay, Tamar

    2011-11-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient.

  10. Fac and mer isomers of Ru(II) tris(pyrazolyl-pyridine) complexes as models for the vertices of coordination cages: structural characterisation and hydrogen-bonding characteristics.

    PubMed

    Metherell, Alexander J; Cullen, William; Stephenson, Andrew; Hunter, Christopher A; Ward, Michael D

    2014-01-07

    We have prepared a series of mononuclear fac and mer isomers of Ru(II) complexes containing chelating pyrazolyl-pyridine ligands, to examine their differing ability to act as hydrogen-bond donors in MeCN. This was prompted by our earlier observation that octanuclear cube-like coordination cages that contain these types of metal vertex can bind guests such as isoquinoline-N-oxide (K = 2100 M(-1) in MeCN), with a significant contribution to binding being a hydrogen-bonding interaction between the electron-rich atom of the guest and a hydrogen-bond donor site on the internal surface of the cage formed by a convergent set of CH2 protons close to a 2+ metal centre. Starting with [Ru(L(H))3](2+) [L(H) = 3-(2-pyridyl)-1H-pyrazole] the geometric isomers were separated by virtue of the fact that the fac isomer forms a Cu(I) adduct which the mer isomer does not. Alkylation of the pyrazolyl NH group with methyl iodide or benzyl bromide afforded [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+) respectively, each as their fac and mer isomers; all were structurally characterised. In the fac isomers the convergent group of pendant -CH2R or -CH3 protons defines a hydrogen-bond donor pocket; in the mer isomer these protons do not converge and any hydrogen-bonding involving these protons is expected to be weaker. For both [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+), NMR titrations with isoquinoline-N-oxide in MeCN revealed weak 1 : 1 binding (K ≈ 1 M(-1)) between the guest and the fac isomer of the complex that was absent with the mer isomer, confirming a difference in the hydrogen-bond donor capabilities of these complexes associated with their differing geometries. The weak binding compared to the cage however occurs because of competition from the anions, which are free to form ion-pairs with the mononuclear complex cations in a way that does not happen in the cage complexes. We conclude that (i) the presence of fac tris-chelate sites in the cage to act as hydrogen-bond donors, and (ii

  11. Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K

    NASA Astrophysics Data System (ADS)

    Schulz, C.; Koch, J. D.; Davidson, D. F.; Jeffries, J. B.; Hanson, R. K.

    2002-03-01

    Spectrally resolved UV absorption cross-sections between 190 and 320 nm were measured in shock-heated CO 2 between 880 and 3050 K and H 2O between 1230 and 2860 K. Absorption spectra were acquired with 10 μs time resolution using a unique kinetic spectrograph, thereby enabling comparisons with time-dependent chemical kinetic modeling of post-shock thermal decomposition and chemical reactions. Although room temperature CO 2 is transparent (σ<10 -22 cm2) at wavelengths longer than 200 nm, hot CO 2 has significant absorption (σ>10 -20 cm2) extending to wavelengths longer than 300 nm. The temperature dependence of CO 2 absorption strongly suggests sharply increased transition probabilities from excited vibrational levels.

  12. High resolution spectroscopy over 8500-8750 Å for GAIA <= 7500 K. II. A library of synthetic spectra for T_eff <= 7500 K

    NASA Astrophysics Data System (ADS)

    Munari, U.; Castelli, F.

    2000-01-01

    We present a library of synthetic spectra characterized by -2.5 <= [Z/Z_sun] <= +0.5, 4.5 <= log g<= 1.0, and Teff <= 7500 K computed at the same lambda /bigtriangleup lambda = 20000 resolving power of the observed spectra given in Paper I for 131 standard stars mapping the MKK spectral classification system. This range of parameters includes the majority of the galactic stars expected to dominate the GAIA target population, i.e. F-G-K-M type stars with metallicity ranging from that of the galactic globular clusters to Population I objects. Extension to Teff > 7500 K will be given later on in this series. The 254 synthetic spectra presented here are based on Kurucz's codes and line data and have been computed over a more extended wavelength interval (7650-8750 Ä) than that currently baselined for implementation on GAIA, i.e. the 8500-8750 Ä. This last range is dominated by the near-IR Ca II triplet and the head of the Paschen series. The more extended wavelength range allows us to investigate the behaviour of other strong near-IR spectral features (severely contaminated by telluric absorptions in ground-based observed spectra) as the K I doublet (7664, 7699 Ä), the Na I doublet (8183, 8194 Ä) and the lines of Fe I multiplet N.60 at 8327 and 8388 Ä. The synthetic spectra support our previous conclusions about the superior performance of the Paschen/Ca II 8500-8750 Ä region in meeting the GAIA requirements when compared to other near-IR intervals of similar bigtriangleup lambda = 250 Ä. Table 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html Figures 5-93 are only available in electronic form at the http://www.edpsciences.org The spectra are also available in electronic form at the CDS or via the personal HomePage http://ulisse.pd.astro.it/Astro/Atlases/

  13. Evaluation of candidate vaccine approaches for MERS-CoV

    DOE PAGES

    Wang, Lingshu; Shi, Wei; Joyce, M. Gordon; ...

    2015-07-28

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanismsmore » were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.« less

  14. Evaluation of candidate vaccine approaches for MERS-CoV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingshu; Shi, Wei; Joyce, M. Gordon

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanismsmore » were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.« less

  15. Mars Exploration Rover (MER) aeroshell

    NASA Image and Video Library

    2003-01-31

    In the Payload Hazardous Servicing Facility, workers prepare the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  16. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Jyoti K.; Li, Mi; Ghirlando, Rodolfo

    Replication of Vibrio cholerae chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations inrctBthat reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in amore » dimerization domain which is folded similarly to the initiator of an iteron plasmid—the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding. IMPORTANCE The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication ofVibrio choleraeChr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that promotes initiation by

  17. Optimization of tungsten x-ray spectra for digital mammography: a comparison of model to experiment

    NASA Astrophysics Data System (ADS)

    Andre, Michael P.; Spivey, Brett A.

    1997-05-01

    Tungsten (W) target x-rays tubes are being studied for use in digital mammography to improve x-ray flux, reduce noise and increase tube heat capacity. A parametric model was developed for digital mammography to evaluate optimization of x-ray spectra for a particular sensor. The model computes spectra and mean glandular doses (MGD) for combinations of W target, beam filters, kVp, breast type and thickness. Two figures of merit were defined: (signal/noise)2/MGD and spectral quantum efficiency; these were computed as a means to approach optimization of object contrast. The model is derived from a combination of classic equations, XCOM from NBS, and published data. X-ray spectra were calculated and measured for filters of Al, Sn, Rh, Mo and Ag on a Eureka tube. (Signal/noise)2/MGD was measured for a filtered W target tube and a digital camera employing CsI scintillator optically coupled to a CCD for which the detective quantum efficiency (DQE) was known. A 3-mm thick acrylic disk was imaged on thickness of 3-8 cm of acrylic and the results were compared to the predictions of the model. The relative error between predicted and measured spectra was +/- 2 percent from 24 to 34 kVp. Calculated MGD as a function of breast thickness, half-value layer and beam filter compares very well to published data. Best performance was found for the following combinations: Mo filter with 30 mm breast, Ag filter with 45 mm, Sn filter for 60 mm, and Al filter for 75 mm thick breast. The parametric model agrees well with measurement and provides a means to explore optimum combinations of kVp and beam filter. For a particular detector, this data may be used with the DQE to estimate total system signal-to-noise ratio for a particular imaging task.

  18. Risk of global spread of Middle East respiratory syndrome coronavirus (MERS-CoV) via the air transport network.

    PubMed

    Gardner, Lauren M; Chughtai, Abrar A; MacIntyre, C Raina

    2016-06-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) emerged from the Kingdom of Saudi Arabia (KSA) in 2012 and has since spread to 26 countries. All cases reported so far have either been in the Middle East or linked to the region through passenger air travel, with the largest outbreak outside KSA occurring in South Korea. Further international spread is likely due to the high travel volumes of global travel, as well as the occurrence of large annual mass gathering such as the Haj and Umrah pilgrimages that take place in the region. In this study, a transport network modelling framework was used to quantify the risk of MERS-CoV spreading internationally via air travellers. All regions connected to MERS-CoV affected countries via air travel are considered, and the countries at highest risk of travel-related importations of MERS-CoV were identified, ranked and compared with actual spread of MERS cases. The model identifies all countries that have previously reported a travel acquired case to be in the top 50 at-risk countries. India, Pakistan and Bangladesh are the highest risk countries which have yet to report a case, and should be prepared for the possibility of (pilgrims and general) travellers returning infected with MERS-CoV. In addition, the UK, Egypt, Turkey and the USA are at risk of more cases. We have demonstrated a risk-analysis approach, using travel patterns, to prioritize countries at highest risk for MERS-CoV importations. In order to prevent global outbreaks such as the one seen in South Korea, it is critical for high-risk countries to be prepared and have appropriate screening and triage protocols in place to identify travel-related cases of MERS-CoV. The results from the model can be used by countries to prioritize their airport and hospital screening and triage protocols. © International Society of Travel Medicine, 2016. All rights reserved. Published by Oxford University Press. For permissions, please e-mail: journals.permissions@oup.com.

  19. PEPSI deep spectra. II. Gaia benchmark stars and other M-K standards

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Ilyin, I.; Weber, M.

    2018-04-01

    Context. High-resolution échelle spectra confine many essential stellar parameters once the data reach a quality appropriate to constrain the various physical processes that form these spectra. Aim. We provide a homogeneous library of high-resolution, high-S/N spectra for 48 bright AFGKM stars, some of them approaching the quality of solar-flux spectra. Our sample includes the northern Gaia benchmark stars, some solar analogs, and some other bright Morgan-Keenan (M-K) spectral standards. Methods: Well-exposed deep spectra were created by average-combining individual exposures. The data-reduction process relies on adaptive selection of parameters by using statistical inference and robust estimators. We employed spectrum synthesis techniques and statistics tools in order to characterize the spectra and give a first quick look at some of the science cases possible. Results: With an average spectral resolution of R ≈ 220 000 (1.36 km s-1), a continuous wavelength coverage from 383 nm to 912 nm, and S/N of between 70:1 for the faintest star in the extreme blue and 6000:1 for the brightest star in the red, these spectra are now made public for further data mining and analysis. Preliminary results include new stellar parameters for 70 Vir and α Tau, the detection of the rare-earth element dysprosium and the heavy elements uranium, thorium and neodymium in several RGB stars, and the use of the 12C to 13C isotope ratio for age-related determinations. We also found Arcturus to exhibit few-percent Ca II H&K and Hα residual profile changes with respect to the KPNO atlas taken in 1999. Based on data acquired with PEPSI using the Large Binocular Telescope (LBT) and the Vatican Advanced Technology Telescope (VATT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT

  20. Analyzing MER Uplink Reports

    NASA Technical Reports Server (NTRS)

    Savin, Stephen C.

    2005-01-01

    The MER project includes two rovers working simultaneously on opposite sides of Mars each receiving commands only once a day. Creating this uplink is critical, since a failed uplink means a lost day and a waste of money. Examining the process of creating this uplink, I tracked the use of the system developed for requesting observations as well as the development, from stage to stage, in forming an activity plan. I found the system for requesting observations was commonly misused, if used at all. There are half a dozen reports to document the creation of the uplink plan and often there are discrepancies among them. Despite this, the uplink process worked very well and MER has been one of the most successful missions for NASA in recent memory. Still it is clear there is room for improvement.

  1. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction

    PubMed Central

    Omrani, Ali S.; Al-Tawfiq, Jaffar A.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel enzootic betacoronavirus that was first described in September 2012. The clinical spectrum of MERS-CoV infection in humans ranges from an asymptomatic or mild respiratory illness to severe pneumonia and multi-organ failure; overall mortality is around 35.7%. Bats harbour several betacoronaviruses that are closely related to MERS-CoV but more research is needed to establish the relationship between bats and MERS-CoV. The seroprevalence of MERS-CoV antibodies is very high in dromedary camels in Eastern Africa and the Arabian Peninsula. MERS-CoV RNA and viable virus have been isolated from dromedary camels, including some with respiratory symptoms. Furthermore, near-identical strains of MERS-CoV have been isolated from epidemiologically linked humans and camels, confirming inter-transmission, most probably from camels to humans. Though inter-human spread within health care settings is responsible for the majority of reported MERS-CoV cases, the virus is incapable at present of causing sustained human-to-human transmission. Clusters can be readily controlled with implementation of appropriate infection control procedures. Phylogenetic and sequencing data strongly suggest that MERS-CoV originated from bat ancestors after undergoing a recombination event in the spike protein, possibly in dromedary camels in Africa, before its exportation to the Arabian Peninsula along the camel trading routes. MERS-CoV serosurveys are needed to investigate possible unrecognized human infections in Africa. Amongst the important measures to control MERS-CoV spread are strict regulation of camel movement, regular herd screening and isolation of infected camels, use of personal protective equipment by camel handlers and enforcing rules banning all consumption of unpasteurized camel milk and urine. PMID:26924345

  2. Infrared Spectra of M^+(2-AMINO-1-PHENYL ETHANOL)(H_2O)_{n=0-2}Ar (M=Na, K)

    NASA Astrophysics Data System (ADS)

    Nicely, Amy L.; Lisy, James M.

    2009-06-01

    A balance of competing electrostatic and hydrogen bonding interactions directs the structure of hydrated gas-phase cluster ions. Because of this, a biologically relevant model of cluster structures should include the effects of surrounding water molecules and metal ions such as sodium and potassium, which are found in high concentrations in the bloodstream. The molecule 2-amino-1-phenyl ethanol (APE) serves as a model for the neurotransmitters ephedrine and adrenaline. The neutral APE molecule contains an internal hydrogen bond between the amino and hydroxyl groups. In the M^+(APE) complex, the cation can either interrupt the internal hydrogen bond or position itself above the phenyl group, leaving the internal hydrogen bond intact. The former is preferred based on DFT calculations (B3LYP/6-31+G*) for both K^+ and Na^+ across the entire range from 0-400K, but infrared photodissociation (IRPD) spectra indicate a preference for the latter configuration at low temperatures. The IRPD spectra of M^+(H_2O)_{n=1-2} and M^+(H_2O)_{n=0-2}Ar (M=Na, K) will be presented along with parallel DFT and thermodynamics calculations to assist with the identification of the isomers present in each experiment.

  3. Potential MER Landing Site in Melas Chasma

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Parker, Timothy J.; Anderson, F. Scott

    2001-01-01

    We have selected one area in Valles Marineris as a potential landing site for the Mars Exploration Rover (MER) mission. After 30 years of analyses, the formation of the Valles Marineris system of troughs and its associated deposits still remains an enigma. Understanding all aspects of the Valles Marineris would significantly contribute to deciphering the internal and external history of Mars. A landing site within Melas Chasma could provide insight into both the formation of Valles Marineris and the composition and origin of the interior layered deposits (ILDs). The ILDs have been proposed as: (1) sedimentary deposits formed in lakes mass wasted material from the walls; (3) remnants of the wall rock; (4) carbonate deposits; (5) aeolian deposits; and (6) volcanic. More recently, Malin and Edgett suggest that the fine-scale, rhythmic layering seen in the interior deposits, as well as other layered deposits in craters, supports a sedimentary origin. Because an understanding of the formation of Valles Marineris and its interior deposits is so important to deciphering the history of Mars, we have proposed a landing site for the MER mission on an exposure of interior deposits in western Melas Chasma. Either MER-A and MER-B could land at this same location.

  4. First Infrared Predissociation Spectra of He-TAGGED Protonated Primary Alcohols at 4 K

    NASA Astrophysics Data System (ADS)

    Stoffels, Alexander; Redlich, Britta; Oomens, J.; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Thorwirth, Sven; Schlemmer, Stephan

    2015-06-01

    Cryogenic multipole ion traps have become popular devices in the development of sensitive action-spectroscopic techniques. The low ion temperature leads to enhanced spectral resolution, and less congested spectra. In the early 2000s, a 22-pole ion trap was coupled to the Free-Electron Laser for Infrared eXperiments (FELIX), yielding infrared Laser Induced Reaction (LIR) spectra of the molecular ions C_2H_2+ and CH_5+. This pioneering work showed the great opportunities combining cold mass-selected molecular ions with widely tunable broadband IR radiation. In the past year a cryogenic (T>3.9 K) 22-pole ion trap designed and built in Cologne (FELion) has been successfully coupled to FELIX, which in its current configuration provides continuously tunable infrared radiation from 3 μm to 150 μm, hence allowing to probe characteristic vibrational spectra in the so-called "fingerprint region" with a sufficient spectral energy density also allowing for multiple photon processes (IR-MPD). Here we present the first infrared predissociation spectra of He-tagged protonated methanol and ethanol (MeOH_2+/EtOH_2+) stored at 4 K. These vibrational spectra were recorded with both a commercial OPO and FELIX, covering a total spectral range from 3700 wn to 550 wn at a spectral resolution of a few wn. The H-O-H stretching and bending modes clearly distinguish the protonated alcohols from their neutral analoga. For EtOH_2+, also IR-MPD spectra of the bare ion could be recorded. The symmetric and antisymmetric H-O-H stretching bands at around 3 μm show no significant shift within the given spectral resolution in comparison to those recorded with He predissociation, indicating a rather small perturbation caused by the attached He. The vibrational bands were assigned using quantum-chemical calculations on different levels of theory. The computed frequencies correspond favorably to the experimental spectra. Subsequent high resolution measurements could lead to a better structural

  5. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis)

    PubMed Central

    Munster, Vincent J.; Adney, Danielle R.; van Doremalen, Neeltje; Brown, Vienna R.; Miazgowicz, Kerri L.; Milne-Price, Shauna; Bushmaker, Trenton; Rosenke, Rebecca; Scott, Dana; Hawkinson, Ann; de Wit, Emmie; Schountz, Tony; Bowen, Richard A.

    2016-01-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of Betacoronaviruses. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV. In vitro, the MERS-CoV spike glycoprotein interacted with Jamaican fruit bat (Artibeus jamaicensis) dipeptidyl peptidase 4 (DPP4) receptor and MERS-CoV replicated efficiently in Jamaican fruit bat cells, suggesting there is no restriction at the receptor or cellular level for MERS-CoV. To shed light on the intrinsic host-virus relationship, we inoculated 10 Jamaican fruit bats with MERS-CoV. Although all bats showed evidence of infection, none of the bats showed clinical signs of disease. Virus shedding was detected in the respiratory and intestinal tract for up to 9 days. MERS-CoV replicated transiently in the respiratory and, to a lesser extent, the intestinal tracts and internal organs; with limited histopathological changes observed only in the lungs. Analysis of the innate gene expression in the lungs showed a moderate, transient induction of expression. Our results indicate that MERS-CoV maintains the ability to replicate in bats without clinical signs of disease, supporting the general hypothesis of bats as ancestral reservoirs for MERS-CoV. PMID:26899616

  6. 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012.

    PubMed

    Johnson, Reed F; Bagci, Ulas; Keith, Lauren; Tang, Xianchun; Mollura, Daniel J; Zeitlin, Larry; Qin, Jing; Huzella, Louis; Bartos, Christopher J; Bohorova, Natasha; Bohorov, Ognian; Goodman, Charles; Kim, Do H; Paulty, Michael H; Velasco, Jesus; Whaley, Kevin J; Johnson, Joshua C; Pettitt, James; Ork, Britini L; Solomon, Jeffrey; Oberlander, Nicholas; Zhu, Quan; Sun, Jiusong; Holbrook, Michael R; Olinger, Gene G; Baric, Ralph S; Hensley, Lisa E; Jahrling, Peter B; Marasco, Wayne A

    2016-03-01

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was identified in 2012 as the causative agent of a severe, lethal respiratory disease occurring across several countries in the Middle East. To date there have been over 1600 laboratory confirmed cases of MERS-CoV in 26 countries with a case fatality rate of 36%. Given the endemic region, it is possible that MERS-CoV could spread during the annual Hajj pilgrimage, necessitating countermeasure development. In this report, we describe the clinical and radiographic changes of rhesus monkeys following infection with 5×10(6) PFU MERS-CoV Jordan-n3/2012. Two groups of NHPs were treated with either a human anti-MERS monoclonal antibody 3B11-N or E410-N, an anti-HIV antibody. MERS-CoV Jordan-n3/2012 infection resulted in quantifiable changes by computed tomography, but limited other clinical signs of disease. 3B11-N treated subjects developed significantly reduced lung pathology when compared to infected, untreated subjects, indicating that this antibody may be a suitable MERS-CoV treatment. Published by Elsevier Inc.

  7. Model Atmospheres and Transit Spectra for Hot Rocky Planets

    NASA Astrophysics Data System (ADS)

    Lupu, Roxana

    We propose to build a versatile set of self-consistent atmospheric models for hot rocky exoplanets and use them to predict their transit and eclipse spectra. Hot rocky exoplanets will form the majority of small planets in close-in orbits to be discovered by the TESS and Kepler K2 missions, and offer the best opportunity for characterization with current and future instruments. We will use fully non-grey radiative-convective atmospheric structure codes with cloud formation and vertical mixing, combined with a self-consistent treatment of gas chemistry above the magma ocean. Being in equilibrium with the surface, the vaporized rock material can be a good tracer of the bulk composition of the planet. We will derive the atmospheric structure and escape rates considering both volatile-free and volatile bearing compositions, which reflect the diversity of hot rocky planet atmospheres. Our models will inform follow- up observations with JWST and ground-based instruments, aid the interpretation of transit and eclipse spectra, and provide a better understanding of volatile loss in these atmospheres. Such results will help refine our picture of rocky planet formation and evolution. Planets in ultra-short period (USP) orbits are a special class of hot rocky exoplanets. As shown by Kepler, these planets are generally smaller than 2 Earth radii, suggesting that they are likely to be rocky and could have lost their volatiles through photo-evaporation. Being close to their host stars, these planets are ultra-hot, with estimated temperatures of 1000-3000 K. A number of USP planets have been already discovered (e.g. Kepler-78 b, CoRoT-7 b, Kepler-10 b), and this number is expected to grow by confirming additional planet candidates. The characterization of planets on ultra-short orbits is advantageous due to the larger number of observable transits, and the larger transit signal in the case of an evaporating atmosphere. Much advance has been made in understanding and characterizing

  8. A Novel Role of MerC in Methylmercury Transport and Phytoremediation of Methylmercury Contamination.

    PubMed

    Sone, Yuka; Uraguchi, Shimpei; Takanezawa, Yasukazu; Nakamura, Ryosuke; Pan-Hou, Hidemitsu; Kiyono, Masako

    2017-01-01

    MerC, encoded by merC in the transposon Tn21 mer operon, is a heavy metal transporter with potential applications for phytoremediation of heavy metals such as mercuric ion and cadmium. In this study, we demonstrate that MerC also acts as a transporter for methylmercury. When MerC was expressed in Escherichia coli XL1-Blue, cells became hypersensitive to CH 3 Hg(I) and the uptake of CH 3 Hg(I) by these cells was higher than that by cells of the isogenic strain. Moreover, transgenic Arabidopsis plants expressing bacterial MerC or MerC fused to plant soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) accumulated CH 3 Hg(I) effectively and their growth was comparable to the wild-type plants. These results demonstrate that when the bacterium-derived merC gene is ectopically introduced in genetically modified plants, MerC expression in the transgenic plants promotes the transport and sequestration of methylmercury. Thus, our results show that the expression of merC in Arabidopsis results in transgenic plants that could be used for the phytoremediation and elimination of toxic methylmercury from the environment.

  9. Estimation of basic reproduction number of the Middle East respiratory syndrome coronavirus (MERS-CoV) during the outbreak in South Korea, 2015.

    PubMed

    Chang, Hyuk-Jun

    2017-06-13

    In South Korea, an outbreak of Middle East respiratory syndrome (MERS) occurred in 2015. It was the second largest MERS outbreak. As a result of the outbreak in South Korea, 186 infections were reported, and 36 patients died. At least 16,693 people were isolated with suspicious symptoms. This paper estimates the basic reproduction number of the MERS coronavirus (CoV), using data on the spread of MERS in South Korea. The basic reproduction number of an epidemic is defined as the average number of secondary cases that an infected subject produces over its infectious period in a susceptible and uninfected population. To estimate the basic reproduction number of the MERS-CoV, we employ data from the 2015 South Korea MERS outbreak and the susceptible-infected-removed (SIR) model, a mathematical model that uses a set of ordinary differential equations (ODEs). We fit the model to the epidemic data of the South Korea outbreak minimizing the sum of the squared errors to identify model parameters. Also we derive the basic reproductive number as the terms of the parameters of the SIR model. Then we determine the basic reproduction number of the MERS-CoV in South Korea in 2015 as 8.0977. It is worth comparing with the basic reproductive number of the 2014 Ebola outbreak in West Africa including Guinea, Sierra Leone, and Liberia, which had values of 1.5-2.5. There was no intervention to control the infection in the early phase of the outbreak, thus the data used here provide the best conditions to evaluate the epidemic characteristics of MERS, such as the basic reproduction number. An evaluation of basic reproduction number using epidemic data could be problematic if there are stochastic fluctuations in the early phase of the outbreak, or if the report is not accurate and there is bias in the data. Such problems are not relevant to this study because the data used here were precisely reported and verified by Korea Hospital Association.

  10. Center-to-limb polarization in continuum spectra of F, G, K stars

    NASA Astrophysics Data System (ADS)

    Kostogryz, N. M.; Berdyugina, S. V.

    2015-03-01

    Context. Scattering and absorption processes in stellar atmosphere affect the center-to-limb variations of the intensity (CLVI) and the linear polarization (CLVP) of stellar radiation. Aims: There are several theoretical and observational studies of CLVI using different stellar models, however, most studies of CLVP have concentrated on the solar atmosphere and have not considered the CLVP in cooler non-gray stellar atmospheres at all. In this paper, we present a theoretical study of the CLV of the intensity and the linear polarization in continuum spectra of different spectral type stars. Methods: We solve the radiative transfer equations for polarized light iteratively assuming no magnetic field and considering a plane-parallel model atmospheres and various opacities. Results: We calculate the CLVI and the CLVP for Phoenix stellar model atmospheres for the range of effective temperatures (4500 K-6900 K), gravities (log g = 3.0-5.0), and wavelengths (4000-7000 Å), which are tabulated and available at the CDS. In addition, we present several tests of our code and compare our results with measurements and calculations of CLVI and the CLVP for the Sun. The resulting CLVI are fitted with polynomials and their coefficients are presented in this paper. Conclusions: For the stellar model atmospheres with lower gravity and effective temperature the CLVP is larger. Full Tables 1 and 2, and coefficients of polynomials are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A89

  11. Therapeutic Application of Phage Capsule Depolymerases against K1, K5, and K30 Capsulated E. coli in Mice.

    PubMed

    Lin, Han; Paff, Matthew L; Molineux, Ian J; Bull, James J

    2017-01-01

    Capsule depolymerase enzymes offer a promising class of new antibiotics. In vivo studies are encouraging but it is unclear how well this type of phage product will generalize in therapeutics, or whether different depolymerases against the same capsule function similarly. Here, in vivo efficacy was tested using cloned bacteriophage depolymerases against Escherichia coli strains with three different capsule types: K1, K5, and K30. When treating infections with the cognate capsule type in a mouse thigh model, the previously studied K1E depolymerase rescued poorly, whereas K1F, K1H, K5, and K30 depolymerases rescued well. K30 gp41 was identified as the catalytically active protein. In contrast to the in vivo studies, K1E enzyme actively degraded K1 capsule polysaccharide in vitro and sensitized K1 bacteria to serum killing. The only in vitro correlate of poor K1E performance in vivo was that the purified enzyme did not form the expected trimer. K1E appeared as an 18-mer which might limit its in vivo distribution. Overall, depolymerases were easily identified, cloned from phage genomes, and as purified proteins they proved generally effective.

  12. Engineered Single-Chain, Antiparallel, Coiled Coil Mimics the MerR Metal Binding Site

    PubMed Central

    Song, Lingyun; Caguiat, Jonathan; Li, Zhongrui; Shokes, Jacob; Scott, Robert A.; Olliff, Lynda; Summers, Anne O.

    2004-01-01

    The repressor-activator MerR that controls transcription of the mercury resistance (mer) operon is unusual for its high sensitivity and specificity for Hg(II) in in vivo and in vitro transcriptional assays. The metal-recognition domain of MerR resides at the homodimer interface in a novel antiparallel arrangement of α-helix 5 that forms a coiled-coil motif. To facilitate the study of this novel metal binding motif, we assembled this antiparallel coiled coil into a single chain by directly fusing two copies of the 48-residue α-helix 5 of MerR. The resulting 107-residue polypeptide, called the metal binding domain (MBD), and wild-type MerR were overproduced and purified, and their metal-binding properties were determined in vivo and in vitro. In vitro MBD bound ca. 1.0 equivalent of Hg(II) per pair of binding sites, just as MerR does, and it showed only a slightly lower affinity for Hg(II) than did MerR. Extended X-ray absorption fine structure data showed that MBD has essentially the same Hg(II) coordination environment as MerR. In vivo, cells overexpressing MBD accumulated 70 to 100% more 203Hg(II) than cells bearing the vector alone, without deleterious effects on cell growth. Both MerR and MBD variously bound other thiophilic metal ions, including Cd(II), Zn(II), Pb(II), and As(III), in vitro and in vivo. We conclude that (i) it is possible to simulate in a single polypeptide chain the in vitro and in vivo metal-binding ability of dimeric, full-length MerR and (ii) MerR's specificity in transcriptional activation does not reside solely in the metal-binding step. PMID:14996817

  13. Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE

    PubMed Central

    2013-01-01

    The bacterial merE gene derived from the Tn21 mer operon encodes a broad-spectrum mercury transporter that governs the transport of methylmercury and mercuric ions across bacterial cytoplasmic membranes, and this gene is a potential molecular tool for improving the efficiency of methylmercury phytoremediation. A transgenic Arabidopsis engineered to express MerE was constructed and the impact of expression of MerE on methylmercury accumulation was evaluated. The subcellular localization of transiently expressed GFP-tagged MerE was examined in Arabidopsis suspension-cultured cells. The GFP-MerE was found to localize to the plasma membrane and cytosol. The transgenic Arabidopsis expressing MerE accumulated significantly more methymercury and mercuric ions into plants than the wild-type Arabidopsis did. The transgenic plants expressing MerE was significantly more resistant to mercuric ions, but only showed more resistant to methylmercury compared with the wild type Arabidopsis. These results demonstrated that expression of the bacterial mercury transporter MerE promoted the transport and accumulation of methylmercury in transgenic Arabidopsis, which may be a useful method for improving plants to facilitate the phytoremediation of methylmercury pollution. PMID:24004544

  14. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  15. MERS in the U.S.

    MedlinePlus

    ... traveler departed Riyadh, Saudi Arabia and traveled by plane to London, England, then to Chicago, Illinois. The ... MERS. On May 1, the patient traveled by plane from Jeddah, Saudi Arabia to London, England; to ...

  16. Edge profiles in K shell photoabsorption spectra of gaseous hydrides of 3p elements and homologues

    NASA Astrophysics Data System (ADS)

    Hauko, R.; Gomilšek, J. Padežnik; Kodre, A.; Arčon, I.; Aquilanti, G.

    2017-10-01

    Photoabsorption spectra of gaseous hydrides of 3p elements (PH3, H2S, HCl) are measured in the energy region of photoexcitations pertaining to K edge. The analysis of the edge profile is extended to hydrides of 4p series (GeH4, AsH3, H2Se, HBr) from an earlier experiment, and to published spectra of 2p hydrides (CH4, NH3, H2O, HF) and noble gases Ar, Kr and Ne and SiH4. The edge profiles are modelled with a linear combination of lorentzian components, describing excitations to individual bound states and to continuum. Transition energies and probabilities are also calculated in the non-relativistic molecular model of the ORCA code, in good agreement with the experiment. Edge profiles in the heavier homologues are closely similar, the symmetry of the molecule governs the transitions to the lowest unoccupied orbitals. In 2p series the effect of the strong nuclear potential prevails. Transitions to higher, atomic-like levels remain very much the same as in free atoms.

  17. Estimating Potential Incidence of MERS-CoV Associated with Hajj Pilgrims to Saudi Arabia, 2014

    PubMed Central

    Lessler, Justin; Rodriguez-Barraquer, Isabel; Cummings, Derek A.T.; Garske, Tini; Van Kerkhove, Maria; Mills, Harriet; Truelove, Shaun; Hakeem, Rafat; Albarrak, Ali; Ferguson, Neil M.; Aguas, Ricardo; Algarni, Homud; AlHarbi, Khalid; Cauchemez, Simon; Clapham, Hannah; Collins, Caitlin; Cori, Anne; Donnelly, Christl; Fraser, Christophe; Jombart, Thibaut; Moore, Sean M.; Nouvellet, Pierre; Riley, Steven; Salje, Henrik; Turkistani, Abdulhafiz

    2014-01-01

    Between March and June 2014 the Kingdom of Saudi Arabia (KSA) had a large outbreak of MERS-CoV, renewing fears of a major outbreak during the Hajj this October. Using KSA Ministry of Health data, the MERS-CoV Scenario and Modeling Working Group forecast incidence under three scenarios. In the expected incidence scenario, we estimate 6.2 (95% Prediction Interval [PI]: 1–17) pilgrims will develop MERS-CoV symptoms during the Hajj, and 4.0 (95% PI: 0–12) foreign pilgrims will be infected but return home before developing symptoms. In the most pessimistic scenario, 47.6 (95% PI: 32–66) cases will develop symptoms during the Hajj, and 29.0 (95% PI: 17–43) will be infected but return home asymptomatic. Large numbers of MERS-CoV cases are unlikely to occur during the 2014 Hajj even under pessimistic assumptions, but careful monitoring is still needed to detect possible mass infection events and minimize introductions into other countries.   PMID:25685624

  18. AUTOMATED UNSUPERVISED CLASSIFICATION OF THE SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA USING k-MEANS CLUSTERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez Almeida, J.; Allende Prieto, C., E-mail: jos@iac.es, E-mail: callende@iac.es

    2013-01-20

    Large spectroscopic surveys require automated methods of analysis. This paper explores the use of k-means clustering as a tool for automated unsupervised classification of massive stellar spectral catalogs. The classification criteria are defined by the data and the algorithm, with no prior physical framework. We work with a representative set of stellar spectra associated with the Sloan Digital Sky Survey (SDSS) SEGUE and SEGUE-2 programs, which consists of 173,390 spectra from 3800 to 9200 A sampled on 3849 wavelengths. We classify the original spectra as well as the spectra with the continuum removed. The second set only contains spectral lines,more » and it is less dependent on uncertainties of the flux calibration. The classification of the spectra with continuum renders 16 major classes. Roughly speaking, stars are split according to their colors, with enough finesse to distinguish dwarfs from giants of the same effective temperature, but with difficulties to separate stars with different metallicities. There are classes corresponding to particular MK types, intrinsically blue stars, dust-reddened, stellar systems, and also classes collecting faulty spectra. Overall, there is no one-to-one correspondence between the classes we derive and the MK types. The classification of spectra without continuum renders 13 classes, the color separation is not so sharp, but it distinguishes stars of the same effective temperature and different metallicities. Some classes thus obtained present a fairly small range of physical parameters (200 K in effective temperature, 0.25 dex in surface gravity, and 0.35 dex in metallicity), so that the classification can be used to estimate the main physical parameters of some stars at a minimum computational cost. We also analyze the outliers of the classification. Most of them turn out to be failures of the reduction pipeline, but there are also high redshift QSOs, multiple stellar systems, dust-reddened stars, galaxies, and, finally

  19. WATER ON MARS: EVIDENCE FROM MER MISSION RESULTS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) mission landed two rovers on Mars, equipped with a highly-capable suite of science instruments. The Spirit rover landed on the inside Gusev Crater on January 5, 2004, and the Opportunity rover three weeks later on Meridiani Planum. This paper summarizes some of the findings from the MER rovers related to the NASA science strategy of investigating past and present water on Mars.

  20. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ye-Ji; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul; Lee, Seung-Hae

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0more » increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.« less

  1. Unraveling the drivers of MERS-CoV transmission

    PubMed Central

    Cauchemez, Simon; Nouvellet, Pierre; Cori, Anne; Jombart, Thibaut; Clapham, Hannah; Moore, Sean; Mills, Harriet Linden; Salje, Henrik; Collins, Caitlin; Rodriquez-Barraquer, Isabel; Riley, Steven; Truelove, Shaun; Algarni, Homoud; Alhakeem, Rafat; AlHarbi, Khalid; Turkistani, Abdulhafiz; Aguas, Ricardo J.; Cummings, Derek A. T.; Van Kerkhove, Maria D.; Donnelly, Christl A.; Lessler, Justin; Fraser, Christophe; Al-Barrak, Ali; Ferguson, Neil M.

    2016-01-01

    With more than 1,700 laboratory-confirmed infections, Middle East respiratory syndrome coronavirus (MERS-CoV) remains a significant threat for public health. However, the lack of detailed data on modes of transmission from the animal reservoir and between humans means that the drivers of MERS-CoV epidemics remain poorly characterized. Here, we develop a statistical framework to provide a comprehensive analysis of the transmission patterns underlying the 681 MERS-CoV cases detected in the Kingdom of Saudi Arabia (KSA) between January 2013 and July 2014. We assess how infections from the animal reservoir, the different levels of mixing, and heterogeneities in transmission have contributed to the buildup of MERS-CoV epidemics in KSA. We estimate that 12% [95% credible interval (CI): 9%, 15%] of cases were infected from the reservoir, the rest via human-to-human transmission in clusters (60%; CI: 57%, 63%), within (23%; CI: 20%, 27%), or between (5%; CI: 2%, 8%) regions. The reproduction number at the start of a cluster was 0.45 (CI: 0.33, 0.58) on average, but with large SD (0.53; CI: 0.35, 0.78). It was >1 in 12% (CI: 6%, 18%) of clusters but fell by approximately one-half (47% CI: 34%, 63%) its original value after 10 cases on average. The ongoing exposure of humans to MERS-CoV from the reservoir is of major concern, given the continued risk of substantial outbreaks in health care systems. The approach we present allows the study of infectious disease transmission when data linking cases to each other remain limited and uncertain. PMID:27457935

  2. Using diffusion k-means for simple stellar population modeling of low S/N quasar host galaxy spectra

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Tremonti, Christina A.; Hooper, Eric; Wolf, Marsha J.; Sheinis, Andrew; Richards, Joseph

    2016-01-01

    Quasar host galaxies (QHGs) represent a unique stage in galaxy evolution that can provide a glimpse into the relationship between an active supermassive black hole (SMBH) and its host galaxy. However, observing the hosts of high luminosity, unobscured quasars in the optical is complicated by the large ratio of quasar to host galaxy light. One strategy in optical spectroscopy is to use offset longslit observations of the host galaxy. This method allows the centers of QHGs to be analyzed apart from other regions of their host galaxies. But light from the accreting black hole's point spread function still enters the host galaxy observations, and where the contrast between the host and intervening quasar light is favorable, the host galaxy is faint, producing low signal-to-noise (S/N) data. This stymies traditional stellar population methods that might rely on high S/N features in galaxy spectra to recover key galaxy properties like its star formation history (SFH). In response to this challenge, we have developed a method of stellar population modeling using diffusion k-means (DFK) that can recover SFHs from rest frame optical data with S/N ~ 5 Å^-1. Specifically, we use DFK to cultivate a reduced stellar population basis set. This DFK basis set of four broad age bins is able to recover a range of SFHs. With an analytic description of the seeing, we can use this DFK basis set to simultaneously model the SFHs and the intervening quasar light of QHGs as well. We compare the results of this method with previous techniques using synthetic data and find that our new method has a clear advantage in recovering SFHs from QHGs. On average, the DFK basis set is just as accurate and decisively more precise. This new technique could be used to analyze other low S/N galaxy spectra like those from higher redshift or integral field spectroscopy surveys.This material is based upon work supported by the National Science Foundation under grant no. DGE -0718123 and the Advanced

  3. Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)–Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection

    PubMed Central

    Houser, Katherine V.; Gretebeck, Lisa; Ying, Tianlei; Wang, Yanping; Vogel, Leatrice; Lamirande, Elaine W.; Bock, Kevin W.; Moore, Ian N.; Dimitrov, Dimiter S.; Subbarao, Kanta

    2016-01-01

    With >1600 documented human infections with Middle East respiratory syndrome coronavirus (MERS-CoV) and a case fatality rate of approximately 36%, medical countermeasures are needed to prevent and limit the disease. We examined the in vivo efficacy of the human monoclonal antibody m336, which has high neutralizing activity against MERS-CoV in vitro. m336 was administered to rabbits intravenously or intranasally before infection with MERS-CoV. Prophylaxis with m336 resulted in a reduction of pulmonary viral RNA titers by 40–9000-fold, compared with an irrelevant control antibody with little to no inflammation or viral antigen detected. This protection in rabbits supports further clinical development of m336. PMID:26941283

  4. Libraries of High and Mid-Resolution Spectra of F, G, K, and M Field Stars

    NASA Astrophysics Data System (ADS)

    Montes, D.

    1998-06-01

    I have compiled here the three libraries of high and mid-resolution optical spectra of late-type stars I have recently published. The libraries include F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 1000 Å, with spectral resolution ranging from 0.09 to 3.0 Å. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity. The spectra have been obtained with the aim of providing a library of high and mid-resolution spectra to be used in the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways. A digital version of all the fully reduced spectra is available via FTP and the World Wide Web (WWW) in FITS format.

  5. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog

    NASA Astrophysics Data System (ADS)

    Dimitrov, Dimitre D.; Grant, Robert F.; Lafleur, Peter M.; Humphreys, Elyn R.

    2011-12-01

    The ecosys model was applied to investigate the effects of water table and subsurface hydrology changes on carbon dioxide exchange at the ombrotrophic Mer Bleue peatland, Ontario, Canada. It was hypothesized that (1) water table drawdown would not affect vascular canopy water potential, hence vascular productivity, because roots would penetrate deeper to compensate for near-surface dryness, (2) moss canopy water potential and productivity would be severely reduced because rhizoids occupy the uppermost peat that is subject to desiccation with water table decline, and (3) given that in a previous study of Mer Bleue, ecosystem respiration showed little sensitivity to water table drawdown, gross primary productivity would mainly determine the net ecosystem productivity through these vegetation-subsurface hydrology linkages. Model output was compared with literature reports and hourly eddy-covariance measurements during 2000-2004. Our findings suggest that late-summer water table drawdown in 2001 had only a minor impact on vascular canopy water potential but greatly impacted hummock moss water potential, where midday values declined to -250 MPa on average in the model. As a result, simulated moss productivity was reduced by half, which largely explained a reduction of 2-3 μmol CO2 m-2 s-1 in midday simulated and measurement-derived gross primary productivity and an equivalent reduction in simulated and measured net ecosystem productivity. The water content of the near-surface peat (top 5-10 cm) was found to be the most important driver of interannual variability of annual net ecosystem productivity through its effects on hummock moss productivity and on ecosystem respiration.

  6. Structure of high-resolution K β1 ,3 x-ray emission spectra for the elements from Ca to Ge

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Tochio, T.; Yamashita, M.; Fukushima, S.; Vlaicu, A. M.; Syrocki, Ł.; Słabkowska, K.; Weder, E.; Polasik, M.; Sawicka, K.; Indelicato, P.; Marques, J. P.; Sampaio, J. M.; Guerra, M.; Santos, J. P.; Parente, F.

    2018-05-01

    The K β x-ray spectra of the elements from Ca to Ge have been systematically investigated using a high-resolution antiparallel double-crystal x-ray spectrometer. Each K β1 ,3 natural linewidth has been corrected using the instrumental function of this type of x-ray spectrometer, and the spin doublet energies have been obtained from the peak position values in K β1 ,3 x-ray spectra. For all studied elements the corrected K β1 x-ray lines FWHM increase linearly as a function of Z . However, for K β3 x-ray lines this dependence is generally not linear in the case of 3 d elements but increases from Sc to Co elements. It has been found that the contributions of satellite lines are considered to be [K M ] shake processes. Our theoretically predicted synthetic spectra of Ca, Mn, Cu, and Zn are in very good agreement with our high-resolution measurements, except in the case of Mn, due to the open-shell valence configuration effect (more than 7000 transitions for diagram lines and more than 100 000 transitions for satellite lines) and the influence of the complicated structure of the metallic Mn.

  7. Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment.

    PubMed

    Ní Chadhain, Sinéad M; Schaefer, Jeffra K; Crane, Sharron; Zylstra, Gerben J; Barkay, Tamar

    2006-10-01

    The reduction of ionic mercury to elemental mercury by the mercuric reductase (MerA) enzyme plays an important role in the biogeochemical cycling of mercury in contaminated environments by partitioning mercury to the atmosphere. This activity, common in aerobic environments, has rarely been examined in anoxic sediments where production of highly toxic methylmercury occurs. Novel degenerate PCR primers were developed which span the known diversity of merA genes in Gram-negative bacteria and amplify a 285 bp fragment at the 3' end of merA. These primers were used to create a clone library and to analyse merA diversity in an anaerobic sediment enrichment collected from a mercury-contaminated site in the Meadowlands, New Jersey. A total of 174 sequences were analysed, representing 71 merA phylotypes and four novel MerA clades. This first examination of merA diversity in anoxic environments suggests an untapped resource for novel merA sequences.

  8. TAM receptors Tyro3 and Mer as novel targets in colorectal cancer.

    PubMed

    Schmitz, Robin; Valls, Aida Freire; Yerbes, Rosario; von Richter, Sophie; Kahlert, Christoph; Loges, Sonja; Weitz, Jürgen; Schneider, Martin; Ruiz de Almodovar, Carmen; Ulrich, Alexis; Schmidt, Thomas

    2016-08-30

    CRC remains the third most common cancer worldwide with a high 5-year mortality rate in advanced cases. Combined with chemotherapy, targeted therapy is an additional treatment option. However as CRC still escapes targeted therapy the vigorous search for new targets is warranted to increase patients´ overall survival. In this study we describe a new role for Gas6/protein S-TAM receptor interaction in CRC. Gas6, expressed by tumor-infiltrating M2-like macrophages, enhances malignant properties of tumor cells including proliferation, invasion and colony formation. Upon chemotherapy macrophages increase Gas6 synthesis, which significantly attenuates the cytotoxic effect of 5-FU chemotherapy on tumor cells. The anti-coagulant protein S has similar effects as Gas6.In CRC patient samples Tyro3 was overexpressed within the tumor. In-vitro inhibition of Tyro3 and Mer reduces tumor cell proliferation and sensitizes tumor cells to chemotherapy. Moreover high expression of Tyro3 and Mer in tumor tissue significantly shortens CRC patients´ survival. Various in vitro models were used to investigate the role of Gas6 and its TAM receptors in human CRC cells, by stimulation (rhGas6) and knockdown (siRNA) of Axl, Tyro3 and Mer. In terms of a translational research, we additionally performed an expression analysis in human CRC tissue and analyzed the medical record of these patients. Tyro3 and Mer represent novel therapeutic targets in CRC and warrant further preclinical and clinical investigation in the future.

  9. Translating MAPGEN to ASPEN for MER

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg R.; Knight, Russell L.; Lenda, Matthew; Maldague, Pierre F.

    2013-01-01

    This software translates MAPGEN (Europa and APGEN) domains to ASPEN, and the resulting domain can be used to perform planning for the Mars Exploration Rover (MER). In other words, this is a conversion of two distinct planning languages (both declarative and procedural) to a third (declarative) planning language in order to solve the problem of faithful translation from mixed-domain representations into the ASPEN Modeling Language. The MAPGEN planning system is an example of a hybrid procedural/declarative system where the advantages of each are leveraged to produce an effective planner/scheduler for MER tactical planning. The adaptation of the planning system (ASPEN) was investigated, and, with some translation, much of the procedural knowledge encoding is amenable to declarative knowledge encoding. The approach was to compose translators from the core languages used for adapting MAGPEN, which consists of Europa and APGEN. Europa is a constraint- based planner/scheduler where domains are encoded using a declarative model. APGEN is also constraint-based, in that it tracks constraints on resources and states and other variables. Domains are encoded in both constraints and code snippets that execute according to a forward sweep through the plan. Europa and APGEN communicate to each other using proxy activities in APGEN that represent constraints and/or tokens in Europa. The composition of a translator from Europa to ASPEN was fairly straightforward, as ASPEN is also a declarative planning system, and the specific uses of Europa for the MER domain matched ASPEN s native encoding fairly closely. On the other hand, translating from APGEN to ASPEN was considerably more involved. On the surface, the types of activities and resources one encodes in APGEN appear to match oneto- one to the activities, state variables, and resources in ASPEN. But, when looking into the definitions of how resources are profiled and activities are expanded, one sees code snippets that access

  10. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013.

    PubMed

    Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert-Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F; Muth, Doreen; Bosch, Berend-Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein-specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV-neutralizing antibody titers >1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases.

  11. High-precision spectra for dynamical Dark Energy cosmologies from constant-w models

    NASA Astrophysics Data System (ADS)

    Casarini, Luciano

    2010-08-01

    Spanning the whole functional space of cosmologies with any admissible DE state equations w(a) seems a need, in view of forthcoming observations, namely those aiming to provide a tomography of cosmic shear. In this paper I show that this duty can be eased and that a suitable use of results for constant-w cosmologies can be sufficient. More in detail, I ``assign'' here six cosmologies, aiming to span the space of state equations w(a) = wo+wa(1-a), for wo and wa values consistent with WMAP5 and WMAP7 releases and run N-body simulations to work out their non-linear fluctuation spectra at various redshifts z. Such spectra are then compared with those of suitable auxiliary models, characterized by constant w. For each z a different auxiliary model is needed. Spectral discrepancies between the assigned and the auxiliary models, up to k simeq 2-3 h Mpc-1, are shown to keep within 1 %. Quite in general, discrepancies are smaller at greater z and exhibit a specific trend across the wo and wa plane. Besides of aiming at simplifying the evaluation of spectra for a wide range of models, this paper also outlines a specific danger for future studies of the DE state equation, as models fairly distant on the w0-wa plane can be easily confused.

  12. GPI Spectra of HR 8799 c, d, and e from 1.5 to 2.4 μm with KLIP Forward Modeling

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alexandra Z.; Pueyo, Laurent; Ruffio, Jean-Baptiste; Wang, Jason J.; De Rosa, Robert J.; Aguilar, Jonathan; Rameau, Julien; Barman, Travis; Marois, Christian; Marley, Mark S.; Konopacky, Quinn; Rajan, Abhijith; Macintosh, Bruce; Ansdell, Megan; Arriaga, Pauline; Bailey, Vanessa P.; Bulger, Joanna; Burrows, Adam S.; Chilcote, Jeffrey; Cotten, Tara; Doyon, Rene; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin; Goodsell, Stephen J.; Graham, James R.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Nielsen, Eric L.; Norton, Andrew; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall D.; Poyneer, Lisa; Rantakyrö, Fredrik T.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Rémi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2018-06-01

    We explore KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR 8799, using PyKLIP, and show algorithm stability with varying KLIP parameters. We report new and re-reduced spectrophotometry of HR 8799 c, d, and e in the H and K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting simulated sources and recovering them over a range of parameters. The K1/K2 spectra for HR 8799 c and d are similar to previously published results from the same data set. We also present a K-band spectrum of HR 8799 e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We show that HR 8799 c and d show significant differences in their H and K spectra, but do not find any conclusive differences between d and e, nor between c and e, likely due to large error bars in the recovered spectrum of e. Compared to M-, L-, and T-type field brown dwarfs, all three planets are most consistent with mid- and late-L spectral types. All objects are consistent with low gravity, but a lack of standard spectra for low gravity limit the ability to fit the best spectral type. We discuss how dedicated modeling efforts can better fit HR 8799 planets’ near-IR flux, as well as how differences between the properties of these planets can be further explored.

  13. Integrated K-band spectra of old and intermediate-age globular clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Lyubenova, M.; Kuntschner, H.; Rejkuba, M.; Silva, D. R.; Kissler-Patig, M.; Tacconi-Garman, L. E.; Larsen, S. S.

    2010-02-01

    Current stellar population models have arguably the largest uncertainties in the near-IR wavelength range, partly due to a lack of large and well calibrated empirical spectral libraries. In this paper we present a project whose aim it is to provide the first library of luminosity weighted integrated near-IR spectra of globular clusters to be used to test the current stellar population models and serve as calibrators for future ones. Our pilot study presents spatially integrated K-band spectra of three old (≥10 Gyr) and metal poor ([Fe/H] ~ -1.4), and three intermediate age (1-2 Gyr) and more metal rich ([Fe/H] ~ - 0.4) globular clusters in the LMC. We measured the line strengths of the Na I, Ca I and 12CO (2-0) absorption features. The Na I index decreases with increasing age and decreasing metallicity of the clusters. The DCO index, used to measure the 12CO (2-0) line strength, is significantly reduced by the presence of carbon-rich TP-AGB stars in the globular clusters with age ~1 Gyr. This is in contradiction to the predictions of the stellar population models of Maraston (2005, MNRAS, 362, 799). We find that this disagreement is due to the different CO absorption strength of carbon-rich Milky Way TP-AGB stars used in the models and the LMC carbon stars in our sample. For globular clusters with age ≥ 2 Gyr we find DCO index measurements consistent with the model predictions. Based on observation collected at the ESO Paranal La Silla Observatory, Chile, Prog. ID 078.B-0205.Spectra in FITS format are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A19

  14. Mapping Potential Amplification and Transmission Hotspots for MERS-CoV, Kenya.

    PubMed

    Gikonyo, Stephen; Kimani, Tabitha; Matere, Joseph; Kimutai, Joshua; Kiambi, Stella G; Bitek, Austine O; Juma Ngeiywa, K J Z; Makonnen, Yilma J; Tripodi, Astrid; Morzaria, Subhash; Lubroth, Juan; Rugalema, Gabriel; Fasina, Folorunso Oludayo

    2018-03-16

    Dromedary camels have been implicated consistently as the source of Middle East respiratory syndrome coronavirus (MERS-CoV) human infections and attention to prevent and control it has focused on camels. To understanding the epidemiological role of camels in the transmission of MERS-CoV, we utilized an iterative empirical process in Geographic Information System (GIS) to identify and qualify potential hotspots for maintenance and circulation of MERS-CoV, and produced risk-based surveillance sites in Kenya. Data on camel population and distribution were used to develop camel density map, while camel farming system was defined using multi-factorial criteria including the agro-ecological zones (AEZs), production and marketing practices. Primary and secondary MERS-CoV seroprevalence data from specific sites were analyzed, and location-based prevalence matching with camel densities was conducted. High-risk convergence points (migration zones, trade routes, camel markets, slaughter slabs) were profiled and frequent cross-border camel movement mapped. Results showed that high camel-dense areas and interaction (markets and migration zones) were potential hotspot for transmission and spread. Cross-border contacts occurred with in-migrated herds at hotspot locations. AEZ differential did not influence risk distribution and plausible risk factors for spatial MERS-CoV hotspots were camel densities, previous cases of MERS-CoV, high seroprevalence and points of camel convergences. Although Kenyan camels are predisposed to MERS-CoV, no shedding is documented to date. These potential hotspots, determined using anthropogenic, system and trade characterizations should guide selection of sampling/surveillance sites, high-risk locations, critical areas for interventions and policy development in Kenya, as well as instigate further virological examination of camels.

  15. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy.

    PubMed

    Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana

    2016-03-01

    Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.

  16. Laboratory astrophysics on ASDEX Upgrade: Measurements and analysis of K-shell O, F, and Ne spectra in the 9 - 20 A region

    NASA Technical Reports Server (NTRS)

    Hansen, S. B.; Fournier, K. B.; Finkenthal, M. J.; Smith, R.; Puetterich, T.; Neu, R.

    2006-01-01

    High-resolution measurements of K-shell emission from O, F, and Ne have been performed at the ASDEX Upgrade tokamak in Garching, Germany. Independently measured temperature and density profiles of the plasma provide a unique test bed for model validation. We present comparisons of measured spectra with calculations based on transport and collisional-radiative models and discuss the reliability of commonly used diagnostic line ratios.

  17. Guide to solar reference spectra and irradiance models

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    The international standard for determining solar irradiances was published by the International Standards Organization (ISO) in May 2007. The document, ISO 21348 Space Environment (natural and artificial) - Process for determining solar irradiances, describes the process for representing solar irradiances. We report on the next progression of standards work, i.e., the development of a guide that identifies solar reference spectra and irradiance models for use in engineering design or scientific research. This document will be produced as an AIAA Guideline and ISO Technical Report. It will describe the content of the reference spectra and models, uncertainties and limitations, technical basis, data bases from which the reference spectra and models are formed, publication references, and sources of computer code for reference spectra and solar irradiance models, including those which provide spectrally-resolved lines as well as solar indices and proxies and which are generally recognized in the solar sciences. The document is intended to assist aircraft and space vehicle designers and developers, heliophysicists, geophysicists, aeronomers, meteorologists, and climatologists in understanding available models, comparing sources of data, and interpreting engineering and scientific results based on different solar reference spectra and irradiance models.

  18. Demonstration of Mer-Cure Technology for Enhanced Mercury Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Marion; Dave O'Neill; Kevin Taugher

    2008-06-01

    Alstom Power Inc. has completed a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. De-FC26-07NT42776) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. The Mer-Cure{trademark}system utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. The Mer-Cure{trademark} system is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. The full-scale demonstration program originally included test campaigns at two host sites: LCRA's 480-MW{sub e} Fayette Unit No.3 and Reliant Energy's 190-MW{sub e} Shawville Unit No.3. The only demonstration tests actually done were the short-term tests at LCRA due to budget constraints. This report gives a summary of the demonstration testing at Fayette Unit No.3. The goals for this Mercury Round 3 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 90% at a cost significantly less than 50% of the previous target ofmore » $$60,000/lb mercury removed. The results indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90% based on uncontrolled stack emissions. The estimated costs for 90% mercury control, at a sorbent cost of $$0.75 to $2.00/lb respectively, were $13,400 to $18,700/lb Hg removed. In summary, the results from demonstration testing show that the goals established by DOE/NETL were met during this test program. The goal of 90% mercury reduction was achieved. Estimated mercury removal costs were 69-78% lower than the benchmark of $60,000/lb mercury removed, significantly less than 50% of the baseline removal cost.« less

  19. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity.

    PubMed

    Chu, Daniel K W; Hui, Kenrie P Y; Perera, Ranawaka A P M; Miguel, Eve; Niemeyer, Daniela; Zhao, Jincun; Channappanavar, Rudragouda; Dudas, Gytis; Oladipo, Jamiu O; Traoré, Amadou; Fassi-Fihri, Ouafaa; Ali, Abraham; Demissié, Getnet F; Muth, Doreen; Chan, Michael C W; Nicholls, John M; Meyerholz, David K; Kuranga, Sulyman A; Mamo, Gezahegne; Zhou, Ziqi; So, Ray T Y; Hemida, Maged G; Webby, Richard J; Roger, Francois; Rambaut, Andrew; Poon, Leo L M; Perlman, Stanley; Drosten, Christian; Chevalier, Veronique; Peiris, Malik

    2018-03-20

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. Although MERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERS-CoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4-transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies of MERS-CoV at the animal-human interface. Copyright © 2018 the Author(s). Published by PNAS.

  20. Debate on MERS-CoV respiratory precautions: surgical mask or N95 respirators?

    PubMed Central

    Chung, Jasmine Shimin; Ling, Moi Lin; Seto, Wing Hong; Ang, Brenda Sze Peng; Tambyah, Paul Anantharajah

    2014-01-01

    Since the emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in mid-2012, there has been controversy over the respiratory precaution recommendations in different guidelines from various international bodies. Our understanding of MERS-CoV is still evolving. Current recommendations on infection control practices are heavily influenced by the lessons learnt from severe acute respiratory syndrome. A debate on respiratory precautions for MERS-CoV was organised by Infection Control Association (Singapore) and the Society of Infectious Disease (Singapore). We herein discuss and present the evidence for surgical masks for the protection of healthcare workers from MERS-CoV. PMID:25017402

  1. Application of State Analysis and Goal-based Operations to a MER Mission Scenario

    NASA Technical Reports Server (NTRS)

    Morris, John Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the system behavior in terms of state variables and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper first describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  2. Application of State Analysis and Goal-Based Operations to a MER Mission Scenario

    NASA Technical Reports Server (NTRS)

    Morris, J. Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the behavior of states and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  3. Mild encephalitis/encephalopathy with reversible splenial lesion (MERS) in adults-a case report and literature review.

    PubMed

    Yuan, Junliang; Yang, Shuna; Wang, Shuangkun; Qin, Wei; Yang, Lei; Hu, Wenli

    2017-05-25

    Mild encephalitis/encephalopathy with reversible splenial lesion (MERS) is a rare clinico-radiological entity characterized by the magnetic resonance imaging (MRI) finding of a reversible lesion in the corpus callosum, sometimes involved the symmetrical white matters. Many cases of child-onset MERS with various causes have been reported. However, adult-onset MERS is relatively rare. The clinical characteristics and pathophysiologiccal mechanisms of adult-onset MERS are not well understood. We reviewed the literature on adult-onset MERS in order to describe the characteristics of MERS in adults and to provide experiences for clinician. We reported a case of adult-onset MERS with acute urinary retension and performed literature search from PubMed and web of science databases to identify other adult-onset MERS reports from Januarary 2004 to March 2016. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed on selection process. And then we summarized the clinico-radiological features of adult-onset MERS. Twenty-nine adult-onset MERS cases were reviewed from available literature including the case we have. 86.2% of the cases (25/29) were reported in Asia, especially in Japan. Ages varied between 18 and 59 years old with a 12:17 female-to-male ratio. The major cause was infection by virus or bacteria. Fever and headache were the most common clinical manifestation, and acute urinary retention was observed in 6 patients. All patients recovered completely within a month. Adult-onset MERS is an entity with a broad clinico-radiological spectrum because of the various diseases and conditions. There are similar characteristics between MERS in adults and children, also some differences.

  4. A Quantum Band Model of the nu3 Fundamental of Methanol (CH3OH) and Its Application to Fluorcescence Spectra of Comets

    NASA Technical Reports Server (NTRS)

    Villanueva, Geronimo L.; DiSanti, M. A.; Mumma, M. J.; Xu, L.-H.

    2012-01-01

    Methanol (CH3OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the 3 fundamental band of methanol at 2844 / cm (3.52 micron) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K.We validated the model by comparing simulations of CH3OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the nu3 band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths

  5. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared

  6. Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis

    PubMed Central

    Ork, Britini; Hart, Brit J.; Holbrook, Michael R.; Frieman, Matthew B.; Traynor, Dawn; Johnson, Reed F.; Dyall, Julie; Olinger, Gene G.; Hensley, Lisa E.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies. PMID:25487801

  7. Generation and analysis of clinically relevant breast imaging x-ray spectra.

    PubMed

    Hernandez, Andrew M; Seibert, J Anthony; Nosratieh, Anita; Boone, John M

    2017-06-01

    The purpose of this work was to develop and make available x-ray spectra for some of the most widely used digital mammography (DM), breast tomosynthesis (BT), and breast CT (bCT) systems in North America. The Monte Carlo code MCNP6 was used to simulate minimally filtered (only beryllium) x-ray spectra at 8 tube potentials from 20 to 49 kV for DM/BT, and 9 tube potentials from 35 to 70 kV for bCT. Vendor-specific anode compositions, effective anode angles, focal spot sizes, source-to-detector distances, and beryllium filtration were simulated. For each 0.5 keV energy bin in all simulated spectra, the fluence was interpolated using cubic splines across the range of simulated tube potentials to produce spectra in 1 kV increments from 20 to 49 kV for DM/BT and from 35 to 70 kV for bCT. The HVL of simulated spectra with conventional filtration (at 35 kV for DM/BT and 49 kV for bCT) was used to assess spectral differences resulting from variations in: (a) focal spot size (0.1 and 0.3 mm IEC), (b) solid angle at the detector (i.e., small and large FOV size), and (c) geometrical specifications for vendors that employ the same anode composition. Averaged across all DM/BT vendors, variations in focal spot and FOV size resulted in HVL differences of 2.2% and 0.9%, respectively. Comparing anode compositions separately, the HVL differences for Mo (GE, Siemens) and W (Hologic, Philips, and Siemens) spectra were 0.3% and 0.6%, respectively. Both the commercial Koning and prototype "Doheny" (UC Davis) bCT systems utilize W anodes with a 0.3 mm focal spot. Averaged across both bCT systems, variations in FOV size resulted in a 2.2% difference in HVL. In addition, the Koning spectrum was slightly harder than Doheny with a 4.2% difference in HVL. Therefore to reduce redundancy, a generic DM/BT system and a generic bCT system were used to generate the new spectra reported herein. The spectral models for application to DM/BT were dubbed the Molybdenum, Rhodium, and Tungsten Anode

  8. Activated Microglia Desialylate and Phagocytose Cells via Neuraminidase, Galectin-3, and Mer Tyrosine Kinase

    PubMed Central

    Nomura, Koji; Vilalta, Anna; Allendorf, David H.; Hornik, Tamara C.

    2017-01-01

    Activated microglia can phagocytose dying, stressed, or excess neurons and synapses via the phagocytic receptor Mer tyrosine kinase (MerTK). Galectin-3 (Gal-3) can cross-link surface glycoproteins by binding galactose residues that are normally hidden below terminal sialic acid residues. Gal-3 was recently reported to opsonize cells via activating MerTK. We found that LPS-activated BV-2 microglia rapidly released Gal-3, which was blocked by calcineurin inhibitors. Gal-3 bound to MerTK on microglia and to stressed PC12 (neuron-like) cells, and it increased microglial phagocytosis of PC12 cells or primary neurons, which was blocked by inhibition of MerTK. LPS-activated microglia exhibited a sialidase activity that desialylated PC12 cells and could be inhibited by Tamiflu, a neuraminidase (sialidase) inhibitor. Sialidase treatment of PC12 cells enabled Gal-3 to bind and opsonize the live cells for phagocytosis by microglia. LPS-induced microglial phagocytosis of PC12 was prevented by small interfering RNA knockdown of Gal-3 in microglia, lactose inhibition of Gal-3 binding, inhibition of neuraminidase with Tamiflu, or inhibition of MerTK by UNC569. LPS-induced phagocytosis of primary neurons by primary microglia was also blocked by inhibition of MerTK. We conclude that activated microglia release Gal-3 and a neuraminidase that desialylates microglial and PC12 surfaces, enabling Gal-3 binding to PC12 cells and their phagocytosis via MerTK. Thus, Gal-3 acts as an opsonin of desialylated surfaces, and inflammatory loss of neurons or synapses may potentially be blocked by inhibiting neuraminidases, Gal-3, or MerTK. PMID:28500071

  9. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.

    PubMed

    Douglas, Madeline G; Kocher, Jacob F; Scobey, Trevor; Baric, Ralph S; Cockrell, Adam S

    2018-04-01

    We recently established a mouse model (288-330 +/+ ) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 10 6 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 10 3 and 10 5 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  11. Photochemistry in a 3D metal-organic framework (MOF): monitoring intermediates and reactivity of the fac-to-mer photoisomerization of Re(diimine)(CO)3Cl incorporated in a MOF.

    PubMed

    Easun, Timothy L; Jia, Junhua; Calladine, James A; Blackmore, Danielle L; Stapleton, Christopher S; Vuong, Khuong Q; Champness, Neil R; George, Michael W

    2014-03-03

    The mechanism and intermediates in the UV-light-initiated ligand rearrangement of fac-Re(diimine)(CO)3Cl to form the mer isomer, when incorporated into a 3D metal-organic framework (MOF), have been investigated. The structure hosting the rhenium diimine complex is a 3D network with the formula {Mn(DMF)2[LRe(CO)3Cl]}∞ (ReMn; DMF = N,N-dimethylformamide), where the diimine ligand L, 2,2'-bipyridine-5,5'-dicarboxylate, acts as a strut of the MOF. The incorporation of ReMn into a KBr disk allows spatial distribution of the mer-isomer photoproduct in the disk to be mapped and spectroscopically characterized by both Fourier transform infrared and Raman microscopy. Photoisomerization has been monitored by IR spectroscopy and proceeds via dissociation of a CO to form more than one dicarbonyl intermediate. The dicarbonyl species are stable in the solid state at 200 K. The photodissociated CO ligand appears to be trapped within the crystal lattice and, upon warming above 200 K, readily recombines with the dicarbonyl intermediates to form both the fac-Re(diimine)(CO)3Cl starting material and the mer-Re(diimine)(CO)3Cl photoproduct. Experiments over a range of temperatures (265-285 K) allow estimates of the activation enthalpy of recombination for each process of ca. 16 (±6) kJ mol(-1) (mer formation) and 23 (±4) kJ mol(-1) (fac formation) within the MOF. We have compared the photochemistry of the ReMn MOF with a related alkane-soluble Re(dnb)(CO)3Cl complex (dnb = 4,4'-dinonyl-2,2'-bipyridine). Time-resolved IR measurements clearly show that, in an alkane solution, the photoinduced dicarbonyl species again recombines with CO to both re-form the fac-isomer starting material and form the mer-isomer photoproduct. Density functional theory calculations of the possible dicarbonyl species aids the assignment of the experimental data in that the ν(CO) IR bands of the CO loss intermediate are, as expected, shifted to lower energy when the metal is bound to DMF rather than to an

  12. Hadron rapidity spectra within a hybrid model

    NASA Astrophysics Data System (ADS)

    Khvorostukhin, A. S.; Toneev, V. D.

    2017-01-01

    A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.

  13. Microbial Certification of the MER spacecraft

    NASA Technical Reports Server (NTRS)

    Schubert, W. W.; Arakelian, T.; Barengoltz, J. B.; Chough, N. G.; Chung, S. Y.; Law, J.; Kirschner, L.; Koukol, R. C.; Newlin, L. E.; Morales, F.

    2003-01-01

    Spacecraft such as the Mars Exploration Rovers (MER) must meet acceptable microbial population levels prior to launch. Sensitive parts and materials prevent any single sterilization method from being used as a final step on the assembled spacecraft.

  14. Path integral Monte Carlo study on the structure and absorption spectra of alkali atoms (Li, Na, K) attached to superfluid helium clusters

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Yamashita, Koichi

    2001-01-01

    Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].

  15. MERS, SARS and other coronaviruses as causes of pneumonia.

    PubMed

    Yin, Yudong; Wunderink, Richard G

    2018-02-01

    Human coronaviruses (HCoVs) have been considered to be relatively harmless respiratory pathogens in the past. However, after the outbreak of the severe acute respiratory syndrome (SARS) and emergence of the Middle East respiratory syndrome (MERS), HCoVs have received worldwide attention as important pathogens in respiratory tract infection. This review focuses on the epidemiology, pathogenesis and clinical characteristics among SARS-coronaviruses (CoV), MERS-CoV and other HCoV infections. © 2017 Asian Pacific Society of Respirology.

  16. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction

    PubMed Central

    Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric

    2017-01-01

    Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination–initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria. However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome–axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. PMID:29021238

  17. MERS-CoV infection: Mind the public knowledge gap.

    PubMed

    Bawazir, Amen; Al-Mazroo, Eman; Jradi, Hoda; Ahmed, Anwar; Badri, Motasim

    In August 2015, the Corona outbreak caused by Middle East respiratory syndrome coronavirus (MERS-CoV) was the 9th episode since June 2012 in Saudi Arabia. Little is known about the public awareness toward the nature or prevention of the disease. The aim of this work was to assess the knowledge of the adult population in Riyadh toward the MERS-CoV. In this cross-sectional survey, a self-administrated questionnaire was distributed to randomly selected participants visiting malls in Riyadh. The questionnaire contained measurable epidemiological and clinical MERS-CoV knowledge level variables and relevant source of information. The study included 676 participants. Mean age was 32.5 (±SD 8.6) years and 353 (47.8%) were males. Almost all participants heard about the corona disease and causative agent. The study showed a fair overall knowledge (66.0%), less knowledge on epidemiological features of the disease (58.3%), and good knowledge (90.7%) on the clinical manifestation of the MERS-CoV. Internet was the major (89.0%) source of disease information, and other sources including health care providers, SMS, television, magazines and books were low rated (all <25%). In a multivariate logistic regression analysis age ≤30 years (Odds Ratio (OR)=1.647, 95%CI 1.048-2.584, P=0.030), male gender (OR=1.536, 95%CI 1.105-2.134, P=0.01), and no tertiary education (OR=1.957, 95%CI 1.264-3.030, P=0.003) were independent significant predictors of poor epidemiological knowledge. This study concludes that there was inadequate epidemiological knowledge received by the public and the reliance mostly on the clinical manifestations to recognizing the MERS-CoV disease. Comprehensive public health education programs is important to increase awareness of simple epidemiological determinants of the disease is warranted. Copyright © 2017. Published by Elsevier Ltd.

  18. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody

    PubMed Central

    Houser, Katherine V.; Gretebeck, Lisa; Vogel, Leatrice; Sutton, Troy; Orandle, Marlene; Moore, Ian N.

    2017-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that was first detected in humans in 2012 as a cause of severe acute respiratory disease. As of July 28, 2017, there have been 2,040 confirmed cases with 712 reported deaths. While many infections have been fatal, there have also been a large number of mild or asymptomatic cases discovered through monitoring and contact tracing. New Zealand white rabbits are a possible model for asymptomatic infection with MERS-CoV. In order to discover more about non-lethal infections and to learn whether a single infection with MERS-CoV would protect against reinfection, we inoculated rabbits with MERS-CoV and monitored the antibody and inflammatory response. Following intranasal infection, rabbits developed a transient dose-dependent pulmonary infection with moderately high levels of viral RNA, viral antigen, and perivascular inflammation in multiple lung lobes that was not associated with clinical signs. The rabbits developed antibodies against viral proteins that lacked neutralizing activity and the animals were not protected from reinfection. In fact, reinfection resulted in enhanced pulmonary inflammation, without an associated increase in viral RNA titers. Interestingly, passive transfer of serum from previously infected rabbits to naïve rabbits was associated with enhanced inflammation upon infection. We further found this inflammation was accompanied by increased recruitment of complement proteins compared to primary infection. However, reinfection elicited neutralizing antibodies that protected rabbits from subsequent viral challenge. Our data from the rabbit model suggests that people exposed to MERS-CoV who fail to develop a neutralizing antibody response, or persons whose neutralizing antibody titers have waned, may be at risk for severe lung disease on re-exposure to MERS-CoV. PMID:28817732

  19. X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Kallman, T. R.; Mushotzky, R. F.

    2011-01-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.

  20. Geology of the MER 2003 "Elysium" candidate landing site in southeastern Utopia Planitia, Mars

    USGS Publications Warehouse

    Tanaka, K.L.; Carr, M.H.; Skinner, J.A.; Gilmore, M.S.; Hare, T.M.

    2003-01-01

    The NASA Mars Exploration Rover (MER) Project has been considering a landing-site ellipse designated EP78B2 in southeastern Utopia Planitia, southwest of Elysium Mons. The site appears to be relatively safe for a MER landing site because of its predicted low wind velocities in mesoscale atmospheric circulation models and its low surface roughness at various scales as indicated by topographic and imaging data sets. Previously, the site's surface rocks have been interpreted to be marine sediments or lava flows. In addition, we suggest that Late Noachian to Early Hesperian collapse and mass wasting of Noachian highland rocks contributed to the deposition of detritus in the area of the ellipse. Furthermore, we document partial Late Hesperian to Early Amazonian resurfacing of the ellipse by flows and vents that may be of mud or silicate volcanic origin. A rover investigation of the Utopia landing site using the MER Athena instrument package might address some fundamental aspects of Martian geologic evolution, such as climate change, hydrologic evolution, and magmatic and tectonic history. Copyright 2003 by the American Geophysical Union.

  1. Challenges presented by MERS corona virus, and SARS corona virus to global health.

    PubMed

    Al-Hazmi, Ali

    2016-07-01

    Numerous viral infections have arisen and affected global healthcare facilities. Millions of people are at severe risk of acquiring several evolving viral infections through several factors. In the present article we have described about risk factors, chance of infection, and prevention methods of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV), human coronaviruses (CoVs) frequently cause a normal cold which is mild and self-restricting. Zoonotic transmission of CoVs such as the newly discovered MERS-CoV and SARS-CoV, may be associated with severe lower respiratory tract infection. The present review provides the recent clinical and pathological information on MERS and SARS. The task is to transform these discoveries about MERS and SARS pathogenesis and to develop intervention methods that will eventually allow the effective control of these recently arising severe viral infections. Global health sector has learnt many lessons through the recent outbreak of MERS and SARS, but the need for identifying new antiviral treatment was not learned. In the present article we have reviewed the literature on the several facets like transmission, precautions and effectiveness of treatments used in patients with MERS-CoV and SARS infections.

  2. Worry experienced during the 2015 Middle East Respiratory Syndrome (MERS) pandemic in Korea

    PubMed Central

    Ro, Jun-Soo; Lee, Jin-Seok; Kang, Sung-Chan; Jung, Hye-Min

    2017-01-01

    Background Korea failed in its risk communication during the early stage of the Middle East Respiratory Syndrome (MERS) outbreak; consequently, it faced difficulties in managing MERS, while disease-related worry increased. Disease-related worry can help disease prevention and management, but can also have a detrimental effect. This study measured the overall level of disease-related worry during the MERS outbreak period in Korea and the influencing factors and levels of disease-related worry during key outbreak periods. Methods The cross-sectional survey included 1,000 adults who resided in Korea. An ordinal logistic regression was performed for the overall level of MERS-related worry, and influencing factors of worry were analyzed. A reliability test was performed on the levels of MERS-related worry during key outbreak periods. Results The overall level of MERS-related worry was 2.44. Multivariate analysis revealed that women and respondents w very poor subjective health status had higher levels of worry. Respondents with very high stress in daily life had higher levels of worry than those who reported having little stress. The reliability test results on MERS-related worry scores during key outbreak periods showed consistent scores during each period. Conclusion Level of worry increased in cases having higher perceived susceptibility and greater trust in informal information, while initial stage of outbreak was closely associated with that at later stages. These findings suggest the importance of managing the level of worry by providing timely and accurate disease-related information during the initial stage of disease outbreak. PMID:28273131

  3. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction.

    PubMed

    Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric

    2017-09-15

    Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination-initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome-axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. © 2017 Tessé et al.; Published by Cold Spring Harbor Laboratory Press.

  4. The absorption, fluorescence and phosphorescence spectra of α and β-F, Cl, Br-naphthalenes in crystalline matrixes at 77 K

    NASA Astrophysics Data System (ADS)

    Iliescu, T.; Milea, I.; Abdolrahman, P. M.

    1984-03-01

    The paper studies the absorption, fluorescence and phosphorescence spectra of α and β-F, Cl, Br-naphtalenes (α, β-F, Cl,BrN) in different matrixes at 77 K and different concentrations. From these spectra one obtaines the vibrational frequences.

  5. Analytic Scattering and Refraction Models for Exoplanet Transit Spectra

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Fortney, Jonathan J.; Hubbard, William B.

    2017-12-01

    Observations of exoplanet transit spectra are essential to understanding the physics and chemistry of distant worlds. The effects of opacity sources and many physical processes combine to set the shape of a transit spectrum. Two such key processes—refraction and cloud and/or haze forward-scattering—have seen substantial recent study. However, models of these processes are typically complex, which prevents their incorporation into observational analyses and standard transit spectrum tools. In this work, we develop analytic expressions that allow for the efficient parameterization of forward-scattering and refraction effects in transit spectra. We derive an effective slant optical depth that includes a correction for forward-scattered light, and present an analytic form of this correction. We validate our correction against a full-physics transit spectrum model that includes scattering, and we explore the extent to which the omission of forward-scattering effects may bias models. Also, we verify a common analytic expression for the location of a refractive boundary, which we express in terms of the maximum pressure probed in a transit spectrum. This expression is designed to be easily incorporated into existing tools, and we discuss how the detection of a refractive boundary could help indicate the background atmospheric composition by constraining the bulk refractivity of the atmosphere. Finally, we show that opacity from Rayleigh scattering and collision-induced absorption will outweigh the effects of refraction for Jupiter-like atmospheres whose equilibrium temperatures are above 400-500 K.

  6. Two-peak structure in the K-edge RIXS spectra of a spatially frustrated Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Datta, Trinanjan; Luo, Cheng; Yao, Dao-Xin

    2014-03-01

    Quantum fluctuations due to spatial anisotropy and strong magnetic frustration lead to the formation of a two-peak structure in the K-edge bimagnon RIXS intensity spectra of a Jx-Jy-J2 Heisenberg model on a square lattice. We compute the RIXS intensity, including up to first order 1/S spin wave expansion correction, using the Bethe-Salpeter equation within the ladder approximation scheme. The two-peak feature occurs in both the antiferromagnetic phase and the collinear antiferromagnetic phase. A knowledge of the peak splitting energy from both magnetically ordered regime can provide experimentalists with an alternative means to measure and study the effects of local microscopic exchange constants. Cottrell Research Corporation, NSFC-11074310, NSFC-11275279, Specialized Research Fund for the Doctoral Program of Higher Education.

  7. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples.

    PubMed

    Pettengill, James B; Pightling, Arthur W; Baugher, Joseph D; Rand, Hugh; Strain, Errol

    2016-01-01

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging due to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). When analyzing empirical data (whole-genome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.

  8. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples

    DOE PAGES

    Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.; ...

    2016-11-10

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less

  9. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less

  10. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes.

    PubMed

    Lin, Min-Han; Moses, David C; Hsieh, Chih-Hua; Cheng, Shu-Chun; Chen, Yau-Hung; Sun, Chiao-Yin; Chou, Chi-Yuan

    2018-02-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in southern China in late 2002 and caused a global outbreak with a fatality rate around 10% in 2003. Ten years later, a second highly pathogenic human CoV, MERS-CoV, emerged in the Middle East and has spread to other countries in Europe, North Africa, North America and Asia. As of November 2017, MERS-CoV had infected at least 2102 people with a fatality rate of about 35% globally, and hence there is an urgent need to identify antiviral drugs that are active against MERS-CoV. Here we show that a clinically available alcohol-aversive drug, disulfiram, can inhibit the papain-like proteases (PL pro s) of MERS-CoV and SARS-CoV. Our findings suggest that disulfiram acts as an allosteric inhibitor of MERS-CoV PL pro but as a competitive (or mixed) inhibitor of SARS-CoV PL pro . The phenomenon of slow-binding inhibition and the irrecoverability of enzyme activity after removing unbound disulfiram indicate covalent inactivation of SARS-CoV PL pro by disulfiram, while synergistic inhibition of MERS-CoV PL pro by disulfiram and 6-thioguanine or mycophenolic acid implies the potential for combination treatments using these three clinically available drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Ballerina Experiment on the Rømer Mission

    NASA Astrophysics Data System (ADS)

    Brandt, Soren

    The Rømer mission has recently been approved as the next mission within the Danish Small Satellite Program. The scientific payload will consist of two separate experiments, the MONS and the Ballerina payloads. The primary objective of Ballerina is to provide accurate, real-time positions relayed to ground for ~ 70 Gamma Ray Bursts (GRBs) per year, and to study the temporal and spectral evolution of the early GRB X-ray afterglow. As an additional goal, Ballerina will detect and study bright X-ray transients, in particular X-ray novae and micro-quasar systems. R{\\o}mer is currently scheduled for launch in late 2003.

  12. Measurement and validation of benchmark-quality thick-target tungsten X-ray spectra below 150 kVp.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-11-01

    Pulse-height distributions of two constant potential X-ray tubes with fixed anode tungsten targets were measured and unfolded. The measurements employed quantitative alignment of the beam, the use of two different semiconductor detectors (high-purity germanium and cadmium-zinc-telluride), two different ion chamber systems with beam-specific calibration factors, and various filter and tube potential combinations. Monte Carlo response matrices were generated for each detector for unfolding the pulse-height distributions into spectra incident on the detectors. These response matrices were validated for the low error bars assigned to the data. A significant aspect of the validation of spectra, and a detailed characterization of the X-ray tubes, involved measuring filtered and unfiltered beams at multiple tube potentials (30-150 kVp). Full corrections to ion chamber readings were employed to convert normalized fluence spectra into absolute fluence spectra. The characterization of fixed anode pitting and its dominance over exit window plating and/or detector dead layer was determined. An Appendix of tabulated benchmark spectra with assigned error ranges was developed for future reference.

  13. Comparative Genomic Analysis MERS CoV Isolated from Humans and Camels with Special Reference to Virus Encoded Helicase.

    PubMed

    Alnazawi, Mohamed; Altaher, Abdallah; Kandeel, Mahmoud

    2017-01-01

    Middle East Respiratory Syndrome Coronavirus (MERS CoV) is a new emerging viral disease characterized by high fatality rate. Understanding MERS CoV genetic aspects and codon usage pattern is important to understand MERS CoV survival, adaptation, evolution, resistance to innate immunity, and help in finding the unique aspects of the virus for future drug discovery experiments. In this work, we provide comprehensive analysis of 238 MERS CoV full genomes comprised of human (hMERS) and camel (cMERS) isolates of the virus. MERS CoV genome shaping seems to be under compositional and mutational bias, as revealed by preference of A/T over G/C nucleotides, preferred codons, nucleotides at the third position of codons (NT3s), relative synonymous codon usage, hydropathicity (Gravy), and aromaticity (Aromo) indices. Effective number of codons (ENc) analysis reveals a general slight codon usage bias. Codon adaptation index reveals incomplete adaptation to host environment. MERS CoV showed high ability to resist the innate immune response by showing lower CpG frequencies. Neutrality evolution analysis revealed a more significant role of mutation pressure in cMERS over hMERS. Correspondence analysis revealed that MERS CoV genomes have three genetic clusters, which were distinct in their codon usage, host, and geographic distribution. Additionally, virtual screening and binding experiments were able to identify three new virus-encoded helicase binding compounds. These compounds can be used for further optimization of inhibitors.

  14. METALLICITY AND TEMPERATURE INDICATORS IN M DWARF K-BAND SPECTRA: TESTING NEW AND UPDATED CALIBRATIONS WITH OBSERVATIONS OF 133 SOLAR NEIGHBORHOOD M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Ayala, Barbara; Covey, Kevin R.; Lloyd, James P.

    2012-04-01

    We present K-band spectra for 133 nearby (d < 33 ps) M dwarfs, including 18 M dwarfs with reliable metallicity estimates (as inferred from an FGK type companion), 11 M dwarf planet hosts, more than 2/3 of the M dwarfs in the northern 8 pc sample, and several M dwarfs from the LSPM catalog. From these spectra, we measure equivalent widths of the Ca and Na lines, and a spectral index quantifying the absorption due to H{sub 2}O opacity (the H{sub 2}O-K2 index). Using empirical spectral type standards and synthetic models, we calibrate the H{sub 2}O-K2 index as an indicatormore » of an M dwarf's spectral type and effective temperature. We also present a revised relationship that estimates the [Fe/H] and [M/H] metallicities of M dwarfs from their Na I, Ca I, and H{sub 2}O-K2 measurements. Comparisons to model atmosphere provide a qualitative validation of our approach, but also reveal an overall offset between the atomic line strengths predicted by models as compared to actual observations. Our metallicity estimates also reproduce expected correlations with Galactic space motions and H{alpha} emission line strengths, and return statistically identical metallicities for M dwarfs within a common multiple system. Finally, we find systematic residuals between our H{sub 2}O-based spectral types and those derived from optical spectral features with previously known sensitivity to stellar metallicity, such as TiO, and identify the CaH1 index as a promising optical index for diagnosing the metallicities of near-solar M dwarfs.« less

  15. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors

    PubMed Central

    Linger, Rachel M.A.; Keating, Amy K.; Earp, H. Shelton

    2010-01-01

    Importance of the field Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the specific role of these receptor tyrosine kinases (RTKs) in the development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to mechanisms of cell survival, migration, invasion, metastasis, and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer. Areas covered in this review Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, non-small cell lung cancer, and breast cancer is examined. A comprehensive discussion of Axl and/or Mer inhibitors in development is also provided. What the reader will gain Potential toxicities associated with Axl or Mer inhibition are addressed. We hypothesize that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a unique therapeutic opportunity to target both tumor cells and the stromal components which facilitate disease progression. Take home message Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted inhibition of these RTKs may be effective as anti-tumor and/or anti-metastatic therapy, particularly if combined with standard cytotoxic therapies. PMID:20809868

  16. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.

    ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation.In vitroreplication attenuation also extends toin vivomodels, allowing use of dORF3-5 as a live attenuated vaccine platform.more » Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. IMPORTANCEThe initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.« less

  17. Spectral Irradiance Calibration in the Infrared. Part 7; New Composite Spectra, Comparison with Model Atmospheres, and Far-Infrared Extrapolations

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Carbon, Duane F.; Davies, John K.; Wooden, Diane H.; Bregman, Jesse D.

    1996-01-01

    We present five new absolutely calibrated continuous stellar spectra constructed as far as possible from spectral fragments observed from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer. These stars-alpha Boo, gamma Dra, alpha Cet, gamma Cru, and mu UMa-augment our six, published, absolutely calibrated spectra of K and early-M giants. All spectra have a common calibration pedigree. A revised composite for alpha Boo has been constructed from higher quality spectral fragments than our previously published one. The spectrum of gamma Dra was created in direct response to the needs of instruments aboard the Infrared Space Observatory (ISO); this star's location near the north ecliptic pole renders it highly visible throughout the mission. We compare all our low-resolution composite spectra with Kurucz model atmospheres and find good agreement in shape, with the obvious exception of the SiO fundamental, still lacking in current grids of model atmospheres. The CO fundamental seems slightly too deep in these models, but this could reflect our use of generic models with solar metal abundances rather than models specific to the metallicities of the individual stars. Angular diameters derived from these spectra and models are in excellent agreement with the best observed diameters. The ratio of our adopted Sirius and Vega models is vindicated by spectral observations. We compare IRAS fluxes predicted from our cool stellar spectra with those observed and conclude that, at 12 and 25 microns, flux densities measured by IRAS should be revised downwards by about 4.1% and 5.7%, respectively, for consistency with our absolute calibration. We have provided extrapolated continuum versions of these spectra to 300 microns, in direct support of ISO (PHT and LWS instruments). These spectra are consistent with IRAS flux densities at 60 and 100 microns.

  18. Students' Mental Models of Atomic Spectra

    ERIC Educational Resources Information Center

    Körhasan, Nilüfer Didis; Wang, Lu

    2016-01-01

    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…

  19. Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods

    NASA Astrophysics Data System (ADS)

    Lebovka, Nikolai I.; Vygornitskii, Nikolai V.; Gigiberiya, Volodymyr A.; Tarasevich, Yuri Yu.

    2016-12-01

    The vertical drying of a colloidal film containing rodlike particles was studied by means of kinetic Monte Carlo (MC) simulation. The problem was approached using a two-dimensional square lattice, and the rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). The initial state before drying was produced using a model of random sequential adsorption (RSA) with isotropic orientations of the k -mers (orientation of the k -mers along horizontal x and vertical y directions are equiprobable). In the RSA model, overlapping of the k -mers is forbidden. During the evaporation, an upper interface falls with a linear velocity of u in the vertical direction and the k -mers undergo translation Brownian motion. The MC simulations were run at different initial concentrations, pi, (pi∈[0 ,pj] , where pj is the jamming concentration), lengths of k -mers (k ∈[1 ,12 ] ), and solvent evaporation rates, u . For completely dried films, the spatial distributions of k -mers and their electrical conductivities in both x and y directions were examined. Significant evaporation-driven self-assembly and orientation stratification of the k -mers oriented along the x and y directions were observed. The extent of stratification increased with increasing value of k . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi, k , and u .

  20. ‘Postage-stamp PIV’: small velocity fields at 400 kHz for turbulence spectra measurements

    NASA Astrophysics Data System (ADS)

    Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Spitzer, Seth M.

    2018-03-01

    Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4000 frames but for an array of only 128  ×  120 pixels, giving the moniker of ‘postage-stamp PIV’. The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 120 kHz, at which point a noise floor emerges whose magnitude is dependent on the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. The frequency response of the present measurement configuration exceeds nearly all previous velocimetry measurements in high speed flow.

  1. Nordic Winter and Cold: Their Correspondence with Tomas Tranströmer's Poetry

    ERIC Educational Resources Information Center

    Hosian, Mohammad Akbar

    2015-01-01

    The Nobel Prize winning poet Tomas Tranströmer was born and bred in Sweden, a remarkably Scandinavian country. Topographically, Scandinavian countries are locations of extreme cold and snowing. This distinguishing climatic condition has had a dominant influence and impact on almost all Scandinavian art and literature, including Tomas Tranströmer's…

  2. Parametric models of reflectance spectra for dyed fabrics

    NASA Astrophysics Data System (ADS)

    Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph

    2016-05-01

    This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.

  3. The Synechocystis PCC6803 MerA-like enzyme operates in the reduction of both mercury and uranium under the control of the glutaredoxin 1 enzyme.

    PubMed

    Marteyn, Benoit; Sakr, Samer; Farci, Sandrine; Bedhomme, Mariette; Chardonnet, Solenne; Decottignies, Paulette; Lemaire, Stéphane D; Cassier-Chauvat, Corinne; Chauvat, Franck

    2013-09-01

    In a continuing effort to analyze the selectivity/redundancy of the three glutaredoxin (Grx) enzymes of the model cyanobacterium Synechocystis PCC6803, we have characterized an enzyme system that plays a crucial role in protection against two toxic metal pollutants, mercury and uranium. The present data show that Grx1 (Slr1562 in CyanoBase) selectively interacts with the presumptive mercuric reductase protein (Slr1849). This MerA enzyme plays a crucial role in cell defense against both mercuric and uranyl ions, in catalyzing their NADPH-driven reduction. Like MerA, Grx1 operates in cell protection against both mercury and uranium. The Grx1-MerA interaction requires cysteine 86 (C86) of Grx1 and C78 of MerA, which is critical for its reductase activity. MerA can be inhibited by glutathionylation and subsequently reactivated by Grx1, likely through deglutathionylation. The two Grx1 residues C31, which belongs to the redox active site (CX(2)C), and C86, which operates in MerA interactions, are both required for reactivation of MerA. These novel findings emphasize the role of glutaredoxins in tolerance to metal stress as well as the evolutionary conservation of the glutathionylation process, so far described mostly for eukaryotes.

  4. The Synechocystis PCC6803 MerA-Like Enzyme Operates in the Reduction of Both Mercury and Uranium under the Control of the Glutaredoxin 1 Enzyme

    PubMed Central

    Marteyn, Benoit; Sakr, Samer; Farci, Sandrine; Bedhomme, Mariette; Chardonnet, Solenne; Decottignies, Paulette; Lemaire, Stéphane D.; Cassier-Chauvat, Corinne

    2013-01-01

    In a continuing effort to analyze the selectivity/redundancy of the three glutaredoxin (Grx) enzymes of the model cyanobacterium Synechocystis PCC6803, we have characterized an enzyme system that plays a crucial role in protection against two toxic metal pollutants, mercury and uranium. The present data show that Grx1 (Slr1562 in CyanoBase) selectively interacts with the presumptive mercuric reductase protein (Slr1849). This MerA enzyme plays a crucial role in cell defense against both mercuric and uranyl ions, in catalyzing their NADPH-driven reduction. Like MerA, Grx1 operates in cell protection against both mercury and uranium. The Grx1-MerA interaction requires cysteine 86 (C86) of Grx1 and C78 of MerA, which is critical for its reductase activity. MerA can be inhibited by glutathionylation and subsequently reactivated by Grx1, likely through deglutathionylation. The two Grx1 residues C31, which belongs to the redox active site (CX2C), and C86, which operates in MerA interactions, are both required for reactivation of MerA. These novel findings emphasize the role of glutaredoxins in tolerance to metal stress as well as the evolutionary conservation of the glutathionylation process, so far described mostly for eukaryotes. PMID:23852862

  5. Large supramolecular structures of 33-mer gliadin peptide activate toll-like receptors in macrophages.

    PubMed

    Herrera, María Georgina; Pizzuto, Malvina; Lonez, Caroline; Rott, Karsten; Hütten, Andreas; Sewald, Norbert; Ruysschaert, Jean-Marie; Dodero, Veronica Isabel

    2018-04-22

    Gliadin, an immunogenic protein present in wheat, is not fully degraded by humans and after the normal gastric and pancreatic digestion, the immunodominant 33-mer gliadin peptide remains unprocessed. The 33-mer gliadin peptide is found in human faeces and urine, proving not only its proteolytic resistance in vivo but more importantly its transport through the entire human body. Here, we demonstrate that 33-mer supramolecular structures larger than 220 nm induce the overexpression of nuclear factor kappa B (NF-κB) via a specific Toll-like Receptor (TLR) 2 and (TLR) 4 dependent pathway and the secretion of pro-inflammatory cytokines such as IP-10/CXCL10 and TNF-α. Using helium ion microscopy, we elucidated the initial stages of oligomerisation of 33-mer gliadin peptide, showing that rod-like oligomers are nucleation sites for protofilament formation. The relevance of the 33-mer supramolecular structures in the early stages of the disease is paving new perspectives in the understanding of gluten-related disorders. Copyright © 2018. Published by Elsevier Inc.

  6. Public response to MERS-CoV in the Middle East: iPhone survey in six countries.

    PubMed

    Alqahtani, Amani S; Rashid, Harunor; Basyouni, Mada H; Alhawassi, Tariq M; BinDhim, Nasser F

    Gulf Cooperation Council (GCC) countries bear the heaviest brunt of MERS-CoV. This study aims to compare public awareness and practice around MERS-CoV across GCC countries. A cross-sectional survey was conducted using the Gulf Indicators (GI) smartphone app among people in the six GCC countries, namely Saudi Arabia, Kuwait, the United Arab Emirates, Qatar, Bahrain, and Oman. A total of 1812 participants recruited. All were aware of MERS-CoV, yet the perception and practice around MERS-CoV varied widely between countries. Over two thirds were either "not concerned" or "slightly concerned" about contracting MERS-CoV; believing that they were under Allah's (God's) protection (40%) was the most cited reason. While 79% were aware that the disease can transmit through droplet from infected person, only 12% stated that MERS-CoV transmits via camels; people in Saudi Arabia were better aware of the transmission. Nevertheless, only 22% of respondents believed that camels are the zoonotic reservoir of MERS-CoV. Those who were concerned about contracting MERS-CoV (aOR: 1.6, 95% CI: 1.2-2.1, p<0.01) and those who thought MERS-CoV to be a severe disease only for those with high-risk conditions (aOR: 1.5, 95% CI: 1.1-2.1, p<0.01) were more likely to believe that camels are the zoonotic source. However, residents of KSA (aOR: 0.03, 95% CI: 0.01-0.07, p<0.01), UAE (aOR: 0.01, 95% CI: 0.004-0.02, p<0.01) and Kuwait (aOR: 0.03, 95% CI: 0.01-0.07, p<0.01) were less likely to believe that camels are the main zoonotic source compared to respondents from the other countries. Hygienic measures were more commonly adopted than avoidance of camels or their raw products, yet there was a discrepancy between the countries. This study highlights that despite being aware of the ongoing MERS-CoV epidemic; many people lack accurate understanding about MERS-CoV transmission, prevention, and are not fully compliant with preventive measures. Copyright © 2017 The Authors. Published by Elsevier Ltd

  7. Comparative Modelling of the Spectra of Cool Giants

    NASA Technical Reports Server (NTRS)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  8. 28-mer Fragment Derived from Enterocin CRL35 Displays an Unexpected Bactericidal Effect on Listeria Cells.

    PubMed

    Masias, Emilse; Sanches, Paulo R S; Dupuy, Fernando G; Acuna, Leonardo; Bellomio, Augusto; Cilli, Eduardo; Saavedra, Lucila; Minahk, Carlos

    2015-01-01

    Two shorter peptides derived from enterocin CRL35, a 43-mer bacteriocin, were synthesized i.e. the N-terminal fragment spanning from residues 1 to 15, and a 28-mer fragment that represents the C-terminal of enterocin CRL35, the residues 16 to 43. The separate peptides showed no activity when combined. On one hand, the 28-mer peptide displayed an unpredicted antimicrobial activity. On the other, 15- mer peptide had no consistent anti-Listeria effect. The dissociation constants calculated from experimental data indicated that all peptides could bind at similar extent to the sensitive cells. However, transmembrane electrical potential was not dissipated to the same level by the different peptides; whereas the full-length and the C-terminal 28-mer fragment induced almost full dissipation, 15-mer fragment produced only a slow and incomplete effect. Furthermore, a different interaction of each peptide with membranes was demonstrated based on studies carried out with liposomes, which led us to conclude that activity was related to structure rather than to net positive charges. These results open up the possibility of designing new peptides based on the 28-mer fragment with enhanced activity, which would represent a promising approach for combating Listeria and other pathogens.

  9. Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

    PubMed Central

    2015-01-01

    Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792

  10. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.

    PubMed

    Hendriks, P H G M; Maucec, M; de Meijer, R J

    2002-09-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.

  11. EMPCA and Cluster Analysis of Quasar Spectra: Construction and Application to Simulated Spectra

    NASA Astrophysics Data System (ADS)

    Marrs, Adam; Leighly, Karen; Wagner, Cassidy; Macinnis, Francis

    2017-01-01

    Quasars have complex spectra with emission lines influenced by many factors. Therefore, to fully describe the spectrum requires specification of a large number of parameters, such as line equivalent width, blueshift, and ratios. Principal Component Analysis (PCA) aims to construct eigenvectors-or principal components-from the data with the goal of finding a few key parameters that can be used to predict the rest of the spectrum fairly well. Analysis of simulated quasar spectra was used to verify and justify our modified application of PCA.We used a variant of PCA called Weighted Expectation Maximization PCA (EMPCA; Bailey 2012) along with k-means cluster analysis to analyze simulated quasar spectra. Our approach combines both analytical methods to address two known problems with classical PCA. EMPCA uses weights to account for uncertainty and missing points in the spectra. K-means groups similar spectra together to address the nonlinearity of quasar spectra, specifically variance in blueshifts and widths of the emission lines.In producing and analyzing simulations, we first tested the effects of varying equivalent widths and blueshifts on the derived principal components, and explored the differences between standard PCA and EMPCA. We also tested the effects of varying signal-to-noise ratio. Next we used the results of fits to composite quasar spectra (see accompanying poster by Wagner et al.) to construct a set of realistic simulated spectra, and subjected those spectra to the EMPCA /k-means analysis. We concluded that our approach was validated when we found that the mean spectra from our k-means clusters derived from PCA projection coefficients reproduced the trends observed in the composite spectra.Furthermore, our method needed only two eigenvectors to identify both sets of correlations used to construct the simulations, as well as indicating the linear and nonlinear segments. Comparing this to regular PCA, which can require a dozen or more components, or to

  12. Efficacy of a Mer and Flt3 tyrosine kinase small molecule inhibitor, UNC1666, in acute myeloid leukemia

    PubMed Central

    Lee-Sherick, Alisa B.; Zhang, Weihe; Menachof, Kelly K.; Hill, Amanda A.; Rinella, Sean; Kirkpatrick, Gregory; Page, Lauren S.; Stashko, Michael A.; Jordan, Craig T.; Wei, Qi; Liu, Jing; Zhang, Dehui; DeRyckere, Deborah; Wang, Xiaodong; Frye, Stephen; Earp, H. Shelton; Graham, Douglas K.

    2015-01-01

    Mer and Flt3 receptor tyrosine kinases have been implicated as therapeutic targets in acute myeloid leukemia (AML). In this manuscript we describe UNC1666, a novel ATP-competitive small molecule tyrosine kinase inhibitor, which potently diminishes Mer and Flt3 phosphorylation in AML. Treatment with UNC1666 mediated biochemical and functional effects in AML cell lines expressing Mer or Flt3 internal tandem duplication (ITD), including decreased phosphorylation of Mer, Flt3 and downstream effectors Stat, Akt and Erk, induction of apoptosis in up to 98% of cells, and reduction of colony formation by greater than 90%, compared to treatment with vehicle. These effects were dose-dependent, with inhibition of downstream signaling and functional effects correlating with the degree of Mer or Flt3 kinase inhibition. Treatment of primary AML patient samples expressing Mer and/or Flt3-ITD with UNC1666 also inhibited Mer and Flt3 intracellular signaling, induced apoptosis, and inhibited colony formation. In summary, UNC1666 is a novel potent small molecule tyrosine kinase inhibitor that decreases oncogenic signaling and myeloblast survival, thereby validating dual Mer/Flt3 inhibition as an attractive treatment strategy for AML. PMID:25762638

  13. Effects of Human Recombinant PEDF Protein and PEDF-Derived Peptide 34-mer on Choroidal Neovascularization

    PubMed Central

    Amaral, Juan

    2010-01-01

    Purpose. Pigment epithelium-derived factor (PEDF) is a serpin with antiangiogenic properties. Previously, the authors showed that PEDF injected into the subconjunctiva reaches the choroid. Here, they examined the effects of PEDF polypeptide fragments on vessel sprouting and on choroidal neovascularization (CNV) after subconjunctival administration. Methods. Recombinant human PEDF (rhuPEDF) was cleaved at its serpin-exposed loop by limited chymotrypsin proteolysis. Synthetic PEDF peptides 34-mer (Asp44-Asn77) and 44-mer (Val78-Thr121) were used. Ex vivo chick aortic vessel sprouting assays were performed. CNV was induced in rats by laser injury of Bruch's membrane. Daily subconjunctival injections (0.01–10 pmol/d protein) were performed for 5 days starting at day of injury or at the seventh day after injury. New vessel volumes were quantified using optical sections of choroid/RPE flat-mounts labeled with isolectin-Ib4. PEDF distribution was evaluated by immunofluorescence of choroid/RPE/retina cross-sections. Results. Full-length rhuPEDF, cleaved rhuPEDF, or peptide 34-mer exhibited ex vivo antiangiogenic activity, but peptide 44-mer was inefficient. PEDF immunostaining around CNV lesions diminished after laser injury. Subconjunctival administration of rhuPEDF or 34-mer at 0.1 pmol/d decreased CNV lesion volumes by 52% and 47%, respectively, whereas those of 44-mer were similar to vehicle injections. Doses of 0.1 and 1 pmol/d rhuPEDF decreased fully developed CNV complex volumes by 45% and 50%, respectively, compared with vehicle injections. Conclusions. A functional region for the inhibition of vessel sprouting and CNV resides within the 34-mer region of PEDF. Furthermore, subconjunctival administration of optimal range dosages of rhuPEDF or 34-mer can suppress and regress rat CNV lesions, demonstrating that these agents reach the choroid/RPE complex as functionally active molecules. PMID:19850839

  14. Anisotropic spectra of acoustic type turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, E.; P.N. Lebedev Physical Institute, 53 Leninsky Ave., 119991 Moscow; Krasnoselskikh, V.

    2008-06-15

    The problem of spectra for acoustic type of turbulence generated by shocks being randomly distributed in space is considered. It is shown that for turbulence with a weak anisotropy, such spectra have the same dependence in k-space as the Kadomtsev-Petviashvili spectrum: E(k){approx}k{sup -2}. However, the frequency spectrum has always the falling {approx}{omega}{sup -2}, independent of anisotropy. In the strong anisotropic case the energy distribution relative to wave vectors takes anisotropic dependence, forming in the large-k region spectra of the jet type.

  15. Sparse evidence of MERS-CoV infection among animal workers living in Southern Saudi Arabia during 2012

    PubMed Central

    Memish, Ziad A; Alsahly, Ahmad; Masri, Malak al; Heil, Gary L; Anderson, Benjamin D; Peiris, Malik; Khan, Salah Uddin; Gray, Gregory C

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging viral pathogen that primarily causes respiratory illness. We conducted a seroprevalence study of banked human serum samples collected in 2012 from Southern Saudi Arabia. Sera from 300 animal workers (17% with daily camel exposure) and 50 non-animal-exposed controls were examined for serological evidence of MERS-CoV infection by a pseudoparticle MERS-CoV spike protein neutralization assay. None of the sera reproducibly neutralized the MERS-CoV-pseudotyped lentiviral vector. These data suggest that serological evidence of zoonotic transmission of MERS-CoV was not common among animal workers in Southern Saudi Arabia during July 2012. PMID:25470665

  16. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis

    PubMed Central

    Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.; Gralinski, Lisa E.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Douglas, Madeline G.; Scobey, Trevor; Beall, Anne; Dinnon, Kenneth; Kocher, Jacob F.; Hale, Andrew E.; Stratton, Kelly G.; Waters, Katrina M.

    2017-01-01

    ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. PMID:28830941

  17. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene.

    PubMed Central

    Rugh, C L; Wilde, H D; Stack, N M; Thompson, D M; Summers, A O; Meagher, R B

    1996-01-01

    With global heavy metal contamination increasing, plants that can process heavy metals might provide efficient and ecologically sound approaches to sequestration and removal. Mercuric ion reductase, MerA, converts toxic Hg2+ to the less toxic, relatively inert metallic mercury (Hg0) The bacterial merA sequence is rich in CpG dinucleotides and has a highly skewed codon usage, both of which are particularly unfavorable to efficient expression in plants. We constructed a mutagenized merA sequence, merApe9, modifying the flanking region and 9% of the coding region and placing this sequence under control of plant regulatory elements. Transgenic Arabidopsis thaliana seeds expressing merApe9 germinated, and these seedlings grew, flowered, and set seed on medium containing HgCl2 concentrations of 25-100 microM (5-20 ppm), levels toxic to several controls. Transgenic merApe9 seedlings evolved considerable amounts of Hg0 relative to control plants. The rate of mercury evolution and the level of resistance were proportional to the steady-state mRNA level, confirming that resistance was due to expression of the MerApe9 enzyme. Plants and bacteria expressing merApe9 were also resistant to toxic levels of Au3+. These and other data suggest that there are potentially viable molecular genetic approaches to the phytoremediation of metal ion pollution. Images Fig. 2 Fig. 3 Fig. 4 PMID:8622910

  18. The P K-near edge absorption spectra of phosphates

    NASA Astrophysics Data System (ADS)

    Franke, R.; Hormes, J.

    1995-12-01

    The X-ray absorption near edge structure (XANES) at the P K-edge in several orthophosphates with various cations, in condensed, and in substituted sodium phosphates have been measured using synchrotron radiation from the ELSA storage ring at the University of Bonn. The measured spectra demonstrate that chemical changes beyond the PO 4- tetrahedra are reflected by energy shifts of the pre-edge and continuum resonances, by the presence of characteristic shoulders and new peaks and by differences in the intensity of the white line. We discuss the energy differences between the white line positions and the corresponding P ls binding energies as a measure of half of the energy gap. The corresponding values correlate with the valence of the cations and the intensity of the white lines. The energy positions of the continuum resonances are discussed on the basis of an empirical bond-length correlation supporting a 1/ r2 - dependence.

  19. The effect of multiple external representations (MERs) worksheets toward complex system reasoning achievement

    NASA Astrophysics Data System (ADS)

    Sumarno; Ibrahim, M.; Supardi, Z. A. I.

    2018-03-01

    The application of a systems approach to assessing biological systems provides hope for a coherent understanding of cell dynamics patterns and their relationship to plant life. This action required the reasoning about complex systems. In other sides, there were a lot of researchers who provided the proof about the instructional successions. They involved the multiple external representations which improved the biological learning. The researcher conducted an investigation using one shoot case study design which involved 30 students in proving that the MERs worksheets could affect the student's achievement of reasoning about complex system. The data had been collected based on test of reasoning about complex system and student's identification result who worked through MERs. The result showed that only partially students could achieve reasoning about system complex, but their MERs skill could support their reasoning ability of complex system. This study could bring a new hope to develop the MERs worksheet as a tool to facilitate the reasoning about complex system.

  20. Feasibility of Using Convalescent Plasma Immunotherapy for MERS-CoV Infection, Saudi Arabia.

    PubMed

    Arabi, Yaseen M; Hajeer, Ali H; Luke, Thomas; Raviprakash, Kanakatte; Balkhy, Hanan; Johani, Sameera; Al-Dawood, Abdulaziz; Al-Qahtani, Saad; Al-Omari, Awad; Al-Hameed, Fahad; Hayden, Frederick G; Fowler, Robert; Bouchama, Abderrezak; Shindo, Nahoko; Al-Khairy, Khalid; Carson, Gail; Taha, Yusri; Sadat, Musharaf; Alahmadi, Mashail

    2016-09-01

    We explored the feasibility of collecting convalescent plasma for passive immunotherapy of Middle East respiratory syndrome coronavirus (MERS-CoV) infection by using ELISA to screen serum samples from 443 potential plasma donors: 196 patients with suspected or laboratory-confirmed MERS-CoV infection, 230 healthcare workers, and 17 household contacts exposed to MERS-CoV. ELISA-reactive samples were further tested by indirect fluorescent antibody and microneutralization assays. Of the 443 tested samples, 12 (2.7%) had a reactive ELISA result, and 9 of the 12 had reactive indirect fluorescent antibody and microneutralization assay titers. Undertaking clinical trials of convalescent plasma for passive immunotherapy of MERS-CoV infection may be feasible, but such trials would be challenging because of the small pool of potential donors with sufficiently high antibody titers. Alternative strategies to identify convalescent plasma donors with adequate antibody titers should be explored, including the sampling of serum from patients with more severe disease and sampling at earlier points during illness.

  1. High resolution spectroscopy over 8500-8750 Å for GAIA <= 50 000 K. III. A library of synthetic spectra for 7750 <= Teff

    NASA Astrophysics Data System (ADS)

    Castelli, F.; Munari, U.

    2001-02-01

    In this paper we complete the library of synthetic spectra for the range 7650-8750 Å, which includes the 8500-8750 Å interval currently base-lined for the spectroscopic observations by GAIA, candidate ESA Cornerstone 5 mission. As for Paper II, the spectra are based on Kurucz's codes and line data. The explored metallicity, gravity and temperature ranges are -2.5<= [Z/Zsun]<= +0.5, 4.5<=log g<= 2.0 and 7750<=Teff <=50 000 K, respectively. The 698 new spectra are computed at the same lambda / bigtriangleup lambda =20 000 resolving power of the observed spectra given in Paper I (131 standard stars mapping the MKK spectral classification system) and the 254 synthetic spectra of Paper II (characterized by Teff <= 7 500 K). Tables 2-4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/366/1003 or via the personal HomePage http://ulisse.pd.astro.it/Astro/Atlases/ The spectra are available in electronic form at the CDS. Figures 5-224 are only available in electronic form at http://www.edpsciences.org

  2. The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia.

    PubMed

    Kinfe, Thomas M; Vesper, Jan

    2013-01-01

    Deep brain stimulation (DBS) of the basal ganglia (Ncl. subthalamicus, Ncl. ventralis intermedius thalami, globus pallidus internus) has become an evidence-based and well-established treatment option in otherwise refractory movement disorders. The Ncl. subthalamicus (STN) is the target of choice in Parkinson's disease.However, a considerable discussion is currently ongoing with regard to the necessity for micro-electrode recording (MER) in DBS surgery.The present review provides an overview on deep brain stimulation and (MER) of the STN in patients with Parkinson's disease. Detailed description is given concerning the multichannel MER systems nowadays available for DBS of the basal ganglia, especially of the STN, as a useful tool for target refinement. Furthermore, an overview is given of the historical aspects, spatial mapping of the STN by MER, and its impact for accuracy and precision in current functional stereotactic neurosurgery.The pros concerning target refinement by MER means on the one hand, and cons including increased bleeding risk, increased operation time, local or general anesthesia, and single versus multichannel microelectrode recording are discussed in detail. Finally, the authors favor the use of MER with intraoperative testing combined with imaging to achieve a more precise electrode placement, aiming to ameliorate clinical outcome in therapy-resistant movement disorders.

  3. Conserved antigenic sites between MERS-CoV and Bat-coronavirus are revealed through sequence analysis.

    PubMed

    Sharmin, Refat; Islam, Abul B M M K

    2016-01-01

    MERS-CoV is a newly emerged human coronavirus reported closely related with HKU4 and HKU5 Bat coronaviruses. Bat and MERS corona-viruses are structurally related. Therefore, it is of interest to estimate the degree of conserved antigenic sites among them. It is of importance to elucidate the shared antigenic-sites and extent of conservation between them to understand the evolutionary dynamics of MERS-CoV. Multiple sequence alignment of the spike (S), membrane (M), enveloped (E) and nucleocapsid (N) proteins was employed to identify the sequence conservation among MERS and Bat (HKU4, HKU5) coronaviruses. We used various in silico tools to predict the conserved antigenic sites. We found that MERS-CoV shared 30 % of its S protein antigenic sites with HKU4 and 70 % with HKU5 bat-CoV. Whereas 100 % of its E, M and N protein's antigenic sites are found to be conserved with those in HKU4 and HKU5. This sharing suggests that in case of pathogenicity MERS-CoV is more closely related to HKU5 bat-CoV than HKU4 bat-CoV. The conserved epitopes indicates their evolutionary relationship and ancestry of pathogenicity.

  4. Comparison of incubation period distribution of human infections with MERS-CoV in South Korea and Saudi Arabia.

    PubMed

    Virlogeux, Victor; Fang, Vicky J; Park, Minah; Wu, Joseph T; Cowling, Benjamin J

    2016-10-24

    The incubation period is an important epidemiologic distribution, it is often incorporated in case definitions, used to determine appropriate quarantine periods, and is an input to mathematical modeling studies. Middle East Respiratory Syndrome coronavirus (MERS) is an emerging infectious disease in the Arabian Peninsula. There was a large outbreak of MERS in South Korea in 2015. We examined the incubation period distribution of MERS coronavirus infection for cases in South Korea and in Saudi Arabia. Using parametric and nonparametric methods, we estimated a mean incubation period of 6.9 days (95% credibility interval: 6.3-7.5) for cases in South Korea and 5.0 days (95% credibility interval: 4.0-6.6) among cases in Saudi Arabia. In a log-linear regression model, the mean incubation period was 1.42 times longer (95% credibility interval: 1.18-1.71) among cases in South Korea compared to Saudi Arabia. The variation that we identified in the incubation period distribution between locations could be associated with differences in ascertainment or reporting of exposure dates and illness onset dates, differences in the source or mode of infection, or environmental differences.

  5. Neutron spectra from beam-target reactions in dense Z-pinches

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2015-10-01

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  6. Modeling the Conformation-Specific Infrared Spectra of N-Alkylbenzenes

    NASA Astrophysics Data System (ADS)

    Tabor, Daniel P.; Sibert, Edwin; Hewett, Daniel M.; Korn, Joseph A.; Zwier, Timothy S.

    2016-06-01

    Conformation-specific UV-IR double resonance spectra are presented for n-alkylbenzenes. With the aid of a local mode Hamiltonian that includes the effects of stretch-bend Fermi coupling, the spectra of ethyl, n-propyl, and n-butylbenzene are assigned to individual conformers. These molecules allow for further development of the work on a first principles method for calculating alkyl stretch spectra. Due to the consistency of the anharmonic couplings from conformer to conformer, construction of the model Hamiltonian for a given conformer only requires a harmonic frequency calculation at the conformer's minimum geometry as an input. The model Hamiltonian can be parameterized with either density functional theory or MP2 electronic structure calculations. The relative strengths and weaknesses of these methods are evaluated, including their predictions of the relative energetics of the conformers. Finally, the IR spectra for conformers that have the alkyl chain bend back and interact with the π cloud of the benzene ring are modeled.

  7. Design of Chemical Literacy Assessment by Using Model of Educational Reconstruction (MER) on Solubility Topic

    NASA Astrophysics Data System (ADS)

    Yusmaita, E.; Nasra, Edi

    2018-04-01

    This research aims to produce instrument for measuring chemical literacy assessment in basic chemistry courses with solubility topic. The construction of this measuring instrument is adapted to the PISA (Programme for International Student Assessment) problem’s characteristics and the Syllaby of Basic Chemistry in KKNI-IndonesianNational Qualification Framework. The PISA is a cross-country study conducted periodically to monitor the outcomes of learners' achievement in each participating country. So far, studies conducted by PISA include reading literacy, mathematic literacy and scientific literacy. Refered to the scientific competence of the PISA study on science literacy, an assessment designed to measure the chemical literacy of the chemistry department’s students in UNP. The research model used is MER (Model of Educational Reconstruction). The validity and reliability values of discourse questions is measured using the software ANATES. Based on the acquisition of these values is obtained a valid and reliable chemical literacy questions.There are seven question items limited response on the topic of solubility with valid category, the acquisition value of test reliability is 0,86, and has a difficulty index and distinguishing good

  8. A Parameter Study for Modeling Mg ii h and k Emission during Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio da Costa, Fatima; Kleint, Lucia, E-mail: frubio@stanford.edu

    2017-06-20

    Solar flares show highly unusual spectra in which the thermodynamic conditions of the solar atmosphere are encoded. Current models are unable to fully reproduce the spectroscopic flare observations, especially the single-peaked spectral profiles of the Mg ii h and k lines. We aim to understand the formation of the chromospheric and optically thick Mg ii h and k lines in flares through radiative transfer calculations. We take a flare atmosphere obtained from a simulation with the radiative hydrodynamic code RADYN as input for a radiative transfer modeling with the RH code. By iteratively changing this model atmosphere and varying thermodynamicmore » parameters such as temperature, electron density, and velocity, we study their effects on the emergent intensity spectra. We reproduce the typical single-peaked Mg ii h and k flare spectral shape and approximate the intensity ratios to the subordinate Mg ii lines by increasing either densities, temperatures, or velocities at the line core formation height range. Additionally, by combining unresolved upflows and downflows up to ∼250 km s{sup −1} within one resolution element, we reproduce the widely broadened line wings. While we cannot unambiguously determine which mechanism dominates in flares, future modeling efforts should investigate unresolved components, additional heat dissipation, larger velocities, and higher densities and combine the analysis of multiple spectral lines.« less

  9. Comparison of remotely sensed continental-shelf wave spectra with spectra computed by using a wave refraction computer model

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1976-01-01

    An initial attempt was made to verify the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave refraction model. The model was used to simulate refraction occurring during a continental-shelf remote sensing experiment conducted on August 17, 1973. Simulated wave spectra compared favorably, in a qualitative sense, with the experimental spectra. However, it was observed that most of the wave energy resided at frequencies higher than those for which refraction and shoaling effects were predicted, In addition, variations among the experimental spectra were so small that they were not considered statistically significant. In order to verify the refraction model, simulation must be performed in conjunction with a set of significantly varying spectra in which a considerable portion of the total energy resides at frequencies for which refraction and shoaling effects are likely.

  10. Dromedary camels and the transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    PubMed Central

    Hemida, Maged G; Elmoslemany, Ahmed; Al-Hizab, Fahad; Alnaeem, Abdulmohsen; Almathen, Faisal; Faye, Bernard; Chu, Daniel KW; Perera, Ranawaka A; Peiris, Malik

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an existential threat to global public health. The virus has been repeatedly detected in dromedary camels (Camelus dromedarius). Adult animals in many countries in the Middle East as well as in North and East Africa showed high (>90%) sero-prevalence to the virus. MERS-CoV isolated from dromedaries is genetically and phenotypically similar to viruses from humans. We summarise current understanding of the ecology of MERS-CoV in animals and transmission at the animal-human interface. We review aspects of husbandry, animal movements and trade and the use and consumption of camel dairy and meat products in the Middle East that may be relevant to the epidemiology of MERS. We also highlight the gaps in understanding the transmission of this virus in animals and from animals to humans. PMID:26256102

  11. Deriving the intermediate spectra and photocycle kinetics from time-resolved difference spectra of bacteriorhodopsin. The simpler case of the recombinant D96N protein

    NASA Technical Reports Server (NTRS)

    Zimanyi, L.; Lanyi, J. K.

    1993-01-01

    The bacteriorhodopsin photocycle contains more than five spectrally distinct intermediates, and the complexity of their interconversions has precluded a rigorous solution of the kinetics. A representation of the photocycle of mutated D96N bacteriorhodopsin near neutral pH was given earlier (Varo, G., and J. K. Lanyi. 1991. Biochemistry. 30:5008-5015) as BRhv-->K<==>L<==>M1-->M2--> BR. Here we have reduced a set of time-resolved difference spectra for this simpler system to three base spectra, each assumed to consist of an unknown mixture of the pure K, L, and M difference spectra represented by a 3 x 3 matrix of concentration values between 0 and 1. After generating all allowed sets of spectra for K, L, and M (i.e., M1 + M2) at a 1:50 resolution of the matrix elements, invalid solutions were eliminated progressively in a search based on what is expected, empirically and from the theory of polyene excited states, for rhodopsin spectra. Significantly, the average matrix values changed little after the first and simplest of the search criteria that disallowed negative absorptions and more than one maximum for the M intermediate. We conclude from the statistics that during the search the solutions strongly converged into a narrow region of the multidimensional space of the concentration matrix. The data at three temperatures between 5 and 25 degrees C yielded a single set of spectra for K, L, and M; their fits are consistent with the earlier derived photocycle model for the D96N protein.

  12. Cell Surface Display of MerR on Saccharomyces cerevisiae for Biosorption of Mercury.

    PubMed

    Wei, Qinguo; Yan, Jiakuo; Chen, Yao; Zhang, Lei; Wu, Xiaoyang; Shang, Shuai; Ma, Shisheng; Xia, Tian; Xue, Shuyu; Zhang, Honghai

    2018-01-01

    The metalloregulatory protein MerR which plays important roles in mer operon system exhibits high affinity and selectivity toward mercury (II) (Hg 2+ ). In order to improve the adsorption ability of Saccharomyces cerevisiae for Hg 2+ , MerR was displayed on the surface of S. cerevisiae for the first time with an α-agglutinin-based display system in this study. The merR gene was synthesized after being optimized and added restriction endonuclease sites EcoR I and Mlu I. The display of MerR was indirectly confirmed by the enhanced adsorption ability of S. cerevisiae for Hg 2+ and colony PCR. The hydride generation atomic absorption spectrometry was applied to measure the Hg 2+ content in water. The engineered yeast strain not only showed higher tolerance to Hg, but also their adsorption ability was much higher than that of origin and control strains. The engineered yeast could adsorb Hg 2+ under a wide range of pH levels, and it could also adsorb Hg 2+ effectively with Cd 2+ and Cu 2+ coexistence. Furthermore, the engineered yeast strain could adsorb ultra-trace Hg 2+ effectively. The results above showed that the surface-engineered yeast strain could adsorb Hg 2+ under complex environmental conditions and could be used for the biosorption and bioremediation of environmental Hg contaminants.

  13. Prediction of Iron K-Edge Absorption Spectra Using Time-Dependent Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, S.DeBeer; Petrenko, T.; Neese, F.

    2009-05-14

    Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O{sub h} to T{sub d} geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis setmore » on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed.« less

  14. Serological Evidence of MERS-CoV Antibodies in Dromedary Camels (Camelus dromedaries) in Laikipia County, Kenya

    PubMed Central

    Deem, Sharon L.; Fèvre, Eric M.; Kinnaird, Margaret; Browne, A. Springer; Muloi, Dishon; Godeke, Gert-Jan; Koopmans, Marion; Reusken, Chantal B.

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently identified virus causing severe viral respiratory illness in people. Little is known about the reservoir in the Horn of Africa. In Kenya, where no human MERS cases have been reported, our survey of 335 dromedary camels, representing nine herds in Laikipia County, showed a high seroprevalence (46.9%) to MERS-CoV antibodies. Between herd differences were present (14.3%– 82.9%), but was not related to management type or herd isolation. Further research should focus on identifying similarity between MERS-CoV viral isolates in Kenya and clinical isolates from the Middle East and elsewhere. PMID:26473733

  15. Serological Evidence of MERS-CoV Antibodies in Dromedary Camels (Camelus dromedaries) in Laikipia County, Kenya.

    PubMed

    Deem, Sharon L; Fèvre, Eric M; Kinnaird, Margaret; Browne, A Springer; Muloi, Dishon; Godeke, Gert-Jan; Koopmans, Marion; Reusken, Chantal B

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently identified virus causing severe viral respiratory illness in people. Little is known about the reservoir in the Horn of Africa. In Kenya, where no human MERS cases have been reported, our survey of 335 dromedary camels, representing nine herds in Laikipia County, showed a high seroprevalence (46.9%) to MERS-CoV antibodies. Between herd differences were present (14.3%- 82.9%), but was not related to management type or herd isolation. Further research should focus on identifying similarity between MERS-CoV viral isolates in Kenya and clinical isolates from the Middle East and elsewhere.

  16. Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study.

    PubMed

    Alsaad, Khaled O; Hajeer, Ali H; Al Balwi, Mohammed; Al Moaiqel, Mohammed; Al Oudah, Nourah; Al Ajlan, Abdulaziz; AlJohani, Sameera; Alsolamy, Sami; Gmati, Giamal E; Balkhy, Hanan; Al-Jahdali, Hamdan H; Baharoon, Salim A; Arabi, Yaseen M

    2018-02-01

    The pathogenesis, viral localization and histopathological features of Middle East respiratory syndrome - coronavirus (MERS-CoV) in humans are not described sufficiently. The aims of this study were to explore and define the spectrum of histological and ultrastructural pathological changes affecting various organs in a patient with MERS-CoV infection and represent a base of MERS-CoV histopathology. We analysed the post-mortem histopathological findings and investigated localisation of viral particles in the pulmonary and extrapulmonary tissue by transmission electron microscopic examination in a 33-year-old male patient of T cell lymphoma, who acquired MERS-CoV infection. Tissue needle biopsies were obtained from brain, heart, lung, liver, kidney and skeletal muscle. All samples were collected within 45 min from death to reduce tissue decomposition and artefact. Histopathological examination showed necrotising pneumonia, pulmonary diffuse alveolar damage, acute kidney injury, portal and lobular hepatitis and myositis with muscle atrophic changes. The brain and heart were histologically unremarkable. Ultrastructurally, viral particles were localised in the pneumocytes, pulmonary macrophages, renal proximal tubular epithelial cells and macrophages infiltrating the skeletal muscles. The results highlight the pulmonary and extrapulmonary pathological changes of MERS-CoV infection and provide the first evidence of the viral presence in human renal tissue, which suggests tissue trophism for MERS-CoV in kidney. © 2017 John Wiley & Sons Ltd.

  17. Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Huang, Shanqing; Liu, Pingying; Liu, Xichun; He, Yafeng; Chen, Weizhong; Hu, Qingyuan; Wei, Tianbiao; Gan, Jianhua; Ma, Jing; Chen, Hao

    2016-09-01

    The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It’s widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments previously performed on Tn501 and Tn21 MerR from Gram-negative bacteria, we analyzed the crystal structure of mercury(II)-bound Tn501 MerR. The structure in the metal-binding domain provides Tn501 MerR with a high affinity for mercury(II) and the ability to distinguish mercury(II) from other metals with its unique planar trigonal coordination geometry, which is adopted by both Gram-negative and Gram-positive bacteria. The mercury(II) coordination state in the C-terminal metal-binding domain is transmitted through the allosteric network across the dimer interface to the N-terminal DNA-binding domain. Together with the previous mutagenesis analyses, the present data indicate that the residues in the allosteric pathway have a central role in maintaining the functions of Tn501 MerR. In addition, the complex structure exhibits significant differences in tertiary and quaternary structural arrangements compared to those of Bacillus MerR from Gram-positive bacteria, which probably enable them to function with specific promoter DNA with different spacers between -35 and -10 elements.

  18. A simple model for strong ground motions and response spectra

    USGS Publications Warehouse

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  19. A model for gravity-wave spectra observed by Doppler sounding systems

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1986-01-01

    A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.

  20. The receptor tyrosine kinase MerTK activates phospholipase C γ2 during recognition of apoptotic thymocytes by murine macrophages

    PubMed Central

    Todt, Jill C.; Hu, Bin; Curtis, Jeffrey L.

    2008-01-01

    Apoptotic leukocytes must be cleared efficiently by macrophages (Mø). Apoptotic cell phagocytosis by Mø requires the receptor tyrosine kinase (RTK) MerTK (also known as c-Mer and Tyro12), the phosphatidylserine receptor (PS-R), and the classical protein kinase C (PKC) isoform βII, which translocates to Mø membrane and cytoskeletal fractions in a PS-R-dependent fashion. How these molecules cooperate to induce phagocytosis is unknown. Because the phosphatidylinositol-specific phospholipase (PI-PLC) PLC γ2 is downstream of RTKs in some cell types and can activate classical PKCs, we hypothesized that MerTK signals via PLC γ2. To test this hypothesis, we examined the interaction of MerTK and PLC γ2 in resident murine PMø and in the murine Mø cell line J774A.1 (J774) following exposure to apoptotic thymocytes. We found that, as with PMø, J774 phagocytosis of apoptotic thymocytes was inhibited by antibody against MerTK. Western blotting and immunoprecipitation showed that exposure to apoptotic cells produced three time-dependent changes in PMø and J774: (1) tyrosine phosphorylation of MerTK; (2) association of PLC γ2 with MerTK; and (3) tyrosine phosphorylation of PLC γ2. Phosphorylation of PLC γ2 and its association with MerTK was also induced by cross-linking MerTK using antibody. A PI-PLC appears to be required for phagocytosis of apoptotic cells because the PI-PLC inhibitor Et-18-OCH3 and the PLC inhibitor U73122, but not the inactive control U73343, blocked phagocytosis without impairing adhesion. On apoptotic cell adhesion to Mø, MerTK signals at least in part via PLC γ2. PMID:14704368

  1. Laboratory absorption spectra of molecules at interstellar cloud temperatures - First measurements on CO at about 97 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Yoshino, K.; Stark, G.; Ito, K.; Stevens, M. H.

    1991-01-01

    In the 91-100 nm spectral region, where absorption of photons by interstellar CO usually leads to dissociation, laboratory spectra obtained at 295 K show that most CO bands are both overlapped and perturbed. Reliable band oscillator strengths cannot be extracted from such spectra. As a consequence, synthetic extreme-ultraviolet absorption spectra for CO at the low temperatures that prevail in interstellar clouds are uncertain. A supersonic expansion technique has been used to cool CO to 30 K and three bands in the 97-nm region have been studied with high spectral resolution. The measured spectrum at 30 K is in reasonable agreement with some published modeled spectra, but the ratios of integrated cross sections are somewhat different from those determined from low resolution spectra obtained at 295 K, in which the bands are blended.

  2. Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa

    PubMed Central

    Wang, Dan; Huang, Shanqing; Liu, Pingying; Liu, Xichun; He, Yafeng; Chen, Weizhong; Hu, Qingyuan; Wei, Tianbiao; Gan, Jianhua; Ma, Jing; Chen, Hao

    2016-01-01

    The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It’s widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments previously performed on Tn501 and Tn21 MerR from Gram-negative bacteria, we analyzed the crystal structure of mercury(II)-bound Tn501 MerR. The structure in the metal-binding domain provides Tn501 MerR with a high affinity for mercury(II) and the ability to distinguish mercury(II) from other metals with its unique planar trigonal coordination geometry, which is adopted by both Gram-negative and Gram-positive bacteria. The mercury(II) coordination state in the C-terminal metal-binding domain is transmitted through the allosteric network across the dimer interface to the N-terminal DNA-binding domain. Together with the previous mutagenesis analyses, the present data indicate that the residues in the allosteric pathway have a central role in maintaining the functions of Tn501 MerR. In addition, the complex structure exhibits significant differences in tertiary and quaternary structural arrangements compared to those of Bacillus MerR from Gram-positive bacteria, which probably enable them to function with specific promoter DNA with different spacers between −35 and −10 elements. PMID:27641146

  3. Identifying Monoclonal Antibodies that Potently Inhibit MERS-CoV | Center for Cancer Research

    Cancer.gov

    The Middle East respiratory syndrome coronavirus (MERS-CoV), first isolated in September 2012, infects cells lining the human airway, causing severe flu-like symptoms that, in some cases, lead to death. As of July 2, 2014, 824 confirmed cases of MERS-CoV infection, including at least 286 related deaths, have been reported to the World Health Organization. While there are

  4. Identifying Monoclonal Antibodies that Potently Inhibit MERS-CoV | Center for Cancer Research

    Cancer.gov

    The Middle East respiratory syndrome coronavirus (MERS-CoV), first isolated in September 2012, infects cells lining the human airway, causing severe flu-like symptoms that, in some cases, lead to death. As of July 2, 2014, 824 confirmed cases of MERS-CoV infection, including at least 286 related deaths, have been reported to the World Health Organization. While there are currently no effective therapies against the virus, monoclonal antibodies (MAbs) may be a promising candidate. Having previously developed MAbs against other viruses, including the related severe acute respiratory syndrome coronavirus or SARS-CoV, Dimiter Dimitrov, Ph.D., of CCR’s Laboratory of Experimental Immunology (LEI), and his colleagues decided to pan a library of antigen binding fragments (Fab) for activity against MERS-CoV.

  5. Wavelength calibration of arc spectra using intensity modelling

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2010-12-01

    Wavelength calibration for astronomical spectra usually involves the use of different arc lamps for different resolving powers to reduce the problem of line blending. We present a technique which eliminates the necessity of different lamps. A lamp producing a very rich spectrum, normally used only at high resolving powers, can be used at the lowest resolving power as well. This is accomplished by modelling the observed arc spectrum and solving for the wavelength calibration as part of the modelling procedure. Line blending is automatically incorporated as part of the model. The method has been implemented and successfully tested on spectra taken with the Robert Stobie spectrograph of the Southern African Large Telescope.

  6. An assessment of the level of concern among hospital-based health-care workers regarding MERS outbreaks in Saudi Arabia.

    PubMed

    Abolfotouh, Mostafa A; AlQarni, Ali A; Al-Ghamdi, Suliman M; Salam, Mahmoud; Al-Assiri, Mohammed H; Balkhy, Hanan H

    2017-01-03

    Middle East Respiratory Syndrome (MERS) is caused by MERS coronavirus (MERS-CoV). More than 80% of reported cases have occurred in Saudi Arabia, with a mortality exceeding 50%. Health-care workers (HCWs) are at risk of acquiring and transmitting this virus, so the concerns of HCWs in Saudi Arabia regarding MERS were evaluated. An anonymous, self-administered, previously validated questionnaire was given to 1031 HCWs at three tertiary hospitals in Saudi Arabia from October to December, 2014. Concerns regarding the disease, its severity and governmental efforts to contain it, as well as disease outcomes were assessed using 31 concern statements in five distinct domains. A total concern score was calculated for each HCW. Multiple regression analyses were used to identify predictors of high concern scores. The average age of participants was 37.1 ± 9.0 years, 65.8% were married and 59.1% were nurses. The majority of respondents (70.4%) felt at risk of contracting a MERS-CoV infection at work, 69.1% felt threatened if a colleague contracted MERS-CoV, 60.9% felt obliged to care for patients infected with MERS-CoV and 87.8% did not feel safe at work using standard precautions. In addition, 87.7% believed that the government should isolate patients with MERS in specialized hospitals, 73.7% agreed with travel restriction to and from areas affected by MERS and 65.3% agreed with avoiding inviting expatriates from such areas. After adjustment for covariates, high concern scores were significantly associated with being a Saudi national (p < 0.001), a non-physician (p < 0.001) and working in the central region (p < 0.001). The majority of respondents reported concern regarding MERS-CoV infection from exposure at work. The overall level of concern may be influenced by previous experience of MERS outbreaks and related cultural issues. The concerns of HCWs may affect their overall effectiveness in an outbreak and should be addressed by incorporating management

  7. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen

    PubMed Central

    Pallesen, Jesper; Wang, Nianshuang; Corbett, Kizzmekia S.; Wrapp, Daniel; Kirchdoerfer, Robert N.; Turner, Hannah L.; Cottrell, Christopher A.; Becker, Michelle M.; Wang, Lingshu; Shi, Wei; Kong, Wing-Pui; Andres, Erica L.; Kettenbach, Arminja N.; Denison, Mark R.; Chappell, James D.; Graham, Barney S.; Ward, Andrew B.

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines. PMID:28807998

  8. Planning Mars Memory: Learning from the MER Mission

    NASA Technical Reports Server (NTRS)

    Charlotte, Linde

    2004-01-01

    This viewgraph presentation discusses ways in which the lessons learned from a mission can be systematically remembered, retained, and applied by individuals and by an organization as a whole. The presentation cites lessons learned from the Mars Exploration Rover (MER) Mission as examples.

  9. The Role of an Aggrecan 32mer Fragment in Post-Traumatic Osteoarthritis

    DTIC Science & Technology

    2017-10-01

    Award Number: W81XWH-16-1-0706 TITLE: The Role of an Aggrecan 32mer Fragment in Post -Traumatic Osteoarthritis PRINCIPAL INVESTIGATOR: Professor...TITLE AND SUBTITLE The Role of an Aggrecan 32mer Fragment in Post - Traumatic Osteoarthritis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0706 5c...reduction in knee hyperalgesia, but not mechanical allodynia, in mice at 8 weeks post -surgery. This trend was not statistically significant, however, we are

  10. Effects of operational decisions on the diffusion of epidemic disease: A system dynamics modeling of the MERS-CoV outbreak in South Korea.

    PubMed

    Shin, Nina; Kwag, Taewoo; Park, Sangwook; Kim, Yon Hui

    2017-05-21

    We evaluated the nosocomial outbreak of Middle East Respiratory Syndrome (MERS) Coronavirus (CoV) in the Republic of Korea, 2015, from a healthcare operations management perspective. Establishment of healthcare policy in South Korea provides patients' freedom to select and visit multiple hospitals. Current policy enforces hospitals preference for multi-patient rooms to single-patient rooms, to lower financial burden. Existing healthcare systems tragically contributed to 186 MERS outbreak cases, starting from single "index patient" into three generations of secondary infections. By developing a macro-level health system dynamics model, we provide empirical knowledge to examining the case from both operational and financial perspectives. In our simulation, under base infectivity scenario, high emergency room occupancy circumstance contributed to an estimated average of 101 (917%) more infected patients, compared to when in low occupancy circumstance. Economic patient room design showed an estimated 702% increase in the number of infected patients, despite the overall 98% savings in total expected costs compared to optimal room design. This study provides first time, system dynamics model, performance measurements from an operational perspective. Importantly, the intent of this study was to provide evidence to motivate public, private, and government healthcare administrators' recognition of current shortcomings, to optimize performance as a whole system, rather than mere individual aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Successful recovery of MERS CoV pneumonia in a patient with acquired immunodeficiency syndrome: a case report.

    PubMed

    Shalhoub, Sarah; AlZahrani, Abdulwahab; Simhairi, Raed; Mushtaq, Adnan

    2015-01-01

    Middle East Respiratory Syndrome Coronavirus (MERS CoV) may cause severe pneumonia with significant morbidity and mortality, particularly in patients with multiple comorbid condition. MERS CoV pneumonia has not been previously reported in patients with Human Immunodeficiency Virus (HIV). Herein, we report a case of MERS CoV pneumonia with a successful outcome in a patient recently diagnosed with HIV. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Value, Market Preferences and Trade of Beche-De-Mer from Pacific Island Sea Cucumbers

    PubMed Central

    Purcell, Steven W.

    2014-01-01

    Market preferences of natural resources contribute to shape their exploitation and production. Beche-de-mer, the product after gutting, cooking, salting and drying sea cucumbers, is exported worldwide to Asian dried seafood markets. A better understanding of the trade, value and market preferences of Pacific island beche-de-mer could identify critical postharvest processing techniques and management strategies for fisheries and aquaculture. Data were collected on export prices and trade of beche-de-mer from Kiribati, Fiji, Tonga and New Caledonia, and the selling prices, respective sizes and organoleptic properties of the products in stores in China. Export prices varied considerably within and among the four countries and low-value species were the most exported by volume. Most of the beche-de-mer from the four Pacific islands is exported to Hong Kong, where quality products are sold and others are distributed to mainland China. Prices of the beche-de-mer in Chinese stores varied up to ten-fold and were mostly influenced by species, body size and, to a lesser extent, physical damage to the products. Market prices across species (averaging US$15–385 kg−1) appear to have mostly increased six- to twelve-fold over the past decade. The data allude that fisheries for Holothuria scabra, H. lessoni, H. fuscogilva, H. whitmaei and Thelenota ananas should be most carefully managed because they were the highest-value species and under greatest demand. The relationships between size of beche-de-mer and sale price were species specific and highly varied. This study also highlights the need for better regulations and/or enforcement of minimum size limits in sea cucumber fisheries, which can help to maximise economic benefits of wild stocks. PMID:24736374

  13. Value, market preferences and trade of Beche-de-mer from Pacific Island sea cucumbers.

    PubMed

    Purcell, Steven W

    2014-01-01

    Market preferences of natural resources contribute to shape their exploitation and production. Beche-de-mer, the product after gutting, cooking, salting and drying sea cucumbers, is exported worldwide to Asian dried seafood markets. A better understanding of the trade, value and market preferences of Pacific island beche-de-mer could identify critical postharvest processing techniques and management strategies for fisheries and aquaculture. Data were collected on export prices and trade of beche-de-mer from Kiribati, Fiji, Tonga and New Caledonia, and the selling prices, respective sizes and organoleptic properties of the products in stores in China. Export prices varied considerably within and among the four countries and low-value species were the most exported by volume. Most of the beche-de-mer from the four Pacific islands is exported to Hong Kong, where quality products are sold and others are distributed to mainland China. Prices of the beche-de-mer in Chinese stores varied up to ten-fold and were mostly influenced by species, body size and, to a lesser extent, physical damage to the products. Market prices across species (averaging US$15-385 kg-1) appear to have mostly increased six- to twelve-fold over the past decade. The data allude that fisheries for Holothuria scabra, H. lessoni, H. fuscogilva, H. whitmaei and Thelenota ananas should be most carefully managed because they were the highest-value species and under greatest demand. The relationships between size of beche-de-mer and sale price were species specific and highly varied. This study also highlights the need for better regulations and/or enforcement of minimum size limits in sea cucumber fisheries, which can help to maximise economic benefits of wild stocks.

  14. Healthcare Workers Emotions, Perceived Stressors and Coping Strategies During a MERS-CoV Outbreak.

    PubMed

    Khalid, Imran; Khalid, Tabindeh J; Qabajah, Mohammed R; Barnard, Aletta G; Qushmaq, Ismael A

    2016-03-01

    Healthcare workers (HCWs) are at high risk of contracting Middle East respiratory syndrome coronavirus (MERS-CoV) during an epidemic. We explored the emotions, perceived stressors, and coping strategies of healthcare workers who worked during a MERS-CoV outbreak in our hospital. A cross-sectional descriptive survey design. A tertiary care hospital. HCWs (150) who worked in high risk areas during the April-May 2014 MERS-CoV outbreak that occurred in Jeddah, Saudi Arabia. We developed and administered a "MERS-CoV staff questionnaire" to study participants. The questionnaire consisted of 5 sections with 72 questions. The sections evaluated hospital staffs emotions, perceived stressors, factors that reduced their stress, coping strategies, and motivators to work during future outbreaks. Responses were scored on a scale from 0-3. The varying levels of stress or effectiveness of measures were reported as mean and standard deviation, as appropriate. Completed questionnaires were returned by 117 (78%) of the participants. The results had many unique elements. HCWs ethical obligation to their profession pushed them to continue with their jobs. The main sentiments centered upon fear of personal safety and well-being of colleagues and family. Positive attitudes in the workplace, clinical improvement of infected colleagues, and stoppage of disease transmission among HCWs after adopting strict protective measures alleviated their fear and drove them through the epidemic. They appreciated recognition of their efforts by hospital management and expected similar acknowledgment, infection control guidance, and equipment would entice them to work during future epidemics. The MERS-CoV outbreak was a distressing time for our staff. Hospitals can enhance HCWs experiences during any future MERS-CoV outbreak by focusing on the above mentioned aspects. © 2016 Marshfield Clinic.

  15. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  16. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Robertson, K. M.; Milliken, R. E.; Li, S.

    2016-10-01

    Quantitative mineral abundances of lab derived clay-gypsum mixtures were estimated using a revised Hapke VIS-NIR and Shkuratov radiative transfer model. Montmorillonite-gypsum mixtures were used to test the effectiveness of the model in distinguishing between subtle differences in minor absorption features that are diagnostic of mineralogy in the presence of strong H2O absorptions that are not always diagnostic of distinct phases or mineral abundance. The optical constants (k-values) for both endmembers were determined from bi-directional reflectance spectra measured in RELAB as well as on an ASD FieldSpec3 in a controlled laboratory setting. Multiple size fractions were measured in order to derive a single k-value from optimization of the optical path length in the radiative transfer models. It is shown that with careful experimental conditions, optical constants can be accurately determined from powdered samples using a field spectrometer, consistent with previous studies. Variability in the montmorillonite hydration level increased the uncertainties in the derived k-values, but estimated modal abundances for the mixtures were still within 5% of the measured values. Results suggest that the Hapke model works well in distinguishing between hydrated phases that have overlapping H2O absorptions and it is able to detect gypsum and montmorillonite in these simple mixtures where they are present at levels of ∼10%. Care must be taken however to derive k-values from a sample with appropriate H2O content relative to the modeled spectra. These initial results are promising for the potential quantitative analysis of orbital remote sensing data of hydrated minerals, including more complex clay and sulfate assemblages such as mudstones examined by the Curiosity rover in Gale crater.

  17. Modeling the CH Stretch Vibrational Spectroscopy of M(+)[Cyclohexane] (M = Li, Na, and K) Ions.

    PubMed

    Sibert, Edwin L; Tabor, Daniel P; Lisy, James M

    2015-10-15

    The CH stretch vibrations of M(+)[cyclohexane][Ar] (M = Li, Na, and K) cluster ions were theoretically modeled. Results were compared to the corresponding infrared photodissociation spectra of Patwari and Lisy [ J. Chem. Phys A 2007 , 111 , 7585 ]. The experimental spectra feature a substantial spread in CH stretch vibration frequencies due to the alkali metal cation binding to select hydrogens of cyclohexane. This spread was observed to increase with decreasing metal ion size. Exploring the potential energy landscape revealed the presence of three conformers whose energy minima lie within ∼1 kcal of each other. It was determined that in all conformers the metal ion interacts with three hydrogen atoms; these hydrogen atoms can be either equatorial or axial. The corresponding spectra for these conformers were obtained with a theoretical model Hamiltonian [ J. Chem. Phys. 2013 , 138 , 064308 ] that consists of local mode CH stretches bilinearly coupled to each other and Fermi coupled to lower frequency modes. Frequencies and coupling parameters were obtained from electronic structure calculations that were subsequently scaled on the basis of previous studies. Theoretical spectra of a single low energy conformer were found to match well with the experimental spectra. The relative frequency shifts with changing metal ion size were accurately modeled with parameters generated by using ωB97X-D/6-311++(2d,p) calculations.

  18. Replication and Shedding of MERS-CoV in Upper Respiratory Tract of Inoculated Dromedary Camels

    PubMed Central

    Adney, Danielle R.; van Doremalen, Neeltje; Brown, Vienna R.; Bushmaker, Trenton; Scott, Dana; de Wit, Emmie; Munster, Vincent J.

    2014-01-01

    In 2012, a novel coronavirus associated with severe respiratory disease in humans emerged in the Middle East. Epidemiologic investigations identified dromedary camels as the likely source of zoonotic transmission of Middle East respiratory syndrome coronavirus (MERS-CoV). Here we provide experimental support for camels as a reservoir for MERS-CoV. We inoculated 3 adult camels with a human isolate of MERS-CoV and a transient, primarily upper respiratory tract infection developed in each of the 3 animals. Clinical signs of the MERS-CoV infection were benign, but each of the camels shed large quantities of virus from the upper respiratory tract. We detected infectious virus in nasal secretions through 7 days postinoculation, and viral RNA up to 35 days postinoculation. The pattern of shedding and propensity for the upper respiratory tract infection in dromedary camels may help explain the lack of systemic illness among naturally infected camels and the means of efficient camel-to-camel and camel-to-human transmission. PMID:25418529

  19. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV.

    PubMed

    Liu, William J; Zhao, Min; Liu, Kefang; Xu, Kun; Wong, Gary; Tan, Wenjie; Gao, George F

    2017-01-01

    Over 12 years have elapsed since severe acute respiratory syndrome (SARS) triggered the first global alert for coronavirus infections. Virus transmission in humans was quickly halted by public health measures and human infections of SARS coronavirus (SARS-CoV) have not been observed since. However, other coronaviruses still pose a continuous threat to human health, as exemplified by the recent emergence of Middle East respiratory syndrome (MERS) in humans. The work on SARS-CoV widens our knowledge on the epidemiology, pathophysiology and immunology of coronaviruses and may shed light on MERS coronavirus (MERS-CoV). It has been confirmed that T-cell immunity plays an important role in recovery from SARS-CoV infection. Herein, we summarize T-cell immunological studies of SARS-CoV and discuss the potential cross-reactivity of the SARS-CoV-specific immunity against MERS-CoV, which may provide useful recommendations for the development of broad-spectrum vaccines against coronavirus infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Spectra of late type dwarf stars of known abundance for stellar population models

    NASA Technical Reports Server (NTRS)

    Oconnell, R. W.

    1990-01-01

    The project consisted of two parts. The first was to obtain new low-dispersion, long-wavelength, high S/N IUE spectra of F-G-K dwarf stars with previously determined abundances, temperatures, and gravities. To insure high quality, the spectra are either trailed, or multiple exposures are taken within the large aperture. Second, the spectra are assembled into a library which combines the new data with existing IUE Archive data to yield mean spectral energy distributions for each important type of star. My principal responsibility is the construction and maintenance of this UV spectral library. It covers the spectral range 1200-3200A and is maintained in two parts: a version including complete wavelength coverage at the full spectral resolution of the Low Resolution cameras; and a selected bandpass version, consisting of the mean flux in pre-selected 20A bands. These bands are centered on spectral features or continuum regions of special utility - e.g. the C IV lambda 1550 or Mg II lambda 2800 feature. In the middle-UV region, special emphasis is given to those features (including continuum 'breaks') which are most useful in the study of F-G-K star spectra in the integrated light of old stellar populations.

  1. EDs on heightened alert for MERS-CoV as first cases reach the US.

    PubMed

    2014-07-01

    The first cases of Middle East Respiratory Syndrome coronavirus (MERS-CoV) have turned up in the United States. First, in late April, a patient tested positive for the virus at a hospital in Munster, IN, and then shortly thereafter, a second patient tested positive at a hospital in Orlando, FL. While both patients have since recovered from the virus and been released, the cases have raised awareness of the infectious threat of MERS-CoV, and they have put EDs and other frontline providers on heightened alert for patients with severe respiratory symptoms and other risk factors. While MERS-CoV is not yet as contagious as seasonal influenza or the severe acute respiratory syndrome (SARS) that started in China and then swept around the globe in 2003, it is more deadly. The World Health Organization reports that roughly one-quarter of 514 people who have tested positive for the virus have died. Experts note that health care workers make up a large percentage of the documented cases of MERS-CoV, and they point out that most human-to-human transmissions of the virus occur in the hospital setting. Public health officials urge emergency personnel to pay strict attention to infection control practices, and to query patients who present with fever and respiratory distress about recent travel to the Arabian Peninsula and/or close contact with a person who has a confirmed or probable case of MERS-CoV.

  2. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylonitrile/styrene copoly-mer. 177.1040 Section 177.1040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Internal Standard Method”; “Infrared Spectrophotometric Determination of Polymer Extracted from Barex 210...

  3. Sulforaphane rescues amyloid-β peptide-mediated decrease in MerTK expression through its anti-inflammatory effect in human THP-1 macrophages.

    PubMed

    Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae

    2018-03-12

    Mer tyrosine kinase (MerTK) activity necessary for amyloid-stimulated phagocytosis strongly implicates that MerTK dysregulation might contribute to chronic inflammation implicated in Alzheimer's disease (AD) pathology. However, the precise mechanism involved in the regulation of MerTK expression by amyloid-β (Aβ) in proinflammatory environment has not yet been ascertained. The objective of this study was to determine the underlying mechanism involved in Aβ-mediated decrease in MerTK expression through Aβ-mediated regulation of MerTK expression and its modulation by sulforaphane in human THP-1 macrophages challenged with Aβ1-42. We used protein preparation, Ca 2+ influx fluorescence imaging, nuclear fractionation, Western blotting techniques, and small interfering RNA (siRNA) knockdown to perform our study. Aβ1-42 elicited a marked decrease in MerTK expression along with increased intracellular Ca 2+ level and induction of proinflammatory cytokines such as IL-1β and TNF-α. Ionomycin A and thapsigargin also increased intracellular Ca 2+ levels and production of IL-1β and TNF-α, mimicking the effect of Aβ1-42. In contrast, the Aβ1-42-evoked responses were attenuated by depletion of Ca 2+ with ethylene glycol tetraacetic acid. Furthermore, recombinant IL-1β or TNF-α elicited a decrease in MerTK expression. However, immunodepletion of IL-1β or TNF-α with neutralizing antibodies significantly inhibited Aβ1-42-mediated downregulation of MerTK expression. Notably, sulforaphane treatment potently inhibited Aβ1-42-induced intracellular Ca 2+ level and rescued the decrease in MerTK expression by blocking nuclear factor-κB (NF-κB) nuclear translocation, thereby decreasing IL-1β and TNF-α production upon Aβ1-42 stimulation. Such adverse effects of sulforaphane were replicated by BAY 11-7082, a NF-κB inhibitor. Moreover, sulforaphane's anti-inflammatory effects on Aβ1-42-induced production of IL-1β and TNF-α were significantly diminished by si

  4. Extraintestinal manifestations of celiac disease: 33-mer gliadin binding to glutamate receptor GRINA as a new explanation.

    PubMed

    Garcia-Quintanilla, Albert; Miranzo-Navarro, Domingo

    2016-05-01

    We propose a biochemical mechanism for celiac disease and non-celiac gluten sensitivity that may rationalize many of the extradigestive disorders not explained by the current immunogenetic model. Our hypothesis is based on the homology between the 33-mer gliadin peptide and a component of the NMDA glutamate receptor ion channel - the human GRINA protein - using BLASTP software. Based on this homology the 33-mer may act as a natural antagonist interfering with the normal interactions of GRINA and its partners. The theory is supported by numerous independent data from the literature, and provides a mechanistic link with otherwise unrelated disorders, such as cleft lip and palate, thyroid dysfunction, restless legs syndrome, depression, ataxia, hearing loss, fibromyalgia, dermatitis herpetiformis, schizophrenia, toxoplasmosis, anemia, osteopenia, Fabry disease, Barret's adenocarcinoma, neuroblastoma, urinary incontinence, recurrent miscarriage, cardiac anomalies, reduced risk of breast cancer, stiff person syndrome, etc. The hypothesis also anticipates better animal models, and has the potential to open new avenues of research. © 2016 WILEY Periodicals, Inc.

  5. Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates.

    PubMed

    Yusof, Mohammed F; Eltahir, Yassir M; Serhan, Wissam S; Hashem, Farouk M; Elsayed, Elsaeid A; Marzoug, Bahaaeldin A; Abdelazim, Assem Si; Bensalah, Oum Keltoum A; Al Muhairi, Salama S

    2015-06-01

    High seroprevalence of Middle East respiratory syndrome corona virus (MERS-CoV) in dromedary camels has been previously reported in United Arab Emirates (UAE). However, the molecular detection of the virus has never been reported before in UAE. Of the 7,803 nasal swabs tested in the epidemiological survey, MERS-CoV nucleic acid was detected by real-time PCR in a total of 126 (1.6 %) camels. Positive camels were detected at the borders with Saudi Arabia and Oman and in camels' slaughter houses. MERS-CoV partial sequences obtained from UAE camels were clustering with human- and camel-derived MERS-CoV sequences in the same geographic area. Results provide further evidence of MERS-CoV zoonosis.

  6. Universal scaling of strange particle pT spectra in pp collisions

    NASA Astrophysics Data System (ADS)

    Yang, Liwen; Wang, Yanyun; Hao, Wenhui; Liu, Na; Du, Xiaoling; Zhang, Wenchao

    2018-04-01

    As a complementary study to that performed on the transverse momentum (pT) spectra of charged pions, kaons and protons in proton-proton (pp) collisions at LHC energies 0.9, 2.76 and 7TeV, we present a scaling behaviour in the pT spectra of strange particles (KS0, Λ, Ξ and φ) at these three energies. This scaling behaviour is exhibited when the spectra are expressed in a suitable scaling variable z=pT/K, where the scaling parameter K is determined by the quality factor method and increases with the center of mass energy (√{s}). The rates at which K increases with ln √{s} for these strange particles are found to be identical within errors. In the framework of the colour string percolation model, we argue that these strange particles are produced through the decay of clusters that are formed by the colour strings overlapping. We observe that the strange mesons and baryons are produced from clusters with different size distributions, while the strange mesons (baryons) KS0 and φ ( Λ and Ξ) originate from clusters with the same size distributions. The cluster's size distributions for strange mesons are more dispersed than those for strange baryons. The scaling behaviour of the pT spectra for these strange particles can be explained by the colour string percolation model in a quantitative way.

  7. MER : from landing to six wheels on Mars ... twice

    NASA Technical Reports Server (NTRS)

    Krajewski, Joel; Burke, Kevin; Lewicki, Chris; Limonadi, Daniel; Trebi-Ollennu, Ashitey; Voorhees, Chris

    2005-01-01

    Application of the Pathfinder landing system design to enclose the much larger Mars Exploration Rover required a variety of Rover deployments to achieve the surface driving configuration. The project schedule demanded that software design, engineering model test, and flight hardware build to be accomplished in parallel. This challenge was met through (a) bounding unknown environments against which to design and test, (b) early mechanical prototype testing, (c) constraining the scope of on-board autonomy to survival-critical deployments, (d) executing a balance of nominal and off-nominal test cases, (e) developing off-nominal event mitigation techniques before landing, (f) flexible replanning in response to surprises during operations. Here is discussed several specific events encountered during initial MER surface operations.

  8. Generation of calibrated tungsten target x-ray spectra: modified TBC model.

    PubMed

    Costa, Paulo R; Nersissian, Denise Y; Salvador, Fernanda C; Rio, Patrícia B; Caldas, Linda V E

    2007-01-01

    In spite of the recent advances in the experimental detection of x-ray spectra, theoretical or semi-empirical approaches for determining realistic x-ray spectra in the range of diagnostic energies are important tools for planning experiments, estimating radiation doses in patients, and formulating radiation shielding models. The TBC model is one of the most useful approaches since it allows for straightforward computer implementation, and it is able to accurately reproduce the spectra generated by tungsten target x-ray tubes. However, as originally presented, the TBC model fails in situations where the determination of x-ray spectra produced by an arbitrary waveform or the calculation of realistic values of air kerma for a specific x-ray system is desired. In the present work, the authors revisited the assumptions used in the original paper published by . They proposed a complementary formulation for taking into account the waveform and the representation of the calculated spectra in a dosimetric quantity. The performance of the proposed model was evaluated by comparing values of air kerma and first and second half value layers from calculated and measured spectra by using different voltages and filtrations. For the output, the difference between experimental and calculated data was better then 5.2%. First and second half value layers presented differences of 23.8% and 25.5% in the worst case. The performance of the model in accurately calculating these data was better for lower voltage values. Comparisons were also performed with spectral data measured using a CZT detector. Another test was performed by the evaluation of the model when considering a waveform distinct of a constant potential. In all cases the model results can be considered as a good representation of the measured data. The results from the modifications to the TBC model introduced in the present work reinforce the value of the TBC model for application of quantitative evaluations in radiation

  9. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kijak, J.; Basu, R.; Lewandowski, W.

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physicalmore » parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.« less

  10. SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.

    2017-10-01

    SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.

  11. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. III. A COMPLETE GRID OF IONIZED REFLECTION CALCULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, J.; McClintock, J. E.; Dauser, T.

    2013-05-10

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index {Gamma} of the illuminating radiation, the ionization parameter {xi} at the surface of the disk (i.e., the ratio of the X-ray flux to themore » gas density), and the iron abundance A{sub Fe} relative to the solar value. The ranges of the parameters covered are 1.2 {<=} {Gamma} {<=} 3.4, 1 {<=} {xi} {<=} 10{sup 4}, and 0.5 {<=} A{sub Fe} {<=} 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file (http://hea-www.cfa.harvard.edu/{approx}javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.« less

  12. The MER Mossbauer Spectrometers: 40 Months of Operation on the Martian Surface

    NASA Technical Reports Server (NTRS)

    Fleischer, Iris; Rodionov, D.; Schroeder, C.; Morris, R.; Yen, A.; Ming, D.; McCoy, T.; Mittlefehldt, D.; Gellert, R.; Cohen, B.; hide

    2007-01-01

    The primary MER objectives have been successfully completed. The total integration time of all MB measurements exceeds the duration of the primary 90-sols-mission for Spirit's MB spectrometer, and approaches this value for Opportunity's MB spectrometer. Both MB spectrometers continue to accumulate valuable scientific data after three years of operation (data is available for download [13]) The identification of aqueous minerals such as goethite in Gusev crater and jarosite at Meridiani Planum by the MER Mossbauer spectrometers is strong evidence for past water activity at the two landing sites.

  13. Does Nonlinear Modeling Play a Role in Plasmid Bioprocess Monitoring Using Fourier Transform Infrared Spectra?

    PubMed

    Lopes, Marta B; Calado, Cecília R C; Figueiredo, Mário A T; Bioucas-Dias, José M

    2017-06-01

    The monitoring of biopharmaceutical products using Fourier transform infrared (FT-IR) spectroscopy relies on calibration techniques involving the acquisition of spectra of bioprocess samples along the process. The most commonly used method for that purpose is partial least squares (PLS) regression, under the assumption that a linear model is valid. Despite being successful in the presence of small nonlinearities, linear methods may fail in the presence of strong nonlinearities. This paper studies the potential usefulness of nonlinear regression methods for predicting, from in situ near-infrared (NIR) and mid-infrared (MIR) spectra acquired in high-throughput mode, biomass and plasmid concentrations in Escherichia coli DH5-α cultures producing the plasmid model pVAX-LacZ. The linear methods PLS and ridge regression (RR) are compared with their kernel (nonlinear) versions, kPLS and kRR, as well as with the (also nonlinear) relevance vector machine (RVM) and Gaussian process regression (GPR). For the systems studied, RR provided better predictive performances compared to the remaining methods. Moreover, the results point to further investigation based on larger data sets whenever differences in predictive accuracy between a linear method and its kernelized version could not be found. The use of nonlinear methods, however, shall be judged regarding the additional computational cost required to tune their additional parameters, especially when the less computationally demanding linear methods herein studied are able to successfully monitor the variables under study.

  14. Science Activity Planner for the MER Mission

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  15. Photophysical properties of the series fac- and mer-(1-phenylisoquinolinato-N∧C2')(x)(2-phenylpyridinato-N∧C2')(3-x)iridium(III) (x = 1-3).

    PubMed

    Deaton, Joseph C; Young, Ralph H; Lenhard, Jerome R; Rajeswaran, Manju; Huo, Shouquan

    2010-10-18

    The photophysical properties of tris-cyclometalated iridium(III) complexes have been probed by chemical and geometric variation through the series fac- and mer-Ir(piq)(x)(ppy)(3-x) (x = 1-3; piq = 1-phenylisoquinolinato-N(∧)C(2'), ppy = 2-phenylpyridinato-N(∧)C(2')). The phosphorescent decays were recorded in solution at 295 K and in polymer films from 2 to 295 K. In the heteroleptic complexes, emission occurs based solely on the piq ligand(s), at least by the nanosecond time scale, as its excited states are the lowest energy. Because fac-Ir(piq)(3) and fac-Ir(ppy)(3) possess practically the same oxidation potential, comparison of photophysical properties through the series fac-Ir(piq)(x)(ppy)(3-x) (x = 1-3) revealed the effects of having one, two, or three emissive piq ligands with no confounding effects from differences in electron withdrawing or donating properties between the spectator ppy ligands and the piq ligands. Effects of placement of piq ligands in different coordination geometries were elucidated by comparisons to the mer series.

  16. Up-Regulation of Soluble Axl and Mer Receptor Tyrosine Kinases Negatively Correlates with Gas6 in Established Multiple Sclerosis Lesions

    PubMed Central

    Weinger, Jason G.; Omari, Kakuri M.; Marsden, Kurt; Raine, Cedric S.; Shafit-Zagardo, Bridget

    2009-01-01

    Multiple sclerosis is a disease that is characterized by inflammation, demyelination, and axonal damage; it ultimately forms gliotic scars and lesions that severely compromise the function of the central nervous system. Evidence has shown previously that altered growth factor receptor signaling contributes to lesion formation, impedes recovery, and plays a role in disease progression. Growth arrest-specific protein 6 (Gas6), the ligand for the TAM receptor tyrosine kinase family, consisting of Tyro3, Axl, and Mer, is important for cell growth, survival, and clearance of debris. In this study, we show that levels of membrane-bound Mer (205 kd), soluble Mer (∼150 kd), and soluble Axl (80 kd) were all significantly elevated in homogenates from established multiple sclerosis lesions comprised of both chronic active and chronic silent lesions. Whereas in normal tissue Gas6 positively correlated with soluble Axl and Mer, there was a negative correlation between Gas6 and soluble Axl and Mer in established multiple sclerosis lesions. In addition, increased levels of soluble Axl and Mer were associated with increased levels of mature ADAM17, mature ADAM10, and Furin, proteins that are associated with Axl and Mer solubilization. Soluble Axl and Mer are both known to act as decoy receptors and block Gas6 binding to membrane-bound receptors. These data suggest that in multiple sclerosis lesions, dysregulation of protective Gas6 receptor signaling may prolong lesion activity. PMID:19541935

  17. Hadron rapidity spectra within a hybrid model

    NASA Astrophysics Data System (ADS)

    Khvorostukhin, A. S.; Toneev, V. D.

    2017-03-01

    A multistage hybrid model is constructed what joins the initial non-equilibrium stage of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system treated within ideal hydrodynamics (the second stage). Particles can still rescatter after hydrodynamical expansion that is the third interaction stage. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra.

  18. Protection of rat liver against hepatic ischemia-reperfusion injury by a novel selenocysteine-containing 7-mer peptide

    PubMed Central

    Jiang, Qianqian; Pan, Yu; Cheng, Yupeng; Li, Huiling; Li, Hui

    2016-01-01

    Hepatic ischemia-reperfusion (I-R) injury causes acute organ damage or dysfunction, and remains a problem for liver transplantation. In the I-R phase, the generation of reactive oxygen species aggravates the injury. In the current study, a novel selenocysteine-containing 7-mer peptide (H-Arg-Sec-Gly-Arg-Asn-Ala-Gln-OH) was constructed to imitate the active site of an antioxidant enzyme, glutathione peroxidase (GPX). The 7-mer peptide which has a lower molecular weight, and improved water-solubility, higher stability and improved cell membrane permeability compared with other GPX mimics. Its GPX activity reached 13 U/µmol, which was 13 times that of ebselen (a representative GPX mimic). The effect of this GPX mimic on I-R injury of the liver was assessed in rats. The 7-mer peptide significantly inhibited the increase in serum hepatic amino-transferases, tissue malondialdehyde, nitric oxide contents, myeloperoxidase activity and decrease of GPX activity compared with I-R tissue. Following treatment with the 7-mer peptide, the expression of B-cell CLL/lymphoma-2 (Bcl-2) was significantly upregulated at the mRNA and protein level compared with the I-R group, as determined by reverse transcription-polymerase chain reaction and immunohistochemistry, respectively. By contrast, Bcl-2 associated X protein (Bax) was downregulated by the 7-mer peptide compared the I-R group. Histological and ultrastructural changes of the rat liver tissue were also compared among the experimental groups. The results of the current study suggest that the 7-mer peptide protected the liver against hepatic I-R injury via suppression of oxygen-derived free radicals and regulation of Bcl-2 and Bax expression, which are involved in the apoptosis of liver cells. The findings of the present study will further the investigation of the 7-mer peptide as an effective therapeutic agent in hepatic I-R injury. PMID:27431272

  19. Improvement of an enzyme-linked immunosorbent assay for equine herpesvirus type 4 by using a synthetic-peptide 24-mer repeat sequence of glycoprotein G as an antigen.

    PubMed

    Bannai, Hiroshi; Nemoto, Manabu; Tsujimura, Koji; Yamanaka, Takashi; Maeda, Ken; Kondo, Takashi

    2016-02-01

    To increase the sensitivity of an enzyme-linked immunosorbent assay (ELISA) for equine herpesvirus type 4 (EHV-4) that uses a 12-mer peptide of glycoprotein G (gG4-12-mer: MKNNPIYSEGSL) [4], we used a longer peptide consisting of a 24-mer repeat sequence (gG4-24-mer: MKNNPIYSEGSLMLNVQHDDSIHT) as an antigen. Sera of horses experimentally infected with EHV-4 reacted much more strongly to the gG4-24-mer peptide than to the gG4-12-mer peptide. We used peptide ELISAs to test paired sera from horses naturally infected with EHV-4 (n=40). gG4-24-mer ELISA detected 37 positive samples (92.5%), whereas gG4-12-mer ELISA detected only 28 (70.0%). gG4-24-mer ELISA was much more sensitive than gG4-12-mer ELISA.

  20. Temperature dependence of Ti:Sapphire fluorescence spectra for the design of cryogenic cooled Ti:Sapphire CPA laser.

    PubMed

    Burton, Harry; Debardelaben, Christopher; Amir, Wafa; Planchon, Thomas A

    2017-03-20

    The fluorescence spectra of titanium doped sapphire (Ti:Sapphire) crystals were measured for temperature ranging from 300K to 77K. The resulting gain cross-section line shapes were calculated and used in a three-dimensional amplification model to illustrate the importance of the precise knowledge of these fluorescence spectra for the design of cryogenic cooled Ti:Sapphire based chirped-pulse laser amplifiers.

  1. Improvement of an enzyme-linked immunosorbent assay for equine herpesvirus type 4 by using a synthetic-peptide 24-mer repeat sequence of glycoprotein G as an antigen

    PubMed Central

    BANNAI, Hiroshi; NEMOTO, Manabu; TSUJIMURA, Koji; YAMANAKA, Takashi; MAEDA, Ken; KONDO, Takashi

    2015-01-01

    To increase the sensitivity of an enzyme-linked immunosorbent assay (ELISA) for equine herpesvirus type 4 (EHV-4) that uses a 12-mer peptide of glycoprotein G (gG4-12-mer: MKNNPIYSEGSL) [4], we used a longer peptide consisting of a 24-mer repeat sequence (gG4-24-mer: MKNNPIYSEGSLMLNVQHDDSIHT) as an antigen. Sera of horses experimentally infected with EHV-4 reacted much more strongly to the gG4-24-mer peptide than to the gG4-12-mer peptide. We used peptide ELISAs to test paired sera from horses naturally infected with EHV-4 (n=40). gG4-24-mer ELISA detected 37 positive samples (92.5%), whereas gG4-12-mer ELISA detected only 28 (70.0%). gG4-24-mer ELISA was much more sensitive than gG4-12-mer ELISA. PMID:26424485

  2. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV.

    PubMed

    Lee, Hyun; Lei, Hao; Santarsiero, Bernard D; Gatuz, Joseph L; Cao, Shuyi; Rice, Amy J; Patel, Kavankumar; Szypulinski, Michael Z; Ojeda, Isabel; Ghosh, Arun K; Johnson, Michael E

    2015-06-19

    The Middle East Respiratory Syndrome coronavirus (MERS-CoV) papain-like protease (PLpro) blocking loop 2 (BL2) structure differs significantly from that of SARS-CoV PLpro, where it has been proven to play a crucial role in SARS-CoV PLpro inhibitor binding. Four SARS-CoV PLpro lead inhibitors were tested against MERS-CoV PLpro, none of which were effective against MERS-CoV PLpro. Structure and sequence alignments revealed that two residues, Y269 and Q270, responsible for inhibitor binding to SARS-CoV PLpro, were replaced by T274 and A275 in MERS-CoV PLpro, making critical binding interactions difficult to form for similar types of inhibitors. High-throughput screening (HTS) of 25 000 compounds against both PLpro enzymes identified a small fragment-like noncovalent dual inhibitor. Mode of inhibition studies by enzyme kinetics and competition surface plasmon resonance (SPR) analyses suggested that this compound acts as a competitive inhibitor with an IC50 of 6 μM against MERS-CoV PLpro, indicating that it binds to the active site, whereas it acts as an allosteric inhibitor against SARS-CoV PLpro with an IC50 of 11 μM. These results raised the possibility that inhibitor recognition specificity of MERS-CoV PLpro may differ from that of SARS-CoV PLpro. In addition, inhibitory activity of this compound was selective for SARS-CoV and MERS-CoV PLpro enzymes over two human homologues, the ubiquitin C-terminal hydrolases 1 and 3 (hUCH-L1 and hUCH-L3).

  3. Modelling Stellar Optical and Mid-Ultraviolet Spectra from First Principles

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.; Carney, B. W.; Dorman, B.; Green, E. M.; Landsman, W.; Liebert, J.; O'Connell, R. W.; Rood, R. T.; Schiavon, R. P.

    2004-05-01

    We present comparisons of theoretical and observational high-resolution spectra for a half-dozen stars of a wide range of temperature and abundance, from A star to K giant. These show the fits achieved to date by our ab initio spectral calculations. These comparisons form the first phase of our three-year Hubble Treasury program GO-9455/9974, aimed at providing mid-ultraviolet spectral templates to improve the determination of the age and metallicity of old stellar systems. From matches such as these, we have modified the input atomic-line parameters and guessed the identifications of spectral lines missing from the calculations, as described by Peterson, Dorman, & Rood (2001, ApJ, 559, 372). With this new line list, we now match well the optical spectra of stars of all line strengths. We have begun to calculate a grid of optical indices from the theoretical spectra. In the mid-UV, while the fits at solar abundance are much improved, we are still missing very weak absorption lines near 2650Å and 2900Å. This will be addressed as additional mid-ultraviolet spectra are taken for a larger range of stellar targets during Cycle 13. Support for this work includes grants GO-9455 and GO-9974 from the Hubble Space Telescope Science Institute, and an award from the NASA-OSS Long Term Space Astrophysics program.

  4. NCI Researchers Discover Exceptionally Potent Antibodies with Potential for Prophylaxis and Therapy of MERS-Coronavirus Infections | Poster

    Cancer.gov

    By Andrea Frydl, Contributing Writer In a recent article published in the Journal of Virology, Tianlei Ying, Ph.D., Dimiter Dimitrov, Ph.D., and their colleagues in the Laboratory of Experimental Immunology (LEI), Cancer and Inflammation Program, NCI Center for Cancer Research, reported the identification of three human monoclonal antibodies (m336, m337, and m338) that target the part of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) that is responsible for binding to its receptor. These antibodies are exceptionally potent inhibitors of MERS-CoV infection and also provide a basis for creating a future MERS-CoV vaccine.

  5. KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  6. KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  7. KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  8. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  9. KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  10. A Comparison of the Age-Spectra from Data Assimilation Models

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, Anne R.; Zhu, Zheng-Xin; Pawson, Steven; Einaudi, Franco (Technical Monitor)

    2002-01-01

    We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably well-isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the diabatic trajectory calculations, the age spectrum is too broad as a result of too much exchange between the tropics and mid-latitudes. The age spectrum determined using the kinematic trajectory calculation is less broad and lacks an age offset; both of these features are due to excessive vertical dispersion of parcels. The tropical and mid-latitude mean age difference between the diabatically and kinematically determined age-spectra is about one year, the former being older. The CTM calculation of the age spectrum using the DAS winds shows the same dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the mean ages determined in a number of previous DAS driven CTM's are too young compared with observations. Finally, we note trajectory-generated age spectra show significant age anomalies correlated with the seasonal cycles, and these anomalies can be linked to year-to-year variations in the tropical heating rate. These anomalies are suppressed in the CTM spectra suggesting that the CTM transport is too diffusive.

  11. Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA.

    PubMed

    Fukushi, Shuetsu; Fukuma, Aiko; Kurosu, Takeshi; Watanabe, Shumpei; Shimojima, Masayuki; Shirato, Kazuya; Iwata-Yoshikawa, Naoko; Nagata, Noriyo; Ohnishi, Kazuo; Ato, Manabu; Melaku, Simenew Keskes; Sentsui, Hiroshi; Saijo, Masayuki

    2018-01-01

    Since discovering the Middle East respiratory syndrome coronavirus (MERS-CoV) as a causative agent of severe respiratory illness in the Middle East in 2012, serological testing has been conducted to assess antibody responses in patients and to investigate the zoonotic reservoir of the virus. Although the virus neutralization test is the gold standard assay for MERS diagnosis and for investigating the zoonotic reservoir, it uses live virus and so must be performed in high containment laboratories. Competitive ELISA (cELISA), in which a labeled monoclonal antibody (MAb) competes with test serum antibodies for target epitopes, may be a suitable alternative because it detects antibodies in a species-independent manner. In this study, novel MAbs against the spike protein of MERS-CoV were produced and characterized. One of these MAbs was used to develop a cELISA. The cELISA detected MERS-CoV-specific antibodies in sera from MERS-CoV-infected rats and rabbits immunized with the spike protein of MERS-CoV. The MAb-based cELISA was validated using sera from Ethiopian dromedary camels. Relative to the neutralization test, the cELISA detected MERS-CoV-specific antibodies in 66 Ethiopian dromedary camels with a sensitivity and specificity of 98% and 100%, respectively. The cELISA and neutralization test results correlated well (Pearson's correlation coefficients=0.71-0.76, depending on the cELISA serum dilution). This cELISA may be useful for MERS epidemiological investigations on MERS-CoV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Thermally induced defluorination during a mer to fac transformation of a blue-green phosphorescent cyclometalated iridium(III) complex.

    PubMed

    Zheng, Yonghao; Batsanov, Andrei S; Edkins, Robert M; Beeby, Andrew; Bryce, Martin R

    2012-01-02

    The new homoleptic tris-cyclometalated [Ir(C^N)(3)] complexes mer-8, fac-8, and fac-9 incorporating γ-carboline ligands are reported. Reaction of 3-(2,4-difluorophenyl)-5-(2-ethylhexyl)-pyrido[4,3-b]indole 6 with iridium(III) chloride under standard cyclometalating conditions gave the homoleptic complex mer-8 in 63% yield. The X-ray crystal structure of mer-8 is described. The Ir-C and Ir-N bonds show the expected bond length alternations for the differing trans influence of phenyl and pyridyl ligands. mer-8 quantitatively isomerized to fac-8 upon irradiation with UV light. However, heating mer-8 at 290 °C in glycerol led to an unusual regioselective loss of one fluorine atom from each of the ligands, yielding fac-9 in 58% yield. fac-8 is thermally very stable: no decomposition was observed when fac-8 was heated in glycerol at 290 °C for 48 h. The γ-carboline system of fac-8 enhances thermal stability compared to the pyridyl analogue fac-Ir(46dfppy)(3)10, which decomposes extensively upon being heated in glycerol at 290 °C for 2 h. Complexes mer-8, fac-8, and fac-9 are emitters of blue-green light (λ(max)(em) = 477, 476, and 494 nm, respectively). The triplet lifetimes for fac-8 and fac-9 are ~4.5 μs at room temperature; solution Φ(PL) values are 0.31 and 0.22, respectively.

  13. Characterization of MER Landing Sites Using MOC and MOLA

    NASA Technical Reports Server (NTRS)

    Anderson, F. S.; Parker, T. J.

    2002-01-01

    The MOC images for MER are compared with MOLA data to characterize and locate each image. MOLA profiles show that Hematite remains benign, Melas and Isidis are rougher, and Athabasca and Gusev have regions of significant small scale topography. Additional information is contained in the original extended abstract.

  14. H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences.

    PubMed

    Drosten, Matthias; Simón-Carrasco, Lucía; Hernández-Porras, Isabel; Lechuga, Carmen G; Blasco, María T; Jacob, Harrys K C; Fabbiano, Salvatore; Potenza, Nicoletta; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano

    2017-02-01

    Genetic studies in mice have provided evidence that H-Ras and K-Ras proteins are bioequivalent. However, human tumors display marked differences in the association of RAS oncogenes with tumor type. Thus, to further assess the bioequivalence of oncogenic H-Ras and K-Ras, we replaced the coding region of the murine K-Ras locus with H-Ras G12V oncogene sequences. Germline expression of H-Ras G12V or K-Ras G12V from the K-Ras locus resulted in embryonic lethality. However, expression of these genes in adult mice led to different tumor phenotypes. Whereas H-Ras G12V elicited papillomas and hematopoietic tumors, K-Ras G12V induced lung tumors and gastric lesions. Pulmonary expression of H-Ras G12V created a senescence-like state caused by excessive MAPK signaling. Likewise, H-Ras G12V but not K-Ras G12V induced senescence in mouse embryonic fibroblasts. Label-free quantitative analysis revealed that minor differences in H-Ras G12V expression levels led to drastically different biological outputs, suggesting that subtle differences in MAPK signaling confer nonequivalent functions that influence tumor spectra induced by RAS oncoproteins. Cancer Res; 77(3); 707-18. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Occurrence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) across the Gulf Corporation Council countries: Four years update.

    PubMed

    Aly, Mahmoud; Elrobh, Mohamed; Alzayer, Maha; Aljuhani, Sameera; Balkhy, Hanan

    2017-01-01

    The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections has become a global issue of dire concerns. MERS-CoV infections have been identified in many countries all over the world whereas high level occurrences have been documented in the Middle East and Korea. MERS-CoV is mainly spreading across the geographical region of the Middle East, especially in the Arabian Peninsula, while some imported sporadic cases were reported from the Europe, North America, Africa, and lately Asia. The prevalence of MERS-CoV infections across the Gulf Corporation Council (GCC) countries still remains unclear. Therefore, the objective of the current study was to report the prevalence of MERS-CoV in the GCC countries and to also elucidate on its demographics in the Arabian Peninsula. To date, the World Health Organization (WHO) has reported 1,797 laboratory-confirmed cases of MERS-CoV infection since June 2012, involving 687 deaths in 27 different countries worldwide. Within a time span of 4 years from June 2012 to July 2016, we collect samples form MERS-CoV infected individuals from National Guard Hospital, Riyadh, and Ministry of health Saudi Arabia and other GCC countries. Our data comprise a total of 1550 cases (67.1% male and 32.9% female). The age-specific prevalence and distribution of MERS-CoV was as follow: <20 yrs (36 cases: 3.28%), 20-39 yrs (331 cases: 30.15%), 40-59 yrs (314 cases: 28.60%), and the highest-risk elderly group aged ≥60 yrs (417 cases: 37.98%). The case distribution among GCC countries was as follows: Saudi Arabia (1441 cases: 93%), Kuwait (4 cases: 0.3%), Bahrain (1 case: 0.1%), Oman (8 cases: 0.5%), Qatar (16 cases: 1.0%), and United Arab Emirates (80 cases: 5.2%). Thus, MERS-CoV was found to be more prevalent in Saudi Arabia especially in Riyadh, where 756 cases (52.4%) were the worst hit area of the country identified, followed by the western region Makkah where 298 cases (20.6%) were recorded. This prevalence update

  16. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response.

    PubMed

    Kindler, E; Thiel, V; Weber, F

    2016-01-01

    Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the most severe coronavirus (CoV)-associated diseases in humans. The causative agents, SARS-CoV and MERS-CoV, are of zoonotic origin but may be transmitted to humans, causing severe and often fatal respiratory disease in their new host. The two coronaviruses are thought to encode an unusually large number of factors that allow them to thrive and replicate in the presence of efficient host defense mechanisms, especially the antiviral interferon system. Here, we review the recent progress in our understanding of the strategies that highly pathogenic coronaviruses employ to escape, dampen, or block the antiviral interferon response in human cells. © 2016 Elsevier Inc. All rights reserved.

  17. Discovery of Carbonate-Rich Outcrops in the Gusev Crater Columbia Hills by the MER Rover Spirit

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Ruff, Steven W.; Gellert, Ralf; Ming, Douglas W.; Arvidson, Raymond E.; Clark, Benton C.; Golden, Dadi C.; Siebach, Kirsten L.; Klingelhoefer, Goestar; Schroeder, Christian; hide

    2010-01-01

    The chemical composition, global abundance, distribution, and formation pathways of carbonates are central to understanding aqueous processes, climate, and habitability of early Mars. The Mars Exploration Rover (MER) Spirit analyzed a series of olivine-rich outcrops while descending from the summit region of Husband Hill into the Inner Basin of the Columbia Hills of Gusev Crater to the eastern edge of the El Dorado ripple field in late 2005. Reanalysis of Spirit s mineralogical data from the Moessbauer Spectrometer (MB) and the Miniature Thermal Emission Spectrometer (Mini-TES) and chemical data from the Alpha Particle X-Ray Spectrometer (APXS) in 2010, coupled with new laboratory data for carbonate-bearing samples, lead to identification of carbonate in one of the outcrops (Comanche) [Morris, R.V., et al., Science, 329, 421-424]. The carbonate is rich in magnesium and iron (Mc62Sd25Cc11Rh2, assuming all Ca and Mn is associated with the carbonate) and is a major component of the Comanche outcrops (16 to 34 wt.%). The mineralogical, chemical, and abundance data are constrained in multiple, mutually consistent ways by the MER analyses. For example, a low-Ca carbonate is required by the MB and APXS data and is consistent with Mini-TES data. Three spectral features attributable to fundamental infrared vibrational modes of low-Ca carbonate are present in the Mini-TES spectra of Comanche outcrops. The average composition of Comanche carbonate approximates the average composition of the carbonate globules in Martian meteorite ALH 84001. Analogy with ALH 84001, terrestrial, and synthetic carbonate globules suggests that Comanche carbonate precipitated from aqueous solutions under hydrothermal conditions at near neutral pH in association with volcanic activity during the Noachian era. Comanche outcrop morphology suggests they are remnants of a larger carbonate-bearing formation that evolved in ultramafic rock and then preferentially eroded by a combination of aeolian

  18. Correlation-Induced Changes of Spectra

    DTIC Science & Technology

    1989-12-01

    tances has been one of the central have been observed etperimental- other end of the frequency spec- issues of debate among astrono - ly could be...limited consideration by astrono - I mers. in the updated theory, described in the Nov. 13 PHYSICAL REVIEw LETTERS, Wolf outlines a more general - and...billions of light-years apart. Many astrono - mers-ncluding Christopher L. Carilli of Harvard University, who with two colleagues found the most recent

  19. An unbalanced spectra classification method based on entropy

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-bao; Zhao, Wen-juan

    2017-05-01

    How to solve the problem of distinguishing the minority spectra from the majority of the spectra is quite important in astronomy. In view of this, an unbalanced spectra classification method based on entropy (USCM) is proposed in this paper to deal with the unbalanced spectra classification problem. USCM greatly improves the performances of the traditional classifiers on distinguishing the minority spectra as it takes the data distribution into consideration in the process of classification. However, its time complexity is exponential with the training size, and therefore, it can only deal with the problem of small- and medium-scale classification. How to solve the large-scale classification problem is quite important to USCM. It can be easily obtained by mathematical computation that the dual form of USCM is equivalent to the minimum enclosing ball (MEB), and core vector machine (CVM) is introduced, USCM based on CVM is proposed to deal with the large-scale classification problem. Several comparative experiments on the 4 subclasses of K-type spectra, 3 subclasses of F-type spectra and 3 subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS) verify USCM and USCM based on CVM perform better than kNN (k nearest neighbor) and SVM (support vector machine) in dealing with the problem of rare spectra mining respectively on the small- and medium-scale datasets and the large-scale datasets.

  20. The Role of Linkers in the Excited-State Dynamic Planarization Processes of Macrocyclic Oligothiophene 12-Mers.

    PubMed

    Kim, Woojae; Sung, Jooyoung; Park, Kyu Hyung; Shimizu, Hideyuki; Imamura, Mika; Han, Minwoo; Sim, Eunji; Iyoda, Masahiko; Kim, Dongho

    2015-11-05

    Linkers adjoining chromophores play an important role in modulating the structure of conjugated systems, which is bound up with their photophysical properties. However, to date, the focus of works dealing with linker effects was limited only to linear π-conjugated materials, and there have been no detailed studies on cyclic counterparts. Herein we report the linker effects on the dynamic planarization processes of π-conjugated macrocyclic oligothiophene 12-mers, where the different ratio between ethynylene and vinylene linkers was chosen to control the backbone rigidity. By analyzing transient fluorescence spectra, we demonstrate that the connecting linkers play a crucial role in the excited-state dynamics of cyclic conjugated systems. Faster dynamic planarization, longer exciton delocalization length, and higher degree of planarity were observed in vinylene inserted cyclic oligothiophenes. Molecular dynamics simulations and density functional theory calculations also stress the importance of the role of linkers in modulating the structure of cyclic oligothiophenes.

  1. MERS-CoV at the Animal–Human Interface: Inputs on Exposure Pathways from an Expert-Opinion Elicitation

    PubMed Central

    Funk, Anna L.; Goutard, Flavie Luce; Miguel, Eve; Bourgarel, Mathieu; Chevalier, Veronique; Faye, Bernard; Peiris, J. S. Malik; Van Kerkhove, Maria D.; Roger, Francois Louis

    2016-01-01

    Nearly 4 years after the first report of the emergence of Middle-East respiratory syndrome Coronavirus (MERS-CoV) and nearly 1800 human cases later, the ecology of MERS-CoV, its epidemiology, and more than risk factors of MERS-CoV transmission between camels are poorly understood. Knowledge about the pathways and mechanisms of transmission from animals to humans is limited; as of yet, transmission risks have not been quantified. Moreover the divergent sanitary situations and exposures to animals among populations in the Arabian Peninsula, where human primary cases appear to dominate, vs. other regions in the Middle East and Africa, with no reported human clinical cases and where the virus has been detected only in dromedaries, represents huge scientific and health challenges. Here, we have used expert-opinion elicitation in order to obtain ideas on relative importance of MERS-CoV risk factors and estimates of transmission risks from various types of contact between humans and dromedaries. Fourteen experts with diverse and extensive experience in MERS-CoV relevant fields were enrolled and completed an online questionnaire that examined pathways based on several scenarios, e.g., camels–camels, camels–human, bats/other species to camels/humans, and the role of diverse biological substances (milk, urine, etc.) and potential fomites. Experts believed that dromedary camels play the largest role in MERS-CoV infection of other dromedaries; however, they also indicated a significant influence of the season (i.e. calving or weaning periods) on transmission risk. All experts thought that MERS-CoV-infected dromedaries and asymptomatic humans play the most important role in infection of humans, with bats and other species presenting a possible, but yet undefined, risk. Direct and indirect contact of humans with dromedary camels were identified as the most risky types of contact, when compared to consumption of various camel products, with estimated “most likely

  2. Directional Ocean Wave Spectra

    DTIC Science & Technology

    1991-01-01

    between the wave height time series from the different LEWEX." Data Report Programa de Clima iarnimo. Madrid (l9L8i. 84 AIR AND SPACE MEASUREMENTS IN... inclusion of the nonlinear azimuthal Summation over the velocity-bunching index m for cutoff factor, remains a valid approximation for the en - fixed...buoy observations. ’Guillaurne, A., "VAG-Modele de PT[iSJon de rFEtif de [a Mer en F’au However, an analysis of the evolution of the direc- Proflonde

  3. KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  4. Standard Model and New physics for ɛ'k/ɛk

    NASA Astrophysics Data System (ADS)

    Kitahara, Teppei

    2018-05-01

    The first result of the lattice simulation and improved perturbative calculations have pointed to a discrepancy between data on ɛ'k/ɛk and the standard-model (SM) prediction. Several new physics (NP) models can explain this discrepancy, and such NP models are likely to predict deviations of ℬ(K → πvv) from the SM predictions, which can be probed precisely in the near future by NA62 and KOTO experiments. We present correlations between ɛ'k/ɛk and ℬ(K → πvv) in two types of NP scenarios: a box dominated scenario and a Z-penguin dominated one. It is shown that different correlations are predicted and the future precision measurements of K → πvv can distinguish both scenarios.

  5. Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, David; Dunlea, Ann G.; Auer, Gerald; Anderson, Chloe H.; Brumsack, Hans; de Loach, Aaron; Gurnis, Michael; Huh, Youngsook; Ishiwa, Takeshige; Jang, Kwangchul; Kominz, Michelle A.; März, Christian; Schnetger, Bernhard; Murray, Richard W.; Pälike, Heiko

    2017-03-01

    During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. (2013) quantified K, Th, and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, and U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost.

  6. First confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities - May 2014.

    PubMed

    Bialek, Stephanie R; Allen, Donna; Alvarado-Ramy, Francisco; Arthur, Ray; Balajee, Arunmozhi; Bell, David; Best, Susan; Blackmore, Carina; Breakwell, Lucy; Cannons, Andrew; Brown, Clive; Cetron, Martin; Chea, Nora; Chommanard, Christina; Cohen, Nicole; Conover, Craig; Crespo, Antonio; Creviston, Jeanean; Curns, Aaron T; Dahl, Rebecca; Dearth, Stephanie; DeMaria, Alfred; Echols, Fred; Erdman, Dean D; Feikin, Daniel; Frias, Mabel; Gerber, Susan I; Gulati, Reena; Hale, Christa; Haynes, Lia M; Heberlein-Larson, Lea; Holton, Kelly; Ijaz, Kashef; Kapoor, Minal; Kohl, Katrin; Kuhar, David T; Kumar, Alan M; Kundich, Marianne; Lippold, Susan; Liu, Lixia; Lovchik, Judith C; Madoff, Larry; Martell, Sandra; Matthews, Sarah; Moore, Jessica; Murray, Linda R; Onofrey, Shauna; Pallansch, Mark A; Pesik, Nicki; Pham, Huong; Pillai, Satish; Pontones, Pam; Pringle, Kimberly; Pritchard, Scott; Rasmussen, Sonja; Richards, Shawn; Sandoval, Michelle; Schneider, Eileen; Schuchat, Anne; Sheedy, Kristine; Sherin, Kevin; Swerdlow, David L; Tappero, Jordan W; Vernon, Michael O; Watkins, Sharon; Watson, John

    2014-05-16

    Since mid-March 2014, the frequency with which cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection have been reported has increased, with the majority of recent cases reported from Saudi Arabia and United Arab Emirates (UAE). In addition, the frequency with which travel-associated MERS cases have been reported and the number of countries that have reported them to the World Health Organization (WHO) have also increased. The first case of MERS in the United States, identified in a traveler recently returned from Saudi Arabia, was reported to CDC by the Indiana State Department of Health on May 1, 2014, and confirmed by CDC on May 2. A second imported case of MERS in the United States, identified in a traveler from Saudi Arabia having no connection with the first case, was reported to CDC by the Florida Department of Health on May 11, 2014. The purpose of this report is to alert clinicians, health officials, and others to increase awareness of the need to consider MERS-CoV infection in persons who have recently traveled from countries in or near the Arabian Peninsula. This report summarizes recent epidemiologic information, provides preliminary descriptions of the cases reported from Indiana and Florida, and updates CDC guidance about patient evaluation, home care and isolation, specimen collection, and travel as of May 13, 2014.

  7. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Barkay, Tamar; Blum, Joel D.

    2009-03-01

    Controlling bioaccumulation of toxic monomethylmercury (MMHg) in aquatic food chains requires differentiation between biotic and abiotic pathways that lead to its production and degradation. Recent mercury (Hg) stable isotope measurements of natural samples suggest that Hg isotope ratios can be a powerful proxy for tracing dominant Hg transforming pathways in aquatic ecosystems. Specifically, it has been shown that photo-degradation of MMHg causes both mass dependent (MDF) and mass independent fractionation (MIF) of Hg isotopes. Because the extent of MDF and MIF observed in natural samples (e.g., fish, soil and sediments) can potentially be used to determine the relative importance of pathways leading to MMHg accumulation, it is important to determine the potential role of microbial pathways in contributing to the fractionation, especially MIF, observed in these samples. This study reports the extent of fractionation of Hg stable isotopes during degradation of MMHg to volatile elemental Hg and methane via the microbial Hg resistance ( mer) pathway in Escherichia coli carrying a mercury resistance ( mer) genetic system on a multi-copy plasmid. During experimental microbial degradation of MMHg, MMHg remaining in reactors became progressively heavier (increasing δ202Hg) with time and underwent mass dependent Rayleigh fractionation with a fractionation factor α202/198 = 1.0004 ± 0.0002 (2SD). However, MIF was not observed in any of the microbial MMHg degradation experiments indicating that the isotopic signature left by mer mediated MMHg degradation is significantly different from fractionation observed during DOC mediated photo-degradation of MMHg. Additionally, a clear suppression of Hg isotope fractionation, both during reduction of Hg(II) and degradation of MMHg, was observed when the cell densities increased, possibly due to a reduction in substrate bioavailability. We propose a multi-step framework for understanding the extent of fractionation seen in our MMHg

  8. Etude de la performance des radars hautes-frequences CODAR et WERA pour la mesure des courants marins en presence partielle de glace de mer

    NASA Astrophysics Data System (ADS)

    Kamli, Emna

    Les radars hautes-frequences (RHF) mesurent les courants marins de surface avec une portee pouvant atteindre 200 kilometres et une resolution de l'ordre du kilometre. Cette etude a pour but de caracteriser la performance des RHF, en terme de couverture spatiale, pour la mesure des courants de surface en presence partielle de glace de mer. Pour ce faire, les mesures des courants de deux radars de type CODAR sur la rive sud de l'estuaire maritime du Saint-Laurent, et d'un radar de type WERA sur la rive nord, prises pendant l'hiver 2013, ont ete utilisees. Dans un premier temps, l'aire moyenne journaliere de la zone ou les courants sont mesures par chaque radar a ete comparee a l'energie des vagues de Bragg calculee a partir des donnees brutes d'acceleration fournies par une bouee mouillee dans la zone couverte par les radars. La couverture des CODARs est dependante de la densite d'energie de Bragg, alors que la couverture du WERA y est pratiquement insensible. Un modele de fetch appele GENER a ete force par la vitesse du vent predite par le modele GEM d'Environnement Canada pour estimer la hauteur significative ainsi que la periode modale des vagues. A partir de ces parametres, la densite d'energie des vagues de Bragg a ete evaluee pendant l'hiver a l'aide du spectre theorique de Bretschneider. Ces resultats permettent d'etablir la couverture normale de chaque radar en absence de glace de mer. La concentration de glace de mer, predite par le systeme canadien operationnel de prevision glace-ocean, a ete moyennee sur les differents fetchs du vent selon la direction moyenne journaliere des vagues predites par GENER. Dans un deuxieme temps, la relation entre le ratio des couvertures journalieres obtenues pendant l'hiver 2013 et des couvertures normales de chaque radar d'une part, et la concentration moyenne journaliere de glace de mer d'autre part, a ete etablie. Le ratio des couvertures decroit avec l'augmentation de la concentration de glace de mer pour les deux types

  9. Comparative modelling of the spectra of cool giants⋆⋆⋆

    NASA Astrophysics Data System (ADS)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W.; Maldonado, J.; Merle, T.; Peterson, R.; Plez, B.; Short, C. I.; Wahlgren, G. M.; Worley, C.; Aringer, B.; Bladh, S.; de Laverny, P.; Goswami, A.; Mora, A.; Norris, R. P.; Recio-Blanco, A.; Scholz, M.; Thévenin, F.; Tsuji, T.; Kordopatis, G.; Montesinos, B.; Wing, R. F.

    2012-11-01

    Context. Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims: We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods: Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results: We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions: Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are. Based on observations obtained at the Bernard Lyot Telescope (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory, which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France.Tables 6-11 are only available in electronic form at http://www.aanda.orgThe spectra of stars 1 to 4 used in the experiment presented here are only availalbe at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  10. Theoretical modeling of infrared spectra of aspirin and its deuterated derivative

    NASA Astrophysics Data System (ADS)

    Boczar, Marek; Wójcik, Marek J.; Szczeponek, Krzysztof; Jamróz, Dorota; Zi e̡ba, Adam; Kawałek, Bożena

    2003-01-01

    Theoretical simulation of the νs stretching band is presented for aspirin (acetylsalicylic acid) and its OD derivative at 300 and 77 K. The simulation takes into account an adiabatic coupling between the high-frequency O-H(D) stretching and the low-frequency intermolecular O⋯O stretching modes, linear and quadratic distortions of the potential energy for the low-frequency vibrations in the excited state of the O-H(D) stretching vibration, resonance interaction between two hydrogen bonds in the dimer, and Fermi resonance between the O-H(D) stretching and the overtone of the O-H(D) bending vibrations. The effect of deuteration and the temperature has been successfully reproduced by our model calculations. Infrared, far-infrared, Raman and low-frequency Raman spectra of the polycrystalline aspirin have been measured. The geometry and experimental frequencies are compared with the results of our B3LYP/6-31++G** calculations.

  11. Advanced Models of Accretion Disk Atmospheres and Spectra for Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Wade, Richard A.

    1997-01-01

    This work led to the development of code for fitting models to data, and to an understanding of the nature of the models which enabled a more rapid search of 'parameter space' for optimal fits to spectral data sets. The code was used to find optimal fits to IUE spectra of quiescent dwarf novae that have been reported to show evidence for the white dwarf. The models consisted of a white dwarf component and an accretion disk with boundary conditions appropriate for the choice of the white dwarf. The preliminary work has strengthened the initial impression that accretion disk spectra can mimic the appearance of white dwarf spectra in the short-wavelength ultraviolet, so that additional constraints (such as distance) are needed to distinguish to two cases.

  12. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus.

    PubMed

    Maslow, Joel N

    2017-12-02

    The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized by novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed.

  13. Variation in Ambient and 77K Leaf-Level Chlorophyll Fluorescence Spectra of Boreal Species During Spring Recovery of Photosynthesis. Comparison of Methods.

    NASA Astrophysics Data System (ADS)

    Rajewicz, P. A.; Atherton, J.; Porcar-Castell, A.

    2017-12-01

    Chlorophyll fluorescence (ChF) is widely used as a tool for tracking changes in photosynthetic activity. In contrast to traditional active methods, which can be applied to leaf-level studies, new passive fluorescence methods are applied to study the photosynthetic dynamics of whole plants, canopies and ecosystems. A number of open questions still remain as to how the shape and intensity of the fluorescence spectra is connected to the mechanistic acclimation of photosynthesis. This is particularly critical at the leaf-level, which is the smallest scale at which spectral fluorescence can be measured in vivo, and especially for conifer needles which are difficult to measure due to their complex geometry.The goal of our research was to develop a protocol for measuring ambient and 77K spectral fluorescence in intact leaves and to use it for tracking the seasonal dynamics in leaf fluorescence properties across boreal species and different canopy heights, including: two conifers, Pinus silvestris and Picea abies; one broadleaf tree, Betula Pendula; and two ground species: Vaccinium vitis-idaea and Vaccinium myrtillus. This activity was organized as part of the multiscale FAST campaign "Fluorescence Across Space and Time" (February 9th - July 11th 2017, Hyytiälä Forest Station, SMEAR II, Finland).We assessed the impact of using "needle-mats" as a reliable method to track seasonal changes in spectral fluorescence properties of needles. In addition, we developed a spectral box to facilitate the measurement of ambient and 77K temperature fluorescence spectra from exactly the same leaf sample footprint. The resulting data can be used to study the impact of photosystem reorganization on the in vivo spectra. Here we present our findings in regard to the comparison of ambient and 77K fluorescence spectra, which can improve the current understanding of structural photosystems' changes detectable through fluorescence signal.

  14. Quantifying K, U and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, David; Dunlea, Ann G.; Auer, Gerald; Anderson, Chloe H.; Brumsack, Hans; de Loach, Aaron; Gurnis, Michael C.; Huh, Youngsook; Ishiwa, Takeshige; Jang, Kwangchul; Kominz, Michelle A.; März, Christian; Schnetger, Bernhard; Murray, Richard W.; Pälike, Heiko; Expedition 356 shipboard scientists, IODP

    2017-04-01

    During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. [2013] quantified K, Th and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost. Dunlea, A. G., R. W. Murray, R. N. Harris, M. A. Vasiliev, H. Evans, A. J. Spivack, and S. D'Hondt (2013), Assessment and use of NGR instrumentation on the JOIDES Resolution to quantify U, Th, and K concentrations in marine sediment, Scientific Drilling, 15, 57-63.

  15. A Rapid and Specific Assay for the Detection of MERS-CoV

    PubMed Central

    Huang, Pei; Wang, Hualei; Cao, Zengguo; Jin, Hongli; Chi, Hang; Zhao, Jincun; Yu, Beibei; Yan, Feihu; Hu, Xingxing; Wu, Fangfang; Jiao, Cuicui; Hou, Pengfei; Xu, Shengnan; Zhao, Yongkun; Feng, Na; Wang, Jianzhong; Sun, Weiyang; Wang, Tiecheng; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu

    2018-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus that can cause human respiratory disease. The development of a detection method for this virus that can lead to rapid and accurate diagnosis would be significant. In this study, we established a nucleic acid visualization technique that combines the reverse transcription loop-mediated isothermal amplification technique and a vertical flow visualization strip (RT-LAMP-VF) to detect the N gene of MERS-CoV. The RT-LAMP-VF assay was performed in a constant temperature water bath for 30 min, and the result was visible by the naked eye within 5 min. The RT-LAMP-VF assay was capable of detecting 2 × 101 copies/μl of synthesized RNA transcript and 1 × 101 copies/μl of MERS-CoV RNA. The method exhibits no cross-reactivities with multiple CoVs including SARS-related (SARSr)-CoV, HKU4, HKU1, OC43 and 229E, and thus exhibits high specificity. Compared to the real-time RT-PCR (rRT-PCR) method recommended by the World Health Organization (WHO), the RT-LAMP-VF assay is easy to handle, does not require expensive equipment and can rapidly complete detection within 35 min. PMID:29896174

  16. Spectra of black hole accretion models of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Sa̧dowski, Aleksander; Soria, Roberto

    2017-08-01

    We present general relativistic radiation magnetohydrodynamics simulations of super-Eddington accretion on a 10 M⊙ black hole. We consider a range of mass accretion rates, black hole spins and magnetic field configurations. We compute the spectra and images of the models as a function of viewing angle and compare them with the observed properties of ultraluminous X-ray sources (ULXs). The models easily produce apparent luminosities in excess of 1040 erg s-1 for pole-on observers. However, the angle-integrated radiative luminosities rarely exceed 2.5 × 1039 erg s-1 even for mass accretion rates of tens of Eddington. The systems are thus radiatively inefficient, though they are energetically efficient when the energy output in winds and jets is also counted. The simulated models reproduce the main empirical types of spectra - disc-like, supersoft, soft, hard - observed in ultraluminous X-ray sources (ULXs). The magnetic field configuration, whether 'standard and normal evolution' (SANE) or 'magnetically arrested disc' (MAD), has a strong effect on the results. In SANE models, the X-ray spectral hardness is almost independent of accretion rate, but decreases steeply with increasing inclination. MAD models with non-spinning black holes produce significantly softer spectra at higher values of \\dot{M}, even at low inclinations. MAD models with rapidly spinning black holes are unique. They are radiatively efficient (efficiency factor ˜10-20 per cent), superefficient when the mechanical energy output is also included (70 per cent) and produce hard blazar-like spectra. In all models, the emission shows strong geometrical beaming, which disagrees with the more isotropic illumination favoured by observations of ULX bubbles.

  17. Linear Power Spectra in Cold+Hot Dark Matter Models: Analytical Approximations and Applications

    NASA Astrophysics Data System (ADS)

    Ma, Chung-Pei

    1996-11-01

    This paper presents simple analytic approximations to the linear power spectra, linear growth rates, and rms mass fluctuations for both components in a family of cold + hot dark matter (CDM + HDM) models that are of current cosmological interest. The formulas are valid for a wide range of wavenumbers, neutrino fractions, redshifts, and Hubble constants: k ≤ 1O h Mpc-1, 0.05 ≤ Ωv le; 0.3 0 ≤ z ≤ 15, and 0.5 ≤ h ≤ 0.8. A new, redshift-dependent shape parameter, Γv = a½Ωvh2, is introduced to simplify the multidimensional parameter space and to characterize the effect of massive neutrinos on the power spectrum. The physical origin of Γv lies in the neutrino free-streaming process, and the analytic approximations can be simplified to depend only on this variable and Ωv. Linear calculations with these power spectra as input are performed to compare the predictions of Ωv ≤ 0.3 models with observational constraints from the reconstructed linear power spectrum and cluster abundance. The usual assumption of an exact scale-invariant primordial power spectrum is relaxed to allow a spectral index of 0.8 ≤ n ≤ 1. It is found that a slight tilt of n = 0.9 (no tensor mode) or n = 0.95 (with tensor mode) in 0.t-0.2 CDM + HDM models gives a power spectrum similar to that of an open CDM model with a shape parameter Γ = 0.25, providing good agreement with the power spectrum reconstructed by Peacock & Dodds and the observed cluster abundance at low redshifts. Late galaxy formation at high redshifts, however, will be a more severe problem in tilted models.

  18. Thermophysical properties of the MER and Beagle II landing site regions on Mars

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.; Hynek, Brian M.; Pelkey, Shannon M.; Mellon, Michael T.; Martínez-Alonso, Sara; Putzig, Nathaniel E.; Murphy, Nate; Christensen, Philip R.

    2006-08-01

    We analyzed remote-sensing observations of the Isidis Basin, Gusev Crater, and Meridiani Planum landing sites for Beagle II, MER-A Spirit, and MER-B Opportunity spacecraft, respectively. We emphasized the thermophysical properties using daytime and nighttime radiance measurements from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer and Mars Odyssey Thermal Emission Imaging System (THEMIS) and thermal inertias derived from nighttime data sets. THEMIS visible images, MGS Mars Orbiter Camera (MOC) narrow-angle images, and MGS Mars Orbiter Laser Altimeter (MOLA) data are incorporated as well. Additionally, the remote-sensing data were compared with ground-truth at the MER sites. The Isidis Basin surface layer has been shaped by aeolian processes and erosion by slope winds coming off of the southern highlands and funneling through notches between massifs. In the Gusev region, surface materials of contrasting thermophysical properties have been interpreted as rocks or bedrock, duricrust, and dust deposits; these are consistent with a complex geological history dominated by volcanic and aeolian processes. At Meridiani Planum the many layers having different thermophysical and erosional properties suggest periodic deposition of differing sedimentological facies possibly related to clast size, grain orientation and packing, or mineralogy.

  19. High-Resolution Topomapping of Mars: Life After MER Site Selection

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Soricone, R.; Ross, K.; Weller, L.; Rosiek, M.; Redding, B.; Galuszka, D.; Haldemann, A. F. C.

    2004-01-01

    In this abstract we describe our ongoing use of high-resolution images from the Mars Global Surveyor Mars Orbiter Camera Narrow-Angle subsystem (MGS MOC-NA) to derive quantitative topographic and slope data for the martian surface at 3 - 10-m resolution. Our efforts over the past several years focused on assessment of candidate landing sites for the Mars Exploration Rovers (MER) and culminated in the selection of sites in Gusev crater and Meridiani Planum as safe as well as scientifically compelling. As of this writing, MER-A (Spirit) has landed safely in Gusev and we are performing a limited amount of additional mapping near the landing point to support localization of the lander and rover operations planning. The primary focus of our work, however, has been extending our techniques to sample a variety of geologic terrains planetwide to support both a variety of geoscientific studies and planning and data analysis for missions such as Mars Express, Mars Reconnaissance Orbiter, and Phoenix.

  20. Mild encephalopathy/encephalitis with a reversible splenial lesion (MERS): A report of five neonatal cases.

    PubMed

    Sun, Dan; Chen, Wen-Hong; Baralc, Suraj; Wang, Juan; Liu, Zhi-Sheng; Xia, Yuan-Peng; Chen, Lei

    2017-06-01

    Mild encephalopathy/encephalitis with a reversible splenial (MERS) lesion is a clinic-radiological entity. The clinical features of MERS in neonates are still not systemically reported. This paper presents five cases of MERS, and the up-to-date reviews of previously reported cases were collected and analyzed in the literature. Here we describe five cases clinically diagnosed with MERS. All of them were neonates and the average age was about 4 days. They were admitted for the common neurological symptoms such as hyperspasmia, poor reactivity and delirium. Auxiliary examinations during hospitalization also exhibited features in common. In this report, we reached following conclusions. Firstly, magnetic resonance imaging revealed solitary or comprehensive lesions in the splenium of corpus callosum, some of them extending to almost the whole corpus callosum. The lesions showed low intensity signal on T1-weighted images, homogeneously hyperintense signal on T2-weighted images, fluid-attenuated inversion recovery and diffusion-weighted images, and exhibited an obvious reduced diffusion on apparent diffusion coefficient map. Moreover, the lesions in the magnetic resonance imaging disappeared very quickly even prior to the clinical recovery. Secondly, all the cases depicted here suffered electrolyte disturbances especially hyponatremia which could be easily corrected. Lastly, all of the cases recovered quickly over one week to one month and majority of them exhibited signs of infections and normal electroencephalography.

  1. Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers.

    PubMed

    Kandeel, Mahmoud; Al-Taher, Abdulla; Li, Huifang; Schwingenschlogl, Udo; Al-Nazawi, Mohamed

    2018-08-01

    Structural studies related to Middle East Respiratory Syndrome Coronavirus (MERS CoV) infection process are so limited. In this study, molecular dynamics (MD) simulations were carried out to unravel changes in the MERS CoV heptad repeat domains (HRs) and factors affecting fusion state HR stability. Results indicated that HR trimer is more rapidly stabilized, having stable system energy and lower root mean square deviations (RMSDs). While trimers were the predominant active form of CoVs HRs, monomers were also discovered in both of viral and cellular membranes. In order to find the differences between S2 monomer and trimer molecular dynamics, S2 monomer was modelled and subjected to MD simulation. In contrast to S2 trimer, S2 monomer was unstable, having high RMSDs with major drifts above 8 Å. Fluctuation of HR residue positions revealed major changes in the C-terminal of HR2 and the linker coil between HR1 and HR2 in both monomer and trimer. Hydrophobic residues at the a and d positions of HR helices stabilize the whole system, with minimal changes in RMSD. The global distance test and contact area difference scores support instability of MERS CoV S2 monomer. Analysis of HR1-HR2 inter-residue contacts and interaction energy revealed three energy scales along HR helices. Two strong interaction energies were identified at the start of the HR2 helix and at the C-terminal of HR2. The identified critical residues by MD simulation and residues at the a and d positions of HR helix were strong stabilizers of HR recognition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Modeling midwave infrared muzzle flash spectra from unsuppressed and flash-suppressed large caliber munitions

    NASA Astrophysics Data System (ADS)

    Steward, Bryan J.; Perram, Glen P.; Gross, Kevin C.

    2012-07-01

    Time-resolved infrared spectra of firings from a 152 mm howitzer were acquired over an 1800-6000 cm-1 spectral range using a Fourier-transform spectrometer. The instrument collected primarily at 32 cm-1 spectral and 100 Hz temporal resolutions. Munitions included unsuppressed and chemically flash suppressed propellants. Secondary combustion occurred with unsuppressed propellants resulting in flash emissions lasting ˜100 ms and dominated by H2O and CO2 spectral structure. Non-combusting plume emissions were one-tenth as intense and approached background levels within 20-40 ms. A low-dimensional phenomenological model was used to reduce the data to temperatures, soot absorbances, and column densities of H2O, CO2, CH4, and CO. The combusting plumes exhibit peak temperatures of ˜1400 K, areas of greater than 32 m2, low soot emissivity of ˜0.04, with nearly all the CO converted to CO2. The non-combusting plumes exhibit lower temperatures of ˜1000 K, areas of ˜5 m2, soot emissivity of greater than 0.38 and CO as the primary product. Maximum fit residual relative to peak intensity are 14% and 8.9% for combusting and non-combusting plumes, respectively. The model was generalized to account for turbulence-induced variations in the muzzle plumes. Distributions of temperature and concentration in 1-2 spatial regions demonstrate a reduction in maximum residuals by 40%. A two-region model of combusting plumes provides a plausible interpretation as a ˜1550 K, optically thick plume core and ˜2550 K, thin, surface-layer flame-front. Temperature rate of change was used to characterize timescales and energy release for plume emissions. Heat of combustion was estimated to be ˜5 MJ/kg.

  3. Meter-scale slopes of candidate MER landing sites from point photoclinometry

    USGS Publications Warehouse

    Beyer, R.A.; McEwen, A.S.; Kirk, R.L.

    2003-01-01

    Photoclinometry was used to analyze the small-scale roughness of areas that fall within the proposed Mars Exploration Rover (MER) 2003 landing ellipses. The landing ellipses presented in this study were those in Athabasca Valles, Elysium Planitia, Eos Chasma, Gusev Crater, Isidis Planitia, Melas Chasma, and Meridiani Planum. We were able to constrain surface slopes on length scales comparable to the image resolution (1.5 to 12 m/pixel). The MER 2003 mission has various engineering constraints that each candidate landing ellipse must satisfy. These constraints indicate that the statistical slope values at 5 m baselines are an important criterion. We used our technique to constrain maximum surface slopes across large swaths of each image, and built up slope statistics for the images in each landing ellipse. We are confident that all MER 2003 landing site ellipses in this study, with the exception of the Melas Chasma ellipse, are within the small-scale roughness constraints. Our results have provided input into the landing hazard assessment process. In addition to evaluating the safety of the landing sites, our mapping of small-scale roughnesses can also be used to better define and map morphologic units. The morphology of a surface is characterized by the slope distribution and magnitude of slopes. In looking at how slopes are distributed, we can better define landforms and determine the boundaries of morphologic units. Copyright 2003 by the American Geophysical Union.

  4. Spectra of hadrons and muons in the atmosphere: primary spectra, characteristics of hadron-air interactions

    NASA Astrophysics Data System (ADS)

    Yushkov, A. V.; Lagutin, A. A.

    2008-01-01

    Self-consistency of interaction models QGSJET 01, SIBYLL 2.1, NEXUS 3.97 and QGSJET II is checked in terms of their ability to reproduce simultaneously experimental data on fluxes of muons and hadrons. From this point of view SIBYLL 2.1 gives the most acceptable, though not quite satisfactory, results. Analysis of the situation for muons supports our previous conclusions, that the high-energy muon deficit is due both to underestimation of primary light nuclei fluxes in direct emulsion chamber experiments and to softness of p+A→π, K+X inclusive spectra in fragmentation region, especially prominent in case of QGSJET 01 model.

  5. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    DOE PAGES

    Menachery, Vineet D.; Schafer, Alexandra; Burnum-Johnson, Kristin E.; ...

    2018-01-16

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigenmore » presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Altogether, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.« less

  6. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menachery, Vineet D.; Schäfer, Alexandra; Burnum-Johnson, Kristin E.

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigenmore » presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.« less

  7. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus

    PubMed Central

    Maslow, Joel N.

    2017-01-01

    ABSTRACT The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized by novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed. PMID:28846484

  8. Can We Infer Ocean Dynamics from Altimeter Wavenumber Spectra?

    NASA Technical Reports Server (NTRS)

    Richman, James; Shriver, Jay; Arbic, Brian

    2012-01-01

    The wavenumber spectra of sea surface height (SSH) and kinetic energy (KE) have been used to infer the dynamics of the ocean. When quasi-geostrophic dynamics (QG) or surface quasi-geostrophic (SQG) turbulence dominate and an inertial subrange exists, a steep SSH wavenumber spectrum is expected with k-5 for QG turbulence and a flatter k-11/3 for SQG turbulence. However, inspection of the spectral slopes in the mesoscale band of 70 to 250 km shows that the altimeter wavenumber slopes typically are much flatter than the QG or SQG predictions over most of the ocean. Comparison of the altimeter wavenumber spectra with the spectra estimated from the output of an eddy resolving global ocean circulation model (the Hybrid Coordinate Ocean Model, HYCOM, at 1/25 resolution), which is forced by high frequency winds and includes the astronomical forcing of the sun and the moon, suggests that the flatter slopes of the altimeter may arise from three possible sources, the presence of internal waves, the lack of an inertial subrange in the 70 to 250 km band and noise or submesoscales at small scales. When the wavenumber spectra of SSH and KE are estimated near the internal tide generating regions, the resulting spectra are much flatter than the expectations of QG or SQG theory. If the height and velocity variability are separated into low frequency (periods greater than 2 days) and high frequency (periods less than a day), then a different pattern emerges with a relatively flat wavenumber spectrum at high frequency and a steeper wavenumber spectrum at low frequency. The stationary internal tides can be removed from the altimeter spectrum, which steepens the spectral slopes in the energetic internal wave regions. Away from generating regions where the internal waves

  9. Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras

    NASA Astrophysics Data System (ADS)

    Mahanta, Snigdhayan

    2015-12-01

    We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.

  10. Characterization of Martian Rock Shape for MER Airbag Drop Tests

    NASA Astrophysics Data System (ADS)

    Dimaggio, E. N.; Schroeder, R.; Castle, N.; Golombek, M.

    2002-12-01

    Rock distributions for the final platforms used in airbag drop tests are currently being designed for the Mars Exploration Rovers (MER) scheduled to launch in 2003. Like Mars Pathfinder (MPF), launched in 1996, MER will use a series of airbags to cushion its landing on the surface of Mars. Previous MER airbag drop tests have shown that sharp, angular (triangular) rocks >20 cm high may be hazardous. To aid in defining the rock distributions for the final airbag tests, images from the Viking Landers 1 and 2 and MPF were used to identify rocks that are >20 cm high, and characterize them as triangular, square or round. Approximately 33% of all rocks analyzed are triangular. Of the rocks analyzed that are ~20-60 cm high, ~14% are triangular. Most of these triangular rocks are small, ~20-30 cm high. Rock distributions of previous airbag platforms were similarly classified and show a greater percentage of triangular and square rocks that are ~20-60 cm high than at the landing sites. The burial of a rock (perched, partially buried or buried) was also considered because perched rocks may pose less of a threat to the airbags than those buried because perched rocks can be dislodged and roll during impact. Approximately 19% of all rocks analyzed, and ~19% of rocks that are ~20-60 cm high, are triangular and partially buried or buried. These data suggest that the platform rock distributions appropriately represented the risks to the airbags associated with triangular rocks. A similar percentage of >20 cm high triangular rocks will be added to the drop test platforms to represent landing site rock distributions.

  11. Modeling the Infrared Spectra of Earth-Analog Exoplanets

    NASA Astrophysics Data System (ADS)

    Nixon, C.

    2014-04-01

    As a preparation for future observations with the James Webb Space Telescope (JWST) and other facilities, we have undertaken to model the infrared spectra of Earth-like exoplanets. Two atmospheric models were used: the modern (low CO2) and archean (high CO2) predictive models of the Kasting group at Penn state. Several model parameters such as distance to star, and stellar type (visible-UV spectrum spectrum) were adjusted, and the models reconverged. Subsequently, the final model atmospheres were input to a radiative transfer code (NEMESIS) and the results intercompared to search for the most significant spectral changes. Implications for exoplanet spectrum detectivity will be discussed.

  12. Transverse momentum spectra of hadrons in p + p collisions at CERN SPS energies from the UrQMD transport model

    NASA Astrophysics Data System (ADS)

    Ozvenchuk, V.; Rybicki, A.

    2018-05-01

    The UrQMD transport model, version 3.4, is used to study the new experimental data on transverse momentum spectra of π±, K±, p and p bar produced in inelastic p + p interactions at SPS energies, recently published by the NA61/SHINE Collaboration. The comparison of model predictions to these new measurements is presented as a function of collision energy for central and forward particle rapidity intervals. In addition, the inverse slope parameters characterizing the transverse momentum distributions are extracted from the predicted spectra and compared to the corresponding values obtained from NA61/SHINE distributions, as a function of particle rapidity and collision energy. A complex pattern of deviations between the experimental data and the UrQMD model emerges. For charged pions, the fair agreement visible at top SPS energies deteriorates with the decreasing energy. For charged K mesons, UrQMD significantly underpredicts positive kaon production at lower beam momenta. It also underpredicts the central rapidity proton yield at top collision energy and overpredicts antiproton production at all considered energies. We conclude that the new experimental data analyzed in this paper still constitute a challenge for the present version of the model.

  13. Theoretical Models of Low-Resolution Microwave Rotational Spectra of Ethane- and Propanethiol

    NASA Astrophysics Data System (ADS)

    Kadjar, Ch. O.; Kazimova, S. B.; Hasanova, A. S.; Ismailzadeh, G. I.; Menzeleyev, M. R.

    2018-05-01

    Additive modeling of low-resolution microwave spectra of heteroisomeric substituted hydrocarbons produced theoretical spectra of ethanethiol and propanethiol in the range 0-2 THz with maxima at 465 ± 20 and 240 ± 20 GHz. More precise calculations in a narrow frequency band of these ranges used spectral line half-widths of 1.5, 0.8, and 0.5 MHz that modeled conditions in different layers of Earth's troposphere. The strongest extrema of the low-resolution spectra of the studied molecules were found at 486 ± 5, 446 ± 5, and 436 ± 5 (ethanethiol) and at 257 ± 5, 239 ± 5, and 234 ± 5 GHz (propanethiol). Various aspects of the application of the results were discussed.

  14. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.

  15. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K.

    PubMed

    Vestin, Fredrik; Nilsson, Kristin; Bengtsson, Per-Erik

    2008-04-10

    Experiments were performed in the temperature range of 294-1143 K in pure CO(2) using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1 m spectrometer. A theoretical rotational CARS model for CO(2) was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2-3%. Simultaneous thermometry and relative CO(2)/N(2)-concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143 K, limitations were observed at flame temperatures where temperatures were overestimated and relative CO(2)/N(2) concentrations were underestimated. Potential sources for these discrepancies are discussed.

  16. KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  17. KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  18. Exploring Gusev with MER A

    NASA Astrophysics Data System (ADS)

    Grin, E. A.; Cabrol, N. A.; Des Marais, D.; Farmer, J.; Greeley, R.; Carr, M.; Kramer, M.; Moore, J.; Sutter, B.; Fike, D.; Kuzmin, R.; Grant, F.; Barlow, N.; Newsom, H.; Tanaka, K.; Urquhart, M.; de Goursac, O.; Grisby, B.

    2002-12-01

    Gusev will be an outstanding candidate to achieve the 2003 MER mission goals. The crater has collected sediments from a diversity of parent rocks in the vast Maadim Vallis watershed over a period of three billion years. Because of the interaction between Gusev and Maadim, it has been proposed that a significant volume of the sedimentary material in the crater is of aqueous origin. Mars Odyssey has shown that the hydrogen abundance in the Gusev region is higher than average at corresponding latitudes. This observation could be consistent with a past long lived aqueous activity. The presence of aqueous material is central to the MER mission because it can provide clues about the past water history, climate changes, and the potential habitability of Mars. However, while Gusev is recognized as a primary site because of its past fluvio lacustrine activity, the geological diversity and history of its immediate surroundings makes it exceptional and provides the foundation for an exciting exploration leading to key discoveries. In addition to aqueous, many other processes can have contributed to the material in the crater basin: volcanic, Apollinaris patera is only 200 km away, aeolian, glacial, and global airfall processes. How to identify the signature of each process? What was their succession in time? Do we see the evolution from perennial to more episodic lakes? Do we see interaction between volcanic, glacial, aeolian and lacustrine processes? What was the recurrence of dry episodes? What type of measurements can provide a definitive answer for each of these questions in the 600 m traverse range that the rover will accomplish? What diversity can we also expect in this range? Finally, the uniqueness and potential of Gusev does not reside only in this exceptional diversity. As there is evidence for long lived lake episodes, Gusev also offers the unique possibility to study for the first time the results of the in situ formation of aqueous sediments and minerals in their

  19. Overtone Vibrations of OH Groups in Fused Silica Optical Fibers.

    DTIC Science & Technology

    1981-09-01

    MER IPEFRIGORGANIZATION- NAME AND ADDRESS - 10. PROGRAM ELEMENT, PROJECT, TS Chemitry eparmentAREA & WORK UNIT NUMBERS Howard-University Washington D...edameutal and overtone contours were decomposed into Gaussian components using a D. Post 310 analog computer . ?~ .5- 3. F..*’m,,ntal Re,.ults A. Infrared...spectrum. AoD - k AoH (here k-3.981) computed S from a linear combination of deuterated, AOD, and undeuterated, AoH, absorbance spectra, was required, Fig

  20. KENNEDY SPACE CENTER, FLA. - Workers on the launch tower of Complex 17-A, Cape Canaveral Air Force Station, stand by while a solid rocket booster (SRB) is lifted to vertical. It is one of nine that will help launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower of Complex 17-A, Cape Canaveral Air Force Station, stand by while a solid rocket booster (SRB) is lifted to vertical. It is one of nine that will help launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  1. Hybrid accretion disks in active galactic nuclei. I - Structure and spectra

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Liang, Edison P.

    1991-01-01

    A unified treatment is presented of the two distinct states of vertically thin AGN accretion disks: a cool (about 10 to the 6th K) optically thick solution, and a hot (about 10 to the 9th K) optically thin solution. A generalized formalism and a new radiative cooling equation valid in both regimes are introduced. A new luminosity limit is found at which the hot and cool alpha solutions merge into a single solution of intermediate optical depth. Analytic solutions for the disk structure are given, and output spectra are computed numerically. This is used to demonstrate the prospect of fitting AGN broadband spectra containing both the UV bump as well as the hard X-ray and gamma-ray tail, using a single accretion disk model. Such models are found to make definite predictions about the observed spectrum, such as the relation between the hard X-ray spectral index, the UV-to-X-ray luminosity ratio, and a feature of about 1 MeV.

  2. INTRIGOSS: A new Library of High Resolution Synthetic Spectra

    NASA Astrophysics Data System (ADS)

    Franchini, Mariagrazia; Morossi, Carlo; Di Marcancantonio, Paolo; Chavez, Miguel; GES-Builders

    2018-01-01

    INTRIGOSS (INaf Trieste Grid Of Synthetic Spectra) is a new High Resolution (HiRes) synthetic spectral library designed for studying F, G, and K stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surface Flux SPectra (FSP), in the 4800-5400 Å wavelength range, were computed by means of the SPECTRUM code. The synthetic spectra are computed with an atomic and bi-atomic molecular line list including "bona fide" Predicted Lines (PLs) built by tuning loggf to reproduce very high SNR Solar spectrum and the UVES-U580 spectra of five cool giants extracted from the Gaia-ESO survey (GES). The astrophysical gf-values were then assessed by using more than 2000 stars with homogenous and accurate atmosphere parameters and detailed chemical composition from GES. The validity and greater accuracy of INTRIGOSS NSPs and FSPs with respect to other available spectral libraries is discussed. INTRIGOSS will be available on the web and will be a valuable tool for both stellar atmospheric parameters and stellar population studies.

  3. Quantitative analysis of dinuclear manganese(II) EPR spectra

    NASA Astrophysics Data System (ADS)

    Golombek, Adina P.; Hendrich, Michael P.

    2003-11-01

    A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me 3TACN) 2Mn(II) 2(μ-OAc) 3]BPh 4 ( 1) (Me 3TACN= N, N', N''-trimethyl-1,4,7-triazacyclononane; OAc=acetate 1-; BPh 4=tetraphenylborate 1-) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50 K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2 K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined ( J=-1.5±0.3 cm-1; H ex=-2J S1· S2) and found to be in agreement with a previous

  4. VizieR Online Data Catalog: A library of high-S/N optical spectra of FGKM stars (Yee+, 2017)

    NASA Astrophysics Data System (ADS)

    Yee, S. W.; Petigura, E. A.; von Braun, K.

    2017-09-01

    Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution (R~60000), high signal-to-noise ratio (S/N~150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ~M5-F1 (Teff~3000-7000K, R*~0.1-16R{Sun}). We also present "Empirical SpecMatch" (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100K in effective temperature (Teff), 15% in stellar radius (R*), and 0.09dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ~K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70K in Teff, 10% in R*, and 0.12dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available. (2 data files).

  5. Experimental and theoretical comparison of the O K-edge nonresonant inelastic X-ray scattering and X-ray absorption spectra of NaReO4.

    PubMed

    Bradley, Joseph A; Yang, Ping; Batista, Enrique R; Boland, Kevin S; Burns, Carol J; Clark, David L; Conradson, Steven D; Kozimor, Stosh A; Martin, Richard L; Seidler, Gerald T; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Wolfsberg, Laura E

    2010-10-06

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.

  6. Follow-up chest radiographic findings in patients with MERS-CoV after recovery

    PubMed Central

    Das, Karuna M; Lee, Edward Y; Singh, Rajvir; Enani, Mushira A; Al Dossari, Khalid; Van Gorkom, Klaus; Larsson, Sven G; Langer, Ruth D

    2017-01-01

    Purpose: To evaluate the follow-up chest radiographic findings in patients with Middle East respiratory syndrome coronavirus (MERS-CoV) who were discharged from the hospital following improved clinical symptoms. Materials and Methods: Thirty-six consecutive patients (9 men, 27 women; age range 21–73 years, mean ± SD 42.5 ± 14.5 years) with confirmed MERS-CoV underwent follow-up chest radiographs after recovery from MERS-CoV. The 36 chest radiographs were obtained at 32 to 230 days with a median follow-up of 43 days. The reviewers systemically evaluated the follow-up chest radiographs from 36 patients for lung parenchymal, airway, pleural, hilar and mediastinal abnormalities. Lung parenchyma and airways were assessed for consolidation, ground-glass opacity (GGO), nodular opacity and reticular opacity (i.e., fibrosis). Follow-up chest radiographs were also evaluated for pleural thickening, pleural effusion, pneumothorax and lymphadenopathy. Patients were categorized into two groups: group 1 (no evidence of lung fibrosis) and group 2 (chest radiographic evidence of lung fibrosis) for comparative analysis. Patient demographics, length of ventilations days, number of intensive care unit (ICU) admission days, chest radiographic score, chest radiographic deterioration pattern (Types 1-4) and peak lactate dehydrogenase level were compared between the two groups using the student t-test, Mann-Whitney U test and Fisher's exact test. Results: Follow-up chest radiographs were normal in 23 out of 36 (64%) patients. Among the patients with abnormal chest radiographs (13/36, 36%), the following were found: lung fibrosis in 12 (33%) patients GGO in 2 (5.5%) patients, and pleural thickening in 2 (5.5%) patients. Patients with lung fibrosis had significantly greater number of ICU admission days (19 ± 8.7 days; P value = 0.001), older age (50.6 ± 12.6 years; P value = 0.02), higher chest radiographic scores [10 (0-15.3); P value = 0.04] and higher peak lactate dehydrogenase

  7. Variable selection based on clustering analysis for improvement of polyphenols prediction in green tea using synchronous fluorescence spectra.

    PubMed

    Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi

    2018-03-13

    Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.

  8. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  9. Observing the Spectra of MEarth and TRAPPIST Planets with JWST

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler D.; Fortney, Jonathan J.

    2017-10-01

    During the past two years, nine planets close to Earth in radius have been discovered around nearby M dwarfs cooler than 3300 K. These planets include the 7 planets in the TRAPPIST-1 system and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b (Dittmann et al. 2017; Berta-Thompson et al. 2015; Gillon et al. 2017). These planets are the smallest planets discovered to date that will be amenable to atmospheric characterization with JWST. They span equilibrium temperatures from ˜130 K to >500 K, and radii from 0.7 to 1.43 Earth radii. Some of these planets orbit as distances potentially amenable to surface liquid water, though the actual surface temperatures will depend strongly on the albedo of the planet and the thickness and composition of its atmosphere. The stars they orbit also vary in activity levels, from the quiet LHS 1140b host star to the more active TRAPPIST-1 host star. This set of planets will form the testbed for our first chance to study the diversity of atmospheres around Earth-sized planets. Here, we will present model spectra of these 9 planets, varying the composition and the surface pressure of the atmosphere. We base our elemental compositions on three outcomes of planetary atmosphere evolution in our own solar system: Earth, Titan, and Venus. We calculate the molecular compositions in chemical equilibrium. We present both thermal emission spectra and transmission spectra for each of these objects, and make predictions for the observability of these spectra with different instrument modes with JWST.

  10. Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean

    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted

  11. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    PubMed

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  12. Geology of a Proposed MER Landing Site in Western Melas Chasma

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Parker, T. J.; Anderson, F. S.; Grant, J. A.

    2002-01-01

    A proposed landing site for the Mars Exploration Rover (MER) has been identified in western Melas Chasma. The landing ellipse contains a blocky, bright deposit which we propose formed as a landslide, perhaps beneath a former lake. Additional information is contained in the original extended abstract.

  13. Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV) in Oman.

    PubMed

    Al-Abaidani, I S; Al-Maani, A S; Al-Kindi, H S; Al-Jardani, A K; Abdel-Hady, D M; Zayed, B E; Al-Harthy, K S; Al-Shaqsi, K H; Al-Abri, S S

    2014-12-01

    Several countries in the Middle East and around 22 countries worldwide have reported cases of human infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). The exceptionally high fatality rate resulting from MERS-CoV infection in conjunction with the paucity of knowledge about this emerging virus has led to major public and international concern. Within the framework of the national acute respiratory illness surveillance, the Ministry of Health in the Sultanate of Oman has announced two confirmed cases of MERS-CoV to date. The aim of this report is to describe the epidemiological aspects of these two cases and to highlight the importance of public health preparedness and response. The absence of secondary cases among contacts of the reported cases can be seen as evidence of the effectiveness of infection prevention and control precautions as an important pillar of the national preparedness and response plan applied in the health care institutions in Oman. Copyright © 2014. Published by Elsevier Ltd.

  14. Baryon spectra and antiparticle-to-particle ratios from the improved AMPT model

    NASA Astrophysics Data System (ADS)

    He, Yuncun; Lin, Zi-Wei

    2018-02-01

    The current version of a multi-phase transport (AMPT) model with string melting can reasonably describe the dN/dy yields, pT spectra and anisotropic flows of pions and kaons at low pT in heavy ion collisions at RHIC and LHC energies, although it failed to reproduce the dN/dy and pT spectra of baryons. In this work, we improve the quark coalescence mechanism in AMPT by removing the forced separate number conservations of mesons, baryons and antibaryons in each event. We find that the improved AMPT model can better describe the yields at midrapidity, the pT spectra and elliptic flow of low-pT baryons in comparison with the experimental data. Antiparticle-to-particle ratios of strange baryons are also significantly improved.

  15. A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties

    PubMed Central

    Millet, Jean Kaoru; Goldstein, Monty E; Labitt, Rachael N; Hsu, Hung-Lun; Daniel, Susan; Whittaker, Gary R

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) continues to circulate in both humans and camels, and the origin and evolution of the virus remain unclear. Here we characterize the spike protein of a camel-derived MERS-CoV (NRCE-HKU205) identified in 2013, early in the MERS outbreak. NRCE-HKU205 spike protein has a variant cleavage motif with regard to the S2′ fusion activation site—notably, a novel substitution of isoleucine for the otherwise invariant serine at the critical P1′ cleavage site position. The substitutions resulted in a loss of furin-mediated cleavage, as shown by fluorogenic peptide cleavage and western blot assays. Cell–cell fusion and pseudotyped virus infectivity assays demonstrated that the S2′ substitutions decreased spike-mediated fusion and viral entry. However, cathepsin and trypsin-like protease activation were retained, albeit with much reduced efficiency compared with the prototypical EMC/2012 human strain. We show that NRCE-HKU205 has more limited fusion activation properties possibly resulting in more restricted viral tropism and may represent an intermediate in the complex pattern of MERS-CoV ecology and evolution. PMID:27999426

  16. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassi, Michel; Pearce, Carolyn I.; Bagus, Paul S.

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectramore » of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.« less

  17. Association between Australian Hajj Pilgrims' awareness of MERS-CoV, and their compliance with preventive measures and exposure to camels.

    PubMed

    Alqahtani, Amani S; Wiley, Kerrie E; Mushta, Sami M; Yamazaki, Kaoruko; BinDhim, Nasser F; Heywood, Anita E; Booy, Robert; Rashid, Harunor

    2016-05-01

    Through a prospective cohort study the relationship between travellers' awareness of MERS-CoV, and compliance with preventive measures and exposure to camels was evaluated among Australian Hajj pilgrims who attended Hajj in 2015. Only 28% of Australian Hajj pilgrims were aware of MERS-CoV in Saudi Arabia. Those who were aware of MERS-CoV were more likely to receive recommended vaccines [odds ratio (OR) 3.1, 95% confidence interval (CI): 1.5-5.9, P < 0.01], but there was no significant difference in avoiding camels or their raw products during Hajj between those who were aware of MERS-CoV and those who were not (OR 1.2, 95% CI: 0.3-5.2, P = 0.7). Hajj pilgrims' awareness is reflected in some of their practices but not in all. © International Society of Travel Medicine, 2016. All rights reserved. Published by Oxford University Press. For permissions, please e-mail: journals.permissions@oup.com.

  18. From Prime to Extended Mission: Evolution of the MER Tactical Uplink Process

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew H.; Laubach, Sharon

    2006-01-01

    To support a 90-day surface mission for two robotic rovers, the Mars Exploration Rover mission designed and implemented an intensive tactical operations process, enabling daily commanding of each rover. Using a combination of new processes, custom software tools, a Mars-time staffing schedule, and seven-day-a-week operations, the MER team was able to compress the traditional weeks-long command-turnaround for a deep space robotic mission to about 18 hours. However, the pace of this process was never intended to be continued indefinitely. Even before the end of the three-month prime mission, MER operations began evolving towards greater sustainability. A combination of continued software tool development, increasing team experience, and availability of reusable sequences first reduced the mean process duration to approximately 11 hours. The number of workshifts required to perform the process dropped, and the team returned to a modified 'Earth-time' schedule. Additional process and tool adaptation eventually provided the option of planning multiple Martian days of activity within a single workshift, making 5-day-a-week operations possible. The vast majority of the science team returned to their home institutions, continuing to participate fully in the tactical operations process remotely. MER has continued to operate for over two Earth-years as many of its key personnel have moved on to other projects, the operations team and budget have shrunk, and the rovers have begun to exhibit symptoms of aging.

  19. The Development of New Atmospheric Models for K and M DwarfStars with Exoplanets

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    2018-01-01

    The ultraviolet and X-ray emissions of host stars play critical roles in the survival and chemical composition of the atmospheres of their exoplanets. The need to measure and understand this radiative output, in particular for K and M dwarfs, is the main rationale for computing a new generation of stellar models that includes magnetically heated chromospheres and coronae in addition to their photospheres. We describe our method for computing semi-empirical models that includes solutions of the statistical equilibrium equations for 52 atoms and ions and of the non-LTE radiative transfer equations for all important spectral lines. The code is an offspring of the Solar Radiation Physical Modelling system (SRPM) developed by Fontenla et al. (2007--2015) to compute one-dimensional models in hydrostatic equilibrium to fit high-resolution stellar X-ray to IR spectra. Also included are 20 diatomic molecules and their more than 2 million spectral lines. Our-proof-of-concept model is for the M1.5 V star GJ 832 (Fontenla et al. ApJ 830, 154 (2016)). We will fit the line fluxes and profiles of X-ray lines and continua observed by Chandra and XMM-Newton, UV lines observed by the COS and STIS instruments on HST (N V, C IV, Si IV, Si III, Mg II, C II, and O I), optical lines (including H$\\alpha$, Ca II, Na I), and continua. These models will allow us to compute extreme-UV spectra, which are unobservable but required to predict the hydrodynamic mass-loss rate from exoplanet atmospheres, and to predict panchromatic spectra of new exoplanet host stars discovered after the end of the HST mission.This work is supported by grant HST-GO-15038 from the Space Telescope Science Institute to the Univ. of Colorado

  20. Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion

    PubMed Central

    Duroc, Yann; Kumar, Rajeev; Ranjha, Lepakshi; Adam, Céline; Guérois, Raphaël; Md Muntaz, Khan; Marsolier-Kergoat, Marie-Claude; Dingli, Florent; Laureau, Raphaëlle; Loew, Damarys; Llorente, Bertrand; Charbonnier, Jean-Baptiste; Cejka, Petr; Borde, Valérie

    2017-01-01

    Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations. DOI: http://dx.doi.org/10.7554/eLife.21900.001 PMID:28051769

  1. The Far-Ultraviolet Spectra of "Cool" PG1159 Stars

    NASA Technical Reports Server (NTRS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2015-01-01

    We present a comprehensive study of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra (912-1190 A) of two members of the PG1159 spectral class, which consists of hydrogen-deficient (pre-) white dwarfs with effective temperatures in the range T(sub eff) = 75000-200000 K. As two representatives of the cooler objects, we have selected PG1707+427 (T(sub eff) = 85000 K) and PG1424+535 (T(sub eff) = 110000 K), complementing a previous study of the hotter prototype PG1159-035 (T(sub eff) = 140000 K). The helium-dominated atmospheres are strongly enriched in carbon and oxygen, therefore, their spectra are dominated by lines from C III-IV and O III-VI, many of which were never observed before in hot stars. In addition, lines of many other metals (N, F, Ne, Si, P, S, Ar, Fe) are detectable, demonstrating that observations in this spectral region are most rewarding when compared to the near-ultraviolet and optical wavelength bands. We perform abundance analyses of these species and derive upper limits for several undetected light and heavy metals including iron-group and trans-iron elements. The results are compared to predictions of stellar evolution models for neutron-capture nucleosynthesis and good agreement is found.

  2. The Merli-Missiroli-Pozzi Two-Slit Electron-Interference Experiment.

    PubMed

    Rosa, Rodolfo

    In 2002 readers of Physics World voted Young's double-slit experiment with single electrons as "the most beautiful experiment in physics" of all time. Pier Giorgio Merli, Gian Franco Missiroli, and Giulio Pozzi carried out this experiment in a collaboration between the Italian Research Council and the University of Bologna almost three decades earlier. I examine their experiment, place it in historical context, and discuss its philosophical implications.

  3. Variable selection based on clustering analysis for improvement of polyphenols prediction in green tea using synchronous fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi

    2018-04-01

    Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.

  4. Probing the mer- to fac-isomerization of tris-cyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.

    PubMed

    McDonald, Aidan R; Lutz, Martin; von Chrzanowski, Lars S; van Klink, Gerard P M; Spek, Anthony L; van Koten, Gerard

    2008-08-04

    We have developed techniques which allow for covalent tethering, via a "hetero" cyclometallating ligand, of heteroleptic tris-cyclometallated iridium(III) complexes to polymeric supports (for application in light-emitting diode technologies). This involved the selective synthesis and thorough characterization of heteroleptic [Ir(C,N) 2(C',N')] tris-cyclometallated iridium(III) complexes. Furthermore, the synthesis and characterization of heteroleptic [Ir(C,N) 2OR] complexes is presented. Under standard thermal conditions for the synthesis of the facial ( fac) isomer of tris-cyclometallated complexes, it was not possible to synthesize pure heteroleptic complexes of the form [Ir(C,N) 2(C',N')]. Instead, a mixture of homo- and heteroleptic complexes was acquired. It was found that a stepwise procedure involving the synthesis of a pure meridonial ( mer) isomer followed by photochemical isomerization of this mer to the fac isomer was necessary to synthesize pure fac-[Ir(C,N) 2(C',N')] complexes. Under thermal isomerization conditions, the conversion of mer-[Ir(C,N) 2(C',N')] to fac-[Ir(C,N) 2(C',N')] was also not a clean reaction, with again a mixture of homo- and heteroleptic complexes acquired. An investigation into the thermal mer to fac isomerization of both homo- and heteroleptic tris-cyclometallated complexes is presented. It was found that the process is an alcohol-catalyzed reaction with the formation of an iridium alkoxide [Ir(C,N) 2OR] intermediate in the isomerization process. This catalyzed reaction can be carried out between 50 and 100 degrees C, the first such example of low-temperature mer-fac thermal isomerization. We have synthesized analogous complexes and have shown that they do indeed react so as to give fac-tris-cyclometallated products. A detailed explanation of the intermediates (and all of their stereoisomers, in particular when systems of the generic formula [M(a,b) 2(a',b')] are synthesized) formed in the mer to fac isomerization process is

  5. A structural and vibrational study on the first condensed borosulfate K5[B(SO4)4] by using the FTIR-Raman spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Höppe, Henning Alfred; Kazmierczak, Karolina; Romano, Elida; Brandán, Silvia Antonia

    2013-04-01

    The first borosulfate, K5[B(SO4)4] (recently synthesized by Henning A. Höppe, Karolina Kazmierczak, Michael Daub, Katharina Förg, Franziska Fuchs, Harald Hillebrecht, 2012) was characterized by infrared and Raman spectroscopies. Density functional theory (DFT) calculations were used to study the structure and vibrational properties of the compound. Employing the B3P86 and B3LYP levels of theory, the molecular structures of the compound were theoretically determined in gas phase and the harmonic vibrational frequencies were evaluated at the same levels. The calculated harmonic vibrational frequencies for the borosulfate compound are consistent with the experimental IR and Raman spectra. These calculations gave us a precise knowledge of the normal modes of vibration taking into account the type of coordination adopted by sulfate groups of this compound as ligands with C3v and C2v symmetries. A complete assignment of all the observed bands in the IR and Raman spectra for K5[B(SO4)4] was performed. Here, the infrared and Raman spectra of K5[B(SO4)4] were interpreted, discussed and completely assigned. The nature of the Ksbnd O, Ksbnd S, Bsbnd O, and Ssbnd O bonds and the topological properties of the compound were investigated and analyzed by means of Natural Bond Order (NBO) and Bader's Atoms in Molecules theory (AIM), respectively.

  6. Detectability of planetary characteristics in disk-averaged spectra. I: The Earth model.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Fishbein, Evan; Turnbull, Margaret; Bibring, Jean-Pierre

    2006-02-01

    Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations.

  7. Global Modeling of Phosphine (PH3) Spectra: 13 to 2.8 μm

    NASA Astrophysics Data System (ADS)

    Brown, Linda R.; Nikitin, A.; Champion, J.; Kleiner, I.; Butler, R. A. H.

    2008-09-01

    In order to support remote sensing of Saturn and Jupiter, the infrared spectrum of PH3 was studied using high resolution (R>360000) laboratory spectra obtained with Fourier transform spectrometers. The line positions and intensities involving up to 21 sub-vibrational states were analyzed simultaneously using theoretical models developed in France and extended in Russia. The polyads considered were the Dyad (13 - 7.3 μm), Pentad (5.9 - 3.8 μm) and Octad (3.7 - 3.1 μm). The improved quantum mechanical models were implemented using an effective Hamiltonian in the form of irreducible tensors. The global modeling permitted more extensive quantum assignments to be made for transitions arising from both from the ground state and the two lowest fundamentals. The standard deviations of the global fit represent significant improvement with respect to previous studies of phosphine spectroscopy at these wavelengths. These results will be presented. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with The National Aeronautics and Space Administration. I.K. also thanks the Programme National de Planétologie for funding part of this research.

  8. THE X-RAY LINE FEATURE AT 3.5 KeV IN GALAXY CLUSTER SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, K. J. H.; Sylwester, B.; Sylwester, J., E-mail: kennethjhphillips@yahoo.com, E-mail: bs@cbk.pan.wroc.pl, E-mail: js@cbk.pan.wroc.pl

    2015-08-10

    Recent work by Bulbul et al. and Boyarsky et al. has suggested that a line feature at ∼3.5 keV in the X-ray spectra of galaxy clusters and individual galaxies seen with XMM-Newton is due to the decay of sterile neutrinos, a dark matter candidate. This identification has been criticized by Jeltema and Profumo on the grounds that model spectra suggest that atomic transitions in helium-like potassium (K xviii) and chlorine (Cl xvi) are more likely to be the emitters. Here it is pointed out that the K xviii lines have been observed in numerous solar flare spectra at high spectralmore » resolution with the RESIK crystal spectrometer and also appear in Chandra HETG spectra of the coronally active star σ Gem. In addition, the solar flare spectra at least indicate a mean coronal potassium abundance, which is a factor between 9 and 11 higher than the solar photospheric abundance. This fact, together with the low statistical quality of the XMM-Newton spectra, completely account for the ∼3.5 keV feature and there is therefore no need to invoke a sterile neutrino interpretation of the observed line feature at ∼3.5 keV.« less

  9. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    PubMed

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  10. GENESIS: new self-consistent models of exoplanetary spectra

    NASA Astrophysics Data System (ADS)

    Gandhi, Siddharth; Madhusudhan, Nikku

    2017-12-01

    We are entering the era of high-precision and high-resolution spectroscopy of exoplanets. Such observations herald the need for robust self-consistent spectral models of exoplanetary atmospheres to investigate intricate atmospheric processes and to make observable predictions. Spectral models of plane-parallel exoplanetary atmospheres exist, mostly adapted from other astrophysical applications, with different levels of sophistication and accuracy. There is a growing need for a new generation of models custom-built for exoplanets and incorporating state-of-the-art numerical methods and opacities. The present work is a step in this direction. Here we introduce GENESIS, a plane-parallel, self-consistent, line-by-line exoplanetary atmospheric modelling code that includes (a) formal solution of radiative transfer using the Feautrier method, (b) radiative-convective equilibrium with temperature correction based on the Rybicki linearization scheme, (c) latest absorption cross-sections, and (d) internal flux and external irradiation, under the assumptions of hydrostatic equilibrium, local thermodynamic equilibrium and thermochemical equilibrium. We demonstrate the code here with cloud-free models of giant exoplanetary atmospheres over a range of equilibrium temperatures, metallicities, C/O ratios and spanning non-irradiated and irradiated planets, with and without thermal inversions. We provide the community with theoretical emergent spectra and pressure-temperature profiles over this range, along with those for several known hot Jupiters. The code can generate self-consistent spectra at high resolution and has the potential to be integrated into general circulation and non-equilibrium chemistry models as it is optimized for efficiency and convergence. GENESIS paves the way for high-fidelity remote sensing of exoplanetary atmospheres at high resolution with current and upcoming observations.

  11. Computer Modeling of the Structure and Spectra of Fluorescent Proteins

    PubMed Central

    Grigorenko, B.L.; Savitsky, A.P.

    2009-01-01

    Fluorescent proteins from the family of green fluorescent proteins are intensively used as biomarkers in living systems. The chromophore group based on the hydroxybenzylidene-imidazoline molecule, which is formed in nature from three amino-acid residues inside the protein globule and well shielded from external media, is responsible for light absorption and fluorescence. Along with the intense experimental studies of the properties of fluorescent proteins and their chromophores by biochemical, X-ray, and spectroscopic tools, in recent years, computer modeling has been used to characterize their properties and spectra. We present in this review the most interesting results of the molecular modeling of the structural parameters and optical and vibrational spectra of the chromophorecontaining domains of fluorescent proteins by methods of quantum chemistry, molecular dynamics, and combined quantum-mechanical-molecular-mechanical approaches. The main emphasis is on the correlation of theoretical and experimental data and on the predictive power of modeling, which may be useful for creating new, efficient biomarkers. PMID:22649601

  12. Application of class-modelling techniques to infrared spectra for analysis of pork adulteration in beef jerkys.

    PubMed

    Kuswandi, Bambang; Putri, Fitra Karima; Gani, Agus Abdul; Ahmad, Musa

    2015-12-01

    The use of chemometrics to analyse infrared spectra to predict pork adulteration in the beef jerky (dendeng) was explored. In the first step, the analysis of pork in the beef jerky formulation was conducted by blending the beef jerky with pork at 5-80 % levels. Then, they were powdered and classified into training set and test set. The second step, the spectra of the two sets was recorded by Fourier Transform Infrared (FTIR) spectroscopy using atenuated total reflection (ATR) cell on the basis of spectral data at frequency region 4000-700 cm(-1). The spectra was categorised into four data sets, i.e. (a) spectra in the whole region as data set 1; (b) spectra in the fingerprint region (1500-600 cm(-1)) as data set 2; (c) spectra in the whole region with treatment as data set 3; and (d) spectra in the fingerprint region with treatment as data set 4. The third step, the chemometric analysis were employed using three class-modelling techniques (i.e. LDA, SIMCA, and SVM) toward the data sets. Finally, the best result of the models towards the data sets on the adulteration analysis of the samples were selected and the best model was compared with the ELISA method. From the chemometric results, the LDA model on the data set 1 was found to be the best model, since it could classify and predict 100 % accuracy of the sample tested. The LDA model was applied toward the real samples of the beef jerky marketed in Jember, and the results showed that the LDA model developed was in good agreement with the ELISA method.

  13. MER Atmospheric Results: Pancam and Mini-TES

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.

    2004-12-01

    Although at first glance, the Mars Exploration Rover (MER) payload may be perceived as primarily suited to geological investigation, it is in fact quite well-suited to carry out a robust and dynamic program of atmospheric monitoring and characterization with a particular emphasis on the planetary boundary layer. More to the point, it has been doing so at both the Gusev and Meridiani locations for more than 200 days. Ongoing atmospheric observations include (1) periodic thermal infrared spectra of the Martian sky by the Miniature Thermal Emission Spectrometer (Mini-TES). The actual sequences consist of both standard 200-second integrations and long ``stares'' of up to (almost) an hour. These data are highly diagnostic of vertical thermal structure (from 10 meters to 3-5 kilometers), aerosol optical depth along with particle size, and under the right conditions, the water column. (2) direct solar imaging using the Panoramic Camera (Pancam) and 440/880 nm + neutral density (ND5) filters, providing accurate measurement visible optical depths. (3) near-sun and ``sky-arc'' sequences using the full suite of geological filters, intended to capture the forward-diffraction peak and the phase function characteristics of the aerosol particles. (4) carbon dioxide (15 micrometer band) profiling of the Mini-TES surface observations, providing an average near-surface (1 m) air temperature. The above activities have been (and will continue to be) used to characterize diurnal and secular temporal trends and to examine the spatial variability of such trends. In addition, serendipity has provided the unique opportunities of watching the decay of a moderate dust storm from two widely-separated sites as well as of multiple simultaneous orbiter-rover observing ``campaigns.'' The latter includes thus far the Mars Express and Mars Global Surveyor over-flights. During our presentation, we will summarize the atmospheric results obtained and analyzed through the end of the first 200 days of

  14. Model Atmospheres and Spectra for Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Freedman, Richard S.; Beebe, Reta (Technical Monitor)

    2000-01-01

    In the past few years much new observational data has become available for brown dwarfs and extra solar planets. Not only are new objects being discovered but the availability of higher resolution spectra is improving. This allows a better comparison between the models and the available data, and places new constraints on the models which now have to be made more physically realistic in order to better interpret the observations. Under this grant, an array of new opacities were calculated and successfully applied to a variety of physical situations that were used as input to model available observations of brown dwarfs and extra solar giant planets.

  15. Model based recovery of histological parameters starting from reflectance spectra of the colon

    NASA Astrophysics Data System (ADS)

    Hidovic-Rowe, Dzena; Claridge, Ela

    2005-06-01

    Colon cancer alters the tissue macro-architecture. Changes include increase in blood content and distortion of the collagen matrix, which affect the reflectance spectra of the colon and its colouration. We have developed a physics-based model for predicting colon tissue spectra. The colon structure is represented by three layers: mucosa, submucosa and smooth muscle. Each layer is represented by parameters defining its optical properties: molar concentration and absorption coefficients of haemoglobins, describing absorption of light; size and density of collagen fibres; refractive index of the medium and collagen fibres, describing light scattering; and layer thicknesses. Spectra were calculated using the Monte Carlo method. The output of the model was compared to experimental data comprising 50 spectra acquired in vivo from normal tissue. The extracted histological parameters showed good agreement with known values. An experiment was carried out to study the differences between normal and abnormal tissue. These were characterised by increased blood content and decreased collagen density, which is consistent with known differences between normal and abnormal tissue. This suggests that histological quantities of the colon could be computed from its reflectance spectra. The method is likely to have diagnostic value in the early detection of colon cancer.

  16. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice.

    PubMed

    Wang, Chong; Zheng, Xuexing; Gai, Weiwei; Wong, Gary; Wang, Hualei; Jin, Hongli; Feng, Na; Zhao, Yongkun; Zhang, Weijiao; Li, Nan; Zhao, Guoxing; Li, Junfu; Yan, Jinghua; Gao, Yuwei; Hu, Guixue; Yang, Songtao; Xia, Xianzhu

    2017-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has continued spreading since its emergence in 2012 with a mortality rate of 35.6%, and is a potential pandemic threat. Prophylactics and therapies are urgently needed to address this public health problem. We report here the efficacy of a vaccine consisting of chimeric virus-like particles (VLP) expressing the receptor binding domain (RBD) of MERS-CoV. In this study, a fusion of the canine parvovirus (CPV) VP2 structural protein gene with the RBD of MERS-CoV can self-assemble into chimeric, spherical VLP (sVLP). sVLP retained certain parvovirus characteristics, such as the ability to agglutinate pig erythrocytes, and structural morphology similar to CPV virions. Immunization with sVLP induced RBD-specific humoral and cellular immune responses in mice. sVLP-specific antisera from these animals were able to prevent pseudotyped MERS-CoV entry into susceptible cells, with neutralizing antibody titers reaching 1: 320. IFN-γ, IL-4 and IL-2 secreting cells induced by the RBD were detected in the splenocytes of vaccinated mice by ELISpot. Furthermore, mice inoculated with sVLP or an adjuvanted sVLP vaccine elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. Our study demonstrates that sVLP displaying the RBD of MERS-CoV are promising prophylactic candidates against MERS-CoV in a potential outbreak situation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Effects of the Mars Exploration Rovers (MER) Work Schedule Regime on Locomotor Activity Circadian Rhythms, Sleep and Fatigue

    NASA Technical Reports Server (NTRS)

    DeRoshia, Charles W.; Colletti, Laura C.; Mallis, Melissa M.

    2008-01-01

    This study assessed human adaptation to a Mars sol by evaluating sleep metrics obtained by actigraphy and subjective responses in 22 participants, and circadian rhythmicity in locomotor activity in 9 participants assigned to Mars Exploration Rover (MER) operational work schedules (24.65 hour days) at the Jet Propulsion Laboratory in 2004. During MER operations, increased work shift durations and reduced sleep durations and time in bed were associated with the appearance of pronounced 12-hr (circasemidian) rhythms with reduced activity levels. Sleep duration, workload, and circadian rhythm stability have important implications for adaptability and maintenance of operational performance not only of MER operations personnel but also in space crews exposed to a Mars sol of 24.65 hours during future Mars missions.

  18. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    PubMed

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  19. MAPGEN : mixed initiative planning and scheduling for the Mars '03 MER mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitchell; Bresina, John; Charest, Len; Jonsson, Ari; Hsu, Jennifer; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey

    2003-01-01

    The Mars Exploration Rovers Mars '03 mission is one of NASA's most ambitious science missions to date. The rovers will be launched in the summer of 2003 with each rover carrying instruments to conduct remote and in-situ observation to elucidate the planet's past climate, water activity, and habitability. Science is the primary driver of MER and, as a consequence, making best use of the scientific instruments, within the available resources, is a crucial aspect of the mission. To address this critically, the MER project has selected MAPGEN (Mixed-Initiative Activity Plan GENerator) as an activity planning tool. MAPGEN combines two exiting systems, each with a strong heritage: APGEN the Activity Planning tool from the Jet Propulsion Laboratory and the Europs Planning/Scheduling system from NASA Ames Research Center. This paper discusses the issues arising from combining these tools in the context of this mission.

  20. Non-LTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. I. Constructing the IL Spectra

    NASA Astrophysics Data System (ADS)

    Young, Mitchell. E.; Short, C. Ian

    2017-02-01

    We present an investigation of the globular cluster population synthesis method of McWilliam & Bernstein, focusing on the impact of non-LTE (NLTE) modeling effects and color-magnitude diagram (CMD) discretization. Johnson-Cousins-Bessel U - B, B-V, V-I, and J-K colors are produced for 96 synthetic integrated light (IL) spectra with two different discretization prescriptions and three degrees of NLTE treatment. These color values are used to compare NLTE- and LTE-derived population ages. Relative contributions of different spectral types to the IL spectra for different wavebands are measured. IL NLTE spectra are shown to be more luminous in the UV and optical than LTE spectra, but show stronger absorption features in the IR. The main features showing discrepancies between NLTE and LTE IL spectra may be attributed to light metals, primarily Fe I, Ca I, and Ti I, as well as TiO molecular bands. Main-sequence stars are shown to have negligible NLTE effects at IR wavelengths compared to more evolved stars. Photometric color values are shown to vary at the millimagnitude level as a function of CMD discretization. Finer CMD sampling for the upper main sequence and turnoff, base of the red giant branch, and the horizontal branch minimizes this variation. Differences in ages derived from LTE and NLTE IL spectra are found to range from 0.55 to 2.54 Gyr, comparable to the uncertainty in GC ages derived from color indices with observational uncertainties of 0.01 mag, the limiting precision of the Harris catalog.

  1. Bridging the spectral divide: a case study with PAGES2k, the CESM Last Millennium Ensemble and proxy system models

    NASA Astrophysics Data System (ADS)

    Zhu, F.; Emile-Geay, J.; Ault, T.; McKay, N.; Dee, S.

    2017-12-01

    A grand challenge for paleoclimatology is to constrain climate model behavior on timescales longer than the instrumental record. Of particular interest is the spectrum of temperature as sensed by climate proxies. The "continuum" of climate variability [Huybers & Curry, Nature 2006] is often characterized by its scaling exponent β , where the spectral density S and the frequency f satisfy the power law S ∝ f-β . Recent studies have voiced concern that climate models underestimate scaling behavior compared to proxies [Laepple & Huybers, PNAS 2014]. Part of this discrepancy is known to lie in the complex processes whereby proxies transform climate signals [Dee et al, EPSL in press], yet many questions remain open. Here we leverage a recent multiproxy compilation [PAGES 2k Consortium, Sci Data 2017] to characterize scaling behavior over the Common Era using an interpolation-free method [Kirchner & Neal, PNAS 2013]. Proxy spectra are compared to spectra derived from the CESM Last Millennium Ensemble [Otto-Bliesner et al, BAMS 2016], using: (a) a naive model where proxies are assumed linearly related to annual temperature vs (b) proxy system models [Evans et al, QSR 2013] of varying complexity. Scaling behavior varies considerably by archive: on average the strongest centennial slopes are observed for lake sediments (β =1.2), while the smallest are observed for glacier ice (β =0.24). Results confirm that the CESM Last Millennium simulation (LM) exhibits decadal-centennial scaling closer to proxy spectra than the pre-industrial control run (PI): the latter shows a "blue" spectrum (β <0), while the former and the proxies display redder spectra (β >0), suggesting that forcings are essential to reduce the spectral divide. Yet, even with forcings, LM spectra are flatter than the proxy spectra. Subsequent work will investigate the roles of seasonal sensitivity (trees, foraminifera, alkenones), multivariate influences (corals, trees), detrending (trees) and post

  2. Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.

    PubMed

    Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang

    2015-10-27

    Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.

  3. KENNEDY SPACE CENTER, FLA. - At right is the Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, that will launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - At right is the Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, that will launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

  4. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2) is installed around the Mars Exploration Rover 2 (MER-2). MER-2 is one of NASA's twin Mars Exploration Rovers designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch no earlier than June 8 as MER-A, with two launch opportunities each day during the launch period that closes on June 19.

    NASA Image and Video Library

    2003-05-31

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2) is installed around the Mars Exploration Rover 2 (MER-2). MER-2 is one of NASA's twin Mars Exploration Rovers designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch no earlier than June 8 as MER-A, with two launch opportunities each day during the launch period that closes on June 19.

  5. The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015.

    PubMed

    Lee, Ji Yeon; Kim, You-Jin; Chung, Eun Hee; Kim, Dae-Won; Jeong, Ina; Kim, Yeonjae; Yun, Mi-Ran; Kim, Sung Soon; Kim, Gayeon; Joh, Joon-Sung

    2017-07-14

    In 2015, the largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection outside the Middle East occurred in South Korea. We summarized the epidemiological, clinical, and laboratory findings of the first Korean case of MERS-CoV and analyzed whole-genome sequences of MERS-CoV derived from the patient. A 68-year-old man developed fever and myalgia 7 days after returning to Korea, following a 10-day trip to the Middle East. Before diagnosis, he visited 4 hospitals, potentially resulting in secondary transmission to 28 patients. On admission to the National Medical Center (day 9, post-onset of clinical illness), he presented with drowsiness, hypoxia, and multiple patchy infiltrations on the chest radiograph. He was intubated (day 12) because of progressive acute respiratory distress syndrome (ARDS) and INF-α2a and ribavirin treatment was commenced. The treatment course was prolonged by superimposed ventilator associated pneumonia. MERS-CoV PCR results converted to negative from day 47 and the patient was discharged (day 137), following rehabilitation therapy. The complete genome sequence obtained from a sputum sample (taken on day 11) showed the highest sequence similarity (99.59%) with the virus from an outbreak in Riyadh, Saudi Arabia, in February 2015. The first case of MERS-CoV infection had high transmissibility and was associated with a severe clinical course. The patient made a successful recovery after early treatment with antiviral agents and adequate supportive care. This first case in South Korea became a super-spreader because of improper infection control measures, rather than variations of the virus.

  6. Wind Speed Dependence of Acoustic Ambient Vertical Directional Spectra at High Frequency

    DTIC Science & Technology

    1989-05-26

    the measurements, which is 8 to 32 kHz, is sufficiently high that the propagation is adequately modeled using the Eikonal equation approximation. 4 TD...level spectra were calculated from the resulting time series. Spectral levels at 8, 16, and 32 kHz were recorded in a database along with the wind...indications of biological or industrial contaminations were removed. The resulting database seen here contained 215 samples. 10 * TD 8565 0z 00 a.I. cn

  7. KENNEDY SPACE CENTER, FLA. - After arriving at Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off its transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - After arriving at Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off its transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  8. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  9. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) reaches the top of the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) reaches the top of the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  10. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off the transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off the transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  11. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  12. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is moved inside the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5..

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is moved inside the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5..

  13. From Bacteria to Whales: Using Functional Size Spectra to Model Marine Ecosystems.

    PubMed

    Blanchard, Julia L; Heneghan, Ryan F; Everett, Jason D; Trebilco, Rowan; Richardson, Anthony J

    2017-03-01

    Size-based ecosystem modeling is emerging as a powerful way to assess ecosystem-level impacts of human- and environment-driven changes from individual-level processes. These models have evolved as mechanistic explanations for observed regular patterns of abundance across the marine size spectrum hypothesized to hold from bacteria to whales. Fifty years since the first size spectrum measurements, we ask how far have we come? Although recent modeling studies capture an impressive range of sizes, complexity, and real-world applications, ecosystem coverage is still only partial. We describe how this can be overcome by unifying functional traits with size spectra (which we call functional size spectra) and highlight the key knowledge gaps that need to be filled to model ecosystems from bacteria to whales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Time-resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: The bK(590) intermediate.

    PubMed

    Terner, J; Hsieh, C L; Burns, A R; El-Sayed, M A

    1979-07-01

    We have combined microbeam and flow techniques with computer subtraction methods to obtain the resonance Raman spectrum of the short lived batho-intermediate (bK(590)) of bacteriorhodopsin. Comparison of the spectra obtained in (1)H(2)O and (2)H(2)O, as well as the fact that the bK(590) intermediate shows large optical red shifts, suggests that the Schiff base linkage of this intermediate is protonated. The fingerprint region of the spectrum of bK(590), sensitive to the isomeric configuration of the retinal chromophore, does not resemble the corresponding region of the parent bR(570) form. The resonance Raman spectrum of bK(590) as well as the spectra of all of the other main intermediates in the photoreaction cycle of bacteriorhodopsin are discussed and compared with resonance Raman spectra of published model compounds.

  15. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  16. A DATA-DRIVEN MODEL FOR SPECTRA: FINDING DOUBLE REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsalmantza, P.; Hogg, David W., E-mail: vivitsal@mpia.de

    2012-07-10

    We present a data-driven method-heteroscedastic matrix factorization, a kind of probabilistic factor analysis-for modeling or performing dimensionality reduction on observed spectra or other high-dimensional data with known but non-uniform observational uncertainties. The method uses an iterative inverse-variance-weighted least-squares minimization procedure to generate a best set of basis functions. The method is similar to principal components analysis (PCA), but with the substantial advantage that it uses measurement uncertainties in a responsible way and accounts naturally for poorly measured and missing data; it models the variance in the noise-deconvolved data space. A regularization can be applied, in the form of a smoothnessmore » prior (inspired by Gaussian processes) or a non-negative constraint, without making the method prohibitively slow. Because the method optimizes a justified scalar (related to the likelihood), the basis provides a better fit to the data in a probabilistic sense than any PCA basis. We test the method on Sloan Digital Sky Survey (SDSS) spectra, concentrating on spectra known to contain two redshift components: these are spectra of gravitational lens candidates and massive black hole binaries. We apply a hypothesis test to compare one-redshift and two-redshift models for these spectra, utilizing the data-driven model trained on a random subset of all SDSS spectra. This test confirms 129 of the 131 lens candidates in our sample and all of the known binary candidates, and turns up very few false positives.« less

  17. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  18. A Search for Metal Lines in the Spectra of DA White Dwarfs

    NASA Technical Reports Server (NTRS)

    Wegner, G. A.

    1986-01-01

    A theoretical analysis was carried out in order to interpret the ultraviolet spectra of DB white dwarfs obtained earlier with the International Ultraviolet Explorer (IUE) satellite. Here the results of the IUE ultraviolet spectroscopy combined with visual data and model atmospheres of DB white dwarfs are reported. In particular, a search for spectra lines due to the element carbon using the ultraviolet was made. In no case is there a positive detection of carbon and from these data, and upper limits for carbon by number relative to helium are derived in the range of C: He 10 to the minus 5 power to 10 to the minus 7 power for the 16 DB stars with ultraviolet spectra in the temperature range 11400 K T sub EFF less than 2300 K. The low carbon abundances found in the atmospheres of the DB stars agree well with the hypothesis that the atmospheric carbon observed in the cooler DQ members of the helium-rich white dwarf sequence is produced by a convective dredging mechanism.

  19. Hydrogen Dimers in Giant-planet Infrared Spectra

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Gustafsson, Magnus; Orton, Glenn S.

    2018-03-01

    Despite being one of the weakest dimers in nature, low-spectral-resolution Voyager/IRIS observations revealed the presence of (H2)2 dimers on Jupiter and Saturn in the 1980s. However, the collision-induced H2–H2 opacity databases widely used in planetary science have thus far only included free-to-free transitions and have neglected the contributions of dimers. Dimer spectra have both fine-scale structure near the S(0) and S(1) quadrupole lines (354 and 587 cm‑1, respectively), and broad continuum absorption contributions up to ±50 cm‑1 from the line centers. We develop a new ab initio model for the free-to-bound, bound-to-free, and bound-to-bound transitions of the hydrogen dimer for a range of temperatures (40–400 K) and para-hydrogen fractions (0.25–1.0). The model is validated against low-temperature laboratory experiments, and used to simulate the spectra of the giant planets. The new collision-induced opacity database permits high-resolution (0.5–1.0 cm‑1) spectral modeling of dimer spectra near S(0) and S(1) in both Cassini Composite Infrared Spectrometer observations of Jupiter and Saturn, and in Spitzer Infrared Spectrometer (IRS) observations of Uranus and Neptune for the first time. Furthermore, the model reproduces the dimer signatures observed in Voyager/IRIS data near S(0) on Jupiter and Saturn, and generally lowers the amount of para-H2 (and the extent of disequilibrium) required to reproduce IRIS observations.

  20. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    PubMed

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  1. Shot noise cross-correlation functions and cross spectra - Implications for models of QPO X-ray sources

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Elsner, R. F.; Bussard, R. W.; Ebisuzaki, T.; Weisskopf, M. C.

    1988-01-01

    The cross-correlation functions (CCFs) and cross spectra expected for quasi-periodic oscillation (QPO) shot noise models are calculated under various assumptions, and the results are compared to observations. Effects due to possible coherence of the QPO oscillations are included. General formulas for the cross spectrum, the cross-phase spectrum, and the time-delay spectrum for QPO shot models are calculated and discussed. It is shown that the CCFs, cross spectra, and power spectra observed for Cyg X-e2 imply that the spectrum of the shots evolves with time, with important implications for the interpretation of these functions as well as of observed average energy spectra. The possible origins for the observed hard lags are discussed, and some physical difficulties for the Comptonization model are described. Classes of physical models for QPO sources are briefly addressed, and it is concluded that models involving shot formation at the surface of neutron stars are favored by observation.

  2. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    NASA Astrophysics Data System (ADS)

    Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie

    2018-01-01

    The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor

  3. The Ames MER microscopic imager toolkit

    USGS Publications Warehouse

    Sargent, R.; Deans, Matthew; Kunz, C.; Sims, M.; Herkenhoff, K.

    2005-01-01

    12The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a ??3mm depth of field and a 31??31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser.This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission. ?? 2005 IEEE.

  4. The Ames MER Microscopic Imager Toolkit

    NASA Technical Reports Server (NTRS)

    Sargent, Randy; Deans, Matthew; Kunz, Clayton; Sims, Michael; Herkenhoff, Ken

    2005-01-01

    The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a plus or minus mm depth of field and a 3lx31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser. This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission.

  5. Modification and benchmarking of MCNP for low-energy tungsten spectra.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-12-01

    The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.

  6. Laser backscattering analytical model of Doppler power spectra about rotating convex quadric bodies of revolution

    NASA Astrophysics Data System (ADS)

    Gong, YanJun; Wu, ZhenSen; Wang, MingJun; Cao, YunHua

    2010-01-01

    We propose an analytical model of Doppler power spectra in backscatter from arbitrary rough convex quadric bodies of revolution (whose lateral surface is a quadric) rotating around axes. In the global Cartesian coordinate system, the analytical model deduced is suitable for general convex quadric body of revolution. Based on this analytical model, the Doppler power spectra of cones, cylinders, paraboloids of revolution, and sphere-cones combination are proposed. We analyze numerically the influence of geometric parameters, aspect angle, wavelength and reflectance of rough surface of the objects on the broadened spectra because of the Doppler effect. This analytical solution may contribute to laser Doppler velocimetry, and remote sensing of ballistic missile that spin.

  7. Energy spectra of vibron and cluster models in molecular and nuclear systems

    NASA Astrophysics Data System (ADS)

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  8. Noise Spectra and Directivity For a Scale-Model Landing Gear

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Brooks, Thomas F.

    2007-01-01

    An extensive experimental study has been conducted to acquire detailed noise spectra and directivity data for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. The measurements were conducted in the NASA Langley Quiet Flow Facility using a 41-microphone directional array system positioned at a range of polar and azimuthal observer angles with respect to the model. DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) array processing as well as straightforward individual microphone processing were employed to compile unique flyover and sideline directivity databases for a range of freestream Mach numbers (0.11 - 0.17) covering typical approach conditions. Comprehensive corrections were applied to the test data to account for shear layer ray path and amplitude variations. This allowed proper beamforming at different measurement orientations, as well as directivity presentation in free-field emission coordinates. Four different configurations of the landing gear were tested: a baseline configuration with and without an attached side door, and a noise reduction concept "toboggan" truck fairing with and without side door. DAMAS noise source distributions were determined. Spectral analyses demonstrated that individual microphones could establish model spectra. This finding permitted the determination of unique, spatially-detailed directivity contours of spectral band levels over a hemispherical surface. Spectral scaling for the baseline model confirmed that the acoustic intensity scaled with the expected sixth-power of the Mach number. Finally, comparison of spectra and directivity between the baseline gear and the gear with an attached toboggan indicated that the toboggan fairing may be of some value in reducing gear noise over particular frequency ranges.

  9. DPW-VI Results Using FUN3D with Focus on k-kL-MEAH2015 (k-kL) Turbulence Model

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Carlson, Jan-Renee; Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Park, Michael A.

    2017-01-01

    The Common Research Model wing-body configuration is investigated with the k-kL-MEAH2015 turbulence model implemented in FUN3D. This includes results presented at the Sixth Drag Prediction Workshop and additional results generated after the workshop with a nonlinear Quadratic Constitutive Relation (QCR) variant of the same turbulence model. The workshop provided grids are used, and a uniform grid refinement study is performed at the design condition. A large variation between results with and without a reconstruction limiter is exhibited on "medium" grid sizes, indicating that the medium grid size is too coarse for drawing conclusions in comparison with experiment. This variation is reduced with grid refinement. At a fixed angle of attack near design conditions, the QCR variant yielded decreased lift and drag compared with the linear eddy-viscosity model by an amount that was approximately constant with grid refinement. The k-kL-MEAH2015 turbulence model produced wing root junction flow behavior consistent with wind tunnel observations.

  10. Rapid and Effective Virucidal Activity of Povidone-Iodine Products Against Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and Modified Vaccinia Virus Ankara (MVA).

    PubMed

    Eggers, Maren; Eickmann, Markus; Zorn, Juergen

    2015-12-01

    Since the first case of Middle East Respiratory Syndrome coronavirus (MERS-CoV) infection was reported in 2012, the virus has infected more than 1300 individuals in 26 countries, and caused more than 480 deaths. Human-to-human transmission requires close contact, and has typically occurred in the healthcare setting. Improved global awareness, together with improved hygiene practices in healthcare facilities, has been highlighted as key strategies in controlling the spread of MERS-CoV. This study tested the in vitro efficacy of three formulations of povidone iodine (PVP-I: 4% PVP-I skin cleanser, 7.5% PVP-I surgical scrub, and 1% PVP-I gargle/mouthwash) against a reference virus (Modified vaccinia virus Ankara, MVA) and MERS-CoV. According to EN14476, a standard suspension test was used to assess virucidal activity against MVA and large volume plating was used for MERS-CoV. All products were tested under clean (0.3 g/L bovine serum albumin, BSA) and dirty conditions (3.0 g/L BSA + 3.0 mL/L erythrocytes), with application times of 15, 30, and 60 s for MVA, and 15 s for MERS-CoV. The products were tested undiluted, 1:10 and 1:100 diluted against MVA, and undiluted against MERS-CoV. A reduction in virus titer of ≥4 log10 (corresponding to an inactivation of ≥99.99%) was regarded as evidence of virucidal activity. This was achieved versus MVA and MERS-CoV, under both clean and dirty conditions, within 15 s of application of each undiluted PVP-I product. These data indicate that PVP-I-based hand wash products for potentially contaminated skin, and PVP-I gargle/mouthwash for reduction of viral load in the oral cavity and the oropharynx, may help to support hygiene measures to prevent transmission of MERS-CoV. Mundipharma Research GmbH & Co.

  11. A Neural Network Model for K(λ) Retrieval and Application to Global K par Monitoring

    PubMed Central

    Chen, Jun; Zhu, Yuanli; Wu, Yongsheng; Cui, Tingwei; Ishizaka, Joji; Ju, Yongtao

    2015-01-01

    Accurate estimation of diffuse attenuation coefficients in the visible wavelengths K d(λ) from remotely sensed data is particularly challenging in global oceanic and coastal waters. The objectives of the present study are to evaluate the applicability of a semi-analytical K d(λ) retrieval model (SAKM) and Jamet’s neural network model (JNNM), and then develop a new neural network K d(λ) retrieval model (NNKM). Based on the comparison of K d(λ) predicted by these models with in situ measurements taken from the global oceanic and coastal waters, all of the NNKM, SAKM, and JNNM models work well in K d(λ) retrievals, but the NNKM model works more stable and accurate than both SAKM and JNNM models. The near-infrared band-based and shortwave infrared band-based combined model is used to remove the atmospheric effects on MODIS data. The K d(λ) data was determined from the atmospheric corrected MODIS data using the NNKM, JNNM, and SAKM models. The results show that the NNKM model produces <30% uncertainty in deriving K d(λ) from global oceanic and coastal waters, which is 4.88-17.18% more accurate than SAKM and JNNM models. Furthermore, we employ an empirical approach to calculate K par from the NNKM model-derived diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results show that our model presents a satisfactory performance in deriving K par from the global oceanic and coastal waters with 20.2% uncertainty. The K par are quantified from MODIS data atmospheric correction using our model. Comparing with field measurements, our model produces ~31.0% uncertainty in deriving K par from Bohai Sea. Finally, the applicability of our model for general oceanographic studies is briefly illuminated by applying it to climatological monthly mean remote sensing reflectance for time ranging from July, 2002- July 2014 at the global scale. The results indicate that the high K d(λ) and K par values are usually found around the coastal zones in the

  12. Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    PubMed Central

    Bhadra, Sanchita; Jiang, Yu Sherry; Kumar, Mia R.; Johnson, Reed F.; Hensley, Lisa E.; Ellington, Andrew D.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF)1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD) for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU) (5 to 50 PFU/ml) of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens. PMID:25856093

  13. Power spectra at radio frequency of lightning return stroke waveforms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1989-01-01

    The power spectra of the wideband (10 Hz to 100 kHz) magnetic field signals in a number of lightning return strokes (primarily first return strokes) measured during a lightning storm which occurred in Lindau, West Germany in August, 1984 have been calculated. The RF magnetic field data were obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks appearing in the spectra of many of the waveforms. An enhancement of power at frequencies of about 60-70 kHz is often seen in the spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  14. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  15. A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)n, n = 1-60, and ice.

    PubMed

    Lenz, Annika; Ojamäe, Lars

    2009-10-07

    The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (C(p), DeltaH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger

  16. A theoretical study of water equilibria: The cluster distribution versus temperature and pressure for (H2O)n, n=1-60, and ice

    NASA Astrophysics Data System (ADS)

    Lenz, Annika; Ojamäe, Lars

    2009-10-01

    The size distribution of water clusters at equilibrium is studied using quantum-chemical calculations in combination with statistical thermodynamics. The necessary energetic data is obtained by quantum-chemical B3LYP computations and through extrapolations from the B3LYP results for the larger clusters. Clusters with up to 60 molecules are included in the equilibrium computations. Populations of different cluster sizes are calculated using both an ideal gas model with noninteracting clusters and a model where a correction for the interaction energy is included analogous to the van der Waals law. In standard vapor the majority of the water molecules are monomers. For the ideal gas model at 1 atm large clusters [56-mer (0-120 K) and 28-mer (100-260 K)] dominate at low temperatures and separate to smaller clusters [21-22-mer (170-280 K) and 4-6-mer (270-320 K) and to monomers (300-350 K)] when the temperature is increased. At lower pressure the transition from clusters to monomers lies at lower temperatures and fewer cluster sizes are formed. The computed size distribution exhibits enhanced peaks for the clusters consisting of 21 and 28 water molecules; these sizes are for protonated water clusters often referred to as magic numbers. If cluster-cluster interactions are included in the model the transition from clusters to monomers is sharper (i.e., occurs over a smaller temperature interval) than when the ideal-gas model is used. Clusters with 20-22 molecules dominate in the liquid region. When a large icelike cluster is included it will dominate for temperatures up to 325 K for the noninteracting clusters model. Thermodynamic properties (Cp, ΔH) were calculated with in general good agreement with experimental values for the solid and gas phase. A formula for the number of H-bond topologies in a given cluster structure is derived. For the 20-mer it is shown that the number of topologies contributes to making the population of dodecahedron-shaped cluster larger than

  17. IUE spectra of the eclipsing binary NN Serpentis

    NASA Technical Reports Server (NTRS)

    Wood, Janet H.; Marsh, Thomas R.

    1991-01-01

    Low-resolution SWP and LWP IUE spectra are used to fit the temperature and angular radius of the white dwarf in the detached eclipsing binary NN Ser. It is found that the redenning to the system has E(B-V) of 0.05 +/-0.05, the white dwarf temperature is 60,000 +/-10,000 K, and the age of the white dwarf is less than 10 exp 7. The shape of eclipse and the K-magnitude of the secondary star are used to constrain the inclination of the binary and the masses and radii of the two stars. The size of the secondary star relative to its Roche lobe and the age of the white dwarf indicate that mass transfer has not yet occurred and that the system is a precataclysmic variable rather than a cataclysmic variable which has entered the period gap. Fitting the observed magnitude of the sinusoidal modulation with a reprocessing model shows that only when i is approximately equal to 90 deg is the required temperature of the secondary star consistent with these results. For this solution the white dwarf temperature is also consistent with those obtained from the IUE spectra.

  18. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  19. Derivation of optical constants for nanophase hematite and application to modeled abundances from in-situ Martian reflectance spectra

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Trang, David; Johnson, Jeffrey R.; Glotch, Timothy D.

    2018-01-01

    Several studies have detected the presence of nanophase ferric oxide, such as nanophase hematite, across the martian surface through spacecraft and rover data. In this study, we used the radiative transfer method to detect and quantify the abundance of these nanophase particles. Because the visible/near-infrared spectral characteristics of hematite > 10 nm in size are different from nanophase hematite < 10 nm, there are not any adequate optical constants of nanophase hematite to study visible to near-infrared rover/spacecraft data of the martian surface. Consequently, we found that radiative transfer models based upon the optical constants of crystalline hematite are unable to reproduce laboratory spectra of nanophase hematite. In order to match the model spectra to the laboratory spectra, we developed a new set of optical constants of nanophase hematite in the visible and near-infrared and found that radiative transfer models based upon these optical constants consistently model the laboratory spectra. We applied our model to the passive bidirectional reflectance spectra data from the Chemistry and Camera (ChemCam) instrument onboard the Mars Science Laboratory rover, Curiosity. After modeling six spectra representing different major units identified during the first year of rover operations, we found that the nanophase hematite abundance was no more than 4 wt%.

  20. Visible/near-infrared spectra and two-layer modeling of palagonite-coated Basalts

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.

    2001-01-01

    Fine-grained dust coatings on Martian rocks and soils obscure underlying surfaces and hinder mineralogic interpretations of both remote sensing and in-situ observations. We investigate laboratory visible/near-infrared spectra of various thicknesses of palagonite coatings on basalt substrates. We develop a two-layer Hapke scattering model incorporating porosity, grain size, and derived absorption coefficients of palagonite and basalt that reproduces the observed spectra only when the single scattering particle phase function is varied with wavelength.

  1. Unified analysis of optical absorption spectra of carotenoids based on a stochastic model.

    PubMed

    Uragami, Chiasa; Saito, Keisuke; Yoshizawa, Masayuki; Molnár, Péter; Hashimoto, Hideki

    2018-05-03

    The chemical structures of the carotenoid molecules are very simple and one might think that the electronic feature of it is easily predicted. However, it still has so much unknown information except the correlation between the electronic energy state and the length of effective conjugation chain of carotenoids. To investigate the electronic feature of the carotenoids, the most essential method is measuring the optical absorption spectra, but simulating it from the resonance Raman spectra is also the effective way. From this reason, we studied the optical absorption spectra as well as resonance Raman spectra of 15 different kinds of cyclic carotenoid molecules, recorded in tetrahydrofuran (THF) solutions at room temperature. The whole band shapes of the absorption spectra of all these carotenoid molecules were successfully simulated based on a stochastic model using Brownian oscillators. The parameters obtained from the simulation made it possible to discuss the intermolecular interaction between carotenoids and solvent THF molecules quantitatively. Copyright © 2018. Published by Elsevier Inc.

  2. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA

    PubMed Central

    Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter

    2009-01-01

    Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427

  3. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK.

    PubMed

    Mohning, Michael P; Thomas, Stacey M; Barthel, Lea; Mould, Kara J; McCubbrey, Alexandria L; Frasch, S Courtney; Bratton, Donna L; Henson, Peter M; Janssen, William J

    2018-01-01

    Microparticles are a newly recognized class of mediators in the pathophysiology of lung inflammation and injury, but little is known about the factors that regulate their accumulation and clearance. The primary objective of our study was to determine whether alveolar macrophages engulf microparticles and to elucidate the mechanisms by which this occurs. Alveolar microparticles were quantified in bronchoalveolar fluid of mice with lung injury induced by LPS and hydrochloric acid. Microparticle numbers were greatest at the peak of inflammation and declined as inflammation resolved. Isolated, fluorescently labeled particles were placed in culture with macrophages to evaluate ingestion in the presence of endocytosis inhibitors. Ingestion was blocked with cytochalasin D and wortmannin, consistent with a phagocytic process. In separate experiments, mice were treated intratracheally with labeled microparticles, and their uptake was assessed though microscopy and flow cytometry. Resident alveolar macrophages, not recruited macrophages, were the primary cell-ingesting microparticles in the alveolus during lung injury. In vitro, microparticles promoted inflammatory signaling in LPS primed epithelial cells, signifying the importance of microparticle clearance in resolving lung injury. Microparticles were found to have phosphatidylserine exposed on their surfaces. Accordingly, we measured expression of phosphatidylserine receptors on macrophages and found high expression of MerTK and Axl in the resident macrophage population. Endocytosis of microparticles was markedly reduced in MerTK-deficient macrophages in vitro and in vivo. In conclusion, microparticles are released during acute lung injury and peak in number at the height of inflammation. Resident alveolar macrophages efficiently clear these microparticles through MerTK-mediated phagocytosis.

  4. Empirical determination of low J values of 13CH4 transitions from jet cooled and 80 K cell spectra in the icosad region (7170-7367 cm-1)

    NASA Astrophysics Data System (ADS)

    Votava, O.; Mašát, M.; Pracna, P.; Mondelain, D.; Kassi, S.; Liu, A. W.; Hu, S. M.; Campargue, A.

    2014-12-01

    The absorption spectrum of 13CH4 was recorded at two low temperatures in the icosad region near 1.38 μm, using direct absorption tunable diode lasers. Spectra were obtained using a cryogenic cell cooled at liquid nitrogen temperature (80 K) and a supersonic jet providing a 32 K rotational temperature in the 7173-7367 cm-1 and 7200-7354 cm-1 spectral intervals, respectively. Two lists of 4498 and 339 lines, including absolute line intensities, were constructed from the 80 K and jet spectra, respectively. All the transitions observed in jet conditions were observed at 80 K. From the temperature variation of their line intensities, the corresponding lower state energy values were determined. The 339 derived empirical values of the J rotational quantum number are found close to integer values and are all smaller than 4, as a consequence of the efficient rotational cooling. Six R(0) transitions have been identified providing key information on the origins of the vibrational bands which contribute to the very congested and not yet assigned 13CH4 spectrum in the considered region of the icosad.

  5. Gold Spectra Measurements from LLNL EBIT Plasmas

    NASA Astrophysics Data System (ADS)

    May, M.; Brown, G. V.; Chen, H.; Chung, H. K.; Gu, M.; Hansen, S. B.; Schneider, M. B.; Widmann, K.; Beiersdorfer, P.

    2008-11-01

    Spectra have been recorded from gold that has been injected into the Lawrence Livermore Electron Beam Ion Trap (EBIT-II). Both mono-energetic and experimentally simulated Maxwell-Boltzmann (MB) plasmas were created for these measurements. The beam plasmas had energies of 2.75, 3.0, 3.6, 4.6, 5.5, 6.0, 6.5 keV. The MB plasmas had electron temperatures of 2.0, 2.5 and 3.0 keV. M-band gold spectra (n = 4-3, 5-3, 6-3 and 7-3 transitions) were recorded between 1 - 8 keV from K-like to Kr-like ions in the x-ray. The emission of gold was recorded by crystal spectrometers and a micro-calorimeter from the Goddard Space Flight Center. A full survey of the recorded spectra will be presented along with line emission and charge state modeling from the flexible atomic code (FAC). Some comparisons with laser produced plasmas will be made. *This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Characterization and Demonstration of the Value of a Lethal Mouse Model of Middle East Respiratory Syndrome Coronavirus Infection and Disease.

    PubMed

    Tao, Xinrong; Garron, Tania; Agrawal, Anurodh Shankar; Algaissi, Abdullah; Peng, Bi-Hung; Wakamiya, Maki; Chan, Teh-Sheng; Lu, Lu; Du, Lanying; Jiang, Shibo; Couch, Robert B; Tseng, Chien-Te K

    2016-01-01

    Characterized animal models are needed for studying the pathogenesis of and evaluating medical countermeasures for persisting Middle East respiratory syndrome-coronavirus (MERS-CoV) infections. Here, we further characterized a lethal transgenic mouse model of MERS-CoV infection and disease that globally expresses human CD26 (hCD26)/DPP4. The 50% infectious dose (ID50) and lethal dose (LD50) of virus were estimated to be <1 and 10 TCID50 of MERS-CoV, respectively. Neutralizing antibody developed in the surviving mice from the ID50/LD50 determinations, and all were fully immune to challenge with 100 LD50 of MERS-CoV. The tissue distribution and histopathology in mice challenged with a potential working dose of 10 LD50 of MERS-CoV were subsequently evaluated. In contrast to the overwhelming infection seen in the mice challenged with 10(5) LD50 of MERS-CoV, we were able to recover infectious virus from these mice only infrequently, although quantitative reverse transcription-PCR (qRT-PCR) tests indicated early and persistent lung infection and delayed occurrence of brain infection. Persistent inflammatory infiltrates were seen in the lungs and brain stems at day 2 and day 6 after infection, respectively. While focal infiltrates were also noted in the liver, definite pathology was not seen in other tissues. Finally, using a receptor binding domain protein vaccine and a MERS-CoV fusion inhibitor, we demonstrated the value of this model for evaluating vaccines and antivirals against MERS. As outcomes of MERS-CoV infection in patients differ greatly, ranging from asymptomatic to overwhelming disease and death, having available both an infection model and a lethal model makes this transgenic mouse model relevant for advancing MERS research. Fully characterized animal models are essential for studying pathogenesis and for preclinical screening of vaccines and drugs against MERS-CoV infection and disease. When given a high dose of MERS-CoV, our transgenic mice expressing h

  7. A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses

    NASA Astrophysics Data System (ADS)

    Chalmin, E.; Farges, F.; Brown, G. E.

    2009-01-01

    High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses.

  8. Late-time spectra and type Ia supernova models: New clues from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Ruiz-Lapuente, P.; Kirshner, R. P.; Phillips, M. M.; Challis, P. M.; Schmidt, B. P.; Filippenko, A. V.; Wheeler, J. C.

    1995-01-01

    Calculated late-time spectra of two classical hydrodynamical models for Type Ia supernovae (deflagration model W7 of Nomoto, Thielemann, & Yokoi, and delayed detonation model DD4 of Woosley & Weaver) are compared with observations of SN 1992A and other spectroscopically normal SNe Ia. An important new piece of information is provided by observations done with the Hubble Space Telescope (HST) which cover the ultraviolet range at the nebular phase of a SN Ia: SN 1992A in NGC 1380. For the first time a picture of SN Ia emission from the ultraviolet through the optical is obtained at these phases. Predictions of the classical model (W7 and DD4) are compared with the observed spectrum of SN 1992A and with the optical spectra of SN 1989M in NGC 4579 and SN 1990N in NGC 4639 at similar epochs. The absolute B and V magnitudes of the models are also estimated at these late phases. Taken at face value the nebular spectra of these 'classical' models are more consistent with the long extragalactic distance scale, pointing to distances to NGC 4579 around 21 +/- 3 Mpc and a slightly larger distance, 22 +/- 3 Mpc, to NGC 4639, on the back side of the Virgo Cluster. However, the calculated Fe(+3) luminosity as predicted from the models exceeds the observed limit from the HST data of SN 1992A. Other differences in the ratios of the line intensities between calculated and observed spectra, show some disagreement with the observed spectra at the nebular phases. They may not be the best choice for spectroscopically normal SNe Ia, and their use as an independent calibration of the extragalactic distance scale should be viewed with caution.

  9. KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

  10. Microplume model of spatial-yield spectra. [applying to electron gas degradation in molecular nitrogen gas

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Singhal, R. P.

    1979-01-01

    An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.

  11. Ionization potential depression and optical spectra in a Debye plasma model

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  12. Constraining martian atmospheric dust particle size distributions from MER Navcam observations.

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Smith, M. D.

    2017-12-01

    Atmospheric dust plays an important role in atmospheric dynamics by absorbing energy and influencing the thermal structure of the atmosphere [1]. The efficiency by which dust absorbs energy depends on its size and single-scattering albedo. Characterizing these properties and their variability is, thus, important in modeling atmospheric circulation. Near-sun observations of the martian sky from Viking Lander, Mars Pathfinder, and MER Pancam images have been used to characterize the atmospheric scattering phase function. The forward-scattering peak the atmospheric phase function is primarily controlled by the size of aerosol particles and is less sensitive to atmospheric opacity or particle shape and single-scattering albedo [2]. These observations, however, have been limited to scattering angles >5°. We use the MER Navcams, which experience little-to-no debilitating internal instrumental scattered light during near-Sun imaging, enabling measurements of the brightness of the martian sky down to very small scattering angles [3], making them more sensitive to aerosol particle size. Additionally, the Navcams band-pass wavelength is similar to the dust effective particle size, further increasing this sensitivity. These data sample a wide range of atmospheric conditions, including variations in the atmospheric dust loading across the entire martian year, as well as more rapid variations during the onset and dissipation of a global-scale dust storm. General circulation models (GCMs) predict a size-dependence for the transport of dust during dust storms that would result in both spatial (on regional-to-global scales) and temporal (days-to-months) variations in the dust size distribution [4]. The absolute calibration of these data, however, is limited. The instrument temperature measurement is limited to a single thermocouple on the Opportunity left Navcam CCD, and observations of the calibration target by Navcam are infrequent. We discuss ways to mitigate these

  13. Testing forward model against OCO-2 and TANSO-FTS/GOSAT observed spectra in near infrared range

    NASA Astrophysics Data System (ADS)

    Zadvornykh, Ilya V.; Gribanov, Konstantin G.

    2015-11-01

    An existing software package FIRE-ARMS (Fine InfraRed Explorer for Atmospheric Remote MeasurementS) was modified by embedding vector radiative transfer model VLIDORT. Thus the program tool includes both thermal (TIR) and near infrared (NIR) regions. We performed forward simulation of near infrared spectra on the top of the atmosphere for outgoing radiation accounting multiple scattering in cloudless atmosphere. Simulated spectra are compared with spectra measured by TANSO-FTS/GOSAT and OCO-2 in the condition of cloudless atmosphere over Western Siberia. NCEP/NCAR reanalysis data were used to complete model atmosphere.

  14. Analytical approach to calculation of response spectra from seismological models of ground motion

    USGS Publications Warehouse

    Safak, Erdal

    1988-01-01

    An analytical approach to calculate response spectra from seismological models of ground motion is presented. Seismological models have three major advantages over empirical models: (1) they help in an understanding of the physics of earthquake mechanisms, (2) they can be used to predict ground motions for future earthquakes and (3) they can be extrapolated to cases where there are no data available. As shown with this study, these models also present a convenient form for the calculation of response spectra, by using the methods of random vibration theory, for a given magnitude and site conditions. The first part of the paper reviews the past models for ground motion description, and introduces the available seismological models. Then, the random vibration equations for the spectral response are presented. The nonstationarity, spectral bandwidth and the correlation of the peaks are considered in the calculation of the peak response.

  15. Spectra of polarized thermal radiation in a cloudy atmosphere: Line-by-Line and Monte Carlo model for passive remote sensing of cirrus and polar clouds

    NASA Astrophysics Data System (ADS)

    Fomin, Boris; Falaleeva, Victoria

    2016-07-01

    A polarized high-resolution 1-D model has been presented for TIR (Thermal Infrared) remote sensing application. It is based on the original versions of MC (Monte Carlo) and LbL (Line-by-Line) algorithms, which have shown their effectiveness when modelling the thermal radiation atmospheric transfer, taking into account, the semi-transparent Ci-type and polar clouds scattering, as well as the direct consideration of the spectra of molecular absorption. This model may be useful in the planning of satellite experiments and in the validation of similar models, which use the "k-distribution" or other approximations, to account for gaseous absorption. The example simulations demonstrate that, the selective gas absorption does not only significantly affect the absorption and emission of radiation, but also, its polarization in the Ci-type clouds. As a result, the spectra of polarized radiation contain important information about the clouds, and а high-resolution polarized limb sounding in the TIR, seems to be a useful tool in obtaining information on cloud types and their vertical structures.

  16. Precise Modelling of Telluric Features in Astronomical Spectra

    NASA Astrophysics Data System (ADS)

    Seifahrt, A.; Käufl, H. U.; Zängl, G.; Bean, J.; Richter, M.; Siebenmorgen, R.

    2010-12-01

    Ground-based astronomical observations suffer from the disturbing effects of the Earth's atmosphere. Oxygen, water vapour and a number of atmospheric trace gases absorb and emit light at discrete frequencies, shaping observing bands in the near- and mid-infrared and leaving their fingerprints - telluric absorption and emission lines - in astronomical spectra. The standard approach of removing the absorption lines is to observe a telluric standard star: a time-consuming and often imperfect solution. Alternatively, the spectral features of the Earth's atmosphere can be modelled using a radiative transfer code, often delivering a satisfying solution that removes these features without additional observations. In addition the model also provides a precise wavelength solution and an instrumental profile.

  17. Catalytic Function and Substrate Specificity of the Papain-Like Protease Domain of nsp3 from the Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Báez-Santos, Yahira M.; Mielech, Anna M.; Deng, Xufang; Baker, Susan

    2014-01-01

    ABSTRACT The papain-like protease (PLpro) domain from the deadly Middle East respiratory syndrome coronavirus (MERS-CoV) was overexpressed and purified. MERS-CoV PLpro constructs with and without the putative ubiquitin-like (UBL) domain at the N terminus were found to possess protease, deubiquitinating, deISGylating, and interferon antagonism activities in transfected HEK293T cells. The quaternary structure and substrate preferences of MERS-CoV PLpro were determined and compared to those of severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro, revealing prominent differences between these closely related enzymes. Steady-state kinetic analyses of purified MERS-CoV and SARS-CoV PLpros uncovered significant differences in their rates of hydrolysis of 5-aminomethyl coumarin (AMC) from C-terminally labeled peptide, ubiquitin, and ISG15 substrates, as well as in their rates of isopeptide bond cleavage of K48- and K63-linked polyubiquitin chains. MERS-CoV PLpro was found to have 8-fold and 3,500-fold higher catalytic efficiencies for hydrolysis of ISG15-AMC than for hydrolysis of the Ub-AMC and Z-RLRGG-AMC substrates, respectively. A similar trend was observed for SARS-CoV PLpro, although it was much more efficient than MERS-CoV PLpro toward ISG15-AMC and peptide-AMC substrates. MERS-CoV PLpro was found to process K48- and K63-linked polyubiquitin chains at similar rates and with similar debranching patterns, producing monoubiquitin species. However, SARS-CoV PLpro much preferred K48-linked polyubiquitin chains to K63-linked chains, and it rapidly produced di-ubiquitin molecules from K48-linked chains. Finally, potent inhibitors of SARS-CoV PLpro were found to have no effect on MERS-CoV PLpro. A homology model of the MERS-CoV PLpro structure was generated and compared to the X-ray structure of SARS-CoV PLpro to provide plausible explanations for differences in substrate and inhibitor recognition. IMPORTANCE Unlocking the secrets of how coronavirus (CoV) papain

  18. Water on Mars: Evidence from MER Mission Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer, or "duricrust". Elemental analyzes at five sites on Mars show that these soils have sulfur content and chlorine content consistent with the presence of sulfates and halides as mineral cements. The soil is highly enriched in the salt-forming elements compared with rock. Analysis of the soil cementation indicates some features which may be evidence of liquid water. At both MER sites, duricrust textures revealed by the Microscopic Imager show features including the presence of fine sand-sized grains, some of which may be aggregates of fine silt and clay, surrounded by a pervasive light colored material that is associated with microtubular structures and networks of microfractures. Stereo views of undisturbed duricrust surfaces reveal rugged microrelief between 2-3 mm and minimal loose material. Comparisons of microscopic images of duricrust soils obtain before and after placement of the Mossbauer spectrometer indicate differing degrees of compaction and cementation. Two models of a transient water hypothesis are offered, a "top down" hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a "bottom up" alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water. The viability of both of these models ultimately hinges on the availability of seasonally transient liquid water for brief periods.

  19. The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra

    NASA Astrophysics Data System (ADS)

    Gill, S.; Maxted, P. F. L.; Smalley, B.

    2018-05-01

    Context. Atmospheric properties of F-, G- and K-type stars can be measured by spectral model fitting or with the analysis of equivalent width (EW) measurements. These methods require data with good signal-to-noise ratios (S/Ns) and reliable continuum normalisation. This is particularly challenging for the spectra we have obtained with the CORALIE échelle spectrograph for FGK stars with transiting M-dwarf companions. The spectra tend to have low S/Ns, which makes it difficult to analyse them using existing methods. Aims: Our aim is to create a reliable automated spectral analysis routine to determine Teff, [Fe/H], V sini from the CORALIE spectra of FGK stars. Methods: We use wavelet decomposition to distinguish between noise, continuum trends, and stellar spectral features in the CORALIE spectra. A subset of wavelet coefficients from the target spectrum are compared to those from a grid of models in a Bayesian framework to determine the posterior probability distributions of the atmospheric parameters. Results: By testing our method using synthetic spectra we found that our method converges on the best fitting atmospheric parameters. We test the wavelet method on 20 FGK exoplanet host stars for which higher-quality data have been independently analysed using EW measurements. We find that we can determine Teff to a precision of 85 K, [Fe/H] to a precision of 0.06 dex and V sini to a precision of 1.35 km s-1 for stars with V sini ≥ 5 km s-1. We find an offset in metallicity ≈- 0.18 dex relative to the EW fitting method. We can determine log g to a precision of 0.13 dex but find systematic trends with Teff. Measurements of log g are only reliable enough to confirm dwarf-like surface gravity (log g ≈ 4.5). Conclusions: The wavelet method can be used to determine Teff, [Fe/H], and V sini for FGK stars from CORALIE échelle spectra. Measurements of log g are unreliable but can confirm dwarf-like surface gravity. We find that our method is self consistent, and

  20. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia.

    PubMed

    Al Ghamdi, Mohammed; Alghamdi, Khalid M; Ghandoora, Yasmeen; Alzahrani, Ameera; Salah, Fatmah; Alsulami, Abdulmoatani; Bawayan, Mayada F; Vaidya, Dhananjay; Perl, Trish M; Sood, Geeta

    2016-04-21

    Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV) is a poorly understood disease with no known treatments. We describe the clinical features and treatment outcomes of patients with laboratory confirmed MERS-CoV at a regional referral center in the Kingdom of Saudi Arabia. In 2014, a retrospective chart review was performed on patients with a laboratory confirmed diagnosis of MERS-CoV to determine clinical and treatment characteristics associated with death. Confounding was evaluated and a multivariate logistic regression was performed to assess the independent effect of treatments administered. Fifty-one patients had an overall mortality of 37 %. Most patients were male (78 %) with a mean age of 54 years. Almost a quarter of the patients were healthcare workers (23.5 %) and 41 % had a known exposure to another person with MERS-CoV. Survival was associated with male gender, working as a healthcare worker, history of hypertension, vomiting on admission, elevated respiratory rate, abnormal lung exam, elevated alanine transaminase (ALT), clearance of MERS-CoV on repeat PCR polymerase chain reaction (PCR) testing, and mycophenolate mofetil treatment. Survival was reduced in the presence of coronary artery disease, hypotension, hypoxemia, CXR (chest X-ray) abnormalities, leukocytosis, creatinine >1 · 5 mg/dL, thrombocytopenia, anemia, and renal failure. In a multivariate analysis of treatments administered, severity of illness was the greatest predictor of reduced survival. Care for patients with MERS-CoV remains a challenge. In this retrospective cohort, interferon beta and mycophenolate mofetil treatment were predictors of increased survival in the univariate analysis. Severity of illness was the greatest predictor of reduced survival in the multivariate analysis. Larger randomized trials are needed to better evaluate the efficacy of these treatment regimens for MERS-CoV.

  1. Discriminant analysis of fused positive and negative ion mobility spectra using multivariate self-modeling mixture analysis and neural networks.

    PubMed

    Chen, Ping; Harrington, Peter B

    2008-02-01

    A new method coupling multivariate self-modeling mixture analysis and pattern recognition has been developed to identify toxic industrial chemicals using fused positive and negative ion mobility spectra (dual scan spectra). A Smiths lightweight chemical detector (LCD), which can measure positive and negative ion mobility spectra simultaneously, was used to acquire the data. Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) was used to separate the analytical peaks in the ion mobility spectra from the background reactant ion peaks (RIP). The SIMPLSIMA analytical components of the positive and negative ion peaks were combined together in a butterfly representation (i.e., negative spectra are reported with negative drift times and reflected with respect to the ordinate and juxtaposed with the positive ion mobility spectra). Temperature constrained cascade-correlation neural network (TCCCN) models were built to classify the toxic industrial chemicals. Seven common toxic industrial chemicals were used in this project to evaluate the performance of the algorithm. Ten bootstrapped Latin partitions demonstrated that the classification of neural networks using the SIMPLISMA components was statistically better than neural network models trained with fused ion mobility spectra (IMS).

  2. Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016

    PubMed Central

    Ali, Mohamed; El-Shesheny, Rabeh; Kandeil, Ahmed; Shehata, Mahmoud; Elsokary, Basma; Gomaa, Mokhtar; Hassan, Naglaa; El Sayed, Ahmed; El-Taweel, Ahmed; Sobhy, Heba; Oludayo, Fasina Folorunso; Dauphin, Gwenaelle; El Masry, Ihab; Wolde, Abebe Wossene; Daszak, Peter; Miller, Maureen; VonDobschuetz, Sophie; Gardner, Emma; Morzaria, Subhash; Lubroth, Juan; Makonnen, Yilma Jobre

    2017-01-01

    A cross-sectional study was conducted in Egypt to determine the prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in imported and resident camels and bats, as well as to assess possible transmission of the virus to domestic ruminants and equines. A total of 1,031 sera, 1,078 nasal swabs, 13 rectal swabs, and 38 milk samples were collected from 1,078 camels in different types of sites. In addition, 145 domestic animals and 109 bats were sampled. Overall, of 1,031 serologically-tested camels, 871 (84.5%) had MERS-CoV neutralising antibodies. Seroprevalence was significantly higher in imported (614/692; 88.7%) than resident camels (257/339; 5.8%) (p < 0.05). Camels from Sudan (543/594; 91.4%) had a higher seroprevalence than those from East Africa (71/98; 72.4%) (p < 0.05). Sampling site and age were also associated with MERS-CoV seroprevalence (p < 0.05). All tested samples from domestic animals and bats were negative for MERS-CoV antibodies except one sheep sample which showed a 1:640 titre. Of 1,078 camels, 41 (3.8%) were positive for MERS-CoV genetic material. Sequences obtained were not found to cluster with clade A or B MERS-CoV sequences and were genetically diverse. The presence of neutralising antibodies in one sheep apparently in contact with seropositive camels calls for further studies on domestic animals in contact with camels. PMID:28333616

  3. FTIR spectra of the solid solutions (Na0.88K0.12)VO3, (Na0.5K0.5)VO3, and Na(V0.66P0.34)O3

    NASA Astrophysics Data System (ADS)

    de Waal, D.; Heyns, A. M.

    1992-03-01

    It is known that three different solid solutions, (Na0.88K0.12)VO3, (Na0.5K0.5)VO3 and Na(V0.66P0.34)O3, form in the (Na,K)(V,P)O3 system. These compounds all have monoclinic crystal structures similar to the pure alkali metal metavanadates containing small cations, e.g. Li+ and Na+ (Space group C2/c). Metavanadates with large cations like K+, Rb+, C+s and NH+4 form orthorhombic crystals, space group Pbcm. All those are structurally related to the silicate pyroxenes. Na(V0.66P0.34)O3 and (Na0.88K0.12)VO3 have the same modified diopside structure as (alpha) - NaVO3 while (Na0.5K0.5)VO3 adopts the true diopside structure. The infrared spectra of the three solid solutions are reported here in comparison with those of (alpha) -NaVO3 and KVO3. The results are also correlated with those obtained in two independent high pressure Raman studies of NH4VO3 and RbVO3 as the introduction of a larger cation like K+ should increase the pressure in the structure.

  4. Near-wall k-epsilon turbulence modeling

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Kim, J.; Moin, P.

    1987-01-01

    The flow fields from a turbulent channel simulation are used to compute the budgets for the turbulent kinetic energy (k) and its dissipation rate (epsilon). Data from boundary layer simulations are used to analyze the dependence of the eddy-viscosity damping-function on the Reynolds number and the distance from the wall. The computed budgets are used to test existing near-wall turbulence models of the k-epsilon type. It was found that the turbulent transport models should be modified in the vicinity of the wall. It was also found that existing models for the different terms in the epsilon-budget are adequate in the region from the wall, but need modification near the wall. The channel flow is computed using a k-epsilon model with an eddy-viscosity damping function from the data and no damping functions in the epsilon-equation. These computations show that the k-profile can be adequately predicted, but to correctly predict the epsilon-profile, damping functions in the epsilon-equation are needed.

  5. PEDF and PEDF-derived peptide 44mer inhibit oxygen-glucose deprivation-induced oxidative stress through upregulating PPARγ via PEDF-R in H9c2 cells.

    PubMed

    Zhuang, Wei; Zhang, Hao; Pan, Jiajun; Li, Zhimin; Wei, Tengteng; Cui, Huazhu; Liu, Zhiwei; Guan, Qiuhua; Dong, Hongyan; Zhang, Zhongming

    2016-04-08

    Pigment epithelial-derived factor (PEDF) is a glycoprotein with broad biological activities including inhibiting oxygen-glucose deprivation(OGD)-induced cardiomyocytes apoptosis through its anti-oxidative properties. PEDF derived peptide-44mer shows similar cytoprotective effect to PEDF. However, the molecular mechanisms mediating cardiomyocytes apoptosis have not been fully established. Here we found that PEDF and 44mer decreased the content of ROS. This content was abolished by either PEDF-R small interfering RNA (siRNA) or PPARγ antagonist. The level of Lysophosphatidic acid (LPA) and phospholipase A2 (PLA2) was observed as drawn from the ELISA assays. PEDF and 44mer sequentially induced PPARγ expression was observed both in qPCR and Western blot assays. The level of LPA and PLA2 and PPARγ expression increased by PEDF and 44mer was significantly attenuated by PEDF-R siRNA. However, PEDF and 44mer inhibited the H9c2 cells and cultured neonatal rat myocardial cells apoptosis rate. On the other hand, TUNEL assay and cleavage of procaspase-3 showed that PEDF-R siRNA or PPARγ antagonist increased the apoptosis again. We conclude that under OGD condition, PEDF and 44mer reduce H9c2 cells apoptosis and inhibit OGD-induced oxidative stress via its receptor PEDF-R and the PPARγ signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  7. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  8. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) nears the top of the launch tower. The fairing will be installed around the payload for protection during launch on a Delta II rocket. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) nears the top of the launch tower. The fairing will be installed around the payload for protection during launch on a Delta II rocket. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  9. Slopes of $pi$-meson spectra in the K $Yields$ 3$pi$ decays (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapustnikov, A.A.

    1973-12-01

    The strong violation ( approximates 35%) of the rule DELTA T = 1/2 on the Dalitz piot for the K yields 3 pi decays is considered in the framework of the nonlinear realization of the chiral SU(2) x SU(2) symmetry. The Lagrangian without derivatives obtained previously is used to describe the contact weak K pi interaction. It is postulated that the enhancement of effects related to the electromagnetic mass differences of pi and K mesons in the K yields 3 pi amplitudes is due to the PCAC modification: partial delta A = constant pi (1 - 2 alpha lambda /supmore » 2/ KK). At alpha = 0.8 the predictions of the model are shown to coincide with the experiment. (auth)« less

  10. Using Mars and the Mer Mission to Teach Science: A Curriculum Designed for Teachers and Their Students

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.; Stanley, J.; Grochowski, A.; Jones, K.; Aragon, J.

    2006-12-01

    Learning opportunities can be exceptionally successful when linked to national, newsworthy events. Planetary missions are particularly exciting in engaging teachers, and their students, because they combine the human "stories" of scientists and engineers with cutting-edge technology and new science. Planetary suface missions, such as the Mars Exploration Rover (MER) mission, return beautiful and human-scale images that can virtually transport the viewer to another world. The MER mission allows children and adults to participate in the exploration of one of our nearest neighbors in space. New discoveries in the natural history of Mars have been used as the basis of a new integrated curriculum created by Museum and class-room educators designed to serve informal (family learning) and formal (classroom) audiences. The curriculum uses Mars and the MER mission as a "hook" to teach a wide range of topics that relate to all of the sciences, mathematics, social studies (history and exploration), science and society, career readiness, language and literacy, and visual arts. The curriculum, entitled "Making Tracks on Mars: Teacher Resource and Activity Guide," includes the following key features that have contributed to its success and usefulness: (1) basic information about Mars, Mars missions, and the MER mission providing teachers with the knowledge they may lack; (2) activities that follow a standardized format and include necessary information, pre-lesson preparation and post-lesson closure and extensions, and all information and/or images needed; (3) activities that cross the curriculum and can be used to address many different standards; (4) relevant state and national standards listed for each activity; (5) annotated MER image file and PowerPoint presentation for easy classroom use; (6) lists of additional Mars-related resources; (7) emphasis on local connections to the mission to enable teachers and students to feel personally connected; (8) elementary through high

  11. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process

    PubMed Central

    LeProust, Emily M.; Peck, Bill J.; Spirin, Konstantin; McCuen, Heather Brummel; Moore, Bridget; Namsaraev, Eugeni; Caruthers, Marvin H.

    2010-01-01

    We have achieved the ability to synthesize thousands of unique, long oligonucleotides (150mers) in fmol amounts using parallel synthesis of DNA on microarrays. The sequence accuracy of the oligonucleotides in such large-scale syntheses has been limited by the yields and side reactions of the DNA synthesis process used. While there has been significant demand for libraries of long oligos (150mer and more), the yields in conventional DNA synthesis and the associated side reactions have previously limited the availability of oligonucleotide pools to lengths <100 nt. Using novel array based depurination assays, we show that the depurination side reaction is the limiting factor for the synthesis of libraries of long oligonucleotides on Agilent Technologies’ SurePrint® DNA microarray platform. We also demonstrate how depurination can be controlled and reduced by a novel detritylation process to enable the synthesis of high quality, long (150mer) oligonucleotide libraries and we report the characterization of synthesis efficiency for such libraries. Oligonucleotide libraries prepared with this method have changed the economics and availability of several existing applications (e.g. targeted resequencing, preparation of shRNA libraries, site-directed mutagenesis), and have the potential to enable even more novel applications (e.g. high-complexity synthetic biology). PMID:20308161

  12. A model study of tunneling conductance spectra of ferromagnetically ordered manganites

    NASA Astrophysics Data System (ADS)

    Panda, Saswati; Kar, J. K.; Rout, G. C.

    2018-02-01

    We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.

  13. Cultivation of Hard-To-Culture Subsurface Mercury-Resistant Bacteria and Discovery of New merA Gene Sequences▿

    PubMed Central

    Rasmussen, L. D.; Zawadsky, C.; Binnerup, S. J.; Øregaard, G.; Sørensen, S. J.; Kroer, N.

    2008-01-01

    Mercury-resistant bacteria may be important players in mercury biogeochemistry. To assess the potential for mercury reduction by two subsurface microbial communities, resistant subpopulations and their merA genes were characterized by a combined molecular and cultivation-dependent approach. The cultivation method simulated natural conditions by using polycarbonate membranes as a growth support and a nonsterile soil slurry as a culture medium. Resistant bacteria were pregrown to microcolony-forming units (mCFU) before being plated on standard medium. Compared to direct plating, culturability was increased up to 2,800 times and numbers of mCFU were similar to the total number of mercury-resistant bacteria in the soils. Denaturing gradient gel electrophoresis analysis of DNA extracted from membranes suggested stimulation of growth of hard-to-culture bacteria during the preincubation. A total of 25 different 16S rRNA gene sequences were observed, including Alpha-, Beta-, and Gammaproteobacteria; Actinobacteria; Firmicutes; and Bacteroidetes. The diversity of isolates obtained by direct plating included eight different 16S rRNA gene sequences (Alpha- and Betaproteobacteria and Actinobacteria). Partial sequencing of merA of selected isolates led to the discovery of new merA sequences. With phylum-specific merA primers, PCR products were obtained for Alpha- and Betaproteobacteria and Actinobacteria but not for Bacteroidetes and Firmicutes. The similarity to known sequences ranged between 89 and 95%. One of the sequences did not result in a match in the BLAST search. The results illustrate the power of integrating advanced cultivation methodology with molecular techniques for the characterization of the diversity of mercury-resistant populations and assessing the potential for mercury reduction in contaminated environments. PMID:18441111

  14. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    NASA Astrophysics Data System (ADS)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  15. Constraining Star Formation in Old Stellar Populations from Theoretical Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.

    2007-12-01

    We are calculating stellar spectra using Kurucz codes, Castelli models, and Kurucz laboratory lines plus guesses; but must first finish adjusting gf values to match stars of solar metallicity and higher. We show that even now, 1D LTE spectral calculations fit a wide range of stellar spectra (from A to K types) over 2200 Å-9000Å once gf values are set to optimize them. Moreover, weighted coadditions of spectral calculations can be constructed that match M31 globular clusters over this entire wavelength range. Both stellar and composite grids will be archived on MAST. The age-metallicity degeneracy can be broken, but only with high-quality data, and only if rare stages of stellar evolution are incorporated where necessary.

  16. Delta II Heavy MER-B Prelaunch

    NASA Image and Video Library

    2003-07-07

    On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  17. mer and fac isomerism in tris chelate diimine metal complexes.

    PubMed

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.

  18. Applications of the k – ω Model in Stellar Evolutionary Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan, E-mail: ly@ynao.ac.cn

    The k – ω model for turbulence was first proposed by Kolmogorov. A new k – ω model for stellar convection was developed by Li, which could reasonably describe turbulent convection not only in the convectively unstable zone, but also in the overshooting regions. We revised the k – ω model by improving several model assumptions (including the macro-length of turbulence, convective heat flux, and turbulent mixing diffusivity, etc.), making it applicable not only for convective envelopes, but also for convective cores. Eight parameters are introduced in the revised k – ω model. It should be noted that the Reynoldsmore » stress (turbulent pressure) is neglected in the equation of hydrostatic support. We applied it into solar models and 5 M {sub ⊙} stellar models to calibrate the eight model parameters, as well as to investigate the effects of the convective overshooting on the Sun and intermediate mass stellar models.« less

  19. K-Means Subject Matter Expert Refined Topic Model Methodology

    DTIC Science & Technology

    2017-01-01

    Refined Topic Model Methodology Topic Model Estimation via K-Means U.S. Army TRADOC Analysis Center-Monterey 700 Dyer Road...January 2017 K-means Subject Matter Expert Refined Topic Model Methodology Topic Model Estimation via K-Means Theodore T. Allen, Ph.D. Zhenhuan...Matter Expert Refined Topic Model Methodology Topic Model Estimation via K-means 5a. CONTRACT NUMBER W9124N-15-P-0022 5b. GRANT NUMBER 5c

  20. MER Field Geologic Traverse in Gusev Crater, Mars: Initial Results From the Perspective of Spirit

    NASA Technical Reports Server (NTRS)

    Crumpler, L.; Cabrol, N.; desMarais, D.; Farmer, J.; Golmbek, M.; Grant, J.; Greely, R.; Grotzinger, J.; Haskin, L.; Arvidson, R.

    2004-01-01

    This report casts the initial results of the traverse and science investigations by the Mars Exploration Rover (MER) Spirit at Gusev crater [1] in terms of data sets commonly used in field geologic investigations: Local mapping of geologic features, analyses of selected samples, and their location within the local map, and the regional context of the field traverse in terms of the larger geologic and physiographic region. These elements of the field method are represented in the MER characterization of the Gusev traverse by perspective-based geologic/morphologic maps, the placement of the results from Mossbauer, APXS, Microscopic Imager, Mini-TES and Pancam multispectral studies in context within this geologic/ morphologic map, and the placement of the overall traverse in the context of narrow-angle MOC (Mars Orbiter Camera) and descent images. A major campaign over a significance fraction of the mission will be the first robotic traverse of the ejecta from a Martian impact crater along an approximate radial from the crater center. The Mars Exploration Rovers have been conceptually described as 'robotic field geologists', that is, a suite of instruments with mobility that enables far-field traverses to multiple sites located within a regional map/image base at which in situ analyses may be done. Initial results from MER, where the field geologic method has been used throughout the initial course of the investigation, confirm that this field geologic model is applicable for remote planetary surface exploration. The field geologic method makes use of near-field geologic characteristics ('outcrops') to develop an understanding of the larger geologic context through continuous loop of rational steps focused on real-time hypothesis identification and testing. This poster equates 'outcrops' with the locations of in situ investigations and 'regional context' with the geology over distance of several kilometers. Using this fundamental field geologic method, we have

  1. Synthesis, structure, luminescence, and magnetic properties of a single-ion magnet "mer"-[tris(N-[(imidazol-4-yl)-methylidene]-DL-phenylalaninato)terbium(III) and related "fac"-DL-alaninato derivative.

    PubMed

    Yamauchi, Suguru; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Watanabe, Masayuki; Tsuchimoto, Masanobu; Coletti, Cecilia; Re, Nazzareno

    2014-06-16

    Two Tb(III) complexes with the same N6O3 donor atoms but different coordination geometries, "fac"-[Tb(III)(HL(DL-ala))3]·7H2O (1) and "mer"-[Tb(III)(HL(DL-phe))3]·7H2O (2), were synthesized, where H2L(DL-ala) and H2L(DL-phe) are N-[(imidazol-4-yl)methylidene]-DL-alanine and -DL-phenylalanine, respectively. Each Tb(III) ion is coordinated by three electronically mononegative NNO tridentate ligands to form a coordination geometry of a tricapped trigonal prism. Compound 1 consists of enantiomers "fac"-[Tb(III)(HL(D-ala))3] and "fac"-[Tb(III)(HL(L-ala))3], while 2 consists of "mer"-[Tb(III)(HL(D-phe))2(HL(L-phe))] and "mer"-[Tb(III)(HL(D-phe))(HL(L-phe))2]. Magnetic data were analyzed by a spin Hamiltonian including the crystal field effect on the Tb(III) ion (4f(8), J = 6, S = 3, L = 3, gJ = 3/2, (7)F6). The Stark splitting of the ground state (7)F6 was evaluated from magnetic analysis, and the energy diagram pattern indicated easy-plane and easy-axis (Ising type) magnetic anisotropies for 1 and 2, respectively. Highly efficient luminescences with Φ = 0.50 and 0.61 for 1 and 2, respectively, were observed, and the luminescence fine structure due to the (5)D4 → (7)F6 transition is in good accordance with the energy diagram determined from magnetic analysis. The energy diagram of 1 shows an approximate single-well potential curve, whereas that of 2 shows a double- or quadruple-well potential within the (7)F6 multiplets. Complex 2 displayed an onset of the out-of-phase signal in alternating current (ac) susceptibility at a direct current bias field of 1000 Oe on cooling down to 1.9 K. A slight frequency dependence was recorded around 2 K. On the other hand, 1 did not show any meaningful out-of-phase ac susceptibility. Pulsed-field magnetizations of 1 and 2 were measured below 1.6 K, and only 2 exhibited magnetic hysteresis. This finding agrees well with the energy diagram pattern from crystal field calculation on 1 and 2. DFT calculation allowed us to estimate the

  2. Conformer lifetimes of ethyl cyanoformate from exchange-averaged rotational spectra.

    PubMed

    True, Nancy S

    2009-06-25

    Ethyl cyanoformate exists as a mixture of two conformers but displays three R-branch a-type band series in its rotational spectrum. Simulations with population fractions 0.37 at 210 K and 0.70 at 297 K undergoing conformer exchange with average conformer lifetimes, , shorter than approximately 40 ps at approximately 210 K and shorter than approximately 37 ps at 297 K reproduce the experimental spectra between 26.5 and 38 GHz, the exchanging species accounting for the third set of bands. The upper-limit 's are 1 order of magnitude longer than RRKM theory predictions and the population fractions are consistent with the total population with energy above 700 cm(-1), approximately twice the conformer interconversion barrier height. Model calculations indicate that extensive K-sublevel mixing in individual molecular eigenstates can produce the large population and the narrow distribution of the rotational-constant sum, B + C, consistent with the observed exchange-averaged band series.

  3. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    PubMed

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  4. High-energy photon spectra from a coaxial gas-puff experiment

    NASA Astrophysics Data System (ADS)

    Warren, S. W. R.; Degnan, J. H.; Beason, C. W.; Price, D. W.; Snell, M. P.

    1987-04-01

    An array of plastic scintillator/photomultiplier detectors was used to determine the high-energy (h x nu greater than 35 keV) photon spectra of a 130-kJ, 60-kV gas-injected coaxial-gun experiment. The detector array used six different filter-material/thickness combinations. High-energy photon signals were readily observed. The spectra were determined by deconvolution. The spectra have three characteristic components: radiative emission from high-Z impurities in the plasma, beam-target excited line emission, and thick-target bremsstrahlung from an electron beam generated in the plasma column. The electron beam consistent with the thick-target bremsstrahlung assumption was of the order of 100 A above 10 keV.

  5. K-distribution models for gas mixtures in hypersonic nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Bansal, Ankit

    Calculation of nonequilibrium radiation field in plasmas around a spacecraft entering into an atmosphere at hypersonic velocities is a very complicated and computationally expensive task. The objective of this Dissertation is to collect state-of-the art spectroscopic data for the evaluation of spectral absorption and emission coefficients of atomic and molecular gases, develop efficient and accurate spectral models and databases, and study the effect of radiation on wall heat loads and flowfield around the spacecraft. The most accurate simulation of radiative transport in the shock layer requires calculating the gas properties at a large number of wavelengths and solving the Radiative Transfer Equation (RTE) in a line-by-line (LBL) fashion, which is prohibitively expensive for coupled simulations. A number of k-distribution based spectral models are developed for atomic lines, continuum and molecular bands that allow efficient evaluation of radiative properties and heat loads in hypersonic shock layer plasma. Molecular radiation poses very different challenges than atomic radiation. A molecular spectrum is governed by simultaneous electronic, vibrational and rotational transitions, making the spectrum very strongly dependent on wavelength. In contrast to an atomic spectrum, where line wings play a major role in heat transfer, most of the heat transfer in molecular spectra occurs near line centers. As the first step, k-distribution models are developed separately for atomic and molecular species, taking advantage of the fact that in the Earth's atmosphere the radiative field is dominated by atomic species (N and O) and in Titan's and Mars' atmospheres molecular bands of CN and CO are dominant. There are a number of practical applications where both atomic and molecular species are present, for example, the vacuum-ultra-violet spectrum during Earth's reentry conditions is marked by emission from atomic bound-bound lines and continuum and simultaneous absorption by

  6. Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery cathode, anode and electrolyte materials

    NASA Astrophysics Data System (ADS)

    Braun, Artur; Wang, Hongxin; Shim, Joongpyo; Lee, Steven S.; Cairns, Elton J.

    The lithium(1s) K-edge X-ray absorption spectra of lithium-ion battery relevant materials (Li metal, Li 3N, LiPF 6, LiC 6, and LiMn 1.90Ni 0.10O 4) are presented. The Li and LiC 6 spectra are discussed and compared with literature data. The Li in lithium-intercalated carbon LiC 6, typically used as anode battery electrode material, could be clearly identified in the spectrum, and a presumed purely metallic character of the Li can be ruled out based on the chemical shift observed. The Li in corresponding cathode electrode materials, LiMn 1.90Ni 0.10O 4, could be detected with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, but the strong (self-) absorption of the spinel lattice provides an obstacle for quantitative analysis. Owing to its ionic bonding, the spectrum of the electrolyte salt LiPF 6 contains a sharp π-resonance at 61.8 eV, suggesting a distinct charge transfer between Li and the hexafluorophosphate anion. In addition, LiPF 6 resembles many spectral features of LiF, making it difficult to discriminate both from each other. Residual electrolyte on anodes or cathodes poses a problem for the spectroscopic analysis of the electrodes, because its Li spectrum overshadows the spectral features of the Li in the anode or cathode. The electrolyte must be removed from electrodes prior to spectroscopic analysis.

  7. Modeling Soft Excess with GRMHD Accretion for XMM-Newton Spectra of Bright AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Haba, Y.; Takahashi, M.; Tombesi, F.

    2017-10-01

    Despite a number of well-studied X-ray observations of the so called soft excess (SE) from a certain class of AGNs in the past decades, its physical identification has remained to be elusive to date. With the absence of a single leading model, a few competing scenarios have been proposed. In this presentation, we show that the innermost plasma accretion under strong gravity can develop into an MHD shock front at r < 5 r_{g} where incoming thermal disk photons (of ˜ 10 eV) are efficiently Compton up-scattered by shock-accelerated electrons in its downstream region to produce the observed SE feature. Considering all the relativistic effects in our treatment, our GRMHD Comptonization model, consisting of (1) disk photon temperature (kT_{bb}), electron energy (Θ_{e}) and inclination (θ_{obs}) for a given black hole spin (a/m), can naturally provide the SE spectra for a fiducial parameter set by solving GRMHD flows. Our calculations indicate that the Comptonizing region is very compact just outside the black hole event horizon resembling a putative 'coronae' with a characteristic electron energy on the order of ˜ 100 keV determined by shock strength. We also show preliminary spectral analysis results for some stereotypical PG and NLS1 AGNs.

  8. Multi-Epoch Multiwavelength Spectra and Models for Blazar 3C 279

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Boettcher, M.; Aldering, G.; Aller, H.; Aller, M.; Backman, D. E.; Balonek, T. J.; Bertsch, D. L.; Bloom, S. D.; Bock, H.; hide

    2001-01-01

    Of the blazars detected by EGRET in GeV gamma-rays, 3C 279 is not only the best-observed by EGRET, but also one of the best-monitored at lower frequencies. We have assembled eleven spectra, from GHz radio through GeV gamma-rays, from the time intervals of EGRET observations. Although some of the data have appeared in previous publications, most are new, including data taken during the high states in early 1999 and early 2000. All of the spectra show substantial gamma-ray contribution to the total luminosity of the object; in a high state, the gamma-ray luminosity dominates over that at all other frequencies by a factor of more than 10. There is no clear pattern of time correlation; different bands do not always rise and fall together, even in the optical, X-ray, and gamma-ray bands. The spectra are modeled using a leptonic jet, with combined synchrotron self-Compton + external Compton gamma-ray production. Spectral variability of 3C 279 is consistent with variations of the bulk Lorentz factor of the jet, accompanied by changes in the spectral shape of the electron distribution. Our modeling results are consistent with the UV spectrum of 3C 279 being dominated by accretion disk radiation during times of low gamma-ray intensity.

  9. Empirical measurement and model validation of infrared spectra of contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean; Gartley, Michael; Kerekes, John; Cosofret, Bogdon; Giblin, Jay

    2015-05-01

    Liquid-contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model utilizes radiative transfer modeling to generate synthetic imagery. Within DIRSIG, a micro-scale surface property model (microDIRSIG) was used to calculate numerical bidirectional reflectance distribution functions (BRDF) of geometric surfaces with applied concentrations of liquid contamination. Simple cases where the liquid contamination was well described by optical constants on optically at surfaces were first analytically evaluated by ray tracing and modeled within microDIRSIG. More complex combinations of surface geometry and contaminant application were then incorporated into the micro-scale model. The computed microDIRSIG BRDF outputs were used to describe surface material properties in the encompassing DIRSIG simulation. These DIRSIG generated outputs were validated with empirical measurements obtained from a Design and Prototypes (D&P) Model 102 FTIR spectrometer. Infrared spectra from the synthetic imagery and the empirical measurements were iteratively compared to identify quantitative spectral similarity between the measured data and modeled outputs. Several spectral angles between the predicted and measured emissivities differed by less than 1 degree. Synthetic radiance spectra produced from the microDIRSIG/DIRSIG combination had a RMS error of 0.21-0.81 watts/(m2-sr-μm) when compared to the D&P measurements. Results from this comparison will facilitate improved methods for identifying spectral features and detecting liquid contamination on a variety of natural surfaces.

  10. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    DOE PAGES

    Johns, Heather Marie; Lanier, Nicholas Edward; Kline, John L.; ...

    2016-09-07

    Here, we present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi 6O 12 at 75 mg/cm 3 density). We have determined that in the 50-200 eV T e range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for T e = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power revealsmore » spectral sensitivity to T e changes of ~3 eV.« less

  11. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Heather Marie; Lanier, Nicholas Edward; Kline, John L.

    Here, we present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi 6O 12 at 75 mg/cm 3 density). We have determined that in the 50-200 eV T e range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for T e = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power revealsmore » spectral sensitivity to T e changes of ~3 eV.« less

  12. Gas and dust spectra of the D' type symbiotic star HD 330036

    NASA Astrophysics Data System (ADS)

    Angeloni, R.; Contini, M.; Ciroi, S.; Rafanelli, P.

    2007-09-01

    Aims:We present a comprehensive and self-consistent modelling of the D' type symbiotic star (SS) HD 330036 from radio to UV. Methods: Within a colliding-wind scenario, we analyse the continuum, line, and dust spectra by means of SUMA, a code that simulates the physical conditions of an emitting gaseous cloud under the coupled effect of ionisation from an external radiation source and shocks. Results: We find that the UV lines are emitted from high-density gas between thestars downstream of the reverse shock, while the optical lines are emitted downstream of the shock propagating outwards from the system. As regards the continuum SED, three shells are identified in the IR, at 850 K, 320 K, and 200 K with radii r = 2.8 × 1013 cm, 4 × 1014 cm, and 1015 cm, respectively, after adopting a distance to Earth of d=2.3 kpc. Interestingly, all these shells appear to be circumbinary. Analysis of the unexploited ISO-SWS spectrum reveals that both PAHs and crystalline silicates coexist in HD 330036, with PAHs associated to the internal shell at 850 K, and crystalline silicates stored in the cool shells at 320 K and 200 K. Strong evidence that crystalline silicates are shaped in a disk-like structure is derived on the basis of the relative band strengths. Finally, we suggest that shocks can be a reliable mechanism for activating the annealing and the consequent crystallisation processes. Conclusions: We show that a consistent interpretation of gas and dust spectra emitted by SS can be obtained by models that account for the coupled effect of the photoionising flux and of shocks. The VLTI/MIDI proposal recently accepted by ESO aims to verify and better constrain some of our results by means of IR interferometric observations.

  13. AN ANALYSIS OF THE PULSATING STAR SDSS J160043.6+074802.9 USING NEW NON-LTE MODEL ATMOSPHERES AND SPECTRA FOR HOT O SUBDWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latour, M.; Fontaine, G.; Brassard, P.

    2011-06-01

    We first present our new grids of model atmospheres and spectra for hot subdwarf O (sdO) stars: standard non-LTE (NLTE) H+He models with no metals, NLTE line-blanketed models with C+N+O, and NLTE line-blanketed models with C+N+O+Fe. Using hydrogen and helium lines in the optical range, we make detailed comparisons between theoretical spectra of different grids in order to characterize the line-blanketing effects of metals. We find these effects to be dependent on both the effective temperature and the surface gravity. Moreover, we find that the helium abundance also influences in an important way the effects of line blanketing on themore » resulting spectra. We further find that the addition of Fe (solar abundance) leads only to incremental effects on the atmospheric structure as compared with the case where the metallicity is defined by C+N+O (solar abundances). We use our grids to perform fits on a 9 A resolution, high signal-to-noise ratio ({approx}300 blueward of 5000 A) optical spectrum of SDSS J160043.6+074802.9, the only known pulsating sdO star. Our best and most reliable result is based on the fit achieved with NLTE synthetic spectra that include C, N, O, and Fe in solar abundances, leading to the following parameters: T{sub eff} = 68,500 {+-} 1770 K, log g = 6.09 {+-} 0.07, and log N(He)/N(H) = -0.64 {+-} 0.05 (formal fitting errors only). This combination of parameters, particularly the comparatively high helium abundance, implies that line-blanketing effects due to metals are not very large in the atmosphere of this sdO star.« less

  14. Tuning in and catching on? Examining the relationship between pandemic communication and awareness and knowledge of MERS in the USA.

    PubMed

    Lin, Leesa; McCloud, Rachel F; Bigman, Cabral A; Viswanath, Kasisomayajula

    2017-06-01

    Large-scale influenza outbreaks over the last decade, such as SARS and H1N1, have brought to global attention the importance of emergency risk communication and prompted the international community to develop communication responses. Since pandemic outbreaks are relatively infrequent, there is a dearth of evidence addressing the following questions: (i) Have the resources invested in strategic and routine communication for past pandemic outbreaks yielded public health preparedness benefits? (ii) Have past efforts sensitized people to pay attention to new pandemic threats? The Middle East Respiratory Syndrome (MERS) that was followed closely by major media outlets in the USA provides an opportunity to examine the relationship between exposure to public communication about epidemics and public awareness and knowledge about new risks. In December, 2013, we surveyed a nationally representative sample of 627 American adults and examined the associations between people's awareness to prior pandemics and their awareness of and knowledge about MERS. Awareness of prior pandemics was significantly associated with awareness and knowledge of MERS. The most common sources from which people first heard about MERS were also identified. Communication inequalities were observed between racial/ethnic and socioeconomic positions, suggesting a need for more effective pandemic communication. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Modelling impacts of offshore wind farms on trophic web: the Courseulles-sur-Mer case study

    NASA Astrophysics Data System (ADS)

    Raoux, Aurore; Pezy, Jean-Philippe; Dauvin, Jean-Claude; Tecchio, samuele; Degraer, Steven; Wilhelmsson, Dan; Niquil, Nathalie

    2016-04-01

    The French government is planning the construction of three offshore wind farms in Normandy. These offshore wind farms will integrate into an ecosystem already subject to a growing number of anthropogenic disturbances such as transportation, fishing, sediment deposit, and sediment extraction. The possible effects of this cumulative stressors on ecosystem functioning are still unknown, but they could impact their resilience, making them susceptible to changes from one stable state to another. Understanding the behaviour of these marine coastal complex systems is essential in order to anticipate potential state changes, and to implement conservation actions in a sustainable manner. Currently, there are no global and integrated studies on the effects of construction and exploitation of offshore wind farms. Moreover, approaches are generally focused on the conservation of some species or groups of species. Here, we develop a holistic and integrated view of ecosystem impacts through the use of trophic webs modelling tools. Trophic models describe the interaction between biological compartments at different trophic levels and are based on the quantification of flow of energy and matter in ecosystems. They allow the application of numerical methods for the characterization of emergent properties of the ecosystem, also called Ecological Network Analysis (ENA). These indices have been proposed as ecosystem health indicators as they have been demonstrated to be sensitive to different impacts on marine ecosystems. We present here in detail the strategy for analysing the potential environmental impacts of the construction of the Courseulles-sur-Mer offshore wind farm (Bay of Seine) such as the reef effect through the use of the Ecopath with Ecosim software. Similar Ecopath simulations will be made in the future on the Le Tréport offshore wind farm site. Results will contribute to a better knowledge of the impacts of the offshore wind farms on ecosystems. They also allow to

  16. MIMOS II on MER One Year of Mossbauer Spectroscopy on the Surface of Mars: From Jarosite at Meridiani Planum to Goethite at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Klingelhoefer, G.; Rodionov, D. S.; Morris, R. V.; Schroeder, C.; deSouza, P. A.; Ming, D. W.; Yen, A. S.; Bernhardt, B.; Renz, F.; Fleischer, I.

    2005-01-01

    The miniaturized Mossbauer (MB) spectrometer MIMOS II [1] is part of the Athena payload of NASA s twin Mars Exploration Rovers "Spirit" (MER-A) and "Opportunity" (MER-B). It determines the Fe-bearing mineralogy of Martian soils and rocks at the Rovers respective landing sites, Gusev crater and Meridiani Planum. Both spectrometers performed successfully during first year of operation. Total integration time is about 49 days for MERA (79 samples) and 34 days for MER-B (85 samples). For curiosity it might be interesting to mention that the total odometry of the oscillating part of the MB drive exceeds 35 km for both rovers.

  17. Fine structure in RF spectra of lightning return stroke wave forms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1988-01-01

    The power spectra of the wide-band (10 Hz to 100 kHz) magnetic-field signals for a number of lightning return strokes measured during a thunderstorm which occurred in Lindau in August, 1984 have been calculated. The RF magnetic field data are obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. Each return stroke data stream is passed through an adaptive filter designed to whiten its spectrum. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks in the spectra of many of the waveforms. A peak at f of about 60-70 kHz is often seen in the power spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  18. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination.

    PubMed

    Otter, J A; Donskey, C; Yezli, S; Douthwaite, S; Goldenberg, S D; Weber, D J

    2016-03-01

    Viruses with pandemic potential including H1N1, H5N1, and H5N7 influenza viruses, and severe acute respiratory syndrome (SARS)/Middle East respiratory syndrome (MERS) coronaviruses (CoV) have emerged in recent years. SARS-CoV, MERS-CoV, and influenza virus can survive on surfaces for extended periods, sometimes up to months. Factors influencing the survival of these viruses on surfaces include: strain variation, titre, surface type, suspending medium, mode of deposition, temperature and relative humidity, and the method used to determine the viability of the virus. Environmental sampling has identified contamination in field-settings with SARS-CoV and influenza virus, although the frequent use of molecular detection methods may not necessarily represent the presence of viable virus. The importance of indirect contact transmission (involving contamination of inanimate surfaces) is uncertain compared with other transmission routes, principally direct contact transmission (independent of surface contamination), droplet, and airborne routes. However, influenza virus and SARS-CoV may be shed into the environment and be transferred from environmental surfaces to hands of patients and healthcare providers. Emerging data suggest that MERS-CoV also shares these properties. Once contaminated from the environment, hands can then initiate self-inoculation of mucous membranes of the nose, eyes or mouth. Mathematical and animal models, and intervention studies suggest that contact transmission is the most important route in some scenarios. Infection prevention and control implications include the need for hand hygiene and personal protective equipment to minimize self-contamination and to protect against inoculation of mucosal surfaces and the respiratory tract, and enhanced surface cleaning and disinfection in healthcare settings. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Transition metal atomic multiplets in the ligand K-edge x-ray absorption spectra and multiple oxidation states in the L2,3 emission of strongly correlated compounds

    NASA Astrophysics Data System (ADS)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2014-07-01

    We present results that show that atomic multiplet ligand field calculations are in very good agreement with experimental x-ray absorption spectra at the L2,3 edge of transition metal (TM) di-fluorides (MF2, MCrCu). For chromium more than one TM oxidation state is needed to achieve such an agreement. We also show that signature of the TM atomic multiplet can be found at the pre-edge of the fluorine K-edge x-ray absorption spectra. TM atomic multiplet ligand field calculations with a structureless core hole show good agreement with the observed pre-edges in the experimental fluorine absorption spectra. Preliminary results for the comparison between calculated and experimental resonant x-ray emission spectra for nominal CrF2 with more than one oxidation state indicate the presence of three chromium oxidation states in the bulk.

  20. Modeling Blazar Spectra by Solving an Electron Transport Equation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany; Finke, Justin; Becker, Peter A.

    2018-01-01

    Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.

  1. Strong coupling effects in the polarized IR spectra of the chain hydrogen bond systems in imidazole crystals: H/D isotopic ?self-organization? effects in the IR spectra of isotopically diluted imidazole single crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Michta, Anna

    2004-11-01

    This paper presents the investigation results of the polarized IR spectra of H1245 imidazole crystals and of D1H245, D1245 and H1D245 imidazole deuterium derivative crystals. The spectra were measured using polarized light at the room temperature and at 77 K by a transmission method, for two different crystalline faces. Theoretical analysis of the results concerned linear dichroic effects, H/D isotopic and temperature effects, observed in the spectra of the hydrogen and of the deuterium bonds in imidazole crystals, at the frequency ranges of νN-H and νN-D bands. The basic crystal spectral properties can be satisfactorily interpreted in a quantitative way for a hydrogen bond linear dimer model. Such a model explains not only a two-branch structure of the νN-H and νN-D bands in crystalline spectra, but also some essential linear dichroic effects in the band frequency ranges, for isotopically diluted crystals. Model calculations, performed within the limits of the strong-coupling model, allowed for quantitative interpretation and for understanding of the basic properties of the hydrogen bond IR spectra of imidazole crystals, H/D isotopic, temperature and dichroic effects included. The results allowed verification of theoretical models proposed recently for the imidazole crystal spectra generation mechanisms. In the scope of our studies, the mechanism of H/D isotopic self-organization processes, taking place in the crystal hydrogen bond lattices, was also recognized. It was proved that for isotopically diluted crystalline samples of imidazole, a non-random distribution of protons and deuterons exclusively occurs in some restricted fragments (domains) of open chains of the hydrogen-bonded molecules. Nevertheless, these co-operative interactions between the hydrogen bonds do not concern adjacent fragments of neighboring hydrogen bond chains in the lattice. Analysis of the isotopic self-organization effects in the spectra of imidazole crystals delivered crucial

  2. Structural and Biochemical Characterization of Organotin and Organolead Compounds Binding to the Organomercurial Lyase MerB Provide New Insights into Its Mechanism of Carbon–Metal Bond Cleavage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahba, Haytham M.; Stevenson, Michael J.; Mansour, Ahmed

    2017-01-03

    The organomercurial lyase MerB has the unique ability to cleave carbon–Hg bonds, and structural studies indicate that three residues in the active site (C96, D99, and C159 in E. coli MerB) play important roles in the carbon–Hg bond cleavage. However, the role of each residue in carbon–metal bond cleavage has not been well-defined. To do so, we have structurally and biophysically characterized the interaction of MerB with a series of organotin and organolead compounds. Studies with two known inhibitors of MerB, dimethyltin (DMT) and triethyltin (TET), reveal that they inhibit by different mechanisms. In both cases the initial binding ismore » to D99, but DMT subsequently binds to C96, which induces a conformation change in the active site. In contrast, diethyltin (DET) is a substrate for MerB and the SnIV product remains bound in the active site in a coordination similar to that of HgII following cleavage of organomercurial compounds. The results with analogous organolead compounds are similar in that trimethyllead (TML) is not cleaved and binds only to D99, whereas diethyllead (DEL) is a substrate and the PbIV product remains bound in the active site. Binding and cleavage is an exothermic reaction, while binding to D99 has negligible net heat flow. These results show that initial binding of organometallic compounds to MerB occurs at D99 followed, in some cases, by cleavage and loss of the organic moieties and binding of the metal ion product to C96, D99, and C159. The N-terminus of MerA is able to extract the bound PbVI but not the bound SnIV. These results suggest that MerB could be utilized for bioremediation applications, but certain organolead and organotin compounds may present an obstacle by inhibiting the enzyme.« less

  3. Time resolved EUV spectra from Zpinching capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  4. Standardization of milk infrared spectra for the retroactive application of calibration models.

    PubMed

    Bonfatti, V; Fleming, A; Koeck, A; Miglior, F

    2017-03-01

    The objective of this study was to standardize the infrared spectra obtained over time and across 2 milk laboratories of Canada to create a uniform historical database and allow (1) the retroactive application of calibration models for prediction of fine milk composition; and (2) the direct use of spectral information for the development of indicators of animal health and efficiency. Spectral variation across laboratories and over time was inspected by principal components analysis (PCA). Shifts in the PCA scores were detected over time, leading to the definition of different subsets of spectra having homogeneous infrared signal. To evaluate the possibility of using common equations on spectra collected by the 2 instruments and over time, we developed a standardization (STD) method. For each subset of data having homogeneous infrared signal, a total of 99 spectra corresponding to the percentiles of the distribution of the absorbance at each wavenumber were created and used to build the STD matrices. Equations predicting contents of saturated fatty acids, short-chain fatty acids, and C18:0 were created and applied on different subsets of spectra, before and after STD. After STD, bias and root mean squared error of prediction decreased by 66% and 32%, respectively. When calibration equations were applied to the historical nonstandardized database of spectra, shifts in the predictions could be observed over time for all investigated traits. Shifts in the distribution of the predictions over time corresponded to the shifts identified by the inspection of the PCA scores. After STD, shifts in the predicted fatty acid contents were greatly reduced. Standardization reduced spectral variability between instruments and over time, allowing the merging of milk spectra data from different instruments into a common database, the retroactive use of calibrations equations, or the direct use of the spectral data without restrictions. Copyright © 2017 American Dairy Science

  5. Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice

    NASA Astrophysics Data System (ADS)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Gigiberiya, Volodymyr A.; Vygornitskii, Nikolai V.

    2017-05-01

    The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L ×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L , was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k -mers (determining the aspect ratio) was varied from 2 to 12. The k -mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k -mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k -mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k -mers. For long k -mers (k ≥6 ), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k -mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.

  6. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene.

    PubMed

    He, Y K; Sun, J G; Feng, X Z; Czakó, M; Márton, L

    2001-09-01

    Mercury pollution is a major environmental problem accompanying industrial activities. Most of the mercury released ends up and retained in the soil as complexes of the toxic ionic mercury (Hg2+), which then can be converted by microbes into the even more toxic methylmercury which tends to bioaccumulate. Mercury detoxification of the soil can also occur by microbes converting the ionic mercury into the least toxic metallic mercury (Hg0) form, which then evaporates. The remediation potential of transgenic plants carrying the MerA gene from E. coli encoding mercuric ion reductase could be evaluated. A modified version of the gene, optimized for plant codon preferences (merApe9, Rugh et al. 1996), was introduced into tobacco by Agrobacterium-mediated leaf disk transformation. Transgenic seeds were resistant to HgCl2 at 50 microM, and some of them (10-20% ) could germinate on media containing as much as 350 microM HgCl2, while the control plants were fully inhibited or died on 50 microM HgCl2. The rate of elemental mercury evolution from Hg2+ (added as HgCl2) was 5-8 times higher for transgenic plants than the control. Mercury volatilization by isolated organs standardized for fresh weight was higher (up to 5 times) in the roots than in shoots or the leaves. The data suggest that it is the root system of the transgenic plants that volatilizes most of the reduced mercury (Hg0). It also suggests that much of the mercury need not enter the vascular system to be transported to the leaves for volatilization. Transgenic plants with the merApe9 gene may be used to mercury detoxification for environmental improvement in mercury-contaminated regions more efficiently than it had been predicted based on data on volatilization of whole plants via the upper parts only (Rugh et al. 1996).

  7. Photoionization Modeling and the K Lines of Iron

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  8. Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015

    PubMed Central

    Miguel, Eve; Chevalier, Véronique; Ayelet, Gelagay; Ben Bencheikh, Med Nadir; Boussini, Hiver; Chu, Daniel KW; El Berbri, Ikhlass; Fassi-Fihri, Ouaffa; Faye, Bernard; Fekadu, Getnet; Grosbois, Vladimir; Ng, Bryan CY; Perera, Ranawaka APM; So, TY; Traore, Amadou; Roger, François; Peiris, Malik

    2017-01-01

    Understanding Middle East respiratory syndrome coronavirus (MERS-CoV) transmission in dromedary camels is important, as they consitute a source of zoonotic infection to humans. To identify risk factors for MERS-CoV infection in camels bred in diverse conditions in Burkina Faso, Ethiopia and Morocco, blood samples and nasal swabs were sampled in February–March 2015. A relatively high MERS-CoV RNA rate was detected in Ethiopia (up to 15.7%; 95% confidence interval (CI): 8.2–28.0), followed by Burkina Faso (up to 12.2%; 95% CI: 7–20.4) and Morocco (up to 7.6%; 95% CI: 1.9–26.1). The RNA detection rate was higher in camels bred for milk or meat than in camels for transport (p = 0.01) as well as in younger camels (p = 0.06). High seropositivity rates (up to 100%; 95% CI: 100–100 and 99.4%; 95% CI: 95.4–99.9) were found in Morocco and Ethiopia, followed by Burkina Faso (up to 84.6%; 95% CI: 77.2–89.9). Seropositivity rates were higher in large/medium herds (≥51 camels) than small herds (p = 0.061), in camels raised for meat or milk than for transport (p = 0.01), and in nomadic or sedentary herds than in herds with a mix of these lifestyles (p < 0.005). PMID:28382915

  9. Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015.

    PubMed

    Miguel, Eve; Chevalier, Véronique; Ayelet, Gelagay; Ben Bencheikh, Med Nadir; Boussini, Hiver; Chu, Daniel Kw; El Berbri, Ikhlass; Fassi-Fihri, Ouaffa; Faye, Bernard; Fekadu, Getnet; Grosbois, Vladimir; Ng, Bryan Cy; Perera, Ranawaka Apm; So, T Y; Traore, Amadou; Roger, François; Peiris, Malik

    2017-03-30

    Understanding Middle East respiratory syndrome coronavirus (MERS-CoV) transmission in dromedary camels is important, as they consitute a source of zoonotic infection to humans. To identify risk factors for MERS-CoV infection in camels bred in diverse conditions in Burkina Faso, Ethiopia and Morocco, blood samples and nasal swabs were sampled in February-March 2015. A relatively high MERS-CoV RNA rate was detected in Ethiopia (up to 15.7%; 95% confidence interval (CI): 8.2-28.0), followed by Burkina Faso (up to 12.2%; 95% CI: 7-20.4) and Morocco (up to 7.6%; 95% CI: 1.9-26.1). The RNA detection rate was higher in camels bred for milk or meat than in camels for transport (p = 0.01) as well as in younger camels (p = 0.06). High seropositivity rates (up to 100%; 95% CI: 100-100 and 99.4%; 95% CI: 95.4-99.9) were found in Morocco and Ethiopia, followed by Burkina Faso (up to 84.6%; 95% CI: 77.2-89.9). Seropositivity rates were higher in large/medium herds (≥51 camels) than small herds (p = 0.061), in camels raised for meat or milk than for transport (p = 0.01), and in nomadic or sedentary herds than in herds with a mix of these lifestyles (p < 0.005). This article is copyright of The Authors, 2017.

  10. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    NASA Astrophysics Data System (ADS)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  11. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

    DOE PAGES

    Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; ...

    2015-09-15

    The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of bindingmore » at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.« less

  12. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, H. M., E-mail: hjohns@lanl.gov; Lanier, N. E.; Kline, J. L.

    We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi{sub 6}O{sub 12} at 75 mg/cm{sup 3} density). We have determined that in the 50-200 eV T{sub e} range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for T{sub e} = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectralmore » sensitivity to T{sub e} changes of ∼3 eV.« less

  13. Strength and Deformability of Light-toned Layered Deposits Observed by MER Opportunity: Eagle to Erebus Craters

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.; Schultz, R. A.; Nahm, A. L.

    2007-07-01

    The strength and deformability of light-toned layered deposits are estimated based on measurements of porosity from Microscopic Imager data acquired by MER Opportunity during its traverse from Eagle Crater to Erebus Crater.

  14. Using Molecular Modeling in Teaching Group Theory Analysis of the Infrared Spectra of Organometallic Compounds

    ERIC Educational Resources Information Center

    Wang, Lihua

    2012-01-01

    A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…

  15. On the frequency spectra of the core magnetic field Gauss coefficients

    NASA Astrophysics Data System (ADS)

    Lesur, Vincent; Wardinski, Ingo; Baerenzung, Julien; Holschneider, Matthias

    2018-03-01

    From monthly mean observatory data spanning 1957-2014, geomagnetic field secular variation values were calculated by annual differences. Estimates of the spherical harmonic Gauss coefficients of the core field secular variation were then derived by applying a correlation based modelling. Finally, a Fourier transform was applied to the time series of the Gauss coefficients. This process led to reliable temporal spectra of the Gauss coefficients up to spherical harmonic degree 5 or 6, and down to periods as short as 1 or 2 years depending on the coefficient. We observed that a k-2 slope, where k is the frequency, is an acceptable approximation for these spectra, with possibly an exception for the dipole field. The monthly estimates of the core field secular variation at the observatory sites also show that large and rapid variations of the latter happen. This is an indication that geomagnetic jerks are frequent phenomena and that significant secular variation signals at short time scales - i.e. less than 2 years, could still be extracted from data to reveal an unexplored part of the core dynamics.

  16. gA-driven shapes of electron spectra of forbidden β decays in the nuclear shell model

    NASA Astrophysics Data System (ADS)

    Kostensalo, Joel; Suhonen, Jouni

    2017-08-01

    The evolution of the shape of the electron spectra of 16 forbidden β- decays as a function of gA was studied using the nuclear shell model in appropriate single-particle model spaces with established, well-tested nuclear Hamiltonians. The β spectra of 94Nb(6+) →94Mo(4+) and 98Tc(6+) →98Ru(4+) were found to depend strongly on gA, which makes them excellent candidates for the determination of the effective value of gA with the spectrum-shape method (SSM). A strong gA dependence is also seen in the spectrum of 96Zr(0+) →96Nb(6+) . This decay could be used for determining the quenching of gA in sixth-forbidden decays in the future, when the measurement of the spectrum becomes experimentally feasible. The calculated shell-model electron spectra of the ground-state-to-ground-state decays of 87Rb, 99Tc, and 137Cs and the decay of 137Cs to the isomeric 11 /2- state in 137Ba were found to be in excellent agreement with the spectra previously calculated using the microscopic quasiparticle-phonon model. This is further evidence of the robust nature of the SSM observed in the previous studies.

  17. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy,more » W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.« less

  18. NCI Scientists Solve Structure of Protein that Enables MERS Virus to Spread | Poster

    Cancer.gov

    Scientists at the Frederick National Lab have produced three crystal structures that reveal a specific part of a protein that can be targeted to fight the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an emerging viral respiratory illness. Senior Investigator David Waugh, Ph.D., Macromolecular Crystallography Laboratory, has solved the structure of an

  19. Activity of Antimicrobial Combinations against KPC-2-Producing Klebsiella pneumoniae in a Rat Model and Time-Kill Assay

    PubMed Central

    Aranha Junior, Ayrton Alves; Arend, Lavinia Nery; Ribeiro, Vanessa; Zavascki, Alexandre Prehn; Tuon, Felipe Francisco

    2015-01-01

    This study evaluated the efficacy of tigecycline (TIG), polymyxin B (PMB), and meropenem (MER) in 80 rats challenged with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae infection. A time-kill assay was performed with the same strain. Triple therapy and PMB+TIG were synergistic, promoted 100% survival, and produced negative peritoneal cultures, while MER+TIG showed lower survival and higher culture positivity than other regimens (P = 0.018) and was antagonistic. In vivo and in vitro studies showed that combined regimens, except MER+TIG, were more effective than monotherapies for this KPC-producing strain. PMID:25896686

  20. The Role of Social Work for Foreign Residents in an Epidemic: The MERS Crisis in the Republic of Korea.

    PubMed

    Park, Hong-Jae; Lee, Bong Joo

    2016-01-01

    This article explores the experiences of foreign residents during the period of the Middle East Respiratory Syndrome (MERS) outbreak in (South) Korea and discusses from a social work perspective the implications of their experiences and their needs. Data were obtained from interviews with 22 foreigners who either live and work or study in Korea. The data were then interpreted using a thematic analysis approach in a multilingual research context. The findings from the study show that foreign residents experienced a wide range of social and psychoemotional difficulties during the MERS health threat. Implications for social work practice in an epidemic emergency are presented.