Use of the Bethe equation for inner-shell ionization by electron impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc
2016-05-14
We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L{sub 3}-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections andmore » available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232–276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.« less
Accurate Cross Sections for Microanalysis.
Rez, Peter
2002-01-01
To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège
2015-09-15
The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less
Absolute cross-section measurements of inner-shell ionization
NASA Astrophysics Data System (ADS)
Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer
1994-12-01
Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège
2015-03-15
The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less
Physical parameters for proton induced K-, L-, and M-shell ionization processes
NASA Astrophysics Data System (ADS)
Shehla; Puri, Sanjiv
2016-10-01
The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.
Electron Impact K-shell Ionization Cross Sections at high energies
NASA Astrophysics Data System (ADS)
Haque, A. K. F.; Sarker, M. S. I.; Patoary, M. A. R.; Shahjahan, M.; Ismail Hossain, M.; Alfaz Uddin, M.; Basak, A. K.; Saha, Bidhan
2008-10-01
A simple modification of the empirical model of Deutsh et. al. [1] by incorporating both the ionic [2] and relativistic corrections [3] is proposed for evaluating the electron impact K -shell ionization cross sections of neutral atomic targets. Present results for 30 atomic targets with atomic number Z=1 -- 92 for incident energies up to E=2 GeV, agree well with available experimental cross sections. Comparisons with other theoretical findings will also be presented at the conference. [1] H. Deutsh, K. Becker, T. D. Mark, Int. J. Mass Spect. 177, 47 (1998). [2] M. A. Uddin, A. K. F. Haque, M. M. Billah, A. K. Basak, K. R. Karim, B. C. Saha, Phys. Rev. A 71, 032715 (2005).; Phys. Rev. A 73, 012708 (2006). [3] M. Gryzinski, Phys. Rev 138, 336 (1965).
Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander; ...
2017-02-17
Single, double, and triple photoionization of Ne + ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon-ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV,more » facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne + (1s2s 2p 6 2S 1/2) level, for example, requires cooperative interaction of at least four electrons.« less
Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity
NASA Astrophysics Data System (ADS)
Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio
2016-10-01
The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.
M-shell electron capture and direct ionization of gold by 25-MeV carbon and 32-MeV oxygen ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.
1984-01-01
M-shell x-ray production cross sections have been measured for thin solid targets of Au for 25 MeV /sup 12/C/sup q+/ (q = 4, 5, 6) and for 32 MeV /sup 16/O/sup q+/ (q = 5, 7, 8). The microscopic cross sections were determined from measurements made with targets ranging in thickness from 0.5 to 100 ..mu..g/cm/sup 2/. For projectiles with one or two K-shell vacancies, the M-shell x-ray production cross sections are found to be enhanced over those by projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) and electron capture (EC) to the L,more » M, N ... shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories i.e. PWBA for DI and OBK of Nikolaev for EC and the ECPSSR approach that accounts for energy loss, Coulomb deflection and relativistic effects in the perturbed stationary state theory. 25 references, 3 figures, 1 table.« less
Electron Impact K-shell Ionization of Atomic Targets
NASA Astrophysics Data System (ADS)
Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.; Patoary, A. A. R.
2008-05-01
In spite of considerable progress -both theoretically and experimentally- recently in evaluating accurate K-shell ionization cross sections that play a decisive role for quantitative analyses using (i) electron probe microanalysis, (ii) Auger electron spectroscopy and (iii) electron energy loss spectra, attempts are still continuing to search for a model that can easily generate reliable cross sections for a wide range of energies and for various targets needed for plasma modeling code We report few modifications of the widely used binary encounter approximation (BEA) [1,2] and have tested by evaluating the electron impact K-shell ionization of few neutral targets at various projectile energies. Details will be presented at the meeting. [1] M. Gryziniski, Phys. Rev. A 138, 336 (1965); [2] L. Vriens, Proc. Phys. Soc. (London) 89, 13, (1966). [3M. A. Uddin , A. K. F. Haque, M. M. Billah, A. K. Basak, K, R, Karim and B. C. Saha, ,Phys. Rev. A 71,032715 (2005); [4] M. A. Uddin, A. K. Basak, and B. C. Saha, Int. J. Quan. Chem 100, 184 (2004).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, J.; Richard, P.; Gray, T.J.
The systematics of single and double K-shell-vacancy production in titanium has been investigated in the limit of zero target thickness (approx.1 ..mu..g/cm/sup 2/) for incident C, N, O, F, Mg, Al, Si, S, and Cl ions over a maximum energy range of 0.5 to 6.5 MeV/amu. This corresponds to collision systems with 0.27< or =Z/sub 1//Z/sub 2/< or =0.77 and 0.24< or =v/sub 1//vK< or =0.85, where v/sub 1/ is the projectile nuclear velocity and vK is the mean velocity of an electron in the target K shell. The present work is divided into four major sections. (1) Single K-shell-vacancymore » production has been investigated by measuring K..cap alpha.. and K..beta.. p satellite x-ray-production cross sections for projectiles incident with no K-shell vacancies. For incident ions with Z/sub 1/> or =9, the contribution due to electron-transfer processes from the target K shell to outer shells of the projectile has also been noted. (2) Single K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly by the measuring of the enhancement in the Ti K x-ray production cross section for bare incident projectiles over ions incident with no initial K-shell vacancies. (3) Double K-vacancy production has been investigated by measuring the K..cap alpha.. hypersatellite intensity in ratio to the total K..cap alpha.. intensity. (4) Double K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly with the use of a procedure similar to that used for single K to K transfer. The measured cross sections have been compared to theoretical models for direct Coulomb ionization and inner-shell electron transfer and have been used to investigate the relative importance of these mechanisms for K-vacancy production in heavy-ion--atom collisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander
Single, double, and triple photoionization of Ne + ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon-ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV,more » facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne + (1s2s 2p 6 2S 1/2) level, for example, requires cooperative interaction of at least four electrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioannou, J.G.
1977-12-01
The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protonsmore » and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z/sub 1//sup 2/ for the cross section of the heavy ion with atomic number Z/sub 1/ to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z/sub 2/ of the target of the form (Z/sub 1/ - ..cap alpha..Z/sub 2/)/sup 2/, instead of Z/sub 1//sup 2/, is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology.« less
Electron Impact Inner-shell Ionization including relativistic corrections.
NASA Astrophysics Data System (ADS)
Saha, Bidhan C.; Alfaz Uddin, M.; Basak, Arun K.
2007-04-01
We report a simple method to evaluate the electron impact inner-shell ionization cross sections at ultra high energy regime; there still remains a sparse cross sections due to lack of reliable method. To extend the validity domains of the siBED model [1] in terms of targets and incident energies in this work we modified the RQIBED model [2], and denoted it as MUIBED. It is examined for the description of the experimental EIICS data of various target atoms up to E=250MeV. Details will be presented at the meeting. [1] W. M. Huo, Phys. Rev A 64, 042719 (2001). [2] M. A. Uddin, A. K. F. Haque, M. S. Mahbub, K. R. Karim, A. K. Basak and B. C. Saha, Phys. Rev. A 71, 032715 (2005).
Target electron ionization in Li2+-Li collisions: A multi-electron perspective
NASA Astrophysics Data System (ADS)
Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.
2015-05-01
The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.
Relativistic effects in electron impact ionization from the p-orbital
NASA Astrophysics Data System (ADS)
Haque, A. K. F.; Uddin, M. A.; Basak, A. K.; Karim, K. R.; Saha, B. C.; Malik, F. B.
2006-06-01
The parameters of our recent modification of BELI formula (MBELL) [A.K.F. Haque, M.A. Uddin, A.K. Basak, K.R. Karim, B.C. Saha, Phys. Rev. A 73 (2006) 012708] are generalized in terms of the orbital quantum numbers nl to evaluate the electron impact ionization (EII) cross sections of a wide range of isoelectronic targets (H to Ne series) and incident energies. For both the open and closed p-shell targets, the present MBELL results with a single parameter set, agree nicely with the experimental cross sections. The relativistic effect of ionization in the 2p subshell of U82+ for incident energies up to 250 MeV is well accounted for by the prescribed parameters of the model.
Near-K -edge single, double, and triple photoionization of C+ ions
NASA Astrophysics Data System (ADS)
Müller, A.; Borovik, A.; Buhr, T.; Hellhund, J.; Holste, K.; Kilcoyne, A. L. D.; Klumpp, S.; Martins, M.; Ricz, S.; Viefhaus, J.; Schippers, S.
2018-01-01
Single, double, and triple ionization of the C+ ion by a single photon have been investigated in the energy range 286 to 326 eV around the K -shell single-ionization threshold at an unprecedented level of detail. At energy resolutions as low as 12 meV, corresponding to a resolving power of 24 000, natural linewidths of the most prominent resonances could be determined. From the measurement of absolute cross sections, oscillator strengths, Einstein coefficients, multielectron Auger decay rates, and other transition parameters of the main K -shell excitation and decay processes are derived. The cross sections are compared to results of previous theoretical calculations. Mixed levels of agreement are found despite the relatively simple atomic structure of the C+ ion with only five electrons. This paper is a followup to a previous Letter [A. Müller et al., Phys. Rev. Lett. 114, 013002 (2015), 10.1103/PhysRevLett.114.013002].
NASA Astrophysics Data System (ADS)
Poškus, A.
2016-09-01
This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic Kα, total K (=Kα + Kβ) and Lα X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the Kα yield by more than 40% for the elements with Z > 25. The Lα yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the Lα yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated Kα yields are typically underestimated by (20-30)% for the elements with Z > 25, whereas the Lα yields are underestimated by (60-70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner-shell impact ionization cross sections are significantly more accurate than the corresponding ENDF/B cross sections when energy of incident electrons is of the order of the binding energy.
Electron impact ionization from p-orbital targets
NASA Astrophysics Data System (ADS)
Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.
2006-05-01
Electron impact ionization cross sections are evaluated using a modified version [1] of the BELL formula [2] for a wide range of isoelectronic targets, ranging from Li to Ne targets with both the open and closed shell configurations. In this report the MBELL parameters are generalized for treating the orbital quantum numbers nl dependency; its accuracy has been tested by evaluating cross sections for a wider range of species and energies. Details will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 012708 (2005). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.
1984-01-01
L-shell x-ray production cross sections in /sub 60/Nd, /sub 64/Gd, /sub 67/Ho, /sub 70/Yb, /sub 79/Au and /sub 82/Pb have been measured for incident 25 MeV /sub 6//sup 12/C/sup +q/(q = 4,5,6) and 32 MeV /sub 8//sup 16/O/sup +q/(q = 5,7,8) ions. Measurements were made on targets ranging in thickness from 1 to 100 ..mu..g/cm/sup 2/. Echancement in the L-shell x-ray production cross section for projectiles with one or two K-shell vacancies over those for projectiles with no K-shell vacancies is observed. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L,M,N ... shellsmore » and EC to the K-shell of the projectile have been extracted from the data. Calculations in the first Born approximation are approx. 10 times larger than the data. Predictions of the ECPSSR theory that accounts for the energy-loss, Coulomb deflection, perturbed-stationary state, and relativistic effects are in good agreement with the data for both ions.« less
Autoionizing resonances in electron-impact ionization of O5+ ions
NASA Astrophysics Data System (ADS)
Müller, A.; Teng, H.; Hofmann, G.; Phaneuf, R. A.; Salzborn, E.
2000-12-01
We report on a detailed experimental and theoretical study of electron-impact ionization of O5+ ions. A high-resolution scan measurement of the K-shell excitation threshold region has been performed with statistical uncertainties as low as 0.03%. At this level of precision a wealth of features in the cross section arising from indirect ionization processes becomes visible, and even interference of direct ionization with resonant-excitation/auto-double-ionization (READI) is clearly observed. The experimental results are compared with R-matrix calculations that include both direct and indirect processes in a unified way. Radiative damping of autoionizing Li-like states is found to be about 10-15 %. The calculations almost perfectly reproduce most of the experimental resonance features found in the present measurement including READI. They also agree with the direct-ionization converged close-coupling results of I. Bray [J. Phys. B 28, L247 (1995)] and the absolute total ionization cross section measurement of K. Rinn et al. [Phys. Rev. A 36, 595 (1987)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, A.L.; Reading, J.F.; Becker, R.L.
Theoretical methods used previously for H/sup +/, He/sup 2 +/, and C/sup 6 +/ collisions with neutral argon atoms have been applied to collisions of H/sup +/, He/sup 2 +/, and Li/sup 3 +/ projectiles with neon, and to collisions of H/sup +/ with carbon targets. The energy range covered by the calculations is 0.4 to 4.0 MeV/amu for the neon target, and 0.2 to 2.0 MeV/amu for carbon. We calculate single-electron amplitudes for target K-shell ionization and target K- and L-shell, to projectile K-shell, charge transfer. These single-electron amplitudes are used, in an independent-particle model that allows for multielectronmore » processes, to compute K-shell vacancy production cross sections sigma/sup IPM//sub V/K, and cross sections sigma/sup IPM//sub C/,VK for producing a charge-transfer state of the projectile in the coincidence with a K-shell vacancy in the target. These cross sections are in reasonable agreement with the recent experiments of Rodbro et al. at Aarhus. In particular, the calculated, as well as the experimental, sigma/sub C/,VK scale with projectile nuclear charge Z/sub p/ less strongly than the Z/sup 5//sub p/ of the Oppenheimer-Brinkman-Kramers (OBK) approximation. For He/sup 2 +/ and Li/sup 3 +/ projectiles at collision energies below where experimental data are available, our calculated multielectron corrections to the single-electron approximation for sigma/sub C/,VK are large.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com
L shell ionization cross section and L{sub i} subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (E{sub o}) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σ{sub L} total and σ{sub Li}(i = 1,2,3) subshells ionisation cross section values obtained for E{sub o} values in the energy range of E{sub Li}
Inner-shell Ionization With Relativistic Corrections By Electron Impact
NASA Astrophysics Data System (ADS)
Saha, Bidhan; Patoary, M. A. R.; Alfaz Uddin, M.; Haque, A. K. F.; Basak, Arun K.
2007-06-01
A simple method is proposed and tested by evaluating the electron impact inner-shell ionization cross sections of various targets up to ultra high energy region. In this energy region there are not many calculations due to lack of reliable method. In this work we extend the validity of the siBED model [1] in terms of targets and incident energies. The extension of our earlier RQIBED model [2] is also reported here and we examined its findings for the description of the experimental EIICS data of various targets up to E=1000 MeV. Details will be presented at the meeting. [1] W. M. Huo, Phys. Rev A 64, 042719 (2001). [2] M. A. Uddin, A. K. F. Haque, M. S. Mahbub, K. R. Karim, A. K. Basak and B. C. Saha, Phys. Rev. A 71, 032715 (2005).
Effect of wave function on the proton induced L XRP cross sections for {sub 62}Sm and {sub 74}W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shehla,; Kaur, Rajnish; Kumar, Anil
The L{sub k}(k= 1, α, β, γ) X-ray production cross sections have been calculated for {sub 74}W and {sub 62}Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared withmore » the measured cross sections reported in the recent compilation to check the reliability of the calculated values.« less
NASA Technical Reports Server (NTRS)
Omidvar, K.
1976-01-01
Electron capture by protons from H, He, and the K-shell of Ar, and alpha particles from He are considered. It is shown that when a certain function of the experimental cross sections is plotted versus the inverse of the collision energy, at high energies the function falls on a straight line. At lower energies the function concaves up or down, depending on the charge of the projectile, the effective charge and the ionization potential of the electron that is being captured. The plot can be used to predict cross sections where experimental data are not available, and as a guide in future experiments. High energy scaling formulas for K-electron capture by low-charge projectiles are given.
Kα resonance fluorescence in Al, Ti, Cu and potential applications for X-ray sources
NASA Astrophysics Data System (ADS)
Nahar, Sultana N.; Pradhan, Anil K.
2015-04-01
The Kα resonance fluorescence (RFL) effect via photoabsorptions of inner shell electrons as the element goes through multiple ionization states is studied. We demonstrate that the resonances observed recently in Kα (1s-2p) fluorescence in aluminum plasmas by using a high-intensity X-ray free-electron laser [1] are basically K-shell resonances in hollow atoms going through multiple ionization states at resonant energies as predicted earlier for gold and iron ions [2]. These resonances are formed below the K-shell ionization edge and shift toward higher energies with ionization states, as observed. Fluorescence emission intensities depend on transition probabilities for each ionization stage of the given element for all possible Kα (1 s → 2 p) transition arrays. The present calculations for resonant photoabsorptions of Kα photons in Al have reproduced experimentally observed features. Resonant cross sections and absorption coefficients are presented for possible observation of Kα RFL in the resonant energy ranges of 4.5-5.0 keV for Ti ions and 8.0-8.7 keV for Cu ions respectively. We suggest that theoretically the Kα RFL process may be driven to enhance the Auger cycle by a twin-beam monochromatic X-ray source, tuned to the K-edge and Kα energies, with potential applications such as the development of narrow-band biomedical X-ray devices.
NASA Astrophysics Data System (ADS)
El Ghazi, Haddou; John Peter, A.
2017-04-01
Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.
Application of relativistic electrons for the quantitative analysis of trace elements
NASA Astrophysics Data System (ADS)
Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.
1984-04-01
Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.
Electron-Impact Total Ionization Cross Sections of Fluorine Compounds
NASA Astrophysics Data System (ADS)
Kim, Y.-K.; Ali, M. A.; Rudd, M. E.
1997-10-01
A theoretical method called the Binary-Encounter-Bethe (BEB) model(M. A. Ali, Y.-K. Kim, H. Hwang, N. M. Weinberger, and M. E. Rudd, J. Chem. Phys. 106), 9602 (1997), and references therein. that combines the Mott cross section at low incident energies T and the Bethe cross section at high T was applied to fluorine compounds of interest to plasma processing of semiconductors (CF_4, CHF_3, C_2F_6, C_4F_8, etc.). The theory provides total ioniztion cross sections in an analytic form from the threshold to a few keV in T, making it convenient to use the theory for modeling. The theory is particularly effective for closed-shell molecules. The theoretical cross sections are compared to available experimental data.
L -subshell ionization of Ce, Nd, and Lu by 4-10-MeV C ions
NASA Astrophysics Data System (ADS)
Lapicki, G.; Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.; Sen, P.; Sarkadi, L.; Trautmann, D.
2005-08-01
Ll,Lα,Lβ,Lγ,Lγ1+5,Lγ2+3,Lγ4+4' x-ray production cross sections of Ce58 , Nd60 and Lu71 induced by 4-, 6-, 8-, and 10-MeV carbon ions were measured. For Lu, Lγ2+3 is separated from Lγ2+3+6 after revision of the technique of Datz so that Lγ1+5 was used instead of Lγ1 , the Lγ4+4'/Lγ1+5 ratio was corrected for multiple ionization, and uncertainties in Lγ4+4' were incorporated in the fitting process. L -subshell ionization cross sections were extracted as a weighted average from two combinations of these cross sections, {Lα,Lγ1+5,Lγ2+3} and {Lα,Lγ1+5,Lγ} . It is shown that, to within a few percent, the first of these two combinations results in the identical cross sections as this weighted average. Within 10%, permutations of different sets of single-hole atomic parameters yielded the same ionization cross sections. These cross sections are typically within 15% and at most 35% of the cross sections obtained with atomic parameters that were altered in two different ways for multiple ionization. Extracted subshell and total L -shell ionization cross sections as well as Ce and Nd data of Braziewicz are compared with the ECPSSR theory of Brandt and Lapicki that accounts for the energy-loss (E), Coulomb-deflection (C), perturbed-stationary-state (PSS) and relativistic (R) effects. These measurements are also compared with the ECPSSR theory after its corrections—in a separated and united atom (USA) treatment, and for the intrashell (IS) transitions with the factors of Sarkadi and Mukoyama normalized to match L -shell cross section with the sum of L -subshell cross sections—as well as with the similarly improved semiclassical approximation of Trautmann. For Ce and Nd, the agreement of the extracted ionization cross sections with these theories is poor for L1 and good for L2 , L3 , and total L shell ionization. For the L2 subshell, this agreement is better for Ce and Nd than for Lu. The ECPSSR theory corrected for the USA and IS effects is surprisingly good for the L1 -subshell ionization of Lu, while at 4MeV a similarly corrected semiclassical approximation is in excellent agreement with L2 and L3 data but overestimates the L1 measurement by almost a factor of 2.
Effect of wave function on the proton induced L XRP cross sections for 62Sm and 74W
NASA Astrophysics Data System (ADS)
Shehla, Kaur, Rajnish; Kumar, Anil; Puri, Sanjiv
2015-08-01
The Lk(k= 1, α, β, γ) X-ray production cross sections have been calculated for 74W and 62Sm at different incident proton energies ranging 1-5 MeV using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell X-ray emission rates based on the Dirac-Fork (DF) model, the fluorescence and Coster Kronig yields based on the Dirac- Hartree-Slater (DHS) model and two sets the proton ionization cross sections based on the DHS model and the ECPSSR in order to assess the influence of the wave function on the XRP cross sections. The calculated cross sections have been compared with the measured cross sections reported in the recent compilation to check the reliability of the calculated values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com
L shell ionization cross section and {sub Li} subshells ionization cross sections of Os, Pt, Hg, Pb, Po atoms calculated. For each atom, ten different electron impacty energy values E{sub oi} used. Calculations carried out by using nonrelativistic Lotz equation in Matlab. Ionization cross section values obtained for Eoi values in the energy range of E{sub Li} ≤E{sub oi}≤4E{sub Li} for each atom. Starting allmost from E{sub oi} = E{sub Li} (i = 1,2,3) values of the each subshell ionization threshold energy, ionization cross section are increasing rapidly with E{sub oi}. For a fixed E{sub oi} = 3. E{sub Li}more » values, while Z increases from Z = 76 to Z = 84, ionization cross section are decrease. These results help to understand some results which obtained from other electron-sigle atom impact studies on σ{sub Li} subshells.« less
NASA Astrophysics Data System (ADS)
Montanari, C. C.; Miraglia, J. E.
2018-01-01
In this contribution we present ab initio results for ionization total cross sections, probabilities at zero impact parameter, and impact parameter moments of order +1 and -1 of Ne, Ar, Kr, and Xe by proton impact in an extended energy range from 100 keV up to 10 MeV. The calculations were performed by using the continuum distorted wave eikonal initial state approximation (CDW-EIS) for energies up to 1 MeV, and using the first Born approximation for larger energies. The convergence of the CDW-EIS to the first Born above 1 MeV is clear in the present results. Our inner-shell ionization cross sections are compared with the available experimental data and with the ECPSSR results. We also include in this contribution the values of the ionization probabilities at the origin, and the impact parameter dependence. These values have been employed in multiple ionization calculations showing very good description of the experimental data. Tables of the ionization probabilities are presented, disaggregated for the different initial bound states, considering all the shells for Ne and Ar, the M-N shells of Kr and the N-O shells of Xe.
NASA Astrophysics Data System (ADS)
Miranda, J.; Lapicki, G.
2018-01-01
A compilation of experimental L-shell X-ray production and ionization cross sections induced by proton impact was published recently (Miranda and Lapicki, 2014), collecting 15 439 experimental cross sections. The database covers an energy range from 10 keV to 1 GeV, and targets from 10Ne to 95Am. A correction to several tabulated values that were in error, as well as an update including new data published after 2012 and older references not found previously are given in the present work. The updated data base increased the total number of experimental cross sections by 3.1% to 15 921. A new analysis of the total number of experimental points per year shows that the possible saturation in the cumulative total number of data is increased to 15 950 ± 110 points.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.
2009-09-01
New version program summaryProgram title: ISICS2008 Catalogue identifier: ADDS_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5420 No. of bytes in distributed program, including test data, etc.: 107 669 Distribution format: tar.gz Programming language: C Computer: 80 486 or higher level PCs Operating system: Windows XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v3_0 Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 616 Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: Addition of relativistic treatment of both projectile and K-shell electrons. Summary of revisions: A new addition to ISICS is the option (R) to calculate ECPSSR cross sections that account for the relativistic treatment of both projectile and K-shell electron, as proposed recently by Lapicki [1], accordingly as σKRECPSSR=Cṡ(1+0.07(()ṡσ(√{(mKRυ1R)}/Z,ςθ), where υ1R is the relativistic projectile velocity. The option can also be invoked in calculating ECPSShsR, where hsR stands for the Hartree-Slater description of the K-shell electron, which was already incorporated into ISICS2006 [2,3], and is now expressed in this option as, σKRECPSShsR=CṡhsR((2υ1R)/(Zςθ),Z/137)ṡ(1+0.07(()ṡσ(υ1R/Z,ςθ) using the function hsR that is already incorporated into ISICS2006. It should be noted that these expressions are corrected versions [4] from the ones published in Ref. [1]. In this new version, ISICS2008, the option line in the main menu that read "Use Relativistic Proj. velocity" has been replaced by "R option for K-shell … Uses Rel. Proj. vel.". As before, various combinations of options can be utilized and each is denoted in the output. Restrictions: The consumed CPU time increases with the atomic shell (K,L,M), but execution is still very fast. Additional comments: A revised User Manual is included in the distribution file. Running time: This depends on which shell and the number of different energies to be used in the calculation. The running time is not significantly changed from the previous version. As before, to calculate K-shell cross sections for protons striking carbon for 19 different proton energies it took less than 10 s; to calculate M-shell cross sections for protons on gold for 21 proton energies it took 4.2 min. References:G. Lapicki, J. Phys. B: At. Mol. Op. Phys. 41 (2008) 115201. S. Cipolla, Comput. Phys. Comm. 176 (2007) 157. S. Cipolla, Nucl. Instrum. Methods Phys. Res. B 261 (2007) 142. G. Lapicki, private communication.
Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment
ERIC Educational Resources Information Center
Nayak, S. V.; Badiger, N. M.
2007-01-01
We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…
NASA Astrophysics Data System (ADS)
Aydinol, Mahmut
2017-02-01
L shell and L subshells ionization cross sections σL and σLi (i = 1, 2, 3) following electron impact on (N,O, F, Ne, Na, Mg, Al, Si) atoms calculated. By using Lotz' equation for nonrelativistic cases in Matlab σL and σLi cross section values obtained for ten electron impact(Eo) values in the range of ELi
K-shell photoelectric cross sections for intermediate-Z elements at 26 keV
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Singh, N.; Allawadhi, K. L.; Sood, B. S.
1986-08-01
Our earlier measurements of K-shell photoelectric cross sections for intermediate Z elements at 74 and 37 keV have been extended to 26 keV using external conversion x rays in Sn. The experimental results are found to show fairly good agreement with the theoretical values of Scofield.
NASA Astrophysics Data System (ADS)
Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.
2018-02-01
Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.
Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi
2015-01-01
Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Universal empirical fit to L-shell X-ray production cross sections in ionization by protons
NASA Astrophysics Data System (ADS)
Lapicki, G.; Miranda, J.
2018-01-01
A compilation published in 2014, with a recent 2017 update, contains 5730 experimental total L-shell X-ray production cross sections (XRPCS). The database covers an energy range from 10 keV to 1 GeV, and targets from 18Ar to 95Am. With only two adjustable parameters, universal fit to these data normalized to XRPCS calculated at proton velocity v1 equal to the electron velocity in the L-shell v2L, is obtained in terms of a single ratio of v1/v2L. This fit reproduces 97% of the compiled XRPCS to within a factor of 2.
Population kinetics on K alpha lines of partially ionized Cl atoms.
Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki
2002-07-01
A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.
Measurements of K shell absorption jump factors and jump ratios using EDXRF technique
NASA Astrophysics Data System (ADS)
Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi
2015-04-01
In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.
Antiproton-impact ionization of hydrogen atom with Yukawa interaction
NASA Astrophysics Data System (ADS)
Jakimovski, Dragan; Grozdanov, Tasko P.; Janev, Ratko K.
2018-01-01
The process of ionization of hydrogen atom by antiproton impact is studied when the interparticle interactions in the system are described by screened interactions of Yukawa type. The collision dynamics is described by the semiclassical atomic-orbital close-coupling method in which the bound atomic states and positive energy continuum pseudostates are determined by diagonalization of target Hamiltonian in a sufficiently large even-tempered basis to ensure convergence of the results at each value of the screening length λ of the interaction. With decreasing the screening length, the bound states in the Yukawa potential become unbound, thus increasing the number of continuum pseudostates. At low collision energies, this leads to the increase of the ionization cross section. It is observed that the energies of pseudostates, generated by the exit of nl bound states in the continuum, at certain critical values λ nl c exhibit series of avoided crossings when λ is varied. The avoided crossings appear between the ( n + k) l and ( n + k + 1) l ( n = 1, 2, 3, … ; k = 0, 1, 2, …) states at screening lengths close to the critical screening length λ nl c . The avoided crossings become increasingly less pronounced with increasing n, k and l. The matrix elements for the ( n + k) l - ( n + k + 1) l transitions at the avoided crossings λ x,(n+k)l (n+k+1)l exhibit maxima and are reflected in the structure of the cross sections for population of the lower nl pseudostates. These structures are, however, smeared out in the total ionization cross section.
Electron Impact Ionization of Heavier Ions including relativistic effects
NASA Astrophysics Data System (ADS)
Saha, B. C.; Haque, A. K. F.; Uddin, M. A.; Basak, A. K.
2006-11-01
The demands of the electron impact ionization cross sections in diverse fields are enormous. And this is hard to fulfill either by experimental or ab initio calculations. So various analytical and semi-classical models are applied for a rapid generation of ionization cross sections accurately. We have applied a modified version [1] of the Bell et. al. equations [2] including both the ionic and relativistic corrections. In this report we show how to generalize the MBELL parameters for treating the orbital quantum numbers nl dependency; the accuracy of the procedure is tested by evaluating cross sections for various species and energies. Detail results will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 052703 (2006). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).
Lithography Radiation Effects Study.
1984-11-01
Electronic Industries, 7317 South Washinqton Avenue, Edina, Minnesota 5;435, 1972) A- 2-8 15. J. H. Scofield , Theoretical Photoionization Cross Sections...exci- tation of a qiven shell is proportional to the photoionization cross-section * of the shell. Theoretical photoionization cross-sections as a...Ti (Ka = 4.51 keV), 500 A and for Cr (K. = 5.41 keV), 580 A. Comparison of these data with existing theoretical models were not carried out. The
NASA Astrophysics Data System (ADS)
Kaya, N.; Tıraşoğlu, E.; Apaydın, G.
2008-04-01
The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.
Photoionization of the Fe lons: Structure of the K-Edge
NASA Technical Reports Server (NTRS)
Palmeri, P.; Mendoza, C.; Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)
2002-01-01
X-ray absorption and emission features arising from the inner-shell transitions in iron are of practical importance in astrophysics due to the Fe cosmic abundance and to the absence of traits from other elements in the nearby spectrum. As a result, the strengths and energies of such features can constrain the ionization stage, elemental abundance, and column density of the gas in the vicinity of the exotic cosmic objects, e.g. active galactic nuclei (AGN) and galactic black hole candidates. Although the observational technology in X-ray astronomy is still evolving and currently lacks high spectroscopic resolution, the astrophysical models have been based on atomic calculations that predict a sudden and high step-like increase of the cross section at the K-shell threshold (see for instance. New Breit-Pauli R-matrix calculations of the photoionization cross section of the ground states of Fe XVII in the region near the K threshold are presented. They strongly support the view that the previously assumed sharp edge behaviour is not correct. The latter has been caused by the neglect of spectator Auger channels in the decay of the resonances converging to the K threshold. These decay channels include the dominant KLL channels and give rise to constant widths (independent of n). As a consequence, these series display damped Lorentzian components that rapidly blend to impose continuity at threshold, thus reformatting the previously held picture of the edge. Apparent broadened iron edges detected in the spectra of AGN and galactic black hole candidates seem to indicate that these quantum effects may be at least partially responsible for the observed broadening.
Multiple outer-shell ionization effect in inner-shell x-ray production by light ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapicki, G.; Mehta, R.; Duggan, J.L.
1986-11-01
L-shell x-ray production cross sections by 0.25--2.5-MeV /sub 2//sup 4/He/sup +/ ions in /sub 28/Ni, /sub 29/Cu, /sub 32/Ge, /sub 33/As, /sub 37/Rb, /sub 38/Sr, /sub 39/Y, /sub 40/Zr, and /sub 46/Pd are reported. The data are compared to the first Born approximation and the ECPSSR theory that accounts for the projectile energy loss (E) and Coulomb deflection (C) as well as the perturbed-stationary-state (PSS) and relativistic (R) effects in the treatment of the target L-shell electron. Surprisingly, the first Born approximation appears to converge to the data while the ECPSSR predictions underestimate them in the low-velocity limit. This ismore » explained as the result of improper use of single-hole fluorescence yields. A heuristic formula is proposed to account for multiple ionizations in terms of a classical probability for these phenomena and, after it is applied, the ECPSSR theory of L-shell ionization is found to be in good agreement with the data.« less
Holzmeier, Fabian; Fischer, Ingo; Kiendl, Benjamin; Krueger, Anke; Bodi, Andras; Hemberger, Patrick
2016-04-07
We report the determination of the absolute photoionization cross section of cyclopropenylidene, c-C3H2, and the heat of formation of the C3H radical and ion derived by the dissociative ionization of the carbene. Vacuum ultraviolet (VUV) synchrotron radiation as provided by the Swiss Light Source and imaging photoelectron photoion coincidence (iPEPICO) were employed. Cyclopropenylidene was generated by pyrolysis of a quadricyclane precursor in a 1 : 1 ratio with benzene, which enabled us to derive the carbene's near threshold absolute photoionization cross section from the photoionization yield of the two pyrolysis products and the known cross section of benzene. The cross section at 9.5 eV, for example, was determined to be 4.5 ± 1.4 Mb. Upon dissociative ionization the carbene decomposes by hydrogen atom loss to the linear isomer of C3H(+). The appearance energy for this process was determined to be AE(0K)(c-C3H2; l-C3H(+)) = 13.67 ± 0.10 eV. The heat of formation of neutral and cationic C3H was derived from this value via a thermochemical cycle as Δ(f)H(0K)(C3H) = 725 ± 25 kJ mol(-1) and Δ(f)H(0K)(C3H(+)) = 1604 ± 19 kJ mol(-1), using a previously reported ionization energy of C3H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, R.; Duggan, J.L.; Kocur, P.M.
1983-04-01
In this report, the measurements done over the last three decades at various laboratories are surveyed. The elements studied were Xe, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Hf, Ta, W, Pt, Au, Hg, Pb, Bi, and U. The projectile energies investigated range from 300 keV to 40 MeV for the protons and 250 keV to 2.5 MeV for He/sup +/ ions. Also reported are the M-shell x-ray production cross sections of some rare-earth elements recently measured at NTSU. For these measurements the energy of incident /sup 1/H/sup +/ and /sup 4/He/sup +/ ions ranged from 0.25 tomore » 2.5 MeV. The experimental data are compared to the M-shell ionization cross section predictions of first Born approximation, i.e. the PWBA for direct ionization plus the OBK of Nikolaev for electron capture. Comparison is also made with the theory by Brandt and Lapicki that goes beyond the first Born approximation, i.e. the ECPSSR approach which accounts for the Energy loss, Coulomb deflection and Relativistic effects in the Perturbed Stationary State theory.« less
Experimental and theoretical studies of metal vapor atoms
NASA Astrophysics Data System (ADS)
Whitfield, Scott B.; Wehlitz, Ralf; Martins, Michael
2004-05-01
Employing electron spectrometry in conjunction with tuneable synchrotron radiation, we will present a detailed examination of the photoionization dynamics of selected metal vapor atoms. In particular, this paper will focus on the relative partial cross sections of the atomic Li K-shell main and satellite (ionization with excitation) photoelectron lines in the region of the strong 1 snℓ n'ℓ' autoionizing transitions, the atomic Sc 3 d, 4 s main and satellite photoelectron lines in the region of the 3 p→3 d giant resonance, and also the atomic Fe 3 d, 4 s main and satellite photoelectron lines in the same resonance region. Our experimental data for Sc and Fe will be compared to our state-of-the-art calculations based on the superposition of configuration method developed by Cowan (The Theory of Atomic Structure and Spectra. University of California Berkeley Press, Berkeley and Los Angeles, 1981). Our partial cross section measurements for Li and Sc will be complemented with measurements of the angular distribution parameter, β. In addition, our Li data will also be compared with recent R-matrix calculations (Phys. Rev. 57 (1998) 1045). In the case of Fe, we will also address the term dependent behavior of the partial cross sections on resonance. These results will highlight what can be achieved with today's technology and point the way towards future endeavors in the study of the photoionization dynamics of open-shell metal vapor atoms.
Rayleigh, Compton and K-shell radiative resonant Raman scattering in 83Bi for 88.034 keV γ-rays
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Sharma, Veena; Mehta, D.; Singh, Nirmal
2007-11-01
The Rayleigh, Compton and K-shell radiative resonant Raman scattering cross-sections for the 88.034 keV γ-rays have been measured in the 83Bi (K-shell binding energy = 90.526 keV) element. The measurements have been performed at 130° scattering angle using reflection-mode geometrical arrangement involving the 109Cd radioisotope as photon source and an LEGe detector. Computer simulations were exercised to determine distributions of the incident and emission angles, which were further used in evaluation of the absorption corrections for the incident and emitted photons in the target. The measured cross-sections for the Rayleigh scattering are compared with the modified form-factors (MFs) corrected for the anomalous-scattering factors (ASFs) and the S-matrix calculations; and those for the Compton scattering are compared with the Klein-Nishina cross-sections corrected for the non-relativistic Hartree-Fock incoherent scattering function S(x, Z). The ratios of the measured KL2, KL3, KM and KN2,3 radiative resonant Raman scattering cross-sections are found to be in general agreement with those of the corresponding measured fluorescence transition probabilities.
NASA Astrophysics Data System (ADS)
Sood, B. S.; Allawadhi, K. L.; Arora, S. K.
1982-02-01
The method developed for the determination of K/L shell photoionization cross sections in various elements, 39 ≤ Z ≤ 92, in the characteristic X-ray energy region using a gamma excited variable energy X-ray source has been used for the measurement of L III subshell photoionization cross sections in Pb, Th and U. The measurements are made at the K X-ray energies of Rb, Nb and Mo, since these are able to excite selectively the L III subshells of Pb, Th and U, respectively. The results, when compared with theoretical calculations of Scofield, are found to agree within the uncertainties of determination.
Near L-edge Single and Multiple Photoionization of Singly Charged Iron Ions
NASA Astrophysics Data System (ADS)
Schippers, Stefan; Martins, Michael; Beerwerth, Randolf; Bari, Sadia; Holste, Kristof; Schubert, Kaja; Viefhaus, Jens; Savin, Daniel Wolf; Fritzsche, Stephan; Müller, Alfred
2017-11-01
Absolute cross-sections for m-fold photoionization (m=1, \\ldots , 6) of Fe+ by a single photon were measured employing the photon-ion merged-beams setup PIPE at the PETRA III synchrotron light source, operated by DESY in Hamburg, Germany. Photon energies were in the range 680-920 eV, which covers the photoionization resonances associated with 2p and 2s excitation to higher atomic shells as well as the thresholds for 2p and 2s ionization. The corresponding resonance positions were measured with an uncertainty of ±0.2 eV. The cross-section for Fe+ photoabsorption is derived as the sum of the individually measured cross-sections for m-fold ionization. Calculations of the Fe+ absorption cross-sections were carried out using two different theoretical approaches, Hartree-Fock including relativistic extensions and fully relativistic multiconfiguration Dirac-Fock. Apart from overall energy shifts of up to about 3 eV, the theoretical cross-sections are in good agreement with each other and with the experimental results. In addition, the complex de-excitation cascades after the creation of inner-shell holes in the Fe+ ion were tracked on the atomic fine-structure level. The corresponding theoretical results for the product charge-state distributions are in much better agreement with the experimental data than previously published configuration-average results. The present experimental and theoretical results are valuable for opacity calculations and are expected to pave the way to a more accurate determination of the iron abundance in the interstellar medium.
Electron Impact Ionization of Atoms and Ions
NASA Astrophysics Data System (ADS)
Saha, B. C.; Basak, A. K.
2006-10-01
Electron impact ionization cross sections are at the heart of many active fields ranging from astro- to medical- physics. These applications require cross sections for a wide range of species as a function of projectile energies. This demand, however, is very hard to fulfill neither by experiments nor ab initio calculations. Various analytical and semi-classical models are commonly used to generate such a vast ionization cross sections. We recently applied a modified version [1] of the Bell et. al. equations [2] including both the ionic and relativistic corrections. We will show in this presentation how to generalize the much-needed MBELL parameters for treating the orbital quantum numbers nl dependency; comparing our results with experimental findings tests the accuracy of this procedure; very good agreements are obtained even in relativistic energies. Details will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 052703 (2006). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, R.; Duggan, J.L.; Price, J.L.
1983-12-01
The measurements of M-shell x-ray-production cross sections induced by /sub 1//sup 1/H/sup +/ and /sub 2//sup 4/He/sup +/ ions are compared to the first-Born-approximation and ECPSSR (energy loss, Coulomb-deflection effects; perturbed-stationary-state approximation, with relativistic corrections) theories. Most of the reported experimental data were measured in our laboratory and the other measurements were taken from the literature. The data from our laboratory were for incident H/sup +/ and He/sup +/ ions in the energy range from 0.25 to 2.5 MeV. The M-shell x-ray-production cross sections were measured for the following thin targets: /sub 59/Pr, /sub 60/Nd, /sub 63/Eu, /sub 64/Gd, /submore » 66/Dy, /sub 67/Ho, /sub 68/Er, /sub 70/Yb, and /sub 72/Hf. The data from the literature were for protons and He/sup +/ ions in the energy range from 30 keV to 40 MeV. These data were for the following elements: /sub 54/Xe, /sub 59/Pr, /sub 60/Nd, /sub 62/Sm, /sub 63/Eu, /sub 64/Gd, /sub 65/Tb, /sub 66/Dy, /sub 67/Ho, /sub 68/Er, /sub 70/Yb, /sub 72/Hf, /sub 73/Ta, /sub 74/W, /sub 78/Pt, /sub 79/Au, /sub 80/Hg, /sub 82/Pb, /sub 83/Bi, and /sub 92/U. The first-Born-approximation calculations of the ionization cross section were made using the plane-wave Born approximation for direct ionization and the Oppenheimer-Brinkman-Kramers approximation of Nikolaev for electron capture. The ECPSSR theory of Brandt and Lapicki (Phys. Rev. A 23, 1717 (1981)) goes beyond the first Born approximation and accounts for the energy loss, Coulomb deflection, and relativistic effects in the perturbed-stationary-state theory. The first Born approximation overpredicts all measurements. The ECPSSR theory predicts the M-shell production cross sections correctly for Z/sub 2/>70 and energies per ..mu..>0.25 MeV/..mu...« less
SU-E-I-43: Photoelectric Cross Section Revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haga, A; Nakagawa, K; Kotoku, J
2015-06-15
Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (boundmore » electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock potential for K-shell electrons, the difference from XCOM database was limited: 1% to 8% for low-Z elements in 10keV-1MeV energy ranges. This work was partly supported by the JSPS Core-to-Core Program (No. 23003)« less
Inner-shell radiation from wire array implosions on the Zebra generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouart, N. D.; Giuliani, J. L.; Dasgupta, A.
2014-03-15
Implosions of brass wire arrays on Zebra have produced L-shell radiation as well as inner-shell Kα and Kβ transitions. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiations were captured using two time-gated and two axially resolved time-integrated spectrometers. The electron beam was measured using a Faraday cup. A multi-zone non-local thermodynamic equilibrium pinch model with radiation transport ismore » used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. These plasma conditions are used to discuss some properties of the electron beam generated by runaway electrons. A simple model for runaway electrons is examined to produce the Kα radiation, but it is found to be insufficient.« less
K-shell excitation studied for H- and He-like bismuth ions in collisions with low-Z target atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoehlker, T.; Ionescu, D.C.; Rymuza, P.
1998-02-01
The formation of excited projectile states via Coulomb excitation is investigated for hydrogenlike and heliumlike bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine-structure splitting of Bi, the excitation cross sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave functions and the magneticmore » interaction are of considerable importance for the K-shell excitation process in high-Z ions such as Bi. The experimental data confirm the result of the complete relativistic calculations, namely, that the magnetic part of the Li{acute e}nard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross section. {copyright} {ital 1998} {ital The American Physical Society}« less
Structure of Multiply Ionized Heavy Ions and Associated Collision Phenomena.
1978-10-01
Charge-State Dependence in K-Shell Ionization of Neon, Silicon , and Argon Gases by Lithium Proj ectiles ,” Physics Lett. 60A, 292 (1977). • “Charge...Projectile Charge-State Dependence in K-shell Ionization of Neon, Silicon , and Argon Gases by Lithium Projectiles,” Bull.Am. Phys. Soc. 22, 655 (1977...Probabilities , I . Martinson , ed. (Lunds Univeristet , Lund) , p. 8 (1977) . “Der 252S_2p 2 P° Doublettübergan g in Li-~hnlichem Schwefel , ” Verhandi
NASA Astrophysics Data System (ADS)
Michaud, M.; Bazin, M.; Sanche, L.
2013-03-01
Radiopharmaceuticals emitting Auger electrons are often injected into patients undergoing cancer treatment with targeted radionuclide therapy (TRT). In this type of radiotherapy, the radiation source is radial and most of the emitted primary particles are low-energy electrons (LEEs) having kinetic energies distributed mostly from zero to a few hundred electron volts with very short ranges in biological media. These LEEs generate a high density of energy deposits and clustered damage, thus offering a relative biological effectiveness comparable to that of alpha particles. In this paper, we present a simple model and corresponding measurements to assess the energy deposited near the site of the radiopharmaceuticals in TRT. As an example, a calculation is performed for the decay of a single 125I radionuclide surrounded by a 1-nm-radius spherical shell of cytosine molecules using the energy spectrum of LEEs emitted by 125I along with their stopping cross sections between 0 and 18 eV. The dose absorbed by the cytosine shell, which occupies a volume of 4 nm3, is extremely high. It amounts to 79 kGy per decay of which 3%, 39%, and 58% is attributed to vibrational excitations, electronic excitations, and ionization processes, respectively.
Production and decay of K -shell hollow krypton in collisions with 52-197-MeV/u bare xenon ions
NASA Astrophysics Data System (ADS)
Shao, Caojie; Yu, Deyang; Cai, Xiaohong; Chen, Xi; Ma, Kun; Evslin, Jarah; Xue, Yingli; Wang, Wei; Kozhedub, Yury S.; Lu, Rongchun; Song, Zhangyong; Zhang, Mingwu; Liu, Junliang; Yang, Bian; Guo, Yipan; Zhang, Jianming; Ruan, Fangfang; Wu, Yehong; Zhang, Yuezhao; Dong, Chenzhong; Chen, Ximeng; Yang, Zhihu
2017-07-01
X-ray spectra of K -shell hollow krypton atoms produced in single collisions with 52-197-MeV/u X e54 + ions are measured in a heavy-ion storage ring equipped with an internal gas-jet target. Energy shifts of the K α1,2 s , K α1,2 h ,s , and K β1,3 s transitions are obtained. Thus the average number of the spectator L vacancies presented during the x-ray emission is deduced. From the relative intensities of the K α1,2 s and K α1,2 h ,s transitions, the ratio of K -shell hollow krypton to singly K -shell ionized atoms is determined to be 14 %-24 % . In the considered collisions, the K vacancies are mainly created by the direct ionization which cannot be calculated within the perturbation descriptions. The experimental results are compared with a relativistic coupled-channel calculation performed within the independent particle approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, M.; Novotny, O.; Savin, D. W.
2013-04-10
We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20%more » greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.« less
Measurements of Rayleigh, Compton and resonant Raman scattering cross-sections for 59.536 keV γ-rays
NASA Astrophysics Data System (ADS)
Singh, Prem; Mehta, D.; Singh, N.; Puri, S.; Shahi, J. S.
2004-09-01
The K-L and K-M resonant Raman scattering (RRS) cross-sections have been measured for the first time at the 59.536 keV photon energy in the 70Yb ( BK=61.332 keV), 71Lu ( BK=63.316 keV) and 72Hf ( BK=65.345 keV) elements; BK being the K-shell binding energy. The K-L and K-M RRS measurements have been performed at the 59° and 133° angles, respectively, to avoid interference of the Compton-scatter peak. The Rayleigh and Compton scattering cross-sections for the 59.536 keV γ-rays have also been measured at both the angles in the atomic region 1⩽ Z⩽92. Measurements were performed using the reflection-mode geometrical arrangements involving the 241Am radioisotope as photon source and planar Si(Li) and HPGe detectors. Ratios of the K-M and K-L RRS cross-sections in Yb, Lu and Hf are in general lower than that of the fluorescent Kβ 1,3,5 (K-M) and Kα (K-L) X-ray transition probabilities. Theoretical Rayleigh scattering cross-sections based on the modified form-factors (MFs) corrected for the anomalous scattering factors (ASFs) and the S-matrix calculations are on an average ˜15% and ˜6% higher, respectively, at the 133° angle and exhibit good agreement with the measured data at the 59° angle. Larger deviations ˜30% and ˜20%, respectively, are observed at the 133° angle for the 64Gd, 66Dy, 67Ho and 70Yb elements having the K-shell binding energy in vicinity of the incident photon energy. The measured Compton scattering cross-sections are in general agreement with those calculated using the Klein-Nishina cross-sections and the incoherent scattering function.
Electronically cloaked nanoparticles
NASA Astrophysics Data System (ADS)
Shen, Wenqing
The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.
Electronic wave function and binding effects in M-shell ionization of gold by protons
NASA Astrophysics Data System (ADS)
Pajek, M.; Banaś, D.; Jabłoński, Ł.; Mukoyama, T.
2018-02-01
The measured M-X-ray production cross sections for protons, which are used in the particle induced X-ray emission (PIXE) technique, are systematically underestimated for low impact energies by the ECPSSR and ECUSAR theories. These theories, which are based on the plane wave Born approximation (PWBA) and use the screened hydrogenic wave functions, include corrections for the projectile Coulomb deflection and electron relativistic and binding effects. In the present paper, in order to interpret the observed disagreement at low impact energies, the systematic calculations of the M-shell ionization cross sections for gold were performed using the semiclassical (SCA) and the binary encounter (BEA) approximations in order to identify a role of the electronic wave function and electron binding effects. In these calculations the different wave functions, from nonrelativistic hydrogenic to selfconsistent Dirac-Hartree-Fock, were considered and the binding effect was treated within extreme separated- (SA) and united-atoms (UA) limits. The results are discussed in details and the observed discrepancies are attributed to inadequate description of the electron binding effect at the lowest impact energies for which the molecular approach is required.
Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation
NASA Astrophysics Data System (ADS)
Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.
2014-10-01
Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.
X-ray fluorescence cross sections for K and L x rays of the elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, M.O.; Nestor, C.W. Jr.; Sparks, C.J. Jr.
1978-06-01
X-ray fluorescence cross sections are calculated for the major x rays of the K series 5 less than or equal to Z less than or equal to 101, and the three L series 12 less than or equal to Z less than or equal to 101 in the energy range 1 to 200 keV. This calculation uses Scofield's theoretical partical photoionization cross sections, Krause's evaluation of fluorescence and Coster-Kronig yields, and Scofield's theoretical radiative rates. Values are presented in table and graph format, and an estimate of their accuracy is made. The following x rays are considered: K..cap alpha../sub 1/,more » K..cap alpha../sub 1/,/sub 2/, K..beta../sub 1/, K..beta../sub 1/,/sub 3/, L..cap alpha../sub 1/, L..cap alpha../sub 1/,/sub 2/, L..beta../sub 1/, L..beta../sub 2/,/sub 15/, L..beta../sub 3/, Ll, L..gamma../sub 1/, L..gamma../sub 4/, and L/sub 1/ ..-->.. L/sub 2/,/sub 3/. For use in x-ray fluorescence analysis, K..cap alpha.. and L..cap alpha.. fluorescence cross sections are presented at specific energies: TiK identical with 4.55 keV, CrK identical with 5.46 keV, CoK identical with 7.00 keV, CuK identical with 8.13 keV, MoK..cap alpha.. identical with 17.44 keV, AgK identical with 22.5 keV, DyK identical with 47.0 keV, and /sup 241/Am identical with 59.54 keV. Supplementary material includes fluorescence and Coster--Kronig yields, fractional radiative rates, fractional fluorescence yields, total L-shell fluorescence cross sections, fluorescence and Coster-Kronig yields in condensed matter, effective fluorescence yields, average L-shell fluorescence yield, L-subshell photoionization cross section ratios, and conversion factors from barns per atom to square centimeters per gram.« less
Study of inelastic processes in Li+-Ar, K+-Ar, and Na+-He collisions in the energy range 0.5-10 keV
NASA Astrophysics Data System (ADS)
Lomsadze, Ramaz A.; Gochitashvili, Malkhaz R.; Kezerashvili, Roman Ya; Schulz, Michael
2017-11-01
Absolute cross sections are measured for charge-exchange, ionization, and excitation processes within the same experimental setup for the Li{}+-Ar, K{}+-Ar, and Na{}+-He collisions in the ion energy range of 0.5-10 keV. The results of the measurements and schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The experimental results show that the charge-exchange processes occur with high probabilities and electrons are predominantly captured in ground states. The contributions of various partial inelastic channels to the total ionization cross section are estimated, and a primary mechanism for the process is identified. In addition, the energy-loss spectrum is applied in order to estimate the relative contribution of different inelastic channels, and to determine the mechanisms for the ionization and for some excitation processes of Ar resonance lines for the {{{K}}}+-Ar collision system. The excitation cross sections for the helium and for the sodium doublet lines for the Na{}+-He collision system both reveal some unexpected features. A mechanism to explain this observation is suggested.
NASA Astrophysics Data System (ADS)
Bansal, Himani; Tiwari, M. K.; Mittal, Raj
2018-01-01
M sub-shell X-ray fluorescence cross-sections of elements Pt, Au, Hg, Pb, Th and U have been measured with linearly polarized photon beams from Indus-II synchrotron source at Raja Ramanna Centre for Advanced Technology (RRCAT), India at tuned 5, 7 and 9 keV energies less than the L3 edge energy of elements. Measurements at present energies and elements are not available in literature. Therefore, measured cross-sections for Mξ, Mδ, Mα, Mβ, Mγ, Mm1 and Mm2 group of X-rays were compared with calculated theoretical values based upon Non Relativistic Hartree-Slater (NRHS) and relativistic Dirac-Fork (DF) and Dirac-Hartree-Slater (DHS) models. The measured cross-sections along with our earlier quoted measurements at 8 and 10 keV by Kaur et al. [Nucl. Instrum. Meth. B, 2014; 320: 37] are found in good agreement with DF and DHS values around 20% deviations and are highly deviated from NRHS values. Most of the spots of observed high deviations in measured and theoretical cross-sections are found to coincide with the presence of crisscrosses/sharp variations in contributing physical parameters photo-ionization cross-sections σMi's and Coster-Kronig yields fij's with Zs.
Anomalous photo-ionization of 4d shell in medium-Z ionized atoms
NASA Astrophysics Data System (ADS)
Klapisch, M.; Busquet, M.
2013-09-01
Photoionization (PI) cross sections (PICS) are necessary for the simulation of astrophysical and ICF plasmas. In order to be used in plasma modeling, the PICS are usually fit to simple analytical formulas. We observed an unusual spectral shape of the PICS of the 4d shell of ionized Xe and other elements, computed with different codes: a local minimum occurs around twice the threshold energy. We explain this phenomenon as interference between the bound 4d wavefunction and the free electron wavefunction, which is similar to the Cooper minima for neutral atoms. Consequently, the usual fitting formulas, which consist of a combination of inverse powers of the frequency beyond threshold, may yield rates for PI and radiative recombination (RR) that are incorrect by orders of magnitude. A new fitting algorithm is proposed and is included in the latest version of HULLAC.v9.5.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.
2011-11-01
In this new version of ISICS, called ISICS2011, a few omissions and incorrect entries in the built-in file of electron binding energies have been corrected; operational situations leading to un-physical behavior have been identified and flagged. New version program summaryProgram title: ISICS2011 Catalogue identifier: ADDS_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6011 No. of bytes in distributed program, including test data, etc.: 130 587 Distribution format: tar.gz Programming language: C Computer: 80486 or higher-level PCs Operating system: WINDOWS XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v4_0 Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1716. Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: General need for higher precision in output format for projectile energies; some built-in binding energies needed correcting; some anomalous results occur due to faulty read-in data or calculated parameters becoming un-physical; erroneous calculations could result for the L and M shells when restricted K-shell options are inadvertently chosen; to achieve general compatibility with ISICSoo, a companion C++ version that is portable to Linux and MacOS platforms, has been submitted for publication in the CPC Program Library approximately at the same time as this present new standalone version of ISICS [1]. Summary of revisions: The format field for projectile energies in the output has been expanded from two to four decimal places in order to distinguish between closely spaced energy values. There were a few entries in the executable binding energy file that needed correcting; K shell of Eu, M shells of Zn, M1 shell of Kr. The corrected values were also entered in the ENERGY.DAT file. In addition, an alternate data file of binding energies is included, called ENERGY_GW.DAT, which is more up-to-date [2]. Likewise, an alternate atomic parameters data file is now included, called FLOURE_JC.DAT, which is more up-to-date [3] fluorescence yields for the K and L shells and Coster-Kronig parameters for the L shell. Both data files can be read in using the -f usage option. To do this, the original energy file should be renamed and saved (e.g., ENERGY_BB.DAT) and the new file (ENERGY_GW.DAT ) should be duplicated as ENERGY.DAT to be read in using the -f option. Similarly for reading in an alternate FLOURE.DAT file. As with previous versions, the user can also simply input different values of any input quantity by invoking the "specify your own parameters" option from the main menu. You can also use this option to simply check the values of the built-in values of the parameters. If it still happens that a zero binding energy for a particular sub-shell is read in, the program will not completely abort, but will calculate results for the other sub-shells while setting the affected sub-shell output to zero. In calculating the Coulomb deflection factor, if the quantity inside the radical sign of the parameter z z=√{(1} becomes zero or negative, to prevent the program from aborting, the PWBA cross sections are still calculated while the ECPSSR cross sections are set to zero. This situation can happen for very low energy collisions, such as were noticed for helium ions on copper at energies of E⩽11.2 keV. It was observed during the engineering of ISICSoo [1] that erroneous calculations could result for the L- and M-shell cases when restricted K-shell R or HSR scaling options were inappropriately chosen. The program has now been fixed so that these inappropriate options are ignored for the L and M shells. In the previous versions, the usage for inputting a batch data file was incorrectly stated in the Users Manual as -Bxxx; the correct designation is -Fxxx, or alternatively, -Ixxx, as indicated on the usage screen in running the program. A revised Users Manual is also available. Restrictions: The consumed CPU time increases with the atomic shell (K, L, M), but execution is still very fast. Running time: This depends on which shell and the number of different energies to be used in the calculation. The running time is not significantly changed from the previous version.
Werner Brandt legacy to PIXE: Past and present perspectives
NASA Astrophysics Data System (ADS)
Lapicki, Gregory
2014-01-01
Inner-shell ionization cross sections used in Particle-Induced X-ray Elemental (PIXE) analyses are routinely calculated in the ECPSSR [W. Brandt, G. Lapicki, Phys. Rev. A 23 (1981) 1717-1729] theory and/or semiempirical formulas scaled to that theory. Thirty years after the passing of Werner Brandt, with recognition of his seminal contributions to other research on positron physics and stopping power problems, the work and articles that progressed into the ECPSSR theory for inner-shell ionization by protons and heavier ions are recalled as Brandt's past legacy to the PIXE community. Applications of the ECPSSR and its evolution into the ECUSAR [G. Lapicki, Nucl. Instr. Meth. B 189 (2002) 8-20] theory over the last three decades are reviewed with perspectives on Brandt's present legacy.
NASA Astrophysics Data System (ADS)
Litvinov, I. I.
2015-11-01
A critical analysis is given of the well-known expression for the electron-impact ionization rate constant α i of neutral atoms and ions, derived by linearization of the ionization cross section σ i (ɛ) as a function of the electron energy near the threshold I and containing the characteristic factor ( I + 2 kT). Using the classical Thomson expression for the ionization cross section, it is shown that in addition to the linear slope of σ i (ɛ), it is also necessary to take into account the large negative curvature of this function near the threshold. In this case, the second term in parentheses changes its sign, which means that the commonly used expression for α i (˜4 kT/I) already at moderate values of the temperature ( kT/I ˜ 0.1). The source of this error lies in a mathematical mistake in the original approach and is related to the incorrect choice of the sequential orders of terms small in the parameter kT/I. On the basis of a large amount of experimental data and considerations similar to the Gryzinski theory, a universal two-parameter modification of the Thomson formula (as well as the Bethe—Born formula) is proposed and a new simple expression for the ionization rate constant for arbitrary values of kT/I is derived.
Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitskiy, S. A.; Artemyev, A. N.; Jänkälä, K.
2015-01-21
Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li{sub 2−8} are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li{submore » 2} are in a good agreement with the available theoretical data, whereas those computed for Li{sub 3−8} clusters can be considered as theoretical predictions.« less
NASA Astrophysics Data System (ADS)
Hajivaliei, M.; Puri, Sanjiv; Garg, M. L.; Mehta, D.; Kumar, A.; Chamoli, S. K.; Avasthi, D. K.; Mandal, A.; Nandi, T. K.; Singh, K. P.; Singh, Nirmal; Govil, I. M.
2000-02-01
The Kα1, Kα2, Kβ1, Kβ2, and the Lℓ, Lα, Lβ and Lγ X-ray production (XRP) cross sections and the relative intensity ratios for seven rare-earth elements with 60⩽Z⩽70 have been measured for 20, 22 and 25 MeV proton impact. The experimental data on the L-shell XRP cross sections for high energy proton impact have been reported for the first time. The measured XRP cross sections for all the K-lines and the relative intensity ratios Kα1/Kα, Kα2/Kα, Kβ1/Kα, Kβ2/Kα and Kβ/Kα are in good agreement with the theoretical ones calculated using ECPSSR ionisation cross sections for all the elements investigated at the three beam energies. The Lℓ, Lα, Lβ, and Lγ XRP cross sections measured at the three proton energies are found to be in general higher than the theoretical values calculated using the ECPSSR ionisation cross sections and the RDHS model-based Li sub-shell fluorescence and Coster-Kronig (CK) yields. The measured relative intensity ratios Lβ/Lα, and Lγ/Lα exhibit good agreement with the theoretical ones for all the elements under investigation, whereas the Lℓ/Lα ratios are found to deviate from the theoretical ones.
Atomic Processes in X-ray Photoioinzed Gas
NASA Technical Reports Server (NTRS)
Kallman, Timothy
2005-01-01
It has long been known that photoionization and photoabsorption play a dominant role in determining the state of gas in nebulae surrounding hot stars and in active galaxies. Recent observations of X-ray spectra demonstrate that these processes are also dominant in highly ionized gas near compact objects, and also affect the transmission of X-rays from the majority of astronomical sources. This has led to new insights into the understanding of what is going on in these sources. It has also pointed out the need for accurate atomic cross sections for photoionization and absorption, notably for processes involving inner shells. The xstar code can be used for calculating the heating, ionization and reprocessing of X-rays by gas in a range of ionization states and temperatures. It has recently been updated to include an improved treatment of inner shell transitions in iron. I will review the capabilities of xstar, the atomic data, and illustrate some applications to recent X-ray spectral observations.
Charge-equilibrium and radiation of low-energy cosmic rays passing through interstellar medium
NASA Technical Reports Server (NTRS)
Rule, D. W.; Omidvar, K.
1977-01-01
The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, is considered. Electron loss of the beam has been taken into account by means of the First Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation and collisional inner-shell ionization of the ions has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated.
Relative L-shell X-ray intensities of Pt, Pb and Bi following ionization by 59.54 keV γ-rays
NASA Astrophysics Data System (ADS)
Dhal, B. B.; Padhi, H. C.
1994-12-01
Relative L-shell X-ray intensities of Pt, Pb and Bi have been measured following ionization by 59.54 keV photons from an 241 Am point source. The measured ratios have been compared with the theoretical ratios estimated using the photoionization cross-sections of Scofield and different decay yield data. The comparison shows good agreement for Pb and Bi with the decay yield data of Krause, but the decay yield data of Xu and Xu overestimates the ratios, particularly for the {I γ}/{I α} ratio. Our results for Pb and Bi with improved error limits also agree with the previous experimental results of Shatendra et al. For Pt our present results are found to lie between the two theoretical results obtained by using different sets of decay yield data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, C. S.; Picón, A.; Bostedt, C.
The availability at x-ray free electron lasers of generating two intense, femtosecond x-ray pulses with controlled time delay opens the possibility of performing time-resolved experiments for x-ray induced phenomena. We have applied this capability to molecular dynamics. In diatomic molecules composed of low-Z elements, K-shell ionization creates a core-hole state in which the main decay is an Auger process involving two electrons in the valence shell. After Auger decay, the nuclear wavepackets of the transient two-valence-hole states continue evolving on the femtosecond timescale, leading either to separated atomic ions or long-lived quasi-bound states. By using an x-ray pump and anmore » x-ray probe pulse tuned above the K-shell ionization threshold of the nitrogen molecule, we are able to observe ion dissociation in progress by measuring the time-dependent kinetic energy releases of different breakup channels. We simulated the measurements on N2 with a molecular dynamics model that accounts for K-shell ionization, Auger decay, and time evolution of the nuclear wavepackets. In addition to explaining the time-dependent feature in the measured kinetic energy release distributions from the dissociative states, the simulation also reveals the contributions of quasi-bound states.« less
Low-energy proton induced M X-ray production cross sections for 70Yb, 81Tl and 82Pb
NASA Astrophysics Data System (ADS)
Shehla; Mandal, A.; Kumar, Ajay; Roy Chowdhury, M.; Puri, Sanjiv; Tribedi, L. C.
2018-07-01
The cross sections for production of Mk (k = Mξ, Mαβ, Mγ, Mm1) X-rays of 70Yb, 81Tl and 82Pb induced by 50-250 keV protons have been measured in the present work. The experimental cross sections have been compared with the earlier reported values and those calculated using the ionization cross sections based on the ECPSSR (Perturbed (P) stationary(S) state(S), incident ion energy (E) loss, Coulomb (C) deflection and relativistic (R) correction) model, the X-ray emission rates based on the Dirac-Fock model, the fluorescence and Coster-Kronig yields based on the Dirac-Hartree-Slater (DHS) model. In addition, the present measured proton induced X-ray production cross sections have also been compared with those calculated using the Dirac-Hartree-Slater (DHS) model based ionization cross sections and those based on the Plane wave Born Approximation (PWBA). The measured M X-ray production cross sections are, in general, found to be higher than the ECPSSR and DHS model based values and lower than the PWBA model based cross sections.
NASA Astrophysics Data System (ADS)
La Mantia, David; Kumara, Nuwan; Kayani, Asghar; Simon, Anna; Tanis, John
2016-05-01
Total cross sections for single and double capture, as well as the corresponding cross sections for capture resulting in the emission of an Ar K x ray, were measured. This work was performed at Western Michigan University with the use of the tandem Van de Graaff accelerator. A 45 MeV beam of fully-stripped fluorine ions was collided with argon gas molecules in a differentially pumped cell. Surface barrier detectors were used to observe the charge changed projectiles and a Si(Li) x-ray detector, placed at 90o to the incident beam, were used to measure coincidences with Ar K x rays. The total capture cross sections are compared to previously measured cross sections in the existing literature. The coincidence cross sections, considerably smaller than the total cross sections, are found to be nearly equal for single and double capture in contrast to the total cross sections, which vary by about an order of magnitude. Possible reasons for this behavior are discussed. Supported in part by the NSF.
Electron Impact Ionization of Heavier Ions
NASA Astrophysics Data System (ADS)
Saha, B. C.
2006-10-01
The electron impact ionization (EII) is a dominant ion creation process in various kinds of plasmas. Hydrogenic atoms occurs not only in plasmas but may also be formed due to radiation effects in many organic and inorganic materials. Apart from its fundamental importance in collisional physics the knowledge of the EII cross sections finds its wide applications in modeling astrophysical and fusion plasmas. So the demand of the EIICS is enormous. It is hard to fulfill such a demand either by experimental or ab initio calculations. Thus various analytical and semi-classical models are employed to generate accurate EII cross sections. We report here a modified version [1] of the Bell et. al. equations [2] including both the ionic and relativistic corrections (MBELL). We generalize the MBELL parameters for treating the dependency of the orbital quantum numbers nl; evaluating cross sections for various species at different energies tests the accuracy of the procedure. Detail will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 052703 (2006). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).
Ion charge state distribution effects on elastic X-ray Thomson scattering
NASA Astrophysics Data System (ADS)
Iglesias, Carlos A.
2018-03-01
Analytic models commonly applied in elastic X-ray Thomson scattering cross-section calculations are used to generate results from a discrete ion charge distribution and an average charge description. Comparisons show that interchanging the order of the averaging procedure can appreciably alter the cross-section, especially for plasmas with partially filled K-shell bound electrons. In addition, two common approximations to describe the free electron density around an ion are shown to yield significantly different elastic X-ray Thomson scattering cross-sections.
Cross section measurements of radiative KL2,3 RRS in 24Cr and L3M4,5 RRS in 59Pr for Mn Kα1,2 X-rays
NASA Astrophysics Data System (ADS)
Sharma, Veena; Upmanyu, Arun; Singh, Ranjit; Singh, Gurjot; Sharma, Hitesh; Kumar, Sanjeev; Mehta, D.
2017-06-01
The KL2,3 and L3M4,5 radiative resonant Raman scattering (RRS) cross sections have been measured for the quasimonochromatic Mn Kα1,2 X-rays (5.895 keV) in 24Cr (K-shell level width (ΓK) =1.08 eV) and 59 Pr (L3-subshell level width (ΓL3) =3.60 eV), respectively, using targets in metallic and various chemical forms. The incident Mn Kα1,2 X-ray energy is lower than the K-shell binding energy of 24Cr and L3-subshell binding energy of 59Pr by 94 ΓK (Cr) and 94 ΓL3 (Pr), respectively. The experimental measurements were performed with a low energy Ge detector (LEGe) and a radioactive 55Fe annular source in conjunction with 24Cr absorber. The measured cross section values for the 24Cr and 59 Pr elements in their various oxidation states are found to be same within experimental errors. The measurements were further extended to investigate alignment of the intermediate L3-subshell (J =3/2) virtual vacancy states in 59Pr through angular distribution measurements for RRS photon emission, which is found to be isotropic within experimental errors.
K-shell photoionization of O4 + and O5 + ions: experiment and theory
NASA Astrophysics Data System (ADS)
McLaughlin, B. M.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Douix, S.; Shorman, M. M. Al; Ghazaly, M. O. A. El; Sakho, I.; Gharaibeh, M. F.
2017-03-01
Absolute cross-sections for the K-shell photoionization of Be-like (O4 +) and Li-like (O5 +) atomic oxygen ions were measured for the first time (in their respective K-shell regions) by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/ΔE ≈ 3200 (≈170 meV, full width at half-maximum) was achieved with photon energy from 550 to 670 eV. Rich resonance structure observed in the experimental spectra is analysed using the R-matrix with pseudo-states (RMPS) method. Results are also compared with the screening constant by unit nuclear charge (SCUNC) calculations. We characterize and identify the strong 1s → 2p resonances for both ions and the weaker 1s → np resonances (n ≥ 3) observed in the K-shell spectra of O4 +.
Modification and benchmarking of MCNP for low-energy tungsten spectra.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-12-01
The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggan, J.L.; Kocur, P.M.; Price, J.L.
1985-10-01
L-shell x-ray production cross sections by /sub 1//sup 1/H/sup +/ ions are reported. The data are compared to the first Born approximation (plane-wave Born approximation for direct ionization and Oppenheimer-Brinkman-Kramers approximation for electron capture) and to the ECPSSR (energy-loss and Coulomb-deflection effects, perturbed stationary-state approximation with relativistic correction) theory. The energy of the protons ranged from 0.25 to 2.5 MeV in steps of 0.25 MeV. The targets used in these measurements were /sub 28/Ni, /sub 29/Cu, /sub 32/Ge, /sub 33/As, /sub 37/Rb, /sub 38/Sr, /sub 39/Y, /sub 40/Zr, and /sub 46/Pd. The first Born theory generally agrees with the datamore » found in the literature at high energies and overpredicts them below 1.5 MeV. The ECPSSR predictions are in better agreement with experimental cross sections. At 0.25 MeV our data, however, are underestimated by this theory and tend to agree with the first Born approximation.« less
Charge equilibrium and radiation of low-energy cosmic rays passing through interstellar medium
NASA Technical Reports Server (NTRS)
Rule, D. W.; Omidvar, K.
1979-01-01
The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, are considered. Electron loss of the beam has been taken into account by means of the first Born approximation, allowing for the target atom to remain unexcited or to be excited to all possible states. Electron-capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms and capture into all excited states of the projectile. The capture and loss cross sections are found to be within 20%-30% of the existing experimental values for most of the cases considered. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation, and collisional inner-shell ionization, taking into account the fluorescence yield of the ions, has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated, and error estimates made for the results.
Photoionization of Se+ and Se2+ Ions: Experiment and Theory
NASA Astrophysics Data System (ADS)
Esteves, D. A.; Sterling, N. C.; Alna'Washi, Ghassan; Aguilar, A.; Kilcoyne, A. L. D.; Balance, C. P.; Norrington, P. H.; McLaughlin, B. M.
2007-06-01
The determination of elemental abundances in astrophysical nebulae are highly dependent on the accuracy of the available atomic data. Numerical simulations show that derived Se abundances in ionized nebulae can be uncertain by factors of two or more from atomic data uncertainties alone. Of these uncertainties, photoionization cross section data are the most important, particularly in the near threshold region of the valence shell. Absolute photoionization cross sections for Se^+ and Se^2+ ions near their thresholds have been measured at the Advanced Light Source in Berkeley, using the merged beams photo-ion technique. Theoretical photoionization cross sections calculations were performed for both of these Se ions using the state-of-the-art fully relativistic Dirac R-matrix code (DARC). The calculations show encouraging agreement with the experimental measurements. A more comprehensive set of results will be presented at the meeting.
Plasma rate coefficients for electron-impact ionization of Xeq+ ions (q = 8, …, 17)
NASA Astrophysics Data System (ADS)
Borovik, A., Jr.; Gharaibeh, M. F.; Schippers, S.; Müller, A.
2015-02-01
Plasma rate coefficients (PRCs) for electron-impact single ionization of ground-state Xeq+ ions (q=8,\\ldots ,17) in the temperature range 2 × 105 - 2 × 107 K have been derived from a combination of experimental cross-section data and results of distorted-wave calculations. For Xe8+ and Xe9+ new measurements were performed and thoroughly analyzed with respect to the contributions from different ionization mechanisms and the effects of long-lived excited states in the parent ion beams that had been employed in the experiments. In the same manner, previously published experimental data for the higher charge states were analyzed to extract the ground-configuration ionization cross sections and to derive the associated PRCs. The resulting temperature-dependent PRC functions were parameterized and the associated parameters are provided in tabular form. With the exception of Xe8+ the absolute uncertainties of the inferred rate coefficients are estimated to be +/- 10%. For Xe8+ the uncertainties are +/- 25% due to the necessary correction for strong metastable-ion contributions to the measured cross sections.
NASA Astrophysics Data System (ADS)
Ichihara, Akira; Eichler, Jörg
2001-11-01
An extensive tabulation of angle-differential cross sections for radiative recombination and, consequently, for the photoelectric effect of hydrogen-like ions with representative charge numbers Z=18, 36, 54, 66, 79, 82, and 92 is presented for the K, L, and M shells and electron energies ranging from 1.0 keV to 1.5 MeV. The cross sections, accurate to three digits, are based on fully relativistic calculations including the effects of the finite nuclear size and all multipole orders of the photon field. In order to provide a good overview, the following procedure has been adopted: For the charge numbers 18, 54, and 92, the differential cross sections are presented in figures for all subshells and for representative energies. Furthermore, as a sample of the calculations, we present a complete table for the case of Z=79. The full tabulation for all charge numbers mentioned above is provided in electronic form (http://www.idealibrary.com/links/doi/10.1006/adnd.2001.0868/dat). By simple scaling, the dependence on the projectile energy in MeV/u can be derived for accelerator experiments, and, by using elementary formulas, the differential cross section for the photoelectric effect as a function of the electron emission angle can also be obtained.
Molecular photoionization processes of astrophysical and aeronomical interest
NASA Technical Reports Server (NTRS)
Langhoff, P. W.
1985-01-01
An account is given of aspects of photoionization processes in molecules, with particular reference to recent theoretical and experimental studies of partial cross sections for production of specific final electronic states and of parent and fragment ions. Such cross sections help provide a basis for specifying the state of excitation of the ionized medium, are useful for estimating the kinetic energy distributions of photoejected electrons and fragment ions, provide parent-and fragment-ion yields, and clarify the possible origins of neutral fragments in highly excited rovibronic states. A descriptive account is given of photoionization phenomena, including tabulation of valence- and inner-shell potentials for some molecules of astrophysical and aeronomical interest. Cross sectional expressions are given. Various approximations currently employed in computational studies are described briefly, threshold laws and high-energy limits are indicated, and distinction is drawn between resonant and direct photoionization phenomena. Recent experimental and theoretical studies of partial photoionization cross sections in selected compounds of astrophysical and aeronomical relevance are described and discussed.
NASA Technical Reports Server (NTRS)
Thompson, R. A.
1994-01-01
Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. This program was last updated in 1991. SUN and SunOS are registered trademarks of Sun Microsystems, Inc.
Channel-specific dielectronic recombination of Ge(XXXII), Se(XXXIV), and Kr(XXXVI)
NASA Astrophysics Data System (ADS)
El Machtoub, G.
2004-04-01
We present explicit calculations of channel-specific dielectronic recombination cross sections for hydrogen-like germanium, Ge(XXXII); selenium, Se(XXXIV); and krypton, Kr(XXXVI). The convoluted cross sections characterize K-shell emission spectra over a wide energy range where contributions from high-n (n = 2-10), satellite lines are included. The high-n contributions presented are important for better diagnostics in the domain of high-temperature plasmas.
Minima in generalized oscillator strengths for initially excited hydrogen-like atoms
NASA Technical Reports Server (NTRS)
Matsuzawa, M.; Omidvar, K.; Inokuti, M.
1976-01-01
Generalized oscillator strengths for transitions from an initially excited state of a hydrogenic atom to final states (either discrete or continuum) have complicated structures, including minima and shoulders, as functions of the momentum transfer. Extensive calculations carried out in the present work have revealed certain systematics of these structures. Some implications of the minima to the energy dependence of the inner-shell ionization cross section of heavy atoms by proton impact are discussed.
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2016-07-01
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.
Processes of energy deposition by heavy-particle and electron impact. Final progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salop, A.; Smith, F.T.
1978-04-18
Progress is reported in three areas of reasearch during the present period: K-shell ionization in high energy collisions of heavy ions with light target atoms using the sudden (Magnus) approximation, K-L level matching phenomena associated with K-shell vacancy production in heavy-ion collisions, and studies of low energy collisions of electrons with molecules using semi-classical perturbation theory. A brief discussion of each of these activities is given.
Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Srivastava, S. K.
1991-01-01
A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.
Electron-Impact Ionization Cross Section Database
National Institute of Standards and Technology Data Gateway
SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access) This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.
Kβ/ Kα intensity ratios for X-ray production in 3d metals by gamma-rays and protons
NASA Astrophysics Data System (ADS)
Bhuinya, C. R.; Padhi, H. C.
1994-04-01
Systematic measurements of Kβ/ Kα intensity ratios for X-ray production in 3d metals have been carried out using γ-ray and fast proton ionization methods. The measured ratios from proton ionization experiments indicate production of multivacancies in the L shell giving rise to higher Kβ/ Kα ratios compared to the present γRF results and 2 MeV proton ionization results of Perujo et al. [Perujo A., Maxwell J. A., Teesdale W. J. and Cambell J. L. (1987) J. Phys. B: Atom. Molec. Phys.20, 4973]. This is consistent with the SCA model calculation which gives increased simultaneous K- and L-shell ionization at 4 MeV. The present results from γRF experiments are in close agreement with the 2 MeV proton ionization results of Perujo et al. (1987) and also with the theoretical calculation of jankowski and Polasik [Jankowski K. and Polasik M. (1989) J. Phys. B: Atom. Molec. Optic. Phys. 22, 2369] but the theoretical results of Scofield [Scofield J. H. (1974a) Atom. Data Nucl. Data Tables14, 12] are somewhat higher.
Injection and trapping of tunnel-ionized electrons into laser-produced wakes.
Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C
2010-01-15
A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsen, Joseph
2015-12-16
Using an X-ray free electron laser (XFEL) at 960 eV to photo-ionize the 1s electron in neutral neon followed by lasing on the 2p-1s transition in singly-ionized neon, an inner-shell X-ray laser was demonstrated at 849 eV in singly-ionized neon gas several years ago. It took decades to demonstrate this scheme, because it required a very strong X-ray source that could photo-ionize the 1s (K shell) electron in neon on a timescale comparable to the intrinsic Auger lifetime in neon of 2 fs. In this paper, we model the neon inner shell X-ray laser under similar conditions to those usedmore » in the XFEL experiments at the SLAC Linac Coherent Light Source (LCLS), and show how we can improve the efficiency of the neon laser and reduce the drive requirements by tuning the XFEL to the 1s-3p transition in neutral neon in order to create gain on the 2p-1s line in neutral neon. We also show how the XFEL could be used to photo-ionize L-shell electrons to drive gain on n = 3–2 transitions in singly-ionized Ar and Cu plasmas. Furthermore, these bright, coherent, and monochromatic X-ray lasers may prove very useful for doing high-resolution spectroscopy and for studying non-linear process in the X-ray regime.« less
Electron induced inelastic and ionization cross section for plasma modeling
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby
2016-09-01
The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.
HIGH PRECISION K-SHELL PHOTOABSORPTION CROSS SECTIONS FOR ATOMIC OXYGEN: EXPERIMENT AND THEORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, B. M.; Ballance, C. P.; Bowen, K. P.
2013-07-01
Photoabsorption of atomic oxygen in the energy region below the 1s {sup -1} threshold in X-ray spectroscopy from Chandra and XMM-Newton is observed in a variety of X-ray binary spectra. Photoabsorption cross sections determined from an R-matrix method with pseudo-states and new, high precision measurements from the Advanced Light Source (ALS) are presented. High-resolution spectroscopy with E/{Delta}E Almost-Equal-To 4250 {+-} 400 was obtained for photon energies from 520 eV to 555 eV at an energy resolution of 124 {+-} 12 meV FWHM. K-shell photoabsorption cross section measurements were made with a re-analysis of previous experimental data on atomic oxygen atmore » the ALS. Natural line widths {Gamma} are extracted for the 1s {sup -1}2s {sup 2}2p {sup 4}({sup 4} P)np {sup 3} P Degree-Sign and 1s {sup -1}2s {sup 2}2p {sup 4}({sup 2} P)np {sup 3} P Degree-Sign Rydberg resonances series and compared with theoretical predictions. Accurate cross sections and line widths are obtained for applications in X-ray astronomy. Excellent agreement between theory and the ALS measurements is shown which will have profound implications for the modeling of X-ray spectra and spectral diagnostics.« less
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Fojón, O. A.; Rivarola, R. D.
2018-04-01
We present theoretical calculations of single ionization of He atoms by protons and multiply charged ions. The kinematical conditions are deliberately chosen in such a way that the ejected electron velocity matches the projectile impact velocity. The computed fully differential cross sections (FDCS) in the scattering plane using the continuum-distorted wave-eikonal initial state show a distinct peaked structure for a polar electron emission angle θ k = 0°. This element is absent when a first order theory is employed. Consequently, we can argue that this peak is a clear manifestation of a three-body effect, not observed before in FDCS. We discuss a possible interpretation of this new feature.
Menssen, A.; Trevisan, C. S.; Schöffler, M. S.; ...
2016-02-15
Molecular frame photoelectron angular distributions (MFPADs) are measured in this paper in electron–ion momentum imaging experiments and compared with complex Kohn variational calculations for carbon K-shell ionization of carbon tetrafluoride (CF 4), ethane (C 2H 6) and 1,1-difluoroethylene (C 2H 2F 2). While in ethane the polarization averaged MFPADs show a tendency at low energies for the photoelectron to be emitted in the directions of the bonds, the opposite effect is seen in CF 4. A combination of these behaviors is seen in difluoroethylene where ionization from the two carbons can be distinguished experimentally because of their different K-shell ionizationmore » potentials. Excellent agreement is found between experiment and simple static-exchange or coupled two-channel theoretical calculations. Finally, however, simple electrostatics do not provide an adequate explanation of the suggestively simple angular distributions at low electron ejection energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopyra, Janina; Abdoul-Carime, Hassan, E-mail: hcarime@ipnl.in2p3.fr
Providing experimental values for absolute Dissociative Electron Attachment (DEA) cross sections for nucleobases at realistic biological conditions is a considerable challenge. In this work, we provide the temperature dependence of the cross section, σ, of the dehydrogenated thymine anion (T − H){sup −} produced via DEA. Within the 393-443 K temperature range, it is observed that σ varies by one order of magnitude. By extrapolating to a temperature of 313 K, the relative DEA cross section for the production of the dehydrogenated thymine anion at an incident energy of 1 eV decreases by 2 orders of magnitude and the absolutemore » value reaches approximately 6 × 10{sup −19} cm{sup 2}. These quantitative measurements provide a benchmark for theoretical prediction and also a contribution to a more accurate description of the effects of ionizing radiation on molecular medium.« less
K-shell auger decay of atomic oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolte, W.C.; Lu, Y.; Samson, J.A.R.
1997-04-01
The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydbergmore » analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.« less
Dissociative-ionization cross sections for 12-keV-electron impact on CO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Pragya; Singh, Raj; Yadav, Namita
The dissociative ionization of a CO{sub 2} molecule is studied at an electron energy of 12 keV using the multiple ion coincidence imaging technique. The absolute partial ionization cross sections and the precursor-specific absolute partial ionization cross sections of resulting fragment ions are obtained and reported. It is found that {approx}75% of single ionization, 22% of double ionization, and {approx}2% of triple ionization of the parent molecule contribute to the total fragment ion yield; quadruple ionization of CO{sub 2} is found to make a negligibly small contribution. Furthermore, the absolute partial ionization cross sections for ion-pair and ion-triple formation aremore » measured for nine dissociative ionization channels of up to a quadruply ionized CO{sub 2} molecule. In addition, the branching ratios for single-ion, ion-pair, and ion-triple formation are also determined.« less
Electron-Impact Total Ionization Cross Sections of CH and C2H2
Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene
1997-01-01
Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116
NASA Technical Reports Server (NTRS)
Green, T. J.
1973-01-01
Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.
Suzaku spectra of a Type-II supernova remnant, Kes 79
NASA Astrophysics Data System (ADS)
Sato, Tamotsu; Koyama, Katsuji; Lee, Shiu-Hang; Takahashi, Tadayuki
2016-06-01
This paper reports on results of a Suzaku observation of the supernova remnant (SNR) Kes 79 (G33.6+0.1). The X-ray spectrum is best fitted by a two-temperature model: a non-equilibrium ionization (NEI) plasma and a collisional ionization equilibrium (CIE) plasma. The NEI plasma is spatially confined within the inner radio shell with kT ˜ 0.8 keV, while the CIE plasma is found in more spatially extended regions associated with the outer radio shell with kT ˜0.2 keV and solar abundance. Therefore, the NEI plasma is attributable to the SN ejecta, and the CIE plasma is the forward shocked interstellar medium. In the NEI plasma, we discovered K-shell lines of Al, Ar, and Ca for the first time. The abundance pattern and estimated mass of the ejecta are consistent with a core-collapse supernova explosion of a ˜30-40M⊙ progenitor star. An Fe line with a center energy of ˜6.4 keV is also found in the southeast (SE) portion of the SNR, a close peripheral region around dense molecular clouds. One possibility is that the line is associated with the ejecta. However, the centroid energy of ˜6.4 keV and the spatial distribution of enhancement near the SE peripheral do not favor this scenario. Since the ˜6.4 keV emitting region coincides with the molecular clouds, we propose another possibility, that the Fe line is due to K-shell ionization of neutral Fe by the interaction of locally accelerated protons (LECRp) with the surrounding molecular cloud. Both of these possibilities, heated ejecta or LECRp origin, are discussed based on the observational facts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois
As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less
NASA Astrophysics Data System (ADS)
Şimşek, Ö.; Karagöz, D.; Ertugrul, M.
2003-10-01
The K to L shell vacancy transfer probabilities for nine elements in the atomic region 46≤ Z≤55 were determined by measuring the L X-ray yields from targets excited by 5.96 and 59.5 keV photons and using the theoretical K and L shell photoionization cross-sections. The L X-rays from different targets were detected with an Ultra-LEGe detector with very thin polymer window. Present experimental results were compared with the semi empirical values tabulated by Rao et al. [Atomic vacancy distributions product by inner shellionization, Phys. Rev. A 5 (1972) 997-1002] and theoretically calculated values using radiative and radiationless transitions. The radiative transitions of these elements were observed from the relativistic Hartree-Slater model, which was proposed by Scofield [Relativistic Hartree-Slater values for K and L shell X-ray emission rates, At. Data Nucl. Data Tables 14 (1974) 121-137]. The radiationless transitions were observed from the Dirac-Hartree-Slater model, which was proposed by Chen et al. [Relativistic radiationless transition probabilities for atomic K- and L-shells, At. Data Nucl. Data Tables 24 (1979) 13-37]. To the best of our knowledge, these vacancy transfer probabilities are reported for the first time.
NASA Astrophysics Data System (ADS)
Puri, S.; Mehta, D.; Chand, B.; Singh, Nirmal; Mangal, P. C.; Trehan, P. N.
1993-03-01
Total M X-ray production (XRP) cross sections for ten elements in the atomic number region 71 ≤ Z ≤ 92 were measured at 5.96 keV incident photon energy. The average M shell fluorescence yields < overlineωM> have also been computed using the present measured cross section values and the theoretical M shell photoionisation cross sections. The results are compared with theoretical values.
Double Photoionization of excited Lithium and Beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.
2010-05-20
We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.
Nonsequential two-photon absorption from the K shell in solid zirconium
Ghimire, Shambhu; Fuchs, Matthias; Hastings, Jerry; ...
2016-10-21
Here, we report the observation of nonsequential two-photon absorption from the K shell of solid Zr (atomic number Z=40) using intense x-ray pulses from the Spring-8 Angstrom Compact Free-Electron Laser (SACLA). We determine the generalized nonlinear two-photon absorption cross section at the two-photon threshold in the range of 3.9–57 ×10 –60 cm 4s bounded by the estimated uncertainty in the absolute intensity. The lower limit is consistent with the prediction of 3.1 ×10 –60 cm 4s from the nonresonant Z –6 scaling for hydrogenic ions in the nonrelativistic, dipole limit.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Fletcher, Graham D.
2004-01-01
As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.
Triple-α reaction rate constrained by stellar evolution models
NASA Astrophysics Data System (ADS)
Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.
2012-11-01
We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.
Advanced Kr Atomic Structure and Ionization Kinetics for Pinches on ZR
NASA Astrophysics Data System (ADS)
Dasgupta, Arati; Clark, Robert; Giuliani, John; Ouart, Nick; Davis, Jack; Jones, Brent; Ampleford, Dave; Hansen, Stephanie
2011-10-01
High fluence photon sources above 10 keV are a challenge for HED plasmas. This motivates Kr atomic modeling as its K-shell radiation starts at 13 keV. We have developed atomic structure and collisional-radiatve data for the full K-and L-shell and much of the M-shell using the the state-of-the-art Flexible Atomic Code. All relevant atomic collisional and radiative processes that affect ionization balance and are necessary to accurately model the pinch dynamics and the spectroscopic details of the emitted radiation are included in constructing the model. This non-LTE CRE model will be used to generate synthetic spectra for fixed densities and temperatures relevant for Kr gas-puff simulations in ZR. Work supported by DOE/NNSA. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Dasgupta, Arati
2015-11-01
Designing high fluence photon sources above 10 keV are a challenge for High Energy Density plasmas. This has motivated radiation source development investigations of Kr with K-shell energies around 13 keV. Recent pulsed power driven gas-puff experiments on the refurbished Z machine at Sandia have produced intense X-rays in the multi-keV photon energy range. K-shell radiative yields and efficiencies are very high for Ar, but rapidly decrease for higher atomic number (ZA) elements such as Kr. It has been suggested that an optimum exists corresponding to a trade-off between the increase of photon energy for higher ZA elements and the corresponding fall off in radiative power. However the conversion efficiency on NIF, where the drive, energy deposition process, and target dynamics are different, does not fall off with higher ZA as rapidly as on Z. We have developed detailed atomic structure and collisional data for the full K-, L- and partial M-shell of Kr using the Flexible Atomic Code (FAC). Our non-LTE atomic model includes all collisional and recombination processes, including state-specific dielectronic recombination (DR), that significantly affect ionization balance and spectra of Kr plasmas at the temperatures and densities of concern. The model couples ionization physics, radiation production and transport, and magnetohydrodynamics. In this talk, I will give a detailed description of the model and discuss 1D Kr simulations employing a multifrequency radiation transport scheme. Synthetic K- and L-shell spectra will be compared with available experimental data. This talk will analyze experimental data indicative of the differences between Z and NIF experimental data and discuss how they affect the K-shell radiative output of Kr plasma. Work supported by DOE/NNSA.
Charge transfer and ionization in collisions of Si3+ with H from low to high energy
NASA Astrophysics Data System (ADS)
Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.
2006-11-01
Charge transfer processes due to collisions of ground state Si3+(3sS1) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01eV/u to 1MeV/u . Total and state-selective rate coefficients are also presented for temperatures from 2×103K to 107K . Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.
Simulation of K-α Emission from Highly Charged Cu ions for Pinches on ZR
NASA Astrophysics Data System (ADS)
Dasgupta, A.; Giuliani, J. L.; Clark, R. W.; Ouart, N. D.; Jones, B.; Ampleford, D. J.
2012-10-01
Recent spectral data of Cu shots Z1975 and Z2122 from Sandia's ZR machine are believed to show strong K-α emissions. As these K-α lines provide good diagnostics, a detailed spectral model will be developed to investigate these line emissions for analyzing the data. In a Z pinch plasma, K-α emission can occur due to e-beams, hot electrons at the tail of a Maxwellian and also pumping from hot photons emitted near the axis. K-α emission that originates from collisional processes involving hot electrons in the final phase of the pinching plasmas are associated with radiationless electron capture, inner-shell electron collisional excitation and ionization. K-α lines from various ionization stages of various materials such as Fe, Cr, Ni, and Mn were also observed in the ZR data. Contributions from ions with strong K-α transitions will be included for this study which is a preliminary attempt to investigate Cu K-α lines due to hot electrons and photons. Photo-pumped K-α emission from an outer shell is spatially distinguishable from that produced by e-beam on axis.
X-ray two-photon absorption with high fluence XFEL pulses
Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...
2015-09-07
Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~10 5 photons/Å 2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.
X-Ray Laser Program Report for FY 1989
1990-05-24
theoretical photopumped x-ray laser program also involves the use of a neon lasant plasma. However, that is the only similarity to the Na/Ne scheme described...K-shell neon Z pinch photons of energy hv > 900 eV, photoionize inner K-shell electrons from the neutral neon, leading to Auger decay from Ne II to...is generated by electrons which are produced in the photoionization of Ne I. For example, ionization by the Ly-a line produces 150-eV photoelectrons
Electron-impact ionization of silicon tetrachloride (SiCl4).
Basner, R; Gutkin, M; Mahoney, J; Tarnovsky, V; Deutsch, H; Becker, K
2005-08-01
We measured absolute partial cross sections for the formation of various singly charged and doubly charged positive ions produced by electron impact on silicon tetrachloride (SiCl4) using two different experimental techniques, a time-of-flight mass spectrometer (TOF-MS) and a fast-neutral-beam apparatus. The energy range covered was from the threshold to 900 eV in the TOF-MS and to 200 eV in the fast-neutral-beam apparatus. The results obtained by the two different experimental techniques were found to agree very well (better than their combined margins of error). The SiCl3(+) fragment ion has the largest partial ionization cross section with a maximum value of slightly above 6x10(-20) m2 at about 100 eV. The cross sections for the formation of SiCl4(+), SiCl+, and Cl+ have maximum values around 4x10(-20) m2. Some of the cross-section curves exhibit an unusual energy dependence with a pronounced low-energy maximum at an energy around 30 eV followed by a broad second maximum at around 100 eV. This is similar to what has been observed by us earlier for another Cl-containing molecule, TiCl4 [R. Basner, M. Schmidt, V. Tamovsky, H. Deutsch, and K. Becker, Thin Solid Films 374 291 (2000)]. The maximum cross-section values for the formation of the doubly charged ions, with the exception of SiCl3(++), are 0.05x10(-20) m2 or less. The experimentally determined total single ionization cross section of SiCl4 is compared with the results of semiempirical calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Rajnish; Shehla,; Kumar, Anil
2015-08-28
The X-ray production cross sections for the M{sub k} (k= ξ, δ, α, β, ζ, γ, m{sub 1}, m{sub 2}) groups of X-rays have been evaluated at incident photon energies across the M{sub i} (i =1-5) edges of {sub 90}Th using the relativistic Hartree-Fock-Slater model based photoionisation cross sections and recently reported values of the M-shell X-ray emission rates, fluorescence and Coster Kronig yields. Further, the energies of the prominent (M{sub i}-S{sub j}) (S{sub j}=N{sub j}, O{sub j} and i =1-3, j =1-7) resonant Raman scattered (RRS) peaks at different incident photon energies have also been evaluated using the neutral-atommore » electron binding energies (E{sub sj}) based on the relaxed orbital relativistic Hartree-Fock-Slater model.« less
Atomic Data for the K-vacancy States of Fe XXIV
NASA Technical Reports Server (NTRS)
Bautista, M. A.; Mendoza, C.; Kallman, T. R.; Palmeri, P.
2003-01-01
As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.
Atomic Data for the K-Vacancy States of Fe XXIV
NASA Technical Reports Server (NTRS)
Bautista, M. A.; Mendoza, C.; Kallman, T. R.; Palmeri, P.
2002-01-01
As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.
Two-photon decay of K-shell vacancies in silver atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokler, P.H.; University of Giessen, Giessen; Schaeffer, H.W.
2004-09-01
The spectral distributions for the two-photon decay modes of singly K-shell ionized silver atoms are determined by x-ray-x-ray coincidence measurements. Ag K-shell vacancies were induced by nuclear electron capture decay of radioactive cadmium isotopes {sup 109}Cd and two-photon coincidences were taken back to back (180 deg.) and at a 90 deg. opening angle for the emission. Each of the two-photon transitions from the 2s, 3s, and 3d states exhibits unique angular and spectral distributions. The measurements agree nicely with relativistic self-consistent field calculations of Tong et al. Our results also confirm and extend the earlier experimental data of Ilakovac andmore » co-workers with improved accuracy.« less
NASA Technical Reports Server (NTRS)
Hansen, C. F.
1983-01-01
Reaction-rate theory and experiment are given a critical review from the engineers' point of view. Rates of heavy-particle, collision-induced reaction in gas phase are formulated in terms of the cross sections and activation energies for reaction. The effect of cross section function shape and of excited state contributions to reaction both cause the slope of Arrhenius plots to differ from the true activation energy, except at low temperature. The master equations for chemically reacting gases are introduced, and dissociation and ionization reactions are shown to proceed primarily from excited states about kT from the dissociation or ionization limit. Collision-induced vibration, vibration-rotation, and pure rotation transitions are treated, including three-dimensional effects and conservation of energy, which have usually been ignored. The quantum theory of transitions at potential surface crossing is derived, and results are found to be in fair agreement with experiment in spite of some questionable approximations involved.
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Dateo, Christopher E.
2005-01-01
The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.
Origin of the satellites Lα3, Lα4 and Lα5 in the elements from 40Zr to 50Sn
NASA Astrophysics Data System (ADS)
Kendurkar, Renuka; Shrivastava, B. D.
2014-09-01
The origin of the Lα satellites Lα3, Lα4 and Lα5 have been explained in the elements from 40Zr to 50Sn, on the basis of multiple ionization theory. The energies and intensities of the various transitions corresponding to the L3Mx - MxM4,5 (where x = 1-5) transition array, which may give rise to these satellites, have been calculated theoretically. The energies of the transitions have been calculated using the available Hartree-Fock-Slater data for the energies of K-LM and L-MM Auger transitions. The intensities of the various transitions have been estimated by considering cross sections for L1-L3Mx Coster-Kronig transitions as well as for M-shell shake-off process occurring simultaneous to a L3 hole creation. The total cross sections for initial two-hole states L3Mx have then been distributed statistically amongst the various allowed transitions from these initial states to the final states MxM4,5. By assuming each transition as a Gaussian line, theoretical satellite spectrum has been computed as the sum of these Gaussian curves. The energies of the satellites, as obtained from the theoretical spectrum, have been found to be comparable with the measured energies of the satellites Lα3, Lα4 and Lα5. Consequently, these satellites have been assigned the transitions.
Equation of state and shock compression of warm dense sodium—A first-principles study
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...
2017-02-21
As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less
Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV
NASA Astrophysics Data System (ADS)
Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans
2016-05-01
Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.
Electron impact ionization of atomic targets at relativistic energies
NASA Astrophysics Data System (ADS)
Uddin, M. A.; Basak, A. K.; Saha, B. C.
2009-05-01
The huge demand and scarcity of electron impact ionization cross sections (EIICS) that are essential not only in modeling but also in basic researches can be best filled in by simple to use analytical models [1] that are sufficiently accurate and provide fast generation of EIICS data over wide domain. We report few such models and compare their productive powers in terms of few adjustable parameters. Details of our results will be presented in the conference. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim, B. C. Saha, and F. B. Malik, Phys. Scr. 74, 377 (2006); Phys. Rev A 73, 052703; M. A. R. Patoary, M. A. Uddin, A. K. F. Haque, M. Shahjahan, A. K. Basak, M. R. Talukdar and B. C. Saha, Int. J. Quan. Chem (in press). Supported by NSF CREST.
NASA Technical Reports Server (NTRS)
Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.
1990-01-01
An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.
A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com
Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certainmore » K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.« less
Scaling Cross Sections for Ion-atom Impact Ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson
2003-06-06
The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation,more » and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.« less
Nonrelativistic quantum theory of the contact inelastic scattering of an x-ray photon by an atom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopersky, Alexey N.; Nadolinsky, Alexey M.
The nonrelativistic analytical structure of the doubly differential cross section of the contact inelastic scattering of an x-ray photon by a free atom is determined by means of the irreducible tensor operator theory outside the frame of the impulse approximation. For the neon atom in the vicinity of the 1s shell ionization threshold our theory predicts the existence of the distinct fine structure of the cross section caused by transitions of the atomic core electrons into the excited discrete spectrum states. The results of our calculations with inclusion of the effects of radial relaxation, inelastic scattering through the intermediate states,more » and elastic Rayleigh scattering, are predictions, while at the 22 keV incident photons they compare well with the synchrotron experiment by Jung et al. [Phys. Rev. Lett. 81, 1596 (1998)].« less
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
New Method for Calculating The Electron Impact Ionization of Ions
NASA Astrophysics Data System (ADS)
Saha, Bidhan; Basak, Arun K.; Uddin, M. A.
2005-11-01
The electron impact single ionization of ionic targets ( 1 <= Z <= 92) is reported using a recently proposed method [1]. It is based on the simplified version of the improved-binary-encounter-dipole (siBED) model [2]. Including the both the ionic and the relativistic corrections (RQIBED model) [3] we have recently investigated the ionization of He-like[4] and Be-like systems [5] with considerable success. However, the presence of adjustable parameters make it dependent on available experimental results We have applied a new techniques to avoid this and show explicitly how to evaluate cross sections for filled as well as unfilled s-orbital targets. Details will be presented at the conference. [1] M. A. Uddin, A. K. F. Haque, a. K. Basak, K. R. Karim and B. C. Saha, Phys Rev A (2005) in press [2] W. M. Huo, Phys. Rev. A 64, 042719 (2001). [3]M. A. Uddin, M. A. K. F. Haque, A. K. Basak and B. C. Saha, Phys. Rev. A 70, 032706 (2004). [4] M. A. Uddin, A. K. F. Haque, M. S. Mahbub, K. R. Karim, A. K. Basak, B. C. Saha, Int. J. Mass Spect. 244, 76 (2005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocur, P.; Duggan, J.L.; McDaniel, F.D.
1983-04-01
In a recent series of studies of M-shell ionization induced by protons, alpha particles, and fluorine ions, an unmanageable background of low energy contaminant x rays was observed. These K-shell x rays were primarily from Ca, K, Cl, S, P, Si and Na. The energy range of these contaminants is from 3.691 to 1.041 keV. The M-shell x rays being studied were for various elements from U ( about 3.5 keV) down to Eu (1.5 keV). In order to evaluate and reduce the problem, the contaminants for carbon foils from a number of different manufacturers and a wide variety ofmore » foil float-off procedures have been studied. Carbon foils have been produced in our laboratory using carbon rods from several different manufacturers. In this paper, techniques will be described that are most appropriate to reduce the above contaminants to a reasonable level. These techniques should be useful in trace element analysis (PIXE) studies and fundamental ionization measurements for low x-ray energies.« less
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin
2018-04-01
Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.
Correlation of molecular valence- and K-shell photoionization resonances with bond lengths
NASA Technical Reports Server (NTRS)
Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.
1989-01-01
The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
2015-04-15
The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less
K-Shell Photoionization of Nickel Ions Using R-Matrix
NASA Technical Reports Server (NTRS)
Witthoeft, M. C.; Bautista, M. A.; Garcia, J.; Kallman, T. R.; Mendoza, C.; Palmeri, P.; Quinet, P.
2011-01-01
We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ions stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.
A non-LTE analysis of high energy density Kr plasmas on Z and NIF
NASA Astrophysics Data System (ADS)
Dasgupta, A.; Clark, R. W.; Ouart, N.; Giuliani, J.; Velikovich, A.; Ampleford, D. J.; Hansen, S. B.; Jennings, C.; Harvey-Thompson, A. J.; Jones, B.; Flanagan, T. M.; Bell, K. S.; Apruzese, J. P.; Fournier, K. B.; Scott, H. A.; May, M. J.; Barrios, M. A.; Colvin, J. D.; Kemp, G. E.
2016-10-01
Multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number ZA than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on the two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton's M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr's ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus ZA is indeed related to the energy input characteristics. This work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and NIF.
X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations
NASA Technical Reports Server (NTRS)
Garcia, J.; Kallman, T. R.; Mushotzky, R. F.
2011-01-01
We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.
Monte Carlo calculations of k{sub Q}, the beam quality conversion factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B. R.; Rogers, D. W. O.
2010-11-15
Purpose: To use EGSnrc Monte Carlo simulations to directly calculate beam quality conversion factors, k{sub Q}, for 32 cylindrical ionization chambers over a range of beam qualities and to quantify the effect of systematic uncertainties on Monte Carlo calculations of k{sub Q}. These factors are required to use the TG-51 or TRS-398 clinical dosimetry protocols for calibrating external radiotherapy beams. Methods: Ionization chambers are modeled either from blueprints or manufacturers' user's manuals. The dose-to-air in the chamber is calculated using the EGSnrc user-code egs{sub c}hamber using 11 different tabulated clinical photon spectra for the incident beams. The dose to amore » small volume of water is also calculated in the absence of the chamber at the midpoint of the chamber on its central axis. Using a simple equation, k{sub Q} is calculated from these quantities under the assumption that W/e is constant with energy and compared to TG-51 protocol and measured values. Results: Polynomial fits to the Monte Carlo calculated k{sub Q} factors as a function of beam quality expressed as %dd(10){sub x} and TPR{sub 10}{sup 20} are given for each ionization chamber. Differences are explained between Monte Carlo calculated values and values from the TG-51 protocol or calculated using the computer program used for TG-51 calculations. Systematic uncertainties in calculated k{sub Q} values are analyzed and amount to a maximum of one standard deviation uncertainty of 0.99% if one assumes that photon cross-section uncertainties are uncorrelated and 0.63% if they are assumed correlated. The largest components of the uncertainty are the constancy of W/e and the uncertainty in the cross-section for photons in water. Conclusions: It is now possible to calculate k{sub Q} directly using Monte Carlo simulations. Monte Carlo calculations for most ionization chambers give results which are comparable to TG-51 values. Discrepancies can be explained using individual Monte Carlo calculations of various correction factors which are more accurate than previously used values. For small ionization chambers with central electrodes composed of high-Z materials, the effect of the central electrode is much larger than that for the aluminum electrodes in Farmer chambers.« less
Ultrafast isomerization initiated by X-ray core ionization
NASA Astrophysics Data System (ADS)
Liekhus-Schmaltz, Chelsea E.; Tenney, Ian; Osipov, Timur; Sanchez-Gonzalez, Alvaro; Berrah, Nora; Boll, Rebecca; Bomme, Cedric; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Coffee, Ryan; Devin, Julien; Erk, Benjamin; Ferguson, Ken R.; Field, Robert W.; Foucar, Lutz; Frasinski, Leszek J.; Glownia, James M.; Gühr, Markus; Kamalov, Andrei; Krzywinski, Jacek; Li, Heng; Marangos, Jonathan P.; Martinez, Todd J.; McFarland, Brian K.; Miyabe, Shungo; Murphy, Brendan; Natan, Adi; Rolles, Daniel; Rudenko, Artem; Siano, Marco; Simpson, Emma R.; Spector, Limor; Swiggers, Michele; Walke, Daniel; Wang, Song; Weber, Thorsten; Bucksbaum, Philip H.; Petrovic, Vladimir S.
2015-09-01
Rapid proton migration is a key process in hydrocarbon photochemistry. Charge migration and subsequent proton motion can mitigate radiation damage when heavier atoms absorb X-rays. If rapid enough, this can improve the fidelity of diffract-before-destroy measurements of biomolecular structure at X-ray-free electron lasers. Here we study X-ray-initiated isomerization of acetylene, a model for proton dynamics in hydrocarbons. Our time-resolved measurements capture the transient motion of protons following X-ray ionization of carbon K-shell electrons. We Coulomb-explode the molecule with a second precisely delayed X-ray pulse and then record all the fragment momenta. These snapshots at different delays are combined into a `molecular movie' of the evolving molecule, which shows substantial proton redistribution within the first 12 fs. We conclude that significant proton motion occurs on a timescale comparable to the Auger relaxation that refills the K-shell vacancy.
Multi-photon ionization of atoms in intense short-wavelength radiation fields
NASA Astrophysics Data System (ADS)
Meyer, Michael
2015-05-01
The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing the intensity dependent variation of the angular distribution patterns for the sequential ionization process.
A Massive X-ray Outflow From The Quasar PDS 456
NASA Technical Reports Server (NTRS)
Reeves, J. N.; O'Brien, P. T.; Ward, M. J.
2003-01-01
We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.
NASA Astrophysics Data System (ADS)
Horvat, Vladimir
2009-06-01
ERCS08 is a program for computing the atomic electron removal cross sections. It is written in FORTRAN in order to make it more portable and easier to customize by a large community of physicists, but it also comes with a separate windows graphics user interface control application ERCS08w that makes it easy to quickly prepare the input file, run the program, as well as view and analyze the output. The calculations are based on the ECPSSR theory for direct (Coulomb) ionization and non-radiative electron capture. With versatility in mind, the program allows for selective inclusion or exclusion of individual contributions to the cross sections from effects such as projectile energy loss, Coulomb deflection of the projectile, perturbation of electron's stationary state (polarization and binding), as well as relativity. This makes it straightforward to assess the importance of each effect in a given collision regime. The control application also makes it easy to setup for calculations in inverse kinematics (i.e. ionization of projectile ions by target atoms or ions). Program summaryProgram title: ERCS08 Catalogue identifier: AECU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 832 No. of bytes in distributed program, including test data, etc.: 318 420 Distribution format: tar.gz Programming language: Once the input file is prepared (using a text editor or ERCS08w), all the calculations are done in FORTRAN using double precision. Computer: see "Operating system" below Operating system: The main program (ERCS08) can run on any computer equipped with a FORTRAN compiler. Its pre-compiled executable file (supplied) runs under DOS or Windows. The supplied graphics user interface control application (ERCS08w) requires a Windows operating system. ERCS08w is designed to be used along with a text editor. Any editor can be used, including the one that comes with the operating system (for example, Edit for DOS or Notepad for Windows). Classification: 16.7, 16.8 Nature of problem: ECPSSR has become a typical tag word for a theory that goes beyond the standard plane wave Born approximation (PWBA) in order to predict the cross sections for direct (Coulomb) ionization of atomic electrons by projectile ions, taking into account the energy loss (E) and Coulomb deflection (C) of the projectile, as well as the perturbed stationary state (PSS) and relativistic nature (R) of the target electron. Its treatment of non-radiative electron capture to the projectile goes beyond the Oppenheimer-Brinkman-Kramers approximation (OBK) to include the effects of C, PSS, and R. PSS is described in terms of increased target electron binding (B) due to the presence of the projectile in the vicinity of the target nucleus, and (for direct ionization only) polarization of the target electron cloud (P) while projectile is outside the electron's shell radius. Several modifications of the theory have been recently suggested or endorsed by one of its authors (Lapicki). These modifications are sometimes explicit in the tag word (for example, eCPSSR, eCUSR, ReCPSShsR, etc.) A cross section for the ionization of a target electron is assumed to equal the sum of the cross sections for direct ionization (DI) and electron capture (EC). Solution method: The calculations are based on the ECPSSR theory for direct (Coulomb) ionization and non-radiative electron capture. With versatility in mind, the program allows for selective inclusion or exclusion of individual contributions to the cross sections from effects such as projectile energy loss, Coulomb deflection of the projectile, perturbation of electron's stationary state (polarization and binding), as well as relativity. This makes it straightforward to assess the importance of each effect in a given collision regime. The control application also makes it easy to setup for calculations in inverse kinematics (i.e. ionization of projectile ions by target atoms or ions). Restrictions: The program is restricted to the ionization of K, L, and M electrons. The theory is non-relativistic, which effectively limits its applicability to projectile energies up to about 50 MeV/amu. However, the theory is extended to apply to relativistic light projectiles. Radiative electron capture is not taken into account, since its contribution is found to be negligible in the collision regimes covered by the ECPSSR theory. Unusual features: Windows graphics user interface along with a FORTRAN code for calculations, selective inclusion or exclusion of specific corrections, inclusion of the extension to relativistic light projectiles, inclusion of non-radiative electron capture. Running time: Running the program using the input data provided with the distribution only takes a few seconds.
First-principles equation of state and shock compression predictions of warm dense hydrocarbons
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...
2017-07-10
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07–22.4gcm –3 and 6.7 × 10 3 – 1.29 × 10 8K. The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K-shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativisticmore » effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K- and L-shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L-shell eigenstates in carbon, while they remain distinct for higher-Z elements. Lastly, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.« less
First-principles equation of state and shock compression predictions of warm dense hydrocarbons
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Driver, Kevin P.; Soubiran, François; Militzer, Burkhard
2017-07-01
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07 -22.4 g cm-3 and 6.7 ×103-1.29 ×108K . The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K -shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativistic effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K - and L -shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L -shell eigenstates in carbon, while they remain distinct for higher-Z elements. Finally, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.
Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium
NASA Astrophysics Data System (ADS)
Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.
2006-09-01
An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.
Communication: Electron ionization of DNA bases.
Rahman, M A; Krishnakumar, E
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawerk, Elie, E-mail: eliekawerk@hotmail.com, E-mail: ekawerk@units.it; Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris; Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise, 90656 Jdeidet el Metn, Liban
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
Sensitivity of hot-cathode ionization vacuum gages in several gases
NASA Technical Reports Server (NTRS)
Holanda, R.
1972-01-01
Four hot-cathode ionization vacuum gages were calibrated in 12 gases. The relative sensitivities of these gages were compared to several gas properties. Ionization cross section was the physical property which correlated best with gage sensitivity. The effects of gage accelerating voltage and ionization-cross-section energy level were analyzed. Recommendations for predicting gage sensitivity according to gage type were made.
Electron impact ionization of cycloalkanes, aldehydes, and ketones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com
The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less
Low-Energy Electron Interactions with CF_4
NASA Astrophysics Data System (ADS)
Christophorou, Loucas G.; Olthoff, James K.; Rao, M. V. V. S.
1996-10-01
Carbon tetrafluoride is one of the most widely used components of feed gas mixtures employed for a variety of plasma assisted materials processing applications. In this presentation, we synthesize and assess the available information on the cross sections and rate coefficients of collisional interations of CF4 with electrons.(L. G. Christophorou, J. K. Olthoff, and M.V. V. S. Rao, J. Phys. Chem. Ref. Data, submitted (May 1996)) A ``recommended'' data set is presented, based upon available data for: (i) cross sections for electron scattering (total, elastic, momentum, differential, inelastic), electron impact ionization (total and partial), electron impact dissociation, and electron attachment; and (ii) coefficients for electron transport, electron attachment, and electron impact ionization. -Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.
Triple Differential Cross Sections for Ionization of Laser-Aligned Mg Atoms by electron impact
NASA Astrophysics Data System (ADS)
Amami, Sadek; Madison, Don; Nixon, Kate; Murray, Andrew
2013-09-01
3DW (3-body distorted wave) triple differential cross sections have been calculated for electron impact ionization of magnesium atoms aligned by lasers. Calculations have been performed for the kinematics of the experiment performed by Kate Nixon and Andrew Murray at Manchester, England [K. L. Nixon and A. J. Murray 2011 Phys. Rev. Lett. 106, 123201]. An incident projectile was produced with energy of 41.91eV, scattered and ejected electrons were detected with equal energies (E1 =E2 =20eV), the scattered projectile was detected at a fixed angle of 30deg, and the ejected electrons were detected at angles ranging between 0circ; - 180circ; . The theoretical 3DW results will be compared with the experimental data. This work is supported by the US National Science Foundation under Grant.No.PHY-1068237.
Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium
NASA Astrophysics Data System (ADS)
Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.
2013-05-01
In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.
Low-energy electron-impact single ionization of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Pindzola, M. S.; Childers, G.
2006-04-15
A study is made of low-energy electron-impact single ionization of ground-state helium. The time-dependent close-coupling method is used to calculate total integral, single differential, double differential, and triple differential ionization cross sections for impact electron energies ranging from 32 to 45 eV. For all quantities, the calculated cross sections are found to be in very good agreement with experiment, and for the triple differential cross sections, good agreement is also found with calculations made using the convergent close-coupling technique.
NASA Technical Reports Server (NTRS)
Hwang, Eunsook S.; Copeland, Richard A.
1997-01-01
The temperature dependence of the collisional removal of O2 molecules in the upsilon = 9 level of the A(sup 3)Sigma(sup +)(sub u) electronic state has been studied for the colliders O2 and N2, over the temperature range 150 to 300 K. In a cooled flow cell, the output of a pulsed dye laser excites the O2 to the upsilon = 9 level of the A(sup 3)Sigma(sup +)(sub u) state, and the output of a time-delayed second laser monitors the temporal evolution of this level via a resonance-enhanced ionization. We find the u thermally averaged removal cross section for O2 collisions is constant (approx. 10 A(sup 2)) between room temperature and 200 K, then increases rapidly with decreasing temperature, doubling by 150 K. In contrast, the N2 cross section at 225 K is approx. 8% smaller and gradually increases to a value at 150 K that is approx. 60% larger than the room temperature value. The difference between the temperature dependence of the O2 and N2 collision cross section implies that the removal by oxygen becomes more important at the lower temperatures found in the mesosphere, but removal by N2 still dominates.
A non-LTE analysis of high energy density Kr plasmas on Z and NIF
Dasgupta, A.; Clark, R. W.; Ouart, N.; ...
2016-10-20
We report that multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number Z A than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on themore » two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton’s M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr’s ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus Z A is indeed related to the energy input characteristics. In conclusion, this work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and« less
A non-LTE analysis of high energy density Kr plasmas on Z and NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, A.; Clark, R. W.; Ouart, N.
We report that multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number Z A than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on themore » two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton’s M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr’s ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus Z A is indeed related to the energy input characteristics. In conclusion, this work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and« less
NASA Astrophysics Data System (ADS)
Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan
2018-04-01
The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.
Photoionization research on atomic radiation. 3: The ionization cross section of atomic nitrogen
NASA Technical Reports Server (NTRS)
Comes, F. J.; Elzer, A.
1982-01-01
The photoionization cross section of atomic nitrogen was measured between the ionization limit and 432 A. The experimental values are well fitted by those from a calculation of HENRY due to the dipole velocity approximation. A Rydberg series converging to the 5S-state of the ion is clearly identified from the ionization measurements and is shown to ionize.
Communication: Electron ionization of DNA bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in
2016-04-28
No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve themore » existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova, M; Ahmad, M; Fahrig, R
Purpose: To evaluate x-ray fluorescence computed tomography induced with proton beams (pXFCT) for imaging of gold contrast agent. Methods: Proton-induced x-ray fluorescence was studied by means of Monte Carlo (MC) simulations using TOPAS, a MC code based on GEANT4. First, proton-induced K-shell and L-shell fluorescence was studied as a function of proton beam energy and 1) depth in water and 2) size of contrast object. Second, pXFCT images of a 2-cm diameter cylindrical phantom with four 5- mm diameter contrast vials and of a 20-cm diameter phantom with 1-cm diameter vials were simulated. Contrast vials were filled with water andmore » water solutions with 1-5% gold per weight. Proton beam energies were varied from 70-250MeV. pXFCT sinograms were generated based on the net number of gold K-shell or L-shell x-rays determined by interpolations from the neighboring 0.5keV energy bins of spectra collected with an idealized 4π detector. pXFCT images were reconstructed with filtered-back projection, and no attenuation correction was applied. Results: Proton induced x-ray fluorescence spectra showed very low background compared to x-ray induced fluorescence. Proton induced L-shell fluorescence had a higher cross-section compared to K-shell fluorescence. Excitation of L-shell fluorescence was most efficient for low-energy protons, i.e. at the Bragg peak. K-shell fluorescence increased with increasing proton beam energy and object size. The 2% and 5% gold contrast vials were accurately reconstructed in K-shell pXFCT images of both the 2-cm and 20-cm diameter phantoms. Small phantom L-shell pXFCT image required attenuation correction and had a higher sensitivity for 70MeV protons compared to 250MeV protons. With attenuation correction, L-shell pXFCT might be a feasible option for imaging of small size (∼2cm) objects. Imaging doses for all simulations were 5-30cGy. Conclusion: Proton induced x-ray fluorescence CT promises to be an alternative quantitative imaging technique to the commonly considered XFCT imaging with x-ray beams.« less
Total Electron-Impact Ionization Cross-Sections of CFx and NFx (x = 1 - 3)
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Tarnovsky, Vladimir; Becker, Kurt H.; Kwak, Dochan (Technical Monitor)
2001-01-01
The discrepancy between experimental and theoretical total electron-impact ionization cross sections for a group of fluorides, CFx, and NFx, (x = 1 - 3), is attributed to the inadequacies in previous theoretical models. Cross-sections calculated using a recently developed siBED (simulation Binary-Encounter-Dipole) model that takes into account the shielding of the long-range dipole potential between the scattering electron and target are in agreement with experimentation. The present study also carefully reanalyzed the previously reported experimental data to account for the possibility of incomplete collection of fragment ions and the presence of ion-pair formation channels. For NF3, our experimental and theoretical cross-sections compare well with the total ionization cross-sections recently reported by Haaland et al. in the region below dication formation.
Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms
Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; ...
2015-09-11
Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionizationmore » from excited Ca and Na atoms.« less
An X-Ray Analysis Database of Photoionization Cross Sections Including Variable Ionization
NASA Technical Reports Server (NTRS)
Wang, Ping; Cohen, David H.; MacFarlane, Joseph J.; Cassinelli, Joseph P.
1997-01-01
Results of research efforts in the following areas are discussed: review of the major theoretical and experimental data of subshell photoionization cross sections and ionization edges of atomic ions to assess the accuracy of the data, and to compile the most reliable of these data in our own database; detailed atomic physics calculations to complement the database for all ions of 17 cosmically abundant elements; reconciling the data from various sources and our own calculations; and fitting cross sections with functional approximations and incorporating these functions into a compact computer code.Also, efforts included adapting an ionization equilibrium code, tabulating results, and incorporating them into the overall program and testing the code (both ionization equilibrium and opacity codes) with existing observational data. The background and scientific applications of this work are discussed. Atomic physics cross section models and calculations are described. Calculation results are compared with available experimental data and other theoretical data. The functional approximations used for fitting cross sections are outlined and applications of the database are discussed.
Observation of ionization fronts in low density foam targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.
1999-05-01
Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
NASA Astrophysics Data System (ADS)
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-01
We report a theoretical and experimental study of the high resolution resonant Kα X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the Kα emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
Electron molecular ion recombination: product excitation and fragmentation.
Adams, Nigel G; Poterya, Viktoriya; Babcock, Lucia M
2006-01-01
Electron-ion dissociative recombination is an important ionization loss process in any ionized gas containing molecular ions. This includes the interstellar medium, circumstellar shells, cometary comae, planetary ionospheres, fusion plasma boundaries, combustion flames, laser plasmas and chemical deposition and etching plasmas. In addition to controlling the ionization density, the process generates many radical species, which can contribute to a parallel neutral chemistry. Techniques used to obtain rate data and product information (flowing afterglows and storage rings) are discussed and recent data are reviewed including diatomic to polyatomic ions and cluster ions. The data are divided into rate coefficients and cross sections, including their temperature/energy dependencies, and quantitative identification of neutral reaction products. The latter involve both ground and electronically excited states and including vibrational excitation. The data from the different techniques are compared and trends in the data are examined. The reactions are considered in terms of the basic mechanisms (direct and indirect processes including tunneling) and recent theoretical developments are discussed. Finally, new techniques are mentioned (for product identification; electrostatic storage rings, including single and double rings; Coulomb explosion) and new ways forward are suggested.
What formulas are good for representing dipole and generalized oscillator-strength spectra
NASA Astrophysics Data System (ADS)
Inokuti, M.; Dillon, M. A.
The dipole oscillator-strength distribution df/depsilon for a single continuum excitation of an atom or molecule is a function of the kinetic energy epsilon of an outgoing electron. The distribution describes many optical phenomena such as absorption, refraction, and reflection; in particular, df/depsilon is equal to the cross section for ionization by a photon with energy epsilon + I, apart from an universal constant, where I is the ionization threshold for the relevant shell. Furthermore, df/depsilon governs the ionization by glancing collisions of fast charged particles. Recent years have seen considerable accumulation of experimental data on df/depsilon. Those data are indeed valuable for many aplications in radiation physics, plasma physics, atmospheric physics, and astrophysics. In most of these applications, one needs a comprehensive set of data, i.e., numerical values of df/depsilon over a wide range of epsilon, say, from several eV to many keV; most often, one needs data at all epsilon at which df/depsilon is appreciable. A method for systematizing the data so that one can extrapolate or interpolate them dependably was sought.
Some preliminary calculations of whole atom Compton scattering of unpolarized photons
NASA Astrophysics Data System (ADS)
Bergstrom, P. M.; Surić, T.; Pisk, K.; Pratt, R. H.
1992-07-01
This paper represents a preliminary attempt to develop a practical prescription for calculating whole atom cross sections for the Compton scattering of unpolarized photons from the bound electrons of an atom for the entire spectrum of scattered photon energies. We initially study the scattering of 2.94 keV photons from carbon. We make use of our new second order S-matrix computer code in this case to verify that, when our recently developed criterion for the validity of the relativistic impulse approximation (which concerns the average momentum contributing to the photon spectrum ( pav)) is satisfied, the spectrum is adequately described by the impulse approximation. This criterion is generally satisfied in the peak intensity region for scattering by the outer shells, which dominate at these scattered photon energies. For soft scattered photons, however, the spectrum, dominated by K shell contributions, is given by terms corresponding to the contribution of the " p· A" term in the nonrelativistic interaction Hamiltonian, not included in the impulse approximation. Here, the spectrum is adequately reproduced by the K shell contribution. We then consider scattering of 17.4 keV photons from aluminum and 279.1 keV photons from lead. In these cases we use the S-matrix for the K shell and the impulse approximation for the outer shells, and find good agreement with experiment.
Calculation of electronic transport coefficients of Ag and Au plasma.
Apfelbaum, E M
2011-12-01
The thermoelectric transport coefficients of silver and gold plasma have been calculated within the relaxation-time approximation. We considered temperatures of 10-100 kK and densities of ρ ~ 1 g/cm(3). The plasma composition was calculated using a corresponding system of coupled mass action laws, including the atom ionization up to +4. For momentum cross sections of electron-atom scattering we used the most accurate expressions available. The results of our modeling have been compared with other researchers' data whenever possible.
Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen
NASA Technical Reports Server (NTRS)
Comes, F. J.; Speier, F.; Elzer, A.
1982-01-01
An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.
Computation of Thin-Walled Prismatic Shells
NASA Technical Reports Server (NTRS)
Vlasov, V. Z.
1949-01-01
We consider a prismatic shell consisting of a finite number of narrow rectangular plates and having in the cross-section a finite number of closed contours (fig. 1(a)). We shall assume that the rectangular plates composing the shell are rigidly joined so that there is no motion of any kind of one plate relative to the others meeting at a given connecting line. The position of a point on the middle prismatic surface is considered to be defined by the coordinate z, the distance to a certain initial cross-section z = O, end the coordinate s determining its position on the contour of the cross-section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Guo, Xiaoxue; Zhao, Hu
2015-04-14
The influence of copper vapor mixed in hot CO{sub 2} on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K–4000 K is numerically analyzed. First, the equilibrium composition of hot CO{sub 2} with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric fieldmore » (E/N){sub cr} is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N){sub cr} of the CO{sub 2}–Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O{sub 2} from the thermal dissociation of CO{sub 2} contributes to the increase of (E/N){sub cr} of CO{sub 2}–Cu hot gas mixtures from about 2000 K to 3500 K.« less
Observation of Transonic Ionization Fronts in Low-Density Foam Targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Barringer, L.; Vickers, C.; Willi, O.; Nazarov, W.
1999-04-01
Transonic ionization fronts have been observed in low-density chlorinated foam targets using time-resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x rays produced by high-power laser irradiation of a thin foil. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions at a number of times. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
Total photoionization cross sections of atomic oxygen from threshold to 44.3 A
NASA Technical Reports Server (NTRS)
Angel, G. C.; Samson, James A. R.
1988-01-01
Synchrotron radiation was used to obtain the relative photoionization cross section of atomic oxygen for the production of singly charged ions over the 44.3-910.5-A wavelength range. Measurement of the contribution of multiple ionization to the cross sections has made possible the determination of total photoionization cross sections below 250 A. The series of autoionizing resonances leading to the 4P state of the oxygen ion has been observed using an ionization-type experimental procedure for the first time.
Study for Nuclear Structures of 22-35Na Isotopes via Measurements of Reaction Cross Sections
NASA Astrophysics Data System (ADS)
Suzuki, Shinji
2014-09-01
T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. JSPS KAKENHI Grant Number 24244024.
A Comprehensive X-Ray Absorption Model for Atomic Oxygen
NASA Technical Reports Server (NTRS)
Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.;
2013-01-01
An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.
Methodology of shell structure reinforcement layout optimization
NASA Astrophysics Data System (ADS)
Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof
2018-01-01
This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.
Opacity Variations in the Ionized Absorption in NGC 3783: A Compact Absorber
NASA Astrophysics Data System (ADS)
Krongold, Y.; Nicastro, F.; Brickhouse, N. S.; Elvis, M.; Mathur, S.
2005-04-01
We show that the Fe VII-Fe XII M-shell unresolved transition array (UTA) in the Chandra HETGS observation of NGC 3783 (900 ks) clearly changes in opacity on a timescale of 31 days, responding to a factor of ~2 change in the ionizing continuum. The opacity variation is observed at a level >10 σ. There is also evidence for variability in the O VI K edge (at ~3 σ). The observed changes are consistent with the gas producing these absorption features (i.e., the low-ionization component) being close to photoionization equilibrium. The gas responsible for the Fe XVII-Fe XXII L-shell absorption (i.e., the high-ionization component) does not seem to be responding as expected in photoionization equilibrium. The observed change in opacity for the UTA implies a density >1×104 cm-3, thus locating the gas within 6 pc of the X-ray source. The scenario in which the gas is composed of a continuous radial range of ionization structures is ruled out, as in such scenario, no opacity variations are expected. Rather, the structure of the absorber is likely composed of heavily clumped gas.
Ionization competition effects on population distribution and radiative opacity of mixture plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Gao, Cheng; Tian, Qinyun
2015-11-15
Ionization competition arising from the electronic shell structures of various atomic species in the mixture plasmas was investigated, taking SiO{sub 2} as an example. Using a detailed-level-accounting approximation, we studied the competition effects on the charge state population distribution and spectrally resolved and Planck and Rosseland mean radiative opacities of mixture plasmas. A set of coupled equations for ionization equilibria that include all components of the mixture plasmas are solved to determine the population distributions. For a given plasma density, competition effects are found at three distinct temperature ranges, corresponding to the ionization of M-, L-, and K-shell electrons ofmore » Si. Taking the effects into account, the spectrally resolved and Planck and Rosseland mean opacities are systematically investigated over a wide range of plasma densities and temperatures. For a given mass density, the Rosseland mean decreases monotonically with plasma temperature, whereas Planck mean does not. Although the overall trend is a decrease, the Planck mean increases over a finite intermediate temperature regime. A comparison with the available experimental and theoretical results is made.« less
Photodissociation of anisole and absolute photoionization cross-section of the phenoxy radical.
Xu, Hong; Pratt, S T
2013-11-21
We have studied the photodissociation dynamics of anisole (C6H5OCH3) at 193 nm and determined the absolute photoionization cross-section of the phenoxy radical at 118.2 nm (10.486 eV) relative to the known cross-section of the methyl radical. Even at this energy, there is extensive fragmentation of the phenoxy radical upon photoionization, which is attributed to ionizing transitions that populate low-lying excited electronic states of the cation. For phenoxy radicals with less than ∼1 eV of internal energy, we find a cross-section for the production of the phenoxy cation of 14.8 ± 3.8 Mb. For radicals with higher internal energy, dissociative ionization is the dominant process, and for internal energies of ∼2.7-3.7 eV, we find a total cross-section (photoionization plus dissociative ionization) of 22.3 ± 4.1 Mb. The results are discussed relative to the recently reported photoionization cross-section of phenol.
Total photoionization cross sections of atomic oxygen from threshold to 44.3A
NASA Technical Reports Server (NTRS)
Angel, G. C.; Samson, James A. R.
1987-01-01
The relative cross section of atomic oxygen for the production of singly charged ions has been remeasured in more detail and extended to cover the wavelength range 44.3 to 910.5 A by the use of synchrotron radiation. In addition, the contribution of multiple ionization to the cross sections has been measured allowing total photoionization cross sections to be obtained below 250 A. The results have been made absolute by normalization to previously measured data. The use of synchrotron radiation has enabled measurements of the continuum cross section to be made between the numerous autoionizing resonances that occur near the ionization thresholds. This in turn has allowed a more critical comparison of the various theoretical estimates of the cross section to be made. The series of autoionizing resonances leading to the 4-P state of the oxygen ion have been observed for the first time in an ionization type experiment and their positions compared with both theory and previous photographic recordings.
Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Foram M., E-mail: foram29@gmail.com; Joshipura, K. N., E-mail: knjoshipura22@gmail.com; Chaudhari, Asha S., E-mail: ashaschaudhari@gmail.com
2016-05-06
Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Q{sub ion} and the summed-electronic excitation cross section ΣQ{sub exc} in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incidentmore » electron energy along with available comparisons.« less
Parametrization of electron impact ionization cross sections for CO, CO2, NH3 and SO2
NASA Technical Reports Server (NTRS)
Srivastava, Santosh K.; Nguyen, Hung P.
1987-01-01
The electron impact ionization and dissociative ionization cross section data of CO, CO2, CH4, NH3, and SO2, measured in the laboratory, were parameterized utilizing an empirical formula based on the Born approximation. For this purpose an chi squared minimization technique was employed which provided an excellent fit to the experimental data.
Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)
NASA Astrophysics Data System (ADS)
Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.
2018-05-01
In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.
Atomic Processes in X-ray Photoionized Gas
NASA Technical Reports Server (NTRS)
Kallman, Timothy
2005-01-01
It has long been known that photoionization and photoabsorption play a dominant role in determining the state of gas in nebulae surrounding hot stars and in active galaxies. Recent observations of X-ray spectra demonstrate that these processes are also dominant in highly ionized gas near compact objects, and also affect the transmission of X-rays from the majority of astronomical sources. This has led to new insights into the understanding of what is going on in these sources. It has also pointed out the need for a better atomic cross sections for photoionization and absorption, notably for processes involving inner shells. In this talk I will discuss these issues, what is known and where more work is needed.
Electron-impact Multiple-ionization Cross Sections for Atoms and Ions of Helium through Zinc
NASA Astrophysics Data System (ADS)
Hahn, M.; Müller, A.; Savin, D. W.
2017-12-01
We compiled a set of electron-impact multiple-ionization (EIMI) cross section for astrophysically relevant ions. EIMIs can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature or if there is a non-thermal electron energy distribution, such as a kappa distribution. Cross section for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to available experimental EIMI cross-section data. Based on this comparison, we interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for 3466 EIMI cross sections and the associated Maxwellian plasma rate coefficients. We also highlight some outstanding issues that remain to be resolved.
Resonant transfer excitation in collisions of F6+ and Mg9+ with H2
NASA Astrophysics Data System (ADS)
Bernstein, E. M.; Kamal, A.; Zaharakis, K. E.; Clark, M. W.; Tanis, J. A.; Ferguson, S. M.; Badnell, N. R.
1991-10-01
Experimental and theoretical investigations of resonant transfer excitation (RTE) for F6++H2 and Mg9++H2 collisions have been made. For both collision systems good agreement is obtained between the measured cross sections for K-shell x-ray emission coincident with electron-capture and theoretical RTE calculations. For F6+ the present calculations are about 10% lower than previous results of Bhalla and Karim [Phys. Rev. A 39, 6060 (1989); 41, 4097(E) (1990]; the measured cross sections are a factor of 2.3 larger than earlier measurements of Schulz et al. [Phys. Rev. A 38, 5454 (1988)]. The previous disagreement between experiment and theory for F6+ is removed.
Maeda, Munetoshi; Kobayashi, Katsumi; Hieda, Kotaro
2004-01-01
This paper aims at determining and comparing the cross sections and quantum yields for DNA strand break induction by the Auger effect at the K-shell of phosphorus and at the LIII-shell of platinum. Using synchrotron radiation, free and Pt-bound pBR322 plasmid DNA were irradiated in solution with monochromatic X-rays, the energies of which were 2.153 and 2.147 keV, corresponding to "on" and "below" the phosphorus K-shell photoabsorption, and 11.566 and 11.542 keV for "above" and "below" the L(III)-shell photoabsorption of platinum, respectively. To suppress indirect effects by hydroxyl radicals, DMSO (1M) was used as a scavenger. The inner-shell photoabsorption of phosphorus and of platinum significantly increased the induction of DNA double strand breaks (DSB), whereas it had little effect on single strand break (SSB) induction. The quantum yields for the induction of DSB were calculated to be 0.017 and 1.13, in the case of phosphorus and platinum, respectively. CONCLSIONS: The value of the quantum yield for the DSB induction of platinum was about 66-fold larger than that for the phosphorus. These results clearly demonstrate that the quantum yield of DSB depends upon the magnitude of the Auger cascade.
Electron-impact-ionization dynamics of S F6
NASA Astrophysics Data System (ADS)
Bull, James N.; Lee, Jason W. L.; Vallance, Claire
2017-10-01
A detailed understanding of the dissociative electron ionization dynamics of S F6 is important in the modeling and tuning of dry-etching plasmas used in the semiconductor manufacture industry. This paper reports a crossed-beam electron ionization velocity-map imaging study on the dissociative ionization of cold S F6 molecules, providing complete, unbiased kinetic energy distributions for all significant product ions. Analysis of these distributions suggests that fragmentation following single ionization proceeds via formation of S F5 + or S F3 + ions that then dissociate in a statistical manner through loss of F atoms or F2, until most internal energy has been liberated. Similarly, formation of stable dications is consistent with initial formation of S F4 2 + ions, which then dissociate on a longer time scale. These data allow a comparison between electron ionization and photoionization dynamics, revealing similar dynamical behavior. In parallel with the ion kinetic energy distributions, the velocity-map imaging approach provides a set of partial ionization cross sections for all detected ionic fragments over an electron energy range of 50-100 eV, providing partial cross sections for S2 +, and enables the cross sections for S F4 2 + from S F+ to be resolved.
Vortices for K-shell ionization of carbon by electron impact
NASA Astrophysics Data System (ADS)
Ward, S. J.; Macek, J. H.
2014-05-01
Using the Coulomb-Born approximation, we obtained a deep minimum in the TDCS for K-shell ionization of carbon by electron impact. The minimum is due to a vortex in the velocity field. We considered the electron to be ejected in the scattering plane, which we took to be the xz -plane. The minimum was obtained for the kinematics of an incident energy Ei = 1801 . 2 eV , scattering angle θf =4° , energy of ejected electron Ek = 5 . 5 eV , and angle of the ejected electron θk =239° . We analyzed the importance of various multipole components in an expansion of the Coulomb-Born T-matrix. We also considered the electron ejected out of the scattering plane for Ei = 1801 . 2 eV and θf =4° and located the positions of vortices for small but nonzero values of ky, the y - component of the momentum of the ejected electron. We constructed the vortex line for the kinematics of Ei = 1801 . 2 eV and θf =4° . S. J. W. and J. H. M. acknowledge support from NSF under grant no. PHYS- 0968638 and from D.O.E. under grant number DE-FG02-02ER15283, respectively.
NASA Astrophysics Data System (ADS)
Puri, Sanjiv
2015-08-01
The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.
Li, Feng-Xia; Gorham, Katrine; Armentrout, P B
2010-10-28
Reaction of Au(+) ((1)S(0) and (3)D) with O(2) and N(2)O is studied as a function of kinetic energy using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) primarily in its (1)S(0) (5d(10)) electronic ground state level but with some (3)D and perhaps higher lying excited states. The distribution of states can be altered by adding N(2)O, which completely quenches the excited states, or CH(4) to the flow gases. Cross sections as a function of kinetic energy are measured for both neutral reagents and both ground and excited states of Au(+). Formation of AuO(+) is common to both systems with the N(2)O system also exhibiting AuN(2)(+) and AuNO(+) formation. All reactions of Au(+) ((1)S(0)) are observed to be endothermic, whereas the excitation energy available to the (3)D state allows some reactions to be exothermic. Because of the closed shell character of ground state Au(+) ((1)S(0), 5d(10)), the reactivity of these systems is low and has cross sections with onsets and peaks at higher energies than expected from the known thermochemistry but lower than energies expected from impulsive processes. Analyses of the endothermic reaction cross sections yield the 0 K bond dissociation energy (BDE) in eV of D(0)(Au(+)-O) = 1.12 ± 0.08, D(0)(Au(+)-N(2)) ≥ 0.30 ± 0.04, and D(0)(Au(+)-NO) = 0.89 ± 0.17, values that are all speculative because of the unusual experimental behavior. Combining the AuO(+) BDE measured here with literature data also yields the ionization energy of AuO as 10.38 ± 0.23 eV. Quantum chemical calculations show reasonable agreement with the experimental bond energies and provide the electronic structures of these species.
K-shell photoabsorption coefficients of O2, CO2, CO, and N2O
NASA Technical Reports Server (NTRS)
Barrus, D. M.; Blake, R. L.; Burek, A. J.; Chambers, K. C.; Pregenzer, A. L.
1979-01-01
The total photoabsorption coefficient has been measured from 500 to 600 eV around the K edge of oxygen in gases O2, CO2, CO, and N2O by means of a gold continuum source and crystal spectrometer with better than 1-eV resolution. The cross sections are dominated by discrete molecular-orbital transitions below the K-edge energy. A few Rydberg transitions were barely detectable. Broad shape resonances appear at or above the K edge. Additional broad, weak features above the K edge possibly arise from shake up. Quantitative results are given that have about 10% accuracy except on the very strong peaks. All the measured features are discussed in relation to other related measurements and theory.
Study of BenW (n = 1-12) clusters: An electron collision perspective
NASA Astrophysics Data System (ADS)
Modak, Paresh; Kaur, Jaspreet; Antony, Bobby
2017-08-01
This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.
NASA Astrophysics Data System (ADS)
Kilcrease, D. P.; Brookes, S.
2013-12-01
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. A simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert-Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. We also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.
NASA Astrophysics Data System (ADS)
Shakhatov, V. A.; Lebedev, Yu. A.
2018-01-01
A review is given of experimental and theoretical data on the cross sections for ionization, excitation, and deexcitation of atomic hydrogen. The set of the cross sections required to calculate the electron energy distribution function and find the level-to-level rate coefficients needed to solve balance equations for the densities of neutral and charged particles in hydrogen plasma is determined.
The Fe K Line Region Of η Carinae Around The X-ray Minima
NASA Astrophysics Data System (ADS)
Leyder, Jean-Christophe; Corcoran, M. F.; Henley, D. B.; Hamaguchi, K.; Ishibashi, K.; Pittard, J.
2011-09-01
We studied the Fe K line region of η Carinae with high-resolution X-ray Chandra grating spectra, using observations covering key phases around the last two X-ray minima (i.e. in 2003.5 and 2009). The line centroids are slightly redshifted, as opposed to the blueshifted lines observed at lower X-ray energies. This is the first observational evidence that the plasma producing the iron line emission is dynamically distinct from the plasma responsible for K-shell emission at lower energies, and is in agreement with the general colliding wind shock model. Gaussian modeling of the Fe XXV K-shell triplet blend shows apparent variations in centroid velocity, which are difficult to interpret as orbital motion of the companion star. Significant variability in the doppler broadening of the Fe K fluorescence emission line at 6.4 keV suggests that the formation of this line occurs in the wind of η Carinae at some particular phases. Of particular interest is the presence of a red wing in the profile of the Fe XXV triplet. This emission probably arises from iron in ionization states below Fe XXIV. Different mechanisms that might explain this emission will be discussed, e.g. an extremely bright, relatively cool, and heavily absorbed equilibrium plasma; emission from unshocked photoionized wind material; or assuming a fraction of the thermal plasma is not in ionization equilibrium.
NASA Astrophysics Data System (ADS)
Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.
2011-11-01
Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.
NASA Astrophysics Data System (ADS)
Mei, D.-M.; Wang, G.-J.; Mei, H.; Yang, G.; Liu, J.; Wagner, M.; Panth, R.; Kooi, K.; Yang, Y.-Y.; Wei, W.-Z.
2018-03-01
Light, MeV-scale dark matter (DM) is an exciting DM candidate that is undetectable by current experiments. A germanium (Ge) detector utilizing internal charge amplification for the charge carriers created by the ionization of impurities is a promising new technology with experimental sensitivity for detecting MeV-scale DM. We analyze the physics mechanisms of the signal formation, charge creation, charge internal amplification, and the projected sensitivity for directly detecting MeV-scale DM particles. We present a design for a novel Ge detector at helium temperature (˜ 4 K) enabling ionization of impurities from DM impacts. With large localized E-fields, the ionized excitations can be accelerated to kinetic energies larger than the Ge bandgap at which point they can create additional electron-hole pairs, producing intrinsic amplification to achieve an ultra-low energy threshold of ˜ 0.1 eV for detecting low-mass DM particles in the MeV scale. Correspondingly, such a Ge detector with 1 kg-year exposure will have high sensitivity to a DM-nucleon cross section of ˜ 5 × 10^{-45} cm2 at a DM mass of ˜ 10 MeV/c2 and a DM-electron cross section of ˜ 5 × 10^{-46} cm2 at a DM mass of ˜ 1 MeV/c^2.
Wind-embedded shocks in FASTWIND: X-ray emission and K-shell absorption
NASA Astrophysics Data System (ADS)
Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.
2017-11-01
EUV and X-ray radiation emitted from wind-embedded shocks can affect the ionization balance in the outer atmospheres of massive stars, and can also be the mechanism responsible for producing highly ionized atoms detected in the wind UV spectra. To investigate these processes, we implemented the emission from wind-embedded shocks and related physics into our atmosphere/spectrum synthesis code FASTWIND. We also account for the high energy absorption of the cool wind, by adding important K-shell opacities. Various tests justfying our approach have been described by Carneiro+(2016, A&A 590, A88). In particular, we studied the impact of X-ray emission on the ionization balance of important elements. In almost all the cases, the lower ionization stages (O iv, N iv, P v) are depleted and the higher stages (N v, O v, O vi) become enhanced. Moreover, also He lines (in particular He ii 1640 and He ii 4686) can be affected as well. Finally, we carried out an extensive discussion of the high-energy mass absorption coefficient, κν, regarding its spatial variation and dependence on T eff. We found that (i) the approximation of a radially constant κν can be justified for r >= 1.2R * and λ <= 18 Å, and also for many models at longer wavelengths. (ii) In order to estimate the actual value of this quantity, however, the He ii background needs to be considered from detailed modeling.
NASA Astrophysics Data System (ADS)
Işık, N.; Doğan, M.; Bahçeli, S.
2016-03-01
In this study, detailed experimental research of triple differential cross section (TDCS) measurements is performed to investigate single ionization dynamics for the 1t2 orbital of methane molecule by 250 eV electron impact. In our experiments, the outgoing electrons are simultaneously measured in coincidence in a coplanar asymmetric geometry with the scattering angles of 10° and 20°. Therefore, TDCS measurements are performed for two different values of momentum transfer (K ≈ 0.9 au and 1.5 au). A detailed analysis of the dependence of the TDCS versus the momentum transfer is reported here.
NASA Technical Reports Server (NTRS)
Sutton, J. F.
1972-01-01
The relative cross sections for simultaneous ionization and excitation of helium by 200-eV electrons into the 4 2s and 4 2p states were measured via a fast delayed coincidence technique. Results show good agreement with the relative cross sections for single electron excitation of helium and hydrogen. An application of the results of the measurement to the development of ultraviolet intensity standard is suggested. This technique involves the use of known branching ratios, a visible light flux reference, and the measured relative cross sections.
Electron Impact Multiple Ionization Cross Sections for Solar Physics
NASA Astrophysics Data System (ADS)
Hahn, M.; Savin, D. W.; Mueller, A.
2017-12-01
We have compiled a set of electron-impact multiple ionization (EIMI) cross sections for astrophysically relevant ions. EIMI can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature, as in solar flares or in nanoflare coronal heating. EIMI is also likely to be significant when the electron energy distribution is non-thermal, such as if the electrons follow a kappa distribution. Cross sections for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to the available experimental EIMI cross section data. Based on this comparison, we have interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for thousands of EIMI cross sections. We also highlight some outstanding issues that remain to be resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargreaves, L. R.; Colyer, C.; Stevenson, M. A.
A number of previous studies have suggested the possibility of two-center interference effects in the single ionization of diatomic molecules such as H{sub 2} and N{sub 2}. While interference effects have been successfully observed in the ionization of H{sub 2}, to date evidence for interference in N{sub 2} ionization has yet to be conclusively demonstrated. This study presents triply differential cross sections for electron impact ionization of N{sub 2}, measured using the (e,2e) technique. The data are probed for signatures of two-center interference effects. Evidence for interference manifesting in the cross sections is observed.
Inner-shell chemical shift of DNA/RNA bases and inheritance from their parent purine and pyrimidine.
Wang, Feng; Zhu, Quan; Ivanova, Elena
2008-11-01
Inner-shell electronic structures, properties and ionization spectra of DNA/RNA bases are studied with respect to their parent pyrimidine and purine species. Density functional theory B3LYP/aug-cc-pVTZ has been employed to produce the geometries of the bases, whereas LB94/et-pVQZ//B3LYP/aug-cc-pVTZ is used to calculate site-related Hirshfeld charges and core (vertical) ionization energies, as well as inner-shell spectra of C1s, N1s and O1s for DNA/RNA bases and their parent pyrimidine and purine species. The site-dependent variations of properties indicate the changes and inheritance of chemical environment when pyrimidine and purine become substituted. In general, although the changes are site-dependent, they are also ring-dependent. Pyrimidine bases change less significantly with respect to their parent pyrimidine than the purine bases with respect to their parent purine. Pyrimidine bases such as uracil, thymine and cytosine inherit certain properties from their parent pyrimidine, such as the Hirshfeld charge distributions and the order of core ionization energy level etc. No particular sites in the pyrimidine derivatives are engaged with a dramatic chemical shift nor with energy crossings to other sites. For the core shell spectra, the purine bases inherit very little from their parent purine, and guanine exhibits the least similarities to the parent among all the DNA/RNA bases.
Fe L-shell Excitation Cross Section Measurements on EBIT-I
NASA Astrophysics Data System (ADS)
Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.
2006-09-01
We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.
Role of Relativistic Effects in the Ionization of Heavy Ions by Electron Impact
NASA Astrophysics Data System (ADS)
Saha, Bidhan C.; Basak, Arun K.
2005-05-01
Electron impact single ionization cross sections of few heavy ions are evaluated using the recently proposed modifications [1] of the widely used simplified version of the improved binary-encounter (siBED) dipole model [2]. This model consists of two adjustable parameters and it is found that they are related to the nature of the charge distribution in the bonding region of the target. For its effective uses for ionic target the siBED model is further modified [3] in terms of the ionic and relativistic effects. This study focuses on the relativistic energy domain and the findings suggest the fate of those parameters. Details of our findings will be presented at the conference. [1] W. M. Huo, Phys. Rev. A 64, 042719 (2001). [2] M. A. Uddin, M. A. K. F. Haque, A. K. Basak and B. C. Saha, Phys. Rev A70, 0322706(2004). [3] M. a. Uddin, M. A. K. F. Haque, M. S. Mahbub, K. R. Karim, A.K. Basak and B. C. Saha, Phys. Rev. A (in press) 2005.
NASA Technical Reports Server (NTRS)
Sutton, J. F.; Kay, R. B.
1972-01-01
The relative cross sections for simultaneous ionization and excitation of helium by 200 eV electrons into the 4S, 4P, 4D and 4F levels have been measured via a fast delayed coincidence technique. Results are in poor agreement with Born approximation calculations for simultaneous ionization and excitation of helium, the 4P component being larger than expected.
Validation of annual growth rings in freshwater mussel shells using cross dating .Can
Andrew L. Rypel; Wendell R. Haag; Robert H. Findlay
2009-01-01
We examined the usefulness of dendrochronological cross-dating methods for studying long-term, interannual growth patterns in freshwater mussels, including validation of annual shell ring formation. Using 13 species from three rivers, we measured increment widths between putative annual rings on shell thin sections and then removed age-related variation by...
NASA Technical Reports Server (NTRS)
Huddleston, D. E.; Neugebauer, M.; Goldstein, B. E.
1994-01-01
The shape of the velocity distribution of water group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates of ionization, energy diffusion, and loss in the midcometosheath. The model includes the effect of rapid pitch angle scattering into a bispherical shell distribution as well as the effect of the magnetization of the plasma on the charge exchange loss rate. It is found that the average rate of ionization of cometary neutrals in this region of the cometosheath appears to be of the order of a factor 3 faster than the `standard' rates approx. 1 x 10(exp -6)/s that are generally assumed to model the observations in most regions of the comet environment. For the region of the coma studied in the present work (approx. 1 - 2 x 10(exp 5) km from the nucleus), the inferred energy diffusion coefficient is D(sub 0) approx. equals 0.0002 to 0.0005 sq km/cu s, which is generally lower than values used in other models. The empirically obtained loss rate appears to be about an order of magnitude greater than can be explained by charge exchange with the `standard' cross section of approx. 2 x 10(exp -15)sq cm. However such cross sections are not well known and for water group ion/water group neutral interactions, rates as high as 8 x 10(exp -15) sq cm have previously been suggested in the literature. Assuming the entire loss rate is due to charge exchange yields a rate of creation of fast neutral atoms of the order of approx. 10(exp -4)/s or higher, depending on the level of velocity diffusion. The fast neutrals may, in turn, be partly responsible for the higher-than-expected ionization rate.
Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan horse method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumino, A.; Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Universita di Catania, Catania; Universita Kore di Enna, Enna
2008-12-15
Two-proton scattering at sub-Coulomb energies has been measured indirectly via the Trojan horse method applied to the p + d{yields}p + p + n reaction to investigate off-energy shell effects for scattering processes. The three-body experiment was performed at 5 and 4.7 MeV corresponding to a p-p relative energy ranging from 80 to 670 keV. The free p-p cross section exhibits a deep minimum right within this relative energy region due to Coulomb plus nuclear destructive interference. No minimum occurs instead in the Trojan horse p-p cross section, which was extracted by employing a simple plane-wave impulse approximation. A detailedmore » formalism was developed to build up the expression of the theoretical half-off-shell p-p cross section. Its behavior agrees with the Trojan horse data and in turn formally fits the n-n, n-p, and nuclear p-p cross sections given the fact that in its expression the Coulomb amplitude is negligible with respect to the nuclear one. These results confirm the Trojan horse suppression of the Coulomb amplitude for scattering due to the off-shell character of the process.« less
The formation of molecules in interstellar clouds from singly and multiply ionized atoms
NASA Technical Reports Server (NTRS)
Langer, W. D.
1978-01-01
The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.
Absolute photoionization cross sections of two cyclic ketones: cyclopentanone and cyclohexanone.
Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni
2017-05-01
Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing vacuum ultraviolet (VUV) synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values, and the identification of possible dissociative fragments is discussed for both systems. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Xu, Xin; Xu, Long-Quan; Xiong, Tao; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan
2018-01-28
The generalized oscillator strengths for the valence-shell excitations of A 2 Σ + , C 2 Π, and D 2 Σ + electronic-states of nitric oxide have been determined at an incident electron energy of 1500 eV with an energy resolution of 70 meV. The optical oscillator strengths for these transitions have been obtained by extrapolating the generalized oscillator strengths to the limit that the squared momentum transfer approaches to zero, which give an independent cross-check to the previous experimental and theoretical results. The integral cross sections for the valence-shell excitations of nitric oxide have been determined systematically from the threshold to 2500 eV with the aid of the newly developed BE-scaling method for the first time. The present optical oscillator strengths and integral cross sections of the valence-shell excitations of nitric oxide play an important role in understanding many physics and chemistry of the Earth's upper atmosphere such as the radiative cooling, ozone destruction, day glow, aurora, and so on.
Low-k SiOCH Film Etching Process and Its Diagnostics Employing Ar/C5F10O/N2 Plasma
NASA Astrophysics Data System (ADS)
Nagai, Mikio; Hayashi, Takayuki; Hori, Masaru; Okamoto, Hidekazu
2006-09-01
We proposed an environmental harmonic etching gas of C5F10O (CF3CF2CF2OCFCF2), and demonstrated the etching of low-k SiOCH films employing a dual-frequency capacitively coupled etching system. Dissociative ionization cross sections for the electron impact ionizations of C5F10O and c-C4F8 gases have been measured by quadrupole mass spectroscopy (QMS). The dissociative ionization cross section of CF3+ from C5F10O gas was much higher than those of other ionic species, and 10 times higher than that of CF3+ from C4F8 gas. CF3+ is effective for increasing the etching rate of SiO2. As a result, the etching rate of SiOCH films using Ar/C5F10O/N2 plasma was about 1000 nm/min, which is much higher than that using Ar/C4F8/N2 plasma. The behaviours of fluorocarbon radicals in Ar/C5F10O/N2 plasma, which were measured by infrared diode laser absorption spectroscopy, were similar to those in Ar/C4F8/N2 plasma. The densities of CF and CF3 radicals were markedly decreased with increasing N2 flow rate. Etching rate was controlled by N2 flow rate. A vertical profile of SiOCH with a high etching rate and less microloading was realized using Ar/C5F10O/N2 plasma chemistry.
NASA Technical Reports Server (NTRS)
Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Witthoeft, M. C.; Kallman, T. R.
2016-01-01
Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars.Aims. The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements.Methods. Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the autostructure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential.Results. Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3< or = N< or = 11. The Na sequence (N=11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]) and those containing 3d orbitals, which will be crucial when considering sequences with N 11.Conclusions. It is found that the [2s/u] configurations must be included in the target representations of species with N> 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region.
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Kim, Yong-Ki
1999-01-01
Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Brent R.; Khakoo, Murtadha A.
2011-04-15
We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states ofmore » the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].« less
Relativistic, correlation, and polarization effects in two-photon photoionization of Xe
NASA Astrophysics Data System (ADS)
Lagutin, B. M.; Petrov, I. D.; Sukhorukov, V. L.; Demekhin, Ph. V.; Knie, A.; Ehresmann, A.
2017-06-01
Two-photon ionization of xenon was investigated theoretically for exciting-photon energies from 6.7 to 11.5 eV, which results in the ionization of Xe between 5 p1 /2 (13.43 eV) and 5 s (23.40 eV) thresholds. We describe the extension of a previously developed computational technique for the inclusion of relativistic effects to calculate energies of intermediate resonance state and cross sections for two-photon ionization. Reasonable consistency of cross sections calculated in length and velocity form was obtained only after considering many-electron correlations. Agreement between calculated and measured resonance energies is found when core polarization was additionally included in the calculations. The presently computed two-photon photoionization cross sections of Xe are compared with Ar cross sections in our previous work. Photoelectron angular distribution parameters calculated here indicate that intermediated resonances strongly influence photoelectron angular distribution of Xe.
Structure of the Λ (1405 ) and the K-d →π Σ n reaction
NASA Astrophysics Data System (ADS)
Ohnishi, Shota; Ikeda, Yoichi; Hyodo, Tetsuo; Weise, Wolfram
2016-02-01
The Λ (1405 ) resonance production reaction is investigated within the framework of the coupled-channels Alt-Grassberger-Sandhas (AGS) equations. We perform full three-body calculations for the K ¯N N -π Y N amplitudes on the physical real energy axis and investigate how the signature of the Λ (1405 ) appears in the cross sections of the K-d →π Σ n reactions, also in view of the planned E31 experiment at J-PARC. Two types of meson-baryon interaction models are considered: an energy-dependent interaction based on chiral S U (3 ) effective field theory, and an energy-independent version that has been used repeatedly in phenomenological approaches. These two models have different off-shell properties that imply correspondingly different behavior in the three-body system. We investigate how these features show up in differential cross sections of K-d →π Σ n reactions. Characteristic patterns distinguishing between the two models are found in the invariant mass spectrum of the final π Σ state. The K-d →π Σ n reaction, with different (π±Σ∓ and π0Σ0 ) charge combinations in the final state, is thus demonstrated to be a useful tool for investigating the subthreshold behavior of the K ¯N interaction.
Absorption and dissociative photoionization cross sections of NH3 from 80 to 1120 A
NASA Technical Reports Server (NTRS)
Samson, James A. R.; Haddad, G. N.; Kilcoyne, L. D.
1987-01-01
The total absorption, photoionization, and dissociative photoionization cross sections of ammonia have been measured from 80 to 1120 A. All possible fragment ions have been observed including doubly ionized ammonia. The absolute ionization efficiencies have also been measured in this spectral range. The appearance potentials of the fragment ions have been measured and are compared with the calculated appearance potentials derived from published heats of formation and ionization potentials of the fragments.
Validation of Cross Sections for Monte Carlo Simulation of the Photoelectric Effect
NASA Astrophysics Data System (ADS)
Han, Min Cheol; Kim, Han Sung; Pia, Maria Grazia; Basaglia, Tullio; Batič, Matej; Hoff, Gabriela; Kim, Chan Hyeong; Saracco, Paolo
2016-04-01
Several total and partial photoionization cross section calculations, based on both theoretical and empirical approaches, are quantitatively evaluated with statistical analyses using a large collection of experimental data retrieved from the literature to identify the state of the art for modeling the photoelectric effect in Monte Carlo particle transport. Some of the examined cross section models are available in general purpose Monte Carlo systems, while others have been implemented and subjected to validation tests for the first time to estimate whether they could improve the accuracy of particle transport codes. The validation process identifies Scofield's 1973 non-relativistic calculations, tabulated in the Evaluated Photon Data Library (EPDL), as the one best reproducing experimental measurements of total cross sections. Specialized total cross section models, some of which derive from more recent calculations, do not provide significant improvements. Scofield's non-relativistic calculations are not surpassed regarding the compatibility with experiment of K and L shell photoionization cross sections either, although in a few test cases Ebel's parameterization produces more accurate results close to absorption edges. Modifications to Biggs and Lighthill's parameterization implemented in Geant4 significantly reduce the accuracy of total cross sections at low energies with respect to its original formulation. The scarcity of suitable experimental data hinders a similar extensive analysis for the simulation of the photoelectron angular distribution, which is limited to a qualitative appraisal.
Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components
NASA Astrophysics Data System (ADS)
Champion, Christophe
2013-05-01
Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.
The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines
NASA Technical Reports Server (NTRS)
Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi;
2007-01-01
We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.
Observation of two-center interference effects for electron impact ionization of N2
NASA Astrophysics Data System (ADS)
Chaluvadi, Hari; Nur Ozer, Zehra; Dogan, Mevlut; Ning, Chuangang; Colgan, James; Madison, Don
2015-08-01
In 1966, Cohen and Fano (1966 Phys. Rev. 150 30) suggested that one should be able to observe the equivalent of Young’s double slit interference if the double slits were replaced by a diatomic molecule. This suggestion inspired many experimental and theoretical studies searching for double slit interference effects both for photon and particle ionization of diatomic molecules. These effects turned out to be so small for particle ionization that this work proceeded slowly and evidence for interference effects were only found by looking at cross section ratios. Most of the early particle work concentrated on double differential cross sections for heavy particle scattering and the first evidence for two-center interference for electron-impact triple differential cross section (TDCS) did not appear until 2006 for ionization of H2. Subsequent work has now firmly established that two-center interference effects can be seen in the TDCS for electron-impact ionization of H2. However, in spite of several experimental and theoretical studies, similar effects have not been found for electron-impact ionization of N2. Here we report the first evidence for two-center interference for electron-impact ionization of N2.
Nonlinear thermo-mechanical analysis of stiffened composite laminates by a new finite element
NASA Astrophysics Data System (ADS)
Barut, Atila
A new stiffened shell element combining shallow beam and shallow shell elements is developed for geometrically nonlinear analysis of stiffened composite laminates under thermal and/or mechanical loading. The formulation of this element is based on the principal of virtual displacements in conjunction with the co-rotational form of the total Lagrangian description of motion. In the finite element formulation, both the shell and the beam (stiffener) elements account for transverse shear deformations and material anisotropy. The cross-section of the stiffener (beam) can be arbitrary in geometry and lamination. In order to combine the stiffener with the shell element, constraint conditions are applied to the displacement and rotation fields of the stiffener. These constraint conditions ensure that the cross-section of the stiffener remains co-planar with the shell section after deformation. The resulting expressions for the displacement and rotation fields of the stiffener involve only the nodal unknowns of the shell element, thus reducing the total number of degrees of freedom. Also, the discretization of the entire stiffened shell structure becomes more flexible.
Ionization cross section, pressure shift and isotope shift measurements of osmium
NASA Astrophysics Data System (ADS)
Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan
2017-11-01
In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.
Quantification of indium in steel using PIXE
NASA Astrophysics Data System (ADS)
Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J. C.
1989-04-01
The quantitative analysis of steel for endodontics tools was carried out using low-energy protons (≤ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important.
First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons
NASA Astrophysics Data System (ADS)
Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard
2017-10-01
Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.
Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF
NASA Astrophysics Data System (ADS)
MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.
2017-10-01
Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.
Kinoshita, Naoki; Kita, Akinobu; Takemura, Akihiro; Nishimoto, Yasuhiro; Adachi, Toshiki
2014-09-01
The uncertainty of the beam quality conversion factor (k(Q,Q0)) of standard dosimetry of absorbed dose to water in external beam radiotherapy 12 (JSMP12) is determined by combining the uncertainty of each beam quality conversion factor calculated for each type of ionization chamber. However, there is no guarantee that ionization chambers of the same type have the same structure and thickness, so there may be individual variations. We evaluated the uncertainty of k(Q,Q0) for JSMP12 using an ionization chamber dosimeter and linear accelerator without a specific device or technique in consideration of the individual variation of ionization chambers and in clinical radiation field. The cross calibration formula was modified and the beam quality conversion factor for the experimental values [(k(Q,Q0))field] determined using the modified formula. It's uncertainty was calculated to be 1.9%. The differences between (k(Q,Q0))field of experimental values and k(Q,Q0) for Japan Society of Medical Physics 12 (JSMP12) were 0.73% and 0.88% for 6- and 10-MV photon beams, respectively, remaining within ± 1.9%. This showed k(Q,Q0) for JSMP12 to be consistent with (k(Q,Q0))field of experimental values within the estimated uncertainty range. Although inter-individual differences may be generated, even when the same type of ionized chamber is used, k(Q,Q0) for JSMP12 appears to be consistent within the estimated uncertainty range of (k(Q,Q0)field.
Near-Threshold Ionization of Argon by Positron Impact
NASA Astrophysics Data System (ADS)
Babij, T. J.; Machacek, J. R.; Murtagh, D. J.; Buckman, S. J.; Sullivan, J. P.
2018-03-01
The direct single-ionization cross section for Ar by positron impact has been measured in the region above the first ionization threshold. These measurements are compared to semiclassical calculations which give rise to a power law variation of the cross section in the threshold region. The experimental results appear to be in disagreement with extensions to the Wannier theory applied to positron impact ionization, with a smaller exponent than that calculated by most previous works. In fact, in this work, we see no difference in threshold behavior between the positron and electron cases. Possible reasons for this discrepancy are discussed.
Electronic stopping in oxides beyond Bragg additivity
NASA Astrophysics Data System (ADS)
Sigmund, P.; Schinner, A.
2018-01-01
We present stopping cross sections calculated by our PASS code for several ions in metal oxides and SiO2 over a wide energy range. Input takes into account changes in the valence structure by assigning two additional electrons to the 2p shell of oxygen and removing the appropriate number of electrons from the outer shells of the metal atom. Results are compared with tabulated experimental values and with two versions of Bragg's additivity rule. Calculated stopping cross sections are applied in testing a recently-proposed scaling rule, which relates the stopping cross section to the number of oxygen atoms per molecule.
A model of the SO2 atmosphere and ionosphere of Io
NASA Technical Reports Server (NTRS)
Kumar, S.
1980-01-01
The calculations of thermal structure for an SO2 atmosphere of Io lead to exospheric temperatures in 800-1200 K range. The Pioneer 10 electron density profiles can be fit with an SO2 surface density of 1.2 x 10 to the 11th per cu cm at 5:30 pm local time and exosphere temperature of 1030 K. Low energy electrons provide the major ionization source but the solar UV absorption dominates the heating of the atmosphere due to the long wavelength absorption threshold of SO2 and large absorption cross sections.
Photoionization and electron-impact ionization of Ar5+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.C.; Lu, M.; Esteves, D.
2007-02-27
Absolute cross sections for photoionization andelectron-impact Photionization of Ar5+ have been measuredusing twodifferent interacting-beams setups. The spectra consist of measurementsof the yield of products dueto single ionization as a function ofelectron or photon energy. In addition, absolute photoionization andelectron-impact ionization cross sections were measured to normalize themeasured Ar6+ product-ion yield spectra. In the energy range from 90 to111 eV, both electron-impact ionization and photoionization of Ar5+aredominated by indirect 3s subshell excitation-autoionization. In theenergy range from 270 to 285 eV, resonances due to 2p-3dexcitation-autoionization are prominent in the photoionization spectrum.In the range from 225 to 335 eV, an enhancement due tomore » 2p-nl (n>2>excitations are evident in the electron-impactionization cross section.The electron and photon impact data show some features due to excitationof the same intermediate autoionizing states.« less
Ionization cross sections of the Au L subshells by electron impact from the L3 threshold to 100 keV
NASA Astrophysics Data System (ADS)
Barros, Suelen F.; Vanin, Vito R.; Maidana, Nora L.; Martins, Marcos N.; García-Alvarez, Juan A.; Santos, Osvaldo C. B.; Rodrigues, Cleber L.; Koskinas, Marina F.; Fernández-Varea, José M.
2018-01-01
We measured the cross sections for Au Lα, Lβ, Lγ, Lℓ and Lη x-ray production by the impact of electrons with energies from the L3 threshold to 100 keV using a thin Au film whose mass thickness was determined by Rutherford Backscattering Spectrometry. The x-ray spectra were acquired with a Si drift detector, which allowed to separate the components of the Lγ multiplet lines. The measured Lα, Lβ, {{L}}{γ }1, L{γ }{2,3,6}, {{L}}{γ }{4,4\\prime }, {{L}}{γ }5, {{L}}{\\ell } and Lη x-ray production cross sections were then employed to derive Au L1, L2 and L3 subshell ionization cross sections with relative uncertainties of 8%, 7% and 7%, respectively; these figures include the uncertainties in the atomic relaxation parameters. The correction for the increase in electron path length inside the Au film was estimated by means of Monte Carlo simulations. The experimental ionization cross sections are about 10% above the state-of-the-art distorted-wave calculations.
Kilcrease, D. P.; Brookes, S.
2013-08-19
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure formore » the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.« less
Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural.
Smith, Audrey R; Meloni, Giovanni
2015-11-01
Absolute photoionization cross sections of the molecules 2-ethylfuran, 2-acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time-of-flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS-QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Mendoza, C.; Bautista, M. A.; Palmeri, P.; Quinet, P.; Witthoeft, M. C.; Kallman, T. R.
2017-08-01
Context. We are concerned with improving the diagnostic potential of the K lines and edges of elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu, and Zn, that are observed in the X-ray spectra of supernova remnants, galaxy clusters, and accreting black holes and neutron stars. Aims: Since accurate photoabsorption and photoionization cross sections are needed in their spectral models, they have been computed for isoelectronic sequences with electron number 12 ≤ N ≤ 18 using a multi-channel method. Methods: Target representations are obtained with the atomic structure code autostructure, and ground-state cross sections are computed with the Breit-Pauli R-matrix method (bprm) in intermediate coupling, including damping (radiative and Auger) effects. Results: Following the findings in our earlier work on sequences with 2 ≤ N ≤ 11, the contributions from channels associated with the 2s-hole [2s] μ target configurations and those containing 3d orbitals are studied in the Mg (N = 12) and Ar (N = 18) isoelectronic sequences. Cross sections for the latter ions are also calculated in the isolated-resonance approximation as implemented in autostructure and compared with bprm to test their accuracy. Conclusions: It is confirmed that the collisional channels associated with the [2s] μ target configurations must be taken into account owing to significant increases in the monotonic background cross section between the L and K edges. Target configurations with 3d orbitals give rise to fairly conspicuous unresolved transition arrays in the L-edge region, but to a much lesser extent in the K-edge that is our main concern; therefore, they have been neglected throughout owing to their computationally intractable channel inventory, thus allowing the computation of cross sections for all the ions with 12 ≤ N ≤ 18 in intermediate coupling with bprm. We find that the isolated-resonance approximations performs satisfactorily and will be our best choice to tackle the systems with ground configuration 3p63dm (3 ≤ m ≤ 8) in isoelectronic sequences with N> 20.
Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro
2010-08-01
The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.
Boltzmann Calculations of Electron Transport in CF4 and CF_4/Ar
NASA Astrophysics Data System (ADS)
Wang, Yicheng; van Brunt, R. J.
1996-10-01
A new set of electron collisional cross sections(L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao, J. Phys. Chem. Ref. Data, submitted (May 1996)) for CF4 has been proposed, based primarily upon available experimental measurements. In this paper we present the results of calculations of the drift velocity, ionization coefficient, and attachment coefficient for electrons in CF4 based upon the new cross section set, using a two-term Boltzmann calculation. Comparison of results with experimental determinations of the transport parameters, such as drift velocity, are presented, along with comparison of results obtained using two previously pubished(M. Hyashi, in Swarm Studies and Elastic Electron-Molecule Collisions) (1987); and Y. Nakamura in Gaseous Electronics and Their Applications (1991) electron impact cross section sets for CF_4. Additions and adjustments to the cross section sets required for the model to achieve consitency with transport data are discussed. - Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Sanjiv
The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, inmore » order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.« less
Total and dissociative photoionization cross sections of N2 from threshold to 107 eV
NASA Technical Reports Server (NTRS)
Samson, James A. R.; Masuoka, T.; Pareek, P. N.; Angel, G. C.
1986-01-01
The absolute cross sections for the production of N(+) and N2(+) were measured from the dissociative ionization threshold of 115 A. In addition, the absolute photoabsorption and photoionization cross sections were tabulated between 114 and 796 A. The ionization efficiencies were also given at several discrete wave lengths between 660 and 790 A. The production of N(+) fragment ions are discussed in terms of the doubly excited N2(+) states with binding energies in the range of 24 to 44 eV.
Total and dissociative photoionization cross sections of N2 from threshold to 107 eV
NASA Technical Reports Server (NTRS)
Samson, James A. R.; Masuoka, T.; Pareek, P. N.; Angel, G. C.
1987-01-01
The absolute cross sections for the production of N(+) and N2(+) have been measured from the dissociative ionization threshold to 115 A. In addition, the absolute photoabsorption and photoionization cross sections are tabulated between 114 and 796 A. The ionization efficiencies are also given at several discrete wavelengths between 660 and 790 A. The production of N(+) fragment ions are discussed in terms of the doubly excited N2(+) states with binding energies in the range 24 to 44 eV.
NASA Astrophysics Data System (ADS)
Potter, Andrea; McCune, Matthew A.; de, Ruma; Madjet, Mohamed E.; Chakraborty, Himadri S.
2010-09-01
Considering the photoionization of the Xe@C60 endohedral compound, we study in detail the ionization cross sections of various levels of the system at energies higher than the plasmon resonance region. Five classes of single-electron levels are identified depending on their spectral character. Each class engenders distinct oscillations in the cross section, emerging from the interference between active ionization modes specific to that class. Analysis of the cross sections based on their Fourier transforms unravels oscillation frequencies that carry unique fingerprints of the emitting level.
1987-11-01
SHELL DREDGING IN. LAKES PONTCHARTRAIN AND’ MAUREPAS, LOUISIANAD lc . - . . - ~ K’. .. E.LEC .-- *- pas .- K - E ---.Ms---- g * ~ ,~VAUREPAS ~ ~ K...cause significant impacts due to the gradual decline and ultimate cessation of the shell dredging industry (see Sections 3.6 and 3.7). g . Long-term...process and the lakes i.1 the area expanded rapidly to their general present configurit ion. .IS - O .,* g Lake Pontchartrain is the focal point of the
NASA Astrophysics Data System (ADS)
Kostensalo, Joel; Suhonen, Jouni; Zuber, K.
2018-03-01
Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.
Photoabsorption cross section of acetylene in the EUV region
NASA Technical Reports Server (NTRS)
Wu, C. Y. R.; Judge, D. L.
1985-01-01
The measurement of the absolute photoabsorption cross sections of C2H2 in the 175-740 A region by means of a double ionization chamber is reported. The continuum background source is the synchrotron radiation emitted by the Wisconsin 240 MeV electron storage ring. It is found that the cross sections range from 2 to a maximum of 36 Mb. Two new Rydberg series are identified and the cross section data are applied in the analysis of various sum rules. From the rules, it is shown that the data of C2H2 in the 580-1088 A range may be too low, while the measured ionization transition moment may be too high.
Study of elastic and inelastic cross sections by positron impact on inert gases
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2018-04-01
In this article, a modified computational method recently introduced is used for the calculation of total, positronium (Ps) formation and ionization cross sections including direct and total ionization cross sections for positron scattering from noble gases. The incident positron is assumed to have energies over a wide range from 5 eV to 5 keV. The positron-atom interaction potential is developed under an optical potential framework and the computations of cross sections for each process are performed by introducing appropriate absorption thresholds. The calculated results obtained by employing this modified approach are found to be in reasonably good agreement with most of the existing data.
Electron Impact Ionization and Dissociative Ionization of C2H2
NASA Technical Reports Server (NTRS)
Srivastava, S. K.
1995-01-01
By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.
Electron impact ionization cross sections of beryllium-tungsten clusters*
NASA Astrophysics Data System (ADS)
Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael
2016-01-01
We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7
Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; ...
2014-07-29
Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1 st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.
K-shell Photoionization of Na-like to Cl-like Ions of Mg, Si, S, Ar, and Ca
NASA Technical Reports Server (NTRS)
Witthoeft, M. C.; Garcia, J.; Kallman, T. R.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.
2010-01-01
We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron. orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all states up to n = 3. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.
Positron induced scattering cross sections for hydrocarbons relevant to plasma
NASA Astrophysics Data System (ADS)
Singh, Suvam; Antony, Bobby
2018-05-01
This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Linlin; Yang, Aijun; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn
2014-05-15
Recently, much attention has been paid to SF{sub 6}-CO{sub 2} mixtures as one of substitutes for pure SF{sub 6} gas. In this paper, the dielectric breakdown properties of hot SF{sub 6}-CO{sub 2} mixtures are investigated at temperatures of 300–3500 K and pressures of 0.01–1.0 MPa. Under the assumptions of local thermodynamic equilibrium and local chemical equilibrium, the equilibrium compositions of hot SF{sub 6}-CO{sub 2} mixtures with different CO{sub 2} proportions are obtained based on Gibbs free energy minimization. The cross sections for interactions between electrons and neutral species are presented. Some unknown ionization cross sections are determined theoretically using Deutsch–Märk (DM) formalismmore » based on quantum chemistry. Two-term Boltzmann equation is adopted to calculate the electron energy distribution function, reduced ionization coefficient, reduced attachment coefficient, and reduced effective ionization coefficient. Then the reduced critical electric field strength of mixtures, corresponding to dielectric breakdown performances, is determined when the generation and loss of electrons are balanced. Finally, the influences of temperature, pressure, and CO{sub 2} proportion on the reduced critical electric field strength are studied. It is found that a large percentage of CO{sub 2} can obviously reduce concentrations of high-energy electrons. At temperatures above 1750 K, an addition of CO{sub 2} to SF{sub 6} gas can enhance dielectric breakdown performances. However, at low temperatures, too much CO{sub 2} added into mixtures can reduce dielectric breakdown abilities. In addition, increasing gas pressure can improve dielectric breakdown performances. But the influence will be no more significant if pressure is over 0.8 MPa.« less
NASA Astrophysics Data System (ADS)
Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.
2018-03-01
We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.
Inner-shell photoionization and core-hole decay of Xe and XeF2.
Southworth, Stephen H; Wehlitz, Ralf; Picón, Antonio; Lehmann, C Stefan; Cheng, Lan; Stanton, John F
2015-06-14
Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d(5/2), Xe 3d(3/2), and F 1s subshells in the 660-740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F(+) and F(2+) ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe(+) and F(+) ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.
Inner-shell photoionization and core-hole decay of Xe and XeF 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, Stephen H.; Wehlitz, Ralf; Picón, Antonio
2015-06-14
Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d5/2, Xe 3d3/2, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-statemore » distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F+ and F2+ ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe+ and F+ ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.« less
Damjanović, Ana; Brooks, Bernard R; García-Moreno, Bertrand
2011-04-28
Molecular dynamics simulations were used to examine the effects of ionization of internal groups on the structures of eighteen variants of staphylococcal nuclease (SNase) with internal Lys, Asp, or Glu. In most cases the RMSD values of internal ionizable side chains were larger when the ionizable moieties were charged than when they were neutral. Calculations of solvent-accessible surface area showed that the internal ionizable side chains were buried in the protein interior when they were neutral and moved toward crevices and toward the protein-water interface when they were charged. The only exceptions are Lys-36, Lys-62, and Lys-103, which remained buried even after charging. With the exception of Lys-38, the number of internal water molecules surrounding the ionizable group increased upon charging: the average number of water oxygen atoms within the first hydration shell increased by 1.7 for Lys residues, by 5.2 for Asp residues, and by 3.2 for Glu residues. The polarity of the microenvironment of the ionizable group also increased when the groups were charged: the average number of polar atoms of any kind within the first hydration shell increased by 2.7 for Lys residues, by 4.8 for Asp residues, and by 4.0 for Glu residues. An unexpected correlation was observed between the absolute value of the shifts in pK(a) values measured experimentally, and several parameters of structural relaxation: the net difference in the polarity of the microenvironment of the charged and neutral forms of the ionizable groups, the net difference in hydration of the charged and neutral forms of the ionizable groups, and the difference in RMSD values of the charged and neutral forms of the ionizable groups. The effects of ionization of internal groups on the conformation of the backbone were noticeable but mostly small and localized to the area immediately next to the internal ionizable moiety. Some variants did exhibit local unfolding.
O({sup 3}P{sub J}) formation and desorption by 157-nm photoirradiation of amorphous solid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSimone, Alice J.; Orlando, Thomas M., E-mail: thomas.orlando@chemistry.gatech.edu; School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332–0400
2014-03-07
Photodissociation of amorphous solid water (ASW) deposited on a thinly oxidized copper substrate at 82 K was studied by measuring O({sup 3}P{sub J=2,1,0}) photoproducts detected with resonance-enhanced multiphoton ionization. For each spin-orbit state, the oxygen atom time-of-flight spectrum was measured as a function of H{sub 2}O exposure, which is related to ice thickness, and 157-nm irradiation time. Four Maxwell-Boltzmann distributions with translational temperatures of 10 000 K, 1800 K, 400 K, and 82 K were found to fit the data. The most likely formation mechanisms are molecular elimination following ionization of water and ion-electron recombination, secondary recombination of hydroxyl radicals, andmore » photodissociation of adsorbed hydroxyl radicals. Evidence for O-atom diffusion through bulk ASW was found for H{sub 2}O exposures of at least 5 Langmuir (1 L = 10{sup −6} Torr s). The cross sections for O({sup 3}P{sub 2}) depletion were 1.3 × 10{sup −19} and 6.5 × 10{sup −20} cm{sup 2} for 1 and 5 L, respectively.« less
The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy
NASA Astrophysics Data System (ADS)
Terebey, S.; Fich, M.; Taylor, R.
1999-12-01
A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.
The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy
NASA Technical Reports Server (NTRS)
Terebey, S.; Fich, M.; Taylor, R.
1999-01-01
A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.
Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.
Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J
2001-11-26
The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.
From Cool to Hot F-stars: The Influence of Two Ionization Regions in the Acoustic Oscillations
NASA Astrophysics Data System (ADS)
Brito, Ana; Lopes, Ilídio
2018-02-01
The high-precision data available from the Kepler satellite allows us to study the complex outer convective envelopes of solar-type stars. We use a seismic diagnostic, specialized for investigating the outer layers of solar-type stars, to infer the impact of the ionization processes on the oscillation spectrum, for a sample of Kepler stars. These stars, of spectral type F, cover all of the observational seismic domain of the acoustic oscillation spectrum in solar-type stars. They also cover the range between a cool F-dwarf (∼6000 K) and a hotter F-star (∼6400 K). Our study reveals the existence of two relevant ionization regions. One of these regions, which is located closer to the surface of the star, is commonly associated with the second ionization of helium, although other chemical species also contribute to ionization. The second region, located deeper in the envelope, is linked with the ionization of heavy elements. Specifically, in this study, we analyze the elements carbon, nitrogen, oxygen, neon, and iron. Both regions can be related to the K electronic shell. We show that, while for cooler stars like the Sun, the influence of this second region on the oscillation frequencies is small; in hotter stars, its influence becomes comparable to the influence of the region of the second ionization of helium. This can guide us in the study of the outer layers of F-stars, specifically with the understanding of phenomena related to rotation and magnetic activity in these stars.
The 3-D ionization structure and evolution of NGC 7009 (Saturn Nebula)
NASA Astrophysics Data System (ADS)
Sabbadin, F.; Turatto, M.; Cappellaro, E.; Benetti, S.; Ragazzoni, R.
2004-03-01
Tomographic and 3-D analyses for extended, emission-line objects are applied to long-slit ESO NTT + EMMI high-resolution spectra of the intriguing planetary nebula NGC 7009, covered at twelve position angles. We derive the gas expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model and the spatial recovery of the plasma structure and evolution. The Saturn Nebula (distance≃1.4 kpc, age≃6000 yr, ionized mass≃0.18 M⊙) consists of several interconnected components, characterized by different morphology, physical conditions, excitation and kinematics. We identify four ``large-scale'', mean-to-high excitation sub-systems (the internal shell, the main shell, the outer shell and the halo), and as many ``small-scale'' ones: the caps (strings of low-excitation knots within the outer shell), the ansae (polar, low-excitation, likely shocked layers), the streams (high-excitation polar regions connecting the main shell with the ansae), and an equatorial, medium-to-low excitation pseudo-ring within the outer shell. The internal shell, the main shell, the streams and the ansae expand at Vexp≃4.0 × R arcsec km s-1, the outer shell, the caps and the equatorial pseudo-ring at Vexp≃3.15 × R arcsec km s-1, and the halo at Vexp≃10 km s-1. We compare the radial distribution of the physical conditions and the line fluxes observed in the eight sub-systems with the theoretical profiles coming from the photo-ionization code CLOUDY, inferring that all the spectral characteristics of NGC 7009 are explainable in terms of photo-ionization by the central star, a hot ( log T* ≃4.95) and luminous ( log L*/L⊙≃3.70) 0.60-0.61 M⊙ post-AGB star in the hydrogen-shell nuclear burning phase. The 3-D shaping of the Saturn Nebula is discussed within an evolutionary scenario dominated by photo-ionization and supported by the fast stellar wind: it begins with the superwind ejection (first isotropic, then polar deficient), passes through the neutral, transition phase ({lasting} ≃3000 yr), the ionization start (occurred ≃2000 yr ago), and the full ionization of the main shell (≃1000 yr ago), at last reaching the present days: the whole nebula is optically thin to the UV stellar flux, except the caps (mean latitude condensations in the outer shell, shadowed by the main shell) and the ansae (supersonic ionization fronts along the major axis). Based on observations made with: ESO Telescopes at the La Silla Observatories (program ID 65.I-0524), and the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. Observing programs: GO 6117 (P.I. Bruce Balick), GO 6119 (P.I. Howard Bond) and GO 8390 (P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We extensively apply the photo-ionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University (Ferland et al. 1998).
Ionisation of atomic hydrogen by positron impact
NASA Technical Reports Server (NTRS)
Spicher, Gottfried; Olsson, Bjorn; Raith, Wilhelm; Sinapius, Guenther; Sperber, Wolfgang
1990-01-01
With the crossed beam apparatus the relative impact-ionization cross section of atomic hydrogen by positron impact was measured. A layout of the scattering region is given. The first measurements on the ionization of atomic hydrogen by positron impact are also given.
Measuring patchy reionization with kSZ2-21 cm correlations
NASA Astrophysics Data System (ADS)
Ma, Q.; Helgason, K.; Komatsu, E.; Ciardi, B.; Ferrara, A.
2018-05-01
We study cross-correlations of the kinetic Sunyaev-Zel'dovich effect (kSZ) and 21 cm signals during the epoch of reionization (EoR) to measure the effects of patchy reionisation. Since the kSZ effect is proportional to the line-of-sight velocity, the kSZ-21 cm cross correlation suffers from cancellation at small angular scales. We thus focus on the correlation between the kSZ-squared field (kSZ2) and 21 cm signals. When the global ionization fraction is low (xe ≲ 0.7), the kSZ2 fluctuation is dominated by rare ionized bubbles, which leads to an anticorrelation with the 21 cm signal. When 0.8 ≲ xe < 1, the correlation is dominated by small pockets of neutral regions, leading to a positive correlation. However, at very high redshifts when xe < 0.15, the spin temperature fluctuations change the sign of the correlation from negative to positive, as weakly ionized regions can have strong 21 cm signals in this case. To extract this correlation, we find that Wiener filtering is effective in removing large signals from the primary cosmic microwave background (CMB) anisotropy. The expected signal-to-noise ratios for a ˜10-h integration of upcoming Square Kilometre Array data cross-correlated with maps from the current generation of CMB observatories with 3.4μK arcmin noise and 1.7 arcmin beam over 100 deg2 are 51, 60, and 37 for xe = 0.2, 0.5, and 0.9, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGovern, M.; Walters, H. R. J.; Assafrao, D.
2010-03-15
A relaxed form of a recent impact parameter coupled pseudostate approximation of McGovern et al. [Phys. Rev. A 79, 042707 (2009)] for calculating differential ionization cross sections is proposed. This greatly eases the computational burden in cases where a range of ejected electron energies has to be considered. The relaxed approximation is tested against exact first Born calculations for antiproton impact on H and nonperturbatively for the highly nonperturbative system of Au{sup 53+} incident upon He. The approximation performs well in these tests. It is shown how, with a little further approximation, the relaxed theory leads to a widely usedmore » prescription for the total ionization cross section. Results for differential ionization of H and He by antiprotons are presented. These reveal the growing dominance of the interaction between the antiproton and the target nucleus at low impact energies and show the changing importance of the role of the postcollisional interaction between the antiproton and the ejected electron.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, T.J.; Richard, P.; Gealy, G.
1979-04-01
Thin solid Al targets ranging in thickness from approx. 1 to 30 ..mu..g/cm/sup 2/ were bombarded by /sup 16/O ions wih incident energies from 0.25 to 2.25 MeV/amu. The effects of target thickness on the measured Al K x-ray yield for ions incident without an initial K-shell vacancy were determined. Comparisons of the data for Al K x-ray production in vanishingly thin targets (and 29-..mu..g/cm/sup 2/ targets) were made to perturbed-stationary-state calculations (PSS) for O ions on Al targets. The PSS calculations contained corrections for Coulomb deflection and binding energy (PSS(CB)) and for Coulomb deflection, binding energy, and polarization (PSS(CBP)).more » Further, two different PSS calculation procedures were employed: calculations without radial cutoffs employed in the binding-energy contribution (PSS), and calculations with radial cutoffs employed in the binding-energy correction (NPSS). The PSS(CBP) calculations agree with the measured Al K x-ray production cross section for data taken in the limit of a vanishingly thin target. The NPSS(CBP) calculations agree with the data taken for a 29-..mu..g/cm/sup 2/ Al target. The latter agreement is fortuitous, as the increase observed in the measured target x-ray yield for the 29-..mu..g/cm/sup 2/ target, in comparison to the yield extracted as rhox ..-->.. 0 at each bombarding energy, is due to K-shell--to--K-shell charge exchange. Comparisons are made with previously published data for /sup 16/O ions incident on finite-thickness Al targets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Aryya; Vaval, Nayana, E-mail: np.vaval@ncl.res.in; Pal, Sourav
2015-07-14
Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. Wemore » have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.« less
Experimental Demonstration of Underwater Acoustic Scattering Cancellation
Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.
2015-01-01
We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067
A vortex line for K-shell ionization of a carbon atom by electron impact
NASA Astrophysics Data System (ADS)
Ward, S. J.; Macek, J. H.
2014-10-01
We obtained using the Coulomb-Born approximation a deep minimum in the TDCS for K-shell ionization of a carbon atom by electron impact for the electron ejected in the scattering plane. The minimum is obtained for the kinematics of the energy of incident electron Ei = 1801.2 eV, the scattering angle θf = 4°, the energy of the ejected electron Ek = 5 . 5 eV, and the angle for the ejected electron θk = 239°. This minimum is due to a vortex in the velocity field. At the position of the vortex, the nodal lines of Re [ T ] and Im [ T ] intersect. We decomposed the CB1 T-matrix into its multipole components for the kinematics of a vortex, taking the z'-axis parallel to the direction of the momentum transfer vector. The m = +/- 1 dipole components are necessary to obtain a vortex. We also considered the electron to be ejected out of the scattering plane and obtained the positions of the vortex for different values of the y-component of momentum of the ejected electron, ky. We constructed the vortex line for the kinematics of Ei = 1801.2 eV and θf = 4°. S.J.W. and J.H.M. acknowledge support from NSF under Grant No. PHYS- 0968638 and from D.O.E. under Grant Number DE-FG02-02ER15283, respectively.
STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT IONIZATION OF Fe{sup 7+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, M.; Novotný, O.; Savin, D. W.
2015-11-01
We have measured electron impact ionization for Fe{sup 7+} from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurements to remove most metastables, resulting in a beam of 94% ground-level ions. Comparing with the previously recommended atomic data, we find that the Arnaud and Raymond cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400 eV. The cross section of Dere agrees to within 10%, which is about the magnitude of the experimental uncertainties.more » The remaining discrepancies between our measurement and the Dere calculations are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.« less
Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision
NASA Astrophysics Data System (ADS)
Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.
2018-06-01
A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.
NASA Astrophysics Data System (ADS)
Tomaschitz, R.
2005-02-01
The interaction of superluminal radiation with matter in atomic bound-bound and bound-free transitions is investigated. We study transitions in the relativistic hydrogen atom effected by superluminal quanta. The superluminal radiation field is coupled by minimal substitution to the Dirac equation in a Coulomb potential. We quantize the interaction to obtain the transition matrix for induced and spontaneous superluminal radiation in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, the cross-sections for ground state ionization by transversal and longitudinal tachyons are derived. We examine the relativistic regime, high electronic ejection energies, as well as the first order correction to the non-relativistic cross-sections. In the ultra-relativistic limit, both the longitudinal and transversal cross-sections are peaked at small but noticeably different scattering angles. In the non-relativistic limit, the longitudinal cross-section has two maxima, and its minimum is located at the transversal maximum. Ionization cross-sections can thus be used to discriminate longitudinal radiation from transversal tachyons and photons.
Resonant transfer excitation in collisions of F sup 6+ and Mg sup 9+ with H sub 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, E.M.; Kamal, A.; Zaharakis, K.E.
1991-10-01
Experimental and theoretical investigations of resonant transfer excitation (RTE) for F{sup 6+}+H{sub 2} and Mg{sup 9+}+H{sub 2} collisions have been made. For both collision systems good agreement is obtained between the measured cross sections for {ital K}-shell x-ray emission coincident with electron-capture and theoretical RTE calculations. For F{sup 6+} the present calculations are about 10% lower than previous results of Bhalla and Karim (Phys. Rev. A 39, 6060 (1989); 41, 4097(E) (1990)); the measured cross sections are a factor of 2.3 larger than earlier measurements of Schulz {ital et} {ital al}. (Phys. Rev. A 38, 5454 (1988)). The previous disagreementmore » between experiment and theory for F{sup 6+} is removed.« less
Soft X-ray Spectrometer for Characterization of Electron Beam Driven WDM
NASA Astrophysics Data System (ADS)
Ramey, Nicholas; Coleman, Joshua; Perry, John
2017-10-01
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated by an intense, relativistic electron beam interacting with a thin, low-Z metal foil. A 100-ns-long electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into the thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. A proof-of-principle Bragg-type spectrometer has been built to measure the Ti K- α and K- β lines. The goal of the spectrometer is to measure the temperature and density of this warm dense plasma for the first time with this heating technique. This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.
NASA Astrophysics Data System (ADS)
Kaur, Gurpreet; Gupta, Sheenu; Tiwari, M. K.; Mittal, Raj
2014-02-01
M sub shell X-ray emission cross sections of Pt, Au, Hg, Pb, Th and U at 8 and 10 keV photon energies have been determined with linearly polarized photon beam from Indus-2 synchrotron source. The measured cross sections have been reported for the first time and were used to check the available theoretical Dirac-Hartree-Slater (DHS) and Dirac-Fock (DF) values reported in literature and also the presently derived Non Relativistic Hartree-Slater (NRHS), DF and DHS values for Mξ, Mδ, Mα, Mβ, Mγ, Mm1 and Mm2 group of X-rays.
A Near-Threshold Shape Resonance in the Valence-Shell Photoabsorption of Linear Alkynes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.
2015-12-17
The room-temperature photoabsorption spectra of a number of linear alkynes with internal triple bonds (e.g., 2-butyne, 2-pentyne, and 2- and 3-hexyne) show similar resonances just above the lowest ionization threshold of the neutral molecules. These features result in a substantial enhancement of the photoabsorption cross sections relative to the cross sections of alkynes with terminal triple bonds (e.g., propyne, 1-butyne, 1-pentyne,...). Based on earlier work on 2-butyne [Xu et al., J. Chem. Phys. 2012, 136, 154303], these features are assigned to excitation from the neutral highest occupied molecular orbital (HOMO) to a shape resonance with g (l = 4) charactermore » and approximate pi symmetry. This generic behavior results from the similarity of the HOMOs in all internal alkynes, as well as the similarity of the corresponding g pi virtual orbital in the continuum. Theoretical calculations of the absorption spectrum above the ionization threshold for the 2- and 3-alkynes show the presence of a shape resonance when the coupling between the two degenerate or nearly degenerate pi channels is included, with a dominant contribution from l = 4. These calculations thus confirm the qualitative arguments for the importance of the l = 4 continuum near threshold for internal alkynes, which should also apply to other linear internal alkynes and alkynyl radicals. The 1-alkynes do not have such high partial waves present in the shape resonance. The lower l partial waves in these systems are consistent with the broader features observed in the corresponding spectra.« less
Inner-shell photodetachment of transition metal negative ions
NASA Astrophysics Data System (ADS)
Dumitriu, Ileana
This thesis focuses on the study of inner-shell photodetachment of transition metal negative ions, specifically Fe- and Ru- . Experimental investigations have been performed with the aim of gaining new insights into the physics of negative atomic ions and providing valuable absolute cross section data for astrophysics. The experiments were performed using the X-ray radiation from the Advanced Light Source, Lawrence Berkeley National Laboratory, and the merged-beam technique for photoion spectroscopy. Negative ions are a special class of atomic systems very different from neutral atoms and positive ions. The fundamental physics of the interaction of transition metal negative ions with photons is interesting but difficult to analyze in detail because the angular momentum coupling generates a large number of possible terms resulting from the open d shell. Our work reports on the first inner-shell photodetachment studies and absolute cross section measurements for Fe- and Ru -. In the case of Fe-, an important astrophysical abundant element, the inner-shell photodetachment cross section was obtained by measuring the Fe+ and Fe2+ ion production over the photon energy range of 48--72 eV. The absolute cross sections for the production of Fe+ and Fe2+ were measured at four photon energies. Strong shape resonances due to the 3p→3d photoexcitation were measured above the 3p detachment threshold. The production of Ru+, Ru2+, and Ru3+ from Ru- was measured over 30--90 eV photon energy range The absolute photodetachment cross sections of Ru - ([Kr] 4d75s 2) leading to Ru+, Ru2+, and Ru 3+ ion production were measured at three photon energies. Resonance effects were observed due to interference between transitions of the 4 p-electrons to the quasi-bound 4p54d85s 2 states and the 4d→epsilonf continuum. The role of many-particle effects, intershell interaction, and polarization seems much more significant in Ru- than in Fe- photodetachment.
X-ray spectra of supernova remnants
NASA Technical Reports Server (NTRS)
Szymkowiak, A. E.
1985-01-01
X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.
Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.
2004-01-01
Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.
Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections
NASA Astrophysics Data System (ADS)
Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.
2011-06-01
Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Kumara, N. T. R. N.
Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviorsmore » are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.« less
NASA Astrophysics Data System (ADS)
Chou Chau, Yuan-Fong; Lim, Chee Ming; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Chiang, Hai-Pang
2016-09-01
Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.
A coupled-cluster study of photodetachment cross sections of closed-shell anions
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Decleva, Piero; Coriani, Sonia
2014-11-01
We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H-, Li-, Na-, F-, Cl-, and OH-. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.
A coupled-cluster study of photodetachment cross sections of closed-shell anions.
Cukras, Janusz; Decleva, Piero; Coriani, Sonia
2014-11-07
We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H(-), Li(-), Na(-), F(-), Cl(-), and OH(-). The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.
Photoionization cross sections for atomic chlorine using an open-shell random phase approximation
NASA Technical Reports Server (NTRS)
Starace, A. F.; Armstrong, L., Jr.
1975-01-01
The use of the Random Phase Approximation with Exchange (RPAE) for calculating partial and total photoionization cross sections and photoelectron angular distributions for open shell atoms is examined for atomic chlorine. Whereas the RPAE corrections in argon (Z=18) are large, it is found that those in chlorine (Z=17) are much smaller due to geometric factors. Hartree-Fock calculations with and without core relaxation are also presented. Sizable deviations from the close coupling results of Conneely are also found.
Measuring Ionization in Highly Compressed, Near-Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Collins, G. W.; Divol, L.; Kritcher, A.; Landen, O. L.; Pak, A.; Weber, C.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; Saunders, A.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, A.
2016-10-01
A precise knowledge of ionization at given temperature and density is required to accurately model compressibility and heat capacity of materials at extreme conditions. We use x-ray Thomson scattering to characterize the plasma conditions in plastic and beryllium capsules near stagnation in implosion experiments at the National Ignition Facility. We expect the capsules to be compressed to more than 20x and electron densities approaching 1025 cm-3, corresponding to a Fermi energy of 170 eV. Zinc Heα x-rays (9 keV) scattering at 120° off the plasma yields high sensitivity to K-shell ionization, while at the same time constraining density and temperature. We will discuss recent results in the context of ionization potential depression at these extreme conditions. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Measurements of ionization states in warm dense aluminum with betatron radiation
NASA Astrophysics Data System (ADS)
Mo, M. Z.; Chen, Z.; Fourmaux, S.; Saraf, A.; Kerr, S.; Otani, K.; Masoud, R.; Kieffer, J.-C.; Tsui, Y.; Ng, A.; Fedosejevs, R.
2017-05-01
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ˜20 -25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al4 + and Al5 + ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyatt model and an alternative modified Ecker-Kröll model. The observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-05-01
The boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section is solved. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are given in a closed analytical form suitable for theoretical modeling of misfit accommodation in relevant heterostructures.
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, A. N.; Gryzlova, E. V.; Kuzmina, E. I.; Chetverkina, A. S.; Strakhova, S. I.
2015-04-01
Two nonlinear atomic photoprocesses are theoretically considered with the emphasis on the photoelectron angular distributions and their modifications due to violation of the dipole approximation: sequential two-photon double ionization and two-color above threshold ionization. These reactions are now accessible with X-ray free electron lasers. Both processes are exemplified by the ionization of krypton: from the 4p shell in the sequential two-photon double ionization and from the 2s shell in the two-color above-threshold ionization, which are compared to the Ar(3p) and Ne(1s) ionization, respectively. Noticeable nondipole effects are predicted.
High-resolution photoabsorption spectrum of jet-cooled propyne
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.
2014-09-21
The absolute photoabsorption cross section of propyne was recorded between 62 000 and 88 000 cm{sup −1} by using the vacuum-ultraviolet, Fourier-transform spectrometer at the Synchrotron Soleil. This cross section spans the region including the lowest Rydberg bands and extends above the Franck-Condon envelope for ionization to the ground electronic state of the propyne cation, X{sup ~+}. Room-temperature spectra were recorded in a flowing cell at 0.9 cm{sup −1} resolution, and jet-cooled spectra were recorded at 1.8 cm{sup −1} resolution and a rotational temperature of ∼100 K. The reduced widths of the rotational band envelopes in the latter spectra reveal new structuremore » and simplify a number of assignments. Although nf Rydberg series have not been assigned previously in the photoabsorption spectrum of propyne, arguments are presented for their potential importance, and the assignment of one nf series is proposed. As expected from previous photoelectron spectra, Rydberg series are also observed above the adiabatic ionization threshold that converge to the v{sub 3}{sup +} = 1 and 2 levels of the C≡C stretching vibration.« less
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.
Modeling the Oxygen K Absorption in the Interstellar Medium: An XMM-Newton View of Sco X-1
NASA Technical Reports Server (NTRS)
Garcia, J.; Ramirez, J. M.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.
2011-01-01
We investigate the absorption structure of the oxygen in the interstellar medium by analyzing XMM-Newton observations of the low mass X-ray binary Sco X-1. We use simple models based on the O I atomic cross section from different sources to fit the data and evaluate the impact of the atomic data in the interpretation of astrophysical observations. We show that relatively small differences in the atomic calculations can yield spurious results. We also show that the most complete and accurate set of atomic cross sections successfully reproduce the observed data in the 21 - 24.5 Angstrom wavelength region of the spectrum. Our fits indicate that the absorption is mainly due to neutral gas with an ionization parameter of Epsilon = 10(exp -4) erg/sq cm, and an oxygen column density of N(sub O) approx. = 8-10 x 10(exp 17)/sq cm. Our models are able to reproduce both the K edge and the K(alpha) absorption line from O I, which are the two main features in this region. We find no conclusive evidence for absorption by other than atomic oxygen.
Absolute photoionization cross sections of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Pareek, P. N.
1982-01-01
The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.
Absolute photoionization cross sections of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Pareek, P. N.
1985-01-01
The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.
Excitation and Ionization Cross Sections for Electron-Beam Energy Deposition in High Temperature Air
1987-07-09
are given and compared to existing experimental results or other theoretical approaches. This information can readily be used as input for a deposition...of the doubly-differential, singly- differential and total ionization cross sections which subsequently served to guide theoretical calculations on...coworkers have been leaders in developing a theoretical base for studying electron production and energy deposition in atmospheric gases such as He, N2
Low-energy electron-impact ionization of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schow, E.; Hazlett, K.; Childers, J. G.
2005-12-15
Normalized doubly differential cross sections for the electron-impact ionization of helium at low energies are presented. The data are taken at the incident electron energies of 26.3, 28.3, 30.3, 32.5, 34.3, 36.5, and 40.7 eV and for scattering angles of 10 deg. -130 deg. The measurements involve the use of the moveable target method developed at California State University Fullerton to accurately determine the continuum background in the energy-loss spectra. Normalization of experimental data is made on a relative scale to well-established experimental differential cross sections for excitation of the n=2 manifold of helium and then on an absolute scalemore » to the well-established total ionization cross sections of Shah et al. [J. Phys. B 21, 2751 (1988)]. Comparisons are made with available experimental data and the results of the convergent close-coupling theory.« less
Partial photoionization cross sections of NH4 and H3O Rydberg radicals
NASA Astrophysics Data System (ADS)
Velasco, A. M.; Lavín, C.; Martín, I.; Melin, J.; Ortiz, J. V.
2009-07-01
Photoionization cross sections for various Rydberg series that correspond to ionization channels of ammonium and oxonium Rydberg radicals from the outermost, occupied orbitals of their respective ground states are reported. These properties are known to be relevant in photoelectron dynamics studies. For the present calculations, the molecular-adapted quantum defect orbital method has been employed. A Cooper minimum has been found in the 3sa1-kpt2 Rydberg channel of NH4 beyond the ionization threshold, which provides the main contribution to the photoionization of this radical. However, no net minimum is found in the partial cross section of H3O despite the presence of minima in the 3sa1-kpe and 3sa1-kpa1 Rydberg channels. The complete oscillator strength distributions spanning the discrete and continuous regions of both radicals exhibit the expected continuity across the ionization threshold.
Winfough, Matthew; Meloni, Giovanni
2017-12-01
Absolute photoionization cross sections for 2 potential propargylic fuels (propargylamine and dipropargyl ether) along with the partial ionization cross sections for their dissociative fragments are measured and presented for the first time via synchrotron photoionization mass spectrometry. The experimental setup consists of a multiplexed orthogonal time-of-flight mass spectrometer and is located at the Advanced Light Source facility of the Lawrence Berkeley National Laboratory in Berkeley, California. Data for a third propargylic compound (propargyl alcohol) were taken; however, because of its low signal, due to its weakly bound cation, only the dissociative ionization fragment from the H-loss channel is observed and presented. Suggested pathways leading to formation of dissociative photoionization fragments along with CBS-QB3 calculated adiabatic ionization energies and appearance energies for the dissociative fragments are also presented. Copyright © 2017 John Wiley & Sons, Ltd.
Theoretical studies of photoexcitation and ionization in H2O
NASA Technical Reports Server (NTRS)
Diercksen, G. H. F.; Kraemer, W. P.; Rescigno, T. N.; Bender, C. F.; Mckoy, B. V.; Langhoff, S. R.; Langhoff, P. W.
1982-01-01
Theoretical studies using Franck-Condon and static-exchange approximations are reported for the complete dipole excitation and ionization spectrum in H2O, where (1) large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground state equilibrium geometry, and (2) previously devised moment-theory techniques are employed in constructing the continuum oscillator-strength densities from the calculated spectra. Comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact-excitation cross sections, and dipole and synchrotron-radiation studies of partial-channel photoionization cross sections. The calculated partial-channel cross sections are found to be atomic-like, and dominated by 2p-kd components. It is suggested that the latter transition couples with the underlying 1b(1)-kb(1) channel, accounting for a prominent feature in recent synchrotron-radiation measurements.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.; Mildebrath, Mark E.
1983-12-01
The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.
Inner-shell photoionization and core-hole decay of Xe and XeF{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, Stephen H.; Picón, Antonio; Lehmann, C. Stefan
2015-06-14
Photoionization cross sections and partial ion yields of Xe and XeF{sub 2} from Xe 3d{sub 5/2}, Xe 3d{sub 3/2}, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF{sub 2} cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionizationmore » show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F{sup +} and F{sup 2+} ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe{sup +} and F{sup +} ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.« less
Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling
NASA Astrophysics Data System (ADS)
Bartlett, Philip
2007-10-01
The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.
NASA Astrophysics Data System (ADS)
Kanda, Kazuhiro; Yamakita, Yoshihiro; Ohno, Koichi
2001-12-01
The dissociative excitation of BrCN producing CN(B 2Σ +) fragment by the collision of He *(2 3S) was investigated by the collision energy-resolved electron and emission spectroscopy using time-of-flight method with a high-intensity He * beam. The Penning electrons ejected from BrCN and the subsequent CN ( B2Σ +- X2Σ +) emission were measured as a function of collision energy in the range of 90-180 meV. The formation of CN ( B2Σ +) is concluded to proceed dominantly via the promotion of an electron from Π-character orbital, by comparison between the collision energy dependence of the partial Penning ionization cross-sections and the CN ( B2Σ +- X2Σ +) emission cross-section.
NASA Astrophysics Data System (ADS)
Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom
2018-05-01
We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, C.F.; Gauster, W.B.; Ray, J.A.
A graphical compilation is presented of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are shown, as a function of energy, for collision processes involving molecular ion dissociation, charge exchange, excitation, ionization, photoionization, scattering, energy loss, and recombination. Pertinent nuclear cross sections are also included. A bibliography is given covering the literature since 1950. (auth)
Load transfer in the stiffener-to-skin joints of a pressurized fuselage
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Rastogi, Naveen
1995-01-01
Structural analyses are developed to determine the linear elastic and the geometrically nonlinear elastic response of an internally pressurized, orthogonally stiffened, composite material cylindrical shell. The configuration is a long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity permits the analysis of a unit cell model consisting of a portion of the shell wall centered over one stringer-ring joint. The stringer-ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted to pass through one another without contact, but do interact indirectly through their mutual contact with the shell at the joint. Discrete beams models of the stiffeners include a stringer with a symmetrical cross section and a ring with either a symmetrical or an asymmetrical open section. Mathematical formulations presented for the linear response include the effect of transverse shear deformations and the effect of warping of the ring's cross section due to torsion. These effects are important when the ring has an asymmetrical cross section because the loss of symmetry in the problem results in torsion and out-of-plane bending of the ring, and a concomitant rotation of the joint at the stiffener intersection about the circumferential axis. Data from a composite material crown panel typical of a large transport fuselage structure are used for two numerical examples. Although the inclusion of geometric nonlinearity reduces the 'pillowing' of the shell, it is found that bending is localized to a narrow region near the stiffener. Including warping deformation of the ring into the analysis changes the sense of the joint rotation. Transverse shear deformation models result in increased joint flexibility.
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Hu, S. X.
2017-08-01
Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.
Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams.
Galassi, M E; Champion, C; Weck, P F; Rivarola, R D; Fojón, O; Hanssen, J
2012-04-07
Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons,whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.
Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams
NASA Astrophysics Data System (ADS)
Galassi, M. E.; Champion, C.; Weck, P. F.; Rivarola, R. D.; Fojón, O.; Hanssen, J.
2012-04-01
Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons, whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.
Ionization of nS, nP, and nD lithium, potassium, and cesium Rydberg atoms by blackbody radiation
NASA Astrophysics Data System (ADS)
Beterov, I. I.; Ryabtsev, I. I.; Tretyakov, D. B.; Bezuglov, N. N.; Ékers, A.
2008-07-01
The results of theoretical calculations of the blackbody ionization rates of lithium, potassium, and cesium atoms residing in Rydberg states are presented. The calculations are performed for nS, nP, and nD states in a wide range of principal quantum numbers, n = 8-65, for blackbody radiation temperatures T = 77, 300, and 600 K. The calculations are performed using the known quasi-classical formulas for the photoionization cross sections and for the radial matrix elements of transitions in the discrete spectrum. The effect of the blackbody-radiation-induced population redistribution between Rydberg states on the blackbody ionization rates measured under laboratory conditions is quantitatively analyzed. Simple analytical formulas that approximate the numerical results and that can be used to estimate the blackbody ionization rates of Rydberg atoms are presented. For the S series of lithium, the rate of population of high-lying Rydberg levels by blackbody radiation is found to anomalously behave as a function of n. This anomaly is similar to the occurrence of the Cooper minimum in the discrete spectrum.
Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.
1982-01-01
Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.
Two- and three-photon ionization in the noble gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, E.J.
1981-08-01
By using a characteristic Green's function for an exactly solvable Schroedinger equation with an approximation to the central potential of Hermann and Skillman, the cross section for nonresonant two- and three-photon ionization of Ne, Ar, Kr, and Xe were calculated in jl coupling. Expressions for cross sections in jl coupling are given. Comparison with the Ar two-photon cross section of Pindzola and Kelly, calculated using the many-body theory, the dipole-length approximation, and LS coupling shows a disagreement of as much as a factor of 2. The disagreement appears to arise from distortion introduced by shifting the Green's-function resonances to experimentalmore » values.« less
Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air
NASA Technical Reports Server (NTRS)
Porter, H. S.; Jackman, C. H.; Green, A. E. S.
1976-01-01
Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.
Effect of multiple spin species on spherical shell neutron transmission analysis
NASA Technical Reports Server (NTRS)
Semler, T. T.
1972-01-01
A series of Monte Carlo calculations were performed in order to evaluate the effect of separated against merged spin statistics on the analysis of spherical shell neutron transmission experiments for gold. It is shown that the use of separated spin statistics results in larger average capture cross sections of gold at 24 KeV. This effect is explained by stronger windows in the total cross section caused by the interference between potential and J(+) resonances and by J(+) and J(-) resonance overlap allowed by the use of separated spin statistics.
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Usami, N.; Sasaki, I.; Frohlich, H.; Le Sech, C.
2003-01-01
Complexes made of DNA and Cyclo-Pt bound to plasmid DNA, were placed in aqueous solution and irradiated with monochromatic X-rays in the range E=8.5-13 keV, including the resonant photoabsorption energy of the L III shell of the platinum atom. The number of single- and double-strand breaks (ssb and dsb) induced by irradiation on a supercoiled DNA plasmid was measured by the production of circular-nicked and linear forms. In order to disentangle the contribution of the direct effects imparted to ionization, and the indirect effects due to a free radical attack, experiments have been performed in the presence of a small concentration (64 mmol l -1) of hydroxyl free radical scavenger dimethyl sulfoxide (DMSO). An enhancement of the number of ssb and dsb is observed when the plasmids contain the Pt intercalating molecules. Even when off-resonant X-rays are used, the strand break efficiency remains higher than expected based upon the absorption cross-section, as if the Pt bound to DNA is increasing the yield of strand breaks. A mechanism is suggested, involving photoelectrons generated from the ionization of water which efficiently ionize Pt atoms. This observation may provide an insight to understanding the effects of new radiotherapy protocols, associated chemotherapeutic agents such as cisplatin and ordinary radiotherapy for tumoral treatments.
NASA Astrophysics Data System (ADS)
Purohit, Ghanshyam; Singh, Prithvi
2017-06-01
The electron-impact ionization of inert gases for asymmetric final state energy sharing conditions has been studied in detail. However, there have been relatively few studies examining equal energy final state electrons. We report in this communication the results of triple differential cross sections (TDCSs) for electron impact ionization of Ar (3 p) for equal energy sharing of the outgoing electrons. We calculate TDCS in the modified distorted wave Born approximation (DWBA) formalism including post collision interaction (PCI) and polarization potential. We compare the results of our calculation with available measurements [Phys. Rev. A 87, 022712 (2013)]. We study the effect of PCI, target polarization on the trends of TDCS for the single ionization of Ar (3 p) targets.
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-03-01
We present an analytical solution to the boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are found in a concise and transparent closed form which is convenient for practical use in theoretical modeling of misfit relaxation processes.
Free Radical-Surface Interactions Using Multiphoton Ionization of Free Radicals
1989-01-01
Atoms, Rgf4PI 9 t Free Radl!cals)aj" i Atoms, Cross Section -’r RE)* I of Free Radicals arid Atonn. 43S’RACT (Conti n reverse if necessary Ind identi...these surfaces. The basic philosophy of our CF 3I -+- nhv-CF, - t - I . program consists of generating a particular neutral species at A low pressures...constant for the escape of radicals out of the " reactor is shown in Eq. (6): .= k =, 4 .4,., I /V, (6) L !J 7 where t ,,, is the thermal molecular
NASA Technical Reports Server (NTRS)
Dateo, Christopher; Huo, Winifred M.; Fletcher, Graham D.
2004-01-01
It has been suggested that the genotoxic effects of ionizing radiation in living cells are not caused by the highly energetic incident radiation, but rather are induced by less energetic secondary species generated, the most abundant of which are free electrons.' The secondary electrons will further react to cause DNA damage via indirect and direct mechanisms. Detailed knowledge of these mechanisms is ultimately important for the development of global models of cellular radiation damage. We are studying one possible mechanism for the formation cf DNA strand breaks involving dissociative ionization of the DNA sugar-phosphate backbone induced by secondary electron co!lisions. We will present ionization cross sections at electron collision energies between threshold and 10 KeV using the improved binary encounter dipole (iBED) formulation' Preliminary results of the possible dissociative ionization pathways will be presented. It is speculated that radical fragments produced from the dissociative ionization can further react, providing a possible mechanism for double strand breaks and base damage.
Detailed non-LTE calculations of the iron emission from NGC 1068
NASA Technical Reports Server (NTRS)
Band, David L.; Klein, Richard I.; Castor, John I.; Nash, J. K.
1989-01-01
The X-ray iron line emission from NGC 1068 observed by the Ginga satellite is modeled using the new multiline, multilevel, non-LTE radiative transport code ALTAIR and a detailed atomic model for Ne-like through stripped iron. The parameter space of the obscured type 1 Seyfert nucleus model for this object is studied. The equivalent width is greater than previously predicted. It is found that detailed radiative transfer can have a significant effect on the observed line flux both for the K alpha line and for the L-shell emission. The ionization of the iron increases with temperature. Therefore the K alpha equivalent width and energy is a function not only of the ionization parameter, but also of the column depth and temperature. For a likely model of NGC 1068 it is found that the iron abundance is about twice solar, but that modifications of this model may permit a smaller abundance.
First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver
NASA Astrophysics Data System (ADS)
Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.
2009-01-01
Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series. The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA. With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length. At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.
Cross sections for electron collisions with nitric oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itikawa, Yukikazu, E-mail: yukitikawa@nifty.com
Cross section data are reviewed for electron collisions with nitric oxide. Collision processes considered are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature (up to the end of 2015), recommended values of the cross section are determined, as far as possible.
a Study of the Interaction of Atoms with Strong Laser Fields.
NASA Astrophysics Data System (ADS)
Edwards, Mark
1984-02-01
In this thesis three aspects of the interactions of atoms with high intensity laser fields were treated. All three were motivated by experiment. The first investigation was prompted by a recent experiment (Kruit et al. 1983) involving multiphoton ionization of Xe. In this experiment it was found that the photoelectron energy spectrum contained peaks which corresponded to the absorption of more than the minimum number of photons required to ionize the atom. The effective orders of nonlinearity, furthermore, showed a striking uniformity. These effects were investigated using a model approximation consisting of a single bound state and m continua. Simple analytic expressions were obtained for the quantities measured in the experiment and the limit m (--->) (INFIN) was obtained. The results showed good qualitative agreement with experiment. An experiment (Grove et al. 1977) designed to test a theoretical calculation of the dynamical Stark effect stimulated the second part of this thesis. When experimental conditions were varied slightly, strong field turn-on effects were observed in the resonance fluorescence spectrum from a two-level atom (TLA). This experimental result led to the present study of how an adiabatically and near-adiabatically changing field intensity affects the resonance fluorescence spectrum of a TLA. It was found that there is an asymmetry in the spectrum for off-resonance excitation produced because the field turn-on repopulates the dressed state that is depopulated by spontaneous emission. The experimental result was not explained by this result, however. The third part of this thesis was based on an experiment (Granneman and Van der Wiel 1976) which attempted to verify a perturbation calculation of the two-photon ionization cross section of Cs. A discrepancy of four orders of magnitude near a minimum in the cross section was found between theory and experiment. To explain this discrepancy it was suggested (Armstrong and Beers 1977) that the effective order of nonlinearity (k) for this process varied significantly around the minimum. The present study involves a perturbation calculation of k. It was found that k varies rapidly around the minimum, and that this variation should be experimentally observable for laser intensities of the order of tens of GW cm('-2).
NASA Technical Reports Server (NTRS)
Rule, D. W.
1977-01-01
The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, Wania, E-mail: wania@if.ufrj.br; Luna, Hugo; Sigaud, Lucas
Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful toolmore » to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.« less
CCC calculated integrated cross sections of electron-H2 scattering
NASA Astrophysics Data System (ADS)
Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor
2016-09-01
Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major integrated cross sections has been explicitly demonstrated in the fixed-nuclei approximation by increasing the number of H2 target states in the close-coupling expansion from 9 to 491. The calculations have been performed using a projectile partial wave expansion with maximum orbital angular momentum Lmax = 8 and total orbital angular momentum projections | M | <= 8 . Coupling to the ionization continuum is modeled via a large pseudo state expansion, which we found is required to obtain reliable elastic and excitation cross sections. Here we present benchmark elastic, single-ionization, electronic excitation and total integrated cross sections over a broad energy range (0.1 to 300 eV) and compare with available experiment and previous calculations. Los Alamos National Laboratory and Curtin University.
NASA Astrophysics Data System (ADS)
Tsel'Sov, Iu. G.; Kondrat'ev, A. S.
1990-12-01
A method is developed for determining the temperature of an ionized gas on the basis of electron-density sounding. This technique is used to measure the cross-sectional temperature distribution of an axisymmetric ionized gas flow using microwave diagnostics.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu
2013-06-01
A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.
NASA Astrophysics Data System (ADS)
Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen
2018-04-01
The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.
NASA Technical Reports Server (NTRS)
Padial, N.; Csanak, G.; Mckoy, B. V.; Langhoff, P. W.
1981-01-01
Vertical-electronic static-exchange photoexcitation and ionization cross sections are reported which provide a first approximation to the complete dipole spectrum of CO2. Separated-channel static-exchange calculations of vertical-electronic transition energies and oscillator strengths, and Stieltjes-Chebyshev moment methods were used in the development. Detailed comparisons were made of the static-exchange excitation and ionization spectra with photoabsorption, electron-impact excitation, and quantum-defect estimates of discrete transition energies and intensities, and with partial-channel photoionization cross sections obtained from fluorescence measurements and from tunable-source and (e, 2e) photoelectron spectroscopy. Results show that the separate-channel static-exchange approximation is generally satisfactory in CO2.
NASA Astrophysics Data System (ADS)
Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod
2016-01-01
Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.
Second Order Born Effects in the Perpendicular Plane Ionization of Xe (5p) Atoms
NASA Astrophysics Data System (ADS)
Purohit, G.; Singh, Prithvi; Patidar, Vinod
We report triple differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms at incident electron energies 5, 10, 20, 30, and 40 eV above ionization potential. The TDCS calculation have been preformed within the modified distorted wave Born approximation formalism including the second order Born (SBA) amplitude. We compare the (e, 2e) TDCS result of our calculation with the very recent measurements of Nixon and Murray [Phys. Rev. A 85, 022716 (2012)] and relativistic DWBA-G results of Illarionov and Stauffer [J. Phys. B: At. Mol. Opt. Phys. 45, 225202 (2012)] and discuss the process contributing to structure seen in the differential cross section.
NASA Astrophysics Data System (ADS)
Ali, Esam; Madison, Don; Ren, X.; Dorn, A.; Ning, Chuangang
2014-10-01
Experimental and theoretical Triple Differential Cross Sections (TDCS) are presented for electron impact ionization-excitation of the 2 sσg state of H2 in the perpendicular plane. The excited 2 sσg state immediately dissociates and the alignment of the molecule is determined by detecting one of the fragments. Results are presented for three different alignments in the xy-plane (scattering plane is xz)-alignment along y-axis, x-axis, and 45° between the x- and y-axes for incident electron energies of 4, 10, and 25 eV and different scattered electron angles of 20° and 30° in the perpendicular plane. Theoretical M4DW (molecular 4-body distorted wave) results are compared to experimental data, and overall we found reasonably good agreement between experiment and theory. The Results show that (e,2e) cross sections for excitation-ionization depend strongly on the orientation of the H2 molecule.
NASA Astrophysics Data System (ADS)
Fan, C.; Koeniger, P.; Wang, H.; Frechen, M.
2009-04-01
Sclerochronology, the study of periodic increments in skeletal organisms, can decipher the life history and environmental records preserved in fossil shells. Although there have been a number of studies that apply isotopic analyses to shells in open ocean and fresh water, investigations for brackish environments are rare. One of the common inhabitants in estuaries is the Crassostrea oyster. Kirby et al. (1998) demonstrated a close correspondence between the ligamental increments of convex and concave bands and yearly ^18O cycles; Andrus and Crowe (2000) found a close correspondence between translucent growth bands on the cross-section of the hinge and yearly ^18O cycles. They conclude that the morphological features on hinge and growth bands on the cross-section are formed annually and can be used to determine accurately age and growth rate in this species. However, Surge et al. (2001) could not find that these morphologic features have seasonal significance in the C. virginica shells. Therefore, these concave ridges are not reliable independent proxies of seasonality. These studies were carried out with C. virginica shells; none was studied with nature C. gigas, which was widely distributed along the Pacific coastal area. C. gigas has been introduced from its native home to all over the world, ranging from North America to Australia and Europe; it has become an important commercial harvest in many of these places. Buried Holocene oyster shells of C. gigas were sampled from a huge buried oyster reef on the West of Bohai Sea, China. One of these shells was selected for high resolution micro-sampling and stable isotope analyses testing the assumption that C. gigas ligamental increments are annual in nature. We analyzed 236 consecutive samples from the shell to show that morphologic features both on hinge and cross-section are annual by comparing them to the ^18O profiles. We tested the assumption that the morphologic features of C.gigas are delineated by convex tops and concave bottoms on hinge and corresponding translucent growth bands on cross-section. The shell has 13.5 ligamental increments, based on 13.5 convex bands and 13 concave bottoms on hinge. Convex tops correspond to ^18O minima (summers), whereas concave bottoms correspond to ^18O maxima, which were formed during the low temperature of winter in the study area. We demonstrate that the ligamental increments of convex tops, concave bottoms and translucent growth bands in the studied C. gigas shell are suitable indicators of annual growth increments. The life spans, growth rates, and the timing of death can be determined from the ligament increments and isotope profiles of buried oyster shells.
NASA Astrophysics Data System (ADS)
Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.
2011-11-01
X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds, and jets.
Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A; Sarkar, Sisir K
2013-08-22
Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O. The spectral width decreases significantly by the addition of NaX in D2O (H2O) than that in the isotopically diluted water. Quantitative estimation, on the basis of integrated Raman intensity, revealed that the relative Raman cross section, σ(H)/σ(b) (σ(H) and σ(b) are the average Raman cross section of water in the first hydration shell of X(-) and in bulk, respectively), in D2O and H2O is higher than those in the respective isotopically diluted water. These results suggest that water in the hydration shell has reduced FR and intermolecular coupling compared to those in bulk. In the isotopically diluted water, the relative Raman cross section increases with increase in size of the halide ions (σ(H)/σ(b) = 0.6, 1.1, 1.5, and 1.9 for F(-), Cl(-), Br(-), and I(-), respectively), which is assignable to the enhancement of Raman cross section by charge transfer from halide ions to the hydrating water. Nevertheless, the experimentally determined σ(H)/σ(b) is lower than the calculated values obtained on the basis of the energy of the charge transfer state of water. The weak enhancement of σ(H)/σ(b) signifies that the charge transfer transition in the hydration shell of halide ions causes little change in the OD (OH) bond lengths of hydrating water.
NASA Astrophysics Data System (ADS)
Singh, P.; Sharma, M.; Shahi, J. S.; Mehta, D.; Singh, N.
2003-09-01
The L i ( i=1,2,3) subshell X-ray production (XRP) cross-sections were measured for 77Ir, 78Pt, 82Pb and 83Bi following direct ionization in the L i ( i=1,2,3) subshells by the 59.54 keV γ-rays and the L 3 subshell by the Br/Rb/Sr/Y K X-rays. The photon sources consisting of an 241Am source in (i) the direct excitation mode and (ii) the secondary excitation mode together with the KBr/RbNO 3/SrCO 3 /Y secondary exciter and an Si(Li) detector were used. The L i ( i=1,2,3) subshell fluorescence yields ( ωi) for these elements were deduced using the measured XRP cross-sections and the L i subshell photoionization cross-sections based on the Hartree-Fock-Slater model. The measured ω1 values are found to be higher upto 50% than those based on the relativistic Dirac-Hartree-Slater (RDHS) calculations, while the ω2 and ω3 values exhibit good agreement. The predicted jump in the RDHS based ω1 values from 77Ir to 78Pt due to onset of intense L 1-L 3M 4 CK transition is not observed.
NASA Technical Reports Server (NTRS)
Chlouber, Dean; O'Neill, Pat; Pollock, Jim
1990-01-01
A technique of predicting an upper bound on the rate at which single-event upsets due to ionizing radiation occur in semiconducting memory cells is described. The upper bound on the upset rate, which depends on the high-energy particle environment in earth orbit and accelerator cross-section data, is given by the product of an upper-bound linear energy-transfer spectrum and the mean cross section of the memory cell. Plots of the spectrum are given for low-inclination and polar orbits. An alternative expression for the exact upset rate is also presented. Both methods rely only on experimentally obtained cross-section data and are valid for sensitive bit regions having arbitrary shape.
Absolute cross sections for the ionization-excitation of helium by electron impact
NASA Astrophysics Data System (ADS)
Bellm, S.; Lower, J.; Weigold, E.; Bray, I.; Fursa, D. V.; Bartschat, K.; Harris, A. L.; Madison, D. H.
2008-09-01
In a recent publication we presented detailed experimental and theoretical results for the electron-impact-induced ionization of ground-state helium atoms. The purpose of that work was to refine theoretical approaches and provide further insight into the Coulomb four-body problem. Cross section ratios were presented for transitions leading to excited states, relative to those leading to the ground state, of the helium ion. We now build on that study by presenting individual relative triple-differential ionization cross sections (TDCSs) for an additional body of experimental data measured at lower values of scattered-electron energies. This has been facilitated through the development of new electron-gun optics which enables us to accurately characterize the spectrometer transmission at low energies. The experimental results are compared to calculations resulting from a number of different approaches. For ionization leading to He+(1s2)1S , cross sections are calculated by the highly accurate convergent close-coupling (CCC) method. The CCC data are used to place the relative experimental data on to an absolute scale. TDCSs describing transitions to the excited states are calculated through three different approaches, namely, through a hybrid distorted- wave+R -matrix (close-coupling) model, through the recently developed four-body distorted-wave model, and by a first Born approximation calculation. Comparison of the first- and second-order theories with experiment allows for the accuracy of the different theoretical approaches to be assessed and gives insight into which physical aspects of the problem are most important to accurately model.
Nuclear Proton-proton Elastic Scattering via the Trojan Horse Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumino, A.; Universita degli Studi di Enna 'Kore', Enna; Spitaleri, C.
2009-08-26
We present here an important test of the main feature of the Trojan Horse Method (THM), namely the suppression of Coulomb effects in the entrance channel due to off-energy-shell effects. This is done by measuring the THM p--p elastic scattering via the p+d{yields}p+p+n reaction at 4.7 and 5 MeV, corresponding to a p--p relative energy ranging from 80 to 670 keV. In contrast to the on-energy-shell (OES) case, the extracted p-p cross section does not exhibit the Coulomb-nuclear interference minimum due to the suppression of the Coulomb amplitude. This is confirmed by the half-off-energy shell (HOES) calculations and strengthened bymore » the agreement with the calculated OES nuclear cross sections.« less
Measurements of ionization states in warm dense aluminum with betatron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, M. Z.; Chen, Z.; Fourmaux, S.
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less
Measurements of ionization states in warm dense aluminum with betatron radiation
Mo, M. Z.; Chen, Z.; Fourmaux, S.; ...
2017-05-19
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less
Absolute cross section for electron-impact ionization of He (1 s 2 s 3S)
NASA Astrophysics Data System (ADS)
Génévriez, Matthieu; Jureta, Jozo J.; Defrance, Pierre; Urbain, Xavier
2017-07-01
We present an experimental determination of the electron-impact ionization cross section of the 1 s 2 s 3S state of helium, for which there is a serious long-lasting discrepancy between theory and experiment. A technique for the production of a fast, intense beam of helium in the 1 s 2 s 3S state only has been developed for this purpose, based on photodetachment of the He- anion. The cross section is measured using the animated crossed beam technique. The present results are much lower than the experimental data of Dixon et al. [J. Phys. B 9, 2617 (1976), 10.1088/0022-3700/9/15/013] and are in excellent agreement with the calculation of Fursa and Bray [J. Phys. B 36, 1663 (2003), 10.1088/0953-4075/36/8/317].
Offshell quantum electrodynamics
NASA Astrophysics Data System (ADS)
Land, Martin; Horwitz, Lawrence P.
2013-04-01
In this paper, we develop the quantum field theory of off-shell electromagnetism, and use it to calculate the Møller scattering cross-section. This calculation leads to qualitative deviations from the usual scattering cross-sections, which are, however, small effects, but may be visible at small angles near the forward direction.
NASA Astrophysics Data System (ADS)
Hell, Natalie
2017-03-01
K-shell transitions in astrophysically abundant metals and L-shell transitions in Fe group elements show characteristic signatures in the soft X-ray spectrum in the energy range 0.1-10 keV. These signatures have great diagnostic value for plasma parameters such as electron and ion temperatures and densities, and can thus help understand the physics controlling the energetic processes in astrophysical sources. This diagnostic power increases with advances in spectral resolution and effective area of the employed X-ray observatories. However, to make optimal use of the diagnostic potential - whether through global spectral modeling or through diagnostics from local modeling of individual lines - the underlying atomic physics has to be complete and well known. With the next generation of soft X-ray observatories featuring micro-calorimeters such as the SXS on Astro-H /Hitomi and the X-IFU on Athena, broadband high-resolution spectroscopy with large effective area will become more commonly available in the next decade. With these spectrometers, the accuracy of the plasma parameters derived from spectral modeling will be limited by the uncertainty of the reference atomic data rather than by instrumental factors, as is sometimes already the case for the high-resolution grating observations with Chandra-HETG and XMM-Newton-RGS. To take full advantage of the measured spectra, assessment of the accuracy of and improvements to the available atomic reference data are therefore important. Dedicated measurements in the laboratory are essential to benchmark the theoretical calculations providing the bulk of the reference data used in astrophysics. Experiments at the Lawrence Livermore National Laboratory electron beam ion traps (EBIT-I and SuperEBIT) have a long history of providing this service. In this work, I present new measurements of transition energies and absolute electron impact excitation cross sections geared towards currently open atomic physics data needs. First, I measured the energies of K α transitions in L-shell ions of Si and S at EBIT using the EBIT calorimeter spectrometer (ECS) with 4.5-5.0 eV resolution, i.e., a similar resolution to the Astro-H /Hitomi SXS soft X-ray spectrometer. While these lines will become interesting also for L-shell ions of other astrophysically abundant elements, they have been observed most prominently from L-shell ions of Si and S in the X-ray spectra of a variety of astrophysical sources. The measured line centers have an accuracy of 0.5 eV for the strong transitions and 1 eV for the weaker ones. This accuracy translates to Doppler shifts of less than 90 km s -1 , i.e., less than the calibration uncertainty of the Chandra high-energy transmission gratings. The measured line centers are identified with my own calculations with the Flexible Atomic Code (FAC) and compared to these and calculations by Palmeri et al. (2008). I demonstrate the impact of these measurements by re-evaluating Doppler shifts for the high-mass X-ray binaries Vela X-1 and Cyg X-1 with the new reference data. Using the high-resolution, imaging focusing spherical crystal spectrometer EBHiX with a quartz 101 crystal, I verified the results from the ECS measurements on K α transitions in N- through Li-like S. The measurement has a spectral resolution of better than 0.52 eV. The derived transition energies have an accuracy of 0.2 eV, corresponding to Doppler shifts of < 30 km s -1 , i.e., within the requirements set by the planned Athena X-ray observatory. Secondly, I used the EBHiX crystal spectrometer with a quartz 110 crystal in second order to measure the strongly blended K α spectra of M-shell Fe ions around 6.4 keV. Contributions to the 6.4 keV line complex from these ions are important for transient plasmas such as those in supernova remnants. While a simple FAC model of Cl- through F-like Fe suggested it should be possible to resolve major contributions from different charge states to this complex at a 2 eV resolution, the data did not allow us to identify any new lines, although the spectral resolution of this measurement was higher than in previous experiments. Thirdly, I measured absolute electron impact excitation (EIE) cross sections for He-like Fe line w and H-like Fe Ly α 1 and Ly α 2 at different electron energies and charge balances. The cross sections of the direct excitation lines are brought to an absolute scale by normalizing to the radiative recombination (RR) spectrum of the same ion. The direct excitation spectrum was measured with the low-energy pixels of the ECS with a spectral resolution of about 6 eV, while the RR spectrum was recorded with the ECS's thicker high-energy pixels with instrumental resolution of about 30 eV. The high-energy pixels thus allowed us, for the first time, to resolve the RR into the n = 2 shell of L-shell Fe ions at electron impact energies high enough to excite a K-shell electron in Fe ions. These measurements of absolute EIE cross sections using the ECS microcalorimeter at EBIT have accuracies on the 10% level, and therefore fulfill the requirements on atomic reference data identified by the astrophysics community. Benchmarking theoretical cross sections on this level tightens the constraints on important diagnostics for, e.g., elemental abundance measurements and resonance scattering in the high-resolution X-ray spectra of the Perseus galaxy cluster observed with Hitomi -SXS. Finally, the performance of the EBHiX crystal spectrometer at EBIT was evaluated for various quartz crystals and the ion temperatures of the ions trapped in EBIT were derived from thermal line broadening measured with EBHiX. The EBHiX's apability to measure the degree of linear polarization for X-ray transitions excited in EBIT was demonstrated for the H-like Mn Ly α line.
X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules
Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; ...
2013-05-24
Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm –3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less
X-Ray Emission from the Wolf-Rayet Bubble S 308
NASA Technical Reports Server (NTRS)
Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.
2012-01-01
The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant (Chu et al. 2003), map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a 22' in size central cavity and a shell thickness of approx. 8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at approx.0.43 keV and O VII at approx.0.5 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 approx.1.1 x 10(exp 6) K, T2 approx.13 x 10(exp 6) K), with a total X-ray luminosity approx.3 x 10(exp 33) erg/s at the assumed distance of 1.8 kpc. Qualitative comparison of the X-ray morphology of S 308 with the results of numerical simulations of wind-blown WR bubbles suggests a progenitor mass of 40 Stellar mass and an age in the WR phase approx.20,000 yrs. The X-ray luminosity predicted by simulatioms including the effects of heat conduction is in agreement with the observations, however, the simulated X-ray spectrum indicates generally hotter gas than is derived from the observations. We suggest that non-equilibrium ionization (NEI) may provide an explanation for this discrepancy.
Kinematic Study of Ionized and Molecular Gases in Ultracompact HII Region in Monoceros R2
NASA Astrophysics Data System (ADS)
Kim, Hwihyun; Lacy, John H.; Jaffe, Daniel Thomas
2017-06-01
Monoceros R2 (Mon R2) is an UltraCompact HII region (UCHII) surrounded by several PhotoDissociation Regions (PDRs). It is an excellent example to investigate the chemistry and physics of early stage of massive star formation due to its proximity (830pc) and brightness. Previous studies suggest that the wind from the star holds the ionized gas up against the dense molecular core and the higher pressure at the head drives the ionized gas along the shell. In order for the model to work, there should be evidence for dense molecular gas along the shell walls, irradiated by the UCHII region and perhaps entrained into the flow along the walls.We obtained the Immersion Grating INfrared Spectrograph (IGRINS) spectra of Mon R2 to study the kinematic patterns in the areas where ionized and molecular gases interact. The position-velocity maps from the high resolution (R~45,000) H- and K-band (1.4-2.5μm) IGRINS spectra demonstrate that the ionized gases (Brackett and Pfund series, He and Fe emission lines; Δv ≈ 40km/s) flow along the walls of the surrounding clouds. This is consistent with the model by Zhu et al. (2008). In the PV maps of the H2 emission lines there is no obvious motion (Δv ≈ 10km/s) of the molecular hydrogen right at the ionization boundary. This implies that the molecular gas is not taking part in the flow as the ionized gas is moving along the cavity walls.This work used the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF; grant AST-1229522), of the University of Texas at Austin, and of the Korean GMTProject of KASI.
X-ray scattering measurements on imploding CH spheres at the National Ignition Facility
Kraus, D.; Chapman, D. A.; Kritcher, A. L.; ...
2016-07-21
In this study, we have performed spectrally resolved x-ray scattering measurements on highly compressed polystyrene at pressures of several tens of TPa (100 Mbar) created by spherically convergent shocks at the National Ignition Facility. Scattering data of line radiation at 9.0 keV were recorded from the dense plasma shortly after shock coalescence. Accounting for spatial gradients, opacity effects, and source broadening, we demonstrate the sensitivity of the elastic scattering component to carbon K -shell ionization while at the same time constraining the temperature of the dense plasma. Finally, for six times compressed polystyrene, we find an average temperature of 86more » eV and carbon ionization state of 4.9, indicating that widely used ionization models need revision in order to be suitable for the extreme states of matter tested in our experiment.« less
Davids, Mathias; Schad, Lothar R; Wald, Lawrence L; Guérin, Bastien
2016-10-01
To design short parallel transmission (pTx) pulses for excitation of arbitrary three-dimensional (3D) magnetization patterns. We propose a joint optimization of the pTx radiofrequency (RF) and gradient waveforms for excitation of arbitrary 3D magnetization patterns. Our optimization of the gradient waveforms is based on the parameterization of k-space trajectories (3D shells, stack-of-spirals, and cross) using a small number of shape parameters that are well-suited for optimization. The resulting trajectories are smooth and sample k-space efficiently with few turns while using the gradient system at maximum performance. Within each iteration of the k-space trajectory optimization, we solve a small tip angle least-squares RF pulse design problem. Our RF pulse optimization framework was evaluated both in Bloch simulations and experiments on a 7T scanner with eight transmit channels. Using an optimized 3D cross (shells) trajectory, we were able to excite a cube shape (brain shape) with 3.4% (6.2%) normalized root-mean-square error in less than 5 ms using eight pTx channels and a clinical gradient system (Gmax = 40 mT/m, Smax = 150 T/m/s). This compared with 4.7% (41.2%) error for the unoptimized 3D cross (shells) trajectory. Incorporation of B0 robustness in the pulse design significantly altered the k-space trajectory solutions. Our joint gradient and RF optimization approach yields excellent excitation of 3D cube and brain shapes in less than 5 ms, which can be used for reduced field of view imaging and fat suppression in spectroscopy by excitation of the brain only. Magn Reson Med 76:1170-1182, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Electron-Impact Ionization and Dissociative Ionization of Biomolecules
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.
2006-01-01
It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.
Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene
2017-07-11
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less
Single ionization and capture cross sections from biological molecules by bare projectile impact*
NASA Astrophysics Data System (ADS)
Quinto, Michele A.; Monti, Juan M.; Montenegro, Pablo D.; Fojón, Omar A.; Champion, Christophe; Rivarola, Roberto D.
2017-02-01
We report calculations on single differential and total cross sections for single ionization and single electron capture from biological targets, namely, vapor water and DNA nucleobasese molecules, by bare projectile impact: H+, He2+, and C6+. They are performed within the Continuum Distorted Wave - Eikonal Initial State approximation and compared to several existing experimental data. This study is oriented to the obtention of a reliable set of theoretical data to be used as input in a Monte Carlo code destined to micro- and nano- dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Al-Hagan, O.; Madison, D. H.
A comprehensive theoretical and experimental investigation of the triple differential cross sections arising from the electron-impact ionization of molecular hydrogen is made, at an incident electron energy of 35.4 eV, for cases where the outgoing electrons have equal and unequal energies, and for a range of experimental geometries. Generally, good agreement is found between two theoretical approaches and experiment, with the best agreement arising for intermediate geometries with large gun angles and for the perpendicular geometry.
Ion formation by electron impact
NASA Astrophysics Data System (ADS)
Srivastava, Santosh K.
1988-11-01
Dissociative attachment and polar dissociation cross sections were measured for the following molecules: HC1, NO, N2O, C6H6, SiH4, Si2H6, and LiH. Direct ionization and dissociative ionization cross sections were determined for the following molecules: H2, D2, N2, O2, He, Ne, Ar, Kr, Xe, H2O, Co, CO2, CH4, SiH4, Sih4, Si2H6, N2*, and NH3. An experimental apparatus for a pulsed extraction technique was fabricated and successfully tested.
NASA Astrophysics Data System (ADS)
Beiersdorfer, P.; Bitter, M.; Hey, D.; Reed, K. J.
2002-09-01
We have identified the dipole-forbidden 1s2s2p 4P5/2-->1s22s 2S1/2 transition in lithiumlike Ar15+ in high-resolution K-shell x-ray emission spectra recorded at the Livermore EBIT-II electron-beam ion trap and the Princeton National Spherical Tokamak Experiment. Unlike other Ar15+ satellite lines, which can be excited by dielectronic recombination, the line is exclusively excited by electron-impact excitation. Its predicted radiative rate is comparable to that of the well-known 1s2p 3P1-->1s2 1S0 magnetic quadrupole transition in heliumlike Ar16+. As a result, it can also only be observed in low-density plasma. We present calculations of the electron-impact excitation cross sections of the innershell excited Ar15+ satellite lines, including the magnetic sublevels needed for calculating the linear line polarization. We compare these calculations to the relative magnitudes of the observed 1s2s2p-->1s22s transitions and find good agreement, confirming the identification of the lithiumlike 1s2s2p 4P5/2-->1s22s 2S1/2 magnetic quadrupole line.
Trends in Ionization Energy of Transition-Metal Elements
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2005-01-01
A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…
Photoionization of the valence shells of the neutral tungsten atom
NASA Astrophysics Data System (ADS)
Ballance, C. P.; McLaughlin, B. M.
2015-04-01
Results from large-scale theoretical cross section calculations for the total photoionization (PI) of the 4f, 5s, 5p and 6s orbitals of the neutral tungsten atom using the Dirac Coulomb R-matrix approximation (DARC: Dirac-atomic R-matrix codes) are presented. Comparisons are made with previous theoretical methods and prior experimental measurements. In previous experiments a time-resolved dual laser approach was employed for the photo-absorption of metal vapours and photo-absorption measurements on tungsten in a solid, using synchrotron radiation. The lowest ground state level of neutral tungsten is 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J}, with J = 0, and requires only a single dipole matrix for PI. To make a meaningful comparison with existing experimental measurements, we statistically average the large-scale theoretical PI cross sections from the levels associated with the ground state 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J} (J = 0, 1, 2, 3, 4) levels and the 5{{d}5}6{{s} 7}{{S}3} excited metastable level. As the experiments have a self-evident metastable component in their ground state measurement, averaging over the initial levels allows for a more consistent and realistic comparison to be made. In the wider context, the absence of many detailed electron-impact excitation (EIE) experiments for tungsten and its multi-charged ion stages allows current PI measurements and theory to provide a road-map for future EIE, ionization and di-electronic cross section calculations by identifying the dominant resonance structure and features across an energy range of hundreds of eV.
NASA Astrophysics Data System (ADS)
Ozer, Zehra N.; Ali, Esam; Dogan, Mevlut; Yavuz, Murat; Alwan, Osman; Naja, Adnan; Chuluunbaatar, Ochbadrakh; Joulakian, Boghos B.; Ning, Chuan-Gang; Colgan, James; Madison, Don
2016-06-01
Experimental and theoretical triple differential cross sections for intermediate-energy (250 eV) electron-impact single ionization of the CO2 are presented for three fixed projectile scattering angles. Results are presented for ionization of the outermost 1 πg molecular orbital of C O2 in a coplanar asymmetric geometry. The experimental data are compared to predictions from the three-center Coulomb continuum approximation for triatomic targets, and the molecular three-body distorted wave (M3DW) model. It is observed that while both theories are in reasonable qualitative agreement with experiment, the M3DW is in the best overall agreement with experiment.
Electron impact ionization dynamics of para-benzoquinone
NASA Astrophysics Data System (ADS)
Jones, D. B.; Ali, E.; Ning, C. G.; Colgan, J.; Ingólfsson, O.; Madison, D. H.; Brunger, M. J.
2016-10-01
Triple differential cross sections (TDCSs) for the electron impact ionization of the unresolved combination of the 4 highest occupied molecular orbitals (4b3g, 5b2u, 1b1g, and 2b3u) of para-benzoquinone are reported. These were obtained in an asymmetric coplanar geometry with the scattered electron being observed at the angles -7.5°, -10.0°, -12.5° and -15.0°. The experimental cross sections are compared to theoretical calculations performed at the molecular 3-body distorted wave level, with a marginal level of agreement between them being found. The character of the ionized orbitals, through calculated momentum profiles, provides some qualitative interpretation for the measured angular distributions of the TDCS.
X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.
The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43more » keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.« less
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays.
Rudenko, A; Inhester, L; Hanasaki, K; Li, X; Robatjazi, S J; Erk, B; Boll, R; Toyota, K; Hao, Y; Vendrell, O; Bomme, C; Savelyev, E; Rudek, B; Foucar, L; Southworth, S H; Lehmann, C S; Kraessig, B; Marchenko, T; Simon, M; Ueda, K; Ferguson, K R; Bucher, M; Gorkhover, T; Carron, S; Alonso-Mori, R; Koglin, J E; Correa, J; Williams, G J; Boutet, S; Young, L; Bostedt, C; Son, S-K; Santra, R; Rolles, D
2017-06-01
X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays
Rudenko, A.; Inhester, L.; Hanasaki, K.; ...
2017-05-31
We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Fnally, our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.« less
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudenko, A.; Inhester, L.; Hanasaki, K.
We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Fnally, our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.« less
NASA Technical Reports Server (NTRS)
Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard
2010-01-01
Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.
Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
Hu, S. X.
2017-08-10
Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less
Coulomb suppression in the low-energy p-p elastic scattering via the Trojan Horse Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumino, A.; Universita degli Studi di Enna 'Kore', Enna; Spitaleri, C.
2010-11-24
We present here an important test of the main feature of the Trojan Horse Method (THM), namely the suppression of Coulomb effects in the entrance channel due to off-energy-shell effects. This is done by measuring the THM p-p elastic scattering via the p+d{yields}p+p+n reaction at 4.7 and 5 MeV, corresponding to a p-p relative energy ranging from 80 to 670 keV. In contrast to the on-energy-shell (OES) case, the extracted p-p cross section does not exhibit the Coulomb-nuclear interference minimum due to the suppression of the Coulomb amplitude. This is confirmed by the half-off-energy shell (HOES) calculations and strengthened bymore » the agreement with the calculated OES nuclear cross sections.« less
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
A procedure for the structural analysis of stiffened shells of revolution is presented. A digital computer program based on the Love-Reissner first order shell theory was developed. The computer program can analyze orthotropic thin shells of revolution, subjected to unsymmetric distributed loading or concentrated line loads, as well as thermal strains. The geometrical shapes of the shells which may be analyzed are described. The shell wall cross section can be a sheet, sandwich, or reinforced sheet or sandwich. General stiffness input options are also available.
Exchange and Inelastic OH(+) + H Collisions on the Doublet and Quartet Electronic States.
Bulut, Niyazi; Lique, François; Roncero, Octavio
2015-12-17
The exchange and inelastic state-to-state cross sections for the OH(+) + H collisions are computed from wave packet calculations using the doublet and quartet ground electronic potential energy surface (PES) correlating to the open shell reactants, for collision energies in the range of 1 meV to 0.7 eV. The doublet PES presents a deep insertion well, of ≈6 eV, but the exchange reaction has a rather low probability, showing that the mechanism is not statistical. This well is also responsible of a rather high rotational energy transfer, which makes the rigid-rotor approach overestimate the cross section for low Δj transitions and for high collisonal energies. The quartet PES, with a much shallower well, also presents a low exchange reaction cross section, but the inelastic state-to-state cross sections are very well reproduced by rigid-rotor calculations. When the electronic partition is used to obtain the total state-to-state cross section, the contribution of the doublet state becomes small, and the resulting total cross sections become close to those obtained for the quartet state. Thus, the total (quartet and doublet) cross sections for this open shell system can be reproduced rather satisfactorily by those obtained with the rigid-rotor approximation on the quartet state. Finally, we compare the new OH(+)-H cross sections with OH(+)-He ones recently computed. We found significant differences, especially for transitions with large Δj showing that specific OH(+)-H calculations had to be performed to accurately analyze the OH(+) emission from interstellar molecular clouds.
Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires
NASA Astrophysics Data System (ADS)
Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel
2017-06-01
We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.
NASA Astrophysics Data System (ADS)
Gupta, Dhanoj; Choi, Heechol; Song, Mi-Young; Karwasz, Grzegorz P.; Yoon, Jung-Sik
2017-05-01
The total ionization cross section for C2Fx (x = 1 - 6) and C3Fx (x = 1 - 8) fluorocarbon species are studied with the Binary-Encounter Bethe (BEB) model using various orbital parameters calculated from restricted/unrestricted Hartree-Fock (RHF/UHF) and Density Functional Theory (DFT). All the targets were optimized for their minimal structures and energies with several ab-initio methods with the aug-cc-pVTZ basis set. Among them, the present results with RHF/UHF orbital energies showed good agreement with the experimental results for stable targets C2F6, C2F4, C3F6 and C3F8. The results with the DFT (ωB97X/ωB97X-D) showed a reasonable agreement with the recent calculation of Bull et al. [J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88, 062710 (2013)] for C2F6, C3F6 and C3F8 targets. The ionization cross section for C2F, C2F2, C2F3, C3F, C3F2, C3F3, C3F4, C3F5 and C3F7 were computed for the first time in the present study. We have also computed the vertical ionization potentials and polarizability for all the targets and compared them with other experimental and theoretical values. A good agreement is found between the present and the previous results. The calculated polarizability in turn is used to study the correlation with maximum ionization cross section and in general a good correlation is found among them, confirming the consistency and reliability of the present data. The cross section data reported in this article are very important for plasma modeling especially related to fluorocarbon plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
NASA Astrophysics Data System (ADS)
Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.
2018-01-01
We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.
Response of moderately thick laminated cross-ply composite shells subjected to random excitation
NASA Technical Reports Server (NTRS)
Elishakoff, Isaak; Cederbaum, Gabriel; Librescu, Liviu
1989-01-01
This study deals with the dynamic response of transverse shear deformable laminated shells subjected to random excitation. The analysis encompasses the following problems: (1) the dynamic response of circular cylindrical shells of finite length excited by an axisymmetric uniform ring loading, stationary in time, and (2) the response of spherical and cylindrical panels subjected to stationary random loadings with uniform spatial distribution. The associated equations governing the structural theory of shells are derived upon discarding the classical Love-Kirchhoff (L-K) assumptions. In this sense, the theory is formulated in the framework of the first-order transverse shear deformation theory (FSDT).
NASA Astrophysics Data System (ADS)
Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek; Nyk, Marcin
2015-11-01
Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ2Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.
The multistate impact parameter method for molecular charge exchange in nitrogen
NASA Technical Reports Server (NTRS)
Ioup, J. W.
1980-01-01
The multistate impact parameter method is applied to the calculation of total cross sections for low energy change transfer between nitrogen ions and nitrogen molecules. Experimental data showing the relationships between total cross section and ion energy for various pressures and electron ionization energies were obtained. Calculated and experimental cross section values from the work are compared with the experimental and theoretical results of other investigators.
NASA Technical Reports Server (NTRS)
Moore, E. N.; Altick, P. L.
1972-01-01
The research performed is briefly reviewed. A simple method was developed for the calculation of continuum states of atoms when autoionization is present. The method was employed to give the first theoretical cross section for beryllium and magnesium; the results indicate that the values used previously at threshold were sometimes seriously in error. These threshold values have potential applications in astrophysical abundance estimates.
K-shell Photoabsorption of Oxygen Ions
NASA Technical Reports Server (NTRS)
Garcia, J.; Mendoza, C.; Bautista, M. A.; Gorczyca, T. W.; Kallman, T. R.; Palmeri, P.
2005-01-01
The high spectral resolutions of the Chandra and XMM-Newton X-ray observatories have unveiled the useful diagnostic possibilities of oxygen K absorption. To mention a few, strong O VII and O VIII edges are almost ubiquitous in the spectra of Seyfert 1 galaxies which have been used by Lee et al. (2001) to predict of a warm dust absorber along the line of sight; although this conclusion has been criticized in the light of a data reanalysis (SA0 et al. 2003), Steenbrugge et al. (2003) have detected inner-shell transitions of O III-O VI in the spectrum of NGC 5548 that point to a warm absorber that spans three orders of magnitude in ionization parameter. Moreover, Behar et al. (2003) have stressed that, in the case of both Seyfert 1 and Seyfert 2 galaxies, a broad range of oxygen charge states are usually observed along the line of sight that must be fitted simultaneously, and may imply strong density gradients of 2-4 orders of magnitude over short distances.
Sanitation of chicken eggs by ionizing radiation: HACCP and inactivation studies
NASA Astrophysics Data System (ADS)
Verde, S. Cabo; Tenreiro, R.; Botelho, M. L.
2004-09-01
The aim of this study is to develop the application of irradiation technology to chicken eggs in order to get a product free of pathogenic microorganisms. Bioburden values of eggs from chickens of different ages ( n=150) were found to not be significantly different ( p<0.05) and an average value of (2.0±0.3). 10 5 cfu/egg was obtained for the shell. Two major microbial groups were characterized in the egg's natural microbiota, no Salmonella or Campylobacter were detected. HACCP studies indicated the feed as a critical point. Dosimetry studies were carried out in a γ facility to find the best geometry and dose rate for irradiation. Whole eggs were artificially contaminated with reference strains of Salmonella typhimurium, Salmonella enteritidis, Campylobacter coli and Campylobacter jejuni and irradiated in the γ facility at sub-lethal doses (0.2-1 kGy) with a dose rate of 1.0 kGy/h. Dvalue varied between 0.31-0.26 kGy and 0.20-0.19 kGy in S. typhimurium and S. enteritidis, and between 0.21-0.18 kGy and 0.07-0.09 in C. coli and C. jejuni, for shell and yolk+white. Using sub-lethal doses up to 5 kGy, the Dvalue of natural microbiota in whole eggs was 1.29 kGy. Results show that low irradiation doses could guarantee egg sanitation.
Search for Dark Matter Interactions using Ionization Yield in Liquid Xenon
NASA Astrophysics Data System (ADS)
Uvarov, Sergey
Cosmological observations overwhelmingly support the existence of dark matter which constitutes 87% of the universe's total mass. Weakly Interacting Massive Particles (WIMPs) are a prime candidate for dark matter, and the Large Underground Xenon (LUX) experiment aims to a direct-detection of a WIMP-nucleon interaction. The LUX detector is a dual-phase xenon time-projection chamber housed 4,850 feet underground at Sanford Underground Research Facility in Lead, South Dakota. We present the ionization-only analysis of the LUX 2013 WIMP search data. In the 1.04 x 104 kg-days exposure, thirty events were observed out of the 24.8 expected from radioactive backgrounds. We employ a cut-and-count method to set a 1-sided 90% C.L. upper limit for spin-independent WIMP-nucleon cross-sections. A zero charge yield for nuclear-recoils below 0.7 keV is included upper limit calculation. This ionization-only analysis excludes an unexplored region of WIMP-nucleon cross-section for low-mass WIMPs achieving 1.56 x 10-43 cm2 WIMP-nucleon cross-section exclusion for a 5.1 GeV/ c2 WIMP.
Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.
Watts, Kristen; Lagalante, Anthony
2018-06-06
Art conservation science is in need of a relatively nondestructive way of rapidly identifying the binding media within a painting cross-section and isolating binding media to specific layers within the cross-section. Knowledge of the stratigraphy of cross-sections can be helpful for removing possible unoriginal paint layers on the artistic work. Desorption electrospray ionization-mass spectrometry (DESI-MS) was used in ambient mode to study cross-sections from mock-up layered paint samples and samples from a 17th century baroque painting. The DESI spray was raster scanned perpendicular to the cross-section layers to maximize lateral resolution then analyzed with a triple quadrupole mass analyzer in linear ion trap mode. From these scans, isobaric mass maps were created to map the locations of masses indicative of particular binding media onto the cross-sections. Line paint-outs of pigments in different binding media showed specific and unique ions to distinguish between the modern acrylic media and the lipid containing binding media. This included: OP (EO) 9 surfactant in positive ESI for acrylic (m/z 621), and oleic (m/z 281), stearic (m/z 283), and azelaic (m/z 187) acids in negative ESI for oil and egg tempera. DESI-MS maps of mock-up cross-sections of layered pigmented binding media showed correlation between these ions and the layers with a spatial resolution of 100 μm. DESI-MS is effective in monitoring binding media within an intact painting cross-section via mass spectrometric methods. This includes distinguishing between lipid-containing and modern binding materials present in a known mockup cross section matrix as well as identifying lipid binding media in a 17th century baroque era painting. This article is protected by copyright. All rights reserved.
High redshift quasars and high metallicities
NASA Technical Reports Server (NTRS)
Ferland, Gary J.
1997-01-01
A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.
Ionizing Collisions of Electrons with Radical Species OH, H2 O2 and HO2; Theoretical Calculations
NASA Astrophysics Data System (ADS)
Joshipura, K. N.; Pandya, S. H.; Vaishnav, B. G.; Patel, U. R.
2016-05-01
In this paper we present our calculated total ionization cross sections (TICS) of electron impact on radical targets OH, H2 O2 and HO2 at energies from threshold to 2000 eV. Reactive species such as these pose difficulties in measurements of electron scattering cross sections. No measured data have been reported in this regard except an isolated TICS measurement on OH radical, and hence the present work on the title radicals hold significance. These radical species are present in an environment in which water molecules undergo dissociation (neutral or ionic) in interactions with photons or electrons. The embedding environments could be quite diverse, ranging from our atmosphere to membranes of living cells. Ionization of OH, H2 O2 or HO2 can give rise to further chemistry in the relevant bulk medium. Therefore, it is appropriate and meaningful to examine electron impact ionization of these radicals in comparison with that of water molecules, for which accurate da are available. For the OH target single-centre scattering calculations are performed by starting with a 4-term complex potential, that describes simultaneous elastic plus inelastic scattering. TICS are obtained from the total inelastic cross sections in the complex scattering potential - ionization contribution formalism , a well established method. For H2 O2 and HO2 targets, we employ the additivity rule with overlap or screening corrections. Detailed results will be presented in the Conference.
A Binary-Encounter-Bethe Approach to Simulate DNA Damage by the Direct Effect
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2013-01-01
The DNA damage is of crucial importance in the understanding of the effects of ionizing radiation. The main mechanisms of DNA damage are by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research in this area, many questions on the formation of DNA damage remains. To refine existing DNA damage models, an approach based on the Binary-Encounter-Bethe (BEB) model was developed[1]. This model calculates differential cross sections for ionization of the molecular orbitals of the DNA bases, sugars and phosphates using the electron binding energy, the mean kinetic energy and the occupancy number of the orbital. This cross section has an analytic form which is quite convenient to use and allows the sampling of the energy loss occurring during an ionization event. To simulate the radiation track structure, the code RITRACKS developed at the NASA Johnson Space Center is used[2]. This code calculates all the energy deposition events and the formation of the radiolytic species by the ion and the secondary electrons as well. We have also developed a technique to use the integrated BEB cross section for the bases, sugar and phosphates in the radiation transport code RITRACKS. These techniques should allow the simulation of DNA damage by ionizing radiation, and understanding of the formation of double-strand breaks caused by clustered damage in different conditions.
Linares, Mathieu; Stafström, Sven; Rinkevicius, Zilvinas; Ågren, Hans; Norman, Patrick
2011-05-12
A presentation of the complex polarization propagator in the restricted open-shell self-consistent field approximation is given. It rests on a formulation of a resonant-convergent, first-order polarization propagator approach that makes it possible to directly calculate the X-ray absorption cross section at a particular frequency without explicitly addressing the excited states. The quality of the predicted X-ray spectra relates only to the type of density functional applied without any separate treatment of dynamical relaxation effects. The method is applied to the calculation of the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine. Comparison is made between the spectra of the radicals and those of the corresponding cations and anions to assess the effect of the increase of electron charge in the frontier orbital. The method offers the possibility for unique assignment of symmetry-independent atoms. The overall excellent spectral agreement motivates the application of the method as a routine precise tool for analyzing X-ray absorption of large systems of technological interest.
Normal Modes of Vibration of the PHALANX Gun
1993-06-01
Clamps Bricks, Thin Shells, Rigid Elements Mid-Barrel Clamps Bricks, Rigid Elements Barrels Beams with tubular cross-section Stub Rotor Bricks, Thin...Shells Rotor Bricks Needle Bearing Bricks, Springs Casing Thin Shells Thrust Bearing Bricks, Springs Recoil Adapters Bricks, Rigid Elements, Springs... rigid elements were used to connect the barrels to the clamps and stub rotor and the recoil adapter springs to 48 the gun body. "End release codes
Electron- and proton-induced ionization of pyrimidine
Champion, Christophe; Quinto, Michele; Weck, Philippe F
2015-03-27
This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less
NASA Astrophysics Data System (ADS)
Winter, Thomas G.; Alston, Steven G.
1992-02-01
Cross sections have been determined for electron transfer and ionization in collisions between protons and He+ ions at proton energies from several hundred kilo-electron-volts to 2 MeV. A coupled-Sturmian approach is taken, extending the work of Winter [Phys. Rev. A 35, 3799 (1987)] and Stodden et al. [Phys. Rev. A 41, 1281 (1990)] to high energies where perturbative approaches are expected to be valid. An explicit connection is made with the first-order Born approximation for ionization and the impulse version of the distorted, strong-potential Born approximation for electron transfer. The capture cross section is shown to be affected by the presence of target basis functions of positive energy near v2/2, corresponding to the Thomas mechanism.
Majorana states in prismatic core-shell nanowires
NASA Astrophysics Data System (ADS)
Manolescu, Andrei; Sitek, Anna; Osca, Javier; Serra, Llorenç; Gudmundsson, Vidar; Stanescu, Tudor Dan
2017-09-01
We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.
A coincidence study of electron and positron impact ionization of Ar (3p) at 1 keV
NASA Astrophysics Data System (ADS)
Campeanu, Radu I.; Walters, James H. R.; Whelan, Colm T.
2015-10-01
Distorted-wave calculations of the triple differential cross section (TDCS) are presented for electron and positron impact ionization of Ar(3p) in coplanar asymmetric geometry at an impact energy of 1 keV and are compared with a recent experiment. The experiment indicates that the positron TDCS is generally larger than the equivalent electron TDCS. It is shown that the magnitude of the TDCS is extremely sensitive to the energy of the ejected electron and that only when the cross section is averaged over energy do we get a reasonable agreement with experiment.
Absolute single-photoionization cross sections of Se 2 + : Experiment and theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macaluso, D. A.; Aguilar, A.; Kilcoyne, A. L. D.
2015-12-28
Absolute single-photoionization cross-section measurements for Se 2+ ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams photo-ion technique. Measurements were made at a photon energy resolution of 24 ± 3 meV in the photon energy range 23.5-42.5 eV, spanning the ground state and low-lying metastable state ionization thresholds. Here, to clearly resolve the resonant structure near the ground-state threshold, high-resolution measurements were made from 30.0 to 31.9 eV at a photon energy resolution of 6.7 ± 0.7 meV. Numerous resonance features observed in the experimental spectra are assigned and their energies and quantummore » defects tabulated. The high-resolution cross-section measurements are compared with large-scale, state-of-the-art theoretical cross-section calculations obtained from the Dirac Coulomb R -matrix method. Suitable agreement is obtained over the entire photon energy range investigated. In conclusion, these results are an experimental determination of the absolute photoionization cross section of doubly ionized selenium and include a detailed analysis of the photoionization resonance spectrum of this ion.« less
Regan, S. P.; Epstein, R.; Hammel, B. A.; ...
2012-03-30
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Epstein, R.; Hammel, B. A.
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
Observations of the Gum Nebula with a Fabry-Perot spectrometer
NASA Technical Reports Server (NTRS)
Reynolds, R. J.
1976-01-01
Scans have been made of H-alpha, 6584-A forbidden N II, 5007-A forbidden O III, and 5876-A He I emissions in selected directions in the Gum Nebula. Analyses of the line profiles and line intensities indicate that much of the emitting gas in the Gum Nebula is confined to an expanding shell which has a radius of about 125 pc, an expansion velocity of approximately 20 km/s, an emission measure which ranges from about 15 units to about 500 units, and a temperature near 11,000 K. The ultraviolet flux from zeta Pup and gamma-2 Vel appears to be capable of producing most of the observed ionization, although the origin of the shell structure and high expansion velocity is not certain.-
PHD TUTORIAL: A complete numerical approach to electron hydrogen collisions
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.
2006-11-01
This tutorial presents an extensive computational study of electron-impact scattering and ionization of atomic hydrogen and hydrogenic ions, through the solution of the non-relativistic Schrödinger equation in coordinate space using propagating exterior complex scaling (PECS). It details the complete numerical and computational development of the PECS method, which enables highly computationally-efficient solution of these collision systems. Benchmark results are presented for a complete range of electron-hydrogen collisions, including discrete elastic and inelastic scattering both below and above the ionization threshold energy, very low-energy ionizing collisions through to moderately high-energy ionizing collisions, ground-state and excited-state targets and charged hydrogenic targets with Z <= 4. Total ionization cross sections through to fully differential cross sections, both in-plane and out-of-plane, are given and are found to be in excellent accord with other state-of-the-art methods and measurements, where available. We also review our recent confirmation (Bartlett and Stelbovics 2004 Phys. Rev. Lett. 93 233201) of the Wannier and related threshold laws for e-H collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Sanjiv, E-mail: sanjivpurichd@yahoo.com
The intensity ratios, I{sub Lk}/I{sub Lα1} (k=l,η,α{sub 2},β{sub 1},β{sub 2,15},β{sub 3},β{sub 4},β{sub 5,7},β{sub 6},β{sub 9,10},γ{sub 1,5},γ{sub 6,8},γ{sub 2,3},γ{sub 4}) and I{sub Lj}/I{sub Lα} (j=β,γ), have been evaluated at incident photon energies across the L{sub i} (i=1–3) absorption edge energies of all the elements with 35≤Z≤92. Use is made of what are currently considered to be more reliable theoretical data sets of different physical parameters, namely, the L{sub i} (i=1–3) sub-shell photoionization cross sections based on the relativistic Hartree–Fock–Slater (RHFS) model, the X-ray emission rates based on the Dirac–Fock model, and the fluorescence and Coster–Kronig yields based on the Dirac–Hartree–Slater model.more » In addition, the Lα{sub 1} X-ray production cross sections for different elements at various incident photon energies have been tabulated so as to facilitate the evaluation of production cross sections for different resolved L X-ray components from the tabulated intensity ratios. Further, to assist evaluation of the prominent (L{sub i}−S{sub j}) (S{sub j}=M{sub j}, N{sub j} and i=1–3, j=1–7) resonant Raman scattered (RRS) peak energies for an element at a given incident photon energy (below the L{sub i} sub-shell absorption edge), the neutral-atom electron binding energies based on the relaxed orbital RHFS calculations are also listed so as to enable identification of the RRS peaks, which can overlap with the fluorescent X-ray lines. -- Highlights: •The L X-ray relative intensities and Lα{sub 1} XRP cross sections are evaluated using physical parameters based on the IPA models. •Comparison of the intensity ratios evaluated using the DHS and DF models based photoionization cross sections is presented. •Importance of many body effects including electron exchange effects is highlighted.« less
NASA Astrophysics Data System (ADS)
Hollstein, Maximilian; Santra, Robin; Pfannkuche, Daniela
2017-05-01
We theoretically investigate charge migration following prompt double ionization. Thereby, we extend the concept of correlation-driven charge migration, which was introduced by Cederbaum and coworkers for single ionization [Chem. Phys. Lett. 307, 205 (1999), 10.1016/S0009-2614(99)00508-4], to doubly ionized molecules. This allows us to demonstrate that compared to singly ionized molecules, in multiply ionized molecules, electron dynamics originating from electronic relaxation and correlation are particularly prominent. In addition, we also discuss how these correlation-driven electron dynamics might be evidenced and traced experimentally using attosecond transient absorption spectroscopy. For this purpose, we determine the time-resolved absorption cross section and find that the correlated electron dynamics discussed are reflected in it with exceptionally great detail. Strikingly, we find that features in the cross section can be traced back to electron hole populations and time-dependent partial charges and hence, can be interpreted with surprising ease. By taking advantage of element-specific core-to-valence transitions even atomic spatial resolution can be achieved. Thus, with the theoretical considerations presented, not only do we predict particularly diverse and correlated electron dynamics in molecules to follow prompt multiple ionization but we also identify a promising route towards their experimental investigation.
Free Vibrations of Nonthin Elliptic Cylindrical Shells of Variable Thickness
NASA Astrophysics Data System (ADS)
Grigorenko, A. Ya.; Efimova, T. L.; Korotkikh, Yu. A.
2017-11-01
The problem of the free vibrations of nonthin elliptic cylindrical shells of variable thickness under various boundary conditions is solved using the refined Timoshenko-Mindlin theory. To solve the problem, an effective numerical approach based on the spline-approximation and discrete-orthogonalization methods is used. The effect of the cross-sectional shape, thickness variation law, material properties, and boundary conditions on the natural frequency spectrum of the shells is analyzed.
The Binary Central Star of the Planetary Nebula A35
NASA Astrophysics Data System (ADS)
Herald, J. E.; Bianchi, L.
2002-11-01
Using new Far Ultraviolet Spectroscopic Explorer (FUSE) observations in conjunction with Space Telescope Imaging Spectrograph (STIS) and International Ultraviolet Explorer archive data, we have modeled both components of the binary central star of the planetary nebula A35. The white dwarf (the ionizing star) was modeled using the non-LTE, plane-parallel code TLUSTY. We find its parameters to be Teff=80+/-3 kK, logg=7.70+0.13-0.18 cm s-2, and [He/H]=-4+/-1 and C, N, O, Si, and Fe to be underabundant by 2 orders of magnitude with respect to their solar values. This confirms its classification as a DAO white dwarf, and using the Hipparcos distance D=163 pc, we derive a radius of RWD~=1.65×10-2 Rsolar and a mass of M~=0.5 Msolar. The modeling of the far-ultraviolet spectra also constrains the extinction value; EB-V=0.04+/-0.01. Furthermore, the FUSE and STIS data allow us to measure the molecular hydrogen (H2) and neutral hydrogen (H I) column densities along the sight line, the majority of which we believe is associated with the circumstellar material. The FUSE spectrum is best fitted with a two-component model for H2, consisting of a cool component (T=200 K) with logN(H2,cool)=19.6+0.1-0.2 cm-2 and a hot component (T~=1250 K) with logN(H2,hot)=17.4+0.3-0.4 cm-2. The H I column density is logN(HI)=20.9+/-0.1 cm-2. Assuming a typical gas/dust ratio for the interstellar medium, our value of EB-V implies that logN(HI)=20.8 cm-2 of this is circumstellar. Our low extinction value and the measured column densities imply that there is essentially no dust in the nebula. Assuming that the neutral and molecular hydrogen is contained in a sphere of comparable dimensions to the ionized shell, we derive the combined mass of the circumstellar H I and H2 to be ~2.7 Msolar. Other geometries, such as a shell surrounding the ionized region, can be excluded. The mass of the ionized hydrogen is <~1% that of the neutral material. From comparison with evolutionary calculations, we estimate the progenitor mass to be ~3.2 Msolar. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS5-32985.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilchen, M.; Hartmann, G.; Rupprecht, P.
The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less
NASA Astrophysics Data System (ADS)
Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Petkov, E. E.; Shlyaptseva, V. V.; Childers, R.; Shrestha, I.; Beiersdorfer, P.; Hell, H.; Brown, G. V.
2017-10-01
Dielectronic recombination (DR) is an important process for astrophysical and laboratory high energy density (HED) plasmas and the associated satellite lines are frequently used for plasma diagnostics. In particular, K-shell DR satellite lines were studied in detail in low-Z plasmas. L-shell Na-like spectral features from Mo X-pinches considered here represent the blend of DR and inner shell satellites and motivated the detailed study of DR at the EBIT-1 electron beam ion trap at LLNL. In these experiments the beam energy was swept between 0.6 - 2.4 keV to produce resonances at certain electron beam energies. The advantages of using an electron beam ion trap to better understand atomic processes with highly ionized ions in HED Mo plasma are highlighted. This work was supported by NNSA under DOE Grant DE-NA0002954. Work at LLNL was performed under the auspices of the U.S. DOE under Contract No. DE-AC52-07NA27344.
Theoretical electron-impact-ionization cross section for Fe11+ forming Fe12+
NASA Astrophysics Data System (ADS)
Kwon, Duck-Hee; Savin, Daniel Wolf
2012-08-01
We have calculated cross sections for electron impact ionization (EII) of P-like Fe11+ forming Si-like Fe12+. We have used the flexible atomic code (FAC) and a distorted-wave (DW) approximation. Particular attention has been paid to the ionization through the 3l→nl' and 2l→nl' excitation autoionization (EA) channels. We compare our results to previously published FAC DW results and recent experimental results. We find that the previous discrepancy between theory and experiment at the EII threshold can be accounted for by the 3l→nl' EA channels which were not included in the earlier calculations. At higher energies the discrepancy previously seen between theory and experiment for the magnitude of the 2l→nl'(n≥4) EA remains, though the difference has been reduced by our newer results. The resulting Maxwellian rate coefficient derived from our calculations lies within 11% of the experimentally derived rate coefficient in the temperature range where Fe11+ forms in collisional ionization equilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Manoel; Diaz, Marcos
2009-12-15
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structuremore » seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.« less
NASA Astrophysics Data System (ADS)
Sterling, Nicholas C.; Kerlin, Austin B.
2016-01-01
We present preliminary results of a study of the photoionization (PI) and recombination properties of low-charge Xe ions. The abundances of neutron(n)-capture elements (atomic number Z > 30) are of interest in planetary nebulae (PNe) since they can be enriched by slow n-capture nucleosynthesis (the ``s-process'') in the progenitor asymptotic giant branch (AGB) stars. Xe is particularly valuable, because it is the most widely-observed ``heavy-s'' species (Z > 40) in PNe. Its abundance relative to lighter n-capture elements can be used to determine s-process neutron exposures, and constrain s-process enrichment patterns as a function of progenitor metallicity. Using the atomic structure code AUTOSTRUCTURE (Badnell 2011, Comp. Phys. Comm., 182, 1528), we have computed multi-configuration Breit-Pauli distorted-wave PI cross sections and radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for neutral through six-times ionized Xe, data which are critically needed for accurate Xe abundance determinations in ionized nebulae. We find good agreement between our computed direct PI cross sections and experimental measurements. Internal uncertainties are estimated for our calculations by using three different configuration interaction expansions for each ion, and by testing the sensitivity of our results to the radial orbital scaling parameters. As found for other n-capture elements (Sterling & Witthoeft 2011, A&A, 529, A147; Sterling 2011, A&A, 533, A62), DR is the dominant recombination mechanism for Xe ions at nebular temperatures (~104 K). Following Sterling et al. (2015, ApJS, 218, 25), these data will be added to nebular modeling codes to compute ionization correction factors for unobserved Xe ions in PNe, which will enable elemental Xe abundances to be determined with much higher accuracy than is currently possible. This work is supported by NSF award AST-1412928.
The shape and size distribution of H II regions near the percolation transition
NASA Astrophysics Data System (ADS)
Bag, Satadru; Mondal, Rajesh; Sarkar, Prakash; Bharadwaj, Somnath; Sahni, Varun
2018-06-01
Using Shapefinders, which are ratios of Minkowski functionals, we study the morphology of neutral hydrogen (H I) density fields, simulated using seminumerical technique (inside-out), at various stages of reionization. Accompanying the Shapefinders, we also employ the `largest cluster statistic' (LCS), originally proposed in Klypin & Shandarin, to study the percolation in both neutral and ionized hydrogen. We find that the largest ionized region is percolating below the neutral fraction x_{H I}≲ 0.728 (or equivalently z ≲ 9). The study of Shapefinders reveals that the largest ionized region starts to become highly filamentary with non-trivial topology near the percolation transition. During the percolation transition, the first two Shapefinders - `thickness' (T) and `breadth' (B) - of the largest ionized region do not vary much, while the third Shapefinder - `length' (L) - abruptly increases. Consequently, the largest ionized region tends to be highly filamentary and topologically quite complex. The product of the first two Shapefinders, T × B, provides a measure of the `cross-section' of a filament-like ionized region. We find that, near percolation, the value of T × B for the largest ionized region remains stable at ˜7 Mpc2 (in comoving scale) while its length increases with time. Interestingly, all large ionized regions have similar cross-sections. However, their length shows a power-law dependence on their volume, L ∝ V0.72, at the onset of percolation.
Effects of fluoride residue on thermal stability in Cu/porous low-k interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Y.; Ozaki, S.; Nakamura, T.
2014-06-19
We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (k < 2.3) structure. We confirmed that the Cu agglomerated more on a BM/inter layer dielectric (ILD) with a fluoride residue. To consider the effect of fluoride residue on Cu agglomeration, the structural state at the Cu/BM interface was evaluated with a cross-section transmission electron microscope (TEM) and atomic force microscope (AFM). In addition, the chemical bonding state at the Cu/BM interface was evaluated with the interface peeling-off method and X-ray photoelectron spectroscopy (XPS). Moreover, we confirmed the ionization of fluoridemore » residue and oxidation of Cu with fluoride and moisture to clarify the effect of fluoride residue on Cu. Our experimental results indicated that the thermal stability in Cu/porous low-k interconnects was degraded by enhancement of Cu oxidation with fluoride ions diffusion as an oxidizing catalyst.« less
Temperature-dependent absorption cross sections for hydrogen peroxide vapor
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Wine, P. H.
1988-01-01
Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.
NASA Astrophysics Data System (ADS)
Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.
2016-04-01
We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.
Cross sections for the γp→K*+Λ and γp→K*+Σ0 reactions measured at CLAS
NASA Astrophysics Data System (ADS)
Tang, W.; Hicks, K.; Keller, D.; Kim, S. H.; Kim, H. C.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mokeev, V.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rimal, D.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Torayev, B.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2013-06-01
The first high-statistics cross sections for the reactions γp→K*+Λ and γp→K*+Σ0 were measured using the CLAS detector at photon energies between threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. Differential cross sections are presented over the full range of the center-of-mass angles, and then fitted to Legendre polynomials to extract the total cross section. Results for the K*+Λ final state are compared with two different calculations in an isobar and a Regge model, respectively. Theoretical calculations significantly underestimate the K*+Λ total cross sections between 2.1 and 2.6 GeV, but are in better agreement with present data at higher photon energies.
Vacancy cascades in small molecules following x-ray inner shell photoionization
NASA Astrophysics Data System (ADS)
Ray, D.; Dunford, R. W.; Southworth, S. H.; Kanter, E. P.; Doumy, G.; Gao, Y.; Ho, P. J.; Picon, A.
2014-05-01
We are investigating molecular effects in vacancy cascades of small molecules containing heavy atoms - IBr, Br2 and CH2BrI - following K-shell ionization. In addition to fundamental interest in the physics of such decay processes, there are practical applications such as medical treatments that use energetic fragmentation of iodinated compounds with high energy x-rays to selectively treat tumorous cells. Other biological applications are also promising. We utilize the tunable monochromatic x-ray beam at the Advanced Photon Source to trigger K-shell photoionization of Br and I, and measure charge distributions and the kinetic energies released to the fragment ions. A newly designed detection device allows us to do multi-fold coincidence measurements involving momentum imaging of all the ion fragments with very high detection efficiency in coincidence with x-ray fluorescence detection. By comparing the molecular fragmentation probabilities and the kinetic energies released in Br2, IBr and CH2BrI we aim to gain understanding of the fragmentation mechanism as a function of the bond distance between I and Br. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriens, L.; Smeets, A.H.M.
1980-09-01
For electron-induced ionization, excitation, and de-excitation, mainly from excited atomic states, a detailed analysis is presented of the dependence of the cross sections and rate coefficients on electron energy and temperature, and on atomic parameters. A wide energy range is covered, including sudden as well as adiabatic collisions. By combining the available experimental and theoretical information, a set of simple analytical formulas is constructed for the cross sections and rate coefficients of the processes mentioned, for the total depopulation, and for three-body recombination. The formulas account for large deviations from classical and semiclassical scaling, as found for excitation. They agreemore » with experimental data and with the theories in their respective ranges of validity, but have a wider range of validity than the separate theories. The simple analytical form further facilitates the application in plasma modeling.« less
Positronium collisions with atoms and molecules
NASA Astrophysics Data System (ADS)
Fabrikant, I. I.; Gribakin, G. F.; Wilde, R. S.
2017-11-01
We review recent theoretical efforts to explain observed similarities between electron-atom and positronium(Ps)-atom scattering which also extends to molecular targets. In the range of the projectile velocities above the threshold for Ps ionization (break-up) this similarity can be explained in terms of quasi-free electron scattering and impulse approximation. However, for lower Ps velocities more sophisticated methods should be developed. Our calculations of Ps scattering by heavy noble-gas atoms agree well with experiments at Ps velocities above the Ps ionization threshold. However, in contrast to electron scattering cross sections, at lower velocities they exhibit maxima whereas the experimental cross sections tend to decrease toward lower velocities indicating the same similarity with electron scattering cross section observed above the threshold. Our preliminary results for Ps-N2 scattering confirm experimental observation of a resonance similar to the ∏ g resonance in electron-N2 scattering.
Absolute partial photoionization cross sections of ethylene
NASA Astrophysics Data System (ADS)
Grimm, F. A.; Whitley, T. A.; Keller, P. R.; Taylor, J. W.
1991-07-01
Absolute partial photoionization cross sections for ionization out of the first four valence orbitals to the X 2B 3u, A 2B 3g, B 2A g and C 2B 2u states of the C 2H 4+ ion are presented as a function of photon energy over the energy range from 12 to 26 eV. The experimental results have been compared to previously published relative partial cross sections for the first two bands at 18, 21 and 24 eV. Comparison of the experimental data with continuum multiple scattering Xα calculations provides evidence for extensive autoionization to the X 2B 3u state and confirms the predicted shape resonances in ionization to the A 2B 3g and B 2A g states. Identification of possible transitions for the autoionizing resonances have been made using multiple scattering transition state calculations on Rydberg excited states.
NASA Technical Reports Server (NTRS)
Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani
2014-01-01
The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0?III, I?III, and II?III ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0?II ionization in the discharge channel.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2017-03-01
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
Electron impact ionization of the gas-phase sorbitol
NASA Astrophysics Data System (ADS)
Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto
2015-03-01
Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.
Ionization of pyridine: Interplay of orbital relaxation and electron correlation.
Trofimov, A B; Holland, D M P; Powis, I; Menzies, R C; Potts, A W; Karlsson, L; Gromov, E V; Badsyuk, I L; Schirmer, J
2017-06-28
The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function and the outer-valence Green's function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17-120 eV. The lowest four states of the pyridine radical cation, namely, 2 A 2 (1a 2 -1 ), 2 A 1 (7a 1 -1 ), 2 B 1 (2b 1 -1 ), and 2 B 2 (5b 2 -1 ), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a 1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a 1 (nσ) -1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.
NASA Technical Reports Server (NTRS)
Lee, Long C.; Srivastava, Santosh K.
1990-01-01
Electron-impact ionization and electron attachment cross sections of radicals and excited molecules were measured using an apparatus that consists of an electron beam, a molecular beam and a laser beam. The information obtained is needed for the pulse power applications in the areas of high power gaseous discharge switches, high energy lasers, particle beam experiments, and electromagnetic pulse systems. The basic data needed for the development of optically-controlled discharge switches were also investigated. Transient current pulses induced by laser irradiation of discharge media were observed and applied for the study of electron-molecule reaction kinetics in gaseous discharges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek
Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation.more » The most significant value of two-photon absorption cross section σ{sub 2} for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ{sub 2}Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.« less
Absolute electron-impact total ionization cross sections of chlorofluoromethanes
NASA Astrophysics Data System (ADS)
Martínez, Roberto; Sierra, Borja; Redondo, Carolina; Rayo, María N. Sánchez; Castaño, Fernando
2004-12-01
An experimental study is reported on the electron-impact total ionization cross sections (TICSs) of CCl4, CCl3F, CCl2F2, and CClF3 molecules. The kinetic energy of the colliding electrons was in the 10-85 eV range. TICSs were obtained as the sum of the partial ionization cross sections of all fragment ions, measured and identified in a linear double focusing time-of-flight mass spectrometer. The resulting TICS profiles—as a function of the electron-impact energy—have been compared both with those computed by ab initio and (semi)empirical methods and with the available experimental data. The computational methods used include the binary-encounter-Bethe (BEB) modified to include atoms with principal quantum numbers n⩾3, the Deutsch and Märk (DM) formalism, and the modified additivity rule (MAR). It is concluded that both modified BEB and DM methods fit the experimental TICS for (CF4), CClF3, CCl2F2, CCl3F, and CCl4 to a high accuracy, in contrast with the poor accord of the MAR method. A discussion on the factors influencing the discrepancies of the fittings is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, X. G.; Ning, C. G.; Zhang, S. F.
The measurements of electron density distributions and binding-energy spectrum of the complete valence shell of cyclopentene (C{sub 5}H{sub 8}) using a binary (e,2e) electron momentum spectrometer are reported. The experimental momentum profiles of the valence orbitals are compared with the theoretical distributions calculated using Hartree-Fock and density-functional-theory (DFT) methods with various basis sets. The agreement between theory and experiment for the shape and intensity of the orbital electron momentum distributions is generally good. The DFT calculations employing B3LYP hybrid functional with a saturated and diffuse AUG-CC-PVTZ basis set provide the better descriptions of the experimental data. Some ''turn up'' effectsmore » in the low momentum region of the measured (e,2e) cross section compared with the calculations of 3a{sup ''}, 2a{sup ''}, and 3a{sup '} orbitals could be mainly attributed to distorted-wave effects. The pole strengths of the main ionization peaks from the orbitals in the inner valence are estimated.« less
Extended wave-packet model to calculate energy-loss moments of protons in matter
NASA Astrophysics Data System (ADS)
Archubi, C. D.; Arista, N. R.
2017-12-01
In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.
NASA Astrophysics Data System (ADS)
McCreary, Meghan; Chakraborty, Himadri
2013-05-01
The ground state structure of the simplest two-fullerene onion system, the C60@C240 molecule, is solved in the Kohn-Sham framework of local density approximation (LDA). Calculations are carried out with delocalized carbon valence electrons after modeling the onion ion-core of sixty C4+ ions from C60 and two hundred and forty of those from C240 in a smeared out jellium-type double-shell structure. Ionization cross sections of all the levels are then calculated in both independent particle LDA and many-particle time dependent LDA approaches at photon energies above the plasmon resonances. These high-energy results exhibit rich structures of energy dependent oscillations from the quantum interference of electron waves produced at the edges of the fullerene layers. A detailed scrutiny of these structures is conducted by Fourier transforming the spectra to the configuration space that relates the oscillations to the onion geometry. Supported by NSF and DOE.
Experimental study of low-energy charge transfer in nitrogen
NASA Technical Reports Server (NTRS)
Smith, A.
1979-01-01
Total charge transfer cross sections were obtained for the N2(+)-N2 system with relative translational ion energies between 9 and 441 eV. Data were obtained to examine the dependence of total cross section on ion energy. The effect of ion excitation on the cross sections was studied by varying the electron ionization energy in the mass spectrometer ion source over an electron energy range between 14.5 and 32.1 eV. The dependence of total cross section on the neutralization chamber gas pressure was examined by obtaining data at pressure values from 9.9 to 0.000199 torr. Cross section values obtained were compared with experimental and theoretical results of other investigations.
Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.
2016-01-01
Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170
Structure and properties of silk from the African wild silkmoth Gonometa postica reared indoors
Teshome, Addis; Raina, S. K.; Vollrath, Fritz
2014-01-01
Abstract African wild silkmoth, Gonometa postica Walker (Lepidoptera: Lasiocampidae), were reared indoors in order to examine the influence of rearing conditions on the structure and properties of silk cocoon shells and degummed fibers by using a scanning electron microscope, an Instron tensile tester, and a thermogravimetric analyzer. The cocoons reared indoors showed inferior quality in weight, length, width, and cocoon shell ratio compared to cocoons reared outdoors. There were no differences in cocoon shell and fiber surfaces and cross sectional structures. Cocoon shells were covered with calcium oxalate crystals with few visible fibers on their surface. Degummed fibers were smooth with minimum unfractured surfaces and globular to triangular cross sections. Indoor-reared cocoon shells had a significantly higher breaking strain, while the breaking stress was higher for cocoons reared outdoors. Fibers from indoor cocoons had a significantly higher breaking stress while outdoor fibers had higher breaking strain. Thermogravimetric analysis curves showed two main thermal reactions revealing the dehydration of water molecules and ir-reversible decomposition of the crystallites in both cocoons and fibers reared indoors and outdoors. Cocoon shells underwent additional peaks of decomposition with increased temperature. The total weight loss was higher for cocoon shells and degummed fibers from indoors. Rearing conditions (temperature and relative humidity), feeding method used, changes in total life span, days to molting, and spinning might have influenced the variation in the properties observed.The ecological and commercial significances of indoor rearing of G. postica are discussed. PMID:25373183
NASA Astrophysics Data System (ADS)
de Winter, N.; Sinnesael, M.; Vansteenberge, S.; Goderis, S.; Snoeck, C.; Van Malderen, S. J. M.; Vanhaecke, F. F.; Claeys, P.
2017-12-01
Well-preserved shells of Torreites rudists from the Late Campanian Saiwan Formation in Oman exhibit fine internal layering. These fine (±20 µm) laminae are rhythmically bundled (±400 µm) and subdivide the shells' larger scale annual lamination (±15 mm), suggesting the presence of several interfering cycles in shell growth rate. The aim of the present study is to determine the duration and chemical signature of these rhythmic variations in shell composition. To achieve this, a range of micro-analytical techniques is applied on cross sections through the shells. Firstly, microscopy-based layer counting and colorimetric analysis are carried out on thin sections of shell calcite. Secondly, X-Ray Fluorescence (XRF) and Fourier Transform InfraRed (FTIR) mapping of cross sections of the shells reveal chemical and structural differences between laminae in 2D. Thirdly, high-resolution XRF (25 µm) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS; 10 µm) trace element profiles are used to quantify variations in chemical composition between shell laminae. Fourthly, annual chronology is established based on micro-sampled stable carbon and oxygen stable isotope measurements (250 µm) along the growth axis of the shells. Finally, spectral analysis routines are applied to extract rhythmic patterns matched to the shell laminae from the structural, chemical and colorimetric data. Combining these methods allows for a full evaluation of the structural and chemical characteristics as well as the timing of sub-annual lamination in rudist shells. The results of this study shed light on the external factors that influenced growth rates in rudist bivalves. A better understanding of the timing of deposition of these laminae allows them to be used to improve age models of geochemical records in rudist shells. Characterization of small scale variations in shell composition will characterize the uncertainties contained within lower resolution proxy records from these fossil bivalves. Finally, the study of these laminae enables the reconstruction of sub-annual cyclicity in the environment of Late Cretaceous rudist bivalves. This may in turn shed light on the mechanics of climate in this shallow marine hothouse setting, which provide an analogue of future climate in the light of anthropogenic climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-19
CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less
NASA Technical Reports Server (NTRS)
Yoshino, K.; Parkinson, W. H.; Freeman, D. E.
1992-01-01
An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research.
Raman-Scattering Line Profiles of the Symbiotic Star AG Peg
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2017-06-01
The high dispersion Hα and Hβ line profiles of the Symbiotic star AG Peg consist of top double Gaussian and bottom components. We investigated the formation of the broad wings with Raman scattering mechanism. Adopting the same physical parameters from the photo-ionization study of Kim and Hyung (2008) for the white dwarf and the ionized gas shell, Monte Carlo simulations were carried out for a rotating accretion disk geometry of non-symmetrical latitude angles from -7° < θ < +7° to -16° < θ < +16°. The smaller latitude angle of the disk corresponds to the approaching side of the disk responsible for weak blue Gaussian profile, while the wider latitude angle corresponds to the other side of the disk responsible for the strong red Gaussian profile. We confirmed that the shell has the high gas density ˜ 109.85 cm-3 in the ionized zone of AG Peg derived in the previous photo-ionization model study. The simulation with various HI shell column densities (characterized by a thickness ΔD × gas number density nH) shows that the HI gas shell with a column density Hhi ≈ 3 - 5 × 1019 cm-2 fits the observed line profiles well. The estimated rotation speed of the accretion disk shell is in the range of 44 - 55 kms-1. We conclude that the kinematically incoherent structure involving the outflowing gas from the giant star caused an asymmetry of the disk and double Gaussian profiles found in AG Peg.
NASA Astrophysics Data System (ADS)
Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.
2017-02-01
In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.
NASA Astrophysics Data System (ADS)
Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea
2017-10-01
The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.
1973-01-01
Analytical methods based on linear theory are presented for predicting the thermal stresses in and the buckling of heated structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Uniaxially stiffened plates and shells of arbitrary cross section are typical examples. For the buckling analysis the structure or selected elements may be subjected to mechanical loads, in additional to thermal loads, in any desired combination of inplane transverse load and axial compression load. The analysis is also applicable to stiffened structures under inplane loads varying through the cross section, as in stiffened shells under bending. The buckling analysis is general and covers all modes of instability. The analysis has been applied to a limited number of problems and the results are presented. These while showing the validity and the applicability of the method do not reflect its full capability.
Anomalous Photoionization in Xe
NASA Astrophysics Data System (ADS)
Klapisch, Marcel; Busquet, Michel
2012-10-01
Photoionization (PI) cross sections are important components of the opacities that are necessary for the simulation of astrophysical and ICF plasmas. Most of PI cross sections (i) start abruptly at threshold and (ii) decrease as an inverse power (e.g.3^rd) of the photon energy. In the framework of the CRASH project [1] we computed Xe opacities with the STA code [2]. We observed that the PI cross section for the 4d shell has neither of these 2 characteristics. We explain this result as interference between the bound 4d wavefunction (wf), the photon, and the free electron wf. Similar, but less pronounced effects are seen for the 5d and 5p shells. Simplified models of PI not involving the actual wf would not show this effect and would probably be inaccurate.[4pt] [1] Doss, F. W., Drake, R. P., and Kuranz, C. C., High Ener. Dens. Phys. 6, 157-61.[0pt] [2] Busquet, M., Klapisch, M., Bar-Shalom, A., et al., Bull. Am. Phys. Soc. 55, 225 (2010).
Bonačić-Koutecký, Vlasta; Perić, Martina; Sanader, Željka
2018-05-17
Our investigation of one-photon absorption (OPA) and nonlinear optical (NLO) properties such as two-photon absorption (TPA) of silver trimer intercalated in DNA based on TDDFT approach allowed us to propose a mechanism responsible for large TPA cross sections of such NLO-phores. We present a concept that illustrates the key role of quantum cluster as well as of nucleotide bases from the immediate neighborhood. For this purpose, different surroundings consisting of guanine-cytosine and adenine-thymine such as (GCGC) and (ATAT) have been investigated that are exhibiting substantially different values of TPA cross sections. This has been confirmed by extending the immediate surroundings as well as using the two-layer quantum mechanics/molecular mechanics (QM/MM) approach. We focus on the cationic closed-shell system and illustrate that the neutral open-shell system shifts OPA spectra into the NIR regime, which is suitable for applications. Thus, in this contribution, we propose novel NLO-phores inducing large TPA cross sections, opening the route for multiphoton imaging.
Laser stripping of hydrogen atoms by direct ionization
Brunetti, E.; Becker, W.; Bryant, H. C.; ...
2015-05-08
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
Laser stripping of hydrogen atoms by direct ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetti, E.; Becker, W.; Bryant, H. C.
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
NASA Astrophysics Data System (ADS)
Krishichayan; Bhike, Megha; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.
2017-05-01
Photofission cross-section ratios of 235U and 238U have been measured using monoenergetic photon beams at the HIγS facility of TUNL. These measurements have been performed in small energy steps between 9.0 and 16.6 MeV using a dual-fission ionization chamber. Measured cross-section ratios are compared with the previous experimental data as well as with the recent evaluated nuclear data library ENDF.
Cross sections for the production of energetic cations by electron impact on N2 and CO2
NASA Technical Reports Server (NTRS)
Iga, I.; Srivastava, S. K.; Rao, M. V. V. S.; Katayama, D. H.
1995-01-01
Dissociative ionization cross sections for the production of singly charged energetic ions by electron impact on N2 and CO2 have been measured. The ions were divided into two groups: one with energies less than 1 eV and the other with energies greater than 1 eV. The ions detected were N+ from N2 and C+, O+, and CO+ from CO2. The electron impact energy range, and cross section data on ions is given.
Luminescence emission from nonpolar Al0.3Ga0.7N/GaN core-shell and core-multi-shell nanowires
NASA Astrophysics Data System (ADS)
Namvari, E.; Shojaei, S.; Asgari, A.
2017-12-01
In the present work, we theoretically study the possibility of luminescence emission from two systems of nonpolar Al0.3Ga0.7N/GaN Core-shell and core-multi-shell c-axis oriented nanowires with hexagonal cross section. To obtain energy levels and wave functions through the solution of Schrodinger-Poisson equations, numerical Self-consistent procedure has been employed. N-type doping has been considered to investigate the two-dimensional electron gas formation and its effect on luminescence. The detailed analysis of the results as a function of the various structural parameters has been carried out. The results presents an examination of the band to band luminescence feature and its changes with involved parameters. We found that the size of the system determines the feature of luminescence emission. As main finding, our calculations show that the intensity of luminescence spectrum in facet to facet route of NW cross section is significant than that of corner to corner route. In addition, no shift of the peak position is observed with changing the amount of doping. Our numerical calculations give more insights into the luminescence emission of nonpolar GaN/AlGaN core/shell nanowire and have many implications in experiment.
The origin of recombining plasma and the detection of the Fe-K line in the supernova remnant W 28
NASA Astrophysics Data System (ADS)
Okon, Hiromichi; Uchida, Hiroyuki; Tanaka, Takaaki; Matsumura, Hideaki; Tsuru, Takeshi Go
2018-03-01
Overionized recombining plasmas (RPs) have been discovered from a dozen mixed-morphology (MM) supernova remnants (SNRs). However, their formation process is still under debate. As pointed out by many previous studies, spatial variations of plasma temperature and ionization state provide clues to understanding the physical origin of RPs. We report on spatially resolved X-ray spectroscopy of W 28, which is one of the largest MM SNRs found in our Galaxy. Two observations with Suzaku XIS cover the center of W 28 to the northeastern rim where the shock is interacting with molecular clouds. The X-ray spectra in the inner regions are reproduced well by a combination of two RP models with different temperatures and ionization states, whereas that in the northeastern rim is explained with a single RP model. Our discovery of the RP in the northeastern rim suggests an effect of thermal conduction between the cloud and hot plasma, which may be the production process of the RP. The X-ray spectrum of the northeastern rim also shows an excess emission of the Fe I K α line. The most probable process to explain the line would be inner shell ionization of Fe in the molecular cloud by cosmic ray particles accelerated in W 28.
The origin of recombining plasma and the detection of the Fe-K line in the supernova remnant W 28
NASA Astrophysics Data System (ADS)
Okon, Hiromichi; Uchida, Hiroyuki; Tanaka, Takaaki; Matsumura, Hideaki; Tsuru, Takeshi Go
2018-06-01
Overionized recombining plasmas (RPs) have been discovered from a dozen mixed-morphology (MM) supernova remnants (SNRs). However, their formation process is still under debate. As pointed out by many previous studies, spatial variations of plasma temperature and ionization state provide clues to understanding the physical origin of RPs. We report on spatially resolved X-ray spectroscopy of W 28, which is one of the largest MM SNRs found in our Galaxy. Two observations with Suzaku XIS cover the center of W 28 to the northeastern rim where the shock is interacting with molecular clouds. The X-ray spectra in the inner regions are reproduced well by a combination of two RP models with different temperatures and ionization states, whereas that in the northeastern rim is explained with a single RP model. Our discovery of the RP in the northeastern rim suggests an effect of thermal conduction between the cloud and hot plasma, which may be the production process of the RP. The X-ray spectrum of the northeastern rim also shows an excess emission of the Fe I K α line. The most probable process to explain the line would be inner shell ionization of Fe in the molecular cloud by cosmic ray particles accelerated in W 28.
NASA Astrophysics Data System (ADS)
Brüggemann, Martin; Hoffmann, Thorsten
2014-05-01
Organic aerosol accounts for a substantial fraction of tropospheric aerosol and has implications on the earth's climate and human health. However, the characterization of its chemical composition and transformations remain a major challenge and is still connected to large uncertainties (IPCC, 2013). Recent measurements revealed that organic aerosol particles may reside in an amorphous or semi-solid phase state which impedes the diffusion within the particles (Virtanen et al., 2010; Shiraiwa et al., 2011). This means that reaction products which are formed on the surface of a particle, e.g. by OH, NO3 or ozone chemistry, cannot diffuse into the particle's core and remain at the surface. Eventually, this leads to particles with a core/shell structure. In the particles' cores the initial compounds are preserved whereas the shells contain mainly the oxidation products. By analyzing the particles' cores and shells separately, thus, it is possible to obtain valuable information on the formation and evolution of the aerosols' particle and gas phase. Here we present the development of the aerosol flowing atmospheric-pressure afterglow (AeroFAPA) technique which allows the mass spectrometric analysis of organic aerosols in real time. The AeroFAPA is an ion source based on a helium glow discharge at atmospheric pressure. The plasma produces excited helium species and primary reagent ions which are transferred into the afterglow region where the ionization of the analytes takes place. Due to temperatures of only 80 ° C to 150 ° C and ambient pressure in the afterglow region, the ionization is very soft and almost no fragmentation of organic molecules is observed. Thus, the obtained mass spectra are easy to interpret and no extensive data analysis procedure is necessary. Additionally, first results of a combination of the AeroFAPA-MS with a scanning mobility particle sizer (SMPS) suggest that it is not only possible to analyze the entire particle phase but rather that a separate analysis of the particles' shells and cores is feasible by adjusting flow rates and temperatures in the ionization region. References: IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press. A. Virtanen; J. Joutsensaari; T. Koop; J. Kannosto; P. Yli-Pirila; J. Leskinen; J. M. Makela; J. K. Holopainen; U. Pöschl; M. Kulmala; D. R. Worsnop; A. Laaksonen, "An amorphous solid state of biogenic secondary organic aerosol particles", Nature 7317, 824-827 [2010]. M. Shiraiwa; M. Ammann; T. Koop; U. Pöschl, "Gas uptake and chemical aging of semisolid organic aerosol particles", P. Natl. Acad. Sci. USA 27, 11003-11008 [2011].
SCALP: Scintillating ionization chamber for ALPha particle production in neutron induced reactions
NASA Astrophysics Data System (ADS)
Galhaut, B.; Durand, D.; Lecolley, F. R.; Ledoux, X.; Lehaut, G.; Manduci, L.; Mary, P.
2017-09-01
The SCALP collaboration has the ambition to build a scintillating ionization chamber in order to study and measure the cross section of the α-particle production in neutron induced reactions. More specifically on 16O and 19F targets. Using the deposited energy (ionization) and the time of flight measurement (scintillation) with a great accuracy, all the nuclear reaction taking part on this project will be identify.
NASA Technical Reports Server (NTRS)
Dugan, J. V., Jr.; Canright, R. B., Jr.
1972-01-01
The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.
IUE observations of the atmospheric eclipsing binary system Zeta Aurigae
NASA Technical Reports Server (NTRS)
Champman, R. D.
1980-01-01
IUE observations of the eclipsing binary system Zeta Aurigae made prior to and during the eclipse of the relatively small B8 V star by the cool supergiant star (spectral type K2 II) are reported. Spectral lines produced by the absorption of B star radiation in the atmosphere of the K star during eclipse can be used as a probe of the extended K star atmosphere, due to the negligible cool star continuum in the 1200-3200 A region. Spectra taken prior to eclipse are found to be similar to those of the single B8 V star 64 Ori, with the exception of very strong multi-component absorption lines of Si II, Si IV, C IV and the Mg resonance doublet with strong P Cygni profiles, indicating a double shell. Absorption lines including those corresponding to Al II, Al III, Cr II, Mn II, Fe II, Ni II and Ca II are observed to increase in strength and number as the eclipse progresses, with high-ionization-potential lines formed far from the K star, possibly in a shock wave, and low-ionization potential lines, formed in cool plasma, probably a cool wind, nearer to the K star. Finally, an emission-line spectra with lines corresponding to those previously observed in absorption is noted at the time the B-star continuum had disappeared.
Electron- and proton-induced ionization of pyrimidine
NASA Astrophysics Data System (ADS)
Champion, Christophe; Quinto, Michele A.; Weck, Philippe F.
2015-05-01
The present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. The theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
Theory of the stopping power of fast multicharged ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yudin, G.L.
1991-12-01
The processes of Coulomb excitation and ionization of atoms by a fast charged particle moving along a classical trajectory are studied. The target electrons are described by the Dirac equation, while the field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in the form most convenient for investigation of various characteristics of semiclassical atomic collisions. The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge, is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of atomic hydrogen by fast multiply charged ions.more » Based on the semiclassical sudden Born approximation, the ionization cross section and the average electronic energy loss of a fast ion in a single collision with an atom are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.« less
Criteria for applicability of the impulse approach to collisions
NASA Astrophysics Data System (ADS)
Sharma, Ramesh D.; Bakshi, Pradip M.; Sindoni, Joseph M.
1990-06-01
Using an exact formulation of impulse approach (IA) to atom-diatom collisions, we assess its internal consistency. By comparing the cross sections in the forward and reverse directions for the vibrational-rotational inelastic processes, using the half-on-the-shell (post and prior) models of the two-body t matrix, we show that in both cases the IA leads to a violation of the semidetailed balance (SDB) condition for small scattering angles. An off-shell model for the two-body t matrix, which preserves SDB, is shown to have other serious shortcomings. The cross sections are studied quantitatively as a function of the relative translational energy and the mass of the incident particle, and criteria discussed for the applicability of IA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, R.D.; Bakshi, P.M.; Sindoni, J.M.
Using an exact formulation of impulse approach (IA) to atom-diatom collisions, we assess its internal consistency. By comparing the cross sections in the forward and reverse directions for the vibrational-rotational inelastic processes, using the half-on-the-shell (post and prior) models of the two-body {ital t} matrix, we show that in both cases the IA leads to a violation of the semidetailed balance (SDB) condition for small scattering angles. An off-shell model for the two-body {ital t} matrix, which preserves SDB, is shown to have other serious shortcomings. The cross sections are studied quantitatively as a function of the relative translational energymore » and the mass of the incident particle, and criteria discussed for the applicability of IA.« less
Cross-sectional aspect ratio modulated electronic properties in Si/Ge core/shell nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nuo; Lu, Ning; Yao, Yong-Xin
2013-02-28
Electronic structures of (4, n) and (m, 4) (the NW has m layers parallel to the {1 1 1} facet and n layers parallel to {1 1 0}) Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with cross-sectional aspect ratio (m/n) from 0.36 to 2.25 are studied by first-principles calculations. An indirect to direct band gap transition is observed as m/n decreases, and the critical values of m/n and diameter for the transition are also estimated. The size of the band gap also depends on the aspect ratio. These results suggest that m/n plays an important role inmore » modulating the electronic properties of the NWs.« less
Enhanced one-photon double ionization of atoms and molecules in an environment of different species.
Stumpf, V; Kryzhevoi, N V; Gokhberg, K; Cederbaum, L S
2014-05-16
The correlated nature of electronic states in atoms and molecules is manifested in the simultaneous emission of two electrons after absorption of a single photon close to the respective threshold. Numerous observations in atoms and small molecules demonstrate that the double ionization efficiency close to threshold is rather small. In this Letter we show that this efficiency can be dramatically enhanced in the environment. To be specific, we concentrate on the case where the species in question has one or several He atoms as neighbors. The enhancement is achieved by an indirect process, where a He atom of the environment absorbs a photon and the resulting He(+) cation is neutralized fast by a process known as electron transfer mediated decay, producing thereby doubly ionized species. The enhancement of the double ionization is demonstrated in detail for the example of the Mg · He cluster. We show that the double ionization cross section of Mg becomes 3 orders of magnitude larger than the respective cross section of the isolated Mg atom. The impact of more neighbors is discussed and the extension to other species and environments is addressed.
Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Liu, Youwen
2015-02-01
A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.
The Ionized Nuclear Environment in NGC 985 as seen by Chandra and BeppoSAX
NASA Astrophysics Data System (ADS)
Krongold, Y.; Nicastro, F.; Elvis, M.; Brickhouse, N. S.; Mathur, S.; Zezas, A.
2005-02-01
We investigate the ionized environment of the Seyfert 1 galaxy NGC 985 with a new Chandra HETGS observation and an archival BeppoSAX observation. Both spectra exhibit strong residuals to a single-power-law model, indicating the presence of an ionized absorber and a soft excess. A detailed model over the Chandra data shows that the 0.6-8 keV intrinsic continuum can be well represented by a power law (Γ~1.6) plus a blackbody component (kT=0.1 keV). Two absorption components are clearly required to fit the absorption features observed in the Chandra spectrum. The components have a difference of 29 in ionization parameter and 3 in column density. The presence of the low-ionization component is evidenced by an Fe M-shell unresolved transition array produced by charge states VII-XIII. The high-ionization phase is required by the presence of broad absorption features arising from several blends of Fe L-shell transitions (Fe XVII-XXII). A third highly ionized component might also be present, but the data do not allow us to constrain its properties. Although poorly constrained, the outflow velocities of the components (581+/-206 km s-1 for the high-ionization phase and 197+/-184 km s-1 for the low-ionization one) are consistent with each other and with the outflow velocities of the absorption components observed in the UV. In addition, the low-ionization component produces significant amounts of O VI, N V, and C IV, which suggests that a single outflow produces the UV and X-ray features. The broadband (0.1-100 keV) continuum in the BeppoSAX data can be parameterized by a power law (Γ~1.4), a blackbody (kT=0.1 keV), and a high-energy cutoff (Ec~70 keV). An X-ray luminosity variation by a factor of 2.3 is observed between the BeppoSAX and Chandra observations (separated by almost 3 yr). Variability in the opacity of the absorbers is detected in response to the continuum variation, but while the colder component is consistent with a simple picture of photoionization equilibrium, the ionization state of the hotter component seems to increase, while the continuum flux drops. The most striking result in our analysis is that during both the Chandra and the BeppoSAX observations, the two absorbing components appear to have the same pressure. Thus, we suggest that the absorption arises from a multiphase wind. Such a scenario can explain the change in the opacity of both absorption components during the observations, but it requires that a third, hotter component be pressure-confining the two phases. Hence, our analysis points to a three-phase medium similar to the wind found in NGC 3783, and it further suggests that such a wind might be a common characteristic in active galactic nuclei. The pressure-confining scenario requires fragmentation of the confined phases into a large number of clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D. B.; Costa, R. F. da; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo
We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arisemore » due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.« less
NASA Astrophysics Data System (ADS)
Knott, C. N.; Albergo, S.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.
1996-01-01
This paper reports the elemental production cross sections for 17 projectile-energy combinations with energies between 338 and 894 MeV/nucleon interacting in a liquid hydrogen target. These results were obtained from two runs at the LBL Bevalac using projectiles ranging from 22Ne to 58Ni. Cross sections were measured for all fragment elements with charges greater than or equal to half the charge of the projectile. The results show that, over the energy and ion range investigated, the general decrease in cross section with decreasing fragment charge is strongly modified by the isospin of the projectile ion. Significant additional modifications of the cross sections due to the internal structure of the nucleus have also been seen. These include both pairing and shell effects. Differences in the cross sections due to the differing energies of the projectile are also considerable.
Modeling of static and flowing-gas diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman
2016-03-01
Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.
Measurement of e+e-→K K ¯J /ψ cross sections at center-of-mass energies from 4.189 to 4.600 GeV
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leiber, S.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, J. Q.; Li, Jin; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, J. J.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, X.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Yang, Yifan; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2018-04-01
We investigate the process e+e-→K K ¯J /ψ at center-of-mass energies from 4.189 to 4.600 GeV using 4.7 fb-1 of data collected by the BESIII detector at the BEPCII collider. The Born cross sections for the reactions e+e-→K+K-J /ψ and KS0KS0J /ψ are measured as a function of center-of-mass energy. The energy dependence of the cross section for e+e-→K+K-J /ψ is shown to differ from that for π+π-J /ψ in the region around the Y (4260 ). In addition, there is evidence for a structure around 4.5 GeV in the e+e-→K+K-J /ψ cross section that is not present in π+π-J /ψ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lin, E-mail: lin.wang@insa-lyon.fr; Brémond, Georges; Sallet, Vincent
2016-08-29
ZnO/ZnO:Sb core-shell structured nanowires (NWs) were grown by the metal organic chemical vapor deposition method where the shell was doped with antimony (Sb) in an attempt to achieve ZnO p-type conduction. To directly investigate the Sb doping effect in ZnO, scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) were performed on the NWs' cross-sections mapping their two dimensional (2D) local electrical properties. Although no direct p-type inversion in ZnO was revealed, a lower net electron concentration was pointed out for the Sb-doped ZnO shell layer with respect to the non-intentionally doped ZnO core, indicating an evident compensating effectmore » as a result of the Sb incorporation, which can be ascribed to the formation of Sb-related acceptors. The results demonstrate SCM/SSRM investigation being a direct and effective approach for characterizing radial semiconductor one-dimensional (1D) structures and, particularly, for the doping study on the ZnO nanomaterial towards its p-type realization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callens, M; Verboven, E; Van Den Abeele, K
2015-06-15
Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at themore » location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles are polymerizable under influence of ionizing radiation and are a promising design concept within the development of a novel non-invasive in-vivo radiation dosimeter for external beam radiation therapy. This work was funded by the Research Foundation - Flanders (FWO)« less
Convergent close coupling versus the generalized Sturmian function approach: Wave-function analysis
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Mitnik, D. M.; Gasaneo, G.; Randazzo, J. M.; Kadyrov, A. S.; Fursa, D. V.; Bray, I.
2015-11-01
We compare the physical information contained in the Temkin-Poet (TP) scattering wave function representing electron-impact ionization of hydrogen, calculated by the convergent close-coupling (CCC) and generalized Sturmian function (GSF) methodologies. The idea is to show that the ionization cross section can be extracted from the wave functions themselves. Using two different procedures based on hyperspherical Sturmian functions we show that the transition amplitudes contained in both GSF and CCC scattering functions lead to similar single-differential cross sections. The single-continuum channels were also a subject of the present studies, and we show that the elastic and excitation amplitudes are essentially the same as well.
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.
2016-01-01
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M
2016-05-10
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.
NASA Astrophysics Data System (ADS)
Nahar, S. N.
2003-01-01
Most astrophysical plasmas entail a balance between ionization and recombination. We present new results from a unified method for self-consistent and ab initio calculations for the inverse processes of photoionization and (e + ion) recombination. The treatment for (e + ion) recombination subsumes the non-resonant radiative recombination and the resonant dielectronic recombination processes in a unified scheme (S.N. Nahar and A.K. Pradhan, Phys. Rev. A 49, 1816 (1994);H.L. Zhang, S.N. Nahar, and A.K. Pradhan, J.Phys.B, 32,1459 (1999)). Calculations are carried out using the R-matrix method in the close coupling approximation using an identical wavefunction expansion for both processes to ensure self-consistency. The results for photoionization and recombination cross sections may also be compared with state-of-the-art experiments on synchrotron radiation sources for photoionization, and on heavy ion storage rings for recombination. The new experiments display heretofore unprecedented detail in terms of resonances and background cross sections and thereby calibrate the theoretical data precisely. We find a level of agreement between theory and experiment at about 10% for not only the ground state but also the metastable states. The recent experiments therefore verify the estimated accuracy of the vast amount of photoionization data computed under the OP, IP and related works. features. Present work also reports photoionization cross sections including relativistic effects in the Breit-Pauli R-matrix (BPRM) approximation. Detailed features in the calculated cross sections exhibit the missing resonances due to fine structure. Self-consistent datasets for photoionization and recombination have so far been computed for approximately 45 atoms and ions. These are being reported in a continuing series of publications in Astrophysical J. Supplements (e.g. references below). These data will also be available from the electronic database TIPTOPBASE (http://heasarc.gsfc.nasa.gov)
A study of the turn-up effect in the electron momentum spectroscopy
NASA Astrophysics Data System (ADS)
Dal Cappello, C.; Menas, F.; Houamer, S.; Popov, Yu V.; Roy, A. C.
2015-10-01
Recently, a number of electron momentum spectroscopy measurements for the ionization of atoms and molecules have shown that the triple differential cross section (TDCS) has an unexpected higher intensity in a low momentum regime (Brunger M J, Braidwood S W, Mc Carthy I E and Weigold E 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L597, Hollebone B P, Neville J J, Zheng Y, Brion C E, Wang Y and Davidson E R 1995 Chem. Phys. 196 13, Brion C E, Zheng Y, Rolke J, Neville J J, McCarthy I E and Wang J 1998 J. Phys. B: At. Mol. Opt. Phys. 31 L223, Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F and Li G Q 2005 Phys. Rev. Lett. 94 163201, Deng J K, et al 2001 J. Chem. Phys. 114 882, Ning C G, Ren X G, Deng J K, Su G L, Zhang S F and Li G Q 2006 Phys. Rev. A 73 022704). This surprising result is now called the turn-up effect. Our aim is to investigate such an effect by studying the case of the ionization of atomic hydrogen in an excited state using the 3C model (Brauner M, Briggs J S and Klar H 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2265) which is able to describe all the measured results of the single ionization of atomic hydrogen in its ground state for an incident energy beyond 200 eV. A comparison is also made of the findings of the present method with those of the plane wave impulse approximation and distorted wave models.
Fast Ionized X-ray Absorbers in AGNs
NASA Astrophysics Data System (ADS)
Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.
2015-07-01
We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.
Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku
NASA Astrophysics Data System (ADS)
Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto
2016-02-01
We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ˜ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high-temperature (kT ˜ 3.4 keV) component with a very low ionization timescale (˜2.7 × 109 cm-3 s), or a hard nonthermal component with a photon index Γ ˜ 2.3. The average density of the low-temperature plasma is rather low, of the order of 10-3-10-2 cm-3, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.
Energy and angular distribution of electrons ejected from water by the impact of fast O8+ ion beams
NASA Astrophysics Data System (ADS)
Bhattacharjee, Shamik; Bagdia, Chandan; Chowdhury, Madhusree Roy; Monti, Juan M.; Rivarola, Roberto D.; Tribedi, Lokesh C.
2018-01-01
Double differential cross sections (DDCS) of electrons emitted from vapor water molecules (in vapor phase) by 2.0 MeV/u and 3.75 MeV/u bare oxygen ion impact have been measured by continuum electron spectroscopy technique. The ejected electrons were detected by an electrostatic hemispherical deflection analyzer over an energy range of 1-600 eV and emission angles from 20∘ to 160∘. The DDCS data has been compared with the continuum-distorted-wave-eikonal-initial state (CDW-EIS) approximation and a reasonable agreement was found with both version of the models i.e. post and prior version. By numerical integration of the DDCS data, the single differential cross section (SDCS) and total ionization cross section (TCS) were obtained. The obtained TCS results were compared with other available TCS results for water target within the same energy range. The total ionization cross sections values are seen to saturate as the projectile charge state ( q p ) increases, which is in contrast to the first-Born predicted q p 2 dependence. This is also in contrast to the prediction of the CDW-EIS models.
Eschner, Markus S; Zimmermann, Ralf
2011-07-01
This work describes a fast and reliable method for determination of photoionization cross-sections (PICS) by means of gas chromatography (GC) coupled to single-photon ionization mass spectrometry (SPI-MS). Photoionization efficiency (PIE) data for 69 substances was obtained at a photon energy of 9.8 ± 0.4 eV using an innovative electron-beam-pumped rare gas excimer light source (EBEL) filled with argon. The investigated analytes comprise 12 alkylbenzenes as well as 11 other substituted benzenes, 23 n-alkanes, ten polyaromatic hydrocarbons, seven aromatic heterocycles, and six polyaromatic heterocycles. Absolute PICS for each substance at 9.8 eV are calculated from the relative photoionization efficiencies of the compounds with respect to benzene, whose photoionization cross-section data is well known. Furthermore, a direct correlation between the type of benzene substituents and their absolute PICS is presented and discussed in depth. Finally, comparison of previously measured photoionization cross-sections for 20 substances shows good agreement with the data of the present work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ahmed, S.
2018-04-01
We investigate the process e+e ! K K J= at center-of-mass energies from 4.189 to 4.600 GeV using 4.7 fb1 of data collected by the BESIII detector at the BEPCII collider. The Born cross sections for the reactions e+e ! K+KJ= and K0S K0S J= are measured as a function of center- of-mass energy. The energy dependence of the cross section for e+e ! K+KJ= is shown to di er from that for +J= in the region around the Y (4260). In addition, there is evidence for a structure around 4.5 GeV in the e+e ! K+KJ= cross section thatmore » is not present in +J= .« less
Double ionization in R -matrix theory using a two-electron outer region
NASA Astrophysics Data System (ADS)
Wragg, Jack; Parker, J. S.; van der Hart, H. W.
2015-08-01
We have developed a two-electron outer region for use within R -matrix theory to describe double ionization processes. The capability of this method is demonstrated for single-photon double ionization of He in the photon energy region between 80 and 180 eV. The cross sections are in agreement with established data. The extended R -matrix with time dependence method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionization processes involving an intermediate He+ state with n =2 .
Cross-sectional mapping for refined beam elements with applications to shell-like structures
NASA Astrophysics Data System (ADS)
Pagani, A.; de Miguel, A. G.; Carrera, E.
2017-06-01
This paper discusses the use of higher-order mapping functions for enhancing the physical representation of refined beam theories. Based on the Carrera unified formulation (CUF), advanced one-dimensional models are formulated by expressing the displacement field as a generic expansion of the generalized unknowns. According to CUF, a novel physically/geometrically consistent model is devised by employing Legendre-like polynomial sets to approximate the generalized unknowns at the cross-sectional level, whereas a local mapping technique based on the blending functions method is used to describe the exact physical boundaries of the cross-section domain. Classical and innovative finite element methods, including hierarchical p-elements and locking-free integration schemes, are utilized to solve the governing equations of the unified beam theory. Several numerical applications accounting for small displacements/rotations and strains are discussed, including beam structures with cross-sectional curved edges, cylindrical shells, and thin-walled aeronautical wing structures with reinforcements. The results from the proposed methodology are widely assessed by comparisons with solutions from the literature and commercial finite element software tools. The attention is focussed on the high computational efficiency and the marked capabilities of the present beam model, which can deal with a broad spectrum of structural problems with unveiled accuracy in terms of geometrical representation of the domain boundaries.
Dissociative and double photoionization of CO from threshold to 90 A
NASA Technical Reports Server (NTRS)
Masuoka, T.; Samson, J. A. R.
1981-01-01
Partial cross sections for molecular photoionization (CO(+)), dissociative photoionization (C(+) and O(+)), and dissociative double photoionization (C(2+)) in CO have been measured from their thresholds to 90 A using techniques of mass spectrometry. The results are compared with data reported previously. Several peaks observed in the cross section curves for dissociated fragments are tentatively assigned by comparing with those in the photoelectron spectra reported for CO. It is concluded that the shoulder in the total absorption cross section curve between 400 and 90 A results solely from the dissociative ionization processes.
NASA Technical Reports Server (NTRS)
Samson, James A. R.; Haddad, G. N.; Masuoka, T.; Pareek, P. N.; Kilcoyne, D. A. L.
1989-01-01
Absolute absorption and photoionization cross sections of methane have been measured with an accuracy of about 2 or 3 percent over most of the wavelength range from 950 to 110 A. Also, dissociative photoionization cross sections were measured for the production of CH4(+), CH3(+), CH2(+), CH(+), and C(+) from their respective thresholds to 159 A, and for H(+) and H2(+) measurements were made down to 240 A. Fragmentation was observed at all excited ionic states of CH4.
Krishichayan,; Bhike, Megha; Finch, S. W.; ...
2017-05-01
Photofission cross-section ratios of 235U and 238U have been measured using monoenergetic photon beams from the High Intensity Gamma-ray Source facility at the Triangle Universities Nuclear Laboratory. These measurements have been performed in small energy steps between 9.0 and 16.6 MeV using a dual-fission ionization chamber. The measured cross-section ratios are compared with the previous experimental data as well as with the recent evaluated nuclear data library ENDF.
Compression strength of composite primary structural components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.
1994-01-01
The linear elastic response is determined for an internally pressurized, long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity of this configuration permits the analysis of a portion of the shell wall centered over a generic stringer-ring joint; i.e., a unit cell model. The stiffeners are modeled as discrete beams, and the stringer is assumed to have a symmetrical cross section and the ring an asymmetrical section. Asymmetery causes out-of-plane bending and torsion of the ring. Displacements are assumed as truncated double Fourier series plus simple terms in the axial coordinate to account for the closed and pressure vessel effect (a non-periodic effect). The interacting line loads between the stiffeners and the inside shell wall are Lagrange multipliers in the formulation, and they are also assumed as truncated Fourier series. Displacement continuity constraints between the stiffeners and shell along the contact lines are satisfied point-wise. Equilibrium is imposed by the principle of virtual work. A composite material crown panel from the fuselage of a large transport aircraft is the numerical example. The distributions of the interacting line loads, and the out-of-plane bending moment and torque in the ring, are strongly dependent on modeling the deformations due to transverse shear and cross-sectional warping of the ring in torsion. This paper contains the results from the semiannual report on research on 'Pressure Pillowing of an Orthogonally Stiffened Cylindrical Shell'. The results of the new work are illustrated in the included appendix.
Convergent close-coupling calculations of positron-magnesium scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Jeremy S.; Fursa, Dmitry V.; Bray, Igor
2011-06-15
The single-center convergent close-coupling method has been applied to positron-magnesium scattering at incident energies from 0.01 to 100 eV. Cross sections are presented for elastic scattering and excitation of 3 {sup 1}P, as well as for the total ionization and total scattering processes. We also provide an estimate of the positronium formation cross section. The results agree very well with the measurements of the total cross section by Stein et al. [Nucl. Instrum. Methods Phys. Res. Sect. B 143, 68 (1998)], and consistent with the positronium formation measurements of Surdutovich et al. [Phys. Rev. A 68, 022709 (2003)] for positronmore » energies above the ionization threshold. For energies below the positronium formation threshold (0.8 eV) we find a large P-wave resonance at 0.17 eV. A similar resonance behavior was found by Mitroy and Bromley [Phys. Rev. Lett. 98, 173001 (2007)] at an energy of 0.1 eV.« less
NASA Astrophysics Data System (ADS)
Purohit, G.; Kato, D.
2017-10-01
The single ionization triple differential cross sections (TDCS) of the Ar (3 p ) atoms are reported for the positron and electron impact at 1 keV. The calculated cross sections have been obtained using distorted wave Born approximation (DWBA) approach for the average ejected electron energies 13 and 26 eV at different momentum transfer conditions. The present attempt is helpful to probe the information on the TDCS trends for the particle-matter and antiparticle-matter interactions and to analyze the recent measurements [Phy. Rev. A 95, 062703 (2017), 10.1103/PhysRevA.95.062703]. The binary electron emission is enhanced while the recoil emission is decreased for the positron impact relative to the electron impact in the DWBA calculation results. Systematic shift of peaks, shifting away from the momentum transfer direction for positron impact and shifting towards each other for electron impact, is observed with increasing momentum transfer.
Coherent electron emission from O2 in collisions with fast electrons
NASA Astrophysics Data System (ADS)
Chowdhury, Madhusree Roy; Stia, Carlos R.; Tachino, Carmen A.; Fojón, Omar A.; Rivarola, Roberto D.; Tribedi, Lokesh C.
2017-08-01
Absolute double differential cross sections (DDCS) of secondary electrons emitted in ionization of O2 by fast electrons have been measured for different emission angles. Theoretical calculations of atomic DDCS were obtained using the first Born approximation with an asymptotic charge of Z T = 1. The measured molecular DDCS were divided by twice the theoretical atomic DDCS to detect the presence of interference effects which was the aim of the experiment. The experimental to theoretical DDCS ratios showed clear signature of first order interference oscillation for all emission angles. The ratios were fitted by a first order Cohen-Fano type model. The variation of the oscillation amplitudes as a function of the electron emission angle showed a parabolic behaviour which goes through a minimum at 90°. The single differential and total ionization cross sections have also been deduced, besides the KLL Auger cross sections. In order to make a comparative study, we have discussed these results along with our recent experimental data obtained for N2 molecule.