Sample records for k0-instrumental neutron activation

  1. Evaluation of neutron flux parameters in irradiation sites of research reactor using the Westcott-formalism for the k0 neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Kasban, H.; Hamid, Ashraf

    2015-12-01

    Instrumental Neutron Activation Analysis using k0 (k0-INAA) method has been used to determine a number of elements in sediment samples collected from El-Manzala Lake in Egypt. k0-INAA according to Westcott's formalism has been implemented using the complete irradiation kit of the fast pneumatic rabbit and some selected manually loaded irradiation sites for short and long irradiation at Egypt Second Research Reactor (ETRR-2). Zr-Au and Co sets as neutron flux monitors are used to determine the neutron flux parameters (f and α) in each irradiation sites. Two reference materials IAEA Soil-7 samples have been inserted and implemented for data validation and an internal monostandard multi monitor used (k0 based IM-NAA). It was given a good agreement between the experimental analyzed values and that obtained of the certified values. The major and trace elements in the sediment samples have been evaluated with the use of Co as an internal and Au as an external monostandard comparators. The concentrations of the elements (Cr, Mn and Zn) in the sediment samples of the present work are discussed regarding to those obtained from other sites.

  2. Aluminium-gold reference material for the k0-standardisation of neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Ingelbrecht, C.; Peetermans, F.; De Corte, F.; De Wispelaere, A.; Vandecasteele, C.; Courtijn, E.; D'Hondt, P.

    1991-05-01

    Gold is an excellent comparator material for the k0-standardisation of neutron activation analysis because of its convenient and well defined nuclear properties. The most suitable form for a reference material is a dilute aluminium-gold alloy, for which the self-shielding effect for neutrons is small. Castings of composition Al-0.1 wt.% Au were prepared by crucible-less levitation melting, which gives close control of ingot composition with minimal contamination of the melt. The alloy composition was checked using induction-coupled plasma source emission spectrometry. The homogeneity of the alloy was measured by neutron activation analysis and a relative standard deviation of the gold content of 0.30% was found (10 mg samples). Metallography revealed a homogeneous distribution of AuAl 2 particles. The alloy was certified as Reference Material CBNM-530, with certified gold mass fraction 0.100±0.002 wt.%.

  3. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  4. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  5. Instrumental neutron activation analysis for studying size-fractionated aerosols

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Zemplén-Papp, Éva

    1999-10-01

    Instrumental neutron activation analysis (INAA) was utilized for studying aerosol samples collected into a coarse and a fine size fraction on Nuclepore polycarbonate membrane filters. As a result of the panoramic INAA, 49 elements were determined in an amount of about 200-400 μg of particulate matter by two irradiations and four γ-spectrometric measurements. The analytical calculations were performed by the absolute ( k0) standardization method. The calibration procedures, application protocol and the data evaluation process are described and discussed. They make it possible now to analyse a considerable number of samples, with assuring the quality of the results. As a means of demonstrating the system's analytical capabilities, the concentration ranges, median or mean atmospheric concentrations and detection limits are presented for an extensive series of aerosol samples collected within the framework of an urban air pollution study in Budapest. For most elements, the precision of the analysis was found to be beyond the uncertainty represented by the sampling techniques and sample variability.

  6. Determination and distribution of rare earth elements in beach rock samples using instrumental neutron activation analysis (INAA)

    NASA Astrophysics Data System (ADS)

    Ravisankar, R.; Manikandan, E.; Dheenathayalu, M.; Rao, Brahmaji; Seshadreesan, N. P.; Nair, K. G. M.

    2006-10-01

    Beach rocks are a peculiar type of formation when compared to other types of rocks. Rare earth element (REE) concentrations in beach rock samples collected from the South East Coast of Tamilnadu, India, have been measured using the instrumental neutron activation analysis (INAA) single comparator K0 method. The irradiations were carried out using a thermal neutron flux of ˜10 11 n cm -2 s -1 at 20 kW power using the Kalpakkam mini reactor (KAMINI), IGCAR, Kalpakkam, Tamilnadu. Accuracy and precision were evaluated by assaying irradiated standard reference material (SRM 1646a estuarine sediment). The results being found to be in good agreement with certified values. REE elements have been determined from 15 samples using high-resolution gamma spectrometry. The geochemical behavior of REE in beach rock, in particular REE (chondrite-normalized) pattern has been studied.

  7. Trace elements study of high purity nanocrystalline silicon carbide (3C-SiC) using k0-INAA method

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin; Jazbec, Anze

    2017-07-01

    Silicon carbide (3C-SiC) nanoparticles have been irradiated by neutron flux (2×1013 n·cm-2·s-1) at TRIGA Mark II type research reactor. After neutron irradiation, the radioisotopes of trace elements in the nanocrystalline 3C-SiC were studied as time functions. The identification of isotopes which significantly increased the activity of the samples as a result of neutron radiation was carried out. Nanocrystalline 3C-SiC are synthesized by standard laser technique and the purity of samples was determined by the k0-based Instrumental Neutron Activation Analysis (k0-INAA) method. Trace elements concentration in the 3C-SiC nanoparticles were determined by the radionuclides of appropriate elements. The trace element isotopes concentration have been calculated in percentage according to k0-INAA method.

  8. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; hide

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  9. Characterization of low power research reactor neutrons for the validation of k(0)-INAA standardization based on k(0)-IAEA software.

    PubMed

    Baidoo, I K; Nyarko, B J B; Akaho, E H K; Dampare, S B; Sogbadji, R B M; Poku, L O

    2013-09-01

    Channel Bsite2 of Ghana research reactor-1 has been characterized for k0-INAA application. Cadmium ratio and bare multi-monitor were used to determine flux parameters using 0.1%Au-Al, Fe, and Zr wire as flux monitors. The parameters determined were 18.36±1.91, 0.0479±0.012, 5.12×10(11)±0.42×10(11) ncm(-2)s(-1), 2.74×10(10)±0.14×10(10) ncm(-2)s(-1), 7.73×10(10)±0.16×10(10) ncm(-2)s(-1) and 16.75±1.58, -0.034±0.0028, 4.28×10(11)±1.71×10(11) ncm(-2)s(-1), 2.55×10(10)±0.15×10(10) ncm(-2)s(-1) respectively for thermal-to-epithermal flux ratio, alpha, thermal neutron, epithermal neutron and fast neutron flux using cadmium ratio and multi-monitor method accordingly. The k0-INAA performance assessment based on z-score distributions showed most results within |z|<2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Standard-less analysis of Zircaloy clad samples by an instrumental neutron activation method

    NASA Astrophysics Data System (ADS)

    Acharya, R.; Nair, A. G. C.; Reddy, A. V. R.; Goswami, A.

    2004-03-01

    A non-destructive method for analysis of irregular shape and size samples of Zircaloy has been developed using the recently standardized k0-based internal mono standard instrumental neutron activation analysis (INAA). The samples of Zircaloy-2 and -4 tubes, used as fuel cladding in Indian boiling water reactors (BWR) and pressurized heavy water reactors (PHWR), respectively, have been analyzed. Samples weighing in the range of a few tens of grams were irradiated in the thermal column of Apsara reactor to minimize neutron flux perturbations and high radiation dose. The method utilizes in situ relative detection efficiency using the γ-rays of selected activation products in the sample for overcoming γ-ray self-attenuation. Since the major and minor constituents (Zr, Sn, Fe, Cr and/or Ni) in these samples were amenable to NAA, the absolute concentrations of all the elements were determined using mass balance instead of using the concentration of the internal mono standard. Concentrations were also determined in a smaller size Zircaloy-4 sample by irradiating in the core position of the reactor to validate the present methodology. The results were compared with literature specifications and were found to be satisfactory. Values of sensitivities and detection limits have been evaluated for the elements analyzed.

  11. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    NASA Astrophysics Data System (ADS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  12. Design of a novel instrument for active neutron interrogation of artillery shells.

    PubMed

    Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter

    2017-01-01

    The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  13. Design of a novel instrument for active neutron interrogation of artillery shells

    PubMed Central

    Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter

    2017-01-01

    The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from 53-7+7% to 74-10+8% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s. PMID:29211773

  14. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    PubMed

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Mohamed Kamari, Halimah; Chee Kong, Yap; Suhaimi Hamzah, Mohd; Suhaimi Elias, Md

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, E.; Goldsten, J.

    2001-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.

  16. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  17. A new monitor set for the determination of neutron flux parameters in short-time k0-NAA

    NASA Astrophysics Data System (ADS)

    Kubešová, Marie; Kučera, Jan; Fikrle, Marek

    2011-11-01

    Multipurpose research reactors such as LVR-15 in Řež require monitoring of the neutron flux parameters (f, α) in each batch of samples analyzed when k0 standardization in NAA is to be used. The above parameters may change quite unpredictably, because experiments in channels adjacent to those used for NAA require an adjustment of the reactor operation parameters and/or active core configuration. For frequent monitoring of the neutron flux parameters the bare multi-monitor method is very convenient. The well-known Au-Zr tri-isotopic monitor set that provides a good tool for determining f and α after long-time irradiation is not optimal in case of short-time irradiation because only a low activity of the 95Zr radionuclide is formed. Therefore, several elements forming radionuclides with suitable half-lives and Q0 and Ēr parameters in a wide range of values were tested, namely 198Au, 56Mn, 88Rb, 128I, 139Ba, and 239U. As a result, an optimal mixture was selected consisting of Au, Mn, and Rb to form a well suited monitor set for irradiation at a thermal neutron fluence rate of 3×1017 m-2 s-1. The procedure of short-time INAA with the new monitor set for k0 standardization was successfully validated using the synthetic reference material SMELS 1 and several matrix reference materials (RMs) representing matrices of sample types frequently analyzed in our laboratory. The results were obtained using the Kayzero for Windows program.

  18. k0-INAA for determining chemical elements in bird feathers

    NASA Astrophysics Data System (ADS)

    França, Elvis J.; Fernandes, Elisabete A. N.; Fonseca, Felipe Y.; Antunes, Alexsander Z.; Bardini Junior, Claudiney; Bacchi, Márcio A.; Rodrigues, Vanessa S.; Cavalca, Isabel P. O.

    2010-10-01

    The k0-method instrumental neutron activation analysis ( k0-INAA) was employed for determining chemical elements in bird feathers. A collection was obtained taking into account several bird species from wet ecosystems in diverse regions of Brazil. For comparison reason, feathers were actively sampled in a riparian forest from the Marins Stream, Piracicaba, São Paulo State, using mist nets specific for capturing birds. Biological certified reference materials were used for assessing the quality of analytical procedure. Quantification of chemical elements was performed using the k0-INAA Quantu Software. Sixteen chemical elements, including macro and micronutrients, and trace elements, have been quantified in feathers, in which analytical uncertainties varied from 2% to 40% depending on the chemical element mass fraction. Results indicated high mass fractions of Br (max=7.9 mg kg -1), Co (max=0.47 mg kg -1), Cr (max=68 mg kg -1), Hg (max=2.79 mg kg -1), Sb (max=0.20 mg kg -1), Se (max=1.3 mg kg -1) and Zn (max=192 mg kg -1) in bird feathers, probably associated with the degree of pollution of the areas evaluated. In order to corroborate the use of k0-INAA results in biomonitoring studies using avian community, different factor analysis methods were used to check chemical element source apportionment and locality clustering based on feather chemical composition.

  19. Chemical characterization of gas- and oil-bearing shales by instrumental neutron activation analysis

    USGS Publications Warehouse

    Frost, J.K.; Koszykowski, R.F.; Klemm, R.C.

    1982-01-01

    The concentration of As, Ba, Ca, Co, Cr, Cs, Dy, Eu, Fe, Ga, Hf, K, La, Lu, Mn, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, and Zn were determined by instrumental neutron activation analysis in block shale samples of the New Albany Group (Devonian-Mississippian) in the in the Illinois Basin. Uranium content of the samples was as high as 75 ppm and interfered in the determination of samarium, molybdenum, barium and cerium. In the determination of selenium a correction was made for interference from tantalum. U, As, Co, Mo, Ni and Sb as well as Cu, V and pyritic sulphur which were determined by other methods, were found to correlate positively with the organic carbon content of the samples. ?? 1982 Akade??miai Kiado??.

  20. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    USGS Publications Warehouse

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  1. Neutron activation determination of iridium, gold, platinum, and silver in geologic samples

    USGS Publications Warehouse

    Millard, H.T.

    1987-01-01

    Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.

  2. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  3. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  4. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited).

    PubMed

    Yeamans, C B; Gharibyan, N

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 10 15 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  5. A development and integration of database code-system with a compilation of comparator, k0 and absolute methods for INAA using microsoft access

    NASA Astrophysics Data System (ADS)

    Hoh, Siew Sin; Rapie, Nurul Nadiah; Lim, Edwin Suh Wen; Tan, Chun Yuan; Yavar, Alireza; Sarmani, Sukiman; Majid, Amran Ab.; Khoo, Kok Siong

    2013-05-01

    Instrumental Neutron Activation Analysis (INAA) is often used to determine and calculate the elemental concentrations of a sample at The National University of Malaysia (UKM) typically in Nuclear Science Programme, Faculty of Science and Technology. The objective of this study was to develop a database code-system based on Microsoft Access 2010 which could help the INAA users to choose either comparator method, k0-method or absolute method for calculating the elemental concentrations of a sample. This study also integrated k0data, Com-INAA, k0Concent, k0-Westcott and Abs-INAA to execute and complete the ECC-UKM database code-system. After the integration, a study was conducted to test the effectiveness of the ECC-UKM database code-system by comparing the concentrations between the experiments and the code-systems. 'Triple Bare Monitor' Zr-Au and Cr-Mo-Au were used in k0Concent, k0-Westcott and Abs-INAA code-systems as monitors to determine the thermal to epithermal neutron flux ratio (f). Calculations involved in determining the concentration were net peak area (Np), measurement time (tm), irradiation time (tirr), k-factor (k), thermal to epithermal neutron flux ratio (f), parameters of the neutron flux distribution epithermal (α) and detection efficiency (ɛp). For Com-INAA code-system, certified reference material IAEA-375 Soil was used to calculate the concentrations of elements in a sample. Other CRM and SRM were also used in this database codesystem. Later, a verification process to examine the effectiveness of the Abs-INAA code-system was carried out by comparing the sample concentrations between the code-system and the experiment. The results of the experimental concentration values of ECC-UKM database code-system were performed with good accuracy.

  6. Fatigue and nanomechanical properties of K3XF nickel-titanium instruments.

    PubMed

    Shen, Y; Zhou, H; Campbell, L; Wang, Z; Wang, R; Du, T; Haapasalo, M

    2014-12-01

    To examine the fatigue behaviour of heat-treated NiTi instruments when immersed in aqueous media and to determine the effect of cyclic fatigue on the hardness and elastic modulus of NiTi instruments using a nanoindentation technique. K3XF and K3 NiTi instruments, both in sizes 25, 0.04 taper and 40, 0.04 taper, were subjected to rotational bending at a curvature of 42° either in air or under deionized water, and the number of revolutions to fracture (Nf ) was recorded. The fracture surface of all fragments was examined with a scanning electron microscope. The hardness and elastic modulus of the fracture surface of instruments sized 25, 0.04 taper were then measured using a nanoindentation test. The K3XF instruments had a fatigue resistance superior to K3 instruments under dry and aqueous environments (P < 0.05). The fatigue life of K3 instruments was similar under both conditions, whereas the Nf of K3XF was greater under water than in air, especially at the size 40, 0.04 taper (P < 0.05). The values for the fraction of the area occupied by the dimple region were significantly smaller in K3XF instruments than in K3 instruments, especially under water (P < 0.05). There was no difference in hardness on K3XF instruments between new files and instruments subjected to the fatigue process. The hardness of instruments subjected to the fatigue process was significantly lower in K3XF than in K3 instruments (P < 0.05). The fatigue life of K3XF instruments under water is longer than it is for K3XF instruments in air. There was no work-hardening effect on K3XF instruments subjected to the fatigue process. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Implementation of k0-INAA standardisation at ITU TRIGA Mark II research reactor, Turkey based on k0-IAEA software

    NASA Astrophysics Data System (ADS)

    Esen, Ayse Nur; Haciyakupoglu, Sevilay

    2016-02-01

    The purpose of this study is to test the applicability of k0-INAA method at the Istanbul Technical University TRIGA Mark II research reactor. The neutron spectrum parameters such as epithermal neutron flux distribution parameter (α), thermal to epithermal neutron flux ratio (f) and thermal neutron flux (φth) were determined at the central irradiation channel of the ITU TRIGA Mark II research reactor using bare triple-monitor method. HPGe detector calibrations and calculations were carried out by k0-IAEA software. The α, f and φth values were calculated to be -0.009, 15.4 and 7.92·1012 cm-2 s-1, respectively. NIST SRM 1633b coal fly ash and intercomparison samples consisting of clay and sandy soil samples were used to evaluate the validity of the method. For selected elements, the statistical evaluation of the analysis results was carried out by z-score test. A good agreement between certified/reported and experimental values was obtained.

  8. The impact of heavy metals from environmental tobacco smoke on indoor air quality as determined by Compton suppression neutron activation analysis.

    PubMed

    Landsberger, S; Wu, D

    1995-12-01

    The method of instrumental neutron activation analysis (NAA) has been improved for air filter samples in the determination of low level heavy metals in indoor air. By using the techniques of epithermal neutron irradiation in conjunction with Compton suppression, the detection limits of cadmium, arsenic and antimony measurements have been dramatically reduced to 2 ng for Cd, 0.2 ng for As, and 0.03 ng for Sb. The determination of these heavy metals in particulate material generated from cigarette smoking in indoor environments has been conducted. Other elements, Br, Cl, Na, K, Zn were also found at elevated levels.

  9. Neutron diffraction study of Tb0.5Ho0.5Mn2Si2

    NASA Astrophysics Data System (ADS)

    Pandey, Swati; Siruguri, Vasudeva; Rawat, Rajeev

    2018-02-01

    The magnetic properties of tetragonal polycrystalline intermetallic compound Tb0.5Ho0.5Mn2Si2 have been investigated using temperature dependent dc magnetic susceptibility and neutron powder diffraction studies. Results of high temperature susceptibility data shows anomaly at TN = 510 K while low temperature susceptibility data indicate two successive anomalies at T1 = 11 K and T2 = 25 K. Metamagnetic transition is observed in magnetization versus field curves. Our neutron diffraction results indicate three different magnetic regions with different magnetic structures. Neutron diffraction data shows that below T2, the intensities of some of the nuclear peaks get enhanced indicating ferromagnetic ordering, while additional magnetic reflections are observed below T1, indicating antiferromagnetic order. Ordering of rare earth sublattice at low temperature rearranges the ordering of Mn sublattice and results in reorientation of Mn spins at T1. At 2 K Tb/Ho moments are aligned along c-axis while Mn moments are aligned perpendicular to c-axis.

  10. A field instrument for quantitative determination of beryllium by activation analysis

    USGS Publications Warehouse

    Vaughn, William W.; Wilson, E.E.; Ohm, J.M.

    1960-01-01

    A low-cost instrument has been developed for quantitative determinations of beryllium in the field by activation analysis. The instrument makes use of the gamma-neutron reaction between gammas emitted by an artificially radioactive source (Sb124) and beryllium as it occurs in nature. The instrument and power source are mounted in a panel-type vehicle. Samples are prepared by hand-crushing the rock to approximately ?-inch mesh size and smaller. Sample volumes are kept constant by means of a standard measuring cup. Instrument calibration, made by using standards of known BeO content, indicates the analyses are reproducible and accurate to within ? 0.25 percent BeO in the range from 1 to 20 percent BeO with a sample counting time of 5 minutes. Sensitivity of the instrument maybe increased somewhat by increasing the source size, the sample size, or by enlarging the cross-sectional area of the neutron-sensitive phosphor normal to the neutron flux.

  11. Characterizing suspended sediments from the Piracicaba River Basin by means of k0-INAA

    NASA Astrophysics Data System (ADS)

    França, E. J.; Fernandes, E. A. N.; Cavalca, I. P. O.; Fonseca, F. Y.; Camilli, L.; Rodrigues, V. S.; Bardini Junior, C.; Ferreira, J. R.; Bacchi, M. A.

    2010-10-01

    The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k0 method ( k0-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k0-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems.

  12. Measurements of the branching fractions for D + → K S 0 K S 0 K + , K S 0 K S 0 π + and D 0K S 0 K S 0 , K S 0 K S 0 K S 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.

    By analyzing 2.93 fb-1 of data taken at the ψ (3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D +→Kmore » $$0\\atop{S}$$K$$0\\atop{S}$$K +, D +→K$$0\\atop{S}$$K$$0\\atop{S}$$π +. D 0K$$0\\atop{S}$$K$$0\\atop{S}$$ and D 0K$$0\\atop{S}$$K$$0\\atop{S}$$K$$0\\atop{S}$$.« less

  13. Measurements of the branching fractions for D + → K S 0 K S 0 K + , K S 0 K S 0 π + and D 0K S 0 K S 0 , K S 0 K S 0 K S 0

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...

    2016-12-13

    By analyzing 2.93 fb-1 of data taken at the ψ (3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D +→Kmore » $$0\\atop{S}$$K$$0\\atop{S}$$K +, D +→K$$0\\atop{S}$$K$$0\\atop{S}$$π +. D 0K$$0\\atop{S}$$K$$0\\atop{S}$$ and D 0K$$0\\atop{S}$$K$$0\\atop{S}$$K$$0\\atop{S}$$.« less

  14. Quantitative Evaluation of Ion-implanted Arsenic in Silicon by Instrumental Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Takatsuka, Toshiko; Hirata, Kouichi; Kobayashi, Yoshinori; Kuroiwa, Takayoshi; Miura, Tsutomu; Matsue, Hideaki

    2008-11-01

    Certified reference materials (CRMs) of shallow arsenic implants in silicon are now under development at the National Metrology Institute of Japan (NMIJ). The amount of ion-implanted arsenic atoms is quantified by Instrumental Neutron Activation Analysis (INAA) using research reactor JRR-3 in Japan Atomic Energy Agency (JAEA). It is found that this method can evaluate arsenic amounts of 1015 atoms/cm2 with small uncertainties, and is adaptable to shallower dopants. The estimated uncertainties can satisfy the industrial demands for reference materials to calibrate the implanted dose of arsenic at shallow junctions.

  15. Computer-assisted uncertainty assessment of k0-NAA measurement results

    NASA Astrophysics Data System (ADS)

    Bučar, T.; Smodiš, B.

    2008-10-01

    In quantifying measurement uncertainty of measurement results obtained by the k0-based neutron activation analysis ( k0-NAA), a number of parameters should be considered and appropriately combined in deriving the final budget. To facilitate this process, a program ERON (ERror propagatiON) was developed, which computes uncertainty propagation factors from the relevant formulae and calculates the combined uncertainty. The program calculates uncertainty of the final result—mass fraction of an element in the measured sample—taking into account the relevant neutron flux parameters such as α and f, including their uncertainties. Nuclear parameters and their uncertainties are taken from the IUPAC database (V.P. Kolotov and F. De Corte, Compilation of k0 and related data for NAA). Furthermore, the program allows for uncertainty calculations of the measured parameters needed in k0-NAA: α (determined with either the Cd-ratio or the Cd-covered multi-monitor method), f (using the Cd-ratio or the bare method), Q0 (using the Cd-ratio or internal comparator method) and k0 (using the Cd-ratio, internal comparator or the Cd subtraction method). The results of calculations can be printed or exported to text or MS Excel format for further analysis. Special care was taken to make the calculation engine portable by having possibility of its incorporation into other applications (e.g., DLL and WWW server). Theoretical basis and the program are described in detail, and typical results obtained under real measurement conditions are presented.

  16. Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF).

    PubMed

    El-Taher, A

    2012-01-01

    The instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite samples collected from four locations in the Aswan area in South Egypt. The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7×10(11)n/cm(2)s in the TRIGA Mainz research reactor. Gamma-ray spectra from an hyper-pure germanium detector were analyzed. The present study provides the basic data of elemental concentrations of granite rocks. The following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The X-ray fluorescence (XRF) was used for comparison and to detect elements, which can be detected only by XRF such as F, S, Cl, Co, Cu, Mo, Ni, Pb, Se and V. The data presented here are our contribution to understanding the elemental composition of the granite rocks. Because there are no existing databases for the elemental analysis of granite, our results are a start to establishing a database for the Egyptian granite. It is hoped that the data presented here will be useful to those dealing with geochemistry, granite chemistry and related fields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.

    2016-07-01

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.

  18. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, O., E-mail: osierra@sgc.gov.co; Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in samplemore » density between samples and standards.« less

  19. New developments in the McStas neutron instrument simulation package

    NASA Astrophysics Data System (ADS)

    Willendrup, P. K.; Knudsen, E. B.; Klinkby, E.; Nielsen, T.; Farhi, E.; Filges, U.; Lefmann, K.

    2014-07-01

    The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments, virtual experiments, data analysis and user training. McStas was founded as a scientific, open-source collaborative code in 1997. This contribution presents the project at its current state and gives an overview of the main new developments in McStas 2.0 (December 2012) and McStas 2.1 (expected fall 2013), including many new components, component parameter uniformisation, partial loss of backward compatibility, updated source brilliance descriptions, developments toward new tools and user interfaces, web interfaces and a new method for estimating beam losses and background from neutron optics.

  20. Modularized Parallel Neutron Instrument Simulation on the TeraGrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Meili; Cobb, John W; Hagen, Mark E

    2007-01-01

    In order to build a bridge between the TeraGrid (TG), a national scale cyberinfrastructure resource, and neutron science, the Neutron Science TeraGrid Gateway (NSTG) is focused on introducing productive HPC usage to the neutron science community, primarily the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations are used as a powerful tool for instrument design and optimization at SNS. One of the successful efforts of a collaboration team composed of NSTG HPC experts and SNS instrument scientists is the development of a software facility named PSoNI, Parallelizing Simulations of Neutron Instruments. Parallelizing the traditional serialmore » instrument simulation on TeraGrid resources, PSoNI quickly computes full instrument simulation at sufficient statistical levels in instrument de-sign. Upon SNS successful commissioning, to the end of 2007, three out of five commissioned instruments in SNS target station will be available for initial users. Advanced instrument study, proposal feasibility evalua-tion, and experiment planning are on the immediate schedule of SNS, which pose further requirements such as flexibility and high runtime efficiency on fast instrument simulation. PSoNI has been redesigned to meet the new challenges and a preliminary version is developed on TeraGrid. This paper explores the motivation and goals of the new design, and the improved software structure. Further, it describes the realized new fea-tures seen from MPI parallelized McStas running high resolution design simulations of the SEQUOIA and BSS instruments at SNS. A discussion regarding future work, which is targeted to do fast simulation for automated experiment adjustment and comparing models to data in analysis, is also presented.« less

  1. Status of the Neutron Imaging and Diffraction Instrument IMAT

    NASA Astrophysics Data System (ADS)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  2. Measuring spent fuel assembly multiplication in borated water with a passive neutron albedo reactivity instrument

    NASA Astrophysics Data System (ADS)

    Tobin, Stephen J.; Peura, Pauli; Bélanger-Champagne, Camille; Moring, Mikael; Dendooven, Peter; Honkamaa, Tapani

    2018-07-01

    The performance of a passive neutron albedo reactivity (PNAR) instrument to measure neutron multiplication of spent nuclear fuel in borated water is investigated as part of an integrated non-destructive assay safeguards system. To measure the PNAR Ratio, which is proportional to the neutron multiplication, the total neutron count rate is measured in high- and low-multiplying environments by the PNAR instrument. The integrated system also contains a load cell and a passive gamma emission tomograph, and as such meets all the recommendations of the IAEA's recent ASTOR Experts Group report. A virtual spent fuel library for VVER-440 fuel was used in conjunction with MCNP simulations of the PNAR instrument to estimate the measurement uncertainties from (1) variation in the water boron content, (2) assembly positioning in the detector and (3) counting statistics. The estimated aggregate measurement uncertainty on the PNAR Ratio measurement is 0.008, to put this uncertainty in context, the difference in the PNAR Ratio between a fully irradiated assembly and this same assembly when fissile isotopes only absorb neutrons, but do not emit neutrons, is 0.106, a 13-sigma effect. The 1-sigma variation of 0.008 in the PNAR Ratio is estimated to correspond to a 3.2 GWd/tU change in assembly burnup.

  3. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  4. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  5. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE PAGES

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...

    2017-02-01

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  6. Industrial Application Experiments on the Neutron Imaging Instrument DINGO

    NASA Astrophysics Data System (ADS)

    Garbe, Ulf; Ahuja, Yogita; Ibrahim, Ralph; Li, Huijun; Aldridge, Laurie; Salvemini, Filomena; Paradowska, Anna Ziara

    The new neutron radiography / tomography / imaging instrument DINGO is operational since October 2014 to support the area of neutron imaging research at ANSTO. The instrument is designed for a diverse community in areas like defense, industrial, cultural heritage and archaeology applications. In the field of industrial application it provides a useful tool for studying cracking and defects in concrete or other structural material. Since being operational we gathered experience with industrial applications and commercial customers demanding beam time on DINGO. The instrument is a high flux facility with is 5.3 × 107 [n/(cm2s)] (confirmed by gold foil activation) for an L/D of approximately 500 at HB-2. A special feature of DINGO is the in-pile collimator position in front of the main shutter at HB-2. The collimator offers two pinholes with a possible L/D of 500 and 1000. A secondary collimator separates the two beams by blocking one and positions another aperture for the other beam. The neutron beam size can be adjusted to the sample size from 50 × 50 mm2 to 200 × 200 mm2 with a resulting pixel size from 27 μm to ∼100 μm. The whole instrument operates in two different positions, one for high resolution and one for high speed. We would like to present our first experience with commercial customers, scientific proposals with industrial applications and how to be customer ready.

  7. Determination of U, Th and K in bricks by gamma-ray spectrometry, X-ray fluorescence analysis and neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.; Gregorová, E.

    2017-11-01

    Knowledge of the content of natural radionuclides in bricks can be important in some cases in dosimetry and application of ionizing radiation. Dosimetry of naturally occurring radionuclides in matter (NORM) in general is one of them, the other one, related to radiation protection, is radon exposure evaluation, and finally, it is needed for the thermoluminescence (TL) dating method. The internal dose rate inside bricks is caused mostly by contributions of the natural radionuclides 238U, 232Th, radionuclides of their decay chains, and 40K. The decay chain of 235U is usually much less important. The concentrations of 238U, 232Th and 40K were measured by various methods, namely by gamma-ray spectrometry, X-ray fluorescence analysis (XRF), and neutron activation analysis (NAA) which was used as a reference method. These methods were compared from the point of view of accuracy, limit of detection (LOD), amount of sample needed and sample handling, time demands, and instrument availability.

  8. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  9. The influence of antikaon condensations on nucleon 1S0 superfluidity in neutron star matter

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Huang, Xiu Lin; Zhang, Xiao Jun; Yu, Zi; Fan, Cun Bo; Ding, Wen Bo; Liu, Cheng Zhi

    2018-03-01

    The properties of neutron and proton 1S0 superfluidity are studied within the relativistic mean field and the Bardeen-Cooper-Schrieffer theories by taking the effects of K- and \\bar{K}0 condensations into account in neutron star matter without the hyperon degrees of freedom. It is found that antikaon condensations change the Fermi momenta, the effective masses and the single particle energies of nucleons in neutron star matter. These changes lead to a strong suppression of the neutron 1S0 superfluidity and an obvious enhancement of the proton 1S0 superfluidity in neutron star matter, respectively. In particular, the neutron and proton 1S0 pairing gaps are gradually shrinking with the optical potential of antikaons from -80 to -130 MeV. And antikaon condensations have little influence on the neutron 1S0 superfluid range, however, they have been markedly downsized the proton 1S0 superfluid range as the deepening of the optical potential of antikaons in neutron star matter. We also found that the nucleon 1S0 superfluidity and K- condensations within the scope of above optical potential of antikaons can occur in the core of PSR J1614-2230 and PSR J0348+0432 at the same time. Whereas \\bar{K}0 condensations only occur in the two pulsars when the range of optical potential of antikaons is from -100 to -130 MeV.

  10. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons and short-lived nuclides

    USGS Publications Warehouse

    Steinnes, E.; Rowe, J.J.

    1976-01-01

    Instrumental neutron activation analysis is applied to the determination of about 25 elements in coals and fly ash by means of nuclides with half-lives of less than 48 h ; thermal and epithermal irradiations are used. The results indicate that epithermal activation is preferable for twelve of the elements (Ga, As, Br, Sr, In, Cs, Ba, La, Sm, Ho, W and U). Data for SRM 1632 (coal) and SRM 1633 (fly ash) compare favorably with the results obtained by other investigators. ?? 1976.

  11. Neutron activation analysis of some building materials

    NASA Astrophysics Data System (ADS)

    Salagean, M. N.; Pantelica, A. I.; Georgescu, I. I.; Muntean, M. I.

    1999-01-01

    Concentrations of As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Na, Nd, Rb, Sb, Sc, Sr, Ta, Tb, Th, U. Yb, W and Zn in seven Romanian building materials were determined by the Instrumental Neutron Activation Analysis (INAA) method using the VVR-S Reactor of NIPNE- Bucharest. Raw matarials used in cement obtaining ≈ 75% of limestone and ≈ 25% of clay, cement samples from three different factories, furnace slag, phosphogypsum, and a type of brick have been analyzed. The brick was compacted from furnace slay, fly coal ash, phosphogypsum, lime and cement. The U, Th and K concentrations determined in the brick are in agreement with the natural radioactivity measurements of226Ra,232Th and40K. These specific activities were found about twice and 1.5 higher than the accepted levels in the case of226Ra and232Th, as well as40K, respectively. By consequence, the investigated brick is considered a radioactive waste. The rather high content of Co, Cr, K, Th, and Zh in the brick is especially due to the slag and fly ash, the main componets. The presence of U, Th and K in slag is mainly correlated with the limestone and dolomite as fluxes in matallurgy.

  12. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.

    2017-02-01

    The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.

  13. A large 2D PSD for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.

    1997-02-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  14. Characterization of ancient glass excavated in Enez (Ancient Ainos) Turkey by combined Instrumental Neutron Activation Analysis and Fourier Transform Infrared spectrometry techniques

    NASA Astrophysics Data System (ADS)

    Akyuz, Sevim; Akyuz, Tanil; Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba; Basaran, Sait; Cakan, Banu

    2012-05-01

    Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry.

  15. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    NASA Astrophysics Data System (ADS)

    Baljinnyam, N.; Jugder, B.; Norov, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.

    2011-06-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves) (0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the "Reference plant» data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  16. Octahedral deformations and cationic displacements in the ferroelectric PbHf(0.8)Ti(0.2)O(3): a neutron powder diffraction study from 10 to 770 K

    PubMed

    Muller; Baudour; Bedoya; Bouree; Soubeyroux; Roubin

    2000-02-01

    Neutron powder diffraction data, collected over the temperature range 10-770 K, have been analysed in order to make a detailed characterization of the sequence of phase transitions occurring in the Hf-rich ferroelectric PbHf(0.8)Ti(0.2)O3, titanium hafnium lead oxide. Over the whole temperature range this compound undergoes two phase transitions, which involve cationic displacements and octahedral deformations (tilt and/or distortion) leading to strongly distorted perovskite-type structures. The first transition appears around 415 K between two ferroelectric rhombohedral phases: a low-temperature nonzero-tilt phase F(RL) (space group R3c) and an intermediate zero-tilt phase FRH (space group R3m). The second one, detected around 520 K, is associated with a ferroelectric to-paraelectric transition between the FRH phase and the Pc cubic phase (space group Pm3m). From high-resolution neutron powder diffraction data (diffractometer 3T2-LLB, Saclay, France, lambda = 1.2251 A), the crystallographic structure of the three successive phases has been accurately determined at the following temperatures: T = 10 K (FRL): space group R3c, Z = 6, a(hex) = 5.7827 (1), c(hex) = 14.2702 (4) A, V(hex) = 413.26 (2) A3; T = 150 K (F(RL)): space group R3c, Z = 6, a(hex) = 5.7871 (1), C(hex) = 14.2735 (4) A, V(hex) = 413.98 (3) A3; T = 290 K (FRL): space group R3c, Z = 6, a(hex) = 5.7943 (1), C(hex) = 14.2742 (5) A, V(hex) = 415.04 (3) A3; T = 440 K (F(RH)): space group R3c, Z = 6, a(hex) = 5.8025 (1), c(hex) = 14.2648 (4) A, V(hex) = 415.94 (3) A3; T = 520 K (Pc): space group Pm3m, Z = 1, a(cub) = 4.1072 (2) A, V(cub) = 69.29 (1) A3. In addition, a neutron powder thermodiffractometry experiment, performed between 290 and 770 K (diffractometer D1B-ILL, Grenoble, France, lambda = 2.533 A), has been used to study in situ the temperature-induced phase transitions. From sequential Rietveld refinements, the temperature dependence of the cation displacements and the rotation and/or distortion

  17. New sources and instrumentation for neutron science

    NASA Astrophysics Data System (ADS)

    Gil, Alina

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  18. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  19. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    PubMed

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Transportable, Low-Dose Active Fast-Neutron Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalczo, John T.; Wright, Michael C.; McConchie, Seth M.

    2017-08-01

    This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.

  1. Monte Carlo simulations of neutron-scattering instruments using McStas

    NASA Astrophysics Data System (ADS)

    Nielsen, K.; Lefmann, K.

    2000-06-01

    Monte Carlo simulations have become an essential tool for improving the performance of neutron-scattering instruments, since the level of sophistication in the design of instruments is defeating purely analytical methods. The program McStas, being developed at Risø National Laboratory, includes an extension language that makes it easy to adapt it to the particular requirements of individual instruments, and thus provides a powerful and flexible tool for constructing such simulations. McStas has been successfully applied in such areas as neutron guide design, flux optimization, non-Gaussian resolution functions of triple-axis spectrometers, and time-focusing in time-of-flight instruments.

  2. A large 2D PSD for thermal neutron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knott, R.B.; Watt, G.; Boldeman, J.W.

    1996-12-31

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4} and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2{angstrom} neutrons and the (measured) neutron energy resolution on the anodemore » grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.« less

  3. Search for the Θ+ pentaquark in the reactions γp→K¯0K+n and γp→K¯0K0p

    NASA Astrophysics Data System (ADS)

    de Vita, R.; Battaglieri, M.; Kubarovsky, V.; Baltzell, N. A.; Bellis, M.; Goett, J.; Guo, L.; Mutchler, G. S.; Stoler, P.; Ungaro, M.; Weygand, D. P.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Batourine, V.; Bedlinskiy, I.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Chen, S.; Clinton, E.; Cole, P. L.; Collins, P.; Coltharp, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Dale, D.; de Masi, R.; de Sanctis, E.; Degtyarenko, P. V.; Deur, A.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Funsten, H.; Gabrielyan, M. Y.; Gan, L.; Garçon, M.; Gasparian, A.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glamazdin, O.; Goetz, J. T.; Golovach, E.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Kramer, L. H.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Livingston, K.; Lu, H. Y.; MacCormick, M.; Markov, N.; McKinnon, B.; Mecking, B. A.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mochalov, V.; Mokeev, V.; Morand, L.; Morrow, S. A.; Moteabbed, M.; Nadel-Turonski, P.; Nakagawa, I.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shvedunov, N. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Teymurazyan, A.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.

    2006-08-01

    The exclusive reactions γp→K¯0K+n and γp→K¯0K0p have been studied in the photon energy range 1.6 3.8 GeV, searching for evidence of the exotic baryon Θ+(1540) in the decays Θ+→nK+ and Θ+→pK0. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The integrated luminosity was about 70pb-1. The reactions have been isolated by detecting the K+ and proton directly, the neutral kaon via its decay to KS→π+π- and the neutron or neutral kaon via the missing mass technique. The mass and width of known hyperons such as Σ+, Σ- and Λ(1116) were used as a check of the mass determination accuracy and experimental resolution. Approximately 100 000 Λ*(1520)’s and 150 000 ϕ’s were observed in the K¯0K+n and K¯0K0p final state, respectively. No evidence for the Θ+ pentaquark was found in the nK+ or pKS invariant mass spectra. Upper limits were set on the production cross section of the reaction γp→K¯0Θ+ as functions of center-of-mass angle, nK+ and pKS masses. Combining the results of the two reactions, the 95% C.L. upper limit on the total cross section for a resonance peaked at 1540 MeV was found to be 0.7 nb. Within most of the available theoretical models, this corresponds to an upper limit on the Θ+ width, ΓΘ+, ranging between 0.01 and 7 MeV.

  4. SUSANS With Polarized Neutrons.

    PubMed

    Wagh, Apoorva G; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang

    2005-01-01

    Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10(-4) nm(-1) to 10(-3) nm(-1) afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 10(4) A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10(-3) nm(-1) range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples.

  5. SUSANS With Polarized Neutrons

    PubMed Central

    Wagh, Apoorva G.; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang

    2005-01-01

    Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10–4 nm–1 to 10–3 nm–1 afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 104 A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10–3 nm–1 range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples. PMID:27308127

  6. Cross sections for the reactions e + e - → K S 0 K L 0 π 0 , K S 0 K L 0 η , and K S 0 K L 0 π 0 π 0 from events with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    Here, we study the processes e + e - → Kmore » $$0\\atop{S}$$ K$$0\\atop{L}$$ π 0 γ , K $$0\\atop{S}$$ K$$0\\atop{L}$$ η γ , and K$$0\\atop{S}$$ K$$0\\atop{L}$$ π 0 π 0 γ , where the photon is radiated from the initial state, providing cross section measurements for the hadronic final states over a continuum of center-of-mass energies. The results are based on 469 fb -1 of data collected at or near the Υ ( 4 S ) resonance with the BABAR detector at SLAC. We present the first measurements of the e + e - → K$$0\\atop{S}$$ K$$0\\atop{L}$$ π 0 , K$$0\\atop{S}$$ K$$0\\atop{L}$$ η , and K$$0\\atop{S}$$ K$$0\\atop{L}$$ π 0π 0 cross sections up to a center-of-mass energy of 4 GeV and study their intermediate resonance structures. We observe J / ψ decays to all of these final states for the first time, present measurements of their J / ψ branching fractions, and search for ψ (2S) decays.« less

  7. Cross sections for the reactions e + e - → K S 0 K L 0 π 0 , K S 0 K L 0 η , and K S 0 K L 0 π 0 π 0 from events with initial-state radiation

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-03-06

    Here, we study the processes e + e - → Kmore » $$0\\atop{S}$$ K$$0\\atop{L}$$ π 0 γ , K $$0\\atop{S}$$ K$$0\\atop{L}$$ η γ , and K$$0\\atop{S}$$ K$$0\\atop{L}$$ π 0 π 0 γ , where the photon is radiated from the initial state, providing cross section measurements for the hadronic final states over a continuum of center-of-mass energies. The results are based on 469 fb -1 of data collected at or near the Υ ( 4 S ) resonance with the BABAR detector at SLAC. We present the first measurements of the e + e - → K$$0\\atop{S}$$ K$$0\\atop{L}$$ π 0 , K$$0\\atop{S}$$ K$$0\\atop{L}$$ η , and K$$0\\atop{S}$$ K$$0\\atop{L}$$ π 0π 0 cross sections up to a center-of-mass energy of 4 GeV and study their intermediate resonance structures. We observe J / ψ decays to all of these final states for the first time, present measurements of their J / ψ branching fractions, and search for ψ (2S) decays.« less

  8. γγ coincidence spectrometer for instrumental neutron-activation analysis

    NASA Astrophysics Data System (ADS)

    Tomlin, B. E.; Zeisler, R.; Lindstrom, R. M.

    2008-05-01

    Neutron-activation analysis (NAA) is an important technique for the accurate and precise determination of trace and ultra-trace elemental compositions. The application of γγ coincidence counting to NAA in order to enhance specificity was first explored over 40 years ago but has not evolved into a regularly used technique. A γγ coincidence spectrometer has been constructed at the National Institute of Standards and Technology, using two HPGe γ-ray detectors and an all-digital data-acquisition system, for the purpose of exploring coincidence NAA and its value in characterizing reference materials. This paper describes the initial evaluation of the quantitative precision of coincidence counting versus singles spectrometry, based upon a sample of neutron-irradiated bovine liver material.

  9. Neutron activation analysis: trends in developments and applications

    NASA Astrophysics Data System (ADS)

    de Goeij, J. J.; Bode, P.

    1995-03-01

    New developments in instrumentation for, and methodology of, Instrumental Neutron Activation Analysis (INAA) may lead to new niches for this method of elemental analysis. This paper describes the possibilities of advanced detectors, automated irradiation and counting stations, and very large sample analysis. An overview is given of some typical new fields of application.

  10. A new nondestructive instrument for bulk residual stress measurement using tungsten kα1 X-ray.

    PubMed

    Ma, Ce; Dou, Zuo-Yong; Chen, Li; Li, Yun; Tan, Xiao; Dong, Ping; Zhang, Jin; Zheng, Lin; Zhang, Peng-Cheng

    2016-11-01

    We describe an experimental instrument used for measuring nondestructively the residual stress using short wavelength X-ray, tungsten k α1 . By introducing a photon energy screening technology, the monochromatic X-ray diffraction of tungsten k α1 was realized using a CdTe detector. A high precision Huber goniometer is utilized in order to reduce the error in residual stress measurement. This paper summarizes the main performance of this instrument, measurement depth, stress error, as opposed to the neutron diffraction measurements of residual stress. Here, we demonstrate an application on the determination of residual stress in an aluminum alloy welded by the friction stir welding.

  11. EDITORIAL: Instrumentation and Methods for Neutron Scattering—papers from the 4th European Conference on Neutron Scattering in Lund, Sweden, June 2007

    NASA Astrophysics Data System (ADS)

    Rennie, Adrian R.

    2008-03-01

    Neutron scattering is used as a tool to study problems in disciplines that include chemistry, materials science, biology and condensed matter physics as well as problems from neighbouring disciplines such as geology, environmental sciences and archaeology. Equipment for these studies is found at laboratories with research reactors or spallation neutron sources and there are many recent or current developments with new instruments and even entirely new facilities such as the Spallation Neutron Source at Oak Ridge, USA, the OPAL reactor at Lucas Heights, Australia and the second target station at the ISIS facility in the UK. Design and optimization of the instruments at these facilities involves work with many research laboratories and groups in universities. Every four years the European Conference on Neutron Scattering (ECNS) brings together both the specialists in neutron instrumentation and the community of users (in intervening years there are International and American conferences). In June 2007 about 700 delegates came to the 4th ECNS that was held in Lund, Sweden. There were more than 600 presentations as talks and posters. The opportunity to publish papers in Measurement Science and Technology that relate to neutron scattering instrumentation and method development was offered to the participants, and the papers that follow describe some of the recent activity in this field. Accounts of work on condensed matter science and the applications of neutron scattering appear separately in Journal of Physics: Condensed Matter. There are, of course, many features of neutron instrumentation that are specific to this particular field of measurement. However, there are also many elements of apparatus and experiment design that can usefully be shared with a broader community. It is hoped that this issue with papers from ECNS will find a broad community of interest. Apart from descriptions of overall design of diffractometers and spectrometers there are accounts of new

  12. Development of the Probing In-Situ with Neutron and Gamma Rays (PING) Instrument for Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology that has been used successfully in oil field well logging and mineral exploration on Earth for decades. Similar techniques can be very powerful for non-invasive in situ measurements of the subsurface elemental composition on other planets. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring instruments using this technology to the point where they can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets. PING combines a 14 MeV deuterium-tritium pulsed neutron generator with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface. The penetrating nature of.5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design. We are currently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x.9 m) granite and basalt test formations placed outdoors in an empty field. Since an independent trace elemental analysis has been performed on both the Columbia River basalt and Concord Gray granite materials, these samples present two known standards with which to compare PING's experimentally measured elemental composition results. We will present experimental results from PING measurements of both the granite and basalt test formations and show how and why the optimum PING instrument operating parameters differ for studying the two materials.

  13. Neutrons and gamma-rays spectroscopy of Mercury surface: global mapping from ESA MPO-BepiColombo spacecraft by MGNS instrument.

    NASA Astrophysics Data System (ADS)

    Kozyrev, A. S.; Gurvits, L. I.; Litvak, M. L.; Malakhov, A. A.; Mokrousov, M. I.; Mitrofanov, I. G.; Rogozhin, A. A.; Sanin, A. B.; Owens, A.; Schvetsov, V. N.

    2009-04-01

    For analyse chemistry composition of Mercury subsurface we will apply method of as-called remote sensing of neutrons. This method can be use for study celestial body of Solar system without thick atmospheres, like Moon, Mars, Phobos, Mercury etc. by the analysis of induced nuclear gamma-rays and neutron emission. These gamma-rays and neutrons are produced by energetic galactic cosmic rays colliding with nuclei of regolith within a 1-2 meter layer of subsurface. Mercury Planetary Orbiter of BepiColombo mission includes the nuclear instrument MGNS (Mercury Gamma-rays and Neutrons Spectrometers), which consists of gamma-rays spectrometer for detection of gamma-ray lines and neutron spectrometer for measurement of the neutron leakage flux. To test know theoretical models of Mercury composition, MGNS will provide the data for the set of gamma-ray lines, which are necessary and sufficient to discriminate between the models. Neutron data are known to be very sensitive for the presence of hydrogen within heavy soil-constituting elements. Mapping measurements of epithermal neutrons and 2.2 MeV line will allow us to study the content of hydrogen over the surface of Mercury and to test the presence of water ice deposits in the cold traps of permanently shadowed polar craters of this planet. There are also three natural radioactive elements, K, Th and U, which contents in the soil of a celestial body characterizes the physical condition of its formation in the proto-planetary cloud. The data from gamma-spectrometer will allow to compare the origin of Mercury with evolution of Earth, Moon and Mars. Three sensors for thermal and epithermal neutrons are made with similar 3He proportional counters, but have different polyethylene enclosures and cadmium shielding for different sensitivity of thermal and epithermal neutrons at different energy ranges. The fourth neutron sensor for high energy neutrons 1-10 MeV contains the scintillation crystal of stylbene with cylindrical shape of

  14. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE PAGES

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...

    2018-02-21

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  15. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  16. Estimating Background and Lunar Contribution to Neutrons Detected by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) Instrument

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Mitrofanov, I. G.; Chin, G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sagdeev, R.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2014-12-01

    The fraction of hydrogen-bearing species embedded in planetary regolith can be determined from the ratio between measured epithermal neutron leakage flux and the flux measured from similar dry regolith. The Lunar Reconnaissance Orbiter (LRO) spacecraft is equipped with the Lunar Exploration Neutron Detector (LEND) instrument to measure embedded hydrogen in the Moon's polar regions and elsewhere. We have investigated the relative contribution of lunar and non-lunar (spacecraft-sourced) neutrons by modeling maps of the measured count rate from three of the LEND detector systems using linear combinations of maps compiled from the Lunar Prospector Neutron Spectrometer (LPNS) and the LEND detectors, demonstrating that the two systems are compatible and enabling reference signal to be inferred to enable detecting hydrogen and hydrogen-bearing volatiles. The pole-to-equator contrast ratio in epithermal neutrons indicates that the average concentration of hydrogen in the Moon's polar regolith above 80° north or south latitude is ~110 ppmw, or 0.10±0.01 wt% water-equivalent hydrogen. Above 88° north or south, the concentration increases to ~140 ppmw, or 0.13±0.02 wt% water-equivalent hydrogen. Nearly identical suppression of neutron flux at both the north and south poles, despite differences in topography and distribution of permanently-shadowed regions, supports the contention that hydrogen is broadly distributed in the polar regions and increasingly concentrated approaching the poles. Similarity in the degree of neutron suppression in low-energy and high-energy epithermal neutrons suggests that the hydrogen fraction is relatively uniform with depth down to ~1 m; the neutron leakage flux is insensitive to greater depth.

  17. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  18. The 15-K neutron structure of saccharide-free concanavalin A.

    PubMed

    Blakeley, M P; Kalb, A J; Helliwell, J R; Myles, D A A

    2004-11-23

    The positions of the ordered hydrogen isotopes of a protein and its bound solvent can be determined by using neutron crystallography. Furthermore, by collecting neutron data at cryo temperatures, the dynamic disorder within a protein crystal is reduced, which may lead to improved definition of the nuclear density. It has proved possible to cryo-cool very large Con A protein crystals (>1.5 mm3) suitable for high-resolution neutron and x-ray structure analysis. We can thereby report the neutron crystal structure of the saccharide-free form of Con A and its bound water, including 167 intact D2O molecules and 60 oxygen atoms at 15 K to 2.5-A resolution, along with the 1.65-A x-ray structure of an identical crystal at 100 K. Comparison with the 293-K neutron structure shows that the bound water molecules are better ordered and have lower average B factors than those at room temperature. Overall, twice as many bound waters (as D2O) are identified at 15 K than at 293 K. We note that alteration of bound water orientations occurs between 293 and 15 K; such changes, as illustrated here with this example, could be important more generally in protein crystal structure analysis and ligand design. Methodologically, this successful neutron cryo protein structure refinement opens up categories of neutron protein crystallography, including freeze-trapped structures and cryo to room temperature comparisons.

  19. Neutron spectrum determination in a sub-critical assembly using the multi-disc neutron activation technique

    NASA Astrophysics Data System (ADS)

    Koseoglou, P.; Vagena, E.; Stoulos, S.; Manolopoulou, M.

    2016-09-01

    Neutron spectrum of the sub-critical nuclear assembly-reactor of Aristotle University of Thessaloniki was measured at three radial distances from the reactor core. The neutron activation technique was applied irradiating 15 thick foils - disc of various elements at each position. The data of 38 (n, γ), (n, p) and (n, α) reactions were analyzed for specific activity determination. Discs instead of foils were used due to the relevant low neutron flux, so the gamma self-absorption as well as the neutron self-shielding factors has been calculated using GEANT simulations in order to determine the activity induced. The specific activities calculated for all isotopes studied were the input to the SANDII code, which was built specifically for the neutron spectrum de-convolution when the neutron activation technique is used. For the optimization of the results a technique was applied in order to minimize the influence of the initial-"guessed" spectrum shape SANDII uses. The neutron spectrum estimated presents a peak in the regions of (i) thermal neutrons ranged between 0.001 and 1 eV peaking at neutron energy ∼0.1 eV and (ii) fast neutrons ranged between 0.1 and 20 MeV peaking at neutron energy ∼1.2 MeV. The reduction of thermal neutrons is higher than the fast one as the distance from the reactor core increases since thermal neutrons capture by natural U-fuel has higher cross section than the fast neutrons.

  20. Neutrons and music: Imaging investigation of ancient wind musical instruments

    NASA Astrophysics Data System (ADS)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D. C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-10-01

    A set of seven musical instruments and two instruments cares from the 'Fondo Antico della Biblioteca del Sacro Convento' in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments' restoration process.

  1. Application of instrumental neutron activation and X-ray fluorescence analysis to the examination of objects of art

    NASA Astrophysics Data System (ADS)

    Panczyk, E.; Ligeza, M.; Walis, L.

    1999-01-01

    In the Institute of Nuclear Chemistry and Technology in Warsaw in collaboration with the Department of Preservation and Restoration of Works of Art of the Academy of Fine Arts in Cracow and National Museum in Warsaw systematic studies using nuclear methods, particulary instrumental neutron activation analysis and X-ray fluorescence analysis, have been carried out on the panel paintings from the Krakowska- Nowosadecka School and Silesian School of the period from the XIV-XVII century, Chinese and Thai porcelains and mummies fillings of Egyptian sarcophagi. These studies will provide new data to the existing data base, will permit to compare materials used by various schools and individual artists.

  2. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    NASA Astrophysics Data System (ADS)

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  3. The Probing In-Situ With Neutron and Gamma Rays (PING) Instrument for Planetary Composition Measurements

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these

  4. The Berkeley Instrumental Neutron Generator (BINGE) for 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Renne, P. R.; Becker, T. A.; Bernstein, L.; Firestone, R. B.; Kirsch, L.; Leung, K. N.; Rogers, A.; Van Bibber, K.; Waltz, C.

    2014-12-01

    The Berkeley Instrumental Neutron Generator (BINGE) facility is the product of a consortium involving the Berkeley Geochronology Center (BGC), the U.C. Berkeley Nuclear Engineering Dept. (UCB/NE), and Lawrence Berkeley (LBNL) and Lawrence Livermore (LLNL) National Labs. BINGE was initially designed (and funded by NSF) for 40Ar/39Ar geochronology. BINGE uses a plasma-based deuteron ion source and a self-loading Ti-surfaced target to induce deuteron-deuterium (DD) fusion via the reaction 2H(d,n)3He, producing 2.45 MeV neutrons. The limited neutron energy spectrum is aimed at reducing recoil effects, interfering nuclear reactions, and unwanted radioactive byproducts, all of which are undesirable consequences of conventional irradiation with 235U fission spectrum neutrons. Minimization of interfering reactions such as 40Ca(n,na)36Ar greatly reduces penalties for over-irradiation, enabling improved signal/background measurement of e.g. 39Ar. BINGE will also be used for a variety of nuclear physics and engineering experiments that require a high flux of monoenergetic neutrons. Neutron energies lower than 2.45 MeV can be obtained via irradiation ports within and external to polyethylene shielding. Initial commissioning produced a neutron flux of 108 n/sec/cm2 at 1 mA source current and 100 kV anode voltage, as expected. When scaled up to the 1 A source current as planned, this indicates that BINGE will achieve the design objective neutron flux of 1011 n/sec/cm2. Further progress towards this goal will be reported. Supported by NSF (grant #EAR-0960138), BGC, UCB/NE, University of California Office of the President, and DOE through LLNL under contract #DE-AC52-07NA27344 and LBNL under contract #DE-AC02-05CH11231.

  5. On the studies of thermodynamics properties of fast neutron irradiated (LixK1-x)2SO4 crystals

    NASA Astrophysics Data System (ADS)

    El-Khatib, A. M.; Kassem, M. E.; Gomaa, N. G.; Mahmoud, S. A.

    The effect of fast neutron irradiation on the thermodynamic properties of (LixK1-x)2SO4, (x = 0.1, 0.2,˙˙˙˙˙˙˙˙0.5) has been studied. The measurements were carried out in the vicinity of phase transition. The study reveals that as the lithium content decreases the first high temperature phase Tc = 705 K disappears, while the second one is shifted to lower temperature. It is observed also that the specific heat, Cp, decreases sharply with neutron integrated fluence φ and increases once more. Both entropy and enthalpy changes increase with the increase of neutron integrated fluence.

  6. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  7. New MPRu instrument for neutron emission spectroscopy at JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoestrand, H.; Giacomelli, L.; Andersson Sunden, E.

    The MPRu is an upgrade of the magnetic proton recoil (MPR) neutron spectrometer that has been used for 14 MeV DT neutron measurements at JET during the DTE1 (1997) and TTE (2003) campaigns. In this contribution the principles of the MPR and its upgrade will be presented. The MPRu allows measurements of the full range of fusion relevant neutron energies, 1.5-18 MeV, including the 14 MeV DT neutrons, now with significantly reduced background, and also new high-quality measurements of the 2.5 MeV DD neutron component. This improvement is made possible by the use of a new proton recoil detector inmore » combination with custom-built transient recorder cards. The importance of these instrumental improvements for extending the use of the MPRu in diagnosis of D and DT plasmas will be discussed. Results from the first 2.5 MeV measurements performed with the MPRu during JET high level commissioning in April 2006 are presented.« less

  8. Measurement of CP--violating asymmetries in $$D^0\\to\\pi^+\\pi^-$$ and $$D^0\\to K^+K^-$$ decays at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.

    2011-11-01

    We report on a measurement of CP-violating asymmetries (A{sub CP}) in the Cabibbo-suppressed D{sup 0} {yields} {pi}{sup +}{pi}{sup -} and D{sup 0} {yields} K{sup +}K{sup -} decays reconstructed in a data sample corresponding to 5.9 fb{sup -1} of integrated luminosity collected by the upgraded Collider Detector at Fermilab. We use the strong decay D*{sup +} {yields} D{sup 0}{pi}{sup +} to identify the flavor of the charmed meson at production and exploit CP-conserving strong c{bar c} pair-production in p{bar p} collisions. High-statistics samples of Cabibbo-favored D{sup 0} {yields} K{sup -}{pi}{sup +} decays with and without a D*{sup {+-}} tag are usedmore » to correct for instrumental effects and significantly reduce systematic uncertainties. We measure A{sub CP}(D{sup 0} {yields} {pi}{sup +}{pi}{sup -}) = (+0.22 {+-} 0.24(stat) {+-} 0.11 (syst))% and A{sub CP}(D{sup 0} {yields} K{sup +}K{sup -}) = (-0.24 {+-} 0.22 (stat) {+-} 0.09 (syst))%, in agreement with CP conservation. These are the most precise determinations from a single experiment to date. Under the assumption of negligible direct CP violation in D{sup 0} {yields} {pi}{sup +}{pi}{sup -} and D{sup 0} {yields} K{sup +}K{sup -} decays, the results provide an upper limit to the CP-violating asymmetry in D{sup 0} mixing, |A{sub CP}{sup ind}(D{sup 0})| < 0.13% at the 90% confidence level.« less

  9. Determination of twenty-nine elements in eight argonne premium coal samples by instrumental neutron activation analysis

    USGS Publications Warehouse

    Palmer, C.A.

    1990-01-01

    Twenty-nine elements have been determined in triplicate splits of the eight Argonne National Laboratory Premium Coal Samples by instrumental neutron activtaion analysis. Data for control samples NBS 1633 (fly ash) and NBS 1632b are also reported. The factors that could lead to errors in analysis for these samples, such as spectral overlaps, low sensitivity, and interfering nuclear reactions, are discussed.

  10. Gadolinium for neutron detection in current nuclear instrumentation research: A review

    NASA Astrophysics Data System (ADS)

    Dumazert, J.; Coulon, R.; Lecomte, Q.; Bertrand, G. H. V.; Hamel, M.

    2018-02-01

    Natural gadolinium displays a number of remarkable physical properties: it is a rare earth element, composed of seven stable or quasi-stable isotopes, with an exceptionally high magnetization and a Curie point near room temperature. Its use in the field of nuclear instrumentation historically relates to its efficiency as a neutron poison in power reactors. Gadolinium is indeed the naturally occurring element with the highest interaction probability with neutrons at thermal energy, shared between Gd-157 (15.65%, 254000 b cross section) and Gd-155 (14.8%, 60900 b) isotopes. Considering that neutron capture results in an isotopic change, followed by a radiative rearrangement of nuclear and atomic structures, Gd may be embodied not merely as a neutron poison but as a neutron converter into a prompt photon and an electron source term. Depending on the nature and energy of the reaction products (from a few-keV Auger electrons up to 8 MeV gamma rays) that the detector aims at isolating as an indirect neutron signature, a variety of sensor media and counting methods have been introduced during the last decades. This review first draws a theoretical description of the radiative cascade following Gd(n , γ) capture. The cascade may be subdivided into regions of interest, each corresponding to dedicated detection designs and optimizations whose current status is detailed. This inventory has allowed the authors to extract and benchmark key figures of merit for the definition of a detection scheme: neutron attenuation, neutron sensitivity (cps/nv), gamma rejection, neutron detection limit in a mixed field, intrinsic or extrinsic moderation, and transportability. On this basis, the authors have identified promising paths for Gd-based neutron detection in contemporary instrumentation.

  11. Thermal conductivity measurement below 40 K of the CFRP tubes for the Mid-Infrared Instrument mounting struts

    NASA Astrophysics Data System (ADS)

    Shaughnessy, B. M.; Eccleston, P.; Fereday, K. J.; Canfer, S. J.; Nørgaard-Nielsen, H. U.; Jessen, N. C.

    2007-05-01

    The Mid-Infrared Instrument (MIRI) is one of four instruments on the James Webb Space Telescope observatory, scheduled for launch in 2013. It must be cooled to about 7 K and is supported within the telescope’s 40 K instrument module by a hexapod of carbon fibre reinforced plastic (CFRP) tubing. This article describes the measurement of cryogenic thermal conductivity of the candidate CFRP. Measured thermal conductivities were about 0.05 W/m K at a mean temperature of 10 K increasing to about 0.20 W/m K at a mean temperature of 40 K.

  12. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Idris, Mohd Idzat; Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko

    2015-10-01

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0-2.5 × 1024 (E > 0.1 MeV) at 333-363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373-573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17-0.24 eV and 0.12-0.14 eV; 0.002-0.04 eV and 0.006-0.04 eV at 723-923 K; 0.20-0.27 eV and 0.26-0.31 eV at 923-1223 K; and 1.37-1.38 eV and 1.26-1.29 eV at 1323-1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323-1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K.

  13. Deformation and fracture of K3 rotary nickel-titanium endodontic instruments after clinical use.

    PubMed

    Shen, S M; Deng, M; Wang, P P; Chen, X M; Zheng, L W; Li, H L

    2016-11-01

    The aim was to evaluate the incidence and type of defects that occurred with K3 rotary nickel-titanium instruments during routine clinical use. A total of 2397 K3 (G-PACKS, SybronEndo, West Collins, Orange, CA, USA) instruments were collected from a graduate endodontic clinic over 21 months. All the instruments were limited to a maximum use of 30 canal preparations. The collected instruments were measured by a digital caliper to determine whether any fractures had occurred and then were visually inspected for deformation and fracture under a stereomicroscope. The surfaces of fractured instruments were further evaluated under a scanning electron microscope. Data were analysed using chi-square test and Kruskal-Wallis test. The incidence of instrument defect was 5.63%, consisting of 3.59% fractures and 2.05% deformations. The defect rates of 0.04 and 0.06 files were statistically higher than the other taper groups (P < 0.003) except for 0.08 files (P > 0.05). For the fractured instruments, 63.95% failed from flexural fatigue, whilst 36.05% failed from torsion. Flexural fracture was the major mode of fracture for instruments with larger taper. A routine check for instrument integrity particularly for 0.04 and 0.06 files at high magnification is recommended after each clinical use. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Development in the SONNE Instrument, a Solar Neutron Spectrometer for Solar Orbiter and Solar Sentinels

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.; Bravar, U.; Macri, J. R.; McConnell, M. L.; Woolf, R.; Moser, M.; Flueckiger, E.; Pirard, B.; MacKinnon, A.; Mallik, P.; Bruillard, P.

    2007-12-01

    We report on the technical development of SONNE (Solar Neutron Experiment), a solar neutron spectrometer intended for use on the ESA Solar Orbiter and/or the NASA Solar Sentinels Missions. Development has taken place on three fronts, (1) simulations of a flight instrument, including the spacecraft radiation environment, (2) calibrating a prototype instrument in a monoenergetic neutron beam and (3) mechanical and electrical design of a deep space mission instrument. SONNE will be sensitive to fast neutrons up to 20 MeV, using double scatter imaging techniques to dramatically reduce background. Preliminary beam measurement analysis, conducted just before this abstract, supports advertised design goals in terms of sensitivity and energy resolution, meaning that time stamping neutron emission from the Sun will be possible. Combined with gamma ray measurements, new insight into particle acceleration will emerge when deployed on an inner heliospheric mission. Progress will be reported on simulations and physical design as well as calibrations.

  15. A Neutron Diffractometer for a Long Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Sokol, Paul; Wang, Cailin

    Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.

  16. Bullet identification: a case of a fatal hunting accident resolved by comparison of lead shot using instrumental neutron activation analysis.

    PubMed

    Capannesi, G; Sedda, A F

    1992-03-01

    Bullet identification by chemical analysis often provides a powerful clue in forensic science. A case is reported in which a hunting accident was resolved by using instrumental neutron activation analysis (INAA) for direct comparison of the trace element content in lead shot. Different preparation batches of lead shot appear to have a high within-group composition homogeneity, and good differentiation is achieved between different batches. Determination of the nickel and antimony content on a bush branch demonstrated that the branch had been perforated by one of the shot pellets, and this helped the detectives in reconstruction of the crime scene.

  17. Preliminary On-Orbit Neutron Dose Equivalent and Energy Spectrum Results from the ISS-RAD Fast Neutron Detector (FND)

    NASA Technical Reports Server (NTRS)

    Semones, Edward; Leitgab, Martin

    2016-01-01

    The ISS-RAD instrument was activated on ISS on February 1st, 2016. Integrated in ISS-RAD, the Fast Neutron Detector (FND) performs, for the first time on ISS, routine and precise direct neutron measurements between 0.5 and 8 MeV. Preliminary results for neutron dose equivalent and neutron flux energy distributions from online/on-board algorithms and offline ground analyses will be shown, along with comparisons to simulated data and previously measured neutron spectral data. On-orbit data quality and pre-launch analysis validation results will be discussed as well.

  18. Comparison of Cleaning Efficacy and Instrumentation Time in Primary Molars: Mtwo Rotary Instruments vs. Hand K-Files.

    PubMed

    Ramezanali, Fatemeh; Afkhami, Farzaneh; Soleimani, Ali; Kharrazifard, Mohammad Javad; Rafiee, Farshid

    2015-01-01

    Pulpectomy is the preferred treatment for restorable primary teeth with symptomatic irreversible pulpitis or periradicular lesion. Considering the rather new application of rotary files for pulpectomy of primary teeth, the aim of this study was to compare the cleaning efficacy and instrumentation time of hand K-files and Mtwo rotary system for preparation of human primary molars. This experimental study was conducted on 100 extracted primary maxillary and mandibular intact molars with no resorption. Access cavities were prepared and India ink was injected into the root canal on a vibrator using an insulin syringe. Canals were then divided into 5 groups (n=20): in group I, canals were instrumented using K-files up to #25 for mesial and buccal canals and #30 for palatal and distal canals. In group II, canals were prepared using Mtwo rotary files (15/0.05, 20/0.06 and 25/0.06 for mesial and buccal canals and 15/0.05, 20/0.06, 25/0.06 and finally 30/0.05 for distal and palatal canals). In group III, root canals were only irrigated with saline. Groups IV and V were the positive and negative control groups, respectively. The time required for cleaning and preparation of the canals for each of the specimens in groups I, II and III was recorded. The mean score of cleanliness of Mtwo was not significantly different from K-file group (P>0.05). However the mean instrumentation time in Mtwo group was significantly shorter (P<0.001). Although there were no differences regarding the cleaning efficacy of either system, Mtwo rotary files were far more time efficient.

  19. K2-139 b: a low-mass warm Jupiter on a 29-d orbit transiting an active K0 V star

    NASA Astrophysics Data System (ADS)

    Barragán, O.; Gandolfi, D.; Smith, A. M. S.; Deeg, H. J.; Fridlund, M. C. V.; Persson, C. M.; Donati, P.; Endl, M.; Csizmadia, Sz; Grziwa, S.; Nespral, D.; Hatzes, A. P.; Cochran, W. D.; Fossati, L.; Brems, S. S.; Cabrera, J.; Cusano, F.; Eigmüller, Ph; Eiroa, C.; Erikson, A.; Guenther, E.; Korth, J.; Lorenzo-Oliveira, D.; Mancini, L.; Pätzold, M.; Prieto-Arranz, J.; Rauer, H.; Rebollido, I.; Saario, J.; Zakhozhay, O. V.

    2018-04-01

    We announce the discovery of K2-139 b (EPIC 218916923 b), a transiting warm-Jupiter (Teq = 547 ± 25 K) on a 29-d orbit around an active (log R^' _HK = -4.46 ± 0.06) K0 V star in K2 Campaign 7. We derive the system's parameters by combining the K2 photometry with ground-based follow-up observations. With a mass of 0.387 _{ - 0.075 } ^ {+ 0.083 }MJ and radius of 0.808 _{ - 0.033 } ^ {+ 0.034 }RJ, K2-139 b is one of the transiting warm Jupiters with the lowest mass known to date. The planetary mean density of 0.91 _{ - 0.20} ^ { + 0.24 } g cm-3can be explained with a core of ˜50 M⊕. Given the brightness of the host star (V = 11.653 mag), the relatively short transit duration (˜5 h), and the expected amplitude of the Rossiter-McLaughlin effect (˜25m s-1), K2-139 is an ideal target to measure the spin-orbit angle of a planetary system hosting a warm Jupiter.

  20. Neutron Diffraction Study On Gamma To Alpha Phase Transition In Ce0.9th0.1 Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashley, Jason C1; Heffner, Robert H; Llobet, A

    2008-01-01

    Comprehensive neutron diffraction measurements were performed to study the isostructural {gamma} {leftrightarrow} {alpha} phase transition in Ce{sub 0.9}Th{sub 0.1} alloy. Using Rietveld refinements, we obtained lattice and thermal parameters as a function of temperature. From the temperature slope of the thermal parameters, we determined Debye temperatures {Theta}{sup {gamma}}{sub D} = 133(1) K and {Theta}{sup {alpha}}{sub D} = 140(1) K for the {gamma} phase and the {alpha} phase, respectively. This result implies that the vibrational entropy change is not significant at the {gamma} {leftrightarrow} {alpha} transition, contrary to that from elemental Cerium [Phys. Rev. Lett. 92, 105702, 2004].

  1. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2}more » measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.« less

  2. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  3. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE PAGES

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...

    2014-12-24

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  4. The cold neutron chopper spectrometer at the Spallation Neutron Source—A review of the first 8 years of operation

    DOE PAGES

    Ehlers, G.; Podlesnyak, A. A.; Kolesnikov, A. I.

    2016-09-13

    The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. In addition, experiments are being routinely performed with the sample at extreme conditions: T ≲ 0.05 K, p ≳ 2 GPa, and B = 8more » T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.« less

  5. Measurement of D-7Li Neutron Production in Neutron Generators Using the Threshold Activation Foil Technique

    NASA Astrophysics Data System (ADS)

    Coventry, M. D.; Krites, A. M.

    Measurements to determine the absolute D-D and D-7Li neutron production rates with a neutron generator running at 100-200 kV acceleration potential were performed using the threshold activation foil technique. This technique provides a clear measure of fast neutron flux and with a suitable model, the neutron output. This approach requires little specialized equipment and is used to calibrate real-time neutron detectors and to verify neutron output. We discuss the activation foil measurement technique and describe its use in determining the relative contributions of D-D and D-7Li reactions to the total neutron yield and real-time detector response and compare to model predictions. The D-7Li reaction produces neutrons with a continuum of energies and a sharp peak around 13.5 MeV for measurement techniques outside of what D-D generators can perform. The ability to perform measurements with D-D neutrons alone, then add D-7Li neutrons for inelastic gamma production presents additional measurement modalities with the same neutron source without the use of tritium. Typically, D-T generators are employed for inelastic scattering applications but have a high regulatory burden from a radiological aspect (tritium inventory, liability concerns) and are export-controlled. D-D and D-7Li generators avoid these issues completely.

  6. Computed Tomographic Evaluation of K3 Rotary and Stainless Steel K File Instrumentation in Primary Teeth

    PubMed Central

    Kavitha, Swaminathan; Thomas, Eapen; Anadhan, Vasanthakumari; Vijayakumar, Rajendran

    2016-01-01

    Introduction The intention of root canal preparation is to reduce infected content and create a root canal shape allowing for a well condensed root filling. Therefore, it is not necessary to remove excessive dentine for successful root canal preparation and concern must be taken not to over instrument as perforations can occur in the thin dentinal walls of primary molars. Aim This study was done to evaluate the time preparation, the risk of lateral perforation and dentine removal of the stainless steel K file and K3 rotary instrumentation in primary teeth. Materials and Methods Seventy-five primary molars were selected and divided into three groups. Using spiral computed tomography the teeth were scanned before instrumentation. Teeth were prepared using a stainless steel K file for manual technique. All the canals were prepared up to file size 35. In K3 rotary files (.02 taper) instrumentation was done up to 35 size file. In K3 rotary files (.04 taper) the instrumentation was done up to 25 size file and simultaneously the instrumentation time was recorded. The instrumented teeth were once again scanned and the images were compared with the images of the uninstrumented canals. Statistical Analysis Data was statistically analysed using Kruskal Wallis One-way ANOVA, Mann-Whitney U-Test and Pearson’s Chi-square Test. Results K3 rotary files (.02 taper) removed a significantly less amount of dentine, required less instrumentation time than a stainless steel K file. Conclusion K3 files (.02 taper) generated less dentine removal than the stainless steel K file and K3 files (.04 taper). K3 rotary files (.02 taper) were more effective for root canal instrumentation in primary teeth. PMID:26894166

  7. In vitro comparison in a manikin model: increasing apical enlargement with K3 and K3XF rotary instruments.

    PubMed

    Olivieri, Juan Gonzalo; Stöber, Eva; García Font, Marc; González, Jose Antonio; Bragado, Pablo; Roig, Miguel; Duran-Sindreu, Fernando

    2014-09-01

    The aim of the study was to compare the K3 and K3XF systems (SybronEndo, Glendora, CA) after 1 and 2 uses by evaluating apical transportation, working length loss, and working time in a manikin model. Mesial canals of 40 extracted first mandibular molars were instrumented. Radiographs taken after instrumentation with #25, #30, #35, and #40 files were superimposed on the preoperative image in both mesiodistal and buccolingual angulations. AutoCAD (Autodesk Inc, San Rafael, CA) was used to measure working length loss and apical transportation at 0, 0.5, and 1 mm from the working length (WL). The working time was measured. Group comparison was analyzed using post hoc Tukey honestly significant difference tests (P < .05). No significant differences were found in apical transportation, working length loss between K3 and K3XF systems, or between the number of uses. Significant differences were found when canal enlargement was performed to a #35-40 (P < .05). K3 instrumentation performed significantly faster (29.6 ± 15.4) than with the K3XF system (40.2 ± 17.7) (P < .05). No differences were observed in working time when comparing the number of uses. K3 and R-phase K3XF rotary systems shaped curved root canals safely with minimal apical transportation, even up to a 40/04 file. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. SPEAR — ToF neutron reflectometer at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Jablin, M. S.; Wang, P.; Mocko, M.; Majewski, J.

    2011-11-01

    This article discusses the Surface ProfilE Analysis Reflectometer (SPEAR), a vertical scattering geometry time-of-flight reflectometer, at the Los Alamos National Laboratory Lujan Neutron Scattering Center. SPEAR occupies flight path 9 and receives spallation neutrons from a polychromatic, pulsed (20Hz) source that pass through a liquid-hydrogen moderator at 20K coupled with a Be filter to shift their energy spectrum. The spallation neutrons are generated by bombarding a tungsten target with 800MeV protons obtained from an accelerator. The process produces an integrated neutron flux of ˜ 3.4×106 cm-2 s-1 at a proton current of 100 μA. SPEAR employs choppers and frame overlap mirrors to obtain a neutron wavelength range of 4.5-16 Å. SPEAR uses a single 200mm long 3He linear position-sensitive detector with ˜ 2 mm FWHM resolution for simultaneous studies of both specular and off-specular scattering. SPEAR's moderated neutrons are collimated into a beam which impinges from above upon a level sample with an average angle of 0.9° to the horizontal, to facilitate air-liquid interface studies. In the vertical direction, the beam converges at the sample position. The neutrons can be further collimated to the desired divergence by finely slitting the beam using a set of two 10B4C slit packages. The instrument is ideally suited to study organic and inorganic thin films with total thicknesses between 5 and 3000 Å in a variety of environments. Specifically designed sample chambers available at the instrument provide the opportunity to study biological systems at the solid-liquid interface. SPEAR's unique experimental capabilities are demonstrated by specific examples in this article. Finally, an outlook for SPEAR and perspectives on future instrumentation are discussed.

  9. Observation of the Decay B_{s}^{0}→K^{0}K[over ¯]^{0}.

    PubMed

    Pal, B; Schwartz, A J; Abdesselam, A; Adachi, I; Aihara, H; Asner, D M; Aushev, T; Ayad, R; Aziz, T; Babu, V; Badhrees, I; Bahinipati, S; Bakich, A M; Barberio, E; Behera, P; Bhardwaj, V; Bhuyan, B; Biswal, J; Bobrov, A; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Dalseno, J; Dash, N; Doležal, Z; Drásal, Z; Drutskoy, A; Dutta, D; Eidelman, S; Farhat, H; Fast, J E; Fulsom, B G; Gaur, V; Garmash, A; Gillard, R; Goh, Y M; Goldenzweig, P; Greenwald, D; Grzymkowska, O; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; He, X H; Hou, W-S; Inami, K; Ishikawa, A; Iwasaki, Y; Jacobs, W W; Jaegle, I; Jeon, H B; Joffe, D; Joo, K K; Julius, T; Kang, K H; Kato, E; Kawasaki, T; Kiesling, C; Kim, D Y; Kim, H J; Kim, K T; Kim, M J; Kim, S H; Kinoshita, K; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuhr, T; Kumar, R; Kumita, T; Kuzmin, A; Kwon, Y-J; Lee, I S; Li, C H; Li, H; Li, L; Li Gioi, L; Libby, J; Liventsev, D; Lukin, P; Luo, T; Masuda, M; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Mohanty, S; Moll, A; Moon, H K; Mori, T; Mussa, R; Nakano, E; Nakao, M; Nanut, T; Natkaniec, Z; Nayak, M; Nisar, N K; Nishida, S; Ogawa, S; Okuno, S; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Paul, S; Pedlar, T K; Pesántez, L; Pestotnik, R; Petrič, M; Piilonen, L E; Pulvermacher, C; Rauch, J; Ribežl, E; Ritter, M; Rostomyan, A; Ryu, S; Sahoo, H; Sakai, Y; Sandilya, S; Sanuki, T; Sato, Y; Savinov, V; Schlüter, T; Schneider, O; Schnell, G; Schwanda, C; Seino, Y; Senyo, K; Seon, O; Seong, I S; Shebalin, V; Shibata, T-A; Shiu, J-G; Shwartz, B; Simon, F; Sohn, Y-S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Stypula, J; Sumihama, M; Sumiyoshi, T; Tamponi, U; Teramoto, Y; Trabelsi, K; Uchida, M; Uehara, S; Uglov, T; Uno, S; Urquijo, P; Usov, Y; Van Hulse, C; Vanhoefer, P; Varner, G; Vinokurova, A; Vossen, A; Wagner, M N; Wang, C H; Wang, M-Z; Wang, X L; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yamaoka, J; Yelton, J; Yuan, C Z; Yusa, Y; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2016-04-22

    We measure the decay B_{s}^{0}→K^{0}K[over ¯]^{0} using data collected at the ϒ(5S) resonance with the Belle detector at the KEKB e^{+}e^{-} collider. The data sample used corresponds to an integrated luminosity of 121.4  fb^{-1}. We measure a branching fraction B(B_{s}^{0}→K^{0}K[over ¯]^{0})=[19.6_{-5.1}^{+5.8}(stat)±1.0(syst)±2.0(N_{B_{s}^{0}B[over ¯]_{s}^{0}})]×10^{-6} with a significance of 5.1 standard deviations. This measurement constitutes the first observation of this decay.

  10. Neutron cross section standards and instrumentation. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasson, O.A.

    The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutronmore » detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.« less

  11. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  12. Shape-Independent Model of Monitor Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Yusuf, Siaka Ojo

    The technique of monitor neutron activation analysis has been improved by developing a shape-independent model to solve the problem of the treatment of the epithermal reaction contribution to the reaction rate in reactor neutron activation analysis. It is a form of facility characterization in which differential approximations to neither the neutron flux distribution as a function of energy nor the reaction cross section as a function of energy are necessary. The model predicts a linear relationship when the k-factors (ratios of reaction rates of two nuclides at a given irradiation position) for element x, k _{c} (x), is plotted against the k-factor for the monitor, k_{c} (m). The slope of this line, B(x,c,m) is measured for each element x to provide the calibration of the irradiation facility for monitor activation analysis. In this thesis, scandium was chosen as the comparator and antimony as the epithermal monitor. B(x, Sc, Sb) has been accurately measured for a number of nuclides in three different reactors. The measurement was done by irradiating filter papers containing binary mixture of the elements x and the flux monitor Sc at the various irradiation positions in these three reactors. The experiment was designed in such a way that systematic errors due to mass ratios and efficiency ratios cancel out. Also, rate related errors and backgrounds were kept at negligible values. The results show that B(x,c,m) depends not only on x, c, and m, but also on the type of moderator used for the reactor. We want this new approach to be adopted at all laboratories where routine analysis of multi-element samples are done with the monitor method since the choices of c and m are flexible.

  13. Magnetic structure of Ho0.5Y0.5Mn6Sn6 compound studied by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    Li, X.-Y.; Peng, L.-C.; He, L.-H.; Zhang, S.-Y.; Yao, J.-L.; Zhang, Y.; Wang, F.-W.

    2018-05-01

    The crystallographic and magnetic structures of the HfFe6Ge6-type compound Ho0.5Y0.5Mn6Sn6 have been studied by powder neutron diffraction and in-situ Lorentz transmission electron microscopy. Besides the nonlinear thermal expansion of lattice parameters, an incommensurate conical spiral magnetic structure was determined in the temperature interval of 2-340 K. A spin reorientation transition has been observed from 50 to 300 K, where the alignment of the c-axis component of magnetic moments of the Ho sublattice and the Mn sublattice transfers from ferrimagnetic to ferromagnetic.

  14. True-coincidence correction when using an LEPD for the determination of the lanthanides in the environment via k0-based INAA.

    PubMed

    Freitas, M C; De Corte, F

    1994-01-01

    As part of a recent study on the environmental effects caused by the operation of a coal-fired power station at Sines, Portugal, k0-based instrumental neutron activation analysis (INAA) was used for the determination of the lanthanides (and also of tantalum and uranium) in plant leaves and lichens. In view of the accuracy and sensitivity of the determinations, it was advantageous to make use of a low-energy photon detector (LEPD). To begin with, in the present article, a survey is given of the former developments leading to user-friendly procedures for detection efficiency calibration of the LEPD and for correction for true-coincidence (cascade summing) effects. As a continuation of this, computer coincidence correction factors are now tabulated for the relevant low-energetic gamma-rays of the analytically interesting lanthanide, tantalum, and uranium radionuclides. Also the 140.5-keV line of 99Mo/99mTc is included, molybdenum being the comparator chosen when counting using an LEPD.

  15. Superconducting High Resolution Fast-Neutron Spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k BT on the order ofmore » μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (k BT 2C) 1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB 2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α) 3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.« less

  16. Neutron counter based on beryllium activation

    NASA Astrophysics Data System (ADS)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  17. Preservation of root canal anatomy using self-adjusting file instrumentation with glide path prepared by 20/0.02 hand files versus 20/0.04 rotary files

    PubMed Central

    Jain, Niharika; Pawar, Ajinkya M.; Ukey, Piyush D.; Jain, Prashant K.; Thakur, Bhagyashree; Gupta, Abhishek

    2017-01-01

    Objectives: To compare the relative axis modification and canal concentricity after glide path preparation with 20/0.02 hand K-file (NITIFLEX®) and 20/0.04 rotary file (HyFlex™ CM) with subsequent instrumentation with 1.5 mm self-adjusting file (SAF). Materials and Methods: One hundred and twenty ISO 15, 0.02 taper, Endo Training Blocks (Dentsply Maillefer, Ballaigues, Switzerland) were acquired and randomly divided into following two groups (n = 60): group 1, establishing glide path till 20/0.02 hand K-file (NITIFLEX®) followed by instrumentation with 1.5 mm SAF; and Group 2, establishing glide path till 20/0.04 rotary file (HyFlex™ CM) followed by instrumentation with 1.5 mm SAF. Pre- and post-instrumentation digital images were processed with MATLAB R 2013 software to identify the central axis, and then superimposed using digital imaging software (Picasa 3.0 software, Google Inc., California, USA) taking five landmarks as reference points. Student's t-test for pairwise comparisons was applied with the level of significance set at 0.05. Results: Training blocks instrumented with 20/0.04 rotary file and SAF were associated less deviation in canal axis (at all the five marked points), representing better canal concentricity compared to those, in which glide path was established by 20/0.02 hand K-files followed by SAF instrumentation. Conclusion: Canal geometry is better maintained after SAF instrumentation with a prior glide path established with 20/0.04 rotary file. PMID:28855752

  18. Experimental facility for testing nuclear instruments for planetary landing missions

    NASA Astrophysics Data System (ADS)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  19. Neutron Depth Profiling: Overview and Description of NIST Facilities

    PubMed Central

    Downing, R. G.; Lamaze, G. P.; Langland, J. K.; Hwang, S. T.

    1993-01-01

    The Cold Neutron Depth Profiling (CNDP) instrument at the NIST Cold Neutron Research Facility (CNRF) is now operational. The neutron beam originates from a 16 L D2O ice cold source and passes through a filter of 135 mm of single crystal sapphire. The neutron energy spectrum may be described by a 65 K Maxwellian distribution. The sample chamber configuration allows for remote controlled scanning of 150 × 150 mm sample areas including the varying of both sample and detector angle. The improved sensitivity over the current thermal depth profiling instrument has permitted the first nondestructive measurements of 17O profiles. This paper describes the CNDP instrument, illustrates the neutron depth profiling (NDP) technique with examples, and gives a separate bibliography of NDP publications. PMID:28053461

  20. The Thermal Neutron Beam Option for NECTAR at MLZ

    NASA Astrophysics Data System (ADS)

    Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.

    The beam port SR10 at the neutron source FRM II of Heinz Maier-Leibnitz Zentrum (MLZ) is equipped with a moveable assembly of two uranium plates, which can be placed in front of the entrance window of the beam tube via remote control. With these plates placed in their operating position the thermal neutron spectrum produced by the neutron source FRM II is converted to fission neutrons with 1.9 MeV of mean energy. This fission neutron spectrum is routinely used for medical applications at the irradiation facility MEDAPP, for neutron radiography and tomography experiments at the facility NECTAR and for materials testing. If, however, the uranium plates are in their stand-by position far off the tip of the beam tube and the so-called permanent filter for thermal neutrons is removed, thermal neutrons originating from the moderator tank enter the beam tube and a thermal spectrum becomes available for irradiation or activation of samples. By installing a temporary flight tube the beam may be used for thermal neutron radiography and tomography experiments at NECTAR. The thermal neutron beam option not only adds a pure thermal neutron spectrum to the energy ranges available for neutron imaging at MLZ instruments but it also is an unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option for NECTAR is funded by BMBF in frame of research project 05K16VK3.

  1. Monte Carlo simulation of thermal neutron flux of americium-beryllium source used in neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Didi, Abdessamad; Dadouch, Ahmed; Bencheikh, Mohamed; Jai, Otman

    2017-09-01

    The neutron activation analysis is a method of exclusively elemental analysis. Its implementation of irradiates the sample which can be analyzed by a high neutron flux, this method is widely used in developed countries with nuclear reactors or accelerators of particle. The purpose of this study is to develop a prototype to increase the neutron flux such as americium-beryllium and have the opportunity to produce radioisotopes. Americium-beryllium is a mobile source of neutron activity of 20 curie, and gives a thermal neutron flux of (1.8 ± 0.0007) × 106 n/cm2 s when using water as moderator, when using the paraffin, the thermal neutron flux increases to (2.2 ± 0.0008) × 106 n/cm2 s, in the case of adding two solid beryllium barriers, the distance between them is 24 cm, parallel and symmetrical about the source, the thermal flux is increased to (2.5 ± 0.0008) × 106 n/cm2 s and in the case of multi-source (6 sources), with-out barriers, increases to (1.17 ± 0.0008) × 107 n/cm2 s with a rate of increase equal to 4.3 and with the both barriers flux increased to (1.37 ± 0.0008) × 107 n/cm2 s.

  2. The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis.

    PubMed

    Zaichick, Sofia; Zaichick, Vladimir

    2010-01-01

    To understand the role of major, minor, and trace elements in the etiology of bone diseases including osteoporosis, it is necessary to determine the normal levels and age-related changes of bone chemical elements. The effect of age and gender on 38 chemical element contents in intact iliac crest of 84 apparently healthy 15-55 years old women (n=38) and men (n=46) was investigated by neutron activation analysis. Mean values (M+/-SEM) for mass fraction (on dry weight basis) of Ca, Cl, Co, Fe, K, Mg, Mn, Na, P, Rb, Sr, and Zn for both female and male taken together were Ca - 169+/-3g/kg, Cl - 1490+/-43 mg/kg, Co - 0.0073+/-0.0024 mg/kg, Fe - 177+/-24 mg/kg, K - 1820+/-79 mg/kg, Mg - 1840+/-48 mg/kg, Mn - 0.316+/-0.013 mg/kg, Na - 4970+/-87 mg/kg, P - 79.7+/-1.5 g/kg, Rb - 1.89+/-0.22 mg/kg, Sr - 312+/-15 mg/kg, and Zn - 65.9+/-3.4 mg/kg, respectively. The upper limit of mean contents of Cs, Eu, Hg, Sb, Sc, and Se were Cs < or = 0.09 mg/kg, Eu < or = 0.005 mg/kg, Hg < or = 0.005 mg/kg, Sb < or = 0.004 mg/kg, Sc < or = 0.001 mg/kg, and Se < or = 0.1mg/kg, respectively. In all bone samples the contents of Ag, As, Au, Ba, Br, Cd, Ce, Cr, Gd, Hf, La, Lu, Nd, Sm, Ta, Tb, Th, U, Yb, and Zr were under detection limits. The Ca, Mg, and P contents decrease with age, regardless of gender. Higher Ca, Mg, P, and Sr mass fractions as well as lower Fe content are typical of female iliac crest as compared to those in male bone. Copyright 2009 Elsevier GmbH. All rights reserved.

  3. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  4. Neutronic investigation and activation calculation for CFETR HCCB blankets

    NASA Astrophysics Data System (ADS)

    Shuling, XU; Mingzhun, LEI; Sumei, LIU; Kun, LU; Kun, XU; Kun, PEI

    2017-12-01

    The neutronic calculations and activation behavior of the proposed helium cooled ceramic breeder (HCCB) blanket were predicted for the Chinese Fusion Engineering Testing Reactor (CFETR) design model using the MCNP multi-particle transport code and its associated data library. The tritium self-sufficiency behavior of the HCCB blanket was assessed, addressing several important breeding-related arrangements inside the blankets. Two candidate first wall armor materials were considered to obtain a proper tritium breeding ratio (TBR). Presentations of other neutronic characteristics, including neutron flux, neutron-induced damages in terms of the accumulated dpa and helium production were also conducted. Activation, decay heat levels and contact dose rates of the components were calculated to estimate the neutron-induced radioactivity and personnel safety. The results indicate that neutron radiation is efficiently attenuated and slowed down by components placed between the plasma and toroidal field coil. The dominant nuclides and corresponding isotopes in the structural steel were discussed. A radioactivity comparison between pure beryllium and beryllium with specific impurities was also performed. After a millennium cooling time, the decay heat of all the concerned components and materials is less than 1 × 10-4 kW, and most associated in-vessel components qualify for recycling by remote handling. The results demonstrate that acceptable hands-on recycling and operation still require a further long waiting period to allow the activated products to decay.

  5. Neutron counter based on beryllium activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large areamore » gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.« less

  6. Analysis of D0 -> K anti-K X Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Colin P.

    2003-06-06

    Using data taken with the CLEO II detector, they have studied the decays of the D{sup 0} to K{sup +}K{sup -}, K{sup 0}{bar K}{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup 0}, K{sup +}K{sup -}{pi}{sup 0}. The authors present significantly improved results for B(D{sup 0} {yields} K{sup +}K{sup -}) = (0.454 {+-} 0.028 {+-} 0.035)%, B(D{sup 0} {yields} K{sup 0}{bar K}{sup 0}) = (0.054 {+-} 0.012 {+-} 0.010)% and B(D{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}) = (0.074 {+-} 0.010 {+-} 0.015)% where the first errors are statistical and the second errors aremore » the estimate of their systematic uncertainty. They also present a new upper limit B(D{sup 0} {yields} K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup 0}) < 0.059% at the 90% confidence level and the first measurement of B(D{sup 0} {yields} K{sup +}K{sup -}{pi}{sup 0}) = (0.14 {+-} 0.04)%.« less

  7. DAN instrument for NASA`s MSL mission: fast science data processing and instrument commanding for Mars surface operations and for field tests

    NASA Astrophysics Data System (ADS)

    Vostrukhin, A.; Kozyrev, A.; Litvak, M.; Malakhov, A.; Mitrofanov, I.; Mokrousov, M.; Sanin, A.; Tretyakov, V.

    2009-04-01

    The Dynamic Albedo of Neutrons (DAN) instrument is contributed by Russian Space Agency to NASA for Mars Science Laboratory mission which was originally scheduled for 2009 and now is shifted to 2011. The design of DAN instrument is partially inherited from HEND instrument for NASA's Mars Odyssey, which now successfully operates providing global mapping of martian neutron albedo, searching the distribution of martian water and observing the martian seasonal cycles. DAN is specially designed as an active neutron instrument for surface operations onboard mobile platforms. It is able to focus science investigations on local surface area around rover with horizontal resolution about 1 meter and vertical penetration about 0.5 m. The primary goal of DAN is the exploration of the hydrogen content of the bulk Martian subsurface material. This data will be used to estimate the content of chemically bound water in the hydrated minerals. The concept of DAN operations is based on combination of neutron activation analysis and neutron well logging tequnique, which are commonly used in the Earth geological applications. DAN consists blocks of Detectors and Electronics (DE) and Pulse Neutron Generator (PNG). The last one is used to irradiate the martian subsurface by pulses of 14MeV neutrons with changeable frequency up to 10 Hz. The first one detects post-pulse afterglow of neutrons, as they were thermalized down to epithermal and thermal energies within the martian subsurface. The result of detections are so called die away curves of neutrons afterglow, which show flux and time profile of thermalized neutrons and bring to us the observational signature of layering structure of martian regolith in part of depth distribution of Hydrogen (most effective element for thermalization of neutrons). In this study we focus on the development, verification and validation of DAN fast data processing and commanding. It is necessary to perform deconvolution from counting statistic in DAN

  8. Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI.

    PubMed

    Tanimura, Y; Yoshizawa, M; Saegusa, J; Fujii, K; Shimizu, S; Yoshida, M; Shibata, Y; Uritani, A; Kudo, K

    2004-01-01

    Monoenergetic neutron calibration fields of 144, 565 keV and 5.0 MeV have been developed at the Facility of Radiation Standards of JAERI using a 4 MV Pelletron accelerator. The 7Li(p,n)7Be and 2H(d,n)3He reactions are employed for neutron production. The neutron energy was measured by the time-of-flight method with a liquid scintillation detector and calculated with the MCNP-ANT code. A long counter is employed as a neutron monitor because of the flat response. The monitor is set up where the influence of inscattered neutrons from devices and their supporting materials at a calibration point is as small as possible. The calibration coefficients from the monitor counts to the neutron fluence at a calibration point were obtained from the reference fluence measured with the transfer instrument of the primary standard laboratory (AIST), a 24.13 cm phi Bonner sphere counter. The traceability of the fields to AIST was established through the calibration.

  9. Trace-element characterization of evidential cannabis sative samples using k{sub 0}-standardization methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, D.P. Jr.; Vernetson, W.G.; Ratner, R.T.

    The University of Florida Training Reactor (UFTR) facilities including the analytical laboratory are used for a wide range of educational, research, training, and service functions. The UFTR is a 100-kW light-water-cooled, graphite-and-water-moderated modified Argonaut-type reactor. The UFTR utilizes high enriched plate-type fuel in a two-slab arrangement and operates at a 100-kW power level. Since first licensed to operate at 10 kW in 1959, this nonpower reactor facility has had an active but evolving record of continuous service to a wide range of academic, utility, and community users. The services of the UFTR have also been used by various state authoritiesmore » in criminal investigations. Because of its relatively low power and careful laboratory analyses, the UFTR neutron flux characteristics in several ports are not only well characterized but they are also quite invariant with time. As a result, such a facility is well-suited to the application of the multielement analysis using the k{sub o}-standardization method of neutron activation analysis. The analysis of untreated evidential botanical samples presented a unique opportunity to demonstrate implementation of this method at the UFTR facilities.« less

  10. Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy

    PubMed Central

    Sato, Eisuke; Zaboronok, Alexander; Yamamoto, Tetsuya; Nakai, Kei; Taskaev, Sergey; Volkova, Olga; Mechetina, Ludmila; Taranin, Alexander; Kanygin, Vladimir; Isobe, Tomonori; Mathis, Bryan J; Matsumura, Akira

    2018-01-01

    Abstract In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2–3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.5–3.0 mA proton current, resulting in a neutron fluence of 2.16 × 1012 cm−2. The survival curves of cells loaded with boron were normalized to those irradiated without boron (to exclude the influence of the fast neutron and gamma dose components) and fit to the linear–quadratic (LQ) model. Colony formation assays showed the following cell survival rates (means ± SDs): CHO-K1: 0.348 ± 0.069 (10 ppm), 0.058 ± 0.017 (20 ppm), 0.018 ± 0.005 (40 ppm); V79: 0.476 ± 0.160 (10 ppm), 0.346 ± 0.053 (20 ppm), 0.078 ± 0.015 (40 ppm); and U251MG: 0.311 ± 0.061 (10 ppm), 0.131 ± 0.022 (20 ppm), 0.020 ± 0.010 (40 ppm). The difference between treated cells and controls was significant in all cases (P < 0.01) and confirmed that the neutron source and irradiation regimen were sufficient for control over cell colony formation. We believe our study will serve as a model for ongoing in vitro experiments on neutron capture therapy to advance in this area for further development of accelerator-based BNCT into the clinical phase. PMID:29281044

  11. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source.

    PubMed

    Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H

    2013-05-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  12. Synthesis of Sr0.9K0.1FeO3-δ electrocatalysts by mechanical activation

    NASA Astrophysics Data System (ADS)

    Monteiro, J. F.; Waerenborgh, J. C.; Kovalevsky, A. V.; Yaremchenko, A. A.; Frade, J. R.

    2013-02-01

    Potassium-substituted SrFeO3-δ for possible application as oxygen evolution electrode in alkaline or molten salt media was prepared by mechanical activation and characterized by X-ray diffraction, dilatometric and thermogravimetric analysis, Mössbauer spectroscopy, and electrical conductivity measurements. Room temperature mechanical activation of a mixture of oxide precursors with subsequent thermal treatments at 700-900 °C results in the formation of Sr0.9K0.1FeO3-δ with tetragonal perovskite-like structure. Such allows to decrease the synthesis temperature, if compared to the conventional solid-state route, and to prevent possible volatilization of potassium. The results of Mössbauer spectroscopy studies indicate that the oxygen nonstoichiometry in the samples annealed in air at 900-1100 °C with subsequent rapid cooling vary in the range δ=0.30-0.32. The electrical conductivity in air exhibits a metal-like behaviour at temperatures above 400 °C and semiconductor behaviour in the low-temperature range, reaching 13-30 S/cm under prospective operation conditions for alkaline electrolyzers (≤90 °C).

  13. Characterization of bauxite residue (red mud) for 235U, 238U, 232Th and 40K using neutron activation analysis and the radiation dose levels as modeled by MCNP.

    PubMed

    Landsberger, S; Sharp, A; Wang, S; Pontikes, Y; Tkaczyk, A H

    2017-07-01

    This study employs thermal and epithermal neutron activation analysis (NAA) to quantitatively and specifically determine absorption dose rates to various body parts from uranium, thorium and potassium. Specifically, a case study of bauxite residue (red mud) from an industrial facility was used to demonstrate the feasibility of the NAA approach for radiological safety assessment, using small sample sizes to ascertain the activities of 235 U, 238 U, 232 Th and 40 K. This proof-of-concept was shown to produce reliable results and a similar approach could be used for quantitative assessment of other samples with possible radiological significance. 238 U and 232 Th were determined by epithermal and thermal neutron activation analysis, respectively. 235 U was determined based on the known isotopic ratio of 238 U/ 235 U. 40 K was also determined using epithermal neutron activation analysis to measure total potassium content and then subtracting its isotopic contribution. Furthermore, the work demonstrates the application of Monte Carlo Neutral-Particle (MCNP) simulations to estimate the radiation dose from large quantities of red mud, to assure the safety of humans and the surrounding environment. Phantoms were employed to observe the dose distribution throughout the human body demonstrating radiation effects on each individual organ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A neutron activation analysis procedure for the determination of uranium, thorium and potassium in geologic samples

    USGS Publications Warehouse

    Aruscavage, P. J.; Millard, H.T.

    1972-01-01

    A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.

  15. Novel approach in k0-NAA for highly concentrated REE Samples.

    PubMed

    Abdollahi Neisiani, M; Latifi, M; Chaouki, J; Chilian, C

    2018-04-01

    The present paper presents a new approach for k 0 -NAA for accurate quantification with short turnaround analysis times for rare earth elements (REEs) in high content mineral matrices. REE k 0 and Q 0 values, spectral interferences and nuclear interferences were experimentally evaluated and improved with Alfa Aesar Specpure Plasma Standard 1000mgkg -1 mono-rare earth solutions. The new iterative gamma-ray self-attenuation and neutron self-shielding methods were investigated with powder standards prepared from 100mg of 99.9% Alfa Aesar mono rare earth oxide diluted with silica oxide. The overall performance of the new k 0 -NAA method for REEs was validated using a certified reference material (CRM) from Canadian Certified Reference Materials Project (REE-2) with REE content ranging from 7.2mgkg -1 for Yb to 9610mgkg -1 for Ce. The REE concentration was determined with uncertainty below 7% (at 95% confidence level) and proved good consistency with the CRM certified concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Determination of elements in hospital waste with neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Dwijananti, P.; Astuti, B.; Alwiyah; Fianti

    2018-03-01

    The producer of the biggest B3 waste is hospital. The waste is from medical and laboratory activities. The purpose of this study is to determine the elements contained in the liquid waste from hospital and calculate the levels of these elements. This research was done by analysis of the neutron activation conducted at BATAN Yogyakarta. The neutron activation analysis is divided into two stages: activation of the samples using neutron sources of reactor Kartini, then chopping by using a set of tools, gamma spectrometer with HPGe detector. Qualitative and quantitative analysis were done by matching the gamma spectrum peak to the Neutron Activation Table. The sample was taken from four points of the liquid waste treatment plant (WWTP) Bhakti Wira Tamtama Semarang hospital. The results showed that the samples containing elements of Cr, Zn, Fe, Co, and Na, with the levels of each element is Cr (0.033 - 0.075) mg/L, Zn (0.090 - 1.048) mg/L, Fe (2.937-37.743) mg/L, Co (0.005-0.023) mg/L, and Na (61.088-116.330) mg/L. Comparing to the standard value, the liquid is safe to the environment.

  17. Cross Sections for the Reactions e+e to K+ K- pi+pi-, K+ K- pi0pi0, and K+ K- K+ K- Measured Using Initial-State Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J.P.; Poireau, V.; Prencipe, E.

    2011-08-19

    We study the processes e{sup +}e{sup -} {yields} K{sup +}K{sup -}{pi}{sup +}{pi}-{gamma}, K{sup +}K{sup -}{pi}{sup 0}{pi}{sup 0}{gamma}, and K{sup +}K{sup -}K{sup +}K{sup -}{gamma}, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb{sup -1} of BABAR data. The invariant mass of the hadronic final state defines the e{sup +}e{sup -} center-of-mass energy, so that the K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{gamma} data can be compared with direct measurements of the e{sup +}e{sup -} {yields} K{sup +}K{sup -}{pi}{sup +}{pi}{sup -} reaction. No direct measurements exist for the e{sup +}e{supmore » -} {yields} K{sup +}K{sup -}{pi}{sup 0}{pi}{sup 0} or e{sup +}e{sup -} {yields} K{sup +}K{sup -}K{sup +}K{sup -} reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e{sup +}e{sup -} {yields} {phi}(1020){pi}{pi}{gamma} reaction, and confirm the presence of the Y (2175) resonance in the {phi}(1020)f{sub 0}(980) and K{sup +}K{sup -} f{sub 0}(980) modes. In the charmonium region, we observe the J/{psi} in all three final states and in several intermediate states, as well as the {phi}(2S) in some modes, and measure the corresponding branching fractions.« less

  18. The D-D Neutron Generator as an Alternative to Am(Li) Isotopic Neutron Source in the Active Well Coincidence Counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, Robert Dennis; Cleveland, Steven L.

    The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible usingmore » gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.« less

  19. Single phase Pb0.7Bi0.3Fe0.65Nb0.35O3 multiferroic: Neutron diffraction, impedance and modulus studies

    NASA Astrophysics Data System (ADS)

    Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshpande, S. K.; Angadi, Basavaraj

    2018-04-01

    The Pb0.7Bi0.3Fe0.65Nb0.35O3 (PBFNO) multiferroic solid solution was synthesized by using single step solid state reaction method. Single phase formation was confirmed through room temperature (RT) X Ray Diffraction (XRD) and Neutron Diffraction (ND). Rietveld refinement was used to perform the structural analysis using FullProf Suite program. RT XRD and ND patterns well fitted with monoclinic structure (Cm space group) and cell parameters from the ND data are found to be a = 5.6474(4) Å, b = 5.6415(3) Å, c = 3.9992(3) Å and β = 89.95(2)°. ND data at RT exhibits G-type antiferromagnetic structure. The electrical properties (impedance and modulus) of PBFNO were studied as a function of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K) by Impedance spectroscopy technique. Impedance and modulus spectroscopy studies confirm the contribution to the conductivity is from grains only and the relaxation is of non-Debye type. The PBFNO sample exhibits negative temperature coefficient of resistance (NTCR) behaviour. PBFNO is found be a potential candidate for RT applications.

  20. Cross sections for the reactions e+e-→K+K-π+π-, K+K0π0, and K+K-K+K- measured using initial-state radiation events

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2012-07-01

    We study the processes e+e-→K+K-π+π-γ, K+K0π0γ, and K+K-K+K-γ, where the photon is radiated from the initial state. About 84 000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454fb-1 of BABAR data. The invariant mass of the hadronic final state defines the e+e- center-of-mass energy, so that the K+K-π+π-γ data can be compared with direct measurements of the e+e-→K+K-π+π- reaction. No direct measurements exist for the e+e-→K+K0π0 or e+e-→K+K-K+K- reactions, and we present an update of our previous result based on a data sample that is twice as large. Studying the structure of these events, we find contributions from a number of intermediate states and extract their cross sections. In particular, we perform a more detailed study of the e+e-→ϕ(1020)ππγ reaction and confirm the presence of the Y(2175) resonance in the ϕ(1020)f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/ψ in all three final states and in several intermediate states, as well as the ψ(2S) in some modes, and measure the corresponding products of branching fraction and electron width.

  1. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system

    PubMed Central

    NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308

  2. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system.

    PubMed

    Nakamura, Satoshi; Imamichi, Shoji; Masumoto, Kazuyoshi; Ito, Masashi; Wakita, Akihisa; Okamoto, Hiroyuki; Nishioka, Shie; Iijima, Kotaro; Kobayashi, Kazuma; Abe, Yoshihisa; Igaki, Hiroshi; Kurita, Kazuyoshi; Nishio, Teiji; Masutani, Mitsuko; Itami, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24 Na, 38 Cl, 80m Br, 82 Br, 56 Mn, and 42 K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 10 2 , (2.2 ± 0.1) × 10 1 , (3.4 ± 0.4) × 10 2 , 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 10 1 Bq/g/mA, respectively. The 24 Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system.

  3. Measurements of the absolute neutron fluence spectrum emitted at 0/sup 0/ and 90/sup 0/ from the Little-Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, J.H.; Gold, R.; Preston, C.C.

    Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2m, 0/sup 0/ and 2m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. At the 2m,more » 90/sup 0/ location the NRE neutron spectrum extends from 0.37 up to 8.2 MeV, whereas the NRE neutron spectrum at the 2m, 0/sup 0/ location is much softer and extends only up to 2.7 MeV. NRE neutron spectrometry results at these two locations are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. 7 refs., 3 figs.« less

  4. Instrumental nuclear activation techniques and applications to biomedical problems

    NASA Astrophysics Data System (ADS)

    Akanle, Olufunso Akinbode

    The principles and practice of instrumental neutron activation analysis (INAA) which serves as the basis of this work is described. The various irradiation and counting conditions used are also described. As sampling and sample preparation has a large effect on the accuracy of analytical techniques for trace element work, some of the problems faced by the analyst during these processes are identified and ways of minimising these problems are described. A method of obtaining the representative mass for various elements in standard material, Bowen's Kale is described and values for a number of elements in this material have been determined. The application of INAA in the determination of the concentrations of a range of elements in hair and blood samples, whole blood, erythrocytes and plasma obtained from two groups of women, senile demented and depressives and their respective controls is described. The results suggest that the senile dements have significantly higher concentrations of Na, Al, Cl, I and Hg in blood and hair relative to that of the controls whereas, V, Fe, Zn, Cu, Se and Rb were found at higher concentrations in the controls. In the depressives, Na, Al, S, Cl, K, V, Mn, Br, Sc, Ag, I and Hg were found to be significantly elevated in their blood and hair relative to that of controls while Mg, Ca, Zn, Cu, Se, Sb and Au were found at higher concentrations in the controls. The statistical methods used in the interpretation of these results are also described. The effect of Se supplementation on the concentration of Se in whole blood and blood components, collected from three groups of healthy adults given as a supplement to their usual diet, is described. The results indicate that the level of selenium in whole blood and its components increases with dose and time and the concentration of the element is maintained for at least 45 days following cessation of supplementation. The influence of the supplement on some electrolytes was also investigated. The

  5. Experimental parameters optimization of instrumental neutron activation analysis in order to determine selected elements in some industrial soils in Turkey

    NASA Astrophysics Data System (ADS)

    Haciyakupoglu, Sevilay; Nur Esen, Ayse; Erenturk, Sema

    2014-08-01

    The purpose of this study is optimization of the experimental parameters for analysis of soil matrix by instrumental neutron activation analysis and quantitative determination of barium, cerium, lanthanum, rubidium, scandium and thorium in soil samples collected from industrialized urban areas near Istanbul. Samples were irradiated in TRIGA MARK II Research Reactor of Istanbul Technical University. Two types of reference materials were used to check the accuracy of the applied method. The achieved results were found to be in compliance with certified values of the reference materials. The calculated En numbers for mentioned elements were found to be less than 1. The presented data of element concentrations in soil samples will help to trace the pollution as an impact of urbanization and industrialization, as well as providing database for future studies.

  6. Global Maps of Lunar Neutron Fluxes from the LEND Instrument

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; hide

    2012-01-01

    The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range < 0.015 eV) and fast neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.

  7. Obtaining higher-accuracy estimates of water-rich rocks and water-poor sand dunes on Mars in active neutron experiments

    NASA Astrophysics Data System (ADS)

    Gabriel, T. S. J.; Hardgrove, C.; Litvak, M. L.; Nowicki, S.; Mitrofanov, I. G.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Jun, I.; Mischna, M.; Tate, C. G.; Moersch, J.; Harshman, K.; Kozyrev, A.; Malakhov, A. V.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Vostrukhin, A.; Thompson, L. M.

    2017-12-01

    The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory Curiosity Rover delivers high-energy (14.1 MeV) pulses of neutrons into the surface when operating in "active" mode. Neutrons are moderated in the subsurface and return to two detectors to provide a time-of-flight profile in 64 time-bins in epithermal and thermal energy ranges. Results are compared to simulations of the experiment in the Monte Carlo N-Particle Transport Code where several aspects are modeled including the DAN detectors, neutron source, rover components, and underlying rock. Models can be improved by increasing the fidelity of the rock geochemistry as informed by instruments including the Alpha Particle X-Ray Spectrometer (APXS). Furthermore, increasing the fidelity of the rock morphology in models is enabled by the suite of imaging instruments on the rover.To rapidly interpret DAN data a set of pre-simulated generic rock density and bulk geochemistry models are compared to several DAN active observations. While, to first order, this methodology provides an indication of significant geochemical changes in the subsurface, higher-fidelity models should be used to provide accurate constraints on water content, depth of geologic layers, or abundance of neutron absorbers. For example, in high-silicon, low-iron rocks observed along the rover's traverse, generic models can differ by several wt%H2O from models that use APXS measurements of nearby drill samples. Accurate measurements of high-silicon targets are necessary in outlining the extent of aqueous alteration and hydrothermal activity in Gale Crater. Additionally, we find that for DAN active experiments over sand dunes best-fit models can differ by greater than 0.5 wt%HO when the upper layer density is reduced by 0.6 g/cm3 to account for the low-bulk density of sand. In areas where the rock geochemistry differs little from generic models the difference in results is expectedly less disparate. We report refined wt%HO values

  8. Visible Light-Induced Photocatalytic and Antibacterial Activity of Li-Doped Bi0.5Na0.45K0.5TiO3-BaTiO3 Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Kushwaha, H. S.; Halder, Aditi; Jain, D.; Vaish, Rahul

    2015-11-01

    The visible light-active ferroelectric photocatalyst Bi0.5Na0.45Li0.05K0.5TiO3-BaTiO3 (BNKLBT) was synthesized by a solid-state method and its photocatalytic, photoelectrochemical, and antibacterial properties were investigated. In a chronoamperometric study the current density under visible light was 30 μA/cm2, which is three times more than that observed under dark conditions. The compound's visible light photocatalytic activity was investigated for degradation of an organic dye (methyl orange) and an estrogenic pollutant (estriol).The kinetic rate constants calculated for photocatalytic degradation of methyl orange and estriol were 0.007 and 0.056 min-1, respectively. High photocatalytic and photoelectrochemical activity was a result of effective separation of photo-generated charge carriers, because of the ferroelectric nature of the catalyst. The effect of different charge-trapping agents on photocatalytic degradation was studied to investigate the effect of active species and the degradation pathway. Antimicrobial activity was investigated for Escherichia coli and Aspergillus flavus. The anti-bacterial action of BNKLBT was compared with that of the commercial antibiotic kanamycin (k30).

  9. Neutron beam flux monitors in coaxial and planar geometry for neutron scattering instruments at Dhruva reactor

    NASA Astrophysics Data System (ADS)

    Desai, Shraddha S.; Devan, Shylaja; Das, Amrita; Patkar, S. M.; Rao, Mala N.

    2018-04-01

    Neutron scattering instruments at Dhruva reactor are equipped with in house developed neutron beam flux monitors. Measurements of variations in intensity are essential to normalize the scattered neutron spectra against the reactor power fluctuations, energy of monochromatic beam, and various other factors. Two different beam monitor geometries are considered as per the beam size and optics. These detectors are fabricated with tailor-made designs to suit individual beam size and neutron flux. Pencil size beam monitors for integral intensity measurement are fabricated with coaxial geometry and BF3 fill gas for high n-gamma discrimination and count rate capability. Brass cathode design is modified to SS based rugged design, considering beam transmission. Coaxial beam monitor partially intercepts the collimated beam and gives relative magnitude of the flux with time. For certain experiments, size of beam varies due to use of focusing monochromator. Thus a beam monitor with square sensitive region covering entire beam is essential. Multiwire based planar detector for use in transmission mode is designed. Negligible absorption of neutron beam intensity within the detector hardware is ensured. Design of detectors is tailor made for beam geometry. Both these types of beam monitors are fabricated and characterized at G2 beam line and Triple Axis Spectrometer at Dhruva reactor. Performance of detector is suitable for the beam monitoring up to neutron flux ˜ 106 n/cm2/sec. Design aspects and performance details of these beam monitors are mentioned in the paper.

  10. Ames collaborative study of cosmic ray neutrons

    NASA Technical Reports Server (NTRS)

    Hewitt, J. E.; Hughes, L.; Mccaslin, J. B.; Stephens, L. D.; Rindi, A.; Smith, A. R.; Thomas, R. H.; Griffith, R. V.; Welles, C. G.; Baum, J. W.

    1976-01-01

    The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude.

  11. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  12. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  13. VESUVIO: a novel instrument for performing spectroscopic studies in condensed matter with eV neutrons at the ISIS facility

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Andreani, C.; Bowden, Z.; Colognesi, D.; Degiorgi, E.; Fielding, A. L.; Mayers, J.; Nardone, M.; Norris, J.; Praitano, M.; Rhodes, N. J.; Stirling, W. G.; Tomkinson, J.; Uden, C.

    2000-03-01

    The VESUVIO project aims to provide unique prototype instrumentation at the ISIS-pulsed neutron source and to establish a routine experimental and theoretical program in neutron scattering spectroscopy at eV energies. This instrumentation will be specifically designed for high momentum, (20 Å-11 eV) inelastic neutron scattering studies of microscopic dynamical processes in materials and will represent a unique facility for EU researchers. It will allow to derive single-particle kinetic energies and single-particle momentum distributions, n(p), providing additional and/or complementary information to other neutron inelastic spectroscopic techniques.

  14. Quality assurance program for the determination of selenium in foods and diets by instrumental neutron activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.H.; Chatt, A.

    1996-12-31

    The biological essentially of selenium for animals was first evidenced in 1957. However, it was not until 1973 that an enzyme called glutathione peroxidase was proven to be a selenoenzyme. At present, selenium is known to be a normal component of several enzymes, proteins, and some aminoacryl transfer nucleic acids. A few selenium compounds have been reported to possess anticarcinogenic properties. There is an increasing interest in understanding the role of selenium in human nutrition and metabolism. Analytical methods are being developed in several laboratories for the determination of total and species-specific selenium in whole blood, serum, urine, soft andmore » hard tissues, food, water, proteins, etc. We have developed several instrumental neutron activation analysis (INAA) methods using the, Dalhousie University SLOWPOKE-2 reactor facility for the determination of parts-per-billion levels of selenium. These methods include cyclic INAA (CINAA) and pseudocyclic INAA (PCINAA) using both conventional and anticoincidence gamma-ray spectrometry. Considering the immense health significance, it is imperative that the selenium levels in foods and diets be measured under an extensive quality assurance program for routine monitoring purposes.« less

  15. The Effect of Hydrofluoric Acid Surface Treatment on the Cyclic Fatigue Resistance of K3 NiTi Instruments

    PubMed Central

    2017-01-01

    The aim of this study was to investigate the effect of 50% hydrofluoric acid (HF) surface treatment on the cyclic fatigue resistance (CFR) of K3 NiTi instruments. Twenty as-received and twenty HF-treated K3 NiTi instruments were compared in CFR. The surface texture and fracture surface of two instrument groups were examined with a scanning electron microscope (SEM). Additionally, any change of Ni and Ti composition from both instrument groups was investigated using energy dispersive spectrometry. The results were analyzed with t-test. The HF-treated K3 group showed statistically higher cyclic fatigue resistance than as-received K3 group (P < 0.05). HF-treated K3 instruments showed smoother and rounded surface compared to as-received K3 under SEM observation. The fracture surfaces of both groups showed typical patterns of cyclic fatigue fracture. There was no difference in surface Ni and Ti composition between two groups. HF treatment of K3 instruments smoothed the file surface and increased the cyclic fatigue resistance, while it had no effect on surface ion composition and the file fracture pattern. PMID:28539854

  16. ORNL Neutron Sciences Annual Report for 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ian S; Horak, Charlie M; Counce, Deborah Melinda

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with themore » reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.« less

  17. A validation study of the Keyboard Personal Computer Style instrument (K-PeCS) for use with children.

    PubMed

    Green, Dido; Meroz, Anat; Margalit, Adi Edit; Ratzon, Navah Z

    2012-11-01

    This study examines a potential instrument for measurement of typing postures of children. This paper describes inter-rater, test-retest reliability and concurrent validity of the Keyboard Personal Computer Style instrument (K-PeCS), an observational measurement of postures and movements during keyboarding, for use with children. Two trained raters independently rated videos of 24 children (aged 7-10 years). Six children returned one week later for identifying test-retest reliability. Concurrent validity was assessed by comparing ratings obtained using the K-PECS to scores from a 3D motion analysis system. Inter-rater reliability was moderate to high for 12 out of 16 items (Kappa: 0.46 to 1.00; correlation coefficients: 0.77-0.95) and test-retest reliability varied across items (Kappa: 0.25 to 0.67; correlation coefficients: r = 0.20 to r = 0.95). Concurrent validity compared favourably across arm pathlength, wrist extension and ulnar deviation. In light of the limitations of other tools the K-PeCS offers a fairly affordable, reliable and valid instrument to address the gap for measurement of typing styles of children, despite the shortcomings of some items. However further research is required to refine the instrument for use in evaluating typing among children. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. THE RESPONSE OF SOME HEALTH PHYSICS INSTRUMENTS TO SODIUM-24 AND CHLORINE- 38 ACTIVITIES IN POLYTHENE MANPHANTOMS AND THE HUMAN BODY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peabody, C.O.

    1963-12-01

    Measurements were made of the response of five commonly used health physics instruments when held near polythene man-phantoms filled with aqueous solutions containing sodium-24 and chlorine-38. The ratios of the wholebody chlorine-38 and sodium-24 activities are calculated for various periods of accidental human irradiation by neutrons. These ratios and the phantom results are used to estimate the response of the five instruments when held near the human body at various times after irradiation. Relative contributions of the chlorine-38 and sodium-24 to the instrument indications are listed. The tabulated data enable the instrument readings to be converted to wholebody sodium- 24more » activity at the time of irradiation. This may be used as a quick estimate of the degree of neutron irradiation. (auth)« less

  19. Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument

    DOE PAGES

    Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu; ...

    2018-02-06

    Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less

  20. Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu

    Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less

  1. Detailed characterisation of the incident neutron beam on the TOSCA spectrometer

    NASA Astrophysics Data System (ADS)

    Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix

    2017-10-01

    We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.

  2. Comparison of Single Visit Post Endodontic Pain Using Mtwo Rotary and Hand K-File Instruments: A Randomized Clinical Trial.

    PubMed

    Kashefinejad, Mohamad; Harandi, Azade; Eram, Saeed; Bijani, Ali

    2016-01-01

    Pain is an unpleasant outcome of endodontic treatment that can be unbearable to patients. Instrumentation techniques may affect the frequency and intensity of post-endodontic pain. This study aimed to compare single visit post endodontic pain using Mtwo (NiTi) rotary and hand K-file instruments. In this randomized controlled trial, 60 teeth with symptomatic irreversible pulpitis in 53 patients were selected and randomly assigned into two groups of 30 teeth. In group A, the root canals were prepared with Mtwo (NiTi) rotary instruments. In group B, the root canals were prepared with hand K-file instruments. Pain assessment was implemented using visual analog scale (VAS) at four, eight, 12 and 24 hours after treatment. The acquired data were analyzed using chi-square, Mann-Whitney U and Student's t-test (P<0.05). Patients treated with rotary instruments experienced significantly less post-endodontic pain than those treated with hand instruments (P<0.001). The use of Mtwo (NiTi) rotary instruments in root canal preparation contributed to lower incidence of postoperative pain than hand K-files.

  3. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOEpatents

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  4. Ultracold-neutron production and up-scattering in superfluid helium between 1.1 K and 2.4 K

    NASA Astrophysics Data System (ADS)

    Leung, K. K. H.; Ivanov, S.; Piegsa, F. M.; Simson, M.; Zimmer, O.

    2016-02-01

    Ultracold neutrons (UCNs) were produced in superfluid helium using the PF1B cold-neutron beam facility at the Institut Laue-Langevin. A 4-liter beryllium-coated converter volume with a mechanical valve and windowless stainless-steel extraction system were used to accumulate and guide UCNs to a detector at room temperature. At a converter temperature of 1.08 K the total storage time constant in the vessel was (20.3 ±1.2 )s and the number of UCNs counted after accumulated was 91 700 ±300 . From this, we derive a volumetric UCN production rate of (6.9 ±1.7 ) cm-3s-1 , which includes a correction for losses in the converter during UCN extraction caused by the short storage time, but not accounting for UCN transport and detection efficiencies. The up-scattering rate of UCNs caused by excitations in the superfluid was studied by scanning the temperature between 1.2 K and 2.4 K . Using the temperature-dependent UCN production rate calculated from inelastic neutron scattering data, the only UCN up-scattering process found to occur was from two-phonon scattering. Our analysis for T <1.95 K rules out the contributions from roton-phonon scattering to <29 % (95% C.I.) and from one-phonon absorption to <47 % (95% C.I.) of their predicted levels.

  5. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  6. Differential Die-Away Instrument: Report on Benchmark Measurements and Comparison with Simulation for the Effects of Neutron Poisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir

    2015-03-30

    In this report, new experimental data and MCNPX simulation results of the differential die-away (DDA) instrument response to the presence of neutron absorbers are evaluated. In our previous fresh nuclear fuel experiments and simulations, no neutron absorbers or poisons were included in the fuel definition. These new results showcase the capability of the DDA instrument to acquire data from a system that better mimics spent nuclear fuel.

  7. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerard, Bruno

    2015-07-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternativemore » techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with

  8. Enhanced NIF neutron activation diagnostics.

    PubMed

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  9. First tests of a MIEZE (modulated intensity by Zero effort)-type instrument on a pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Bleuel, M.; Bröll, M.; Lang, E.; Littrell, K.; Gähler, R.; Lal, J.

    2006-01-01

    In this paper we report the results of our first tests of a novel proof-of-principle instrument developed at the IPNS, Argonne. The experiment was performed on the time of flight POSY1 instrument, the polarized reflectometer at the IPNS, which was modified to accommodate the apparatus. Two sets of RF-flippers were tested together, generating a modulated intensity by zero effort (MIEZE)-type neutron resonant spin echo signal which was observed at the detector using a wide neutron wavelength band.

  10. Measurement of CP observables in B 0 → DK ∗0 with D → K + K -

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Beteta, C. Abellan; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, Th.; Bay, A.; Beddow, J.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Büchler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Gomez, M. Calvo; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Del Buono, L.; Deplano, C.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dickens, J.; Dijkstra, H.; Batista, P. Diniz; Dogaru, M.; Bonal, F. Domingo; Donleavy, S.; Dordei, F.; Suárez, A. Dosil; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Elsby, D.; Falabella, A.; Färber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Ferguson, D.; Albor, V. Fernandez; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Tico, J. Garra; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gándara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Harrison, P. F.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Morata, J. A. Hernando; van Herwijnen, E.; Hicks, E.; Hill, D.; Hoballah, M.; Hombach, C.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jansen, F.; Jaton, P.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Li, Y.; Gioi, L. Li; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; von Loeben, J.; Lopes, J. H.; Asamar, E. Lopez; Lopez-March, N.; Lu, H.; Luisier, J.; Luo, H.; Raighne, A. Mac; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Sánchez, A. Martín; Martinelli, M.; Santos, D. Martinez; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Mazurov, A.; McCarthy, J.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Rodriguez, J. Molina; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nisar, S.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Goicochea, J. M. Otalora; Owen, P.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Alvarez, A. Pazos; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perego, D. L.; Trigo, E. Perez; Yzquierdo, A. Pérez-Calero; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Casasus, M. Plo; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pugatch, V.; Navarro, A. Puig; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Molina, V. Rives; Romero, D. A. Roa; Robbe, P.; Rodrigues, E.; Perez, P. Rodriguez; Rogers, G. J.; Roiser, S.; Romanovsky, V.; Vidal, A. Romero; Rouvinet, J.; Ruf, T.; Ruiz, H.; Sabatino, G.; Silva, J. J. Saborido; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sedes, B. Sanmartin; Sannino, M.; Santacesaria, R.; Rios, C. Santamarina; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schindler, H.; Schleich, S.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, M.; Sobczak, K.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Urner, D.; Uwer, U.; Vagnoni, V.; Valenti, G.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wishahi, J.; Witek, M.; Witzeling, W.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, F.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2013-03-01

    The decay B 0 → DK *0 and the charge conjugate mode are studied using 1.0 fb-1 of pp collision data collected by the LHCb experiment at sqrt{s}=7 TeV in 2011. The CP asymmetry between the B 0 → DK *0 and the {{overline{B}}^0}to D{{overline{K}}^{*0 }} decay rates, with the neutral D meson in the CP-even final state K + K -, is found to be {A}_d^{KK }=-0.45± 0.23± 0.02, where the first uncertainty is statistical and the second is systematic. In addition, favoured B 0 → DK *0 decays are reconstructed with the D meson in the non- CP eigenstate K +π-. The ratio of the B-flavour averaged decay rates in D decays to CP and non- CP eigenstates is measured to be {R}_d^{KK }=1.36_{-0.32}^{+0.37}± 0.07, where the ratio of the branching fractions of D 0K -π+ to D 0K + K - decays is included as multiplicative factor. The CP asymmetries measured with two control channels, the favoured B 0 → DK *0 decay with D → K +π- and the overline{B}_s^0to D{K^{*0 }} decay with D→ K + K -, arealsoreported.[Figure not available: see fulltext.

  11. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  12. A 10(9) neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit.

    PubMed

    Niranjan, Ram; Rout, R K; Srivastava, R; Kaushik, T C; Gupta, Satish C

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 10(8) neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.

  13. The highest-frequency kHz QPOs in neutron star low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    van Doesburgh, Marieke; van der Klis, Michiel; Morsink, Sharon M.

    2018-05-01

    We investigate the detections with RXTE of the highest-frequency kHz QPOs previously reported in six neutron star (NS) low mass X-ray binaries. We find that the highest-frequency kHz QPO detected in 4U 0614+09 has a 1267 Hz 3σ confidence lower limit on its centroid frequency. This is the highest such limit reported to date, and of direct physical interest as it can be used to constrain QPO models and the supranuclear density equation of state (EoS). We compare our measured frequencies to maximum orbital frequencies predicted in full GR using models of rotating neutron stars with a number of different modern EoS and show that these can accommodate the observed QPO frequencies. Orbital motion constrained by NS and ISCO radii is therefore a viable explanation of these QPOs. In the most constraining case of 4U 0614+09 we find the NS mass must be M<2.1 M⊙. From our measured QPO frequencies we can constrain the NS radii for five of the six sources we studied to narrow ranges (±0.1-0.7 km) different for each source and each EoS.

  14. COMPOSITE NEUTRONIC REACTOR

    DOEpatents

    Menke, J.R.

    1963-06-11

    This patent relates to a reactor having a core which comprises an inner active region and an outer active region, each region separately having a k effective less than one and a k infinity greater than one. The inner and outer regions in combination have a k effective at least equal to one and each region contributes substantially to the k effective of the reactor core. The inner region has a low moderator to fuel ratio such that the majority of fissions occurring therein are induced by neutrons having energies greater than thermal. The outer region has a high moderator to fuel ratio such that the majority of fissions occurring therein are induced by thermal neutrons. (AEC)

  15. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel – design concept and experimental demonstration

    DOE PAGES

    Henzlova, Daniela; Menlove, Howard Olsen; Rael, Carlos D.; ...

    2015-10-09

    Our paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. We describe the initial feasibility demonstration of the CIPN instrument, which involved measurements of fourmore » pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. Lastly, these features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.« less

  16. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel – design concept and experimental demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henzlova, Daniela; Menlove, Howard Olsen; Rael, Carlos D.

    Our paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. We describe the initial feasibility demonstration of the CIPN instrument, which involved measurements of fourmore » pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. Lastly, these features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.« less

  17. Comparison of Single Visit Post Endodontic Pain Using Mtwo Rotary and Hand K-File Instruments: A Randomized Clinical Trial

    PubMed Central

    Kashefinejad, Mohamad; Harandi, Azade; Bijani, Ali

    2016-01-01

    Objectives: Pain is an unpleasant outcome of endodontic treatment that can be unbearable to patients. Instrumentation techniques may affect the frequency and intensity of post-endodontic pain. This study aimed to compare single visit post endodontic pain using Mtwo (NiTi) rotary and hand K-file instruments. Materials and Methods: In this randomized controlled trial, 60 teeth with symptomatic irreversible pulpitis in 53 patients were selected and randomly assigned into two groups of 30 teeth. In group A, the root canals were prepared with Mtwo (NiTi) rotary instruments. In group B, the root canals were prepared with hand K-file instruments. Pain assessment was implemented using visual analog scale (VAS) at four, eight, 12 and 24 hours after treatment. The acquired data were analyzed using chi-square, Mann-Whitney U and Student’s t-test (P<0.05). Results: Patients treated with rotary instruments experienced significantly less post-endodontic pain than those treated with hand instruments (P<0.001). Conclusions: The use of Mtwo (NiTi) rotary instruments in root canal preparation contributed to lower incidence of postoperative pain than hand K-files. PMID:27536323

  18. ARE THE kHz QPO LAGS IN NEUTRON STAR 4U 1608–52 DUE TO REVERBERATION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cackett, Edward M., E-mail: ecackett@wayne.edu

    2016-08-01

    X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGNs) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary (LMXB) 4U 1608 52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGNs for neutron star LMXBs. Assuming that relativistic reflection forms the broad iron line and associated reflection continuum, we use reflection fits to the energy spectrum along with the impulse response functions to calculate the expected lags as a functionmore » of energy over the range of observed kHz quasi-periodic oscillation (QPO) frequencies in 4U 1608 52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608 52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608 52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star LMXBs, suggesting that lower and upper kHz QPOs may have different origins.« less

  19. DD fusion neutron production at UW-Madison using IEC devices

    NASA Astrophysics Data System (ADS)

    Fancher, Aaron; Michalak, Matt; Kulcinski, Gerald; Santarius, John; Bonomo, Richard

    2017-10-01

    An inertial electrostatic confinement (IEC) device using spherical, gridded electrodes at high voltage accelerates deuterium ions, allowing for neutrons to be produced within the device from DD fusion reactions. The effects of the device cathode voltage (30-170 kV), current (30-100 mA), and pressure (0.15-1.25 mTorr) on the neutron production rate have been measured. New high voltage capabilities have resulted in the achievement of a steady state neutron production rate of 3.3x108 n/s at 175 kV, 100 mA, and 1.0 mTorr of deuterium. Applications of IEC devices include the production of DD neutrons to detect chemical explosives and special nuclear materials using active interrogation methods. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-AR1095 and the Grainger Foundation.

  20. IMAGINE: first neutron protein structure and new capabilities for neutron macromolecular crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munshi, Parthapratim; Myles, Dean A A; Robertson, Lee

    2013-01-01

    We report the first high resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory. Neutron diffraction data extending to 1.65 resolution were collected from a relatively small 0.7 mm3 PfRd crystal using 2.5 days (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the deuterium atoms of the protein, and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolutions (1.5 ) from crystals with volume < 1.0 mm3more » and with unit cell edges < 100 . Beam line features include elliptical focusing mirrors that deliver 3x107 n s-1 cm-2 into a 3.5 x 2.0 mm2 focal spot at the sample position, and variable short and long wavelength cutoff optics that provide automated exchange between multiple wavelength configurations ( min=2.0 , 2.8 , 3.3 - max =3.0 , 4.0 , 4.5 , ~20 ). Notably, the crystal used to collect this PfRd data is 5-10 times smaller than has been previously reported.« less

  1. Measurement of the e + e - → K s 0 K ± π ∓ π 0 and K s 0 K ± π ∓ η cross sections using initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    The processes e + e - → Kmore » $$0\\atop{S}$$ K ±π ∓π 0 and e + e - → K$$0\\atop{S}$$ K ±π ∓η are studied over a continuum of energies from threshold to 4 GeV with the initial-state photon radiation method. Using 454 fb -1 of data collected with the BABAR detector at the SLAC PEP-II storage ring, the first measurements of the cross sections for these processes are obtained. The intermediate resonance structures from K* 0(Kπ) 0, K *(892) ± (Kπ) ∓ , and K$$0\\atop{S}$$K ±ρ ∓ are studied. Lastly, the J / ψ is observed in all of these channels, and corresponding branching fractions are measured.« less

  2. Measurement of the e + e - → K s 0 K ± π ∓ π 0 and K s 0 K ± π ∓ η cross sections using initial-state radiation

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-05-30

    The processes e + e - → Kmore » $$0\\atop{S}$$ K ±π ∓π 0 and e + e - → K$$0\\atop{S}$$ K ±π ∓η are studied over a continuum of energies from threshold to 4 GeV with the initial-state photon radiation method. Using 454 fb -1 of data collected with the BABAR detector at the SLAC PEP-II storage ring, the first measurements of the cross sections for these processes are obtained. The intermediate resonance structures from K* 0(Kπ) 0, K *(892) ± (Kπ) ∓ , and K$$0\\atop{S}$$K ±ρ ∓ are studied. Lastly, the J / ψ is observed in all of these channels, and corresponding branching fractions are measured.« less

  3. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  4. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean; JET Contributors

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  5. Beyond Californium-A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S.

    PubMed

    Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K

    2017-09-01

    Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is

  6. Predicting K0Λ photoproduction observables by using the multipole approach

    NASA Astrophysics Data System (ADS)

    Mart, T.; Rusli, A.

    2017-12-01

    We present an isobar model for kaon photoproduction on the proton γ p\\to K^+Λ that can nicely reproduce the available experimental data from threshold up to W=2.0 GeV. The background amplitude of the model is constructed from a covariant Feynman diagrammatic method, whereas the resonance one is formulated by using the multipole approach. All unknown parameters in both background and resonance amplitudes are extracted by adjusting the calculated observables to experimental data. With the help of SU(3) isospin symmetry and some information obtained from the Particle Data Group we estimate the cross section and polarization observables for the neutral kaon photoproduction on the neutron γ n\\to K^0Λ. The result indicates no sharp peak in the K^0Λ total cross section. The predicted differential cross section exhibits resonance structures only at cosθ=-1. To obtain sizable observables the present work recommends measurement of the K^0Λ cross section with W≳ 1.70 GeV, whereas for the recoiled Λ polarization measurement with W≈ 1.65-1.90 GeV would be advised, since the predictions of existing models show a large variance at this kinematics. The predicted electric and magnetic multipoles are found to be mostly different from those obtained in previous works. For W=1.75 and 1.95 GeV it is found that most of the single and double polarization observables demonstrate large asymmetries.

  7. Observation of B_{s}^{0}→D[over ¯]^{0}K_{S}^{0} and Evidence for B_{s}^{0}→D[over ¯]^{*}^{0}K_{S}^{0} Decays.

    PubMed

    Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borisyak, M; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusardi, N; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, D; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zhukov, V; Zucchelli, S

    2016-04-22

    The first observation of the B_{s}^{0}→D[over ¯]^{0}K_{S}^{0} decay mode and evidence for the B_{s}^{0}→D[over ¯]^{*0}K_{S}^{0} decay mode are reported. The data sample corresponds to an integrated luminosity of 3.0  fb^{-1} collected in pp collisions by LHCb at center-of-mass energies of 7 and 8 TeV. The branching fractions are measured to be B(B_{s}^{0}→D[over ¯]^{0}K[over ¯]^{0})=[4.3±0.5(stat)±0.3(syst)±0.3(frag)±0.6(norm)]×10^{-4},B(B_{s}^{0}→D[over ¯]^{*0}K[over ¯]^{0})=[2.8±1.0(stat)±0.3(syst)±0.2(frag)±0.4(norm)]×10^{-4},where the uncertainties are due to contributions coming from statistical precision, systematic effects, and the precision of two external inputs, the ratio f_{s}/f_{d} and the branching fraction of B^{0}→D[over ¯]^{0}K_{S}^{0}, which is used as a calibration channel.

  8. Measurement of CP violation in B 0 → J/ ψK S 0 and B 0 → ψ(2 S) K S 0 decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seuthe, A.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2017-11-01

    A measurement is presented of decay-time-dependent CP violation in the decays B 0 → J/ ψ K S 0 and B 0 → ψ(2 S) K S 0 , where the J/ ψ is reconstructed from two electrons and the ψ(2 S) from two muons. The analysis uses a sample of pp collision data recorded with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb-1. The CP -violation observables are measured to be C({B}^0\\to J/ψ {K}S^0)=0.12± 0.07± 0.02, {}S({B}^0\\to J/ψ {K}S^0)=0.83± 0.08± 0.01, {}C({B}^0\\to ψ (2S){K}S^0)=-0.05± 0.10± 0.01, {}S({B}^0\\to ψ (2S){K}S^0)=0.84± 0.10± 0.01, where C describes CP violation in the direct decay, and S describes CP violation in the interference between the amplitudes for the direct decay and for the decay after {B}^0-{\\overline{B}}^0 oscillation. The first uncertainties are statistical and the second are systematic. The two sets of results are compatible with the previous LHCb measurement using B 0 → J/ ψ K S 0 decays, where the J/ ψ meson was reconstructed from two muons. The averages of all three sets of LHCb results are C({B}^0\\to [c\\overline{c}]{K}S^0)=-0.017± 0.029, {}S({B}^0\\to [c\\overline{c}]{K}S^0)=0.760± 0.034, under the assumption that higher-order contributions to the decay amplitudes are negligible. The uncertainties include statistical and systematic contributions. [Figure not available: see fulltext.

  9. The neutron guide upgrade of the TOSCA spectrometer

    NASA Astrophysics Data System (ADS)

    Pinna, Roberto S.; Rudić, Svemir; Parker, Stewart F.; Armstrong, Jeff; Zanetti, Matteo; Škoro, Goran; Waller, Simon P.; Zacek, Daniel; Smith, Clive A.; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix

    2018-07-01

    The primary flightpath of the TOSCA indirect geometry neutron spectrometer has been upgraded with a high-m 14.636 m (including 0.418 m of air gaps) neutron guide composed of ten sections in order to boost the neutron flux at the sample position. The upgraded incident neutron beam has been characterised with the help of the time-of-flight neutron monitor; the beam profile and the gain in the neutron flux data are presented. At an average proton current-on-target of 160 μA and proton energy of 800 MeV (ISIS Target Station 1; at the time of the measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across a 3.0 × 3.0 cm2 surface centred around the (0,0) position) is approximately 2.11 × 107 neutrons cm-2 s-1 while the gain in the neutron flux is as much as 46-fold for neutrons with a wavelength of 2.5 Å. The instrument's excellent spectral resolution and low spectral background have been preserved upon the upgrade. The much improved count rate allows faster measurements where useful data of hydrogen rich samples can be recorded within minutes, as well as experiments involving smaller samples that were not possible in the past.

  10. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  11. Study of dietary supplements compositions by neutron activation analysis at the VR-1 training reactor

    NASA Astrophysics Data System (ADS)

    Stefanik, Milan; Rataj, Jan; Huml, Ondrej; Sklenka, Lubomir

    2017-11-01

    The VR-1 training reactor operated by the Czech Technical University in Prague is utilized mainly for education of students and training of various reactor staff; however, R&D is also carried out at the reactor. The experimental instrumentation of the reactor can be used for the irradiation experiments and neutron activation analysis. In this paper, the neutron activation analysis (NAA) is used for a study of dietary supplements containing the zinc (one of the essential trace elements for the human body). This analysis includes the dietary supplement pills of different brands; each brand is represented by several different batches of pills. All pills were irradiated together with the standard activation etalons in the vertical channel of the VR-1 reactor at the nominal power (80 W). Activated samples were investigated by the nuclear gamma-ray spectrometry technique employing the semiconductor HPGe detector. From resulting saturated activities, the amount of mineral element (Zn) in the pills was determined using the comparative NAA method. The results show clearly that the VR-1 training reactor is utilizable for neutron activation analysis experiments.

  12. 124Sb-Be photo-neutron source for BNCT: Is it possible?

    NASA Astrophysics Data System (ADS)

    Golshanian, Mohadeseh; Rajabi, Ali Akbar; Kasesaz, Yaser

    2016-11-01

    In this research a computational feasibility study has been done on the use of 124SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of 124Sb, the epithermal neutron flux at the designed beam exit is 0.23×109 (n/cm2 s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity 124Sb could be achieved using three 50 kCi rods of 124Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.

  13. Phase transformation behavior and mechanical properties of thermomechanically treated K3XF nickel-titanium instruments.

    PubMed

    Shen, Ya; Zhou, Hui-Min; Wang, Zhejun; Campbell, Les; Zheng, Yu-feng; Haapasalo, Markus

    2013-07-01

    The bending and torsional properties of thermomechanically treated K3XF (SybronEndo, Orange, CA) nickel-titanium instruments in relation to their phase transformation behavior were evaluated. NiTi instruments K3 (SybronEndo) and K3XF, both in sizes 25/.04 and 40/.04, were examined by differential scanning calorimetry and X-ray diffraction. The metal composition was determined by scanning electron microscopy with X-ray energy-dispersive spectrometric analyses. The bending property of K3 and K3XF instruments was measured in a cantilever-bending test with a maximum deflection of 4.00 mm. A torsional test of the instruments was evaluated according to the American National Standards Institute/American Dental Association Specification No. 28. K3 and K3XF instruments had approximately the same chemical composition with a nickel content of 48-49 atomic %. The differential scanning calorimetry analyses showed that each segment of the K3XF instruments (24.89°C ± 1.98°C) had a higher austenite finish temperature than the K3 instruments (17.63°C ± 1.76°C) (P < .05). The bending load values were significantly lower for K3XF than for K3 in the superelastic ranges (P < .05). There was no statistically significant difference between K3 and K3XF in the maximum torque or maximum angular deflection before failure. The torque at fracture values of K3 and K3XF increased significantly with the diameter (P < .05). K3XF exhibited different phase transformation behavior and flexibility when compared with K3, which may be attributed to the special heat treatment history of K3XF instruments. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Mercury and gold concentrations of highly polluted environmental samples determined using prompt gamma-ray analysis and instrument neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Osawa, Takahito; Hatsukawa, Yuichi; Appel, Peter W. U.; Matsue, Hideaki

    2011-04-01

    The authors have established a method of determining mercury and gold in severely polluted environmental samples using prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA). Since large amounts of mercury are constantly being released into the environment by small-scale gold mining in many developing countries, the mercury concentration in tailings and water has to be determined to mitigate environmental pollution. Cold-vapor atomic absorption analysis, the most pervasive method of mercury analysis, is not suitable because tailings and water around mining facilities have extremely high mercury concentrations. On the other hand, PGA can determine high mercury concentrations in polluted samples as it has an appropriate level of sensitivity. Moreover, gold concentrations can be determined sequentially by using INAA after PGA. In conclusion, the analytical procedure established in this work using PGA and INAA is the best way to evaluate the degree of pollution and the tailing resource value. This method will significantly contribute to mitigating problems in the global environment.

  15. Observation of B{sup 0}{yields}{lambda}{lambda}K{sup 0} and B{sup 0}{yields}{lambda}{lambda}K*{sup 0} at Belle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.-W.; Wang, M.-Z.; Chao, Y.

    2009-03-01

    We study the charmless decays B{yields}{lambda}{lambda}h, where h stands for {pi}{sup +}, K{sup +}, K{sup 0},K*{sup +}, or K*{sup 0}, using a 605 fb{sup -1} data sample collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric energy e{sup +}e{sup -} collider. We observe B{sup 0}{yields}{lambda}{lambda}K{sup 0} and B{sup 0}{yields}{lambda}{lambda}K*{sup 0} with branching fractions of (4.76{sub -0.68}{sup +0.84}(stat){+-}0.61(syst))x10{sup -6} and (2.46{sub -0.72}{sup +0.87}{+-}0.34)x10{sup -6}, respectively. The significances of these signals in the threshold-mass enhanced mass region, M{sub {lambda}}{sub {lambda}}<2.85 GeV/c{sup 2}, are 12.4{sigma} and 9.3{sigma}, respectively. We also update the branching fraction B(B{sup +}{yields}{lambda}{lambda}K{sup +})=(3.38{sub -0.36}{sup +0.41}{+-}0.41)x10{supmore » -6} with better accuracy, and report the following measurement or 90% confidence level upper limit in the threshold-mass-enhanced region: B(B{sup +}{yields}{lambda}{lambda}K*{sup +})=(2.19{sub -0.88}{sup +1.13}{+-}0.33)x10{sup -6} with 3.7{sigma} significance; B(B{sup +}{yields}{lambda}{lambda}{pi}{sup +})<0.94x10{sup -6}. A related search for B{sup 0}{yields}{lambda}{lambda}D{sup 0} yields a branching fraction B(B{sup 0}{yields}{lambda}{lambda}D{sup 0})=(1.05{sub -0.44}{sup +0.57}{+-}0.14)x10{sup -5}. This may be compared with the large, {approx}10{sup -4}, branching fraction observed for B{sup 0}{yields}ppD{sup 0}. The M{sub {lambda}}{sub {lambda}} enhancements near threshold and related angular distributions for the observed modes are also reported.« less

  16. First observation and Dalitz analysis of the D0-->K(0)Setapi(0) decay.

    PubMed

    Rubin, P; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Eckhart, E; Gan, K K; Severini, H; Skubic, P; Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Rosner, J L; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J

    2004-09-10

    Using 9.0 fb(-1) of integrated luminosity in e(+)e(-) collisions near the Upsilon(4S) mass collected with the CLEO II.V detector we report the first observation of the decay D0-->K(0)(S)etapi(0). We measure the ratio of branching fractions, BR(D0-->K(0)(S)etapi(0))BR / (D0-->K(0)(S)pi(0))=0.46+/-0.07+/-0.06. We perform a Dalitz analysis of 155 selected D0-->K(0)(S)etapi(0) candidates and find leading contributions from a(0)(980)K(0)(S) and K(*)(892)eta intermediate states.

  17. A Quasi-Laue Neutron Crystallographic Study of D-Xylose Isomerase

    NASA Technical Reports Server (NTRS)

    Meilleur, Flora; Snell, Edward H.; vanderWoerd, Mark; Judge, Russell A.; Myles, Dean A. A.

    2006-01-01

    Hydrogen atom location and hydrogen bonding interaction determination are often critical to explain enzymatic mechanism. Whilst it is difficult to determine the position of hydrogen atoms using X-ray crystallography even with subatomic (less than 1.0 Angstrom) resolution data available, neutron crystallography provides an experimental tool to directly localise hydrogeddeuteriwn atoms in biological macromolecules at resolution of 1.5-2.0 Angstroms. Linearisation and isomerisation of xylose at the active site of D-xylose isomerase rely upon a complex hydrogen transfer. Neutron quasi-Laue data were collected on Streptomyces rubiginosus D-xylose isomerase crystal using the LADI instrument at ILL with the objective to provide insight into the enzymatic mechanism (Myles et al. 1998). The neutron structure unambiguously reveals the protonation state of His 53 in the active site, identifying the model for the enzymatic pathway.

  18. Bound on the Ratio of Decay Amplitudes for B¯0→J/ψK*0 and B0→J/ψK*0

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Tisserand, V.; Zghiche, A.; Palano, A.; Pompili, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Day, C. T.; Gill, M. S.; Gritsan, A. V.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Shelkov, V. G.; Wenzel, W. A.; Ford, K. E.; Harrison, T. J.; Hawkes, C. M.; Morgan, S. E.; Watson, A. T.; Fritsch, M.; Goetzen, K.; Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Steinke, M.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Kelly, M. P.; Latham, T. E.; Wilson, F. F.; Cuhadar-Donszelmann, T.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Khan, A.; Kyberd, P.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Ivanchenko, V. N.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Yushkov, A. N.; Best, D.; Bruinsma, M.; Chao, M.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Mommsen, R. K.; Roethel, W.; Stoker, D. P.; Buchanan, C.; Hartfiel, B. L.; Gary, J. W.; Shen, B. C.; Wang, K.; del Re, D.; Hadavand, H. K.; Hill, E. J.; Macfarlane, D. B.; Paar, H. P.; Rahatlou, Sh.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Dahmes, B.; Levy, S. L.; Long, O.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Lockman, W. S.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Spradlin, P.; Williams, D. C.; Wilson, M. G.; Albert, J.; Chen, E.; Dubois-Felsmann, G. P.; Dvoretskii, A.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Abe, T.; Blanc, F.; Bloom, P.; Chen, S.; Ford, W. T.; Nauenberg, U.; Olivas, A.; Rankin, P.; Smith, J. G.; Zhang, J.; Zhang, L.; Chen, A.; Harton, J. L.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Zeng, Q. L.; Altenburg, D.; Brandt, T.; Brose, J.; Colberg, T.; Dickopp, M.; Feltresi, E.; Hauke, A.; Lacker, H. M.; Maly, E.; Müller-Pfefferkorn, R.; Nogowski, R.; Otto, S.; Petzold, A.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Spaan, B.; Sundermann, J. E.; Bernard, D.; Bonneaud, G. R.; Brochard, F.; Grenier, P.; Schrenk, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Bard, D. J.; Clark, P. J.; Lavin, D.; Muheim, F.; Playfer, S.; Xie, Y.; Andreotti, M.; Azzolini, V.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Piemontese, L.; Sarti, A.; Treadwell, E.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Zallo, A.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Bailey, S.; Brandenburg, G.; Morii, M.; Won, E.; Dubitzky, R. S.; Langenegger, U.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Gaillard, J. R.; Morton, G. W.; Nash, J. A.; Taylor, G. P.; Charles, M. J.; Grenier, G. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Yi, J.; Davier, M.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Petersen, T. C.; Plaszczynski, S.; Schune, M. H.; Tantot, L.; Wormser, G.; Cheng, C. H.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bevan, A. J.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Parry, R. J.; Payne, D. J.; Sloane, R. J.; Touramanis, C.; Back, J. J.; Cormack, C. M.; Harrison, P. F.; Mohanty, G. B.; Brown, C. L.; Cowan, G.; Flack, R. L.; Flaecher, H. U.; Green, M. G.; Marker, C. E.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Brown, D.; Davis, C. L.; Allison, J.; Barlow, N. R.; Barlow, R. J.; Hart, P. A.; Hodgkinson, M. C.; Lafferty, G. D.; Lyon, A. J.; Williams, J. C.; Farbin, A.; Hulsbergen, W. D.; Jawahery, A.; Kovalskyi, D.; Lae, C. K.; Lillard, V.; Roberts, D. A.; Blaylock, G.; Dallapiccola, C.; Flood, K. T.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Moore, T. B.; Saremi, S.; Staengle, H.; Willocq, S.; Cowan, R.; Sciolla, G.; Taylor, F.; Yamamoto, R. K.; Mangeol, D. J.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Taras, P.; Nicholson, H.; Cavallo, N.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M.; Bulten, H.; Raven, G.; Wilden, L.; Jessop, C. P.; Losecco, J. M.; Gabriel, T. A.; Allmendinger, T.; Brau, B.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Pulliam, T.; Rahimi, A. M.; Ter-Antonyan, R.; Wong, Q. K.; Brau, J.; Frey, R.; Igonkina, O.; Potter, C. T.; Sinev, N. B.; Strom, D.; Torrence, E.; Colecchia, F.; Dorigo, A.; Galeazzi, F.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Tiozzo, G.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; de La Vaissière, Ch.; del Buono, L.; Hamon, O.; John, M. J.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Pivk, M.; Roos, L.; T'jampens, S.; Therin, G.; Manfredi, P. F.; Re, V.; Behera, P. K.; Gladney, L.; Guo, Q. H.; Panetta, J.; Anulli, F.; Biasini, M.; Peruzzi, I. M.; Pioppi, M.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bucci, F.; Calderini, G.; Carpinelli, M.; del Gamba, V.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Martinez-Vidal, F.; Morganti, M.; Neri, N.; Paoloni, E.; Rama, M.; Rizzo, G.; Sandrelli, F.; Walsh, J.; Haire, M.; Judd, D.; Paick, K.; Wagoner, D. E.; Danielson, N.; Elmer, P.; Lau, Y. P.; Lu, C.; Miftakov, V.; Olsen, J.; Smith, A. J.; Telnov, A. V.; Bellini, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Pierini, M.; Piredda, G.; Tehrani, F. Safai; Voena, C.; Christ, S.; Wagner, G.; Waldi, R.; Adye, T.; de Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Aleksan, R.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Schott, G.; Vasseur, G.; Yèche, Ch.; Zito, M.; Purohit, M. V.; Weidemann, A. W.; Wilson, J. R.; Yumiceva, F. X.; Aston, D.; Bartoldus, R.; Berger, N.; Boyarski, A. M.; Buchmueller, O. L.; Convery, M. R.; Cristinziani, M.; de Nardo, G.; Dong, D.; Dorfan, J.; Dujmic, D.; Dunwoodie, W.; Elsen, E. E.; Fan, S.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Hadig, T.; Halyo, V.; Hast, C.; Hryn'ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W.; Libby, J.; Luitz, S.; Luth, V.; Lynch, H. L.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Simi, G.; Snyder, A.; Soha, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Va'Vra, J.; Wagner, S. R.; Weaver, M.; Weinstein, A. J.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Young, C. C.; Burchat, P. R.; Edwards, A. J.; Meyer, T. I.; Petersen, B. A.; Roat, C.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Saeed, M. A.; Saleem, M.; Wappler, F. R.; Bugg, W.; Krishnamurthy, M.; Spanier, S. M.; Eckmann, R.; Kim, H.; Ritchie, J. L.; Satpathy, A.; Schwitters, R. F.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Borean, C.; Bosisio, L.; Cartaro, C.; Cossutti, F.; della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Vitale, L.; Vuagnin, G.; Panvini, R. S.; Banerjee, Sw.; Brown, C. M.; Fortin, D.; Jackson, P. D.; Kowalewski, R.; Roney, J. M.; Band, H. R.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Graham, M.; Hollar, J. J.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; Lodovico, F. Di; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Prepost, R.; Rubin, A. E.; Sekula, S. J.; Tan, P.; von Wimmersperg-Toeller, J. H.; Wu, J.; Wu, S. L.; Yu, Z.; Greene, M. G.; Neal, H.

    2004-08-01

    We have measured the time-dependent decay rate for the process B→J/ψK*0(892) in a sample of about 88×106 Υ(4S)→BB¯ decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. In this sample we study flavor-tagged events in which one neutral B meson is reconstructed in the J/ψK*0 or J/ψK¯*0 final state. We measure the coefficients of the cosine and sine terms in the time-dependent asymmetries for J/ψK*0 and J/ψK¯*0, find them to be consistent with the standard model expectations, and set upper limits at 90% confidence level (C.L.) on the decay amplitude ratios |A(B¯0→J/ψK*0)|/|A(B0→J/ψK*0)|<0.26 and |A(B0→J/ψK¯*0)|/|A(B¯0→J/ψK¯*0)|<0.32. For a single ratio of wrong-flavor to favored amplitudes for B0 and B¯0 combined, we obtain an upper limit of 0.25 at 90% C.L.

  19. Measurement of the absolute branching fraction of D + → $$\\bar{K}$$ 0 e + ν e via $$\\bar{K}$$0 → π0 π0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.

    By analyzing 2.93 fb–1 data collected at the center-of-mass energy with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+ →more » $$\\bar{K}$$0 e+νe to be Β(D + → $$\\bar{K}$$ 0 e +ν e) = (8.59 ± 0.14 ± 0.21)% using $$\\bar{K}$$ 0K 0 s → π 0π 0, where the first uncertainty is statistical and the second systematic. Finally, our result is consistent with previous measurements within uncertainties..« less

  20. Measurement of the absolute branching fraction of D + → $$\\bar{K}$$ 0 e + ν e via $$\\bar{K}$$0 → π0 π0

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; ...

    2016-11-01

    By analyzing 2.93 fb–1 data collected at the center-of-mass energy with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+ →more » $$\\bar{K}$$0 e+νe to be Β(D + → $$\\bar{K}$$ 0 e +ν e) = (8.59 ± 0.14 ± 0.21)% using $$\\bar{K}$$ 0K 0 s → π 0π 0, where the first uncertainty is statistical and the second systematic. Finally, our result is consistent with previous measurements within uncertainties..« less

  1. Further evidence for formation of a narrow baryon resonance with positive strangeness in K{sup +} collisions with Xe nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.

    2007-01-15

    We have continued our investigation of the charge-exchange reaction K{sup +}Xe {sup {yields}} K{sup 0}pXe' in the bubble chamber DIANA. In agreement with our previous results based on part of the present statistics, formation of a narrow pK{sup 0} resonance with mass of 1537 {+-} 2 MeV/c{sup 2} is observed in the elementary transition K{sup +}n {sup {yields}} K{sup 0}p on a neutron bound in the xenon nucleus. The visible width of the peak is consistent with being entirely due to instrumental resolution and allows one to place an upper limit on its intrinsic width: {gamma} < 9 MeV/c{sup 2}.more » A more precise estimate of the resonance intrinsic width, {gamma} = 0.36 {+-} 0.11 MeV/c{sup 2}, is obtained from the ratio between the numbers of resonant and nonresonant charge-exchange events. The signal is observed in a restricted interval of incident K{sup +} momentum that is consistent with smearing of a narrow pK{sup 0} resonance by Fermi motion of the target neutron. The statistical significance of the signal is some 7.3, 5.3, and 4.3 standard deviations for the estimators S/{radical}B,S/{radical}(S+B) and S/{radical}(S+2B), respectively. This observation confirms and reinforces our earlier results, and offers strong evidence for formation of a pentaquark baryon with positive strangeness in the charge-exchange reaction K{sup +}n {sup {yields}} K{sup 0}p on a bound neutron.« less

  2. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  3. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  4. Advances in Neutron Spectroscopy and High Magnetic Field Instrumentation for studies of Correlated Electron Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granroth, Garrett E

    2011-01-01

    Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes ofmore » $Q$ and $$\\omega$$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$$_4$$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.« less

  5. Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolnierczuk, Piotr A; Vacaliuc, Bogdan; Sundaram, Madhan

    The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implementedmore » the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.« less

  6. Search for CP Violation and Measurement of the Branching Fraction in the Decay D^{0}→K_{S}^{0}K_{S}^{0}.

    PubMed

    Dash, N; Bahinipati, S; Bhardwaj, V; Trabelsi, K; Adachi, I; Aihara, H; Al Said, S; Asner, D M; Aulchenko, V; Aushev, T; Ayad, R; Babu, V; Badhrees, I; Bakich, A M; Bansal, V; Barberio, E; Bhuyan, B; Biswal, J; Bobrov, A; Bondar, A; Bonvicini, G; Bozek, A; Bračko, M; Breibeck, F; Browder, T E; Červenkov, D; Chang, M-C; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Cho, K; Choi, Y; Cinabro, D; Di Carlo, S; Doležal, Z; Drásal, Z; Dutta, D; Eidelman, S; Epifanov, D; Farhat, H; Fast, J E; Ferber, T; Fulsom, B G; Gaur, V; Gabyshev, N; Garmash, A; Gillard, R; Goldenzweig, P; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Hedges, M T; Hou, W-S; Iijima, T; Inami, K; Ishikawa, A; Itoh, R; Iwasaki, Y; Jacobs, W W; Jaegle, I; Jeon, H B; Jin, Y; Joffe, D; Joo, K K; Julius, T; Kahn, J; Kaliyar, A B; Karyan, G; Katrenko, P; Kawasaki, T; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, K T; Kim, M J; Kim, S H; Kim, Y J; Kinoshita, K; Kodyš, P; Korpar, S; Kotchetkov, D; Križan, P; Krokovny, P; Kuhr, T; Kulasiri, R; Kumar, R; Kumita, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, I S; Li, C H; Li, L; Li, Y; Li Gioi, L; Libby, J; Liventsev, D; Lubej, M; Luo, T; Masuda, M; Matvienko, D; Merola, M; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Mohanty, S; Moon, H K; Mori, T; Mussa, R; Nakano, E; Nakao, M; Nanut, T; Nath, K J; Natkaniec, Z; Nayak, M; Niiyama, M; Nisar, N K; Nishida, S; Ogawa, S; Okuno, S; Ono, H; Pakhlov, P; Pakhlova, G; Pal, B; Pardi, S; Park, C-S; Park, H; Paul, S; Pedlar, T K; Pesántez, L; Pestotnik, R; Piilonen, L E; Prasanth, K; Ritter, M; Rostomyan, A; Sahoo, H; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Sato, Y; Savinov, V; Schneider, O; Schnell, G; Schwanda, C; Schwartz, A J; Seino, Y; Senyo, K; Sevior, M E; Shebalin, V; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Simon, F; Sokolov, A; Solovieva, E; Starič, M; Strube, J F; Stypula, J; Sumisawa, K; Sumiyoshi, T; Takizawa, M; Tamponi, U; Tanida, K; Tenchini, F; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Usov, Y; Van Hulse, C; Varner, G; Vorobyev, V; Vossen, A; Waheed, E; Wang, C H; Wang, M-Z; Wang, P; Watanabe, M; Watanabe, Y; Widmann, E; Williams, K M; Won, E; Yamashita, Y; Ye, H; Yelton, J; Yook, Y; Yuan, C Z; Yusa, Y; Zhang, Z P; Zhilich, V; Zhukova, V; Zhulanov, V; Zupanc, A

    2017-10-27

    We report a study of the decay D^{0}→K_{S}^{0}K_{S}^{0} using 921  fb^{-1} of data collected at or near the ϒ(4S) and ϒ(5S) resonances with the Belle detector at the KEKB asymmetric energy e^{+}e^{-} collider. The measured time-integrated CP asymmetry is A_{CP}(D^{0}→K_{S}^{0}K_{S}^{0})=(-0.02±1.53±0.02±0.17)%, and the branching fraction is B(D^{0}→K_{S}^{0}K_{S}^{0})=(1.321±0.023±0.036±0.044)×10^{-4}, where the first uncertainty is statistical, the second is systematic, and the third is due to the normalization mode (D^{0}→K_{S}^{0}π^{0}). These results are significantly more precise than previous measurements available for this mode. The A_{CP} measurement is consistent with the standard model expectation.

  7. A 10{sup 9} neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niranjan, Ram, E-mail: niranjan@barc.gov.in; Rout, R. K.; Srivastava, R.

    2016-03-15

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silvermore » activation detector in the radial direction is (7.1 ± 1.4) × 10{sup 8} neutrons/shot over 4π sr at 5 mbar optimum D{sub 2} pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.« less

  8. Calculating Formulas of Coefficient and Mean Neutron Exposure in the Exponential Expression of Neutron Exposure Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, F. H.; Zhou, G. D.; Ma, K.; Ma, W. J.; Cui, W. Y.; Zhang, B.

    2015-11-01

    Present studies have shown that, in the main stages of the development and evolution of asymptotic giant branch (AGB) star s-process models, the distributions of neutron exposures in the nucleosynthesis regions can all be expressed by an exponential function ({ρ_{AGB}}(τ) = C/{τ_0}exp ( - τ/{τ_0})) in the effective range of values. However, the specific expressions of the proportional coefficient C and the mean neutron exposure ({τ_0}) in the formula for different models are not completely determined in the related literatures. Through dissecting the basic solving method of the exponential distribution of neutron exposures, and systematically combing the solution procedure of exposure distribution for different stellar models, the general calculating formulas as well as their auxiliary equations for calculating C and ({τ_0}) are reduced. Given the discrete distribution of neutron exposures ({P_k}), i.e. the mass ratio of the materials which have exposed to neutrons for (k) ((k = 0, 1, 2 \\cdots )) times when reaching the final distribution with respect to the materials of the He intershell, (C = - {P_1}/ln R), and ({τ_0} = - Δ τ /ln R) can be obtained. Here, (R) expresses the probability that the materials can successively experience neutron irradiation for two times in the He intershell. For the convective nucleosynthesis model (including the Ulrich model and the ({}^{13}{C})-pocket convective burning model), (R) is just the overlap factor r, namely the mass ratio of the materials which can undergo two successive thermal pulses in the He intershell. And for the (^{13}{C})-pocket radiative burning model, (R = sumlimits_{k = 1}^∞ {{P_k}} ). This set of formulas practically give the corresponding relationship between C or ({τ_0}) and the model parameters. The results of this study effectively solve the problem of analytically calculating the distribution of neutron exposures in the low-mass AGB star s-process nucleosynthesis model of (^{13}{C

  9. Progress Toward a Compact 0.05 K Magnet Refrigerator Operating from 10 K

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar; Shirron, Peter; DiPirro, Micheal; Tuttle, James; Jackson, Michael; King, Todd; Numazawa, Takenori

    2003-01-01

    Much of the most interesting information regarding our universe is hidden in the sub-millimeter, infrared, and x-rays bands of the spectrum, to which our atmosphere is largely opaque. Thus, missions exploring these bands are a very important part of NASA s Space Science program. Coincidentally, the most sensitive detectors in these spectral regions operate at extremely low temperatures, typically 0.05 - 0.10 K. Generally these temperatures will be achieved using magnetic refrigerators, also know as Adiabatic Demagnetization Refrigerators, or ADRs. Current ADRs, such as the one used in the XRS-II instrument on the Astro-E2 satellite, use a single-stage to cool detectors from 1.3 K to 0.06 K. The ADR is designed so that it can absorb the heat on the detector stage for at least 24 hours before it must stop, warm up to the helium bath temperature (1.3 K), and dump the accumulated heat. Future detector arrays will be much larger and will have higher heat dissipation. Furthermore, future missions will use mechanical cryocoolers to provide upper stage cooling, but they can only reach 4 - 10 K. Trying to scale heavy (-15 kg) single stage ADRs up to the higher heat loads and higher heat rejection temperatures required leads to unacceptably large systems. The GSFC Cryogenics Branch has developed the Continuous ADR (CADR) to solve this problem. The CADR consists of a series of ADR stages that sequentially pass heat from the load up to the high temperature heat sink. The stage connected to the load remains at a constant temperature. The continuous stage effectively decouples detector operation from ADR operation, allowing the ADR stages to be cycled much more rapidly. Rapid cycling leads to higher cooling power density. The cascading, multistage arrangement allows the magnetic refrigerant of each stage to be optimized for its own temperature swing. In the past year, we have made good progress toward a 0.05 to 10K system. A four-stage system that operates from 4.2 K was

  10. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems bothmore » with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).« less

  11. Vascular activation of K+ channels and Na+-K+ ATPase activity of estrogen-deficient female rats.

    PubMed

    Ribeiro Junior, Rogério Faustino; Fiorim, Jonaina; Marques, Vinicius Bermond; de Sousa Ronconi, Karoline; Botelho, Tatiani; Grando, Marcella D; Bendhack, Lusiane M; Vassallo, Dalton Valentim; Stefanon, Ivanita

    2017-12-01

    The goal of the present study was to evaluate vascular potassium channels and Na + -K + -ATPase activity in estrogen deficient female rats. Female rats that underwent ovariectomy were assigned to receive daily treatment with placebo (OVX) or estrogen replacement (OVX+E2, 1mg/kg, once a week, i.m.). Aortic rings were used to examine the involvement of K + channels and Na + -K + -ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100μM) and K + channels blockers: tetraethylammonium (TEA, 5mM), 4-aminopyridine (4-AP, 5mM), iberiotoxin (IbTX, 30nM), apamin (0.5mM), charybdotoxin (ChTX, 0.1mM) and iberiotoxin plus apamin. When aortic rings were pre-contracted with KCl (60mM) or pre-incubated with TEA (5mM), 4-aminopyridine (4-AP, 5mM) and iberiotoxin (IbTX, 30nM) plus apamin (0.5μM), the ACh-induced relaxation was less effective in the ovariectomized group. Additionally, 4-AP and IbTX decreased the relaxation by sodium nitroprusside in all groups but this reduction was greater in the ovariectomized group. Estrogen deficiency also increased aortic functional Na + -K + ATPase activity evaluated by K + -induced relaxation. L-NAME or endothelium removal were not able to block the increase in aortic functional Na + -K + ATPase activity, however, TEA (5mM) restored this increase to the control level. We also found that estrogen deficiency increased superoxide anion production and reduced nitric oxide release in aortic ring from ovariectomized animals. In summary, our results emphasize that the process underlying ACh-induced relaxation is preserved in ovariectomized animals due to the activation of K + channels and increased Na + -K + ATPase activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats: part 1: dosimetry.

    PubMed

    Stepanenko, Valeriy; Rakhypbekov, Tolebay; Otani, Keiko; Endo, Satoru; Satoh, Kenichi; Kawano, Noriyuki; Shichijo, Kazuko; Nakashima, Masahiro; Takatsuji, Toshihiro; Sakaguchi, Aya; Kato, Hiroaki; Onda, Yuichi; Fujimoto, Nariaki; Toyoda, Shin; Sato, Hitoshi; Dyussupov, Altay; Chaizhunusova, Nailya; Sayakenov, Nurlan; Uzbekov, Darkhan; Saimova, Aisulu; Shabdarbaeva, Dariya; Skakov, Mazhin; Vurim, Alexandr; Gnyrya, Vyacheslav; Azimkhanov, Almas; Kolbayenkov, Alexander; Zhumadilov, Kasym; Kairikhanova, Yankar; Kaprin, Andrey; Galkin, Vsevolod; Ivanov, Sergey; Kolyzhenkov, Timofey; Petukhov, Aleksey; Yaskova, Elena; Belukha, Irina; Khailov, Artem; Skvortsov, Valeriy; Ivannikov, Alexander; Akhmedova, Umukusum; Bogacheva, Viktoria; Hoshi, Masaharu

    2017-03-01

    There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were 24 Na, 28 Al, 31 Si, 32 P, 38 Cl, 42 K, 45 Ca, 46 Sc, 56 Mn, 59 Fe, 60 Co, and 134 Cs. The radionuclide 56 Mn (T 1/2 = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to 56 Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated 56 Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured 56 Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of this international multicenter study show that the internal irradiation due to

  13. Penning-trap mass measurements of the neutron-rich K and Ca isotopes: Resurgence of the N=28 shell strength

    NASA Astrophysics Data System (ADS)

    Lapierre, A.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Finlay, P.; Gallant, A. T.; Simon, V. V.; Delheij, P.; Lunney, D.; Ringle, R.; Savajols, H.; Dilling, J.

    2012-02-01

    We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN electron beam ion trap and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME’03). The 48,49,50K mass excesses are more precise than the AME’03 values by more than 1 order of magnitude. For 48,49K, we find deviations of 7σ and 10σ, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME’03 mass-excess values and thus increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.

  14. Determination of the composition of HgCdTe oxide films by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gnade, B.; Simmons, A.; Little, D.; Strong, R.

    1987-04-01

    The composition of HgCdTe oxides grown by anodic oxidation in a standard KOH/ethylene glycol solution has been determined by neutron activation analysis (NAA). This technique is not hindered by the difficulties normally associated with methods using ion beams or electron beams. Neutron activation analysis has the advantage of being quantitative, and also NAA is not affected by the chemical composition of the matrix. The analysis of the KOH/ethylene glycol oxide film by neutron activation yields Hg:Cd:Te ratios of 0.534:0.19:1, in close agreement with Rutherford backscattering spectroscopy analysis (R.L. Strong et al., J. Vac. Sci. Technol. A4 (4) (1986) 1992).

  15. Neutron lifetime measurements with a large gravitational trap for ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomensky, E. A.; Fomin, A. K.; Krasnoshchekova, I. A.; Vassiljev, A. V.; Prudnikov, D. M.; Shoka, I. V.; Chechkin, A. V.; Chaikovskiy, M. E.; Varlamov, V. E.; Ivanov, S. N.; Pirozhkov, A. N.; Geltenbort, P.; Zimmer, O.; Jenke, T.; Van der Grinten, M.; Tucker, M.

    2018-05-01

    Neutron lifetime is one of the most important physical constants: it determines parameters of the weak interaction and predictions of primordial nucleosynthesis theory. There remains the unsolved problem of a 3.9σ discrepancy between measurements of this lifetime using neutrons in beams and those with stored ultracold neutrons (UCN). In our experiment we measure the lifetime of neutrons trapped by Earth's gravity in an open-topped vessel. Two configurations of the trap geometry are used to change the mean frequency of UCN collisions with the surfaces; this is achieved by plunging an additional surface into the trap without breaking the vacuum. The trap walls are coated with a hydrogen-less fluorine-containing polymer to reduce losses of UCN. The stability of this coating over multiple thermal cycles between 80 and 300 K was tested. At 80 K, the probability of UCN loss due to collisions with the trap walls is just 1.5% of the probability of β decay. The free neutron lifetime is determined by extrapolation to an infinitely large trap with zero collision frequency. The result of these measurements is τn=881.5 ±0 .7stat ±0 .6syst s which is consistent with the conventional value of 880.2 ± 1.0 s presented by the Particle Data Group. Future prospects for this experiment are in further cooling to 10 K, which will lead to an improved accuracy of measurement. In conclusion we present an analysis of currently available data on various measurements of the neutron lifetime.

  16. Search for C P Violation and Measurement of the Branching Fraction in the Decay D 0K S 0 K S 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, N.; Bahinipati, S.; Bhardwaj, V.

    We repormore » t a study of the decay D 0K S 0 K S 0 using 921 fb -1 of data collected at or near the Υ(4 S) and Υ(5 S) resonances with the Belle detector at the KEKB asymmetric energy e+e- collider. The measured time-integrated CP asymmetry is A CP( D 0K S 0 K S 0 ) = (-0.02 ± 1.53 ± 0.02 ± 0.17)%, and the branching fraction is B( D 0K S 0 K S 0 ) = (1.321 ± 0.023 ± 0.036 ± 0.044) × 10 -4, where the first uncertainty is statistical, the second is systematic, and the third is due to the normalization mode ( D 0K S 0 π 0). These results are significantly more precise than previous measurements available for this mode. The A CP measurement is consistent with the standard model expectation.« less

  17. Measurement of proton momentum distributions using a direct geometry instrument

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Kolesnikov, A. I.; Andreani, C.

    2014-12-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy Ei= 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO.

  18. Instrument pre-development activities for FLEX

    NASA Astrophysics Data System (ADS)

    Pettinato, L.; Fossati, E.; Coppo, P. M.; Taiti, A.; Labate, D.; Capanni, A.; Taccola, M.; Bézy, J. L.; Francois, M.; Meynart, R.; Erdmann, L.; Triebel, P.

    2017-09-01

    The FLuorescence Imaging Spectrometer (FLORIS) is the payload of the FLuorescence Explorer Mission (FLEX) of the European Space Agency. The mission objective is to perform quantitative measurements of the solar induced vegetation fluorescence to monitor photosynthetic activity. FLORIS works in a push-broom configuration and it is designed to acquire data in the 500-780 nm spectral range, with a sampling of 0.1 nm in the oxygen bands (759-769 nm and 686- 697 nm) and 0.5-2.0 nm in the red edge, chlorophyll absorption and Photochemical Reflectance Index bands. FLEX will fly in formation with Sentinel-3 to benefit of the measurements made by the Sentinel-3 instruments OLCI and SLSTR, particularly for cloud screening, proper characterization of the atmospheric state and determination of the surface temperature. The instrument concept is based on a common telescope and two modified Offner spectrometers with reflective concave gratings both for the High Resolution (HR) and Low Resolution (LR) spectrometers. In the frame of the instrument pre-development Leonardo Company (I) has built and tested an elegant breadboard of the instrument consisting of the telescope and the HR spectrometer. The development of the LR spectrometer is in charge of OHB System AG (D) and is currently in the manufacturing phase. The main objectives of the activity are: anticipate the development of the instrument and provide early risk retirement of critical components, evaluate the system performances such as imaging quality parameters, straylight, ghost, polarization sensitivity and environmental influences, verify the adequacy of critical tests such as spectral characterization and straylight, define and optimize instrument alignment procedures. Following a brief overview of the FLEX mission, the paper will cover the design and the development of the optics breadboard with emphasis on the results obtained during the tests and the lessons learned for the flight unit.

  19. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been

  20. Observation of K*(892){sup 0}K*(892){sup 0} in {chi}{sub cJ} decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Bai, J.Z.; Bian, J.G.

    2004-11-01

    K*(892){sup 0}K*(892){sup 0} signals from {chi}{sub cJ}(J=0,1,2) decays are observed for the first time using a data sample of 14 million {psi}(2S) events accumulated in the BES II detector. The branching fractions B[{chi}{sub cJ}{yields}K*(892){sup 0}K*(892){sup 0}] (J=0,1,2) are determined to be (1.78{+-}0.34{+-}0.34)x10{sup -3} (1.67{+-}0.32{+-}0.31)x10{sup -3}, and (4.86{+-}0.56{+-}0.88)x10{sup -3} for the {chi}{sub c0}, {chi}{sub c1}, and {chi}{sub c2} decays, respectively, where the first errors are statistical and the second are systematic. The significances of these signals are about 4.7{sigma}, 4.5{sigma}, and 7.6{sigma}, respectively.

  1. Ground-based measurements with the ADRON active gamma-ray and neutron spectrometer designed for lunar and Martian landing missions

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Golovin, D. V.; Kolesnikov, A. B.; Vostrukhin, A. A.; Djachkova, M. V.; Kozyrev, A. S.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.

    2017-05-01

    This paper outlines the main research objectives and gives a description of the ADRON active gamma-ray and neutron spectrometer, which is designed specifically for the Russian lunar landing missions Luna-Glob and Luna-Resurs and for the ExoMars Martian landing platform. The measurement technique is described. The first ground-based calibration results are presented, making it possible to assess the sensitivity of the ADRON instruments in determining the average water content of the underlying surface in the range from 1% (dry ground) to 100% (water ice) to a depth of 0.5 m.

  2. A Neutron Multiplicity Meter for Deep Underground Muon-Induced High Energy Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Hennings-Yeomans, Raul; Akerib, Daniel

    2007-04-01

    The nature of dark matter is one of the most important outstanding issues in particle physics, cosmology and astrophysics. A leading hypothesis is that Weakly Interacting Massive Particles, or WIMPs, were produced in the early universe and make up the dark matter. WIMP searches must be performed underground to shield from cosmic rays, which produce secondary particles that could fake a WIMP signal. Nuclear recoils from fast neutrons in underground laboratories are one of the most challenging backgrounds to WIMP detection. We present, for the first time, the design of an instrument capable of measuring the high energy (>60,eV) muon-induced neutron flux deep underground. The instrument is based on applying the Gd-loaded liquid-scintillator technique to measure the rate of multiple low energy neutron events produced in a Pb target and from this measurement to infer the rate of high energy neutron events. This unique signature allows both for efficient tagging of neutron multiplicity events as well as rejection of random gamma backgrounds so effectively that typical low-background techniques are not required. We will also discuss the benefits of using a neutron multiplicity meter as a component of active shielding.

  3. Neutron diffraction and thermoelectric properties of indium filled In x Co 4 Sb 12 ( x=0.05, 0.2) and indium cerium filled Ce 0.05 In 0.1 Co 4 Sb 12 skutterudites: Neutron diffraction and thermoelectric properties of In/Ce skutterudites

    DOE PAGES

    Sesselmann, Andreas; Klobes, Benedikt; Dasgupta, Titas; ...

    2015-09-25

    The thermoelectric properties on polycrystalline single (In) and double filled (Ce, In) skutterudites are characterized between 300 and 700 K. Powder neutron diffraction measurements of the skutterudite compositions In xCo 4Sb 12 (x= 0.05, 0.2) and Ce 0.05In 0.1Co 4Sb 12 as a function of temperature (12- 300 K) were carried out, which gives more insight into the structural data of single and double-filled skutterudites. Our results show that due to the annealing treatment, a Sb deficiency is detectable and thus verifies defects at the Sb lattice site of the skutterudite. Furthermore, we show by electron microprobe analysis that amore » considerable amount of indium is lost during synthesis and post-processing for the single indium filled samples, but not for the double cerium and indium skutterudite sample. The double-filled skutterudite is superior to the single-filled skutterudite composition due to a higher charge carrier density, a comparable lattice thermal resistivity, and a higher density of states effective mass in our experiment. Finally, we obtained a significantly higher Einstein temperature for the double-filled skutterudite composition in comparison to the single-filled species, which reflects the high sensitivity due to filling of the void lattice position within the skutterudite crystal.« less

  4. FTIR spectra of the solid solutions (Na0.88K0.12)VO3, (Na0.5K0.5)VO3, and Na(V0.66P0.34)O3

    NASA Astrophysics Data System (ADS)

    de Waal, D.; Heyns, A. M.

    1992-03-01

    It is known that three different solid solutions, (Na0.88K0.12)VO3, (Na0.5K0.5)VO3 and Na(V0.66P0.34)O3, form in the (Na,K)(V,P)O3 system. These compounds all have monoclinic crystal structures similar to the pure alkali metal metavanadates containing small cations, e.g. Li+ and Na+ (Space group C2/c). Metavanadates with large cations like K+, Rb+, C+s and NH+4 form orthorhombic crystals, space group Pbcm. All those are structurally related to the silicate pyroxenes. Na(V0.66P0.34)O3 and (Na0.88K0.12)VO3 have the same modified diopside structure as (alpha) - NaVO3 while (Na0.5K0.5)VO3 adopts the true diopside structure. The infrared spectra of the three solid solutions are reported here in comparison with those of (alpha) -NaVO3 and KVO3. The results are also correlated with those obtained in two independent high pressure Raman studies of NH4VO3 and RbVO3 as the introduction of a larger cation like K+ should increase the pressure in the structure.

  5. EASY-An Instrument for Surveillance of Physical Activity in Youth.

    PubMed

    Pate, Russell R; McIver, Kerry; Dowda, Marsha; Schenkelberg, Michaela A; Beets, Michael; DiStefano, Christine

    2018-01-23

    Physical activity (PA) promotion among youth is a public health priority and there is a need for robust surveillance systems to help support such initiatives. Existing youth PA self-report instruments that are used for surveillance lack information regarding the types and contexts of activity. Further, these instruments have limited validity with accelerometry. The purpose of the present study was to develop a self-report instrument, with sound psychometric properties, for monitoring compliance with PA guidelines in youth. In focus groups, 162 middle school students identified 30 forms of PA that are highly prevalent in that age group. We incorporated these activities into three preliminary forms of a self-report instrument. An independent sample of middle school students (n = 537) was randomly assigned to complete one of the three preliminary versions of the instrument. Rasch analysis was applied to the responses to the three formats, and a yes/no plus frequency format emerged as the preferred method. A third sample of 342 middle school students then completed the yes/no plus frequency instrument twice following a seven-day period during which they wore an accelerometer. Using both Rasch analysis and traditional correlational methods, validity and reliability of a 14-item instrument were established. Data were collected during 2012 - 2015. Spearman correlation coefficient for the association between the cumulative score for the 14 items and minutes per day of accelerometry-derived moderate-to-vigorous physical activity (MVPA) was 0.33 (95% CI 0.22, 0.43; p<.001). Sensitivity and specificity of the 14-item instrument was 0.90 and 0.44, respectively. The study produced a PA self-report instrument for youth that was found to be reliable (r=0.91), valid versus accelerometry (r=0.33), and acceptably specific and sensitive in detecting compliance with PA guidelines.This is an open-access article distributed under the terms of the Creative Commons Attribution

  6. Neutron-capture cross-section measurements of Xe136 between 0.4 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, W.

    2014-03-01

    Fast-neutron-capture cross-section data on Xe136 have been measured with the activation method between 0.4 and 14.8 MeV. The cross section was found to be of the order of 1 mb at the eleven energies investigated. This result is important to interpret potential neutron-induced backgrounds in the enriched xenon observatory and KamLAND-Zen neutrinoless double-β decay searches that use xenon as both source and detector. A high-pressure sphere filled with Xe136 was irradiated with monoenergetic neutrons produced by the reactions 3H(p ,n)3He, 2H(d ,n)3He, and 3H(d ,n)4He. Indium and gold monitor foils were irradiated simultaneously with the Xe136 to determine the incident neutron flux. The activities of the reaction products were measured with high-resolution γ-ray spectroscopy. The present results are compared to predictions from ENDF/B-VII.1 and TENDL-2012.

  7. Ground tests of the Dynamic Albedo of Neutron instrument operation in the passive mode with a Martian soil model

    NASA Astrophysics Data System (ADS)

    Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.

    2017-07-01

    The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).

  8. Neutron resonance spin echo with longitudinal DC fields

    NASA Astrophysics Data System (ADS)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  9. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGES

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; ...

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  10. Measurements of time-dependent CP violation in B0→ωKS0, f0(980)KS0, KS0π0 and K+K-KS0 decays

    NASA Astrophysics Data System (ADS)

    Chao, Y.; Chen, K.-F.; Miyake, H.; Tajima, O.; Trabelsi, K.; Abe, K.; Abe, K.; Adachi, I.; Aihara, H.; Anipko, D.; Bakich, A. M.; Barberio, E.; Bitenc, U.; Bizjak, I.; Blyth, S.; Bondar, A.; Bračko, M.; Browder, T. E.; Chang, M.-C.; Chang, P.; Chen, A.; Chen, W. T.; Cheon, B. G.; Chistov, R.; Choi, Y.; Choi, Y. K.; Cole, S.; Dalseno, J.; Danilov, M.; Dash, M.; Dragic, J.; Drutskoy, A.; Eidelman, S.; Fratina, S.; Gabyshev, N.; Golob, B.; Ha, H.; Haba, J.; Hara, K.; Hara, T.; Hastings, N. C.; Hayashii, H.; Hazumi, M.; Heffernan, D.; Higuchi, T.; Hokuue, T.; Hoshi, Y.; Hou, W.-S.; Hsiung, Y. B.; Iijima, T.; Ikado, K.; Inami, K.; Ishikawa, A.; Ishino, H.; Itoh, R.; Iwasaki, M.; Iwasaki, Y.; Kaji, H.; Kang, J. H.; Kapusta, P.; Kawai, H.; Kawasaki, T.; Kim, H. J.; Kim, H. O.; Kim, Y. J.; Kinoshita, K.; Korpar, S.; Križan, P.; Krokovny, P.; Kulasiri, R.; Kumar, R.; Kuo, C. C.; Kuzmin, A.; Kwon, Y.-J.; Lee, M. J.; Lesiak, T.; Limosani, A.; Lin, S.-W.; Liventsev, D.; Matsumoto, T.; McOnie, S.; Miyabayashi, K.; Miyata, H.; Miyazaki, Y.; Mizuk, R.; Mohapatra, D.; Moloney, G. R.; Nakahama, Y.; Nakano, E.; Nakao, M.; Natkaniec, Z.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Olsen, S. L.; Onuki, Y.; Ozaki, H.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Pestotnik, R.; Piilonen, L. E.; Sakai, Y.; Satoyama, N.; Schietinger, T.; Schneider, O.; Schwartz, A. J.; Seidl, R.; Senyo, K.; Sevior, M. E.; Shapkin, M.; Shibuya, H.; Singh, J. B.; Somov, A.; Soni, N.; Stanič, S.; Starič, M.; Stoeck, H.; Sumisawa, K.; Sumiyoshi, T.; Suzuki, S.; Takasaki, F.; Tamai, K.; Tanaka, M.; Taylor, G. N.; Teramoto, Y.; Tian, X. C.; Tikhomirov, I.; Tsukamoto, T.; Uehara, S.; Ueno, K.; Unno, Y.; Uno, S.; Ushiroda, Y.; Usov, Y.; Varner, G.; Varvell, K. E.; Villa, S.; Vinokurova, A.; Wang, C. H.; Watanabe, Y.; Won, E.; Yabsley, B. D.; Yamaguchi, A.; Yamashita, Y.; Yamauchi, M.; Yusa, Y.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2007-11-01

    We present measurements of time-dependent CP asymmetries in B0→ωKS0, f0(980)KS0, KS0π0 and K+K-KS0 decays based on a sample of 535×106 BB¯ pairs collected at the Υ(4S) resonance with the Belle detector at the KEKB energy-asymmetric e+e- collider. One neutral B meson is fully reconstructed in one of the specified decay channels, and the flavor of the accompanying B meson is identified from its decay products. CP-violation parameters for each of the decay modes are obtained from the asymmetries in the distributions of the proper-time intervals between the two B decays.

  11. The design of a multisource americium-beryllium (Am-Be) neutron irradiation facility using MCNP for the neutronic performance calculation.

    PubMed

    Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S

    2014-08-01

    The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The investigation of fast neutron Threshold Activation Detectors (TAD)

    NASA Astrophysics Data System (ADS)

    Gozani, T.; King, M. J.; Stevenson, J.

    2012-02-01

    The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ``flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major

  13. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    DOE PAGES

    Croft, Stephen; Burr, Thomas Lee; Favalli, Andrea; ...

    2015-12-10

    We report that the declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to modelmore » the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. Lastly, we find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters« less

  14. Measurement of CP Asymmetries and Branching Fractions in B0 -> pi+ pi-, B0 -> K+ pi-, B0 -> pi0 pi0, B0 -> K0 pi0 and Isospin Analysis of B -> pi pi Decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, Bernard; Bona, M.; Karyotakis, Y.

    2008-08-01

    The authors present preliminary results of improved measurements of the CP-violating asymmetries and branching fractions in the decays B{sup 0} {yields} {pi}{sup +}{pi}{sup -}, B{sup 0} {yields} K{sup +}{pi}{sup -}, B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}, and B{sup 0} {yields} K{sup 0}{pi}{sup 0}. This update includes all data taken at the {Upsilon}(4S) resonance by the BABAR experiment at the asymmetric PEP-II B-meson factory at SLAC, corresponding to 467 {+-} 5 million B{bar B} pairs. They find S{sub {pi}{pi}} = -0.68 {+-} 0.10 {+-} 0.03, C{sub {pi}{pi}} = -0.25 {+-} 0.08 {+-} 0.02, {Alpha}{sub K{sub {pi}}} = -0.107 {+-} 0.016{sub -0.004},{supmore » +0.006}, C{sub {pi}{sup 0}{pi}{sup 0}} = -0.43 {+-} 0.26 {+-} 0.05, {Beta}(B{sup 0} {yields} {pi}{sup 0}{pi}{sup 0}) = (1.83 {+-} 0.21 {+-} 0.13) x 10{sup -6}, {Beta}(B{sup 0} {yields} K{sup 0}{pi}{sup 0}) = (10.1 {+-} 0.6 {+-} 0.4) x 10{sup -6}, where the first error is statistical and the second is systematic. They observe CP violation with a significance of 6.7{sigma} in B{sup 0} {yields} {pi}{sup -} and 6.1{sigma} in B{sup 0} {yields} K{sup +}{pi}{sup -}. Constraints on the Unitarity Triangle angle {alpha} are determined from the isospin relation between all B {yields} {pi}{pi} rates and asymmetries.« less

  15. Neutron scattering studies of K3H(SO4)2 and K3D(SO4)2: the particle-in-a-box model for the quantum phase transition.

    PubMed

    Fillaux, François; Cousson, Alain

    2012-08-21

    In the crystal of K(3)H(SO(4))(2) or K(3)D(SO(4))(2), dimers SO(4)···H···SO(4) or SO(4)···D···SO(4) are linked by strong centrosymmetric hydrogen or deuterium bonds whose O···O length is ≈2.50 Å. We address two open questions. (i) Are H or D sites split or not? (ii) Is there any structural counterpart to the phase transition observed for K(3)D(SO(4))(2) at T(c) ≈ 85.5 K, which does not exist for K(3)H(SO(4))(2)? Neutron diffraction by single-crystals at cryogenic or room temperature reveals no structural transition and no resolvable splitting of H or D sites. However, the width of the probability densities suggest unresolved splitting of the wavefunctions suggesting rigid entities H(L1/2)-H(R1/2) or D(L1/2)-D(R1/2) whose separation lengths are l(H) ≈ 0.16 Å or l(D) ≈ 0.25 Å. The vibrational eigenstates for the center of mass of H(L1/2)-H(R1/2) revealed by inelastic neutron scattering are amenable to a square-well and we suppose the same potential holds for D(L1/2)-D(R1/2). In order to explain dielectric and calorimetric measurements of mixed crystals K(3)D((1-ρ))H(ρ)(SO(4))(2) (0 ≤ ρ ≤ 1), we replace the classical notion of order-disorder by the quantum notion of discernible (e.g., D(L1/2)-D(R1/2)) or indiscernible (e.g., H(L1/2)-H(R1/2)) components depending on the separation length of the split wavefunction. The discernible-indiscernible isostructural transition at finite temperatures is induced by a thermal pure quantum state or at 0 K by ρ.

  16. Measurement of the time-integrated CP asymmetry in D 0K {S/0} K {S/0} decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.

    2015-10-01

    The time-integrated CP asymmetry in the decay D 0K S 0 K S 0 is measured using 3 fb-1 of proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The flavour of the D 0 meson is determined by use of the decay D *+ → D 0 π + and its charge conjugate mode. The result is {A}_{CP}=-0.029± 0.052± 0.022, where the first uncertainty is statistical and the second systematic. The result is consistent with Standard Model expectations and improves the uncertainty with respect to the only previous measurement of this quantity by more than a factor of three. [Figure not available: see fulltext.

  17. Evidence of Nematicity in K 0.8Fe 1.7Se 2

    DOE PAGES

    Duan, Chunruo; Yang, Junjie; Ye, Feng; ...

    2015-12-11

    We proposed that the superconducting state of K 0.8Fe 1.7Se 2 is phase separated from a non-superconducting magnetic state. These results from a recent neutron diffraction study on a single crystal of K 0.8Fe 1.7Se 2 provide evidence for a continuous transition between the I 4/m m m high temperature phase in which the Fe vacancies are randomly distributed and the I4/m vacancy ordered phase in the temperature range between T (C) and T (S). Upon cooling, the I 4/m phase becomes more populated, increasing the √5 X√5 X 1 superlattice structure, resulting in an enhancement of the (101) superlatticemore » peak. Moreover, the same temperature dependence is observed for the magnetic peak as well. Moreover, due to the Fe site splitting with the transition, its z-coordinate fluctuates, and so must the d xz and d y z orbitals. Finally, the orbital fluctuations couple to the magnetic ordering as seen here and may lead to a realization of nematic order in this system.« less

  18. Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.

    2013-01-01

    Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm,more » as well as trace levels of copper and tungsten.« less

  19. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.

    2015-09-01

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 (angstrom) -1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 angstrom -1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 angstrom -1 was significantly decreased when the collimatorsmore » were installed.« less

  20. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    DOE PAGES

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.; ...

    2015-09-09

    We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å -1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å -1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å -1 was significantly decreased when themore » collimators were installed.« less

  1. Testing the applicability of the k0-NAA method at the MINT's TRIGA MARK II reactor

    NASA Astrophysics Data System (ADS)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-08-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k0 method has become the preferred standardization method of NAA ( k0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters ( α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k0-NAA method at the MINT.

  2. Final design of the Energy-Resolved Neutron Imaging System “RADEN” at J-PARC

    NASA Astrophysics Data System (ADS)

    Shinohara, T.; Kai, T.; Oikawa, K.; Segawa, M.; Harada, M.; Nakatani, T.; Ooi, M.; Aizawa, K.; Sato, H.; Kamiyama, T.; Yokota, H.; Sera, T.; Mochiki, K.; Kiyanagi, Y.

    2016-09-01

    A new pulsed-neutron instrument, named the Energy-Resolved Neutron Imaging System “RADEN”, has been constructed at the beam line of BL22 in the Materials and Life Science Experimental Facility (MLF) of J-PARC. The primary purpose of this instrument is to perform energy-resolved neutron imaging experiments through the effective utilization of the pulsed nature of the neutron beam, making this the world's first instrument dedicated to pulsed neutron imaging experiments. RADEN was designed to cover a broad energy range: from cold neutrons with energy down to 1.05 meV (or wavelength up to 8.8 Å) with a good wavelength resolution of 0.20% to high-energy neutrons with energy of several tens keV (or wavelength of 10-3 Å). In addition, this instrument is intended to perform state-of-the-art neutron radiography and tomography experiments in Japan. Hence, a maximum beam size of 300 mm square and a high L/D value of up to 7500 are provided.

  3. K S 0 - K L 0 asymmetries and CP violation in charmed baryon decays into neutral kaons

    NASA Astrophysics Data System (ADS)

    Wang, Di; Guo, Peng-Fei; Long, Wen-Hui; Yu, Fu-Sheng

    2018-03-01

    We study the K S 0 - K L 0 asymmetries and CP violations in charm-baryon decays with neutral kaons in the final state. The K S 0 - K L 0 asymmetry can be used to search for two-body doubly Cabibbo-suppressed amplitudes of charm-baryon decays, with the one in Λ c + → pK S, L 0 as a promising observable. Besides, it is studied for a new CP-violation effect in these processes, induced by the interference between the Cabibbo-favored and doubly Cabibbo-suppressed amplitudes with the neutral kaon mixing. Once the new CP-violation effect is determined by experiments, the direct CP asymmetry in neutral kaon modes can then be extracted and used to search for new physics. The numerical results based on SU(3) symmetry will be tested by the experiments in the future.

  4. Neutron spectrometry and dosimetry study at two research nuclear reactors using Bonner sphere spectrometer (BSS), rotational spectrometer (ROSPEC) and cylindrical nested neutron spectrometer (NNS).

    PubMed

    Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J

    2013-01-01

    Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix.

  5. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

    PubMed Central

    Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.

    2010-01-01

    Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147

  7. Polarized neutron reflectivity studies on epitaxial BiFeO3/La0.7Sr0.3MnO3 heterostructure integrated with Si (100)

    NASA Astrophysics Data System (ADS)

    Singamaneni, S. R.; Prater, J. T.; Glavic, A.; Lauter, V.; Narayan, J.

    2018-05-01

    This work reports polarized neutron reflectivity (PNR) measurements performed using the Magnetism Reflectometer at Oak Ridge National Laboratory on epitaxial BiFeO3(BFO)/La0.7Sr0.3MnO3(LSMO)/SrTiO3(STO)/MgO/TiN heterostructure deposited on Si (100) substrates. By measuring the angular dependence of neutrons reflected from the sample, PNR can provide insights on interface magnetic spin structure, chemical composition and magnetic depth profiles with a nanometer resolution. Our first analysis of nuclear scattering length density (NSLD) and magnetic scattering length density (MSLD) depth profiles measured at 4 K have successfully reproduced most of the expected features of this heterostructure, such as the NSLD for the Si, TiN, MgO, STO, LSMO layers and remanent magnetization (2.28μB/Mn) of bulk LSMO. However, the SLD of the BFO is decreased by about 30% from the expected value. When 5 V was applied across the BFO/LSMO interface, we found that the magnetic moment of the LSMO layer could be varied by about 15-20% at 6 K. Several mechanisms such as redistribution of oxygen vacancies, interface strain, charge screening and valence state change at the interface could be at play. Work is in progress to gain an improved in-depth understanding of these effects using MOKE and STEM-Z interface specific measurements.

  8. Observation of the Annihilation Decay Mode B0K+K-

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kosmyntseva, A.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhu, X.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration

    2017-02-01

    A search for the B0K+K- decay is performed using p p -collision data collected by LHCb. The data set corresponds to integrated luminosities of 1.0 and 2.0 fb-1 at center-of-mass energies of 7 and 8 TeV, respectively. This decay is observed for the first time, with a significance of more than 5 standard deviations. The analysis also results in an improved measurement of the branching fraction for the Bs0→π+π- decay. The measured branching fractions are B (B0K+K- )=(7.80 ±1.27 ±0.81 ±0.21 )×10-8 and B (Bs0→π+π- )=(6.91 ±0.54 ±0.63 ±0.19 ±0.40 )×10-7 . The first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the B0K+π- branching fraction used as a normalization. For the Bs0 mode, the fourth accounts for the uncertainty on the ratio of the probabilities for b quarks to hadronize into Bs0 and B0 mesons.

  9. Observation of the Annihilation Decay Mode B^{0}→K^{+}K^{-}.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2017-02-24

    A search for the B^{0}→K^{+}K^{-} decay is performed using pp-collision data collected by LHCb. The data set corresponds to integrated luminosities of 1.0 and 2.0  fb^{-1} at center-of-mass energies of 7 and 8 TeV, respectively. This decay is observed for the first time, with a significance of more than 5 standard deviations. The analysis also results in an improved measurement of the branching fraction for the B_{s}^{0}→π^{+}π^{-} decay. The measured branching fractions are B(B^{0}→K^{+}K^{-})=(7.80±1.27±0.81±0.21)×10^{-8} and B(B_{s}^{0}→π^{+}π^{-})=(6.91±0.54±0.63±0.19±0.40)×10^{-7}. The first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the B^{0}→K^{+}π^{-} branching fraction used as a normalization. For the B_{s}^{0} mode, the fourth accounts for the uncertainty on the ratio of the probabilities for b quarks to hadronize into B_{s}^{0} and B^{0} mesons.

  10. Accurate determination of arsenic in arsenobetaine standard solutions of BCR-626 and NMIJ CRM 7901-a by neutron activation analysis coupled with internal standard method.

    PubMed

    Miura, Tsutomu; Chiba, Koichi; Kuroiwa, Takayoshi; Narukawa, Tomohiro; Hioki, Akiharu; Matsue, Hideaki

    2010-09-15

    Neutron activation analysis (NAA) coupled with an internal standard method was applied for the determination of As in the certified reference material (CRM) of arsenobetaine (AB) standard solutions to verify their certified values. Gold was used as an internal standard to compensate for the difference of the neutron exposure in an irradiation capsule and to improve the sample-to-sample repeatability. Application of the internal standard method significantly improved linearity of the calibration curve up to 1 microg of As, too. The analytical reliability of the proposed method was evaluated by k(0)-standardization NAA. The analytical results of As in AB standard solutions of BCR-626 and NMIJ CRM 7901-a were (499+/-55)mgkg(-1) (k=2) and (10.16+/-0.15)mgkg(-1) (k=2), respectively. These values were found to be 15-20% higher than the certified values. The between-bottle variation of BCR-626 was much larger than the expanded uncertainty of the certified value, although that of NMIJ CRM 7901-a was almost negligible. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  12. Magnetic fluctuations and quasi-static magnetism in optimally doped FeSe0.4Te0.6

    NASA Astrophysics Data System (ADS)

    Thampy, Vivek; Bao, Wei; Savici, A. T.; Qiu, Y.; Hu, Jin; Liu, Tijiang; Mao, Z. Q.; Broholm, Collin

    2010-03-01

    Magnetic Fluctuations in the optimally doped 11-type iron superconductor FeSe0.4Te0.6 were examined using inelastic neutron scattering on the MACS instrument at NIST. In the normal state at T=25K we find strong low energy fluctuations through an extended area of the (hk0) zone that includes and connects the high symmetry (1/2,0,0) and (1/2,1/2,0) points. In the superconducting state intensity at the (1/2,1/2,0) location is depleted for φ = 1.5 meV as spectral weight is transferred to the 6.5 meV resonance. Low energy and quasi-elastic scattering however remains at (1/2,0,0). In the (HHL) zone we observed striped features indicating shorter range correlations along c. While glassy magnetism and superconductivity coexist in our samples, they are associated with distinct parts of momentum space. Work at JHU was supported by DoE through DE-FG02-08ER46544.

  13. Simulation and Analysis of Neutron Activation Risk for the IsoDAR High-Intensity Electron Antineutrino Source

    NASA Astrophysics Data System (ADS)

    Skuhersky, Michael

    2013-04-01

    IsoDAR (Isotope Decay-At-Rest) is a proposed high-intensity source of electron antineutrinos intended for use in searches for beyond standard model physics, the main analysis being a short baseline search for sterile neutrinos at a kiloton scale liquid scintillator detector. The source uses a compact cyclotron to deliver 600kW of protons at 60 MeV/nucleon in the form of H2^+ onto a Beryllium target which produces a large intermediate energy neutron flux. These neutrons thermalize and capture on a 99.9% pure ^7Li sleeve, which produces ^8Li at rest, which subsequently beta decays producing νe. Due to the high neutron fluxes, large duty factor, and low background environment surrounding the neutrino detector, we need to understand the activation risk and design a shield to minimize this risk allowing for the safe operation of the source. I will report on my neutron activation studies and the benchmarking of Geant4 for these applications.

  14. Observation of phiK. pi. decay of the K/sup 0/(2060)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, S.; Ficenec, J.R.; Mikocki, S.

    We have studied inclusive pN..-->..K-/sup +/K/sup -/K/sup +/K/sup -/X final states at 400 GeV/c and present here evidence for K/sup *//sup 0/(2060)..-->..phiK/sup +-/..pi../sup minus-or-plus/ and phiK-italic/sup *//sup 0/(890). .AE

  15. Nuclear instrumentation in VENUS-F

    NASA Astrophysics Data System (ADS)

    Wagemans, J.; Borms, L.; Kochetkov, A.; Krása, A.; Van Grieken, C.; Vittiglio, G.

    2018-01-01

    VENUS-F is a fast zero power reactor with 30 wt% U fuel and Pb/Bi as a coolant simulator. Depending on the experimental configuration, various neutron spectra (fast, epithermal, and thermal islands) are present. This paper gives a review of the nuclear instrumentation that is applied for reactor control and in a large variety of physics experiments. Activation foils and fission chambers are used to measure spatial neutron flux profiles, spectrum indices, reactivity effects (with positive period and compensation method or the MSM method) and kinetic parameters (with the Rossi-alpha method). Fission chamber calibrations are performed in the standard irradiation fields of the BR1 reactor (prompt fission neutron spectrum and Maxwellian thermal neutron spectrum).

  16. Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egner, Joanna C.; Groza, Michael; Burger, Arnold

    This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.

  17. Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument

    DOE PAGES

    Egner, Joanna C.; Groza, Michael; Burger, Arnold; ...

    2016-11-08

    This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.

  18. MEASUREMENTS OF NEUTRON SPECTRA IN 0.8-GEV AND 1.6-GEV PROTON-IRRADIATED<2 OF 2>NA THICK TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarenko, Y. E.; Batyaev, V. F.; Zhivun, V. M.

    2001-01-01

    Measurements of neutron spectra in W, and Na targets irradiated by 0.8 GeV and 1.6 GeV protons are presented. Measurements were made by the TOF techniques using the proton beam from ITEP U-10 synchrotron. Neutrons were detected with BICRON-511 liquid scintillator-based detectors. The neutron detection efficiency was calculated via the SCINFUL and CECIL codes. The W results are compared with the similar data obtained elsewhere. The measured neutron spectra are compared with the LAHET and CEM2k code simulations results. Attempt is made to explain some observed disagreements between experiments and simulations. The presented results are of interest both in termsmore » of nuclear data buildup and as a benchmark of the up-to-date predictive power of the simulation codes used in designing the hybrid accelerator-driven system (ADS) facilities with sodium-cooled tungsten targets.« less

  19. Refinement of the crystal structure of the high-temperature phase G0 in (NH4)2WO2F4 (powder, x-ray, and neutron scattering)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, D. M.; Smirnov, Lev S; Kolesnikov, Alexander I

    2013-01-01

    The (NH4)2WO2F4 compound undergoes a series of phase transitions: G0 -> 201 K -> G1 -> 160 K -> G2, with a significant change in entropy ( S1 ~ Rln10 at the G0 -> G1 transition), which indicates significant orientational disordering in the G0 phase and the order disorder type of the phase transition. X-ray diffraction is used to identify the crystal structure of the G0 phase as rhombohedral (sp. gr. Cmcm, Z = 4), determine the lattice parameters and the positions of all atoms (except hydrogen), and show that [WO2F4]2 ions can form a superposition of dynamic and staticmore » orientational disorders in the anionic sublattice. A determination of the orientational position of [NH4]+ ions calls for the combined method of elastic and inelastic neutron scattering. Inelastic neutron scattering is used to determine the state of hindered rotation for ammonium ions in the G0 phase. Powder neutron diffraction shows that the orientational disorder of NH4 ions can adequately be described within the free rotation approximation.« less

  20. Improved neutron activation prediction code system development

    NASA Technical Reports Server (NTRS)

    Saqui, R. M.

    1971-01-01

    Two integrated neutron activation prediction code systems have been developed by modifying and integrating existing computer programs to perform the necessary computations to determine neutron induced activation gamma ray doses and dose rates in complex geometries. Each of the two systems is comprised of three computational modules. The first program module computes the spatial and energy distribution of the neutron flux from an input source and prepares input data for the second program which performs the reaction rate, decay chain and activation gamma source calculations. A third module then accepts input prepared by the second program to compute the cumulative gamma doses and/or dose rates at specified detector locations in complex, three-dimensional geometries.

  1. New result for the neutron β -asymmetry parameter A0 from UCNA

    NASA Astrophysics Data System (ADS)

    Brown, M. A.-P.; Dees, E. B.; Adamek, E.; Allgeier, B.; Blatnik, M.; Bowles, T. J.; Broussard, L. J.; Carr, R.; Clayton, S.; Cude-Woods, C.; Currie, S.; Ding, X.; Filippone, B. W.; García, A.; Geltenbort, P.; Hasan, S.; Hickerson, K. P.; Hoagland, J.; Hong, R.; Hogan, G. E.; Holley, A. T.; Ito, T. M.; Knecht, A.; Liu, C.-Y.; Liu, J.; Makela, M.; Martin, J. W.; Melconian, D.; Mendenhall, M. P.; Moore, S. D.; Morris, C. L.; Nepal, S.; Nouri, N.; Pattie, R. W.; Pérez Galván, A.; Phillips, D. G.; Picker, R.; Pitt, M. L.; Plaster, B.; Ramsey, J. C.; Rios, R.; Salvat, D. J.; Saunders, A.; Sondheim, W.; Seestrom, S. J.; Sjue, S.; Slutsky, S.; Sun, X.; Swank, C.; Swift, G.; Tatar, E.; Vogelaar, R. B.; VornDick, B.; Wang, Z.; Wexler, J.; Womack, T.; Wrede, C.; Young, A. R.; Zeck, B. A.; UCNA Collaboration

    2018-03-01

    Background: The neutron β -decay asymmetry parameter A0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ ≡gA/gV , which under assumption of the conserved vector current hypothesis (gV=1 ) determines gA. Precise values for gA are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β -decay angular correlation performed with UCN. This article reports the most precise result for A0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A0. Results: The UCNA experiment reports a new 0.67% precision result for A0 of A0=-0.12054 (44) stat(68) syst , which yields λ =gA/gV=-1.2783 (22 ) . Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=-0.12015 (34) stat(63) syst and λ =gA/gV=-1.2772 (20 ) . Conclusions: This new result for A0 and gA/gV from the UCNA

  2. Numerical experiments on neutron yield and soft x-ray study of a ˜100 kJ plasma focus using the current profile fitting technique

    NASA Astrophysics Data System (ADS)

    Ong, S. T.; Chaudhary, K.; Ali, J.; Lee, S.

    2014-07-01

    Numerical experiments using the Lee model were performed to study the neutron yield and soft x-ray emission from the IR-MPF-100 plasma focus using the current fitting technique. The mass sweeping factor and the current factor for the axial and radial phase were used to represent the imperfections encountered in experiments. All gross properties including the yields were realistically simulated once the computed and measured current profiles were well fitted. The computed neutron yield Yn was in agreement with the experimentally measured Yn at 20 kV (E0 ˜ 30 kJ) charging voltage. The optimum computed neutron yield of Yn = 1.238 × 109 neutrons per shot was obtained at optimum physics parameters of the plasma focus operated with deuterium gas. It was also observed that no soft x-rays were emitted from the IR-MPF-100 plasma focus operated with argon gas due to the absence of helium-like and hydrogen-like ions at a low plasma temperature (˜0.094 keV) and axial speed (8.12 cm µs-1). However, the soft x-ray yield can be achieved by increasing the charging voltage, using a higher ratio of outer anode radius to inner anode radius c or shorter anode length z0, or using neon as the operating gas.

  3. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan; Fomin, Nadia; BL3 Collaboration

    2015-10-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.

  4. Neutron-energy-dependent cell survival and oncogenic transformation.

    PubMed

    Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J

    1999-12-01

    Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.

  5. Measurement of Activation Cross Sections Producing Short-Lived Nuclei with Pulsed Neutron Beam

    NASA Astrophysics Data System (ADS)

    Shimizu, Toshiaki; Arakita, Kazumasa; Miyazaki, Itaru; Shibata, Michihiro; Kawade, Kiyoshi; Hori, Jun-ichi; Ochiai, Kentaro; Nishitani, Takeo

    2005-05-01

    Activation cross sections for the (n, n') reaction were measured by means of the activation method at the neutron energies of 3.1 and 2.54 MeV by using a pulsed neutron beam. Target nuclei were 79Br, 90Zr, 197Au, and 207Pb, whose half-lives were between 0.8 and 8 s. The cross section for the 90Zr (n, n') 90mZr reaction was obtained for the first time in this energy range. The d-D neutrons were generated by bombarding a deuterated titanium target with a 350-keV d+ beam at the 80-degree beam line of the Fusion Neutronics Source at the Japan Atomic Energy Research Institute. In order to obtain reliable activation cross sections, careful attention was paid to correct the efficiency for a volume source, and the self-absorption of gamma rays in an irradiated sample. The systematics of the (n, n') reaction at the neutron energy of 3.1 MeV, which could be predicted within an accuracy of 50%, was proposed on the basis of our data.

  6. Structure and temperature-dependent phase transitions of lead-free Bi 1/2Na 1/2TiO 3-Bi 1/2K 1/2TiO 3-K 0.5Na 0.5NbO 3 piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Eva-Maria; Schmitt, Ljubomira Ana; Hinterstein, Manuel

    2014-05-28

    Structure and phase transitions of (1-y)((1-x)Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3)-yK 0.5Na 0.5NbO 3 (x; y) piezoceramics (0.1 ≤ x ≤ 0.4; 0 ≤ y ≤ 0.05) were investigated by transmission electron microscopy, neutron diffraction, temperature-dependent x-ray diffraction, and Raman spectroscopy. The local crystallographic structure at room temperature (RT) does not change by adding K 0.5Na 0.5NbO 3 to Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3 for x = 0.2 and 0.4. The average crystal structure and microstructure on the other hand develop from mainly long-range polar order with ferroelectric domains to short-range order with polar nanoregions displaying amore » more pronounced relaxor character. The (0.1; 0) and (0.1; 0.02) compositions exhibit monoclinic Cc space group symmetry, which transform into Cc + P4bm at 185 and 130 °C, respectively. This high temperature phase is stable at RT for the morphotropic phase boundary compositions of (0.1; 0.05) and all compositions with x = 0.2. For the compositions of (0.1; 0) and (0.1; 0.02), local structural changes on heating are evidenced by Raman; for all other compositions, changes in the long-range average crystal structure were observed.« less

  7. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  8. A compact in vivo neutron activation analysis system to quantify manganese in human hand bone

    NASA Astrophysics Data System (ADS)

    Liu, Yingzi

    As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.

  9. L alpha, L beta /of H I/, K and H /of MG II/, K and H /of CA II/ observations in a quiescent prominence with the OSO-8 LPSP instrument

    NASA Astrophysics Data System (ADS)

    Vial, J. C.; Martres, M. J.; Salm-Platzer, J.

    1981-04-01

    A sequence of images taken at different positions in the resonance lines of Ca II, Mg II, and H I was obtained over a quiescent prominence with the LPSP instrument on OSO-8. Ca II K (and H) profiles are reconstructed at different locations in the prominence with a (10 × 5) arc sec2 resolution. Significant variations of FWHM and line shifts are found: FWHM range from 0.14 Å to 0.5 Å; blue shifts reach about 14 km s-1. The ratio of K to H absolute intensities shows a large spread around the average value of 1.2. The same ratio for the Mg II lines in the whole prominence is higher (1.7), a fact already noticed at the edge of an active prominence (Vial et al., 1979). The ionization degree, as measured by the Lα/Ca K ratio, shows noticeable variations within the prominence. The La intensity is about 0.3 times the intensity measured in the quiet Sun, and the Lα/Lβ ratio is less than one half the disk value. These results indicate important variations of the thermal conditions inside the prominence.

  10. Flexibility and torsional behaviour of rotary nickel-titanium PathFile, RaCe ISO 10, Scout RaCe and stainless steel K-File hand instruments.

    PubMed

    Nakagawa, R K L; Alves, J L; Buono, V T L; Bahia, M G A

    2014-03-01

    To assess and compare the flexibility and torsional resistance of PathFile, RaCe ISO 10 and Scout RaCe instruments in relation to stainless steel K-File hand instruments. Rotary PathFile (sizes 13, 16 and 19; .02 taper), Race ISO 10 (size 10; 0.02, 0.04 and 0.06 tapers), Scout RaCe (sizes 10, 15 and 20; 0.02 taper) and hand K-File (sizes 10, 15 and 20; 0.02 taper) instruments were evaluated. Alloy chemical composition, phases present and transformation temperatures were determined for the NiTi instruments. For all instruments, diameters at each millimetre from the tip as well as cross-sectional areas at 3 mm from the tip were measured based on ANSI/ADA Specification No. 101 using image analysis software. Resistance to bending and torsional resistance were determined according to specification ISO 3630-1. Vickers microhardness measurements were also taken in all instruments to assess their strength. Data were analysed using analysis of variance (α = 0.05). The alloys used in the manufacture of the three types of NiTi instruments had approximately the same chemical composition, but the PathFile instruments had a higher Af transformation temperature and contained a small amount of B19' martensite. All instruments had diameter values within the standard tolerance. The bending and torsional resistance values were significantly increased relative to the instrument diameter and cross-sectional area. PathFile instruments were the most flexible and the least torque resistant, whilst the stainless steel instruments were the least flexible although they were more torque resistant than the NiTi instruments. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia

    2017-09-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. While of interest as a fundamental particle property, a precise value for the neutron lifetime is also required for consistency tests of the Standard Model as well as to calculate the primordial 4He abundance in Big Bang Nucleosynthesis models. An effort has begun to develop an in-beam measurement of the neutron lifetime with a projected <= 0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.

  12. Measurement of the E Polarization Observable for yd --> pi^-p(p_s), yd-->K^0Lambda(p_s), and yd-->pi^+pi^-d(0) using CLAS g14 data at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Dao

    Photoproduction of mesons from the nucleon has a long and ongoing tradition for exploring nucleon excitations and the baryon-baryon interaction. Polarization observables which play a role in the photoproduction mechanism are, therefore, essential in addition to the differential cross section. The CLAS collaboration at Jefferson Lab, has been active in measuring these observables, but until now only on a proton targets. However, a comprehensive picture of the pseudoscalar meson photoproduction requires neutron data as well. That is, paired measurements of observables in p and n reactions are necessary to disentangle the photoproduction mechanism on the basis of isospin I =more » 0, and I = 1 photo-coupling transition amplitudes. The g14 experiment with 'HDIce,' a longitudinally polarized solid target of molecular hydrogen-deuteride with low background contamination from other nuclear species, provided an unique opportunity to measure several polarization observables|for the first time|on the neutron for different channels. In particular, we present our measurements of the E beam-target polarization observable, which requires circularly polarized beam and a longitudinally polarized target, for p pi^-, K^0Lambda, and K^0Sigma^0 channels in the energy range of 1.5 lte W lte 2.3 GeV. In addition, we also utilized the g14 dataset to investigate the intrinsic spin of a possible dibaryonic ND bound state by measuring the E (beam-target) observable on the d-pi^+/-d channel of the reaction yd --> pi^+pi^-d(0). Finally, this thesis also discusses a highly efficient multivariate analysis method called Boosted Decision Trees, which we employed extensively for this work and which has not been used before in CLAS data analysis.« less

  13. Active Neutron-Based Interrogation System with D-D Neutron Source for Detection of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.

    2015-10-01

    The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.

  14. Polarized single crystal neutron diffraction study of the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x =0.024 )

    NASA Astrophysics Data System (ADS)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2018-02-01

    We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.

  15. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  16. COMPTEL neutron response at 17 MeV

    NASA Technical Reports Server (NTRS)

    Oneill, Terrence J.; Ait-Ouamer, Farid; Morris, Joann; Tumer, O. Tumay; White, R. Stephen; Zych, Allen D.

    1992-01-01

    The Compton imaging telescope (COMPTEL) instrument of the Gamma Ray Observatory was exposed to 17 MeV d,t neutrons prior to launch. These data were analyzed and compared with Monte Carlo calculations using the MCNP(LANL) code. Energy and angular resolutions are compared and absolute efficiencies are calculated at 0 and 30 degrees incident angle. The COMPTEL neutron responses at 17 MeV and higher energies are needed to understand solar flare neutron data.

  17. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    PubMed

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  18. Updated branching fraction measurements of B ( s) 0K S 0 h + h ' - decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez, G.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z.-C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, C.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Gonzalo, D.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M. A.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2017-11-01

    The charmless three-body decays B ( s) 0K S 0 h + h ' - (where h (') = π, K) are analysed using a sample of pp collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3 fb-1. The branching fractions are measured relative to that of the B 0K S 0 π + π - decay, and are determined to be: B({B}^0\\to {K}S^0{K}^{± /π^{∓})}{B({B}^0\\to {K}S^0{K}+{π}-)}=0.123± 0.009(stat)± 0.015(syst), B({B}^0\\to {K}S^0{K}^{+/K-)}{B({B}^0\\to {K}S^0{π}+{π}-)}=0.549± 0.018(stat)± 0.033(syst), B({B}_s^0\\to {K}S^0{π}^{+/π-)}{B({B}^0\\to {K}S^0{π}+{π}-)}=0.191± 0.027(stat)± 0.031(syst)± 0.011({f}_s/{f}_d), B({B}_s^0\\to {K}S^0{K}^{± /π^{∓})}{B({B}^0\\to {K}S^0{π}+{π}-)}=1.70± 0.07(stat)± 0.11(syst)± 0.10({f}_s/{f}_d), B({B}_s^0\\to {K}S^0{K}^{+/K-)}{B({B}^0\\to {K}S^0{π}+{π}-)}\\in [0.008-0.051] at 90% confidence level, where f s / f d represents the ratio of hadronisation fractions of the B s 0 and B 0 mesons. [Figure not available: see fulltext.

  19. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia; Mulholland, Jonathan

    2015-04-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4 He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed. This work is supported by the DOE office of Science, NIST and NSF.

  20. Power Distribution for Cryogenic Instruments at 6-40K The James Webb Space Telescope Case

    NASA Technical Reports Server (NTRS)

    Rumler, Peter; Lundquist, Ray; Alvarez, Jose Lorenzo; Sincell, Jeff; Tuttle, Jim

    2011-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) operates its instruments passively cooled at around 40 Kelvin (K), with a warm Instrument Electronic Compartment (IEC) at 300K attached to it. From the warm electronics all secondary signal and power harnesses have to bridge this 300-40K temperature difference and minimize the power dissipation and parasitic heat leak into the cold region. After an introduction of the ISIM with its instruments, the IEC with the electronics, and the harness architecture with a special radiator, this paper elaborates on the cryogenic wire selection and tests performed to establish current de-rating rules for different wire types. Finally failure modes are analyzed for critical instrument interfaces that could inject excessive currents and heat into the harness and cold side, and several solutions for the removal of such failures are presented.

  1. Power Distribution For Cryogenic Instruments At 6-40K The James Webb Space Telescope Case

    NASA Astrophysics Data System (ADS)

    Rumler, Peter; Lundquist, Ray; Alvarez, Jose Lorenzo; Sincell, Jeff; Tuttle, Jim

    2011-10-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) operates its instruments passively cooled at around 40 Kelvin (K), with a warm Instrument Electronic Compartment (IEC) at 300K attached to it. From the warm electronics all secondary signal and power harnesses have to bridge this 300-40K temperature difference and minimize the power dissipation and parasitic heat leak into the cold region. After an introduction of the ISIM with its instruments, the IEC with the electronics, and the harness architecture with a special radiator, this paper elaborates on the cryogenic wire selection and tests performed to establish current de-rating rules for different wire types. Finally failure modes are analyzed for critical instrument interfaces that could inject excessive currents and heat into the harness and cold side, and several solutions for the removal of such failures are presented.

  2. New experimental research stand SVICKA neutron field analysis using neutron activation detector technique

    NASA Astrophysics Data System (ADS)

    Varmuza, Jan; Katovsky, Karel; Zeman, Miroslav; Stastny, Ondrej; Haysak, Ivan; Holomb, Robert

    2018-04-01

    Knowledge of neutron energy spectra is very important because neutrons with various energies have a different material impact or a biological tissue impact. This paper presents basic results of the neutron flux distribution inside the new experimental research stand SVICKA which is located at Brno University of Technology in Brno, Czech Republic. The experiment also focused on the investigation of the sandwich biological shielding quality that protects staff against radiation effects. The set of indium activation detectors was used to the investigation of neutron flux distribution. The results of the measurement provide basic information about the neutron flux distribution inside all irradiation channels and no damage or cracks are present in the experimental research stand biological shielding.

  3. Technical basis for the use of a correlated neutron source in the uranium neutron coincidence collar

    DOE PAGES

    Root, Margaret A.; Menlove, Howard Olsen; Lanza, Richard C.; ...

    2017-01-16

    Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of 235U (g 235U/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium ( 241AmLi) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source.more » Finally, this work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with 252Cf sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL.« less

  4. Technical basis for the use of a correlated neutron source in the uranium neutron coincidence collar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, Margaret A.; Menlove, Howard Olsen; Lanza, Richard C.

    Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of 235U (g 235U/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium ( 241AmLi) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source.more » Finally, this work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with 252Cf sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL.« less

  5. Determination of rare earth elements concentration at different depth profile of Precambrian pegmatites using instrumental neutron activation analysis.

    PubMed

    Sadiq Aliyu, Abubakar; Musa, Yahaya; Liman, M S; Abba, Habu T; Chaanda, Mohammed S; Ngene, Nnamani C; Garba, N N

    2018-01-01

    The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Observation of the rare decay B{sup +}{yields}K{sup +}{pi}{sup 0}{pi}{sup 0} and measurement of the quasi-two-body contributions B{sup +}{yields}K*(892){sup +}{pi}{sup 0}, B{sup +}{yields}f{sub 0}(980)K{sup +}, and B{sup +}{yields}{chi}{sub c0}K{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    We report an analysis of charmless hadronic decays of charged B mesons to the final state K{sup +}{pi}{sup 0}{pi}{sup 0}, using a data sample of (470.9{+-}2.8)x10{sup 6} BB events collected with the BABAR detector at the {Upsilon}(4S) resonance. We observe an excess of signal events, with a significance above 10 standard deviations including systematic uncertainties, and measure the branching fraction and CP asymmetry to be B(B{sup +}{yields}K{sup +}{pi}{sup 0}{pi}{sup 0})=(16.2{+-}1.2{+-}1.5)x10{sup -6} and A{sub CP}(B{sup +}{yields}K{sup +}{pi}{sup 0}{pi}{sup 0})=-0.06{+-}0.06{+-}0.04, where the uncertainties are statistical and systematic, respectively. Additionally, we study the contributions of the B{sup +}{yields}K{sup *}(892){sup +}{pi}{sup 0}, B{sup +}{yields}f{submore » 0}(980)K{sup +}, and B{sup +}{yields}{chi}{sub c0}K{sup +} quasi-two-body decays. We report the world's best measurements of the branching fraction and CP asymmetry of the B{sup +}{yields}K{sup +}{pi}{sup 0}{pi}{sup 0} and B{sup +}{yields}K{sup *}(892){sup +}{pi}{sup 0} channels.« less

  7. Multi-source irradiation facility with improved space configuration for neutron activation analysis: Design optimization.

    PubMed

    Kotb, N A; Solieman, Ahmed H M; El-Zakla, T; Amer, T Z; Elmeniawi, S; Comsan, M N H

    2018-05-01

    A neutron irradiation facility consisting of six 241 Am-Be neutron sources of 30 Ci total activity and 6.6 × 10 7 n/s total neutron yield is designed. The sources are embedded in a cubic paraffin wax, which plays a dual role as both moderator and reflector. The sample passage and irradiation channel are represented by a cylindrical path of 5 cm diameter passing through the facility core. The proposed design yields a high degree of space symmetry and thermal neutron homogeneity within 98% of flux distribution throughout the irradiated spherical sample of 5 cm diameter. The obtained thermal neutron flux is 8.0 × 10 4 n/cm 2 .s over the sample volume, with thermal-to-fast and thermal-to-epithermal ratios of 1.20 and 3.35, respectively. The design is optimized for maximizing the thermal neutron flux at sample position using the MCNP-5 code. The irradiation facility is supposed to be employed principally for neutron activation analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Application of thin-film breakdown counters for characterization of neutron field of the VESUVIO instrument at the ISIS spallation source

    NASA Astrophysics Data System (ADS)

    Smirnov, A. N.; Pietropaolo, A.; Prokofiev, A. V.; Rodionova, E. E.; Frost, C. D.; Ansell, S.; Schooneveld, E. M.; Gorini, G.

    2012-09-01

    The high-energy neutron field of the VESUVIO instrument at the ISIS facility has been characterized using the technique of thin-film breakdown counters (TFBC). The technique utilizes neutron-induced fission reactions of natU and 209Bi with detection of fission fragments by TFBCs. Experimentally determined count rates of the fragments are ≈50% higher than those calculated using spectral neutron flux simulated with the MCNPX code. This work is a part of the project to develop ChipIr, a new dedicated facility for the accelerated testing of electronic components and systems for neutron-induced single event effects in the new Target Station 2 at ISIS. The TFBC technique has shown to be applicable for on-line monitoring of the neutron flux in the neutron energy range 1-800 MeV at the position of the device under test (DUT).

  9. SHARK-NIR: from K-band to a key instrument, a status update

    NASA Astrophysics Data System (ADS)

    Farinato, Jacopo; Bacciotti, Francesca; Baffa, Carlo; Baruffolo, Andrea; Bergomi, Maria; Bongiorno, Angela; Carbonaro, Luca; Carolo, Elena; Carlotti, Alexis; Centrone, Mauro; Close, Laird; De Pascale, Marco; Dima, Marco; D'Orazi, Valentina; Esposito, Simone; Fantinel, Daniela; Farisato, Giancarlo; Gaessler, Wolfgang; Giallongo, Emanuele; Greggio, Davide; Guyon, Olivier; Hinz, Philip; Lisi, Franco; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Montoya, Manny; Pedichini, Fernando; Pinna, Enrico; Puglisi, Alfio; Ragazzoni, Roberto; Salasnich, Bernardo; Stangalini, Marco; Vassallo, Daniele; Verinaud, Christophe; Viotto, Valentina

    2016-07-01

    SHARK-NIR channel is one of the two coronagraphic instruments proposed for the Large Binocular Telescope, in the framework of the call for second generation instruments, issued in 2014. Together with the SHARK-VIS channel, it will offer a few observing modes (direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy) covering a wide wavelength domain, going from 0.5μm to 1.7μm. Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT. The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied. Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral

  10. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    Here, we study the processes e +e - → γ ISR J/ψ , where J/ψ → π +π -π 0, J/ψ → K +K0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ (nS) (n = 2 , 3 , 4) resonances. We measure the ratio of branching fractions R 1 = $$B(J/ψ →K^+K^- π^0)\\atop{B(J/ψ →π^+π^- π^0)}$$ and R 2= $$B(J/ψ →K^0_SK^±π^∓)\\atop{B(J/ψ →π^+π^- π^0)}$$. We perform Dalitz plot analyses of the three J/ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J/ψ → $π^+π^- π^0$ decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450) in all three J/ψ decay modes and measure the relative branching fraction: R (p(1450)) = $$Bp(1450)→K^+K^-)\\atop{B(p(1450)→π^+π^-)}$$ +0.307 ± 0.084 (stat) ± 0.082 (sys).« less

  11. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-04-10

    Here, we study the processes e +e - → γ ISR J/ψ , where J/ψ → π +π -π 0, J/ψ → K +K0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb -1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e +e - collider at center-of-mass energies at and near the Υ (nS) (n = 2 , 3 , 4) resonances. We measure the ratio of branching fractions R 1 = $$B(J/ψ →K^+K^- π^0)\\atop{B(J/ψ →π^+π^- π^0)}$$ and R 2= $$B(J/ψ →K^0_SK^±π^∓)\\atop{B(J/ψ →π^+π^- π^0)}$$. We perform Dalitz plot analyses of the three J/ψ decay modes and measure fractions for resonances contributing to the decays. We also analyze the J/ψ → $π^+π^- π^0$ decay using the Veneziano model. We observe structures compatible with the presence of ρ (1450) in all three J/ψ decay modes and measure the relative branching fraction: R (p(1450)) = $$Bp(1450)→K^+K^-)\\atop{B(p(1450)→π^+π^-)}$$ +0.307 ± 0.084 (stat) ± 0.082 (sys).« less

  12. First-light instrument for the 3.6-m Devasthal Optical Telescope: 4Kx4K CCD Imager

    NASA Astrophysics Data System (ADS)

    Pandey, Shashi Bhushan; Yadav, Rama Kant Singh; Nanjappa, Nandish; Yadav, Shobhit; Reddy, Bheemireddy Krishna; Sahu, Sanjit; Srinivasan, Ramaiyengar

    2018-04-01

    As a part of in-house instrument developmental activity at ARIES, the 4Kx4K CCD Imager is designed and developed as a first-light instrument for the axial port of the 3.6-m Devasthal Optical Telescope (DOT). The f/9 beam of the telescope having a plate-scale of 6.4"/mm is utilized to conduct deeper photom-etry within the central 10' field of view. The pixel size of the blue-enhanced liquid nitrogen cooled STA4150 4Kx4K CCD chip is 15 μm, with options to select gain and speed values to utilize the dynamic range. Using the Imager, it is planned to image the central 6.5'x6.5' field of view of the telescope for various science goals by getting deeper images in several broad-band filters for point sources and objects with low surface brightness. The fully assembled Imager along with automated filter wheels having Bessel UBV RI and SDSS ugriz filters was tested in late 2015 at the axial port of the 3.6-m DOT. This instrument was finally mounted at the axial port of the 3.6-m DOT on 30 March 2016 when the telescope was technically activated jointly by the Prime Ministers of India and Belgium. It is expected to serve as a general purpose multi-band deep imaging instrument for a variety of science goals including studies of cosmic transients, active galaxies, star clusters and optical monitoring of X-ray sources discovered by the newly launched Indian space-mission called ASTROSAT, and follow-up of radio bright objects discovered by the Giant Meterwave Radio Telescope.

  13. The Wide Angle Neutron Diffractometer (WAND) at HFIR: possibilities and future

    NASA Astrophysics Data System (ADS)

    Frontzek, Matthias; Andrews, Katie M.; Chakoumakos, Bryan C.

    The Wide Angle Neutron Diffractometer (WAND) at the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) has been built and continues to be, a joint project between ORNL and the Japan Atomic Energy Agency. Equipped with a 1-dimensional position sensitive detector (PSD), the instrument is a multi-purpose instrument for both powder and single crystal diffraction. WAND is currently in the process of a 2-phase upgrade to become a world class, general purpose instrument. In phase 1, finished in the beginning of 2016, the whole instrument was practically re-built from scratch, keeping only the front end and the 1-D PSD. Phase 2 will replace the 1-D PSD with the state of the art BNL120 2D-PSD which comes from the Lujan Neutron Scattering Center. We are currently integrating the detector off-line into the data acquisition architecture at HFIR. The new instrument, WAND2, will be available for general users in the proposal call 2018A. In our contribution we present results from experiments on WAND after phase 1. The upgrade now allows mounting the whole suite of available sample environment (50 mK to 1500 K, magnetic fields (5 T), high pressures (4 GPa)). We will further discuss the scientific impact the new capabilities of WAND2 will have.

  14. Neutron-Activated Gamma-Emission: Technology Review

    DTIC Science & Technology

    2012-01-01

    valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January 2012 2. REPORT TYPE Progress 3... DATES COVERED (From - To) January to March 2010 4. TITLE AND SUBTITLE Neutron-Activated Gamma-Emission: Technology Review 5a. CONTRACT NUMBER...Backscatter Analysis Techniques........................................................................13 3. Sources of Neutrons 15 3.1 Radioisotope

  15. The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease

    PubMed Central

    Gimeno-Santos, Elena; Raste, Yogini; Demeyer, Heleen; Louvaris, Zafeiris; de Jong, Corina; Rabinovich, Roberto A.; Hopkinson, Nicholas S.; Polkey, Michael I.; Vogiatzis, Ioannis; Tabberer, Maggie; Dobbels, Fabienne; Ivanoff, Nathalie; de Boer, Willem I.; van der Molen, Thys; Kulich, Karoly; Serra, Ignasi; Basagaña, Xavier; Troosters, Thierry; Puhan, Milo A.; Karlsson, Niklas

    2015-01-01

    No current patient-centred instrument captures all dimensions of physical activity in chronic obstructive pulmonary disease (COPD). Our objective was item reduction and initial validation of two instruments to measure physical activity in COPD. Physical activity was assessed in a 6-week, randomised, two-way cross-over, multicentre study using PROactive draft questionnaires (daily and clinical visit versions) and two activity monitors. Item reduction followed an iterative process including classical and Rasch model analyses, and input from patients and clinical experts. 236 COPD patients from five European centres were included. Results indicated the concept of physical activity in COPD had two domains, labelled “amount” and “difficulty”. After item reduction, the daily PROactive instrument comprised nine items and the clinical visit contained 14. Both demonstrated good model fit (person separation index >0.7). Confirmatory factor analysis supported the bidimensional structure. Both instruments had good internal consistency (Cronbach's α>0.8), test–retest reliability (intraclass correlation coefficient ≥0.9) and exhibited moderate-to-high correlations (r>0.6) with related constructs and very low correlations (r<0.3) with unrelated constructs, providing evidence for construct validity. Daily and clinical visit “PROactive physical activity in COPD” instruments are hybrid tools combining a short patient-reported outcome questionnaire and two activity monitor variables which provide simple, valid and reliable measures of physical activity in COPD patients. PMID:26022965

  16. The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease.

    PubMed

    Gimeno-Santos, Elena; Raste, Yogini; Demeyer, Heleen; Louvaris, Zafeiris; de Jong, Corina; Rabinovich, Roberto A; Hopkinson, Nicholas S; Polkey, Michael I; Vogiatzis, Ioannis; Tabberer, Maggie; Dobbels, Fabienne; Ivanoff, Nathalie; de Boer, Willem I; van der Molen, Thys; Kulich, Karoly; Serra, Ignasi; Basagaña, Xavier; Troosters, Thierry; Puhan, Milo A; Karlsson, Niklas; Garcia-Aymerich, Judith

    2015-10-01

    No current patient-centred instrument captures all dimensions of physical activity in chronic obstructive pulmonary disease (COPD). Our objective was item reduction and initial validation of two instruments to measure physical activity in COPD.Physical activity was assessed in a 6-week, randomised, two-way cross-over, multicentre study using PROactive draft questionnaires (daily and clinical visit versions) and two activity monitors. Item reduction followed an iterative process including classical and Rasch model analyses, and input from patients and clinical experts.236 COPD patients from five European centres were included. Results indicated the concept of physical activity in COPD had two domains, labelled "amount" and "difficulty". After item reduction, the daily PROactive instrument comprised nine items and the clinical visit contained 14. Both demonstrated good model fit (person separation index >0.7). Confirmatory factor analysis supported the bidimensional structure. Both instruments had good internal consistency (Cronbach's α>0.8), test-retest reliability (intraclass correlation coefficient ≥0.9) and exhibited moderate-to-high correlations (r>0.6) with related constructs and very low correlations (r<0.3) with unrelated constructs, providing evidence for construct validity.Daily and clinical visit "PROactive physical activity in COPD" instruments are hybrid tools combining a short patient-reported outcome questionnaire and two activity monitor variables which provide simple, valid and reliable measures of physical activity in COPD patients. Copyright ©ERS 2015.

  17. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOEpatents

    Smither, R.K.

    1981-04-20

    A crystal diffraction instrument is described which has an improved crystalline structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg angle and thereby increasing the usable area and acceptance angle. The increased planar spacing is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structure with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques.

  18. Neutron activation analysis on the surface of the Moon and other terrestrial planets

    NASA Astrophysics Data System (ADS)

    Golovin, Dmitry; Litvak, Maxim; Kozyrev, S. Alexander; Tretiyakov, Vladislav; Sanin, Anton; Vostrukhin, Andrey; Mitrofanov, Igor; Malakhov, Alexey

    Determine of elements composition of the planet subsurface in situ is important scientific task for understanding of origin and formation processes of terrestrial planets, moons and asteroids. Also this study will be very perspective in terms of utilization of mineral resources for future lunar base. Creation of such outpost will open doors for robotic and human exploration in the distant parts of Solar System. ADRON instrument onboard landing platforms Russian near-pole lunar missions (Glob and Resource) will be first example of using Neutron Activation method in space. It will measure nuclear composition of the lunar regolith in the landing sites up to 1 m depth. This instrument is able to use for different planets and conditions. For Venus surface, taking into account short lifetime of spacecraft one or two hours of operation will be enough to perform such measurements. Another good opportunity is using similar instrument on Lunar or Martian rovers for searching of important minerals.

  19. Measurements of energy dependence of average number of prompt neutrons from neutron-induced fission of 242Pu from 0.5 to 10 Mev

    NASA Astrophysics Data System (ADS)

    Khokhlov, Yurii A.; Ivanin, Igor A.; In'kov, Valerii I.; Danilin, Lev D.

    1998-10-01

    The results of energy dependence measurements of the average number of prompt neutrons from neutrons-induced fission of 242Pu from 0.5 to 10 MeV are presented. The measurements were carried out with neutrons beam from uranium target of electron linac of Russian Federal Nuclear Center using time-of-flight technique on 28.5 m flight-path. The neutrons from fission were detected by a liquid scintillator detector loaded with gadolinium, events of fission—by parallel plate avalanche detector for fission fragments. Least squares fitting results give ν¯p(En)=(2.881±0.033)+(0.141±0.003)ṡEn. The work is executed on ISTC project # 471-97.

  20. Nuclear transition moment measurements of neutron rich nuclei

    NASA Astrophysics Data System (ADS)

    Starosta, Krzysztof

    2009-10-01

    The Recoil Distance Method (RDM) and related Doppler Shift Attenuation Method (DSAM) are well-established tools for lifetime measurements following nuclear reactions near the Coulomb barrier. Recently, the RDM was implemented at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University using NSCL/K"oln plunger device and a unique combination of the state-of-the-art instruments available there. Doppler-shift lifetime measurements following Coulomb excitation, knock-out, and fragmentation at intermediate energies of ˜100 MeV/u hold the promise of providing lifetime information for excited states in a wide range of unstable nuclei. So far, the method was used to investigate the collectivity of the neutron-rich ^16,18,20C, ^62,64,66Fe, ^70,72Ni, ^110,114Pd isotopes and also of the neutron-deficient N=Z ^64Ge. A significant fraction of these experiments was performed using NSCL's Segmented Germanium Array instrumented with the Digital Data Acquisition System which enables gamma-ray tracking. The impact of GRETINA and gamma-ray tracking on RDM and DSAM studies of neutron-rich nuclei will be discussed.

  1. Evidence of nuclear fusion neutrons in an extremely small plasma focus device operating at 0.1 Joules

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo; Pavéz, Cristián; Moreno, José; Altamirano, Luis; Huerta, Luis; Barbaglia, Mario; Clausse, Alejandro; Mayer, Roberto E.

    2017-08-01

    We report on D-D fusion neutron emission in a plasma device with an energy input of only 0.1 J, within a range where fusion events have been considered very improbable. The results presented here are the consequence of scaling rules we have derived, thus being the key point to assure the same energy density plasma in smaller devices than in large machines. The Nanofocus (NF)—our device—was designed and constructed at the P4 Lab of the Chilean Nuclear Energy Commission. Two sets of independent measurements, with different instrumentation, were made at two laboratories, in Chile and Argentina. The neutron events observed are 20σ greater than the background. The NF plasma is produced from a pulsed electrical discharge using a submillimetric anode, in a deuterium atmosphere, showing empirically that it is, in fact, possible to heat and compress the plasma. The strong evidence presented here stretches the limits beyond what was expected. A thorough understanding of this could possibly tell us where the theoretical limits actually lie, beyond conjectures. Notwithstanding, a window is thus open for low cost endeavours for basic fusion research. In addition, the development of small, portable, safe nonradioactive neutron sources becomes a feasible issue.

  2. Associated strangeness production in the pp{yields}pK{sup +}K{sup -}p and pp{yields}pK{sup +{pi}0{Sigma}0} reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Jujun; Department of Physics, Zhengzhou University, Zhengzhou, Henan 450001; Wilkin, Colin

    2010-08-15

    The total and differential cross sections for associated strangeness production in the pp{yields}pK{sup +}K{sup -}p and pp{yields}pK{sup +{pi}0{Sigma}0} reactions have been studied in a unified approach using an effective Lagrangian model. It is assumed that both the K{sup -}p and {pi}{sup 0{Sigma}0} final states originate from the decay of the {Lambda}(1405) that was formed in the production chain pp{yields}p(N*(1535){yields}K{sup +{Lambda}}(1405)). The available experimental data are well reproduced, especially the ratio of the two total cross sections, which is much less sensitive to the particular model of the entrance channel. The significant coupling of the N*(1535) to {Lambda}(1405)K is further evidencemore » for large ss-bar components in the quark wave function of the N*(1535).« less

  3. Response in thermal neutrons intensity on the activation of seismic processes

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim

    2017-04-01

    Results of study of thermal and high-energy neutrons intensity during the activation of seismic activity are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 20 km from Almaty) in the mountains of Northern Tien-Shan. High correlation and similarity of responses to changes of space and geophysical conditions in the absence of seismic activity are obtained between data of thermal neutron detectors and data of the standard neutron monitor, recording the intensity of high-energy particles. These results confirm the genetic connection of thermal neutrons at the Earth's surface with high-energy neutrons of the galactic origin and suggest same sources of disturbances of their flux. However, observations and analysis of experimental data during the activation of seismic activity showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the cause of this phenomenon is the additional thermal neutron flux of the lithospheric origin, which appears under these conditions. Method of separating of thermal neutron intensity variations of the lithospheric origin from neutrons variations generated in the atmosphere is proposed. We used this method for analysis of variations of thermal neutrons intensity during earthquakes (with intensity ≥ 3b) in the vicinity of Almaty which took place in 2006-2015. The increase of thermal neutrons flux of the lithospheric origin during of seismic processes activation was observed for 60% of events. However, before the earthquake the increase of thermal neutron flux is only observed for 25-30% of events. It is shown that the amplitude of the additional thermal neutron flux from the Earth's crust is equal to 5-7% of the background level.

  4. A study of time-dependent CP-violating asymmetries in B0->J/psiK0S and B0->psi(2S)K0S decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, Barbara

    We present a preliminary measurement of time-dependent CP-violating asymmetries in B{sup 0} {yields} J/{psi} K{sub S}{sup 0} and B{sup 0} {yields} {psi}(2S)K{sub S}{sup 0} decays recorded by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The data sample consists of 9.0 fb{sup -1} collected at the {Upsilon}(4S) resonance and 0.8 fb{sup -1} off-resonance. One of the neutral B mesons, produced in pairs at the {Upsilon}(4S), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. A neural network taggingmore » algorithm is used to recover events without a clear lepton or kaon tag. The time difference between the decays is determined by measuring the distance between the decay vertices. Wrong-tag probabilities and the time resolution function are measured with samples of fully-reconstructed semileptonic and hadronic neutral B final states. The value of the asymmetry amplitude, sin2{beta}, is determined from a maximum likelihood fit to the time distribution of 120 tagged B{sup 0} {yields} J/{psi} K{sub S}{sup 0} and B{sup 0} {yields} {psi}(2S) K{sub S}{sup 0} candidates to be sin2{beta} = 0.12 {+-} 0.37(stat) {+-} 0.09(syst) (preliminary).« less

  5. Study of the decay D0 --> K+pi-.

    PubMed

    Link, J M; Reyes, M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; Massafferi, A; de Miranda, J M; Pepe, I M; dos Reis, A C; Simão, F R; Carrillo, S; Casimiro, E; Sánchez-Hernández, A; Uribe, C; Vazquez, F; Cinquini, L; Cumalat, J P; O'Reilly, B; Ramirez, J E; Vaandering, E W; Butler, J N; Cheung, H W; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E; Kasper, P H; Kreymer, A E; Kutschke, R; Bianco, S; Fabbri, F L; Sarwar, S; Zallo, A; Cawlfield, C; Kim, D Y; Rahimi, A; Wiss, J; Gardner, R; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Park, H; Alimonti, G; Boschini, M; Caccianiga, B; D'Angelo, P; DiCorato, M; Dini, P; Giammarchi, M; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Pontoglio, C; Prelz, F; Rovere, M; Sala, A; Sala, S; Davenport, T F; Agostino, L; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M; Pantea, D; Ratti, S P; Riccardi, C; Segoni, I; Viola, L; Vitulo, P; Hernandez, H; Lopez, A M; Mendez, H; Mendez, L; Mirles, A; Montiel, E; Olaya, D; Paris, A; Quinones, J; Rivera, C; Xiong, W; Zhang, Y; Wilson, J R; Cho, K; Handler, T; Engh, D; Hosack, M; Johns, W E; Nehring, M S; Sheldon, P D; Stenson, K; Webster, M S; Sheaff, M

    2001-04-02

    Using a large sample of photoproduced charm mesons from the FOCUS experiment at Fermilab (FNAL-E831), we observe the decay D0-->K+pi- with a signal yield of 149+/-31 events compared to a similarly cut sample consisting of 36 760+/-195 D0-->K-pi+ events. We use the observed ratio of D0-->K+pi- to D0-->K-pi+ (0.404+/-0.085+/-0.025)% to obtain a relationship between the D0 mixing and doubly Cabibbo suppressed decay parameters.

  6. Mineral exploration and soil analysis using in situ neutron activation

    USGS Publications Warehouse

    Senftle, F.E.; Hoyte, A.F.

    1966-01-01

    A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

  7. Evidence for monoclinic distortion in the ground state phase of underdoped La 1.95Sr 0.05CuO 4: A single crystal neutron diffraction study

    DOE PAGES

    Singh, Anar; Schefer, Jurg; Sura, Ravi; ...

    2016-03-24

    The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La 1.95Sr 0.05CuO 4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for "forbidden" reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La 1.95Sr 0.05CuO 4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in amore » continuous way; however, the structure is stable below similar to 120K which agrees with other observed phenomena. Lastly, our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less

  8. Neutron, gamma ray, and temperature effects on the electrical characteristics of thyristors

    NASA Technical Reports Server (NTRS)

    Frasca, A. J.; Schwarze, G. E.

    1992-01-01

    Experimental data showing the effects of neutrons, gamma rays, and temperature on the electrical and switching characteristics of phase-control and inverter-type SCR's are presented. The special test fixture built for mounting, heating, and instrumenting the test devices is described. Four SCR's were neutron irradiated at 300 K and four at 365 K for fluences up to 3.2 x 10 exp 13 n/sq. cm, and eight were gamma irradiated at 300 K only for gamma doses up to 5.1 Mrads. The electrical measurements were made during irradiation and the switching measurements were made only before and after irradiation. Radiation induced crystal defects, resulting primarily from fast neutrons, caused the reduction of minority carrier lifetime through the generation of R-G centers. The reduction in lifetime caused increases in the on-state voltage drop and in the reverse and forward leakage currents, and decreases in the turn-off time.

  9. Neutron, gamma ray, and temperature effects on the electrical characteristics of thyristors

    NASA Technical Reports Server (NTRS)

    Frasca, A. J.; Schwarze, G. E.

    1992-01-01

    Experimental data showing the effects of neutrons, gamma rays, and temperature on the electrical and switching characteristics of phase-control and inverter-type SCR's are presented. The special test fixture built for mounting, heating, and instrumenting the test devices is described. Four SCR's were neutron irradiated at 300 K and four at 365 K for fluences up to 3.2 x 10 exp 13 pn/sq. cm, and eight were gamma irradiated at 300 K only for gamma doses up to 5.1 Mrads. The electrical measurements were made during irradiation and the switching measurements were made only before and after irradiation. Radiation induced crystal defects, resulting primarily from fast neutrons, caused the reduction of minority carrier lifetime through the generation of R-G centers. The reduction in lifetime caused increases in the on-state voltage drop and in the reverse and forward leakage currents, and decreases in the turn-off time.

  10. Search for B{sup +} --> K{sup +} lepton-plus-lepton-minus and B{sup 0} --> K*{sup 0} lepton-plus-lepton-minus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, Barbara

    Using a sample of 3.7 x 10{sup 6} upsilon(4S) --> B anti-B events collected with the BaBar detector at the PEP-II storage ring, the authors search for the electroweak penguin decays B{sup +} --> K{sup +}e{sup +}e{sup {minus}}, B{sup +} --> K{sup +}mu{sup +}mu{sup {minus}},B{sup 0} --> K*{sup 0} e{sup +}e{sup {minus}}, and B{sup 0} --> K*{sup 0}mu{sup +}mu{sup {minus}}. The authors observe no significant signals for these modes and set preliminary 90% C.L. upper limits of: beta(B{sup +} --> K{sup +}e{sup +}e{sup {minus}}) < 12.5 x 10{sup {minus}6}; beta(B{sup +} --> K{sup +}mu{sup +}mu{sup {minus}}) < 8.3 x 10{supmore » {minus}6}; beta(B{sup 0} --> K*{sup 0}e{sup +}e{sup {minus}}) < 24.1 x 10{sup {minus}6}; and beta(B{sup 0} --> K*{sup 0}mu{sup +}mu{sup {minus}}) < 24.5 x 10{sup {minus}6}.« less

  11. DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY

    DOEpatents

    Dessauer, G.

    1960-05-10

    A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.

  12. 66.7-keV γ -line intensity of 171Tm determined via neutron activation

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Heftrich, T.; Düllmann, Ch. E.; Eberhardt, K.; Fiebiger, S.; Glorius, J.; Göbel, K.; Haas, R.; Langer, C.; Lohse, S.; Reifarth, R.; Renisch, D.; Wolf, C.

    2018-03-01

    Background: About 50% of the heavy elements are produced in stars during the slow neutron capture process. The analysis of branching points allows to set constraints on the temperature and the neutron density in the interior of stars. The temperature dependence of the branch point 171Tm is weak. Hence, the 171Tm neutron capture cross section can be used to constrain the neutron density during the main component of the s process in thermally pulsing asymptotic giant branch stars. Purpose: In order to perform neutron capture experiments on 171Tm, sample material has to be produced and characterized. The characterization is done by γ spectroscopy, relying on the intensities of the involved γ lines. Only the 66.7-keV γ line can be observed whose intensity was uncertain so far. Method: An enriched 170Er sample was activated with thermal neutrons at the TRIGA (Training, Research, Isotopes, General Atomics) research reactor at the Johannes Gutenberg-Universität Mainz. The activation resulted in an easily quantifiable number of 171Er nuclei that subsequently decayed to 171Tm. Result: The intensity of the 66.7-keV γ line of the 171Tm decay was measured to Iγ=(0.144 ±0.010 )% . Conclusions: Our result is in good agreement with the value found in the literature.

  13. Infrared and Raman spectroscopy of [Pb(Zn1/3Nb2/3)O3]0.92-[PbTiO3]0.08 and [Pb(Mg1/3Nb2/3)O3]0.71-[PbTiO3]0.29 single crystals

    NASA Astrophysics Data System (ADS)

    Kamba, S.; Buixaderas, E.; Petzelt, J.; Fousek, J.; Nosek, J.; Bridenbaugh, P.

    2003-01-01

    Far-infrared reflectivity spectra of [Pb(Zn1/3Nb2/3)O3]0.92-[PbTiO3]0.08 and [Pb(Mg1/3Nb2/3)O3]0.71-[PbTiO3]0.29 single crystals were investigated between 10 and 530 K, micro-Raman spectra were recorded between 300 and 800 K. No phonon softening was observed near either of the ferroelectric phase transitions. The low-frequency dielectric anomaly in the paraelectric phase is caused by contribution of dynamic polar nanoclusters with the main dispersion in the microwave range. Infrared and Raman spectra confirm the locally doubled unit cell (Zprim=2) in the paraelectric and ferroelectric phases due to the ordering in the perovskite B sites and occurrence of polar nanoclusters in the paraelectric phase. The lowest-frequency transverse optical (TO1) phonon mode active in the infrared spectra is underdamped in contrast to the recent result of inelastic neutron scattering, where no TO1 mode could be observed for the wave vectors q⩽0.2 Å-1. This discrepancy was explained by different q vectors probed in infrared and neutron experiments. The infrared probe couples with very long-wavelength phonons (q≈10-5 Å-1) which see the homogeneous medium averaged over the nanoclusters, whereas the neutron probe couples with phonons whose wavelength is comparable to the nanocluster size (q⩾10-2 Å-1).

  14. Thick-foils activation technique for neutron spectrum unfolding with the MINUIT routine-Comparison with GEANT4 simulations

    NASA Astrophysics Data System (ADS)

    Vagena, E.; Theodorou, K.; Stoulos, S.

    2018-04-01

    Neutron activation technique has been applied using a proposed set of twelve thick metal foils (Au, As, Cd, In, Ir, Er, Mn, Ni, Se, Sm, W, Zn) for off-site measurements to obtain the neutron spectrum over a wide energy range (from thermal up to a few MeV) in intense neutron-gamma mixed fields such as around medical Linacs. The unfolding procedure takes into account the activation rates measured using thirteen (n , γ) and two (n , p) reactions without imposing a guess solution-spectrum. The MINUIT minimization routine unfolds a neutron spectrum that is dominated by fast neutrons (70%) peaking at 0.3 MeV, while the thermal peak corresponds to the 15% of the total neutron fluence equal to the epithermal-resonances area. The comparison of the unfolded neutron spectrum against the simulated one with the GEANT4 Monte-Carlo code shows a reasonable agreement within the measurement uncertainties. Therefore, the proposed set of activation thick-foils could be a useful tool in order to determine low flux neutrons spectrum in intense mixed field.

  15. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit

    2016-09-15

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuteriummore » filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.« less

  16. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system.

    PubMed

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10 9 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  17. E/N effects on K0 values revealed by high precision measurements under low field conditions

    NASA Astrophysics Data System (ADS)

    Hauck, Brian C.; Siems, William F.; Harden, Charles S.; McHugh, Vincent M.; Hill, Herbert H.

    2016-07-01

    Ion mobility spectrometry (IMS) is used to detect chemical warfare agents, explosives, and narcotics. While IMS has a low rate of false positives, their occurrence causes the loss of time and money as the alarm is verified. Because numerous variables affect the reduced mobility (K0) of an ion, wide detection windows are required in order to ensure a low false negative response rate. Wide detection windows, however, reduce response selectivity, and interferents with similar K0 values may be mistaken for targeted compounds and trigger a false positive alarm. Detection windows could be narrowed if reference K0 values were accurately known for specific instrumental conditions. Unfortunately, there is a lack of confidence in the literature values due to discrepancies in the reported K0 values and their lack of reported error. This creates the need for the accurate control and measurement of each variable affecting ion mobility, as well as for a central accurate IMS database for reference and calibration. A new ion mobility spectrometer has been built that reduces the error of measurements affecting K0 by an order of magnitude less than ±0.2%. Precise measurements of ±0.002 cm2 V-1 s-1 or better have been produced and, as a result, an unexpected relationship between K0 and the electric field to number density ratio (E/N) has been discovered in which the K0 values of ions decreased as a function of E/N along a second degree polynomial trend line towards an apparent asymptote at approximately 4 Td.

  18. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  19. Water activities of NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines from experimental heat capacities: Water activity >0.6 below 200 K

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.

    2016-05-01

    Perchlorate salts found on Mars are extremely hygroscopic and form low eutectic temperature aqueous solutions, which could allow liquid water to exist on Mars despite cold and dry conditions. The formation, dynamics, and potential habitability of perchlorate salt solutions can be broadly understood in terms of water activity. Water activity controls condensation and evaporation of water vapor in brines, deliquescence and efflorescence of crystalline salts, and ice formation during freezing. Furthermore, water activity is a basic parameter defining the habitability of aqueous solutions. Despite the importance of water activity, its value in perchlorate solutions has only been measured at 298.15 K and at the freezing point of water. To address this lack of data, we have determined water activities in NaClO4, Ca(ClO4)2, and Mg(ClO4)2 solutions using experimental heat capacities measured by Differential Scanning Calorimetry. Our results include concentrations up to near-saturation and temperatures ranging from 298.15 to 178 K. We find that water activities in NaClO4 solutions increase with decreasing temperature, by as much as 0.25 aw from 298.15 to 178 K. Consequently, aw reaches ∼0.6-0.7 even for concentrations up to 15 molal NaClO4 below 200 K. In contrast, water activities in Ca(ClO4)2 and Mg(ClO4)2 solutions generally decrease with decreasing temperature. The temperature dependence of water activity indicates that low-temperature NaClO4 solutions will evaporate and deliquesce at higher relative humidity, crystallize ice at higher temperature, and potentially be more habitable for life (at least in terms of water activity) compared to solutions at 298.15 K. The opposite effects occur in Ca(ClO4)2 and Mg(ClO4)2 solutions.

  20. Neutron scattering studies of the ferroelectric distortion and spin dynamics in the type-1 multiferroic perovskite Sr 0.56 Ba 0.44 MnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Daniel K.; Lynn, Jeffrey W.; Mais, James

    2014-10-01

    The magnetic order, spin dynamics, and crystal structure of the multiferroic Sr0.56Ba0.44MnO3 have been investigated using neutron and x-ray scattering. Ferroelectricity develops at T-C = 305 K with a polarization of 4.2 mu C/cm(2) associated with the displacements of the Mn ions, while the Mn4+ spins order below T-N approximate to 200 K into a simple G-type commensurate magnetic structure. Below TN the ferroelectric order decreases dramatically, demonstrating that the two order parameters are strongly coupled. The ground state spin dynamics is characterized by a spin gap of 4.6(5) meV and the magnon density of states peaking at 43 meV.more » Detailed spin wave simulations with a gap and isotropic exchange of J = 4.8(2) meV describe the excitation spectrum well. Above TN strong spin correlations coexist with robust ferroelectric order.« less

  1. Elemental characterization of Mt. Sinabung volcanic ash, Indonesia by Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Kusmartini, I.; Syahfitri, W. Y. N.; Kurniawati, S.; Lestiani, D. D.; Santoso, M.

    2017-06-01

    Mount Sinabung is a volcano located in North Sumatera, Indonesia which has been recorded not erupted since 1600. However in 2013 it has been erupted and cause of black thick smog, rain sand and volcanic ash. Volcanic ash containing trace elements material that can be utilized in various applications but still has potential danger of heavy metals. In order to obtain an elemental composition data of volcanic ash, the characterization of volcanic ash were carried out using Neutron Activation Analysis. The volcanic ash was taken from Mt. Sinabung eruption. Samples were irradiated at the rabbit system in the reactor G.A Siwabessy facilities with neutron flux ˜ 1013 n.cm-2.s-1 and then counted using HPGe detector. Method validation was carried out by SRM NIST Coal Fly Ash 1633b and NIST 2711a Montana II Soil with recovery values were in the range of 96-108% and 95-106% respectively. The results showed that major elements; Al, Na, Ca and Fe, concentrations were 8.7, 1.05, 2.98 and 7.44 %, respectively, minor elements K, Mg, Mn, Ti, V and Zn were 0.87%, 0.78%, 0.18%, 0.62%, 197.13 ppm and 109.35 ppm, respectively, heavy metals; As, Cr, Co and Sb, contents were 4.48, 11.75, 17.13 and 0.35 ppm, respectively while rare earth elements such as Ce, Eu, La, Nd, Sm, Yb were 45.33, 1.22, 19.63, 20.34, 3.86, and 2.57 ppm respectively. The results of the elemental contents of volcanic ash that has been obtained can be used as the scientific based data for volcanic material utilization by considering the economic potential of elements contained and also the danger of the heavy metals content.

  2. Measurement of B(D+-->K(*0)l(+)nu(l)).

    PubMed

    Brandenburg, G; Ershov, A; Kim, D Y-J; Wilson, R; Benslama, K; Eisenstein, B I; Ernst, J; Gollin, G D; Hans, R M; Karliner, I; Lowrey, N; Marsh, M A; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Ammar, R; Besson, D; Zhao, X; Anderson, S; Frolov, V V; Kubota, Y; Lee, S J; Li, S Z; Poling, R; Smith, A; Stepaniak, C J; Urheim, J; Ahmed, S; Alam, M S; Jian, L; Saleem, M; Wappler, F; Eckhart, E; Gan, K K; Gwon, C; Hart, T; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pedlar, T K; Thayer, J B; Von Toerne, E; Wilksen, T; Zoeller, M M; Richichi, S J; Severini, H; Skubic, P; Dytman, S A; Nam, S; Savinov, V; Chen, S; Hinson, J W; Lee, J; Miller, D H; Pavlunin, V; Shibata, E I; Shipsey, I P J; Cronin-Hennessy, D; Lyon, A L; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Maravin, Y; Narsky, I; Stroynowski, R; Ye, J; Artuso, M; Boulahouache, C; Bukin, K; Dambasuren, E; Mountain, R; Skwarnicki, T; Stone, S; Wang, J C; Mahmood, A H; Csorna, S E; Danko, I; Xu, Z; Bonvicini, G; Cinabro, D; Dubrovin, M; McGee, S; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Masek, G; Paar, H P; Mahapatra, R; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Adam, N E; Alexander, J P; Bebek, C; Berkelman, K; Blanc, F; Boisvert, V; Cassel, D G; Drell, P S; Duboscq, J E; Ecklund, K M; Ehrlich, R; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Nordberg, E; Palmer, M; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Valant-Spaight, B; Viehhauser, G; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Stoeck, H; Yelton, J

    2002-11-25

    Using 13.53 fb(-1) of CLEO data, we have measured the ratios of the branching fractions R(+)(e),R(+)(mu) and the combined branching fraction ratio R(+)(l), defined by R(+)(l)=[B(D+-->K(*0)l(+)nu(l))]/[B(D+-->K-pi(+)pi(+))]. We find R(+)(e)=0.74+/-0.04+/-0.05, R(+)(mu)=0.72+/-0.10+/-0.05, and R(+)(l)=0.74+/-0.04+/-0.05, where the first and second errors are statistical and systematic, respectively. The known branching fraction B(D+-->K-pi(+)pi(+)) leads to B(D+-->K(*0)e(+)nu(e))=(6.7+/-0.4+/-0.5+/-0.4)%, B(D+-->K(*0)mu(+)nu(mu))=(6.5+/-0.9+/-0.5+/-0.4)%, and B(D+-->K(*0)l(+)nu(l))=(6.7+/-0.4+/-0.5+/-0.4)%, where the third error is due to the uncertainty in B(D+-->K-pi(+)pi(+)).

  3. An Ultra-fast X-Ray Disk Wind in the Neutron Star Binary GX 340+0

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Raymond, J.; Cackett, E.; Grinberg, V.; Nowak, M.

    2016-05-01

    We present a spectral analysis of a brief Chandra/HETG observation of the neutron star low-mass X-ray binary GX 340+0. The high-resolution spectrum reveals evidence of ionized absorption in the Fe K band. The strongest feature, an absorption line at approximately 6.9 keV, is required at the 5σ level of confidence via an F-test. Photoionization modeling with XSTAR grids suggests that the line is the most prominent part of a disk wind with an apparent outflow speed of v = 0.04c. This interpretation is preferred at the 4σ level over a scenario in which the line is H-like Fe xxvi at a modest redshift. The wind may achieve this speed owing to its relatively low ionization, enabling driving by radiation pressure on lines; in this sense, the wind in GX 340+0 may be the stellar-mass equivalent of the flows in broad absorption line quasars. If the gas has a unity volume filling factor, the mass ouflow rate in the wind is over 10-5 M ⊙ yr-1, and the kinetic power is nearly 1039 erg s-1 (or, 5-6 times the radiative Eddington limit for a neutron star). However, geometrical considerations—including a small volume filling factor and low covering factor—likely greatly reduce these values.

  4. Evidence for C P violation in B + → K * ( 892 ) + π 0 from a Dalitz plot analysis of B + → K S 0 π + π 0 decays

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2017-10-02

    We report a Dalitz plot analysis of charmless hadronic decays of charged B mesons to the final state K 0 Sπ +π 0 using the full BABAR data set of 470.9 ± 2.8 million B¯B events collected at the Υ(4S) resonance. We measure the overall branching fraction and CP asymmetry to be B(B + → K 0π +π 0) = (31.8 ± 1.8 ± 2.1 +6.00.0) × 10 –6 and ACP(B + → K 0π +π 0) = 0.07 ± 0.05 ± 0.03 +0.02 –0.03, where the uncertainties are statistical, systematic, and due to the signal model, respectively. Thismore » is the first measurement of the branching fraction for B + → K 0π +π 0. We find first evidence of a CP asymmetry in B + → K*(892) +π 0 decays: ACP(B + → K*(892) +π 0) = –0.52 ± 0.14 ± 0.04 +0.04 –0.02. The significance of this asymmetry, including systematic and model uncertainties, is 3.4 standard deviations. As a result, we also measure the branching fractions and CP asymmetries for three other intermediate decay modes.« less

  5. Evidence for C P violation in B + → K * ( 892 ) + π 0 from a Dalitz plot analysis of B + → K S 0 π + π 0 decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    We report a Dalitz plot analysis of charmless hadronic decays of charged B mesons to the final state K 0 Sπ +π 0 using the full BABAR data set of 470.9 ± 2.8 million B¯B events collected at the Υ(4S) resonance. We measure the overall branching fraction and CP asymmetry to be B(B + → K 0π +π 0) = (31.8 ± 1.8 ± 2.1 +6.00.0) × 10 –6 and ACP(B + → K 0π +π 0) = 0.07 ± 0.05 ± 0.03 +0.02 –0.03, where the uncertainties are statistical, systematic, and due to the signal model, respectively. Thismore » is the first measurement of the branching fraction for B + → K 0π +π 0. We find first evidence of a CP asymmetry in B + → K*(892) +π 0 decays: ACP(B + → K*(892) +π 0) = –0.52 ± 0.14 ± 0.04 +0.04 –0.02. The significance of this asymmetry, including systematic and model uncertainties, is 3.4 standard deviations. As a result, we also measure the branching fractions and CP asymmetries for three other intermediate decay modes.« less

  6. Pulsed Neutron Powder Diffraction for Materials Science

    NASA Astrophysics Data System (ADS)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1

  7. K+ and NH4(+) modulate gill (Na+, K+)-ATPase activity in the blue crab, Callinectes ornatus: fine tuning of ammonia excretion.

    PubMed

    Garçon, D P; Masui, D C; Mantelatto, F L M; McNamara, J C; Furriel, R P M; Leone, F A

    2007-05-01

    To better comprehend the mechanisms of ionic regulation, we investigate the modulation by Na+, K+, NH4(+) and ATP of the (Na+, K+)-ATPase in a microsomal fraction from Callinectes ornatus gills. ATP hydrolysis obeyed Michaelis-Menten kinetics with KM=0.61+/-0.03 mmol L(-1) and maximal rate of V=116.3+/-5.4 U mg(-1). Stimulation by Na+ (V=110.6+/-6.1 U mg(-1); K0.5=6.3+/-0.2 mmol L(-1)), Mg2+ (V=111.0+/-4.7 U mg(-1); K0.5=0.53+/-0.03 mmol L(-1)), NH4(+) (V=173.3+/-6.9 U mg(-1); K0.5=5.4+/-0.2 mmol L(-1)) and K+ (V=116.0+/-4.9 U mg(-1); K0.5=1.5+/-0.1 mmol L(-1)) followed a single saturation curve, although revealing site-site interactions. In the absence of NH4(+), ouabain (K(I)=74.5+/-1.2 micromol L(-1)) and orthovanadate inhibited ATPase activity by up to 87%; the inhibition patterns suggest the presence of F0F1 and K+-ATPases but not Na+-, V- or Ca2+-ATPase as contaminants. (Na+, K+)-ATPase activity was synergistically modulated by K+ and NH4(+). At 10 mmol L(-1) K+, increasing NH4(+) concentrations stimulated maximum activity to V=185.9+/-7.4 U mg(-1). However, at saturating NH4(+) (50 mmol L(-1)), increasing K+ concentrations did not stimulate activity further. Our findings provide evidence that the C. ornatus gill (Na+, K+)-ATPase may be particularly well suited for extremely efficient active NH4(+) excretion. At elevated NH4(+) concentrations, the enzyme is fully active, regardless of hemolymph K+ concentration, and K+ cannot displace NH4(+) from its exclusive binding sites. Further, the binding of NH4(+) to its specific sites induces an increase in enzyme apparent affinity for K+, which may contribute to maintaining K+ transport, assuring that exposure to elevated ammonia concentrations does not lead to a decrease in intracellular potassium levels. This is the first report of modulation by ammonium ions of C. ornatus gill (Na+, K+)-ATPase, and should further our understanding of NH4(+) excretion in benthic crabs.

  8. Measurement of CP asymmetries in the decays B 0K *0 μ + μ - and B + → K + μ + μ -

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Gomez, M. Calvo; Campana, P.; Perez, D. Campora; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Suárez, A. Dosil; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Albor, V. Fernandez; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Pardiñas, J. García; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gándara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Morata, J. A. Hernando; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Marin; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Sánchez, A. M´ın; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Rodriguez, J. Molina; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Goicochea, J. M. Otalora; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Alvarez, A. Pazos; Pearce, A.; Pellegrino, A.; Altarelli, M. Pepe; Perazzini, S.; Trigo, E. Perez; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Casasus, M. Plo; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Molina, V. Rives; Romero, D. A. Roa; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Vidal, A. Romero; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Valls, P. Ruiz; Silva, J. J. Saborido; Sagidova, N.; Sail, P.; Saitta, B.; Guimaraes, V. Salustino; Mayordomo, C. Sanchez; Sedes, B. Sanmartin; Santacesaria, R.; Rios, C. Santamarina; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Sierra, C. Vázquez; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-09-01

    The direct CP asymmetries of the decays B 0K *0 μ + μ - and B + → K + μ + μ - are measured using pp collision data corresponding to an integrated luminosity of 3.0 fb-1 collected with the LHCb detector. The respective control modes B 0 → J/ψK *0 and B + → J/ψK + are used to account for detection and production asymmetries. The measurements are made in several intervals of μ + μ - invariant mass squared, with the ϕ(1020) and charmonium resonance regions excluded. Under the hypothesis of zero CP asymmetry in the control modes, the average values of the asymmetries are

  9. SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue-Langevin

    NASA Astrophysics Data System (ADS)

    Devishvili, A.; Zhernenkov, K.; Dennison, A. J. C.; Toperverg, B. P.; Wolff, M.; Hjörvarsson, B.; Zabel, H.

    2013-02-01

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 104 n cm-2 s-1 with monochromatization Δλ/λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a 3He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.

  10. SuperADAM: upgraded polarized neutron reflectometer at the Institut Laue-Langevin.

    PubMed

    Devishvili, A; Zhernenkov, K; Dennison, A J C; Toperverg, B P; Wolff, M; Hjörvarsson, B; Zabel, H

    2013-02-01

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 10(4) n cm(-2) s(-1) with monochromatization Δλ∕λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a (3)He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.

  11. Outcome of posterior decompression with instrumented fusion surgery for K-line (-) cervical ossification of the longitudinal ligament.

    PubMed

    Saito, Junya; Maki, Satoshi; Kamiya, Koshiro; Furuya, Takeo; Inada, Taigo; Ota, Mitsutoshi; Iijima, Yasushi; Takahashi, Kazuhisa; Yamazaki, Masashi; Aramomi, Masaaki; Mannoji, Chikato; Koda, Masao

    2016-10-01

    We investigated the outcome of posterior decompression and instrumented fusion (PDF) surgery for patients with K-line (-) ossification of the posterior longitudinal ligament (OPLL) of the cervical spine, who may have a poor surgical prognosis. We retrospectively analyzed the outcome of a series of 27 patients who underwent PDF without correction of cervical alignment for K-line (-) OPLL and were followed-up for at least 1 year after surgery. We had performed double-door laminoplasty followed by posterior instrumented fusion without excessive correction of cervical spine alignment. The preoperative Japanese Orthopedic Association (JOA) score for cervical myelopathy was 8.0 points and postoperative JOA score was 11.9 points on average. The mean JOA score recovery rate was 43.6%. The average C2-C7 angle was 2.2° preoperatively and 3.1° postoperatively. The average maximum occupation ratio of OPLL was 56.7%. In conclusion, PDF without correcting cervical alignment for patients with K-line (-) OPLL showed moderate neurological recovery, which was acceptable considering K-line (-) predicts poor surgical outcomes. Thus, PDF is a surgical option for such patients with OPLL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Search For the Rare Decay K L → π 0π 0γ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, David Edward

    2006-08-01

    This thesis describes a search for the rare decay K L → π 0π 0γ using data from the KTeV experiment, using the topology K L → π 0πmore » $$0\\atop{D}$$γ (where π$$0\\atop{D}$$ → γe +e -). Due to Bose statistics and the real nature of the photon, the K L → π 0π 0γ decay can proceed at lowest order only by the Cp conserving direct emission of an E2 photon. The decay vanishes to O(p 4) in chiral perturbation theory and is a probe of the theory to the sixth order. The primary background to this decay consists of K L → π 0π$$0\\atop{D}$$ events with one lost photon. The upper limit for the decay K L π 0π 0γ presented in this thesis is 2.32 x 10 -7 at the 90% confidence level. This upper limit was derived from both 1997 and 1999 data, using a blind analysis. The upper limit was derived from a Feldman-Cousins method, based on a weighted total of 0.53 data events in the signal region with an expected K L → π 0π 0π$$0\\atop{D}$$ background of 0.37 ± 0.28 events. The previous upper limit for this decay was 5.6 x 10 -6 at the 90% confidence level.« less

  13. Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS for neutron reflectometry at ESS

    NASA Astrophysics Data System (ADS)

    Piscitelli, F.; Mauri, G.; Messi, F.; Anastasopoulos, M.; Arnold, T.; Glavic, A.; Höglund, C.; Ilves, T.; Lopez Higuera, I.; Pazmandi, P.; Raspino, D.; Robinson, L.; Schmidt, S.; Svensson, P.; Varga, D.; Hall-Wilton, R.

    2018-05-01

    The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed according to the requirements given by the reflectometers at the European Spallation Source (ESS) in Sweden. The Multi-Blade has been installed and tested on the CRISP reflectometer at the ISIS neutron and muon source in U.K.. The results on the detailed detector characterization are discussed in this manuscript.

  14. Energy resolution of pulsed neutron beam provided by the ANNRI beamline at the J-PARC/MLF

    NASA Astrophysics Data System (ADS)

    Kino, K.; Furusaka, M.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Furutaka, K.; Goko, S.; Hara, K. Y.; Harada, H.; Harada, M.; Hirose, K.; Kai, T.; Kimura, A.; Kin, T.; Kitatani, F.; Koizumi, M.; Maekawa, F.; Meigo, S.; Nakamura, S.; Ooi, M.; Ohta, M.; Oshima, M.; Toh, Y.; Igashira, M.; Katabuchi, T.; Mizumoto, M.; Hori, J.

    2014-02-01

    We studied the energy resolution of the pulsed neutron beam of the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) at the Japan Proton Accelerator Research Complex/Materials and Life Science Experimental Facility (J-PARC/MLF). A simulation in the energy region from 0.7 meV to 1 MeV was performed and measurements were made at thermal (0.76-62 meV) and epithermal energies (4.8-410 eV). The neutron energy resolution of ANNRI determined by the time-of-flight technique depends on the time structure of the neutron pulse. We obtained the neutron energy resolution as a function of the neutron energy by the simulation in the two operation modes of the neutron source: double- and single-bunch modes. In double-bunch mode, the resolution deteriorates above about 10 eV because the time structure of the neutron pulse splits into two peaks. The time structures at 13 energy points from measurements in the thermal energy region agree with those of the simulation. In the epithermal energy region, the time structures at 17 energy points were obtained from measurements and agree with those of the simulation. The FWHM values of the time structures by the simulation and measurements were found to be almost consistent. In the single-bunch mode, the energy resolution is better than about 1% between 1 meV and 10 keV at a neutron source operation of 17.5 kW. These results confirm the energy resolution of the pulsed neutron beam produced by the ANNRI beamline.

  15. In situ calibration of neutron activation system on the large helical device

    NASA Astrophysics Data System (ADS)

    Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.

    2017-11-01

    In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.

  16. Study of neutron shielding collimators for curved beamlines at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Santoro, V.; DiJulio, D. D.; Ansell, S.; Cherkashyna, N.; Muhrer, G.; Bentley, P. M.

    2018-06-01

    The European Spallation Source is being constructed in Lund, Sweden and is planned to be the world’s brightest pulsed spallation neutron source for cold and thermal neutron beams (≤ 1 eV). The facility uses a 2 GeV proton beam to produce neutrons from a tungsten target. The neutrons are then moderated in a moderator assembly consisting of both liquid hydrogen and water compartments. Surrounding the moderator are 22 beamports, which view the moderator’s outside surfaces. The beamports are connected to long neutron guides that transport the moderated neutrons to the sample position via reflections. As well as the desired moderated neutrons, fast neutrons coming directly from the target can find their way down the beamlines. These can create unwanted sources of background for the instruments. To mitigate such a kind of background, several instruments will use curved guides to lose direct line-of-sight (LoS) to the moderator and the target. In addition instruments can also use shielding collimators to reduce the amount of fast neutrons further traveling down the guide due to albedo reflections or streaming. Several different materials have been proposed for this purpose. We present the results of a study of different options for collimators and identify the optimal choices that balance cost, background and activation levels.

  17. Amplitude analysis of B0K+π-π0 and evidence of direct CP violation in B→K*π decays

    NASA Astrophysics Data System (ADS)

    Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Bünger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-06-01

    We analyze the decay B0K+π-π0 with a sample of 4.54×108 BB¯ events collected by the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, and extract the complex amplitudes of seven interfering resonances over the Dalitz plot. These results are combined with amplitudes measured in B0→KS0π+π- decays to construct isospin amplitudes from B0K*π and B0→ρK decays. We measure the phase of the isospin amplitude Φ3/2, useful in constraining the Cabibbo-Kobayashi-Maskawa unitarity triangle angle γ and evaluate a CP rate asymmetry sum rule sensitive to the presence of new physics operators. We measure direct CP violation in B0K*+π- decays at the level of 3σ when measurements from both B0K+π-π0 and B0→KS0π+π- decays are combined.

  18. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    PubMed Central

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-01-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  19. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Neutron diffraction study of the martensitic transformation and chemical order in Heusler alloy Ni 1.91Mn 1.29Ga 0.8

    DOE PAGES

    Ari-Gur, Pnina; Garlea, Vasile O.; Cao, Huibo; ...

    2015-11-05

    In this study, Heusler alloys of Ni-Mn-Ga compositions demonstrate ferromagnetic shape memory effect in the martensitic state. The transformation temperature and the chemical order depend strongly on the composition. In the current work, the structure and chemical order of the martensitic phase of Ni 1.91Mn 1.29Ga 0.8 were studied using neutron diffraction; the diffraction pattern was refined using the FullProf software. It was determined that the structural transition occurs around 330 K. At room temperature, 300 K, which is below the martensite transformation temperature, all the Bragg reflections can be described by a monoclinic lattice with a symmetry of spacemore » group P 1 2/m 1 and lattice constants of a = 4.23047(7) [Å], b = 5.58333(6) [Å], c = 21.0179(2) [Å], beta = 90.328(1). The chemical order is of critical importance in these alloys, and it was previously studied at 363 K. Analysis of the neutron diffraction in the monoclinic phase shows that the chemical order is maintained during the martensitic transformation.« less

  1. Trace-element composition of Chicxulub crater melt rock, K/T tektites and Yucatan basement

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Gregoire, D. C.; Attrep, M., Jr.; Claeys, P.; Thompson, C. M.; Boynton, W. V.

    1993-01-01

    The Cretaceous/Tertiary (K/T) boundary Chicxulub impact is the best preserved large impact in the geologic record. The Chicxulub crater has been buried with no apparent erosion of its intracrater deposits, and its ejecta blanket is known and is well preserved at hundreds of localities globally. Although most of the molten material ejected from the crater has been largely altered, a few localities still preserve tektite glass. Availability of intra- and extracrater impact products as well as plausible matches to the targeted rocks allows the comparison of compositions of the different classes of impact products to those of the impacted lithologies. Determination of trace-element compositions of the K/T tektites, Chicxulub melt rock, and the targeted Yucatan silicate basement and carbonate/evaporite lithologies have been made using instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Some sample splits were studied with both techniques to ensure that inter-laboratory variation was not significant or could be corrected. The concentration of a few major and minor elements was also checked against microprobe results. Radiochemical neutron activation analysis (RNAA) was used to determine Ir abundances in some samples.

  2. New strategy to explore C P violation with Bs0K-K+

    NASA Astrophysics Data System (ADS)

    Fleischer, Robert; Jaarsma, Ruben; Vos, K. Keri

    2016-12-01

    The U -spin symmetry provides a powerful tool to extract the angle γ of the Unitarity Triangle and the Bs0- B¯s 0 mixing phase ϕs from C P violation in the Bs0K-K+, Bd0→π-π+ system. LHCb has obtained first results with uncertainties at the 7° level. Due to U -spin-breaking corrections, it will be challenging to reduce the uncertainty below O (5 ° ) at Belle II and the LHCb upgrade. We propose a new strategy, using γ as input and utilizing Bs0K-ℓ+νℓ,Bd0→π -ℓ+νℓ decays, which allows an extraction of ϕs with a future theoretical precision of up to O (0.5 ° ), thereby matching the experimental prospects. Since Bs0K -K+ is dominated by penguin topologies, new sources of C P violation may be revealed.

  3. Design of a boron neutron capture enhanced fast neutron therapy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhonglu

    -cm thick tungsten filter is (16.6 ± 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4 ± 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 ± 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm 2 treatment beam. The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom. The activities of the activation products produced in the BNCEFNT assembly after neutron beam delivery were computed. The photon ambient dose rate due to the radioactive activation products was also estimated.« less

  4. Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, R. A.; Al-Sheikhly, M.; Grissom, C.

    2014-02-18

    The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content.more » The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 10–20. The H count rates were roughly 1–3 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.« less

  5. The Variations of Neutron Component of Lunar Radiation Background from LEND LRO Observations

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A. B.; Bakhtin, B. N.; Bodnarik, J. G.; Bodnarik, W. V.; Chin, G.; Evans, L.G.; Harshman, K.; Livengood, T. A.; hide

    2016-01-01

    Lunar neutron flux data measured by the Lunar Exploration Neutron Detector (LEND) on board NASA's Lunar Reconnaissance Orbiter (LRO) were analyzed for the period 2009-2014.We have re-evaluated the instrument's collimation capability and re-estimated the neutron counting rate measured in the Field of View (FOV) of the LEND collimated detectors, and found it to be 1.070.1counts per second. We derived the spectral density of the neutron flux for various lunar regions using our comprehensive numerical model of orbital measurements. This model takes into account the location of the LEND instrument onboard LRO to calculate the surface leakage neutron flux and its propagation to the instrument detectors. Based on this we have determined the lunar neutron flux at the surface to be approx. 2 neutrons/ [sq cm/ sec] in the epithermal energy range, 0.4e V to 1keV. We have also found variations of the lunar neutron leakage flux with amplitude as large as a factor of two, by using multi-year observations to explore variations in the Galactic Cosmic Ray (GCR) flux during the 23rd-24th solar cycles.

  6. Combined Constraints on the Equation of State of Dense Neutron-rich Matter from Terrestrial Nuclear Experiments and Observations of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Nai-Bo; Li, Bao-An; Xu, Jun

    2018-06-01

    Within the parameter space of the equation of state (EOS) of dense neutron-rich matter limited by existing constraints mainly from terrestrial nuclear experiments, we investigate how the neutron star maximum mass M max > 2.01 ± 0.04 M ⊙, radius 10.62 km < R 1.4 < 12.83 km and tidal deformability Λ1.4 ≤ 800 of canonical neutron stars together constrain the EOS of dense neutron-rich nucleonic matter. While the 3D parameter space of K sym (curvature of nuclear symmetry energy), J sym, and J 0 (skewness of the symmetry energy and EOS of symmetric nuclear matter, respectively) is narrowed down significantly by the observational constraints, more data are needed to pin down the individual values of K sym, J sym, and J 0. The J 0 largely controls the maximum mass of neutron stars. While the EOS with J 0 = 0 is sufficiently stiff to support neutron stars as massive as 2.37 M ⊙, supporting the hypothetical ones as massive as 2.74 M ⊙ (composite mass of GW170817) requires J 0 to be larger than its currently known maximum value of about 400 MeV and beyond the causality limit. The upper limit on the tidal deformability of Λ1.4 = 800 from the recent observation of GW170817 is found to provide upper limits on some EOS parameters consistent with but far less restrictive than the existing constraints of other observables studied.

  7. AFCI-2.0 Library of Neutron Cross Section Covariances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, M.; Herman,M.; Oblozinsky,P.

    2011-06-26

    Neutron cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The primary purpose of the library is to provide covariances for the Advanced Fuel Cycle Initiative (AFCI) data adjustment project, which is focusing on the needs of fast advanced burner reactors. The covariances refer to central values given in the 2006 release of the U.S. neutron evaluated library ENDF/B-VII. The preliminary version (AFCI-2.0beta) has been completed in October 2010 and made available to the users for comments. In the final 2.0 release, covariances for a few materials were updated, in particular newmore » LANL evaluations for {sup 238,240}Pu and {sup 241}Am were adopted. BNL was responsible for covariances for structural materials and fission products, management of the library and coordination of the work, while LANL was in charge of covariances for light nuclei and for actinides.« less

  8. Neutronic experiments with fluorine rich compounds at LR-0 reactor

    DOE PAGES

    Losa, Evzen; Kostal, Michal; Czakoj, T.; ...

    2018-06-06

    Here, research on molten salt reactor (MSR) neutronics continues in Research Centre Rez (Czech Republic) with experimental work being conducted using fluoride salt that was originally used in the Molten Salt Reactor Experiment (MSRE). Previous results identified significant variations in the neutron spectrum measured in LiF-NaF salt. These variations could originate from the fluorine description in current nuclear data sets. Subsequent experiments were performed to try to confirm this phenomenon. Therefore, another fluorine-rich compound, Teflon, was used for testing. Critical experiments showed slight discrepancies in C/E-1 for both compounds, Teflon and FLIBE, and systematic overestimation of criticality was observed inmore » calculations. Different nuclear data libraries were used for data set testing. For Teflon, the overestimation is higher when using JENDL-3.3, JENDL-4, and RUSFOND-2010 libraries, all three of which share the same inelastic-to-elastic scattering cross section ratio. Calculations using other libraries (ENDF/B-VII.1, ENDF/B-VII.0, JEFF-3.2, JEFF-3.1, and CENDL-3.1) tend to be closer to the experimental value. Neutron spectrum measurement in both substances revealed structure similar to that seen in previous measurements using LiF-NaF salt, which indicates that the neutron spectrum seems to be strongly shaped by fluorine. Discrepancies between experimental and calculational results seem to be larger in the neutron energy range of 100–1300 keV than in higher energies. In the case of neutron spectrum calculation, none of the tested libraries gives overall better results than the others.« less

  9. Neutronic experiments with fluorine rich compounds at LR-0 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Losa, Evzen; Kostal, Michal; Czakoj, T.

    Here, research on molten salt reactor (MSR) neutronics continues in Research Centre Rez (Czech Republic) with experimental work being conducted using fluoride salt that was originally used in the Molten Salt Reactor Experiment (MSRE). Previous results identified significant variations in the neutron spectrum measured in LiF-NaF salt. These variations could originate from the fluorine description in current nuclear data sets. Subsequent experiments were performed to try to confirm this phenomenon. Therefore, another fluorine-rich compound, Teflon, was used for testing. Critical experiments showed slight discrepancies in C/E-1 for both compounds, Teflon and FLIBE, and systematic overestimation of criticality was observed inmore » calculations. Different nuclear data libraries were used for data set testing. For Teflon, the overestimation is higher when using JENDL-3.3, JENDL-4, and RUSFOND-2010 libraries, all three of which share the same inelastic-to-elastic scattering cross section ratio. Calculations using other libraries (ENDF/B-VII.1, ENDF/B-VII.0, JEFF-3.2, JEFF-3.1, and CENDL-3.1) tend to be closer to the experimental value. Neutron spectrum measurement in both substances revealed structure similar to that seen in previous measurements using LiF-NaF salt, which indicates that the neutron spectrum seems to be strongly shaped by fluorine. Discrepancies between experimental and calculational results seem to be larger in the neutron energy range of 100–1300 keV than in higher energies. In the case of neutron spectrum calculation, none of the tested libraries gives overall better results than the others.« less

  10. MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.

    PubMed

    Gonçalves, I F; Salgado, J; Falcão, A; Margaça, F M A; Carvalho, F G

    2005-01-01

    A Small Angle Neutron Scattering instrument is being installed at one end of the tangential beam tube of the Portuguese Research Reactor. The instrument is fed using a neutron scatterer positioned in the middle of the beam tube. The scatterer consists of circulating H2O contained in a hollow disc of Al. The in-pile shielding components and the shielding installed around the neutron selector have been the object of an MCNP simulation study. The quantities calculated were the neutron and gamma-ray fluxes in different positions, the energy deposited in the material by the neutron and gamma-ray fields, the material activation resulting from the neutron field and radiation doses at the exit wall of the shutter and around the shielding. The MCNP results are presented and compared with results of an analytical approach and with experimental data collected after installation.

  11. Measurement of the Difference of Time-Integrated CP Asymmetries in D^{0}→K^{-}K^{+} and D^{0}→π^{-}π^{+} Decays.

    PubMed

    Aaij, R; Abellán Beteta, C; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, D; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zhukov, V; Zucchelli, S

    2016-05-13

    A search for CP violation in D^{0}→K^{-}K^{+} and D^{0}→π^{-}π^{+} decays is performed using pp collision data, corresponding to an integrated luminosity of 3  fb^{-1}, collected using the LHCb detector at center-of-mass energies of 7 and 8 TeV. The flavor of the charm meson is inferred from the charge of the pion in D^{*+}→D^{0}π^{+} and D^{*-}→D[over ¯]^{0}π^{-} decays. The difference between the CP asymmetries in D^{0}→K^{-}K^{+} and D^{0}→π^{-}π^{+} decays, ΔA_{CP}≡A_{CP}(K^{-}K^{+})-A_{CP}(π^{-}π^{+}), is measured to be [-0.10±0.08(stat)±0.03(syst)]%. This is the most precise measurement of a time-integrated CP asymmetry in the charm sector from a single experiment.

  12. Impedance and AC conductivity studies of Sm3+ substituted 0.8Ba0.2(Bi0.5K0.5)TiO3 lead free ceramics

    NASA Astrophysics Data System (ADS)

    Sastry, C. V. S. S.; Ramesh, M. N. V.; Ramesh, K. V.

    2017-07-01

    Samarium substituted 0.8Ba0.2(Bi0.5K0.5)TiO3 (here after abbreviated as BTBKT-20) lead free ceramics with composition 0.8Ba0.2(Bi0.5(1-x)Sm0.5xK0.5)TiO3 (where x=0.01,0.03,0.05) lead free ceramics have been prepared by solid state reaction and followed by high energy ball milling process. The present paper focuses the impedance and ac conductivity studies of Sm substituted BTBKT-20 lead free ceramics. Impedance spectroscopic studies revealthat temperature dependent relaxation process. Single depressed semi circle was observed in Cole-Cole plots, indicates non-Debye kind of relaxation process. Maximum grain resistance was observed for x=0.03 Sm substituted BTBKT-20 sample. Frequency and temperature dependent AC conductivity was calculated and it found to obey the universal Jonscher's power law and the values of activation energies suggest that conduction is ionic in nature.

  13. Amplitude Analysis of B0 to K^ pi^-pi^0 and Evidence of Direct CP Violation in B to K^* pi decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J.P.

    We analyze the decay B{sup 0} {yields} K{sup +} {pi}{sup -} {pi}{sup 0} with a sample of 454 million B{bar B} events collected by the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, and extract the complex amplitudes of seven interfering resonances over the Dalitz plot. These results are combined with amplitudes measured in B{sup 0} {yields} K{sup 0}{sub s}{pi}{sup +}{pi}{sup -} decays to construct isospin amplitudes from B{sup 0} {yields} K{sup *}{pi} and B{sup 0} {yields} {rho}K decays. We measure the phase of the isospin amplitude {Phi}{sub 3/2}, useful in constraining the CKM unitarity triangle angle {gamma}more » and evaluate a CP rate asymmetry sum rule sensitive to the presence of new physics operators. We measure direct CP violation in B{sup 0} {yields} K{sup *+}{pi}{sup -} decays at the level of 3 {sigma} when measurements from both B{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0} and B{sup 0} {yields} K{sup 0}{sub s}{pi}{sup +}{pi}{sup -} decays are combined.« less

  14. Analysis of SMELS and reference materials for validation of the k0-based internal monostandard NAA method using in-situ detection efficiency

    NASA Astrophysics Data System (ADS)

    Acharya, R.; Swain, K. K.; Reddy, A. V. R.

    2010-10-01

    Three synthetic multielement standards (SMELS I, II and III) and two reference materials (RMs), SL-3 and Soil-7 of IAEA were analyzed for validation of the k0-based internal monostandard neutron activation analysis (IM-NAA) method utilizing in-situ relative detection efficiency. The internal monostandards used in SMELS and RMs were Au and Sc, respectively. The samples were irradiated in Apsara and Dhruva reactors, BARC and radioactive assay was carried out using a 40% relative efficiency HPGe detector coupled to an 8 k MCA. Concentrations of 23 elements were determined in both SMELS and RMs. In the case of RMs, concentrations of a few elements, whose certified values are not available, could also be determined. The % deviations for the elements determined in SMELS with respect to the assigned values and RMs with respect to certified values were within ±8%. The Z-score values at 95% confidence level for most of the elements in both the materials were within ±1.

  15. Measurement of the C P Violation Parameter AΓ in D0K+K- and D0→π+π- Decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kosmyntseva, A.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration

    2017-06-01

    Asymmetries in the time-dependent rates of D0K+K- and D0→π+π- decays are measured in a p p collision data sample collected with the LHCb detector during LHC Run 1, corresponding to an integrated luminosity of 3 fb-1. The asymmetries in effective decay widths between D0 and D¯ 0 decays, sensitive to indirect C P violation, are measured to be AΓ(K+K-)=(-0.30 ±0.32 ±0.10 )×10-3 and AΓ(π+π-)=(0.46 ±0.58 ±0.12 )×10-3, where the first uncertainty is statistical and the second systematic. These measurements show no evidence for C P violation and improve on the precision of the previous best measurements by nearly a factor of two.

  16. Physical activity measurement instruments for children with cerebral palsy: a systematic review.

    PubMed

    Capio, Catherine M; Sit, Cindy H P; Abernethy, Bruce; Rotor, Esmerita R

    2010-10-01

    this paper is a systematic review of physical activity measurement instruments for field-based studies involving children with cerebral palsy (CP). database searches using PubMed Central, MEDLINE, CINAHL Plus, PsycINFO, EMBASE, Cochrane Library, and PEDro located 12 research papers, identifying seven instruments that met the inclusion criteria of (1) having been developed for children aged 0 to 18 years, (2) having been used to evaluate a physical activity dimension, and (3) having been used in a field-based study involving children with CP. The instruments reviewed were the Activities Scale for Kids - Performance version (ASKp), the Canada Fitness Survey, the Children's Assessment of Participation and Enjoyment/Preferences for Activities of Children (CAPE/PAC), the Compendium of Physical Activities, the Physical Activity Questionnaire - Adolescents (PAQ-A), StepWatch, and the Uptimer. Second-round searches yielded 11 more papers, providing reliability and validity evidence for the instruments. the instruments measure physical activity frequency, mode, domain, and duration. Although most instruments demonstrated adequate reliability and validity, only the ASKp and CAPE/PAC have established reliability and validity for children with physical disabilities; the Uptimer has established concurrent validity. No instrument measuring intensity in free-living has been validated or found reliable for children with CP. the findings suggest that further studies are needed to examine the methodological properties of physical activity measurement in children with CP. Combining subjective and objective instruments is recommended to achieve better understanding of physical activity participation.

  17. Characteristics and application of spherical-type activation detectors in neutron spectrum measurements at a boron neutron capture therapy (BNCT) facility

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun

    2016-03-01

    A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.

  18. Space experiment BTN-NEUTRON on INTERNATIONAL SPACE STATION - CURRENT STATUS and future stages

    NASA Astrophysics Data System (ADS)

    Tretyakov, V. I.; Kozyrev, A. S.; Laygushin, V. I.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Pronin, M. A.; Vostrukhin, A. A.; Sanin, A. B.

    2009-04-01

    Space experiment BTN (Board Telescope of Neutrons) was suggested in 1997 for the Russian segment of International Space Station. The first stage of this experiment was started in February 2007 with instrumentation BTN-M1, which contain two separate units: 1) the electronics unit for commanding and data handling, which is installed inside the Station; 2) the detector unit, which is installed at the outer surface of Russian Service Module "Zvezda". The total mass of this instrument without cables is about 15 kg and total power consumption is about 18 Watts. Detector unit of BTN-M1 has the set of four neutron detectors: three proportional counters of epithermal neutrons with 3He covered by cadmium shields and polyethylene moderators with different thickness and stylbene scintillator for fast neutrons at the energy range 0.4 Mev - 10 Mev. There are three sources of neutrons in the near-Earth space. Permanent flux of neutrons is produced due to interaction of energetic particles of galactic and solar cosmic rays with the upper atmosphere of the Earth ("natural neutrons") and with the body of the spacecraft ("technogenic neutrons"). The third transient sources of neutrons are active regions of the Sun, which may sporadically emit energetic neutrons during strong flares. Some of these particles have sufficiently high energy to neutrons cover the distance to the Earth before decay Data from BTN-M1 after 2 years of space operations is sufficient for preliminary estimation of neutron component of radiation environment in the near-Earth space. BTN-M1 detector unit is equal to the Russian instrument HEND, which also operates now onboard NASA's Mars Odyssey orbiter since May 2001. Simultaneous measurements of neutron radiation on orbits around Mars and Earth give the unique opportunity to compare neutron radiation environment around two planets. The technogenic component of neutron background may be estimated by analysis of data for different stages of flight. After evaluation

  19. The magnetic structure of Co(NCNH)₂ as determined by (spin-polarized) neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Philipp; Houben, Andreas; Senyshyn, Anatoliy

    The magnetic structure of Co(NCNH)₂ has been studied by neutron diffraction data below 10 K using the SPODI and DNS instruments at FRM II, Munich. There is an intensity change in the (1 1 0) and (0 2 0) reflections around 4 K, to be attributed to the onset of a magnetic ordering of the Co²⁺ spins. Four different spin orientations have been evaluated on the basis of Rietveld refinements, comprising antiferromagnetic as well as ferromagnetic ordering along all three crystallographic axes. Both residual values and supplementary susceptibility measurements evidence that only a ferromagnetic ordering with all Co²⁺ spins parallelmore » to the c axis is a suitable description of the low-temperature magnetic ground state of Co(NCNH)₂. The deviation of the magnetic moment derived by the Rietveld refinement from the expectancy value may be explained either by an incomplete saturation of the moment at temperatures slightly below the Curie temperature or by a small Jahn–Teller distortion. - Graphical abstract: The magnetic ground state of Co(NCNH)₂ has been clarified by (spin-polarized) neutron diffraction data at low temperatures. Intensity changes below 4 K arise due to the onset of ferromagnetic ordering of the Co²⁺ spins parallel to the c axis, corroborated by various (magnetic) Rietveld refinements. Highlights: • Powderous Co(NCNH)₂ has been subjected to (spin-polarized) neutron diffraction. • Magnetic susceptibility data of Co(NCNH)₂ have been collected. • Below 4 K, the magnetic moments align ferromagnetically with all Co²⁺ spins parallel to the c axis. • The magnetic susceptibility data yield an effective magnetic moment of 4.68 and a Weiss constant of -13(2) K. • The ferromagnetic Rietveld refinement leads to a magnetic moment of 2.6 which is close to the expectancy value of 3.« less

  20. Plans for a measurement of the neutron lifetime to better than 0.3s using a Penning trap and absolute measurement of neutron fluence

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan; NBL3 Collaboration

    2014-09-01

    The decay of the free neutron is the prototypical charged current semi-leptonic weak process. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial He4 abundance from the theory of Big Bang Nucleosynthesis. Plans are being made for an in-beam measurement of the neutron lifetime with an anticipated 0.3s of uncertainty or better. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Advances in neutron fluence measurement, used in to provide the best existing in-beam determination of the neutron lifetime, as well as new silicon detector technology, in use now at LANSCE, address the two largest contributors to the uncertainty of in-beam measurements-the statistical uncertainty associated with proton counting and the systematic uncertainty in the neutron fluence measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.

  1. Measurements of the S-wave fraction in B 0K + π - μ + μ - decays and the B 0K ∗(892)0 μ + μ - differential branching fraction

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhukov, V.; Zucchelli, S.

    2016-11-01

    A measurement of the differential branching fraction of the decay B 0K ∗(892)0 μ + μ - is presented together with a determination of the S-wave fraction of the K + π - system in the decay B 0K +π- μ + μ -. The analysis is based on pp-collision data corresponding to an integrated luminosity of 3 fb-1 collected with the LHCb experiment. The measurements are made in bins of the invariant mass squared of the dimuon system, q 2. Precise theoretical predictions for the differential branching fraction of B 0K ∗(892)0 μ + μ - decays are available for the q 2 region 1 .1 < q 2 < 6 .0 GeV2 /c 4. In this q 2 region, for the K +π- invariant mass range 796 < m Kπ < 996 MeV /c 2, the S-wave fraction of the K +π- system in B 0K +π- μ + μ - decays is found to be {F}S=0.101± 0.017(stat)± 0.009(syst), and the differential branching fraction of B 0K ∗(892)0 μ + μ - decays is determined to be dB/d{q}^2=(0.{392}_{-0.019}^{+0.020}(stat)± 0.010(syst)± 0.027(norm))× 1{0}^{-7}{c}^4/{GeV}^2.

  2. Investigation on relaxation and conduction mechanism in Pb0.75K0.5Nb2O6 new ferroelectric ceramic

    NASA Astrophysics Data System (ADS)

    Belboukhari, A.; Choukri, E.; Gagou, Y.; Elmoznine, R.; Abdelmoula, N.; Neqali, A.; El Marssi, M.; Khemakhem, H.; Mezzane, D.

    2014-07-01

    Using conventional solid state synthesis under air, the sample Pb0.75K0.5Nb2O6 was prepared in a single-phase TTB structure as indicated from X-ray analysis. Impedance spectroscopy analysis of the dielectric properties of Pb0.75K0.5Nb2O6 ceramic were investigated in the frequency range, 1 Hz-1 MHz and in the temperature duration from room temperature to 550 °C. Impedance and modulus plots were used as tools to analyze the sample behavior as a function of frequency. Cole-Cole plots showed non-Debye relaxation. The nature of variation of the electrical conductivity, and value of activation energy of different temperature regions, suggest that the conduction process is of mixed-type (i.e., ionic polaronic and space charge generated from the oxygen ion vacancies). The structural and dielectric results are compared with three others TTB compounds derived from Pb0.75K0.5Nb2O6 (PKN) family: Pb1.85K1.15Li0.15Nb5O15 (PKLN), K3Li2Nb5O15 (KLN) and Pb1.8Gd0.1K1.1Nb5O15 (PGKN).

  3. Instrument and method for focusing X-rays, gamma rays and neutrons

    DOEpatents

    Smither, Robert K.

    1984-01-01

    A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.

  4. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOEpatents

    Smither, R.K.

    1982-03-25

    A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.

  5. Neutron measurement at the thermal column of the Malaysian Triga Mark II reactor using gold foil activation method and TLD

    NASA Astrophysics Data System (ADS)

    Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd

    2018-01-01

    In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

  6. Measurement of the CP Violation Parameter A_{Γ} in D^{0}→K^{+}K^{-} and D^{0}→π^{+}π^{-} Decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-06-30

    Asymmetries in the time-dependent rates of D^{0}→K^{+}K^{-} and D^{0}→π^{+}π^{-} decays are measured in a pp collision data sample collected with the LHCb detector during LHC Run 1, corresponding to an integrated luminosity of 3  fb^{-1}. The asymmetries in effective decay widths between D^{0} and D[over ¯]^{0} decays, sensitive to indirect CP violation, are measured to be A_{Γ}(K^{+}K^{-})=(-0.30±0.32±0.10)×10^{-3} and A_{Γ}(π^{+}π^{-})=(0.46±0.58±0.12)×10^{-3}, where the first uncertainty is statistical and the second systematic. These measurements show no evidence for CP violation and improve on the precision of the previous best measurements by nearly a factor of two.

  7. 26 CFR 1.401(k)-0 - Table of contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false Table of contents. 1.401(k)-0 Section 1.401(k)-0...) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-0 Table of contents... section in §§ 1.401(k)-1 through 1.401(k)-6. List of Sections § 1.401(k)-1Certain cash or deferred...

  8. 26 CFR 1.401(k)-0 - Table of contents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Table of contents. 1.401(k)-0 Section 1.401(k)-0...) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-0 Table of contents... section in §§ 1.401(k)-1 through 1.401(k)-6. List of Sections § 1.401(k)-1Certain cash or deferred...

  9. 26 CFR 1.401(k)-0 - Table of contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Table of contents. 1.401(k)-0 Section 1.401(k)-0...) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-0 Table of contents... section in §§ 1.401(k)-1 through 1.401(k)-6. List of Sections § 1.401(k)-1Certain cash or deferred...

  10. 26 CFR 1.401(k)-0 - Table of contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Table of contents. 1.401(k)-0 Section 1.401(k)-0...) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-0 Table of contents. This... §§ 1.401(k)-1 through 1.401(k)-6. List of Sections § 1.401(k)-1Certain cash or deferred arrangements...

  11. 26 CFR 1.401(k)-0 - Table of contents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Table of contents. 1.401(k)-0 Section 1.401(k)-0...) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-0 Table of contents... section in §§ 1.401(k)-1 through 1.401(k)-6. List of Sections § 1.401(k)-1Certain cash or deferred...

  12. Solution structure of lysine-free (K0) ubiquitin

    PubMed Central

    Huang, Tao; Li, Jess; Byrd, R Andrew

    2014-01-01

    Lysine-free ubiquitin (K0-Ub) is commonly used to study the ubiquitin-signaling pathway, where it is assumed to have the same structure and function as wild-type ubiquitin (wt-Ub). However, the K0-Ub 15N heteronuclear single quantum correlation NMR spectrum differs significantly from wt-Ub and the melting temperature is depressed by 19°C, raising the question of the structural integrity and equivalence to wt-Ub. The three-dimensional structure of K0-Ub was determined by solution NMR, using chemical shift and residual dipolar coupling data. K0-Ub adopts the same backbone structure as wt-Ub, and all significant chemical shifts can be related to interactions impacted by the K to R mutations. PMID:24591328

  13. Postoperative K-line conversion from negative to positive is independently associated with a better surgical outcome after posterior decompression with instrumented fusion for K-line negative cervical ossification of the posterior ligament.

    PubMed

    Koda, Masao; Furuya, Takeo; Saito, Junya; Ijima, Yasushi; Kitamura, Mitsuhiro; Ohtori, Seiji; Orita, Sumihisa; Inage, Kazuhide; Abe, Tetsuya; Noguchi, Hiroshi; Funayama, Toru; Kumagai, Hiroshi; Miura, Kosei; Nagashima, Katsuya; Yamazaki, Masashi

    2018-06-01

    Addition of posterior instrumented fusion to laminoplasty (posterior decompression with instrumented fusion: PDF) can improve the surgical outcome of patients with K-line (-) cervical ossification of the longitudinal ligament (OPLL) compared with laminoplasty alone. We sought to elucidate the factors that are significantly associated with a better outcome after PDF for K-line (-) OPLL. The present study included 38 patients who underwent PDF for K-line (-) OPLL and were followed up for at least 1 year after surgery. Clinical outcome was assessed using Japanese Orthopedic Association (JOA) scores for cervical myelopathy and the recovery rate was calculated. Patients who belonged to the upper quartile of all the patients according to rank order of the JOA score recovery rate were considered to have a good outcome. The correlations between good outcome, patient factors and imaging assessments were analyzed statistically. Univariate analyses showed that postoperative conversion of K-line from (-) to (+) (p = 0.004), no increase in the sagittal vertical axis from the center of gravity of the head to C7 (p = 0.07), and a lower grade of preoperative intramedullary T2-signal intensity (p = 0.03) were candidates for the association. Stepwise logistic regression analysis revealed that postoperative K-line conversion from (-) to (+) is an independent factor that is significantly associated with a better surgical outcome (p = 0.04). Postoperative K-line conversion from (-) to (+) is a factor independently associated with a better surgical outcome. These slides can be retrieved under Electronic Supplementary material.

  14. Feasibility and applications of the spin-echo modulation option for a small angle neutron scattering instrument at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Kusmin, A.; Bouwman, W. G.; van Well, A. A.; Pappas, C.

    2017-06-01

    We describe theoretical and practical aspects of spin-echo modulated small-angle neutron scattering (SEMSANS) as well as the potential combination with SANS. Based on the preliminary technical designs of SKADI (a SANS instrument proposed for the European Spallation Source) and a SEMSANS add-on, we assess the practicability, feasibility and scientific merit of a combined SANS and SEMSANS setup by calculating tentative SANS and SEMSANS results for soft matter, geology and advanced material samples that have been previously studied by scattering methods. We conclude that lengths from 1 nm up to 0.01 mm can be observed simultaneously in a single measurement. Thus, the combination of SANS and SEMSANS instrument is suited for the simultaneous observation of a wide range of length scales, e.g. for time-resolved studies of kinetic processes in complex multiscale systems.

  15. Observation of the Decays Λ_{b}^{0}→χ_{c1}pK^{-} and Λ_{b}^{0}→χ_{c2}pK^{-}.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Baszczyk, M; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chobanova, V; Chrzaszcz, M; Chubykin, A; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez, G; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Huard, Z-C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Morris, A P; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, C; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stoica, S; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M A; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-08-11

    The first observation of the decays Λ_{b}^{0}→χ_{c1}pK^{-} and Λ_{b}^{0}→χ_{c2}pK^{-} is reported using a data sample corresponding to an integrated luminosity of 3.0  fb^{-1}, collected by the LHCb experiment in pp collisions at center-of-mass energies of 7 and 8 TeV. The following ratios of branching fractions are measured: B(Λ_{b}^{0}→χ_{c1}pK^{-})/B(Λ_{b}^{0}→J/ψpK^{-})=0.242±0.014±0.013±0.009,B(Λ_{b}^{0}→χ_{c2}pK^{-})/B(Λ_{b}^{0}→J/ψpK^{-})=0.248±0.020±0.014±0.009,B(Λ_{b}^{0}→χ_{c2}pK^{-})/B(Λ_{b}^{0}→χ_{c1}pK^{-})=1.02±0.10±0.02±0.05,where the first uncertainty is statistical, the second systematic, and the third due to the uncertainty on the branching fractions of the χ_{c1}→J/ψγ and χ_{c2}→J/ψγ decays. Using both decay modes, the mass of the Λ_{b}^{0} baryon is also measured to be m_{Λ_{b}^{0}}=5619.44±0.28±0.26  MeV/c^{2}, where the first and second uncertainties are statistical and systematic, respectively.

  16. High temperature phase stability in Li{sub 0.12}Na{sub 0.88}NbO{sub 3}: A combined powder X-ray and neutron diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S. K.; Krishna, P. S. R.; Shinde, A. B.

    2015-09-07

    The phase stabilities of ecofriendly piezoelectric material of lithium doped sodium niobate for composition Li{sub 0.12}Na{sub 0.88}NbO{sub 3} (LNN12) have been investigated by a combination of powder X-ray and neutron diffraction techniques in the temperature range of 300–1100 K. We observed interesting changes with appearance or disappearance of the super-lattice reflections in the powder diffraction patterns. Unambiguous experimental evidence is shown for coexistence of paraelectric and ferroelectric orthorhombic phases in the temperature range of 525 K to 675 K. We identified the correct crystal structure of LNN12 with temperature and correlated it with observed anomaly in the physical properties. Identification of crystal structuremore » also helps in the mode assignments in Raman and infrared spectroscopies. We argued that application of chemical pressure as a result of Li substitution in NaNbO{sub 3} matrix favors the freezing of zone centre phonons in contrast to the freezing of zone boundary phonons in pure NaNbO{sub 3} with the variation of temperature.« less

  17. Correlation of Lunar South Polar Epithermal Neutron Maps: Lunar Exploration Neutron Detector and Lunar Prospector Neutron Detector

    NASA Technical Reports Server (NTRS)

    McClanahan, Timothy P.; Mitrofanov, I. G.; Boynton, W. V.; Sagdeev, R.; Trombka, J. I.; Starr, R. D.; Evans, L. G.; Litvak, M. L.; Chin, G.; Garvin, J.; hide

    2010-01-01

    The Lunar Reconnaissance Orbiter's (LRO), Lunar Exploration Neutron Detector (LEND) was developed to refine the lunar surface hydrogen (H) measurements generated by the Lunar Prospector Neutron Spectrometer. LPNS measurements indicated a approx.4,6% decrease in polar epithermal fluxes equivalent to (1.5+/-0,8)% H concentration and are direct geochemical evidence indicating water /high H at the poles. Given the similar operational and instrumental objectives of the LEND and LPNS systems, an important science analysis step for LEND is to test correlation with existing research including LPNS measurements. In this analysis, we compare corrected low altitude epithermal rate data from LPNS available via NASA's Planetary Data System (PDS) with calibrated LEND epithermal maps using a cross-correlation technique

  18. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation - An In vitro Study.

    PubMed

    Devale, Madhuri R; Mahesh, M C; Bhandary, Shreetha

    2017-01-01

    Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files significantly more number of cracks were seen at WL than

  19. A neutron camera system for MAST.

    PubMed

    Cecconello, M; Turnyanskiy, M; Conroy, S; Ericsson, G; Ronchi, E; Sangaroon, S; Akers, R; Fitzgerald, I; Cullen, A; Weiszflog, M

    2010-10-01

    A prototype neutron camera has been developed and installed at MAST as part of a feasibility study for a multichord neutron camera system with the aim to measure the spatial and time resolved 2.45 MeV neutron emissivity profile. Liquid scintillators coupled to a fast digitizer are used for neutron/gamma ray digital pulse shape discrimination. The preliminary results obtained clearly show the capability of this diagnostic to measure neutron emissivity profiles with sufficient time resolution to study the effect of fast ion loss and redistribution due to magnetohydrodynamic activity. A minimum time resolution of 2 ms has been achieved with a modest 1.5 MW of neutral beam injection heating with a measured neutron count rate of a few 100 kHz.

  20. Evaluation of surface preparation and maintenance of canal curvature following instrumentation with hand 'K' file and three different Ni-Ti rotary systems: A radiographic and SEM study.

    PubMed

    Bhatti, Namrata; Sroa, Renu; Sikri, Vimal K

    2010-04-01

    To determine the shaping ability and cleaning efficiency of hand K-flexofiles, ProTaper, LightSpeed and Mtwo instruments during the preparation of curved root canals in extracted human teeth. A total of 120 root canals of mandibular and maxillary molars with curvature more than 20° were divided into four groups of 30 each. In group A, canals were prepared using hand K-flexofiles following the crown down technique. In group B LightSpeed, in group C ProTaper, and in group D Mtwo rotary instruments were used to prepare the root canals. Using pre- and post-instrumentation radiographs, straightening of the canal curvature was determined with Corel Draw 9.0 software tools. The amount of debris and smear layer were quantified at three different areas (coronal, middle, and apical thirds) of root canal using SEM. The collected data were analyzed statistically using Student's paired 't' test. The mean change in curvature for hand K-files was 7.71°, for ProTaper files 6.03°, for Mtwo 5.43°, and for LightSpeed instruments were found to be 4.57°. The percentage change in the curvature for all the four groups was statistically highly significant (P< 0.01). LightSpeed instruments maintained the original canal curvature significantly (P< 0.01) better than the other instruments. For leftover debris, the minimum percentage was found to be associated with ProTaper (65.48%) followed by Mtwo (66.22%), LightSpeed (71.67%) and the maximum with hand K-files (74.16%). However, the difference in mean leftover debris between ProTaper and Mtwo was not significant. ProTaper and Mtwo resulted in good cleaning, and LightSpeed maintained the original canal curvature better than the ProTaper, Mtwo, or Hand K-files.

  1. The influence of simulated clinical use on the flexibility of rotary ProTaper Universal, K3 and EndoSequence nickel-titanium instruments.

    PubMed

    Viana, A C D; Pereira, E S J; Bahia, M G A; Buono, V T L

    2013-09-01

    To investigate the influence of cyclic flexural and torsional loading on the flexibility of ProTaper Universal, K3 and EndoSequence nickel-titanium instruments, in view of the hypothesis that these types of loading would decrease the flexibility of the selected NiTi rotary files. The instruments evaluated were S2 and F1 ProTaper Universal, sizes 20 and 25, .06 taper K3, and sizes 20 and 25, .06 taper EndoSequence. Flexibility was determined by 45° bending tests according to ISO 3630-1 specification. Values of the bending moment (MB ) obtained with new instruments were considered as the control group (CG). Bending tests were then conducted in instruments previously fatigued to one-fourth and three-fourths of their average fatigue life (fatigue groups, FG¼ and FG¾), as well as after cyclic torsional loading (torsional group, TG). Fatigue tests were carried out in a bench device that allowed the files to rotate freely inside an artificial canal with an angle of curvature of 45° and a radius of 5 mm. Cyclic torsional loading tests were performed that entailed rotating the instrument from zero angular deflection to 180° and then returning to zero applied torque in 20 cycles. Data were analysed using one-way analysis of variance at a significance level of 5%. Simulated clinical use by means of flexural fatigue tests did not affect the flexibility of the instruments, except for a significant increase in flexibility observed in a few instruments (P < 0.05). In addition, comparative statistical analyses between the values of MB measured in new instruments and after cyclic torsional loading showed no significant differences between them (P > 0.05). The flexibility of rotary ProTaper Universal, K3 and EndoSequence NiTi instruments, measured in bending tests, was not adversely affected by simulated clinical use in curved root canals. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. 26 CFR 1.168(k)-0 - Table of contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Table of contents. 1.168(k)-0 Section 1.168(k)-0...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.168(k)-0 Table of contents. This section lists the headings that appear in § 1.168(k)-1. § 1.168(k)-1Additional first year...

  3. 26 CFR 1.168(k)-0 - Table of contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Table of contents. 1.168(k)-0 Section 1.168(k)-0...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.168(k)-0 Table of contents. This section lists the headings that appear in § 1.168(k)-1. § 1.168(k)-1Additional first year...

  4. 26 CFR 1.168(k)-0 - Table of contents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Table of contents. 1.168(k)-0 Section 1.168(k)-0...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.168(k)-0 Table of contents. This section lists the headings that appear in § 1.168(k)-1. § 1.168(k)-1Additional first year...

  5. 26 CFR 1.168(k)-0 - Table of contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Table of contents. 1.168(k)-0 Section 1.168(k)-0...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.168(k)-0 Table of contents. This section lists the headings that appear in § 1.168(k)-1. § 1.168(k)-1Additional first year...

  6. 26 CFR 1.168(k)-0 - Table of contents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Table of contents. 1.168(k)-0 Section 1.168(k)-0...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.168(k)-0 Table of contents. This section lists the headings that appear in § 1.168(k)-1. § 1.168(k)-1Additional first year...

  7. NEUTRON ABSORPTION AND SHIELDING DEVICE

    DOEpatents

    Axelrad, I.R.

    1960-06-21

    A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.

  8. Measurement of K 0 S and K *0 in p+p, d+Au, and Cu+Cu collisions at sqrt S NN = 200 GeV

    DOE PAGES

    Adare, A.; Aidala, C.

    2014-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider has performed a systematic study of K 0 S and K *0 meson production at midrapidity in p+p, d+Au, and Cu+Cu collisions at sqrt S NN = 200 GeV. The K 0 S and K *0 mesons are reconstructed via their K 0 S and π 0(→γγ)π 0 (→γγ) and K *0K ± π ± decay modes, respectively. The measured transverse-momentum spectra are used to determine the nuclear modification factor of K 0 S and K *0 mesons in d+Au and Cu+Cu collisions at different centralities. In the d+Aumore » collisions, the nuclear modification factor of K 0 S and K *0 mesons is almost constant as a function of transverse momentum and is consistent with unity showing that cold-nuclear-matter effects do not play a significant role in the measured kinematic range. In Cu+Cu collisions, within the uncertainties no nuclear modification is registered in peripheral collisions. In central collisions, both mesons show suppression relative to the expectations from the p+p yield scaled by the number of binary nucleon-nucleon collisions in the Cu+Cu system. In the p T range 2–5 GeV/c, the strange mesons ( K 0 S, K *0) similarly to the Φ meson with hidden strangeness, show an intermediate suppression between the more suppressed light quark mesons (π 0) and the nonsuppressed baryons (p, p-bar). At higher transverse momentum, p T > 5 GeV/c, production of all particles is similarly suppressed by a factor of ≈2. (auth)« less

  9. Measurement of indirect CP-violating asymmetries in D 0K +K - and D 0→π +π - decays at CDF

    DOE PAGES

    Aaltonen, Timo Antero

    2014-12-30

    We report a measurement of the indirect CP-violating asymmetries (A Γ) between effective lifetimes of anticharm and charm mesons reconstructed in D 0K +K - and D 0→π +π - decays. We use the full data set of proton-antiproton collisions collected by the Collider Detector at Fermilab experiment and corresponding to 9.7 fb -1 of integrated luminosity. The strong-interaction decay D *+→D 0π + is used to identify the meson at production as D 0 or D ¯0. We statistically subtract D 0 and D ¯0 mesons originating from b-hadron decays and measure the yield asymmetry between anticharm and charmmore » decays as a function of decay time. We measure A Γ(K +K -)=(-0.19±0.15(stat)±0.04(syst))%and A Γ(π +π -)=(-0.01±0.18(stat)±0.03(syst))%. The results are consistent with the hypothesis of CP symmetry and their combination yields A Γ=(-0.12±0.12)%.« less

  10. Measurement of indirect CP-violating asymmetries in D 0K +K - and D 0→π +π - decays at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, Timo Antero

    We report a measurement of the indirect CP-violating asymmetries (A Γ) between effective lifetimes of anticharm and charm mesons reconstructed in D 0K +K - and D 0→π +π - decays. We use the full data set of proton-antiproton collisions collected by the Collider Detector at Fermilab experiment and corresponding to 9.7 fb -1 of integrated luminosity. The strong-interaction decay D *+→D 0π + is used to identify the meson at production as D 0 or D ¯0. We statistically subtract D 0 and D ¯0 mesons originating from b-hadron decays and measure the yield asymmetry between anticharm and charmmore » decays as a function of decay time. We measure A Γ(K +K -)=(-0.19±0.15(stat)±0.04(syst))%and A Γ(π +π -)=(-0.01±0.18(stat)±0.03(syst))%. The results are consistent with the hypothesis of CP symmetry and their combination yields A Γ=(-0.12±0.12)%.« less

  11. Calibration of the JET neutron activation system for DT operation

    NASA Astrophysics Data System (ADS)

    Bertalot, L.; Roquemore, A. L.; Loughlin, M.; Esposito, B.

    1999-01-01

    The neutron activation system at JET is a pneumatic transfer system capable of positioning activation samples close to the plasma. Its primary purpose is to provide a calibration for the time-dependent neutron yield monitors (fission chambers and solid state detectors). Various activation reactions with different high energy thresholds were used including 56Fe(n,p) 56Mn, 27Al(n,α) 24Na, 93Nb(n,2n) 92mNb, and 28Si(n,p) 28Al reactions. The silicon reaction, with its short half life (2.25 min), provides a prompt determination of the 14 MeV DT yield. The neutron induced γ-ray activity of the Si samples was measured using three sodium iodide scintillators, while two high purity germanium detectors were used for other foils. It was necessary to use a range of sample masses and different counting geometries in order to cover the wide range of neutron yields (1015-1019 neutrons) while avoiding excessive count rates in the detectors. The absolute full energy peak efficiency calibration of the detectors was measured taking into account the source-detector geometry, the self-attenuation of the samples and cross-talk effects. An error analysis of the neutron yield measurement was performed including uncertainties in efficiency calibration, neutron transport calculations, cross sections, and counting statistics. Cross calibrations between the different irradiation ends were carried out in DD and DT (with 1% and 10% tritium content) discharges. The effect of the plasma vertical displacement was also experimentally studied. An agreement within 10% was found between the 14 MeV neutron yields measured from Si, Fe, Al, Nb samples in DT discharges.

  12. [The Profile of Leisure Activities, a promising instrument in occupational therapy].

    PubMed

    Dutil, Elisabeth; Bier, Nathalie; Gaudreault, Céline

    2007-10-04

    Although the benefits of leisure activities are well known, few instruments have been specifically designed to measure a person's engagement in their leisure activities and to assess the personal or environmental factors affecting their capacity to participate in leisure activities. The purpose of this paper is to present the steps leading to the development of the Profil du Loisir between 1990 and 2002. The planning, construction, and validation of the tool were done according to the steps suggested by Benson and Clark (1982). The first versions were tested by occupational therapists on individuals with traumatic brain injuries. The validation led to the development of the final version (3.0). The inter-rater reliability of the instrument was rated from acceptable (kappa 0.21-0.4) to very good (0.61-0.80) and the test-retest reliability was rated from acceptable to moderate (0.41-0.60). The Profil du Loisir is a promising tool that invites occupational therapists to systematically consider and assess client leisure time in their practice.

  13. Study of the decays D0-->pi{-}e{+}nu{e}, D{0}-->K{-}e{+}nu{e}, D{+}-->pi{0}e{+}nu{e}, and D{+}-->K0e{+}nu{e}.

    PubMed

    Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Besson, D; Pedlar, T K

    2008-06-27

    By using 1.8x10{6} DDpairs, we have measured B(D{0}-->pi{-}e{+}nu{e})=0.299(11)(9)%, B(D{+}-->pi{0}e{+}nu{e})=0.373(22)(13)%, B(D{0}-->K{-}e{+}nu{e})=3.56(3)(9)%, and B(D{+}-->K{0}e{+}nu{e})=8.53(13)(23)% and have studied the q;{2} dependence of the form factors. By combining our results with recent lattice calculations, we obtain |V{cd}|=0.217(9)(4)(23) and |V{cs}|=1.015(10)(11)(106).

  14. Studying Phobos subsurface structure elementary composition by neutron and gamma-rays spectrometers "NS HEND" from "Phobos-Grunt" mission.

    NASA Astrophysics Data System (ADS)

    Kozyrev, S. Alexander; Litvak, Maxim; Malakhov, Alexey; Mokrousov, Maxim; Mitrofanov, Igor; Sanin, Anton; Schulz, Rita; Shvetsov, Valery; Rogozhin, Alexander; Timoshenko, Genagy; Tretyakov, Vladislav; Vostrukhin, Andrey

    The Neutron Spectrometer HEND (NS HEND) has been proposed for studying elemental com-position of Phobos (the Mars's moon) regolith by "Phobos-Grunt" mission. NS HEND have been selected by the Federal Space Agency of Russia for the Lander of the "Phobos-Grunt" mission scheduled for launch in 2011. The shallow subsurface of Phobos might be studied by observations of induced nuclear gamma-ray lines and neutron emission. Secondary gamma-rays and neutrons are produced by energetic Galactic Cosmic Rays within 1-2 meter layer of subsur-face. The knowledge of the spectral density of neutrons in addition to measurements of nuclear gamma lines allows to deconvolve concentrations of soil-constituting elements. That is why nuclear instruments include both the segment for detection of gamma ray lines and segment of neutron spectrometer for the measurement of the neutron leakage spectra. Moreover, mea-surements of neutrons at 2.2 MeV line will also allow to study the content of hydrogen within subsurface layer about 1 meter deep. This instrument, will be able to provide observational data for composition of Phobos regolith and content of natural radioactive elements K, U and Th, and also for content of hydrogen or water ice in the Phobos subsurface. At present, the flight units of NS HEND instrument is manufactured, tested and current go through physical calibration.

  15. On the Determination of C0 (or A0), D0K, H0K, and Some Dark States for Symmetric-top Molecules from Infrared Spectra without the Need for Localized Perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maki, Arthur; Masiello, Tony; Blake, Thomas A

    2009-05-01

    For symmetric top molecules, the normal Δk = 0, Δl = 0 and Δk = ±1, Δl = ±1 selection rules for parallel and perpendicular bands, respectively, do not allow the determination of the K-dependent rotational constants, C 0 (or A 0), D 0 K, and H 0 K. However, we show here that several different combinations of allowed and apparently unperturbed rovibrational infrared transitions can give access to those constants. A necessary ingredient for the application of this technique is a band with selection rules Δk = ±1 (or Δk = 0), Δl = ∓2, such as an overtonemore » or difference band, and appropriate other bands. Bands with selection rules Δk = ±2, Δl = ∓1 are also useful but are seldom found. As a general rule, more than one vibrational transition is needed. Examples are given for boron trifluoride (BF 3), sulfur trioxide (SO 3), and cyclopropane (C 3H 6) for which there are microwave measurements that provide a check on the derived constants. The technique is also extended to a D 2d molecule, allene, even though we have no measurements to use as an example. Examples are also given for the determination of dark states from difference bands, and/or hot bands, and also whole forbidden bands that arise from mixing with distant energy levels.« less

  16. SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue-Langevin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devishvili, A.; Zhernenkov, K.; Institut Laue-Langevin, BP 156, 38042 Grenoble

    2013-02-15

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 Multiplication-Sign 10{sup 4} n cm{sup -2} s{sup -1} with monochromatization {Delta}{lambda}/{lambda}= 0.7% and angular divergence {Delta}{alpha}= 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzersmore » or a {sup 3}He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.« less

  17. Accuracy of neutron self-activation method with iodine-containing scintillators for quantifying 128I generation using decay-fitting technique

    NASA Astrophysics Data System (ADS)

    Nohtomi, Akihiro; Wakabayashi, Genichiro

    2015-11-01

    We evaluated the accuracy of a self-activation method with iodine-containing scintillators in quantifying 128I generation in an activation detector; the self-activation method was recently proposed for photo-neutron on-line measurements around X-ray radiotherapy machines. Here, we consider the accuracy of determining the initial count rate R0, observed just after termination of neutron irradiation of the activation detector. The value R0 is directly related to the amount of activity generated by incident neutrons; the detection efficiency of radiation emitted from the activity should be taken into account for such an evaluation. Decay curves of 128I activity were numerically simulated by a computer program for various conditions including different initial count rates (R0) and background rates (RB), as well as counting statistical fluctuations. The data points sampled at minute intervals and integrated over the same period were fit by a non-linear least-squares fitting routine to obtain the value R0 as a fitting parameter with an associated uncertainty. The corresponding background rate RB was simultaneously calculated in the same fitting routine. Identical data sets were also evaluated by a well-known integration algorithm used for conventional activation methods and the results were compared with those of the proposed fitting method. When we fixed RB = 500 cpm, the relative uncertainty σR0 /R00.02 was achieved for R0/RB ≥ 20 with 20 data points from 1 min to 20 min following the termination of neutron irradiation used in the fitting; σR0 /R00.01 was achieved for R0/RB ≥ 50 with the same data points. Reasonable relative uncertainties to evaluate initial count rates were reached by the decay-fitting method using practically realistic sampling numbers. These results clarified the theoretical limits of the fitting method. The integration method was found to be potentially vulnerable to short-term variations in background levels, especially

  18. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  19. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE PAGES

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.; ...

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  20. Dalitz plot analyses of J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → K s 0 K ± π ∓ produced via e + e - annihilation with initial-state radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    We study the processes e + e - → γ ISR J / ψ , where J / ψ → π + π - π 0 , J / ψ → K + K - π 0 , and J / ψ → Kmore » $$0\\atop{S}$$ K ± π ∓ using a data sample of 519 fb - 1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e + e - collider at center-of-mass energies at and near the Υ ( n S ) ( n = 2 , 3 , 4 ) resonances.« less

  1. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  2. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation – An In vitro Study

    PubMed Central

    Mahesh, MC; Bhandary, Shreetha

    2017-01-01

    Introduction Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. Aim This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. Materials and Methods In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Results Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files

  3. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  4. Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Dolan; M. J. Marcath; M. Flaska

    2012-07-01

    Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample’s mass and enrichment. Using MCNPX-PoliMi, amore » system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5” by 5” EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX

  5. Neutron Diffraction Study of Parasitic Nd-Moment Order in the Checkerboard-Type Phase Nd 1.3Sr 0.7NiO 4

    DOE PAGES

    Kobayashi, Riki; Yoshizawa, Hideki; Matsuda, Masaaki; ...

    2015-05-25

    In this paper, the Nd-moment order in the layered nickelate Nd 2-xSr xNiO 4 (x = 0.7) has been investigated by performing a neutron diffraction experiment using a single crystal sample. First, the checkerboard (CB)-type charge order was confirmed by observing the temperature dependence of the nuclear superlattice peak at Q=(5,0,0) between 1.9 and 300 K, which indicates that the transition temperature of the CB-type charge order is above 300 K. Magnetic superlattice peaks with the propagation vector k=(1-ε,0,1) appear below 67 K, and the value of ε was determined to be 0.455 in good agreement with previous studies. Themore » intensity of the magnetic superlattice peaks appearing below 67 K shows a sharp increase below ≈20 K. This behavior indicates that the Nd moments freeze under the influence of the Ni ordering. The CB-type antiferromagnetic (AFM) Ni order in the NiO 2 layers is stacked antiferromagnetically in the c-axis direction, while the Nd moments in the Nd/SrO 2 layers are coupled antiferromagnetically with the Ni moments. Finally, the Nd moments are parallel to the c-axis, while the Ni moments are canted towards the c-axis direction from the basal ab-plane at low temperatures where the Nd moments are well ordered.« less

  6. Cutting efficiency of four different rotary nickel: Titanium instruments

    PubMed Central

    Cecchin, Doglas; de Sousa-Neto, Manoel Damião; Pécora, Jesus Djalma; Gariba-Silva, Ricardo

    2011-01-01

    Aim: The aim of this study was to evaluate the cutting efficiency of rotary nickel-titanium (NiTi) instruments K3, NiTi Tee, Profile, and Quantec with taper size 04/25. Materials and Methods: The number of samples was 10 for each group (n = 10). The cutting efficiency was measured by the mass loss from each acrylic resin block after instrumentation of a simulated canal using the Crown-down technique. Results: The analysis of variance (ANOVA) showed that there was a statistically significant difference among the studied groups. The Tukey's test showed that the acrylic resin blocks prepared with instruments K3 (0.00369 ± 0.00022), NiTi Tee (0.00368 ± 0.00023), and Profile (0.00351 ± 0.00026) presented the greatest mass loss, showing no statistically significant difference among them (P < 0.05). The lowest mass loss was found in the blocks prepared with Quantec instruments (0.00311 ± 0.0003) (P < 0.05). Conclusions: It could be concluded that the K3, NiTi Tee, and Profile instruments presented a greater cutting efficiency than the Quantec instruments. PMID:21814349

  7. Characterizing Background Events in Neutron Transmutation Doped Thermistors for CUORE-0

    NASA Astrophysics Data System (ADS)

    Dutta, Suryabrata; Cuore Collaboration

    2017-09-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale neutrinoless double-beta decay experiment operating at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment is comprised of 988 TeO2 bolometric crystals arranged into 19 towers and operated at a temperature of 15 mK. A neutron-transmutation-doped (NTD) Ge thermistor measures the thermal response from particles incident on the crystals. However, bulk and surface contamination of the NTD thermistors themselves produce distorted thermal responses inside the thermistor volume. Although these pulses are efficiently removed from the double-beta decay analysis by pulse shape cuts, they can be used to extract information about thermistor contamination. I will present a multifaceted approach to characterize these events, in which I implement an improved hot-electron thermal model, Geant4 Monte Carlo simulations of background events, and data from a previous experiment, CUORE-0, reprocessed with a new optimal filter. Using this approach, rates and energy deposition from contamination inside the NTD thermistors are measured, giving us better understanding of a CUORE background source.

  8. Neutron scattering measurements in {sup 197}Au from 850 keV to 2.0 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Connor, M.; Chen, J.; Egan, J.J.

    1995-10-01

    Differential elastic and inelastic neutron scattering cross-sections for low lying levels in {sup 197}Au have been measured for incident neutron energies of 1.0 MeV, 1.5 MeV and 2.0 MeV. In addition, the total neutron cross sections in {sup 197}Au was measured from 850 keV to 1.5 MeV. For both experiments the UML 5.5 MV Van-de-Graaff accelerator with a Mobley post acceleration compression system, produced subnanosecond proton pulses which generated neutrons via the {sup 7}Li(p,n) {sup 7}Be reaction.

  9. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    USDA-ARS?s Scientific Manuscript database

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  10. Ultra Low Level Environmental Neutron Measurements Using Superheated Droplet Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, A.C.; Centro de Fisica Nuclear, Universidade de Lisboa. Av. Prof. Gama Pinto, 2, 1649- 003 Lisboa; Felizardo, M.

    2015-07-01

    Through the application of superheated droplet detectors (SDDs), the SIMPLE project for the direct search for dark matter (DM) reached the most restrictive limits on the spin-dependent sector to date. The experiment is based on the detection of recoils following WIMP-nuclei interaction, mimicking those from neutron scattering. The thermodynamic operation conditions yield the SDDs intrinsically insensitive to radiations with linear energy transfer below ∼150 keVμm{sup -1} such as photons, electrons, muons and neutrons with energies below ∼40 keV. Underground facilities are increasingly employed for measurements in a low-level radiation background (DM search, gamma-spectroscopy, intrinsic soft-error rate measurements, etc.), where themore » rock overburden shields against cosmic radiation. In this environment the SDDs are sensitive only to α-particles and neutrons naturally emitted from the surrounding materials. Recently developed signal analysis techniques allow discrimination between neutron and α-induced signals. SDDs are therefore a promising instrument for low-level neutron and α measurements, namely environmental neutron measurements and α-contamination assays. In this work neutron measurements performed in the challenging conditions of the latest SIMPLE experiment (1500 mwe depth with 50-75 cm water shield) are reported. The results are compared with those obtained by detailed Monte Carlo simulations of the neutron background induced by {sup 238}U and {sup 232}Th traces in the facility, shielding and detector materials. Calculations of the neutron energy distribution yield the following neutron fluence rates (in 10{sup -8} cm{sup -2}s{sup -1}): thermal (<0.5 eV): 2.5; epithermal (0.5 eV-100 keV): 2.2; fast (>1 MeV): 3.9. Signal rates were derived using standard cross sections and codes routinely employed in reactor dosimetry. The measured and calculated neutron count rates per unit of active mass were 0.15 ct/kgd and 0.33 ct/kg-d respectively. As

  11. Neutron-transmutation-doped germanium bolometers

    NASA Technical Reports Server (NTRS)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  12. Evaluation of Am–Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    DOE PAGES

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; ...

    2016-05-25

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra ofmore » various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.« less

  13. Dalitz plot analysis of the decay B 0 ( B ¯ 0 ) → K ± π ∓ π 0

    DOE PAGES

    Aubert, B.; Bona, M.; Karyotakis, Y.; ...

    2008-09-12

    Here, we report a Dalitz-plot analysis of the charmless hadronic decays of neutral B mesons to K ± π ∓ π 0 . With a sample of ( 231.8 ± 2.6 ) × 10 6 Υ ( 4 S ) → Bmore » $$\\bar{B}$$ decays collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, we measure the magnitudes and phases of the intermediate resonant and nonresonant amplitudes for B 0 and $$\\bar{B}$$ 0 decays and determine the corresponding C P -averaged branching fractions and charge asymmetries. Furthermore, we measure the inclusive branching fraction and C P -violating charge asymmetry and found it to be B ( B 0K + π - π 0 ) = ( 35.7$$+2.6\\atop{-1.5}$$ + 2.6 - 1.5 ± 2.2 ) × 10 - 6 and A C P = - 0.030 $$+ 0.045\\atop{- 0.051}$$ ± 0.055 where the first errors are statistical and the second systematic. We observe the decay B 0K * 0 ( 892 ) π 0 with the branching fraction B ( B 0K * 0 ( 892 ) π 0 ) = ( 3.6 $$+ 0.7\\atop- {0.8}$$ ± 0.4 ) × 10 - 6 . This measurement differs from zero by 5.6 standard deviations (including the systematic uncertainties). The selected sample also contains B 0 → $$\\bar{D}$$ 0 π 0 decays where $$\\bar{D}$$ 0K + π - , and we measure B ( B 0 → $$\\bar{D}$$ 0π 0 ) = ( 2.93 ± 0.17 ± 0.18 ) × 10 - 4 .« less

  14. Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, Rebecca J.; Conway, Adam M.; Heineck, Daniel

    2013-10-15

    Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The openmore » space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.« less

  15. Radiological risks of neutron interrogation of food.

    PubMed

    Albright, S; Seviour, R

    2015-09-01

    In recent years there has been growing interest in the use of neutron scanning techniques for security. Neutron techniques with a range of energy spectra including thermal, white and fast neutrons have been shown to work in different scenarios. As international interest in neutron scanning increases the risk of activating cargo, especially foodstuffs must be considered. There has been a limited amount of research into the activation of foods by neutron beams and we have sought to improve the amount of information available. In this paper we show that for three important metrics; activity, ingestion dose and Time to Background there is a strong dependence on the food being irradiated and a weak dependence on the energy of irradiation. Previous studies into activation used results based on irradiation of pharmaceuticals as the basis for research into activation of food. The earlier work reports that (24)Na production is the dominant threat which motivated the search for (24)Na(n,γ)(24)Na in highly salted foods. We show that (42)K can be more significant than (24)Na in low sodium foods such as Bananas and Potatoes.

  16. Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in B+→ρ0K*+ and B+→f0(980)K*+ decays

    NASA Astrophysics Data System (ADS)

    Del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Karbach, T. M.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-03-01

    We present measurements of the branching fractions, longitudinal polarization, and direct CP-violation asymmetries for the decays B+→ρ0K*+ and B+→f0(980)K*+ with a sample of (467±5)×106BB¯ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e+e- collider at the SLAC National Accelerator Laboratory. We observe B+→ρ0K*+ with a significance of 5.3σ and measure the branching fraction B(B+→ρ0K*+)=(4.6±1.0±0.4)×10-6, the longitudinal polarization fL=0.78±0.12±0.03, and the CP-violation asymmetry ACP=0.31±0.13±0.03. We observe B+→f0(980)K*+ and measure the branching fraction B(B+→f0(980)K*+)×B(f0(980)→π+π-)=(4.2±0.6±0.3)×10-6 and the CP-violation asymmetry ACP=-0.15±0.12±0.03. The first uncertainty quoted is statistical and the second is systematic.

  17. Neutron activation analysis for antimetabolites. [in food samples

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  18. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  19. Neutron capillary optics: status and perspectives

    NASA Astrophysics Data System (ADS)

    Kumakhov, M. A.

    2004-08-01

    The article is dedicated to the current status of neutron polycapillary optics and its application. X-ray and neutron polycapillary optics was first suggested in my papers published and patented about 20 years ago. The first X-ray lens was made about 20 years ago (in 1985) in my laboratory at the Kurchatov Institute of Atomic Power. The first neutron assembled capillary lens consisting of several thousand polycapillaries was assembled and tested 2 years later at the atomic reactor of the Kurchatov Institute. A great many experiments were done at the atomic reactors in Russia, Germany, France, USA for neutron beam focusing, turning. Most successful were the experiments on turning neutron beam at the atomic reactor in Berlin, where it was possible to turn the neutron beam by the angle of 20°. Numerous experiments in Germany and France proved high efficacy of polycapillary optics in controlling thermal neutron radiation. The article gives new results obtained in creating pure beams of thermal neutrons on the basis of polycapillary optics. New polycapillary technologies developed at IRO, Moscow/Unisantis, Geneva, enable creation of neutron diffractometers, spectrometers, reflectometers, microscopes—all with a micron-size focal spot. All instruments are portable and highly efficient. Such generation of instruments has been already developed and realized for X-rays, and the same process for neutron beams has already started. So, neutron polycapillary optics makes it possible to create new instruments and raise the level of scientific research, and also enables use of neutron beam for industrial application in production environment.

  20. Clinical Evaluation of Quality of Obturation and Instrumentation Time using Two Modified Rotary File Systems with Manual Instrumentation in Primary Teeth

    PubMed Central

    Govindaraju, Lavanya; Subramanian, EMG

    2017-01-01

    Introduction Pulp therapy in primary teeth has been performed using various instrumentation techniques. However, the conventional instrumentation technique used for root canal preparation in primary teeth is hand instrumentation. Various Nickel-Titanium (Ni-Ti) instruments are available to perform efficient root canal preparation in primary teeth. These Ni-Ti instruments has been designed to aid in better root canal preparation in permanent teeth but are rarely used in primary teeth. It is necessary to assess the feasibility of using these adult rotary files with a modified sequence in primary teeth. Aim To compare the quality of obturation and instrumentation time during root canal preparation using hand files and modified rotary file systems in primary molars. Materials and Methods Forty-five primary mandibular molars were randomly assigned to three experimental groups (n=15). Group I was instrumented using k-hand files, Group II with S2 ProTaper universal file and Group III with 0.25 tip 4% taper K3 rotary file. Standardized digital radiographs were taken before and after root canal instrumentation. Root canal preparation time was also recorded. Statistical analysis of the obtained data was done using SPSS Software version 17.0. An intergroup comparison of the instrumentation time and the quality of obturation was done using ANOVA and Chi-square test with the level of significance set at 0.05. Results No significant differences were noted with regard to the quality of obturation (p=0.791). However, a statistically significant difference was noted in the instrumentation time between the three groups (p<0.05). ProTaper rotary system had significantly lesser instrumentation time when compared to that of K3 rotary system and hand file system. Conclusion The hand files, S2 ProTaper Universal and K3 0.25 tip 4% taper files systems performed similarly with respect to the quality of obturation. There was a significant difference in instrumentation time with manual

  1. Clinical Evaluation of Quality of Obturation and Instrumentation Time using Two Modified Rotary File Systems with Manual Instrumentation in Primary Teeth.

    PubMed

    Govindaraju, Lavanya; Jeevanandan, Ganesh; Subramanian, Emg

    2017-09-01

    Pulp therapy in primary teeth has been performed using various instrumentation techniques. However, the conventional instrumentation technique used for root canal preparation in primary teeth is hand instrumentation. Various Nickel-Titanium (Ni-Ti) instruments are available to perform efficient root canal preparation in primary teeth. These Ni-Ti instruments has been designed to aid in better root canal preparation in permanent teeth but are rarely used in primary teeth. It is necessary to assess the feasibility of using these adult rotary files with a modified sequence in primary teeth. To compare the quality of obturation and instrumentation time during root canal preparation using hand files and modified rotary file systems in primary molars. Forty-five primary mandibular molars were randomly assigned to three experimental groups (n=15). Group I was instrumented using k-hand files, Group II with S2 ProTaper universal file and Group III with 0.25 tip 4% taper K3 rotary file. Standardized digital radiographs were taken before and after root canal instrumentation. Root canal preparation time was also recorded. Statistical analysis of the obtained data was done using SPSS Software version 17.0. An intergroup comparison of the instrumentation time and the quality of obturation was done using ANOVA and Chi-square test with the level of significance set at 0.05. No significant differences were noted with regard to the quality of obturation (p=0.791). However, a statistically significant difference was noted in the instrumentation time between the three groups (p<0.05). ProTaper rotary system had significantly lesser instrumentation time when compared to that of K3 rotary system and hand file system. The hand files, S2 ProTaper Universal and K3 0.25 tip 4% taper files systems performed similarly with respect to the quality of obturation. There was a significant difference in instrumentation time with manual instrumentation compared to the modified rotary file systems in

  2. Time-dependent analysis of B 0K S 0 π - π + γ decays and studies of the K + π - π + system in B + → K + π - π + γ decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Amo Sanchez, P.; Lees, J. P.; Poireau, V.

    Wemore » measure the time-dependent CP asymmetry in the radiative-penguin decay B 0K S 0 π - π + γ , using a sample of 471×10 6 Υ(4S)→BB-events recorded with the BABAR detector at the PEP-II e+e- storage ring at SLAC. Using events with m Kππ < 1.8 GeV/c 2, we measure the branching fractions of B+→K+π-π+γ and B0K0π-π+γ, the branching fractions of the kaonic resonances decaying to K+π-π+, as well as the overall branching fractions of the B+→ρ0K+γ, B+→K*0π+γ and S-wave B+→(Kπ)0*0π+γ components. For events from the ρ mass band, we measure the CP-violating parameters SKS0π+π-γ=0.14±0.25±0.03 and CKS0π+π-γ=-0.39±0.20-0.02+0.03, where the first uncertainties are statistical and the second are systematic. extract from this measurement the time-dependent CP asymmetry related to the CP eigenstate ρ0KS0 and obtain SKS0ργ=-0.18±0.32-0.05+0.06, which provides information on the photon polarization in the underlying b→sγ transition.« less

  3. Time-dependent analysis of B 0K S 0 π - π + γ decays and studies of the K + π - π + system in B + → K + π - π + γ decays

    DOE PAGES

    del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; ...

    2016-03-29

    Wemore » measure the time-dependent CP asymmetry in the radiative-penguin decay B 0K S 0 π - π + γ , using a sample of 471×10 6 Υ(4S)→BB-events recorded with the BABAR detector at the PEP-II e+e- storage ring at SLAC. Using events with m Kππ < 1.8 GeV/c 2, we measure the branching fractions of B+→K+π-π+γ and B0K0π-π+γ, the branching fractions of the kaonic resonances decaying to K+π-π+, as well as the overall branching fractions of the B+→ρ0K+γ, B+→K*0π+γ and S-wave B+→(Kπ)0*0π+γ components. For events from the ρ mass band, we measure the CP-violating parameters SKS0π+π-γ=0.14±0.25±0.03 and CKS0π+π-γ=-0.39±0.20-0.02+0.03, where the first uncertainties are statistical and the second are systematic. extract from this measurement the time-dependent CP asymmetry related to the CP eigenstate ρ0KS0 and obtain SKS0ργ=-0.18±0.32-0.05+0.06, which provides information on the photon polarization in the underlying b→sγ transition.« less

  4. Rater reliability and concurrent validity of the Keyboard Personal Computer Style instrument (K-PeCS).

    PubMed

    Baker, Nancy A; Cook, James R; Redfern, Mark S

    2009-01-01

    This paper describes the inter-rater and intra-rater reliability, and the concurrent validity of an observational instrument, the Keyboard Personal Computer Style instrument (K-PeCS), which assesses stereotypical postures and movements associated with computer keyboard use. Three trained raters independently rated the video clips of 45 computer keyboard users to ascertain inter-rater reliability, and then re-rated a sub-sample of 15 video clips to ascertain intra-rater reliability. Concurrent validity was assessed by comparing the ratings obtained using the K-PeCS to scores developed from a 3D motion analysis system. The overall K-PeCS had excellent reliability [inter-rater: intra-class correlation coefficients (ICC)=.90; intra-rater: ICC=.92]. Most individual items on the K-PeCS had from good to excellent reliability, although six items fell below ICC=.75. Those K-PeCS items that were assessed for concurrent validity compared favorably to the motion analysis data for all but two items. These results suggest that most items on the K-PeCS can be used to reliably document computer keyboarding style.

  5. Effect of (Li,Ce) doping in Aurivillius phase material Na0.25K0.25Bi2.5Nb2O9

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Wang, Chun-Ming

    2007-01-01

    The effect of (Li,Ce) substitution for A site on the properties of Na0.25K0.25Bi2.5Nb2O9-based ceramics was investigated. The piezoelectric activity of Na0.25K0.25Bi2.5Nb2O9-based ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature (TC) gradually increases from 668to684°C with increasing the (Li,Ce) modification. The piezoelectric coefficient d33 of the [(Na0.5K0.5)Bi]0.44(LiCe)0.03[]0.03Bi2Nb2O9 ceramic was found to be 28pC/N, the highest value among the Na0.25K0.25Bi2.5Nb2O9-based ceramics and also almost 50% higher than the reported d33 values of other bismuth layer-structured ferroelectric systems (˜5-19pC/N). The planar coupling factors kp and kt were found to be 8.0% and 23.0%, together with the high TC (˜670°C) and stable piezoelectric properties, demonstrating that the (Li,Ce) modified Na0.25K0.25Bi2.5Nb2O9-based material a promising candidate for high temperature applications.

  6. Neutron transmission measurements of poly and pyrolytic graphite crystals

    NASA Astrophysics Data System (ADS)

    Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.

  7. A novel approach to neutron dosimetry.

    PubMed

    Balmer, Matthew J I; Gamage, Kelum A A; Taylor, Graeme C

    2016-11-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of neutron workplace fields. Existing neutron dosimetry instrumentation does not account for this directional distribution, resulting in conservative estimates of dose in neutron workplace fields (by around a factor of 2, although this is heavily dependent on the type of field). This conservatism could influence epidemiological studies on the health effects of radiation exposure. This paper reports on the development of an instrument which can estimate the effective dose of a neutron field, accounting for both the direction and the energy distribution. A 6 Li-loaded scintillator was used to perform neutron assays at a number of locations in a 20 × 20 × 17.5 cm 3 water phantom. The variation in thermal and fast neutron response to different energies and field directions was exploited. The modeled response of the instrument to various neutron fields was used to train an artificial neural network (ANN) to learn the effective dose and ambient dose equivalent of these fields. All experimental data published in this work were measured at the National Physical Laboratory (UK). Experimental results were obtained for a number of radionuclide source based neutron fields to test the performance of the system. The results of experimental neutron assays at 25 locations in a water phantom were fed into the trained ANN. A correlation between neutron counting rates in the phantom and neutron fluence rates was experimentally found to provide dose rate estimates. A radionuclide source behind shadow cone was used to create a more complex field in terms of energy and direction. For all fields, the resulting estimates of effective dose rate were within 45% or better of their calculated values, regardless of energy distribution or direction for measurement times greater than 25 min. This work presents a novel, real-time, approach to workplace neutron dosimetry. It

  8. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  9. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  10. A laser-induced repetitive fast neutron source applied for gold activation analysis

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.

  11. A laser-induced repetitive fast neutron source applied for gold activation analysis.

    PubMed

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3).

  12. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    USGS Publications Warehouse

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  13. Frequency-dependent impedance spectroscopy on the 0.925(Bi0.5Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 ceramic

    NASA Astrophysics Data System (ADS)

    Ullah, Amir; Rahman, Muneeb-ur; Iqbal, Muhammad Javid; Ahn, Chang Won; Kim, Ill Won; Ullah, Aman

    2016-06-01

    The electrical properties of the 0.925(Bi0.5(Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 (0.925BNKT-0.075BST) ceramic were investigated by using AC impedance spectroscopy over a wide range of frequencies (10 -2 ~ 105 Hz). The X-ray diffraction patterns confirmed the formation of a single-phase compound. A single semicircular arc in the impedance spectrum indicates that the main contribution of the bulk resistance ( R b ) were due to grain effects, with Rb decreasing with increasing temperature. The conductivity of the ceramics increased with increasing temperature, and the activation energy resulting from the DC conductivity was 0.86 eV. The ceramic displayed a typical negative temperature coefficient of resistance (NTCR) behavior, like that of a semiconductor.

  14. Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method

    NASA Astrophysics Data System (ADS)

    Lan, Chang-Lin; Zhang, Yi; Lv, Tao; Xie, Bao-Lin; Peng, Meng; Yao, Ze-En; Chen, Jin-Gen; Kong, Xiang-Zhong

    2017-04-01

    The 232Th(n, γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VII.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code. Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)

  15. Neutron diffraction determination of the cell dimensions and thermal expansion of the fluoroperovskite KMgF3 from 293 to 3.6 K

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Cranswick, Lachlan M. D.; Swainson, Ian

    2006-11-01

    The cell dimensions of the fluoroperovskite KMgF3 synthesized by solid state methods have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 293 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data demonstrate conclusively that cubic Pmoverline{3} m KMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. Cell dimensions range from 3.9924(2) Å at 293 K to 3.9800(2) Å at 3.6 K, and are essentially constant within experimental error from 50 to 3.6 K. The thermal expansion data are described using a fourth order polynomial function.

  16. Measurement of neutron spectra in the experimental reactor LR-0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prenosil, Vaclav; Mravec, Filip; Veskrna, Martin

    2015-07-01

    The measurement of fast neutron fluxes is important in many areas of nuclear technology. It affects the stability of the reactor structural components, performance of fuel, and also the fuel manner. The experiments performed at the LR-0 reactor were in the past focused on the measurement of neutron field far from the core, in reactor pressure vessel simulator or in biological shielding simulator. In the present the measurement in closer regions to core became more important, especially measurements in structural components like reactor baffle. This importance increases with both reactor power increase and also long term operation. Other important taskmore » is an increasing need for the measurement close to the fuel. The spectra near the fuel are aimed due to the planned measurements with the FLIBE salt, in FHR / MSR research, where one of the task is the measurement of the neutron spectra in it. In both types of experiments there is strong demand for high working count rate. The high count rate is caused mainly by high gamma background and by high fluxes. The fluxes in core or in its vicinity are relatively high to ensure safe reactor operation. This request is met in the digital spectroscopic apparatus. All experiments were realized in the LR-0 reactor. It is an extremely flexible light water zero-power research reactor, operated by the Research Center Rez (Czech Republic). (authors)« less

  17. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Bhike, Megha

    2015-05-01

    A program is underway at the Triangle Universities Nuclear Laboratory (TUNL) to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.

  18. Magnetic and magnetoresistance properties of La0.7Sr0.3(Mn,Сo)O3

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Karpinsky, D. V.; Bushinsky, M. V.; Sikolenko, V. V.; Gavrilov, S. A.; Silibin, M. V.

    2017-11-01

    Magnetic and magnetotransport properties of La0.7Sr0.3Mn1-xCoxO3 ceramics have been investigated by neutron powder diffraction, magnetization and electrical measurements. It is shown that substitution by cobalt ions leads to a decrease of magnetic transition temperature down to 140 K for the compound with x = 0.33. The compounds with cobalt content 0.4 < x < 0.6 are characterized by a presence of small ferromagnetic component due to exchange interactions between cobalt and manganese ions with maximal transition temperature of about 190 K observed for x = 0.5. Further increase of the dopant concentration diminishes ferromagnetic interactions. An evolution of electronic configuration of manganese and cobalt ions upon chemical substitution as well as related changes in the exchange interactions which determine the type of the magnetic state are discussed. Based on the neutron diffraction results and magnetometry data the preliminary magnetic phase diagram has been constructed.

  19. Evidence for monoclinic distortion in the ground state phase of underdoped La{sub 1.95}Sr{sub 0.05}CuO{sub 4}: A single crystal neutron diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Anar, E-mail: singhanar@gmail.com; Schefer, Jürg; Frontzek, Matthias

    2016-03-28

    The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La{sub 1.95}Sr{sub 0.05}CuO{sub 4} has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for “forbidden” reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La{sub 1.95}Sr{sub 0.05}CuO{sub 4} at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way;more » however, the structure is stable below ∼120 K which agrees with other observed phenomena. Our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less

  20. The US Spallation Neutron Source Project

    NASA Astrophysics Data System (ADS)

    Olsen, David K.

    1997-10-01

    Slow neutrons, with wavelengths between a few tenths to a few tens of angstroms, are an important probe for condensed-matter physics and are produced with either fission reactors or accelerator-based spallation sources. The Spallation Neutron Source (SNS) is a collaborative project between DOE National Laboratories including LBNL, LANL, BNL, ANL and ORNL to build the next research neutron source in the US. This source will be sited at ORNL and is being designed to serve the needs of the neutron science community well into the next century. The SNS consists of a 1.1-mA H- front end and a 1.0-GeV high-intensity pulsed proton linac. The 1-ms pulses from the linac will be compressed in a 221-m-circumference accumulator ring to produce 600-ns pulses at a 60-Hz rate. This accelerator system will produce spallation neutrons from a 1.0-MW liquid Hg target for a broad spectrum of neutron scattering research with an initial target hall containing 18 instruments. The baseline conceptual design, critical issues, upgrade possibilities, and the collaborative arrangement will be discussed. It is expected that SNS construction will commence in FY99 and, following a seven year project, start operation in 2006.

  1. Determination of selected trace elements in foodstuffs and biological materials by destructive neutron activation analysis.

    PubMed

    Bayat, I; Etehadiyan, M; Ansar, M

    1995-01-01

    Concentration of trace elements in Nescafé, Fariman sugar, and Sadaf turmeric and mercury content in cancerous blood were determined by radiochemical, neutron activation analysis. By this separation method levels of 110mAg, 198Au, 203Hg, 76Se, 51Cr, 24Na, 42K, 99Mo, 122Sb, 82Br, 59Fe, 60Co were measured without interference in the gamma spectroscopy. A nondestructive method has also been used for the analysis of sodium, potassium, and bromine.

  2. Meson-meson scattering: K{anti K}-thresholds and f{sub 0}(980)-a{sub 0}(980) mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O. Krehl; R. Rapp; J. Speth

    1996-09-01

    The authors study the influence of mass splitting between the charged and neutral pions and kaons in the Juelich meson exchange model for {pi}{pi} and {pi}{eta} scattering. The calculations are performed in the particle basis, which permits the use of physical masses for the pseudoscalar mesons and a study of the distinct thresholds associated with the neutral and the charged kaons. Within this model the authors also investigate the isospin violation which arises from the mass splitting and an apparent violation of G-parity in {pi}{pi} scattering which stems from the coupling to the K{anti K} channel. Nonvanishing cross sections formore » {pi}{pi} {r_arrow} {pi}{sup 0}{eta} indicate a mixing of the f{sub 0}(980) and a{sub 0}(980) states.« less

  3. Precision measurement of CP violation in B(S)(0)→J/ΨK+K- decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casanova Mohr, R C M; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Domenico, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viana Barbosa, J V V B; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2015-01-30

    The time-dependent CP asymmetry in B(s)(0)→J/ψK+K- decays is measured using pp collision data, corresponding to an integrated luminosity of 3.0  fb-1, collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV. In a sample of 96,000 B(s)(0)→J/ψK+K- decays, the CP-violating phase ϕs is measured, as well as the decay widths ΓL and ΓH of the light and heavy mass eigenstates of the B(s)(0)-B[over ¯]s0 system. The values obtained are ϕs=-0.058±0.049±0.006  rad, Γs≡(ΓL+ΓH)/2=0.6603±0.0027±0.0015  ps-1, and ΔΓs≡ΓL-ΓH=0.0805±0.0091±0.0032  ps-1, where the first uncertainty is statistical and the second, systematic. These are the most precise single measurements of those quantities to date. A combined analysis with Bs0→J/ψπ+π- decays gives ϕs=-0.010±0.039  rad. All measurements are in agreement with the standard model predictions. For the first time, the phase ϕs is measured independently for each polarization state of the K+K- system and shows no evidence for polarization dependence.

  4. Active Interrogation for Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinhoe, Martyn Thomas; Dougan, Arden

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  5. Observation of Bc+→D0K+ Decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kosmyntseva, A.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration

    2017-03-01

    Using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb-1, recorded by the LHCb detector at center-of-mass energies of 7 and 8 TeV, the Bc+→D0K+ decay is observed with a statistical significance of 5.1 standard deviations. By normalizing to B+→D¯ 0 π+ decays, a measurement of the branching fraction multiplied by the production rates for Bc+ relative to B+ mesons in the LHCb acceptance is obtained, RD0K=(fc/fu)×B (Bc+→D0K+)=(9. 3-2.5+2.8±0.6 )×10-7 , where the first uncertainty is statistical and the second is systematic. This decay is expected to proceed predominantly through weak annihilation and penguin amplitudes, and is the first Bc+ decay of this nature to be observed.

  6. Applying nonlinear diffusion acceleration to the neutron transport k-Eigenvalue problem with anisotropic scattering

    DOE PAGES

    Willert, Jeffrey; Park, H.; Taitano, William

    2015-11-01

    High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.

  7. Measurement of polarization amplitudes and CP asymmetries in B 0 → ϕK *(892)0

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abba, A.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Caponio, F.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Esen, S.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jezabek, M.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Manzali, M.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Mountain, R.; Muheim, F.; Müller, K.; Muresan, R.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spinella, F.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-05-01

    An angular analysis of the decay B 0 → ϕK *(892)0 is reported based on a pp collision data sample, corresponding to an integrated luminosity of 1 .0 fb-1, collected at a centre-of-mass energy of = 7 TeV with the LHCb detector. The P-wave amplitudes and phases are measured with a greater precision than by previous experiments, and confirm about equal amounts of longitudinal and transverse polarization. The S-wave K + π - and K + K - contributions are taken into account and found to be significant. A comparison of the B 0 → ϕK *(892)0 and results shows no evidence for direct CP violation in the rate asymmetry, in the triple-product asymmetries or in the polarization amplitudes and phases. [Figure not available: see fulltext.

  8. Determination of neutron multiplication coefficients for fuel elements irradiated by spallation neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Chitra; Kumar, V.

    2010-02-15

    A neutron multiplication coefficient, k{sub eff}, has been estimated for spallation neutron flux using the data of spectrum average cross sections of all absorption, fission, and nonelastic reaction channels of {sup 232}Th, {sup 238}U, {sup 235}U, and {sup 233}U fuel elements. It has been revealed that in spallation neutron flux (i) nonfission, nonabsorption reactions play an important role in the calculation of k{sub eff}, (ii) one can obtain a high value of k{sub eff} even for fertile {sup 232}Th fuel, which is hardly possible in a conventional fast reactor, and (iii) spectrum average absorption cross sections of neutron poisons ofmore » a conventional reactor are relatively very small.« less

  9. Combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on CMOS APS image sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Chen, Wei; Sheng, Jiangkun

    The combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) have been discussed and some new experimental phenomena are presented. The samples are manufactured in the standard 0.35-μm CMOS technology. Two samples were first exposed to {sup 60}Co γ-rays up to the total ionizing dose (TID) level of 200 krad(Si) at the dose rates of 50.0 and 0.2 rad(Si)/s, and then exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence). One sample was first exposed to neutron fluence up to 1 × 10{supmore » 11} n/cm{sup 2} (1-MeV equivalent neutron fluence), and then exposed to {sup 60}Co γ-rays up to the TID level of 200 krad(Si) at the dose rate of 0.2 rad(Si)/s. The mean dark signal (K{sub D}), the dark signal non-uniformity (DSNU), and the noise (V{sub N}) versus the total dose and neutron fluence has been investigated. The degradation mechanisms of CMOS APS image sensors have been analyzed, especially for the interaction induced by neutron displacement damage and TID damage.« less

  10. Systematic neutron guide misalignment for an accelerator-driven spallation neutron source

    NASA Astrophysics Data System (ADS)

    Zendler, C.; Bentley, P. M.

    2016-08-01

    The European Spallation Source (ESS) is a long pulse spallation neutron source that is currently under construction in Lund, Sweden. A considerable fraction of the 22 planned instruments extend as far as 75-150 m from the source. In such long beam lines, misalignment between neutron guide segments can decrease the neutron transmission significantly. In addition to a random misalignment from installation tolerances, the ground on which ESS is built can be expected to sink with time, and thus shift the neutron guide segments further away from the ideal alignment axis in a systematic way. These systematic errors are correlated to the ground structure, position of buildings and shielding installation. Since the largest deformation is expected close to the target, even short instruments might be noticeably affected. In this study, the effect of this systematic misalignment on short and long ESS beam lines is analyzed, and a possible mitigation by overillumination of subsequent guide sections investigated.

  11. Effect of anode shape on correlation of neutron emission with pinch energy for a 2.7 kJ Mather-type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, S. S.; Murtaza, Ghulam; Zakaullah, M.

    Correlation of neutron emission with pinch energy for a Mather-type plasma focus energized by a single capacitor 12.5 muF, 21 kV (2.7 kJ) is investigated by employing time resolved and time integrated detectors for two different anode shapes. The maximum average neutron yield of about 1.3x10{sup 8} per shot is recorded with cylindrical anode, that increases to 1.6x10{sup 8} per shot for tapered anode. At optimum pressure the input energy converted to pinch energy is about 24% for cylindrical anode as compared to 36% for tapered anode. It is found that the tapered anode enhances neutron flux about 25+-5% bothmore » in axial and radial directions and also broadens the pressure range for neutron emission as well as pinch energy. The neutron yield and optimum gas filling pressures are found strongly dependent on the anode shape.« less

  12. A COMPREHENSIVE STUDY OF THE NEUTRON ACTIVATION ANALYSIS OF URANIUM BY DELAYED-NEUTRON COUNTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, F.F.; Emery, J.F.; Leddicotte, G.W.

    The method of neutron activation analysis of U by delayed-neutron counting was investigated in order to ascertain if the method would be suitable for routine application to such analyses. It was shown that the method can be used extensively and routinely for the determination of U. Emphasis was placed on the determination of U in the types of sample materials encountered in nuclear technology. Determinations of U were made on such materials as ores, granite, sea sediments, biological tissue, graphite, and metal alloys. The method is based upon the fact that delayed neutrons are emitted from fission products from themore » interaction of neutrons with U/sup 235/. Since the U/sup 235/ component of U undergoes most of the fissions when a sample is in a neutron flux, the method is predominately one for the determination of U/sup 235/. The total U in a sample or the isotopic composition of the U in a sample can be determined provided there is a prior knowledge of one of these quantities. The U/sup 235/ content of a test sample is obtained by comparing its delayed-neutron count to that obtained with a comparator sample containing a known quantity of U/sup 235/. (auth)« less

  13. Search for Hidden-Sector Bosons in B(0)→K(*0)μ(+)μ(-) Decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Buchanan, E; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, D; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Ninci, D; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, E; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefkova, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yu, J; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zucchelli, S

    2015-10-16

    A search is presented for hidden-sector bosons, χ, produced in the decay B(0)→K*(892)(0)χ, with K*(892)(0)→K(+)π(-) and χ→μ(+)μ(-). The search is performed using pp-collision data corresponding to 3.0  fb(-1) collected with the LHCb detector. No significant signal is observed in the accessible mass range 214≤m(χ)≤4350  MeV, and upper limits are placed on the branching fraction product B(B(0)→K*(892)(0)χ)×B(χ→μ(+)μ(-)) as a function of the mass and lifetime of the χ boson. These limits are of the order of 10(-9) for χ lifetimes less than 100 ps over most of the m(χ) range, and place the most stringent constraints to date on many theories that predict the existence of additional low-mass bosons.

  14. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    NASA Astrophysics Data System (ADS)

    Kopatch, Yuri; Novitsky, Vadim; Ahmadov, Gadir; Gagarsky, Alexei; Berikov, Daniyar; Danilyan, Gevorg; Hutanu, Vladimir; Klenke, Jens; Masalovich, Sergey

    2018-03-01

    The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble) by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get "clean" data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  15. Two hump-shaped angular distributions of neutrons and soft X-rays in a small plasma focus device.

    PubMed

    Habibi, Morteza

    2018-03-01

    Angular distributions of soft X-rays (SXRs) and neutrons emitted by a small plasma focus device (PFD) were investigated simultaneously using TLD-100 dosimeters and Geiger-Muller activation counters, respectively. The distributions represented two humps with a small dip at the angular position 0° and reduced from the angles of ± 15° and ± 30° for the neutrons and SXRs, respectively. The maximum yield of 2.98 × 10 8 neutrons per shot of the device was obtained at 13.5kV and 6.5mbar. A time of flight (TOF) of 75.2ns between the hard X-ray and the neutron peaks corresponds to neutrons with energy of 2.67MeV. A similar behavior was observed between the angular distributions of neutron and soft X-ray emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Ito, T. M.; Ramsey, J. C.; Yao, W.; Beck, D. H.; Cianciolo, V.; Clayton, S. M.; Crawford, C.; Currie, S. A.; Filippone, B. W.; Griffith, W. C.; Makela, M.; Schmid, R.; Seidel, G. M.; Tang, Z.; Wagner, D.; Wei, W.; Williamson, S. E.

    2016-04-01

    We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ˜600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1-2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρV > 5 × 1018 Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.

  17. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source.

    PubMed

    Ito, T M; Ramsey, J C; Yao, W; Beck, D H; Cianciolo, V; Clayton, S M; Crawford, C; Currie, S A; Filippone, B W; Griffith, W C; Makela, M; Schmid, R; Seidel, G M; Tang, Z; Wagner, D; Wei, W; Williamson, S E

    2016-04-01

    We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ∼600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1-2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρV > 5 × 10(18) Ω cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results.

  18. Mini Neutron Monitors at Concordia Research Station, Central Antarctica

    NASA Astrophysics Data System (ADS)

    Poluianov, Stepan; Usoskin, Ilya; Mishev, Alexander; Moraal, Harm; Kruger, Helena; Casasanta, Giampietro; Traversi, Rita; Udisti, Roberto

    2015-12-01

    Two mini neutron monitors are installed at Concordia research station (Dome C, Central Antarctica, 75° 06' S, 123° 23' E, 3,233 m.a.s.l.). The site has unique properties ideal for cosmic ray measurements, especially for the detection of solar energetic particles: very low cutoff rigidity < 0.01 GV, high elevation and poleward asymptotic acceptance cones pointing to geographical latitudes > 75° S. The instruments consist of a standard neutron monitor and a "bare" (lead-free) neutron monitor. The instrument operation started in mid-January 2015. The barometric correction coefficients were computed for the period from 1 February to 31 July 2015. Several interesting events, including two notable Forbush decreases on 17 March 2015 and 22 June 2015, and a solar particle event of 29 October 2015 were registered. The data sets are available at cosmicrays.oulu.fi and nmdb.eu.

  19. Measurement of time-dependent CP violation in B 0 → η'K 0 decays

    DOE PAGES

    Šantelj, L.; Yusa, Y.; Abdesselam, A.; ...

    2014-10-29

    We present a measurement of the time-dependent CP violation parameters in B 0 → η'K 0 decays. The measurement is based on the full data sample containing 772×10 6 BB-bar pairs collected at the Υ(4S) resonance using the Belle detector at the KEKB asymmetric-energy e +e - collider. The measured values of the mixing-induced and direct CP violation parameters are: sin 2φ 1 eff = +0.68 ± 0.07 ± 0.03, A η'K0 = +0.03 ± 0.05 ± 0.04, where the first uncertainty is statistical and the second is systematic. The values obtained are the most accurate to date. Furthermore, thesemore » results are consistent with our previous measurements and with the world-average value of sin 2φ 1 measured in B 0 → J/ψK 0 decays.« less

  20. Measurement of time-dependent CP violation in B 0 → η'K 0 decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šantelj, L.; Yusa, Y.; Abdesselam, A.

    We present a measurement of the time-dependent CP violation parameters in B 0 → η'K 0 decays. The measurement is based on the full data sample containing 772×10 6 BB-bar pairs collected at the Υ(4S) resonance using the Belle detector at the KEKB asymmetric-energy e +e - collider. The measured values of the mixing-induced and direct CP violation parameters are: sin 2φ 1 eff = +0.68 ± 0.07 ± 0.03, A η'K0 = +0.03 ± 0.05 ± 0.04, where the first uncertainty is statistical and the second is systematic. The values obtained are the most accurate to date. Furthermore, thesemore » results are consistent with our previous measurements and with the world-average value of sin 2φ 1 measured in B 0 → J/ψK 0 decays.« less

  1. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.

  2. Measurement of the neutron-capture cross section on 63,65Cu between 0.4 and 7.5 MeV

    NASA Astrophysics Data System (ADS)

    Bray, Isabel; Bhike, Megha; Krishichayan, (None); Tornow, W.

    2015-10-01

    Copper is currently being used as a cooling and shielding material in most experimental searches for 0 ν β β decay. In order to accurately interpret background events in these experiments, the cross section of neutron-induced reactions on copper must be known. The purpose of this work was to measure the cross section of the 63,65Cu(n, γ)64,66Cu reactions. Data were collected through the activation method at a range of energies from approximately 0.4 MeV to 7.5 MeV, employing the neutron production reactions 3H(p,n)3Heand2H(d,n)3He. Previous data were limited to energies below approximately 3 MeV. The results are compared to predictions from the nuclear data libraries ENDF/B-VII.1 and TENDL-2014.

  3. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Yussup, Nolida; Salim, Nazaratul Ashifa Bt. Abdullah; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh@Shaari, Syirrazie Bin Che; Azman, Azraf B.; Ismail, Nadiah Binti

    2015-04-01

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on `Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)'. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  4. Early Years of Neutron Scattering and Its Manpower Development in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsongkohadi

    In this paper I shall give a short history of the development of neutron scattering at the Research Centre for Nuclear Techniques (PPTN), in Bandung, and the early development of a more advanced facilities at the Neutron Scattering Laboratory (NSL BATAN), Centre of Technology for Nuclear Industrial Materials, in Serpong. The first research reactor in Indonesia was the TRIGA MARK II in Bandung, which became operational in 1965, with a power of 250 KW, upgraded to 1 MW in 1971, and to 2 MW in 2000. The neutron scattering activities was started in 1967, with the design and construction ofmore » the first powder diffractometer, and put in operation in 1970. It was followed by the second instrument, the filter detector spectrometer built in 1975 in collaboration with the Bhabha Atomic Research Centre (BARC), India. A powder diffractometer for magnetic studies was built in 1980, and finally, a modification of the filter detector spectrometer to measure textures was made in 1986. A brief description of the design and construction of the instruments, and a highlight of some research topics will be presented. Early developments of neutron scattering activities at the 30 MW, RSG-GAS reactor in Serpong in choosing suitable research program, which will be mainly centred around materials testing/characterization, and materials/condensed matter researches has been agreed. Instrument planning and layout which were appropriate to carry out the program had been decided. Manpower development for the neutron scattering laboratory is a severe problem. The efforts to overcome this problem has been solved. International Cooperation through workshops and on the job trainings also support the supply of qualified manpower.« less

  5. First observation of B(s)(0) --> D(s)(+/-)K(-/+) and measurement of the ratio of branching fractions B(B(s)(0) --> D(s)(+/-)K(-/+)/B(B(s)(0) --> D(s)(+)pi(-)).

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-11-06

    A combined mass and particle identification fit is used to make the first observation of the decay B(s)(0) --> D(s)(+/-)K(-/+) and measure the branching fraction of B(s)(0) --> D(s)(+/-)K(-/+) relative to B(s)(0) --> D(s)(+)pi(-). This analysis uses 1.2 fb(-1) integrated luminosity of pp collisions at square root(s) = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron collider. We observe a B(s)(0) --> D(s)(+/-)K(-/+) signal with a statistical significance of 8.1 sigma and measure B(B(s)(0) --> D(s)(+/-)K(-/+) /B(B(s)(0) --> D(s)(+)pi(-) 0.097+/-0.018(stat) +/- 0.009(syst).

  6. SNS Sample Activation Calculator Flux Recommendations and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples.more » The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.« less

  7. Impedance Spectroscopy Study of the Ferroelectric Pb0.8K0.1Dy0.1Nb2O6 Ceramics

    NASA Astrophysics Data System (ADS)

    Rao, K. Sambasiva; Latha, T. Swarna; Krishna, P. Murali; Prasad, D. Madhava

    Polycrystalline Dy-modified Pb1-xK2xNb2O6 (PKN) ferroelectric ceramic with a general formula Pb1-xK2x-3yMyNb2O6 for x=0.20, y=0.10 and M=Dy, have been prepared by the solid-state reaction route. The X-ray diffraction (XRD) studies of the material at room temperature revealed orthorhombic structure with lattice parameters a=17.701 Å, b=17.958 Å and c=3.883 Å. The dielectric anomaly with a sharp peak is observed at 430°C. The impedance plots are used as a tool to analyze the sample behavior as a function of frequency. The grain and grain boundary contributions are estimated. The modulus mechanism indicates the non-Debye type relaxation. The activation energy value near the phase transition temperature has been found to be different in the above TC from AC conductivity measurements.

  8. DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Chichester; E. H. Seabury; J. M. Zabriskie

    2009-06-01

    A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault.more » The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.« less

  9. Active detection of shielded SNM with 60-keV neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmann, C; Dietrich, D; Hall, J

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimentalmore » results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.« less

  10. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    NASA Astrophysics Data System (ADS)

    Devlin, M.; Gomez, J. A.; Kelly, K. J.; Haight, R. C.; O'Donnell, J. M.; Taddeucci, T. N.; Lee, H. Y.; Mosby, S. M.; Perdue, B. A.; Fotiades, N.; Ullmann, J. L.; Wu, C. Y.; Bucher, B.; Buckner, M. Q.; Henderson, R. A.; Neudecker, D.; White, M. C.; Talou, P.; Rising, M. E.; Solomon, C. J.

    2018-02-01

    New prompt fission neutron spectrum measurements are reported for 235U(n , f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the various detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.

  11. Rotary Mtwo system versus manual K-file instruments: efficacy in preparing primary and permanent molar root canals.

    PubMed

    Azar, Mohammad-Reza; Mokhtare, Maziar

    2011-01-01

    To compare the cleaning ability and preparation time of rotary instruments (Mtwo) and conventional manual instruments (K-file) in preparing primary and permanent molar root canals. Access cavities were prepared in 70 primary and 70 permanent teeth and India ink was injected into 120 canals of selected molars. The teeth were randomly divided into two main subgroups (n=20) and three control groups (n=10). In each of these main subgroups, either the manual instrument (K-file) or the rotary system (Mtwo) was used to prepare root canals. After cleaning the canals and clearing the teeth, dye removal was evaluated with the help of a stereomicroscope. In addition, the time needed for root canal preparation was recorded by a chronometer. Statistical analyses were done using the Kruskal-Wallis, Mann-Whitney and t tests. With regard to the cleaning ability of root canals, there were no significant differences between the K-file and Mtwo rotary system in primary and permanent teeth in the apical, middle or coronal third of the canals. Moreover, there were no significant differences between primary and permanent teeth prepared with K-files and rotary instruments. In all the groups, shorter times were recorded with the rotary technique. The working time was shorter in primary than in permanent teeth. The Mtwo rotary system showed acceptable cleaning ability in both primary and permanent teeth, and achieved results similar to those of K-files in less time.

  12. Time-resolved Neutron-gamma-ray Data Acquisition for in Situ Subsurface Planetary Geochemistry

    NASA Technical Reports Server (NTRS)

    Bodnarik, Julie G.; Burger, Dan Michael; Burger, A.; Evans, L. G.; Parsons, A. M.; Schweitzer, J. S.; Starr R. D.; Stassun, K. G.

    2013-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface elemental composition of planetary bodies in situ. Previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on neutrons produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  13. SWAN - Detection of explosives by means of fast neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  14. Cross Calibration of Omnidirectional Orbital Neutron Detectors of Lunar Prospector (LP) and Lunar Exploration Neutron Detector (LEND) by Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Murray, J.; SU, J. J.; Sagdeev, R.; Chin, G.

    2014-12-01

    Introduction:Monte Carlo (MC) simulations have been used to investigate neutron production and leakage from the lunar surface to assess the composition of the lunar soil [1-3]. Orbital measurements of lunar neutron flux have been made by the Lunar Prospector Neutron Spectrometer (LPNS)[4] of the Lunar Prospector mission and the Lunar Exploration Neutron Detector (LEND)[5] of the Lunar Reconnaissance Orbiter mission. While both are cylindrical helium-3 detectors, LEND's SETN (Sensor EpiThermal Neutrons) instrument is shorter, with double the helium-3 pressure than that of LPNS. The two instruments therefore have different angular sensitivities and neutron detection efficiencies. Furthermore, the Lunar Prospector's spin-stabilized design makes its detection efficiency latitude-dependent, while the SETN instrument faces permanently downward toward the lunar surface. We use the GEANT4 Monte Carlo simulation code[6] to investigate the leakage lunar neutron energy spectrum, which follows a power law of the form E-0.9 in the epithermal energy range, and the signals detected by LPNS and SETN in the LP and LRO mission epochs, respectively. Using the lunar neutron flux reconstructed for LPNS epoch, we calculate the signal that would have been observed by SETN at that time. The subsequent deviation from the actual signal observed during the LEND epoch is due to the significantly higher intensity of Galactic Cosmic Rays during the anomalous Solar Minimum of 2009-2010. References: [1] W. C. Feldman, et al., (1998) Science Vol. 281 no. 5382 pp. 1496-1500. [2] Gasnault, O., et al.,(2000) J. Geophys. Res., 105(E2), 4263-4271. [3] Little, R. C., et al. (2003), J. Geophys. Res., 108(E5), 5046. [4]W. C. Feldman, et al., (1999) Nucl. Inst. And Method in Phys. Res. A 422, [5] M. L. Litvak, et al., (2012) J.Geophys. Res. 117, E00H32 [6] J. Allison, et al, (2006) IEEE Trans. on Nucl Sci, Vol 53, No 1.

  15. Neutron activation analysis of thermal power plant ash and surrounding area soils.

    PubMed

    Al-Masri, M S; Haddad, Kh; Alsomel, N; Sarhil, A

    2015-08-01

    Elemental concentrations of As, Cd, Co, Cr, Fe, Hg, Mo, Ni, Se, and Zn have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas using instrumental neutron activation analysis. The results showed that all elements were more concentrated in fly ash than in the fly ash; there was a clear increasing trend of the elemental concentrations in the fly ash along the flue gas pathway. The annual emission of elements was estimated. Elemental concentrations were higher inside the campus area than in surrounding areas, and the lowest values were found in natural-gas-fired power plant. In addition, the levels have decreased as the distance from power plant campus increases. However, the levels in the surrounding villages were within the Syrian standard for agriculture soil.

  16. On the novel double perovskites A2Fe(Mn0.5W0.5)O6 (A= Ca, Sr, Ba). Structural evolution and magnetism from neutron diffraction data

    NASA Astrophysics Data System (ADS)

    García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio

    2018-06-01

    New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.

  17. Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity

    NASA Astrophysics Data System (ADS)

    Hubert, G.

    2016-10-01

    In this paper are described a new neutron spectrometer which operate in the Concordia station (Antarctica, Dome C) since December 2015. This instrument complements a network including neutron spectrometers operating in the Pic-du-Midi and the Pico dos Dias. Thus, this work present an analysis of cosmic ray induced-neutron based on spectrometers operated simultaneously in the Pic-du-Midi and the Concordia stations during a quiet solar activity. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation and effects of local and seasonal changes, but also the short term dynamics during solar flare events. A first part is devoted to analyze the count rates, the spectrum and the neutron fluxes, implying cross-comparisons between data obtained in the both stations. In a second part, measurements analyses were reinforced by modeling based on simulations of atmospheric cascades according to primary spectra which only depend on the solar modulation potential.

  18. Prototyping an active neutron veto for SuperCDMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results frommore » our R&D and prototyping efforts.« less

  19. Prototyping an Active Neutron Veto for SuperCDMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results frommore » our R&D and prototyping efforts.« less

  20. International workshop on cold neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more ofmore » a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.« less

  1. An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source

    DOE PAGES

    Ito, T. M.; Ramsey, J. C.; Yao, W.; ...

    2016-04-25

    In this study, we have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and ~600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1–2 cm between them, and a potential up to ±50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a widemore » range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of ρ V > 5 × 10 18 Ω cm. This lower bound is 5 times larger than the bound previously measured. Finally, we report the design, construction, and operational experience of the apparatus, as well as initial results« less

  2. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devlin, Matthew James; Gomez, Jaime A.; Kelly, Keegan John

    New prompt fission neutron spectrum measurements are reported for 235U(n,f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP ® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the variousmore » detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.« less

  3. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    DOE PAGES

    Devlin, Matthew James; Gomez, Jaime A.; Kelly, Keegan John; ...

    2018-02-01

    New prompt fission neutron spectrum measurements are reported for 235U(n,f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP ® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the variousmore » detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.« less

  4. Neutron-gamma flux and dose calculations for feasibility study of DISCOMS instrumentation in case of severe accident in a GEN 3 reactor

    NASA Astrophysics Data System (ADS)

    Brovchenko, Mariya; Duhamel, Isabelle; Dechenaux, Benjamin

    2017-09-01

    The present paper presents the study carried out in the frame of the DISCOMS project, which stands for "DIstributed Sensing for COrium Monitoring and Safety". This study concerns the calculation of the neutron and gamma radiations received by the considered instrumentation during the normal reactor operation as well as in case of a severe accident for the EPR reactor, outside the reactor pressure vessel and in the containment basemat. This paper summarizes the methods and hypotheses used for the particle transport simulation outside the vessel during normal reactor operation. The results of the simulations are then presented including the responses for distributed Optical Fiber Sensors (OFS), such as the gamma dose and the fast neutron fluence, and for Self Powered Neutron Detectors (SPNDs), namely the neutron and gamma spectra. Same responses are also evaluated for severe accident situations in order to design the SPNDs being sensitive to the both types of received neutron-gamma radiation. By contrast, fibers, involved as transducers in distributed OFS have to resist to the total radiation gamma dose and neutron fluence received during normal operation and the severe accident.

  5. Bulk Hydrogen Content OF High-Silica Rocks in Gale Crater With the Active Dynamic Albedo of Neutrons Experiment

    NASA Technical Reports Server (NTRS)

    Gabriel, T. S. J.; Hardgrove, C.; Litvak, M.; Mitrofanov, I.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Jun, I.; Mischna, M.; Tate, C. G.; hide

    2017-01-01

    The Mars Science Laboratory (MSL) Curiosity rover recently traversed over plateaus of mafic aeolian sandstones (the 'Stimson' formation) that overlie mudstones (the 'Murray' formation). Within the Stimson formation we observed many lighter-toned, halo-forming features, that are potentially indicative of fluid alteration (see Fig. 1). These halo features extend for tens of meters laterally and are approx.1 meter wide. The halo features were characterized by Curiosity's geochemical instruments: Alpha Proton X-Ray Spectrometer (APXS), Chemin, Chemcam and Sample Analysis at Mars (SAM). With respect to the host (unaltered) Stimson rocks, fracture halos were significantly enriched in silicon and low in iron [1]. Changes in hydrogen abundance (due to its large neutron scattering cross section) greatly influence the magnitude of the thermal neutron response from the Dynamic Albedo of Neutrons (DAN) instrument [2]. There are also some elemental species, e.g. chlorine, iron, and nickel, that have significant microscopic neutron absorption cross sections. These elements can be abundant and variable results provide a useful estimate of the lower bound for bulk hydrogen content (assuming a homogeneous distribution).

  6. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane.

    PubMed

    Oberhauser, A; Alvarez, O; Latorre, R

    1988-07-01

    Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.

  7. Evidence for weak ferromagnetism, isostructural phase transition, and linear magnetoelectric coupling in the multiferroic Bi0.8Pb0.2Fe0.9Nb0.1O3 solid solution

    NASA Astrophysics Data System (ADS)

    Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai

    2013-09-01

    Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).

  8. STUDY OF K- -> π 0e-/line{ν }eγ and K- -> π 0μ -/line{ν }μ γ DECAY WITH ISTRA + SETUP

    NASA Astrophysics Data System (ADS)

    Bolotov, V. N.; Guschin, E. N.; Duk, V. A.; Laptev, S. V.; Lebedev, V. A.; Mazurov, A. E.; Polyarush, A. Yu.; Postoev, V. E.; Akimenko, S. A.; Britvich, G. I.; Datsko, K. V.; Filin, A. P.; Inyakin, A. V.; Konstantinov, V. F.; Konstantinov, A. S.; Korolkov, I. Y.; Khmelnikov, V. A.; Leontiev, V. M.; Novikov, V. P.; Obraztsov, V. F.; Polyakov, V. A.; Romanovsky, V. I.; Shelikhov, V. I.; Tchikilev, O. G.; Uvarov, V. A.; Yushchenko, O. P.

    2006-10-01

    This file contains the instructions for the proceedings of the 12th Lomonosov Conference on Elementary Particle Physics. In this place the abstract of the contribution should be placed. Results of study of the K- -> π 0e-/line{ν }eγ decay at ISTRA+ setup are presented. 3852 events of this decay have been observed. The ratio Br(K- -> π 0e-/line{ν }eγ )/Br(K- -> π 0e-/line{ν }e)=(0.63 ± 0.02(stat) ± 0.03(syst)) \\cdot 10-2 for E*γ > 30MeV, θ *eγ > 20o. Br(K- -> π 0e-/line{ν }eγ ) is found to be (3.05 ±0.02) · 10-4 (assuming PDG value for Ke3 branching ratio). Theoretical predictions give Br = 2.8 · 10-4 (tree level) and Br = 3.0 · 10-4(O(p4) level). The obtained value for the asymmetry Aζ (with the same cuts for E*γ and θ *eγ ) is Aζ = -0.015 ± 0.021. At present it is the best estimate of this asymmetry.

  9. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  10. Neutron spectroscopy of MnH 0.86, NiH 1.05, PdH 0.99 and harmonic behaviour of their optical phonons

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A. I.; Natkaniec, I.; Antonov, V. E.; Belash, I. T.; Fedotov, V. K.; Krawczyk, J.; Mayer, J.; Ponyatovsky, E. G.

    1991-10-01

    Inelastic neutron scattering spectra from manganese, nickel and palladium hydrides synthesized under a high pressure of gaseous hydrogen have been measured in the energy region of 0-500 meV. The positions and intensities of the peaks in the higher energy parts of the spectra are well described by a contribution from the multiphonon neutron scattering in the harmonic approximation.

  11. The application of Westcott Formalism k0 NAA method to estimate short and medium lived elements in some Ghanaian herbal medicines complemented by AAS

    NASA Astrophysics Data System (ADS)

    Ayivor, J. E.; Okine, L. K. N.; Dampare, S. B.; Nyarko, B. J. B.; Debrah, S. K.

    2012-04-01

    The epithermal neutron shape factor, α of the inner and outer irradiation sites of the Ghana Research Reactor-1 (GHARR-1) was determined obtaining results of 0.105 for the inner (Channel 1) Irradiation site and 0.020 for the outer (channel 6) irradiation site. The neutron temperatures for the inner and outer irradiation sites were 27 °C and 20 °C, respectively. The α values used in Westcott Formalism k0 INAA was applied to determine multi elements in 13 Ghanaian herbal medicines used by the Centre for Scientific Research into Plant Medicine (CSRPM) for the management of various diseases complemented by Atomic Absorption Spectrometry. They are namely Mist. Antiaris, Mist. Enterica, Mist. Morazia, Mist. Nibima, Mist. Modium, Mist. Ninger, Mist Sodenia, Mist. Tonica, Chardicca Powder, Fefe Powder, Olax Powder, Sirrapac powder and Lippia Tea. Concentrations of Al, As, Br, K, Cl, Cu, Mg, Mn, Na and V were determined by short and medium irradiations at a thermal neutron flux of 5×1011 ncm-2 s-1. Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using Atomic Absorption Spectrometry (AAS). Ba, Cu, Li and V were present at trace levels whereas Al, Cl, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. Arsenic was not detected in all samples. Standard Reference material, IAEA-V-10 Hay Powder was simultaneously analysed with samples. The precision and accuracy of the method using real samples and standard reference materials were evaluated and within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis (Q-mode and R-mode CA) and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into 2 statistically significant clusters (liquid based and powdered herbal medicines), reflecting the different chemical compositions. R-mode CA and PCA suggest common

  12. Cathepsin K expression and activity in canine osteosarcoma.

    PubMed

    Schmit, J M; Pondenis, H C; Barger, A M; Borst, L B; Garrett, L D; Wypij, J M; Neumann, Z L; Fan, T M

    2012-01-01

    Cathepsin K (CatK) is a lysosomal protease with collagenolytic activity, and its secretion by osteoclasts is responsible for degrading organic bone matrix. People with pathologic bone resorption have higher circulating CatK concentrations. Canine osteosarcoma (OS) cells will possess CatK, and its secretion will be cytokine inducible. Circulating CatK concentrations will be increased in dogs with OS, and will be a surrogate marker of bone resorption. Fifty-one dogs with appendicular OS and 18 age- and weight-matched healthy control dogs. In a prospective study, expressions of CatK mRNA and protein were investigated in OS cells. The inducible secretion and proteolytic activity of CatK from OS cells was assessed in vitro. Serum CatK concentrations were quantified in normal dogs and dogs with OS and its utility as a bone resorption marker was evaluated in dogs with OS treated with palliative radiation and antiresorptive agents. Canine OS cells contain preformed CatK within cytoplasmic vesicles. In OS cells, TGFβ1 induced the secretion of CatK, which degraded bone-derived type I collagen in vitro. CatK concentrations were higher in dogs with OS than healthy dogs (11.3 ± 5.2 pmol/L versus 8.1 ± 5.0 pmol/L, P = .03). In a subset of dogs with OS, pretreatment CatK concentrations gradually decreased after palliative radiation and antiresorptive treatment, from 9.3 ± 3.2 pmol/L to 5.0 ± 3.1 pmol/L, P = .03. Canine OS is associated with pathologic bone resorption, and CatK inhibitors might aid in the management of canine OS-related malignant osteolysis. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  13. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  14. Measurement of the Branching Fraction of the Exclusive Decay B0 --> K*0gamma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, Barbara

    The b {yields} s{gamma} transition proceeds by a loop penguin diagram. It may be used to measure precisely the couplings of the top quark and to search for the effects of any new particles appearing in the loop. We present a preliminary measurement of the branching fraction of the exclusive decay, B{sup 0} {yields} K*{sup 0}{gamma}. They use 8.6 x 10{sup 6} B{bar B} decays to measure B(B{sup 0} {yields} K*{sup 0}{gamma}) = (5.4 {+-} 0.8 {+-} 0.5) x 10{sup -5}.

  15. FY17 Status Report on NEAMS Neutronics Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Jung, Y. S.; Smith, M. A.

    2017-09-30

    Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less

  16. Determination of Interesting Toxicological Elements in PM2.5 by Neutron and Photon Activation Analysis

    PubMed Central

    Capannesi, Geraldo; Lopez, Francesco

    2013-01-01

    Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb) the levels measured are only slight lower than those proposed as air ambient standard. PMID:23878525

  17. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilheux, Hassina Z; Bilheux, Jean-Christophe; Tremsin, Anton S

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than atmore » pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.« less

  18. Simultaneous determination of 76As, 122Sb and 153Sm in Chinese medicinal herbs by epithermal neutron activation analysis.

    PubMed

    Chen, Chien-Yi

    2009-01-01

    Optimal conditions for the simultaneous determination of As, Sb and Sm in Chinese medicinal herbs using epithermal neutron activation analysis were investigated. The minimum detectable concentrations of 76As, 122Sb and 153Sm in lichen and medicinal herbs depended on the weight of the irradiated sample, and irradiation and decay durations. Optimal conditions were obtained by wrapping the irradiated target with 3.2 mm borated polyethylene neutron filters, which were adopted to screen the original reactor fission neutrons and to reduce the background activities of 38Cl, 24Na and 42K. Twelve medicinal herbs, commonly consumed by Taiwanese children as a diuretic treatment, were analysed since trace elements, such as As and Sb, in these herbs may be toxic when consumed in sufficiently large quantities over a long period. Various amounts of medicinal herbs, standardised powder, lichen and tomato leaves were weighed, packed into polyethylene bags, irradiated and counted under different conditions. The results indicated that about 350 mg of lichen irradiated for 24 h and counted for 20 min following a 30-60 h decay period was optimal for irradiation in a 10(11)n/cm s epithermal neutron flux. The implications of the content of the studied elements in Chinese medicinal herbs are discussed.

  19. Neutron activation measurements over an extremely wide dynamic range (invited) (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, C.W.

    1997-01-01

    The DT program at the Tokamak Fusion Test Reactor (TFTR) created requirements on 14 MeV neutron measurements to measure from 10{sup 6} n/cm{sup 2} (for triton burnup and Ohmic tritium plasmas) to {gt}10{sup 12} n/cm{sup 2} (characteristic of {gt}10 MW DT plasmas) with an accuracy of 7% (one-sigma).1 To maintain an absolute calibration over this dynamic range with active neutron detectors required one to go from some absolute standard at one fluence level to a measurement at a much higher fluence. Maintaining accuracy requires an extremely linear set of measurements not systematically affected over this dynamic range. Neutron activation canmore » provide such linearity when care is taken with a number of effects such as gamma-ray detection efficiency and sample contamination.2 Absolutely calibrated neutron yield measurements using dosimetric (well-known cross section) reactions with thin (low-mass) elemental foils is be described. This technique makes the detector comparison to an absolute standard of gamma-ray activity correspond to all neutron fluences by reducing the sample mass while keeping the activation detectors operating in a linear counting mode; i.e., low count rates which minimize pileup effects. The International Thermonuclear Experimental Reactor is projected to have 1000 s burn durations at fluxes of few 10{sup 13} n/cm{sup 2}s, or more neutron fluence {ital per second} than entire TFTR discharges. Extrapolating neutron activation to these higher fluences will require yet more care. Some of the issues at such high fluences will be discussed.3 The National Ignition Facility (NIF) is projected to yield 10 MJ of fusion energy, or up to 10{sup 12} n/cm{sup 2} at the vacuum vessel wall, similar to TFTR DT conditions. It is expected that much interesting physics will be performed at yields far less than those from ignition, covering an even greater dynamic range than needed on TFTR. Thin foil techniques do not have the sensitivity required at low fluences.« less

  20. Multi-instrument assessment of physical activity in female office workers.

    PubMed

    Can, Sema; Gündüz, Nevin; Arslan, Erşan; Biernat, Elżbieta; Ersöz, Gülfem; Kilit, Bülent

    2016-11-18

    The aim of this study was to examine the multi-instrument assessment of physical activity in female office workers. Fifty healthy women (age (mean ± standard deviation): 34.8±5.9 years, body height: 158±0.4 cm, body weight: 61.8±7.5 kg, body mass index: 24.6±2.7 kg/m2) workers from the same workplace volunteered to participate in the study. Physical activity was measured with the 7-day Physical Activity Assessment Questionnaire (7-d PAAQ), an objective multi-sensor armband tool, and also a waist-mounted pedometer, which were both worn for 7 days. A significant correlation between step numbers measured by armband and pedometer was observed (r = 0.735), but the step numbers measured by these 2 methods were significantly different (10 941±2236 steps/ day and 9170±2377 steps/day, respectively; p < 0.001). There was a weak correlation between the value of 7-d PAAQ total energy expenditure and the value of armband total energy expenditure (r = 0.394, p = 0.005). However, total energy expenditure values measured by armband and 7-d PAAQ were not significantly different (2081±370 kcal/ day and 2084±197 kcal/day, respectively; p = 0.96). In addition, physical activity levels (average daily metabolic equivalents (MET)) measured by armband and 7-d PAAQ were not significantly different (1.45±0.12 MET/day and 1.47±0.24 MET/day, respectively; p = 0.44). The results of this study showed that the correlation between pedometer and armband measurements was higher than that between armband measurements and 7-d PAAQ selfreports. Our results suggest that none of the assessment methods examined here, 7-d PAAQ, pedometer, or armband, is sufficient when used as a single tool for physical activity level determination. Therefore, multi-instrument assessment methods are preferable. Int J Occup Med Environ Health 2016;29(6):937-945. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.