Sample records for k2s2o8 solution catalyzed

  1. Oxothiomolybdenum derivatives of the superlacunary crown heteropolyanion {P8W48}: structure of [K4{Mo4O4S4(H2O)3(OH)2}2(WO2)(P8W48O184)]30– and studies in solution.

    PubMed

    Korenev, Vladimir S; Floquet, Sébastien; Marrot, Jérôme; Haouas, Mohamed; Mbomekallé, Israël-Martyr; Taulelle, Francis; Sokolov, Maxim N; Fedin, Vladimir P; Cadot, Emmanuel

    2012-02-20

    Reaction of the cyclic lacunary [H(7)P(8)W(48)O(184)](33-) anion (noted P(8)W(48)) with the [Mo(2)S(2)O(2)(H(2)O)(6)](2+) oxothiocation led to two compounds, namely, [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) (denoted 1) and [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) (denoted 2), which were characterized in the solid state and solution. In the solid state, the structure of [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) reveals the presence of two disordered {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) "handles" connected on both sides of the P(8)W(48) ring. Such a disorder is consistent with the presence of two geometrical isomers where the relative disposition of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles are arranged in a perpendicular or parallel mode. Such an interpretation is fully supported by (31)P and (183)W NMR solution studies. The relative stability of both geometrical isomers appears to be dependent upon the nature of the internal alkali cations, i.e., Na(+) vs K(+), and increased lability of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles, compared to the oxo analogous, was clearly identified by significant broadening of the (31)P and (183)W NMR lines. Solution studies carried out by UV-vis spectroscopy showed that formation of the adduct [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) occurs in the 1.5-4.7 pH range and corresponds to a fast and quantitative condensation process. Furthermore, (31)P NMR titrations in solution reveal formation of the "monohandle" derivative [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(P(8)W(48)O(184))](38-) as an intermediate prior to formation of the "bishandle" derivatives. Furthermore, the electrochemical behavior of [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) was studied in aqueous medium and compared with the parent anion P(8)W(48).

  2. Solid state reactions of CeO 2, PuO 2, (U,Ce)O 2 and (U,Pu)O 2 with K 2S 2O 8

    NASA Astrophysics Data System (ADS)

    Keskar, Meera; Kasar, U. M.; Mudher, K. D. Singh; Venugopal, V.

    2004-09-01

    Solid state reactions of CeO 2, PuO 2 and mixed oxides (U,Ce)O 2 and (U,Pu)O 2 containing different mol.% of Ce and Pu, were carried out with K 2S 2O 8 at different temperatures to identify the formation of various products and to investigate their dissolution behaviour. X-ray, chemical and thermal analysis methods were used to characterise the products formed at various temperatures. The products obtained by heating two moles of K 2S 2O 8 with one mole each of CeO 2, PuO 2, (U,Ce)O 2 and (U,Pu)O 2 at 400 °C were identified as K 4Ce(SO 4) 4, K 4Pu(SO 4) 4, K 4(U,Ce)(SO 4) 4 and K 4(U,Pu)(SO 4) 4, respectively. K 4Ce(SO 4) 4 further decomposed to form K 4Ce(SO 4) 3.5 at 600 °C and mixture of K 2SO 4 and CeO 2 at 950 °C. Thus the products formed during the reaction of 2K 2S 2O 8 + CeO 2 show that cerium undergoes changes in oxidation state from +4 to +3 and again to +4. XRD data of K 4Ce(SO 4) 4 and K 4Ce(SO 4) 3.5 were indexed on triclinic and monoclinic system, respectively. PuO 2 + 2K 2S 2O 8 reacts at 400 °C to form K 4Pu(SO 4) 4 which was stable upto 750 °C and further decomposes to form K 2SO 4 + PuO 2 at 1000 °C. The products formed at 400 °C during the reactions of the oxides and mixed oxides were found to be readily soluble in 1-2 M HNO 3.

  3. Photodegradation of 4-tert-butylphenol in aqueous solution by UV-C, UV/H2O2 and UV/S2O8(2-) system.

    PubMed

    Wu, Yanlin; Zhu, Xiufen; Chen, Hongche; Dong, Wenbo; Zhao, Jianfu

    2016-01-01

    The photolytic degradation of 4-tert-butylphenol (4-t-BP) in aqueous solution was investigated using three kinds of systems: UV-C directly photodegradation system, UV/H2O2 and UV/S2O8(2-) system. Under experimental conditions, the degradation rate of 4-t-BP was in the order: UV/S2O8(2-) > UV/H2O2 > UV-C. The reaction kinetics of UV/S2O8(2-) system were thoroughly investigated. The increase of S2O8(2-) concentration enhanced the 4-t-BP degradation rate, which was inhibited when the concentration of S2O8(2-) exceeded 4.0 mM. The highest efficacy in 4-t-BP degradation was obtained at pH 6.5. The oxidation rate of 4-t-BP could be accelerated by increasing the reaction temperature and irradiation intensity. The highest rate constant (kobs = 8.4 × 10(-2) min(-1)) was acquired when the reaction temperature was 45 °C. The irradiation intensity was measured by irradiation distance, and the optimum irradiation distance was 10 cm. Moreover, the preliminary mechanism of 4-t-BP degradation was studied. The bond scission of the 4-t-BP molecule occurred by the oxidation of SO4(•-), which dimerized and formed two main primary products. Under the conditions of room temperature (25 °C ± 1 °C) and low concentration of K2S2O8 (0.5 mM), 35.4% of total organic carbon (TOC) was removed after 8.5-h irradiation. The results showed that UV/S2O8(2-) system was effective for the degradation of 4-t-BP.

  4. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8(2-) oxidation systems.

    PubMed

    Sharma, Jyoti; Mishra, I M; Kumar, Vineet

    2015-06-01

    This work reports on the removal and mineralization of an endocrine disrupting chemical, Bisphenol A (BPA) at a concentration of 0.22 mM in aqueous solution using inorganic oxidants (hydrogen peroxide, H2O2 and sodium persulfate, Na2S2O8;S2O8(2-)) under UV irradiation at a wavelength of 254 nm and 40 W power (Io = 1.26 × 10(-6) E s(-1)) at its natural pH and a temperature of 29 ± 3 °C. With an optimum persulfate concentration of 1.26 mM, the UV/S2O8(2-) process resulted in ∼95% BPA removal after 240 min of irradiation. The optimum BPA removal was found to be ∼85% with a H2O2 concentration of 11.76 mM. At higher concentrations, either of the oxidants showed an adverse effect because of the quenching of the hydroxyl or sulfate radicals in the BPA solution. The sulfate-based oxidation process could be used over a wider initial pH range of 3-12, but the hydroxyl radical-based oxidation of BPA should be carried out in the acidic pH range only. The water matrix components (bicarbonate, chloride and humic acid) showed higher scavenging effect in hydroxyl radical-based oxidation than that in the sulfate radical-based oxidation of BPA. UV/S2O8(2-) oxidation system utilized less energy (307 kWh/m(3)) EE/O in comparison to UV/H2O2 system (509 kWh/m(3)) under optimum operating conditions. The cost of UV irradiation far outweighed the cost of the oxidants in the process. However, the total cost of treatment of persulfate-based system was much lower than that of H2O2-based oxidation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The K 2S 2O 8-KOH photoetching system for GaN

    NASA Astrophysics Data System (ADS)

    Weyher, J. L.; Tichelaar, F. D.; van Dorp, D. H.; Kelly, J. J.; Khachapuridze, A.

    2010-09-01

    A recently developed photoetching system for n-type GaN, a KOH solution containing the strong oxidizing agent potassium peroxydisulphate (K 2S 2O 8), was studied in detail. By careful selection of the etching parameters, such as the ratio of components and the hydrodynamics, two distinct modes were defined: defect-selective etching (denoted by KSO-D) and polishing (KSO-P). Both photoetching methods can be used under open-circuit (electroless) conditions. Well-defined dislocation-related etch whiskers are formed during KSO-D etching. All types of dislocations are revealed, and this was confirmed by cross-sectional TEM examination of the etched samples. Extended electrically active defects are also clearly revealed. The known relationship between etch rate and carrier concentration for photoetching of GaN in KOH solutions was confirmed for KSO-D etch using Raman measurements. It is shown that during KSO-P etching diffusion is the rate-limiting step, i.e. this etch is suitable for polishing of GaN. Some constraints of the KSO etching system for GaN are discussed and peculiar etch features, so far not understood, are described.

  6. ELECTRONIC STRUCTURE AND LINEAR OPTICAL PROPERTIES OF MIXED ALKALI-METAL BOROPHOSPHATES (LiK2BP2O8, Li3K2BP4O14): A FIRST-PRINCIPLES STUDY

    NASA Astrophysics Data System (ADS)

    Zhang, Bei; Jing, Qun; Yang, Zhihua; Wang, Ying; Su, Xin; Pan, Shilie; Zhang, Jun

    2013-07-01

    LiK2BP2O8 and Li3K2BP4O14 are synthesized by high-temperature solution method with the same elements, while contain different fundamental building units. Li3K2BP4O14 is a novel P-O-P linking structure which gives a rare example of violation of Pauling's fourth rule. The electronic structures of LiK2BP2O8 and Li3K2BP4O14 are investigated by density functional calculations. Direct gaps of 5.038 eV (LiK2BP2O8) and 5.487 eV (Li3K2BP4O14) are obtained. By analyzing the density of states (DOS) of LiK2BP2O8 and Li3K2BP4O14, the P-O-P linking in fundamental building units of Li3K2BP4O14 crystal is proved theoretically. Based on the electronic properties, the linear optical information is captured.

  7. Degradations of acetaminophen via a K2S2O8-doped TiO2 photocatalyst under visible light irradiation.

    PubMed

    Lin, Justin Chun-Te; de Luna, Mark Daniel G; Aranzamendez, Graziel L; Lu, Ming-Chun

    2016-07-01

    Acetaminophen (ACT) is a mild analgesic commonly used for relief of fever, headache and some minor pains. It had been detected in both fixed factory-discharged wastewaters, and diverse sources, e.g. surface waters during festival events. Degradation of such trace emergent pollutants by titanium dioxide (TiO2) photocatalysts is a common approach; however, the band gap that can be utilized in the UV range is limited. In order to extend downward the energy required to excite the photocatalytic material, doping with potassium peroxodisulfate (K2S2O8) by a sol-gel method was done in this work. The visible-light active photocatalyst was tested on the degradation of ACT under four parameters including: initial ACT concentration, catalyst dose, initial pH, and system temperature. Optimal conditions, which achieved 100% ACT degradation, were obtained by using 0.1 mM ACT initial concentration, catalyst dose of 1 g L(-1), initial pH of 9.0 and system temperature of 22 °C at the end of 9-h irradiation. Meanwhile, three types of degradation kinetic models (i.e. zero, pseudo first and second order) were tested. The feasible model followed a pseudo-first order model with the computed constant (kapp) of 7.29 × 10(-3) min(-1). The present study provides a better photocatalytic degradation route by K2S2O8-modified TiO2 in comparison with pristine TiO2, in wastewater treatment dealing with ACT and other persistent organic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Linear and nonlinear optical properties of α-K2Hg3Ge2S8 and α-K2Hg3Sn2S8 compounds

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Azam, Sikander

    2014-11-01

    The linear and nonlinear optical properties of α-K2Hg3Ge2S8 and α-K2Hg3Sn2S8 compounds are performed using the first-principles calculations. Particularly, we appraised the optical dielectric function and the second-harmonic generation (SHG) response. We have analyzed the linear optical properties, i.e. the real and imaginary part of the dielectric tensor, the reflectivity, refractive index, extension coefficient and energy loss function. The linear optical properties show a considerable anisotropy which is important for SHG as it is defined by the phase-matching condition. The scrutiny of the roles of diverse transitions to the SHG coefficients demonstrates that the virtual electron process is foremost. The features in the spectra of χ322(2)(ω) are successfully interrelated with the character of the linear dielectric function ε(ω) in terms of single-photon and two-photon resonances. In additional, we have calculated the first hyperpolarizability, βijk, for the dominant component at the static limit for the for α-K2Hg3Ge2S8 and α-K2Hg3Sn2S8 compounds. The calculated values of β322(ω) are 2.28 × 10-30 esu for α-K2Hg3Ge2S8 and 3.69 × 10-30 esu for α-K2Hg3Sn2S8.

  9. Highly Sensitive H2S Sensor Based on the Metal-Catalyzed SnO2 Nanocolumns Fabricated by Glancing Angle Deposition

    PubMed Central

    Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105

  10. Non-Potassic Melts In CMAS-CO2-H2O-K2O Model Peridotite

    NASA Astrophysics Data System (ADS)

    Buisman, I.; Walter, M. J.; Keshav, S.

    2009-12-01

    relations become isobarically invariant. In contrast, the solidus in CMAS-CO2-H2O at 30 kbar is at 1000C. Above 1100C, phlogopite is no longer in equilibrium with the phase assemblage. In all the experimental charges, capsules were pierced, and a hydrous solution was seen escaping. When tested with litmus paper, in all cases at 25-50 kbar, this solution was determined to be highly basic (pH>10). Upon evaporation of the hydrous solution, a white precipitate was left behind around the piercing on the capsule wall. In CMAS-CO2-H2O, the fluid was found to be almost neutral (pH 7-8). The melt present in our experiments is carbonatitic in nature and does not contain any significant amounts of K2O. This contradicts a recent study on K2O in a natural composition (Foley et al, 2009) where carbonatitic melt had up to 13 wt% of K2O. Significantly, since K2O is perhaps all in the fluid, source regions for potassic magmas in the Earth’s mantle could not be created by metasomatism of alkali-rich, carbonatitic melts.

  11. Preparation of Zr(Mo,W)2O8 with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)2(OH,Cl)22H2O.

    PubMed

    Petrushina, Mariya Yu; Dedova, Elena S; Filatov, Eugeny Yu; Plyusnin, Pavel E; Korenev, Sergei V; Kulkov, Sergei N; Derevyannikova, Elizaveta A; Sharafutdinov, Marat R; Gubanov, Alexander I

    2018-03-28

    Solid solutions of Zr(Mo,W) 2 O 7 (OH,Cl) 22H 2 O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo x W 2-x O 7 (OH,Cl) 22H 2 O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300-1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W) 2 O 7 (OH,Cl) 22H 2 O → orthorhombic-ZrMo x W 2-x O 8 (425-525 K), orthorhombic-ZrMo x W 2-x O 8  → cubic-ZrMo x W 2-x O 8 (700-850 K), cubic-ZrMo x W 2-x O 8  → trigonal-ZrMo x W 2-x O 8 (800-1050 K for x > 1) and cubic-ZrMo x W 2-x O 8  → oxides (1000-1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMo x W 2-x O 8 (space group Pa-3) were measured within 300-900 K, and the thermal expansion coefficients were calculated: -3.5∙10 -6  - -4.5∙10 -6  K -1 . For the ordered ZrMo 1.8 W 0.2 O 8 (space group P2 1 3), a negative thermal expansion (NTE) coefficient -9.6∙10 -6  K -1 (300-400 K) was calculated. Orthorhombic-ZrW2O 8 is formed upon the decomposition of ZrW 2 O 7 (OH,Cl) 22H 2 O within 500-800 K.

  12. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    PubMed

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  13. Arsenite oxidation by H 2O 2 in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pettine, Maurizio; Campanella, Luigi; Millero, Frank J.

    1999-09-01

    The rates of the oxidation of As( III) with H 2O 2 were measured in NaCl solutions as a function of pH (7.5-10.3), temperature (10-50C) and ionic strength ( I = 0.01-4). The rate of the oxidation of As( III) with H 2O 2 can be described by the general expression: d[As( III)]/ dt = k[As( III)] [H 2O 2] where k (mol/L -1 min -1) can be determined from (σ = ±0.12) log k=5.29+1.41 pH-0.57 I+1.40 I0.5-4898/ T. The effect of pH on the rates indicates that the reaction is due to AsO( OH) 2-+ H2O2k 1→productsAsO2( OH) 2-+ H2O2k 2→products, AsO33-+ H2O2k 3→products where k = k1 α AsO(OH) 2- + k2 α AsO 2(OH) 2- + k3 α AsO 3 3- and α i are the molar fraction of species i. The values of k1 = 42 ± 20, k2 = (8 ± 1) × 10 4, and k3 = (72 ± 18) × 10 6 mol/L -1 min -1 were found at 25C and I = 0.01 mol/L. The undissociated As(OH) 3 does not react with H 2O 2. The effect of ionic strength on the rate constants has been attributed to the effect of ionic strength on the speciation of As( III). The rate expression has been shown to be valid for NaClO 4 solutions, northern Adriatic sea waters, and Tiber River waters. The cations Fe 2+ and Cu 2+ were found to exert a catalytic effect on the rates. Cu 2+ plays a role at concentration levels (>0.1 μmol/L) which are typical of polluted aquatic systems, while Fe 2+ is important at levels which may be found in lacustrine environments (>5-10 μmol/L). The reaction of As( III) with H 2O 2 may play a role in marine and lacustrine surface waters limiting the accumulation of As( III) resulting from biologically mediated reduction processes of As( V).

  14. NH2Fe3O4@SiO2 supported peroxidase catalyzed H2O2 for degradation of endocrine disrupter from aqueous solution: Roles of active radicals and NOMs.

    PubMed

    Ai, Jing; Zhang, Weijun; Liao, Guiying; Xia, Hua; Wang, Dongsheng

    2017-11-01

    In this work, magnetic Fe 3 O 4 was utilized to immobilize horseradish peroxidase (IM-HRP) in order to improve its stability and reusability by crosslinking method process with glutaraldehyde. The physicochemical properties of NH 2 Fe 3 O 4 @SiO 2 and IM-HRP were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermo-gravimetric Analysis (TGA) and Transmission electron microscopy (TEM). The thermal stability of immobilized-HRP was considerably improved in comparison with free counterpart. The catalytic performance of IM-HRP for estrogens removal from aqueous solution was evaluated, it was found that the presence of natural organic matters (NOM) have no significant effects on E2 removal and the E2 enzyme-degradation reached around 80% when pH = 7.0 with 0.552 × 10 -3 ratio of IM-HRP/H 2 O 2. In addition, the active radicals responsible for estrogens degradation were identified with electro-spin resonance spectra (ESR). It was found that immobilization process on Fe 3 O 4 showed no adverse effects on catalytic performance on HRP, estrogens degradation could be fitted well with pseudo-second kinetic equation. Estrogens degradation efficiency was reduced in the presence of humic substances. Both O 2 - and OH were detected in IM-HRP catalyzed H 2 O 2 system and radicals quenching test indicated O 2 - played a more important role in estrogens removal. IM-HRP exhibited excellent stability and E2 removal efficiency could reach 45.41% after use seven times. Therefore, HRP enzymes immobilized on NH 2 Fe 3 O 4 @SiO 2 by cross-linking method in glutaraldehyde solutions was an effective way to improve stability and reusability of HRP, and which could avoid potential secondary pollution in water environment caused by free HRP after treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A new oxomolybdate component extracted from the "virtual dynamic library" yielding the macrocyclic anion [(Mo(VI)(8)O(28))(4)(Mo(V)(2)O(2)S(2))(4)](24-).

    PubMed

    Korenev, Vladimir S; Boulay, Antoine G; Dolbecq, Anne; Sokolov, Maxim N; Hijazi, Akram; Floquet, Sébastien; Fedin, Vladimir P; Cadot, Emmanuel

    2010-11-01

    A rare isomer of the {Mo(8)O(28)}(8-) anion has been trapped from an acidified aqueous solution of molybdate by using the {Mo(2)O(2)S(2)}(2+) oxothio cation as the linker and isolated as a part of a unique macrocyclic anion, which consists of four isopolyoxomolybdate fragments {Mo(8)O(28)} bridged by four {Mo(2)O(2)S(2)} units.

  16. O2(b1Σg+) Quenching by O2, CO2, H2O, and N2 at Temperatures of 300-800 K.

    PubMed

    Zagidullin, M V; Khvatov, N A; Medvedkov, I A; Tolstov, G I; Mebel, A M; Heaven, M C; Azyazov, V N

    2017-10-05

    Rate constants for the removal of O 2 (b 1 Σ g + ) by collisions with O 2 , N 2 , CO 2 , and H 2 O have been determined over the temperature range from 297 to 800 K. O 2 (b 1 Σ g + ) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b 1 Σ g + -X 3 Σ g - fluorescence. The removal rate constants for CO 2 , N 2 , and H 2 O were not strongly dependent on temperature and could be represented by the expressions k CO2 = (1.18 ± 0.05) × 10 -17 × T 1.5 × exp[Formula: see text], k N2 = (8 ± 0.3) × 10 -20 × T 1.5 × exp[Formula: see text], and k H2O = (1.27 ± 0.08) × 10 -16 × T 1.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . Rate constants for O 2 (b 1 Σ g + ) removal by O 2 (X), being orders of magnitude lower, demonstrated a sharp increase with temperature, represented by the fitted expression k O2 = (7.4 ± 0.8) × 10 -17 × T 0.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.

  17. Immobilized Candida antarctica lipase B on ZnO nanowires/macroporous silica composites for catalyzing chiral resolution of (R,S)-2-octanol.

    PubMed

    Shang, Chuan-Yang; Li, Wei-Xun; Zhang, Rui-Feng

    2014-01-01

    ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m(2)/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3-4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60°C for 8h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Properties of spin-1/2 triangular-lattice antiferromagnets CuY2Ge2O8 and CuLa2Ge2O8

    NASA Astrophysics Data System (ADS)

    Cho, Hwanbeom; Kratochvílová, Marie; Sim, Hasung; Choi, Ki-Young; Kim, Choong Hyun; Paulsen, Carley; Avdeev, Maxim; Peets, Darren C.; Jo, Younghun; Lee, Sanghyun; Noda, Yukio; Lawler, Michael J.; Park, Je-Geun

    2017-04-01

    We found new two-dimensional (2D) quantum (S =1 /2 ) antiferromagnetic systems: Cu R E2G e2O8 (R E =Y and La). According to our analysis of high-resolution x-ray and neutron diffraction experiments, the Cu network of Cu R E2G e2O8 (R E =Y and La) exhibits a 2D triangular lattice linked via weak bonds along the perpendicular b axis. Our bulk characterizations from 0.08 to 400 K show that they undergo a long-range order at 0.51(1) and 1.09(4) K for the Y and La systems, respectively. Interestingly, they also exhibit field induced phase transitions. For theoretical understanding, we carried out the density functional theory (DFT) band calculations to find that they are typical charge-transfer-type insulators with a gap of Eg≅2 eV . Taken together, our observations make Cu R E2G e2O8 (R E =Y and La) additional examples of low-dimensional quantum spin triangular antiferromagnets with the low-temperature magnetic ordering.

  19. Iron cation catalyzed reduction of N2O by CO: gas-phase temperature dependent kinetics.

    PubMed

    Melko, Joshua J; Ard, Shaun G; Fournier, Joseph A; Li, Jun; Shuman, Nicholas S; Guo, Hua; Troe, Jürgen; Viggiano, Albert A

    2013-07-21

    The ion-molecule reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2, which catalyze the reaction CO + N2O → CO2 + N2, have been studied over the temperature range 120-700 K using a variable temperature selected ion flow tube apparatus. Values of the rate constants for the former two reactions were experimentally derived as k2 (10(-11) cm(3) s(-1)) = 2.0(±0.3) (T/300)(-1.5(±0.2)) + 6.3(±0.9) exp(-515(±77)/T) and k3 (10(-10) cm(3) s(-1)) = 3.1(±0.1) (T/300)(-0.9(±0.1)). Characterizing the energy parameters of the reactions by density functional theory at the B3LYP/TZVP level, the rate constants are modeled, accounting for the intermediate formation of complexes. The reactions are characterized by nonstatistical intrinsic dynamics and rotation-dependent competition between forward and backward fluxes. For Fe(+) + N2O, sextet-quartet switching of the potential energy surfaces is quantified. The rate constant for the clustering reaction FeO(+) + N2O + He → FeO(N2O)(+) + He was also measured, being k4 (10(-27) cm(6) s(-1)) = 1.1(±0.1) (T/300)(-2.5(±0.1)) in the low pressure limit, and analyzed in terms of unimolecular rate theory.

  20. Detection of s-wave superconductivity on monolayer CuO2 films on Bi2Sr2CaCu2O8+δ.

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhong, Yong; Han, Sha; Lv, Yanfeng; Wang, Wenlin; Zhang, Ding; Ding, Hao; Zhang, Yimin; Wang, Lili; He, Ke; Song, Canli; Ma, Xucun; Xue, Qikun

    High temperature superconductivity emerges when the CuO2 layer touches the doped charge reservoir blocks. The redistributed charge carriers at these interfaces condense into coherent Cooper pairs, albeit the exact underlying mechanism is still highly controversial. Targeting at this, we have mimicked the CuO2/charge reservoir interface by depositing the monolayer CuO2 films on optimal doped Bi2Sr2CaCu2O8+δ substrates. Direct investigation on these superconducting CuO2 films, however, yields results in stark contrast with the common recognition. Despite of the well-known V shaped pseudogap, a U shaped gap is identified. This U shaped gap disappears at TC and is indifference to K, Cs and Ag adsorbates, in line with the traditional s-wave superconductivity. In view of these results, we propose that superconductivity in cuprates may indeed stem from the modulation doping induced two dimensional hole liquid, which is confined in the CuO2 layers. NSF and MOST of China.

  1. Fabrication of solution-processed InSnZnO/ZrO2 thin film transistors.

    PubMed

    Hwang, Soo Min; Lee, Seung Muk; Choi, Jun Hyuk; Lim, Jun Hyung; Joo, Jinho

    2013-11-01

    We fabricated InSnZnO (ITZO) thin-film transistors (TFTs) with a high-permittivity (K) ZrO2 gate insulator using a solution process and explored the microstructure and electrical properties. ZrO2 and ITZO (In:Sn:Zn = 2:1:1) precursor solutions were deposited using consecutive spin-coating and drying steps on highly doped p-type Si substrate, followed by annealing at 700 degrees C in ambient air. The ITZO/ZrO2 TFT device showed n-channel depletion mode characteristics, and it possessed a high saturation mobility of approximately 9.8 cm2/V x s, a small subthreshold voltage swing of approximately 2.3 V/decade, and a negative V(TH) of approximately 1.5 V, but a relatively low on/off current ratio of approximately 10(-3). These results were thought to be due to the use of the high-kappa crystallized ZrO2 dielectric (kappa approximately 21.8) as the gate insulator, which could permit low-voltage operation of the solution-processed ITZO TFT devices for applications to high-throughput, low-cost, flexible and transparent electronics.

  2. The k-space origins of scattering in Bi2Sr2CaCu2O8+x

    NASA Astrophysics Data System (ADS)

    Alldredge, Jacob W.; Calleja, Eduardo M.; Dai, Jixia; Eisaki, H.; Uchida, S.; McElroy, Kyle

    2013-08-01

    We demonstrate a general, computer automated procedure that inverts the reciprocal space scattering data (q-space) that are measured by spectroscopic imaging scanning tunnelling microscopy (SI-STM) in order to determine the momentum space (k-space) scattering structure. This allows a detailed examination of the k-space origins of the quasiparticle interference (QPI) pattern in Bi2Sr2CaCu2O8+x within the theoretical constraints of the joint density of states (JDOS). Our new method allows measurement of the differences between the positive and negative energy dispersions, the gap structure and an energy dependent scattering length scale. Furthermore, it resolves the transition between the dispersive QPI and the checkerboard ({q}_{1}^{\\ast } excitation). We have measured the k-space scattering structure over a wide range of doping (p ˜ 0.22-0.08), including regions where the octet model is not applicable. Our technique allows the complete mapping of the k-space scattering origins of the spatial excitations in Bi2Sr2CaCu2O8+x, which allows for better comparisons between SI-STM and other experimental probes of the band structure. By applying our new technique to such a heavily studied compound, we can validate our new general approach for determining the k-space scattering origins from SI-STM data.

  3. The k-space origins of scattering in Bi2Sr2CaCu2O8+x.

    PubMed

    Alldredge, Jacob W; Calleja, Eduardo M; Dai, Jixia; Eisaki, H; Uchida, S; McElroy, Kyle

    2013-08-21

    We demonstrate a general, computer automated procedure that inverts the reciprocal space scattering data (q-space) that are measured by spectroscopic imaging scanning tunnelling microscopy (SI-STM) in order to determine the momentum space (k-space) scattering structure. This allows a detailed examination of the k-space origins of the quasiparticle interference (QPI) pattern in Bi2Sr2CaCu2O8+x within the theoretical constraints of the joint density of states (JDOS). Our new method allows measurement of the differences between the positive and negative energy dispersions, the gap structure and an energy dependent scattering length scale. Furthermore, it resolves the transition between the dispersive QPI and the checkerboard ([Formula: see text] excitation). We have measured the k-space scattering structure over a wide range of doping (p ∼ 0.22-0.08), including regions where the octet model is not applicable. Our technique allows the complete mapping of the k-space scattering origins of the spatial excitations in Bi2Sr2CaCu2O8+x, which allows for better comparisons between SI-STM and other experimental probes of the band structure. By applying our new technique to such a heavily studied compound, we can validate our new general approach for determining the k-space scattering origins from SI-STM data.

  4. Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O8(2-).

    PubMed

    Hong, Dachao; Yamada, Yusuke; Nagatomi, Takaharu; Takai, Yoshizo; Fukuzumi, Shunichi

    2012-12-05

    Single or mixed oxides of iron and nickel have been examined as catalysts in photocatalytic water oxidation using [Ru(bpy)(3)](2+) as a photosensitizer and S(2)O(8)(2-) as a sacrificial oxidant. The catalytic activity of nickel ferrite (NiFe(2)O(4)) is comparable to that of a catalyst containing Ir, Ru, or Co in terms of O(2) yield and O(2) evolution rate under ambient reaction conditions. NiFe(2)O(4) also possesses robustness and ferromagnetic properties, which are beneficial for easy recovery from the solution after reaction. Water oxidation catalysis achieved by a composite of earth-abundant elements will contribute to a new approach to the design of catalysts for artificial photosynthesis.

  5. Magnetic Field Enhancement of Heat Transport in the 2D Heisenberg Antiferromagnet K_2V_3O_8

    NASA Astrophysics Data System (ADS)

    Sales, B. C.; Lumsden, M. D.; Nagler, S. E.; Mandrus, D.; Jin, R.

    2002-03-01

    The thermal conductivity and heat capacity of single crystals of the spin 1/2 quasi-2D Heisenberg antiferromagnet K_2V_3O8 have been measured from 1.9 to 300 K in magnetic fields from 0 to 8T. The data are consistent with resonant scattering of phonons by magnons near the zone boundary and heat transport by long wavelength magnons. The magnon heat transport only occurs after the small anisotropic gap at k=0 is closed by the application of a magnetic field. The low temperature thermal conductivity increases linearly with magnetic field after the gap has been closed. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of Energy under Contract No. DE-AC05-00R22725.

  6. Heterogeneous UV/Fenton degradation of bisphenol A catalyzed by synergistic effects of FeCo2O4/TiO2/GO.

    PubMed

    Bai, Xue; Lyu, Lingling; Ma, Wenqiang; Ye, Zhengfang

    2016-11-01

    A new method for bisphenol A (BPA) degradation in aqueous solution was developed. The characteristics of BPA degradation in a heterogeneous ultraviolet (UV)/Fenton reaction catalyzed by FeCo 2 O 4 /TiO 2 /graphite oxide (GO) were studied. The properties of the synthesized catalysts were characterized using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. FeCo 2 O 4 and TiO 2 were grown as spherical shape, rough surface, and relatively uniform on the surface of GO (FeCo 2 O 4 /TiO 2 /GO). Batch tests were conducted to evaluate the effects of the initial pH, FeCo 2 O 4 /TiO 2 /GO dosage, and H 2 O 2 concentration on BPA degradation. In a system with 0.5 g L -1 of FeCo 2 O 4 /TiO 2 /GO and 10 mmol L -1 of H 2 O 2 , approximately 90 % of BPA (20 mg L -1 ) was degraded within 240 min of UV irradiation at pH 6.0. The reused FeCo 2 O 4 /TiO 2 /GO catalyst retained its activity after three cycles, which indicates that it is stable and reusable. The heterogeneous UV/Fenton reaction catalyzed by FeCo 2 O 4 /TiO 2 /GO is a promising advanced oxidation technology for treating wastewater that contains BPA.

  7. Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process

    NASA Astrophysics Data System (ADS)

    Park, Kyeongsoon; Lee, Ga Won

    2011-10-01

    High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.

  8. Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process

    PubMed Central

    2011-01-01

    High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature. PMID:21974984

  9. Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process.

    PubMed

    Park, Kyeongsoon; Lee, Ga Won

    2011-10-05

    High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.

  10. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for Δ Hf,298K o (Ni3TeO6) using third-law analysis.

  11. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    PubMed

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    NASA Astrophysics Data System (ADS)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  13. Threshold oxygen levels in Na(I) for the formation of NaCrO 2(s) on 18-8 stainless steels from accurate thermodynamic measurements

    NASA Astrophysics Data System (ADS)

    Sreedharan, O. M.; Madan, B. S.; Gnanamoorthy, J. B.

    1983-12-01

    The compound NaCrO 2(s) is an important corrosion product in sodium-cooled LMFBRs. The standard Gibbs energy of formation of NaCrO 2(s) is required for the computation of threshold oxygen levels in Na(1) for the formation of NaCrO 2(s) on 18-8 stainless steels. For this purpose the emf of the galvanic cell: Pt, NaCrO 2, Cr 2O 3, Na 2CrO 4/15 YSZ/O 2 ( P O 2 = 0.21 atm, air), Pt was measured over 784-1012 K to be: (E±4.4)(mV) = 483.67-0.34155 T(K). From this, the standard Gibbs energy of formation of NaCrO 2(s) from the elements ( ΔG f,T0) and from the oxides ( ΔG f,OX,T0) was calculated to be: [ΔG f,T0(NaCrO 2, s)±1.86] (kJ/mol) =-869.98 + 0.18575 T(K) , [ΔG f,OX,T0(NaCr0 2, s)±4.8] (kJ/mol) = -104.25-0.00856 T(K) . The molar heat capacity, C P0, of NaCrO 2(s) was measured by DSC to be (350-600 K): C P0(NaCrO 2, s) (J/K mol) = 27.15 + 0.1247 T (K) , From these data, values of -99.3 kJ/mol and 91.6 J/K mol were computed for ΔH f,2980 and S 2980 of NaCrO 2(s). The internal consistency was checked with the use of enthalpy data on Na 2CrO 4(s). From the standard Gibbs energy of formation of NaCrO 2(s) the equation logC 0(wppm) = 3.9905-3147.6 T(K) was derived, where C 0 is the threshold oxygen level for the formation of NaCrO 2(s) on 18-8 stainless steels.

  14. Emission analysis of Tb3+ -and Sm3+ -ion-doped (Li2 O/Na2 O/K2 O) and (Li2 O + Na2 O/Li2 O + K2 O/K2 O + Na2 O)-modified borosilicate glasses.

    PubMed

    Naveen Kumar Reddy, B; Sailaja, S; Thyagarajan, K; Jho, Young Dahl; Sudhakar Reddy, B

    2018-05-01

    Four series of borosilicate glasses modified by alkali oxides and doped with Tb 3+ and Sm 3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B 2 O 3 + 10SiO 2 + 5MgO + R + 0.5(Tb 2 O 3 /Sm 2 O 3 ) [where R = 10(Li 2 O /Na 2 O/K 2 O) for series A and C, and R = 5(Li 2 O + Na 2 O/Li 2 O + K 2 O/K 2 O + Na 2 O) for series B and D]. The X-ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5 D 4 → 7 F 5 (543 nm) transition of the Tb 3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm 3+ ions with the series C and D glasses showed strong reddish-orange emission at 600 nm ( 4 G 5/2 → 6 H 7/2 ) with an excitation wavelength λ exci = 404 nm ( 6 H 5/2 → 4 F 7/2 ). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb 3+ and Sm 3+ ions was studied to optimize the potential alkali-oxide-modified borosilicate glass. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Investigations on the crystal-structure and non-ambient behaviour of K2Ca2Si8O19 - a new potassium calcium silicate

    NASA Astrophysics Data System (ADS)

    Schmidmair, Daniela; Kahlenberg, Volker; Praxmarer, Alessandra; Perfler, Lukas; Mair, Philipp

    2017-09-01

    Within the context of a systematic re-investigation of phase relationships between compounds of the ternary system K2O-CaO-SiO2 a new potassium calcium silicate with the chemical formula K2Ca2Si8O19 was synthesized via solid state reactions as well as the flux method using KCl as a solvent. Its crystal structure was determined from single-crystal X-ray diffraction data by applying direct methods. The new compound crystallizes in the triclinic space group P 1 bar . Unit cell dimensions are a = 7.4231(7) Å, b = 10.7649(10) Å, c = 12.1252(10) Å, α = 70.193(8)°, β = 83.914(7)° and γ = 88.683(7)°. K2Ca2Si8O19 is built up of corner-connected, slightly distorted [SiO4]-tetrahedra forming double-sheets, which are linked by double-chains of edge-sharing [CaO6]-octahedra. Electroneutrality of the material is provided by additional potassium atoms that are located within the voids of the silicate layers and between adjacent [Ca2O6]-double-chains. Further characterization of the compound was performed by Raman spectroscopy and differential thermal analysis. The behaviour of K2Ca2Si8O19 under high-temperature and high-pressure was investigated by in-situ high-temperature powder X-ray diffraction up to a maximum temperature of 1125 °C and a piston cylinder experiment at 1.5 GPa and 1100 °C. Additionally an overview of known double-layer silicates is given as well as a comparison of K2Ca2Si8O19 to closely related structures.

  16. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  17. First investigations on the quaternary system Na2O-K2O-CaO-SiO2: synthesis and crystal structure of the mixed alkali calcium silicate K1.08Na0.92Ca6Si4O15

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Mayerl, Michael Jean-Philippe; Schmidmair, Daniela; Krüger, Hannes; Tribus, Martina

    2018-04-01

    In the course of an exploratory study on the quaternary system Na2O-K2O-CaO-SiO2 single crystals of the first anhydrous sodium potassium calcium silicate have been obtained from slow cooling of a melt in the range between 1250 and 1050 °C. Electron probe micro analysis suggested the following idealized molar ratios of the oxides for the novel compound: K2O:Na2O:CaO:SiO2 = 1:1:12:8 (or KNaCa6Si4O15). Single-crystal diffraction measurements on a crystal with chemical composition K1.08Na0.92Ca6Si4O15 resulted in the following basic crystallographic data: monoclinic symmetry, space group P 21/ c, a = 8.9618(9) Å, b = 7.3594(6) Å, c = 11.2453(11) Å, β= 107.54(1)°, V = 707.2(1) Å3, Z = 2. Structure solution was performed using direct methods. The final least-squares refinement converged at a residual of R(|F|) = 0.0346 for 1288 independent reflections and 125 parameters. From a structural point of view, K1.08Na0.92Ca6Si4O15 belongs to the group of mixed-anion silicates containing [Si2O7]- and [SiO4]-units in the ratio 1:2. The mono- and divalent cations occupy a total of four crystallographically independent positions located in voids between the tetrahedra. Three of these sites are exclusively occupied by calcium. The fourth site is occupied by 54(1)% K and 46%(1) Na, respectively. Alternatively, the structure can be described as a heteropolyhedral framework based on corner-sharing silicate tetrahedra and [CaO6]-octahedra. The network can build up from kröhnkite-like [Ca(SiO4)2O2]-chains running along [001]. A detailed comparison with other A2B6Si4O15-compounds including topological and group-theoretical aspects is presented.

  18. White LED based on CaAl2Si2O8:Eu2+ Mn2+ phosphor and CdS/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Zhong, Chuan; Hou, Qianglong; Li, Ke

    2011-02-01

    Core/shell CdS/ZnS quantum dots (QDs) with the emission wavelength of 610nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. CaAl2Si2O8:Eu2+ Mn2+ phosphor was synthesized by high-temperature solid state reaction at 1290 °C for 2 hours under the H2 reducing atmosphere, and X-ray powder diffraction analysis confirmed the formation of it. It has two emission bands peaking at 420 nm and 580nm originated from the transition 5d to 4f of Eu2+ and 4T1-6A1 of Mn2+, respectively. Blends of CaAl2Si2O8:Eu2+,Mn2+ phosphor and CdS/ZnS QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of CaAl2Si2O8:Eu2+ Mn2+ phosphor and QDs with a weight ratio of 2:1, with the CIE coordinate of (0.3183, 0.3036) and CRI of 85 was obtained.

  19. Perovskite-type La0.8Sr0.2Co0.8Fe0.2O3 with uniform dispersion on N-doped reduced graphene oxide as an efficient bi-functional Li-O2 battery cathode.

    PubMed

    Cheng, Junfang; Jiang, Yuexing; Zhang, Ming; Zou, Lu; Huang, Yizhen; Wang, Ziling; Chi, Bo; Pu, Jian; Li, Jian

    2017-04-19

    A composite cathode including N-rGO with homogeneously dispersed perovskite La 0.8 Sr 0.2 Co 0.8 Fe 0.2 O 3 on the surface is studied. Li-O 2 batteries with LSCF@N-rGO cathode show better performance than those with LSCF-SP or N-rGO cathode. EIS and morphology analysis indicate that LSCF is beneficial to remold the shape of Li 2 O 2 and catalyze the decomposition of Li 2 O 2 .

  20. Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors.

    PubMed

    Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira

    2012-09-19

    The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.

  1. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O3/H2O2 and UV/H2O2).

    PubMed

    Lee, Minju; Merle, Tony; Rentsch, Daniel; Canonica, Silvio; von Gunten, Urs

    2017-01-03

    The abatement of 9 polychloro-1,3-butadienes (CBDs) in aqueous solution by ozone, UV-C(254 nm) photolysis, and the corresponding advanced oxidation processes (AOPs) (i.e., O 3 /H 2 O 2 and UV/H 2 O 2 ) was investigated. The following parameters were determined for 9 CBDs: second-order rate constants for the reactions of CBDs with ozone (k O 3 ) (<0.1-7.9 × 10 3 M -1 s -1 ) or with hydroxyl radicals (k • OH ) (0.9 × 10 9 - 6.5 × 10 9 M -1 s -1 ), photon fluence-based rate constants (k') (210-2730 m 2 einstein -1 ), and quantum yields (Φ) (0.03-0.95 mol einstein -1 ). During ozonation of CBDs in a natural groundwater, appreciable abatements (>50% at specific ozone doses of 0.5 gO 3 /gDOC to ∼100% at ≥1.0 gO 3 /gDOC) were achieved for tetra-CBDs followed by (Z)-1,1,2,3,4-penta-CBD and hexa-CBD. This is consistent with the magnitude of the determined k O 3 and k • OH . The formation of bromate, a potentially carcinogenic ozonation byproduct, could be significantly reduced by addition of H 2 O 2 . For a typical UV disinfection dose (400 J/m 2 ), various extents of phototransformations (10-90%) could be achieved. However, the efficient formation of photoisomers from CBDs with E/Z configuration must be taken into account because of their potential residual toxicity. Under UV-C(254 nm) photolysis conditions, no significant effect of H 2 O 2 addition on CBDs abatement was observed due to an efficient direct phototransformation of CBDs.

  2. Experimental determination of solubilities of di-calcium ethylenediaminetetraacetic acid hydrate [Ca2C10H12N2O8·7H2O(s)] in NaCl and MgCl2 solutions to high ionic strengths and its Pitzer model: Applications to geological disposal of nuclear waste and other low temperature environments

    DOE PAGES

    Xiong, Yongliang; Kirkes, Leslie; Westfall, Terry

    2017-04-01

    In this study, solubility measurements on di-calcium ethylenediaminetetraacetic acid [Ca 2C 10H 12N 2O 8(s), abbreviated as Ca 2EDTA(s)] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg –1 and in MgCl 2 solutions up to I = 7.5 mol•kg –1, at room temperature (22.5 ± 0.5oC).

  3. Physical properties of iodate solutions and the deliquescence of crystalline I2O5 and HIO3

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Saunders, R. W.; Mahajan, A. S.; Plane, J. M. C.; Murray, B. J.

    2010-12-01

    Secondary aerosol produced from marine biogenic sources in algal-rich coastal locations will initially be composed of iodine oxide species, most likely I2O5, or its hydrated form HIO3, formed as a result of iodine gas-phase chemistry. At present, there is no quantitative hygroscopic data for these compounds and very little data available for iodate solutions (HIO3 and I2O5 share a common aqueous phase). With increased interest in the role of such aerosol in the marine atmosphere, we have conducted studies of (i) the deliquescence behaviour of crystalline HIO3 and I2O5 at 273-303 K, (ii) the efflorescence behaviour of aqueous iodate solution droplets, and (iii) properties (water activity, density, and viscosity) of subsaturated and saturated iodate solutions. The deliquescence of I2O5 crystals at 293 K was observed to occur at a relative humidity (DRH) of 80.8±1.0%, whereas for HIO3, a DRH of 85.0±1.0% was measured. These values are consistent with measured water activity values for saturated I2O5 and HIO3 solutions at 293 K of 0.80±0.01 and 0.84±0.01 respectively. At all temperatures, DRH values for HIO3 crystals were observed to be higher than for those of I2O5. The temperature-dependent DRH data, along with solubility and water activity data were used to evaluate the enthalpy of solution (ΔHsol) for HIO3 and I2O5. A ΔHsol value of 8.3±0.7 kJ mol-1 was determined for HIO3 which is consistent with a literature value of 8.8 kJ mol-1. For I2O5, we report for the first time its solubility at various temperatures and ΔHsol = 12.4±0.6 kJ mol-1. The measured water activity values confirm that aqueous iodate solutions are strongly non-ideal, consistent with previous reports of complex ion formation and molecular aggregation.

  4. Physical properties of iodate solutions and the deliquescence of crystalline I2O5 and HIO3

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Saunders, R. W.; Mahajan, A. S.; Plane, J. M. C.; Murray, B. J.

    2010-09-01

    Secondary aerosol produced from marine biogenic sources in algal-rich coastal locations will initially be composed of iodine oxide species, most likely I2O5, or its hydrated form HIO3, formed as a result of iodine gas-phase chemistry. At present, there is no quantitative hygroscopic data for these compounds and very little data available for iodate solutions (HIO3 and I2O5 share a common aqueous phase). With increased interest in the role of such aerosol in the marine atmosphere, we have conducted studies of (i) the deliquescence behaviour of crystalline HIO3 and I2O5 at 273-303 K, (ii) the efflorescence behaviour of aqueous iodate solution droplets, and (iii) properties (water activity, density, and viscosity) of subsaturated and saturated iodate solutions. The deliquescence of I2O5 crystals at 293 K was observed to occur at a relative humidity (DRH) of 80.8±1.0%, whereas for HIO3, a DRH of 85.0±1.0% was measured. These values are consistent with measured water activity values for saturated I2O5 and HIO3 solutions at 293 K of 0.80±0.01 and 0.84±0.01 respectively. At all temperatures, DRH values for HIO3 crystals were observed to be higher than for those of I2O5. The temperature-dependent DRH data, along with solubility and water activity data were used to evaluate the enthalpy of solution (ΔHsol) for HIO3 and I2O5. A (ΔHsol value of 8.3±0.7 kJ mol-1 was determined for HIO3 which is consistent with a literature value of 8.8 kJ mol-1. For I2O5, we report for the first time its solubility at various temperatures and (ΔHsol=12.4±.6 kJ mol-1. The measured water activity values confirm that aqueous iodate solutions are strongly non-ideal, consistent with previous reports of complex ion formation and molecular aggregation.

  5. Hydrogen-Atom Transfer Oxidation with H2O2 Catalyzed by [FeII(1,2-bis(2,2'-bipyridyl-6-yl)ethane(H2O)2]2+: Likely Involvement of a (μ-Hydroxo)(μ-1,2-peroxo)diiron(III) Intermediate.

    PubMed

    Khenkin, Alexander M; Vedichi, Madhu; Shimon, Linda J W; Cranswick, Matthew A; Klein, Johannes E M N; Que, Lawrence; Neumann, Ronny

    2017-11-01

    The iron(II) triflate complex ( 1 ) of 1,2-bis(2,2'-bipyridyl-6-yl)ethane, with two bipyridine moieties connected by an ethane bridge, was prepared. Addition of aqueous 30% H 2 O 2 to an acetonitrile solution of 1 yielded 2 , a green compound with λ max =710 nm. Moessbauer measurements on 2 showed a doublet with an isomer shift (δ) of 0.35 mm/s and a quadrupole splitting (Δ E Q ) of 0.86 mm/s, indicative of an antiferromagnetically coupled diferric complex. Resonance Raman spectra showed peaks at 883, 556 and 451 cm -1 that downshifted to 832, 540 and 441 cm -1 when 1 was treated with H 2 18 O 2 . All the spectroscopic data support the initial formation of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that oxidizes carbon-hydrogen bonds. At 0°C 2 reacted with cyclohexene to yield allylic oxidation products but not epoxide. Weak benzylic C-H bonds of alkylarenes were also oxidized. A plot of the logarithms of the second order rate constants versus the bond dissociation energies of the cleaved C-H bond showed an excellent linear correlation. Along with the observation that oxidation of the probe substrate 2,2-dimethyl-1-phenylpropan-1-ol yielded the corresponding ketone but no benzaldehyde, and the kinetic isotope effect, k H /k D , of 2.8 found for the oxidation of xanthene, the results support the hypothesis for a metal-based H-atom abstraction mechanism. Complex 2 is a rare example of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that can elicit the oxidation of carbon-hydrogen bonds.

  6. Crystal structures of NiSO4·9H2O and NiSO4·8H2O: magnetic properties, stability with respect to morenosite (NiSO4·7H2O), the solid-solution series (Mg x Ni1-x )SO4·9H2O

    NASA Astrophysics Data System (ADS)

    Fortes, A. D.; Knight, K. S.; Gibbs, A. S.; Wood, I. G.

    2018-02-01

    Since being discovered initially in mixed-cation systems, a method of forming end-member NiSO4·9H2O and NiSO4·8H2O has been found. We have obtained powder diffraction data from protonated analogues (with X-rays) and deuterated analogues (using neutrons) of these compounds over a range of temperatures, allowing us to determine their crystal structures—including all H-atoms—and to characterise the transitions on warming from 220 to 278 K; glass → 9-hydrate → 8-hydrate + ice → 7-hydrate + ice → partial melt (7-hydrate + liquid). NiSO4·8D2O is triclinic, space-group P\\bar {1} , Z = 2, with unit cell parameters at 150 K, a = 6.12463(8) Å, b = 6.8401(1) Å, c = 12.5339(2) Å, α = 92.846(1)°, β = 97.822(1)°, γ = 96.627(1)° and V = 515.58(1) Å3. The structure consists of two symmetry-inequivalent Ni(D2O)6 octahedra on sites of \\bar {1} symmetry. These are directly joined by a water-water H-bond to form chains of octahedra parallel with the c-axis at x = 0. Two interstitial water molecules serve both to bridge the Ni(D2O)6 octahedral chains in the b-c plane and also to connect with the SO4 2- tetrahedral oxyanion. These tetrahedra are linked by the two interstitial water molecules in a reticular motif to form sheets perpendicular to c. NiSO4·9D2O is monoclinic, space-group P21/c, Z = 4, with unit-cell parameters at 150 K, a = 6.69739(6) Å, b = 11.8628(1) Å, c = 14.5667(1) Å, β = 94.9739(8)° and V = 1152.96(1) Å3. The structure is isotypic with the Mg analogue described elsewhere (Fortes et al., Acta Cryst B 73:47‒64, 2017b). It shares the motif of H-bonded octahedral chains with NiSO4·8D2O, although in the enneahydrate these run parallel with the b-axis at x = 0. Three interstitial water molecules bridge the Ni(D2O)6 octahedra to the SO4 2- tetrahedral oxyanion. The tetrahedra sit at x ≈ 0.5 and are linked by two of the three interstitial water molecules in a pentagonal motif to form ribbons parallel with b. A solid-solution series

  7. Thermodynamic studies of aqueous solutions of 2,2,2-cryptand at 298.15 K: enthalpy-entropy compensation, partial entropies, and complexation with K+ ions.

    PubMed

    Shaikh, Vasim R; Terdale, Santosh S; Ahamad, Abdul; Gupta, Gaurav R; Dagade, Dilip H; Hundiwale, Dilip G; Patil, Kesharsingh J

    2013-12-19

    The osmotic coefficient measurements for binary aqueous solutions of 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8] hexacosane) in the concentration range of ~0.009 to ~0.24 mol·kg(-1) and in ternary aqueous solutions containing a fixed concentration of 2,2,2-cryptand of ~0.1 mol·kg(-1) with varying concentration of KBr (~0.06 to ~0.16 mol·kg(-1)) have been reported at 298.15 K. The diamine gets hydrolyzed in aqueous solutions and needs proper approach to obtain meaningful thermodynamic properties. The measured osmotic coefficient values are corrected for hydrolysis and are used to determine the solvent activity and mean ionic activity coefficients of solute as a function of concentration. Strong ion-pair formation is observed, and the ion-pair dissociation constant for the species [CrptH](+)[OH(-)] is reported. The excess and mixing thermodynamic properties (Gibbs free energy, enthalpy, and entropy changes) have been obtained using the activity data from this study and the heat data reported in the literature. Further, the data are utilized to compute the partial molal entropies of solvent and solute at finite as well as infinite dilution of 2,2,2-cryptand in water. The concentration dependent non-linear enthalpy-entropy compensation effect has been observed for the studied system, and the compensation temperature along with entropic parameter are reported. Using solute activity coefficient data in ternary solutions, the transfer Gibbs free energies for transfer of the cryptand from water to aqueous KBr as well as transfer of KBr from water to aqueous cryptand were obtained and utilized to obtain the salting constant (ks) and thermodynamic equilibrium constant (log K) values for the complex (2,2,2-cryptand:K(+)) at 298.15 K. The value of log K = 5.8 ± 0.1 obtained in this work is found to be in good agreement with that reported by Lehn and Sauvage. The standard molar entropy for complexation is also estimated for the 2,2,2-cryptand

  8. Evidence for k-dependent, in-plane anisotropy of the superconducting gap in Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Shen, Z. X.; Dessau, D. S.; Spicer, W. E.; Mitzi, D. B.; Lombardo, L.; Kapitulnik, A.; Arko, A. J.

    1992-11-01

    We find the superconducting gap in Bi2Sr2CaCu2O8+δ single crystals is anisotropic in k space by roughly a factor of 2 using angle-resolved photoemission spectroscopy. Matching the k-space symmetry of the gap values provides a stringent constraint on theories of the mechanism of high-temperature superconductivity. A review of the literature shows that many puzzling results can be explained by anisotropic gaps in the high-Tc cuprates.

  9. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    NASA Astrophysics Data System (ADS)

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented

  10. A kinetic study of Ca-containing ions reacting with O, O2, CO2 and H2O: implications for calcium ion chemistry in the upper atmosphere.

    PubMed

    Broadley, Sarah; Vondrak, Tomas; Wright, Timothy G; Plane, John M C

    2008-09-14

    A series of gas-phase reactions involving molecular Ca-containing ions was studied by the pulsed laser ablation of a calcite target to produce Ca+ in a fast flow of He, followed by the addition of reagents downstream and detection of ions by quadrupole mass spectrometry. Most of the reactions that were studied are important for describing the chemistry of meteor-ablated calcium in the earth's upper atmosphere. The following rate coefficients were measured: k(CaO+ + O --> Ca+ + O2) = (4.2 +/- 2.8) x 10(-11) at 197 K and (6.3 +/- 3.0) x 10(-11) at 294 K; k(CaO+ + CO --> Ca+ + CO2, 294 K) = (2.8 +/- 1.5) x 10(-10); k(Ca+.CO2 + O2 --> CaO2+ + CO2, 294 K) = (1.2 +/- 0.5) x10(-10); k(Ca+.CO2 + H2O --> Ca+.H2O + CO2) = (13.0 +/- 4.0) x 10(-10); and k(Ca+.H2O + O2 --> CaO2+ + H2O, 294 K) = (4.0 +/- 2.5) x 10(-10) cm3 molecule(-1) s(-1). The quoted uncertainties are a combination of the 1 sigma standard errors in the kinetic data and the systematic errors in the models used to extract the rate coefficients. Rate coefficients were also obtained for the following recombination (also termed association) reactions in He bath gas: k(Ca+.CO2 + CO2 --> Ca+.(CO2)2, 294 K) = (2.6 +/- 1.0) x 10(-29); k(Ca+.H2O + H2O --> Ca+.(H2O)2) = (1.6 +/- 1.1) x 10(-27); and k(CaO2+ + O2 --> CaO2+.O2) < 1 x 10(-31) cm6 molecule(-2) s(-1). These recombination rate coefficients, as well as those for the ligand-switching reactions listed above, were then interpreted using a combination of high level quantum chemistry calculations and RRKM theory using an inverse Laplace transform solution of the master equation. The surprisingly slow reaction between CaO+ and O was explained using quantum chemistry calculations on the lowest 2A', 2A'' and 4A'' potential energy surfaces. These calculations indicate that reaction mostly occurs on the 2A' surface, leading to production of Ca+ (2S) + O2(1 Delta g). The importance of this reaction for controlling the lifetime of Ca+ in the upper mesosphere and lower

  11. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  12. Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures, and reactivity of Rb[UO(2)(CrO(4))(IO(3))(H(2)O)], A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K, Rb, Cs), and K(2)[UO(2)(MoO(4))(IO(3))(2)].

    PubMed

    Sykora, Richard E; McDaniel, Steven M; Wells, Daniel M; Albrecht-Schmitt, Thomas E

    2002-10-07

    The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.

  13. Dachiardite-K, (K2Ca)(Al4Si20O48) · 13H2O, a new zeolite from Eastern Rhodopes, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Encheva, S.; Petrov, P.; Pekov, I. V.; Belakovskiy, D. I.; Britvin, S. N.; Aksenov, S. M.

    2016-12-01

    Dachiardite-K (IMA No. 2015-041), a new zeolite, is a K-dominant member of the dachiardite series with the idealized formula (K2Ca)(Al4Si20O48) · 13H2O. It occurs in the walls of opal-chalcedony veinlets cutting hydrothermally altered effusive rocks of the Zvezdel paleovolcanic complex near the village of Austa, Momchilgrad Municipality, Eastern Rhodopes, Bulgaria. Chalcedony, opal, dachiardite-Ca, dachiardite-Na, ferrierite-Mg, ferrierite-K, clinoptilolite-Ca, clinoptilolite-K, mordenite, smectite, celadonite, calcite, and barite are associated minerals. The mineral forms radiated aggregates up to 8 mm in diameter consisting of split acicular individuals. Dachiardite-K is white to colorless. Perfect cleavage is observed on (100). D meas = 2.18(2), D calc = 2.169 g/cm3. The IR spectrum is given. Dachiardite-K is biaxial (+), α = 1.477 (calc), β = 1.478(2), γ = 1.481(2), 2 V meas = 65(10)°. The chemical composition (electron microprobe, mean of six point analyses, H2O determined by gravimetric method) is as follows, wt %: 4.51 K2O, 3.27 CaO, 0.41 BaO, 10.36 A12O3, 67.90 SiO2, 13.2 H2O, total is 99.65. The empirical formula is H26.23K1.71Ca1.04Ba0.05Al3.64Si20.24O61. The strongest reflections in the powder X-ray diffraction pattern [ d, Å (I, %) (hkl)] are: 9.76 (24) (001), 8.85 (58) (200), 4.870 (59) (002), 3.807 (16) (202), 3.768 (20) (112, 020), 3.457 (100) (220), 2.966 (17) (602). Dachiardite-K is monoclinic, space gr. C2/m, Cm or C2; the unit cell parameters refined from the powder X-ray diffraction data are: a = 18.670(8), b = 7.511(3), c = 10.231(4) Å, β = 107.79(3)°, V= 1366(1) Å3, Z = 1. The type specimen has been deposited in the Earth and Man National Museum, Sofia, Bulgaria, with the registration number 23927.

  14. Phase diagrams and physicochemical properties of Li+,K+(Rb+)//borate-H2O systems at 323 K

    NASA Astrophysics Data System (ADS)

    Feng, Shan; Yu, Xudong; Cheng, Xinglong; Zeng, Ying

    2017-11-01

    The phase and physicochemical properties diagrams of Li+,K+(Rb+)//borate-H2O systems at 323 K were constructed using the experimentally measured solubilities, densities, and refractive indices. The Schreinemakers' wet residue method and the X-ray diffraction were used for the determination of the compositions of solid phase. Results show that these two systems belong to the hydrate I type, with no solid solution or double salt formation. The borate phases formed in our experiments are RbB5O6(OH)4 · 2H2O, Li2B4O5(OH)4 · H2O, and K2B4O5(OH)4 · 2H2O. Comparison between the stable phase diagrams of the studied system at 288, 323, and 348 K show that in this temperature range, the crystallization form of salts do not changed. With the increase in temperature, the crystallization field of Li2B4O5(OH)4 · H2O salt at 348 K is obviously larger than that at 288 K. In the Li+,K+(Rb+)//borate-H2O systems, the densities and refractive indices of the solutions (at equilibrium) increase along with the mass fraction of K2B4O7 (Rb2B4O7), and reach the maximum values at invariant point E.

  15. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-04-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  16. Chemical and Electrochemical Asymmetric Dihydroxylation of Olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) Systems with Sharpless' Ligand.

    PubMed

    Torii, Sigeru; Liu, Ping; Bhuvaneswari, Narayanaswamy; Amatore, Christian; Jutand, Anny

    1996-05-03

    Iodine-assisted chemical and electrochemical asymmetric dihydroxylation of various olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) systems with Sharpless' ligand provided the optically active glycols in excellent isolated yields and high enantiomeric excesses. Iodine (I(2)) was used stoichiometrically for the chemical dihydroxylation, and good results were obtained with nonconjugated olefins in contrast to the case of potassium ferricyanide as a co-oxidant. The potentiality of I(2) as a co-oxidant under stoichiometric conditions has been proven to be effective as an oxidizing mediator in electrolysis systems. Iodine-assisted asymmetric electro-dihydroxylation of olefins in either a t-BuOH/H(2)O(1/1)-K(2)CO(3)/(DHQD)(2)PHAL-(Pt) or t-BuOH/H(2)O(1/1)-K(3)PO(4)/K(2)HPO(4)/(DHQD)(2)PHAL-(Pt) system in the presence of potassium osmate in an undivided cell was investigated in detail. Irrespective of the substitution pattern, all the olefins afforded the diols in high yields and excellent enantiomeric excesses. A plausible mechanism is discussed on the basis of cyclic voltammograms as well as experimental observations.

  17. Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O.

    PubMed

    Motokura, Ken; Kashiwame, Daiki; Miyaji, Akimitsu; Baba, Toshihide

    2012-05-18

    A copper-catalyzed formic acid synthesis from CO2 with hydrosilanes has been accomplished. The Cu(OAc)2·H2O-1,2-bis(diphenylphosphino)benzene system is highly effective for the formic acid synthesis under 1 atm of CO2. The TON value approached 8100 in 6 h. The reaction pathway was revealed by in situ NMR analysis and isotopic experiments.

  18. Kinetic Studies of Iron Deposition Catalyzed by Recombinant Human Liver Heavy, and Light Ferritins and Azotobacter Vinelandii Bacterioferritin Using O2 and H2O2 as Oxidants

    NASA Technical Reports Server (NTRS)

    Bunker, Jared; Lowry, Thomas; Davis, Garrett; Zhang, Bo; Brosnahan, David; Lindsay, Stuart; Costen, Robert; Choi, Sang; Arosio, Paolo; Watt, Gerald D.

    2005-01-01

    The discrepancy between predicted and measured H2O2 formation during iron deposition with recombinant heavy human liver ferritin (rHF) was attributed to reaction with the iron protein complex [Biochemistry 40 (2001) 10832-10838]. This proposal was examined by stopped-flow kinetic studies and analysis for H2O2 production using (1) rHF, and Azotobacter vinelandii bacterial ferritin (AvBF), each containing 24 identical subunits with ferroxidase centers; (2) site-altered rHF mutants with functional and dysfunctional ferroxidase centers; and (3) rccombinant human liver light ferritin (rLF), containing 110 ferroxidase center. For rHF, nearly identical pseudo-first-order rate constants of 0.18 per second at pH 7.5 were measured for Fe(2+) oxidation by both O2 and H2O2, but for rLF, the rate with O2 was 200-fold slower than that for H2O2 (k-0.22 per second). A Fe(2+)/O2 stoichiometry near 2.4 was measured for rHF and its site altered forms, suggesting formation of H2O2. Direct measurements revealed no H2O2 free in solution 0.5-10 min after all Fe(2+) was oxidized at pH 6.5 or 7.5. These results are consistent with initial H2O2 formation, which rapidly reacts in a secondary reaction with unidentified solution components. Using measured rate constants for rHF, simulations showed that steady-state H2O2 concentrations peaked at 14 pM at approx. 600 ms and decreased to zero at 10-30 s. rLF did not produce measurable H2O2 but apparently conducted the secondary reaction with H2O2. Fe(2+)/O2 values of 4.0 were measured for AvBF. Stopped-flow measurements with AvBF showed that both H2O2 and O2 react at the same rate (k=0.34 per second), that is faster than the reactions with rHF. Simulations suggest that AvBF reduces O2 directly to H2O without intermediate H2O2 formation.

  19. Room-temperature NaI/H2O compression icing: solute-solute interactions.

    PubMed

    Zeng, Qingxin; Yao, Chuang; Wang, Kai; Sun, Chang Q; Zou, Bo

    2017-10-11

    In situ Raman spectroscopy revealed that transiting the concentrated NaI/H 2 O solutions to an ice VI phase and then into an ice VII phase at 298 K proceeds in a way different from that activated by the solute type. Unlike the solute type that raises both the critical pressures P C1 and P C2 , for the liquid-VI, the VI-VII transition simultaneously occurs in the Hofmeister series order: I > Br > Cl > F ∼ 0; concentration increase raises the P C1 faster than the P C2 that remains almost constant at higher NaI/H 2 O molecular number ratios. Concentration increase moves the P C1 along the liquid-VI phase boundary and it finally merges with P C2 at the triple-phase junction featured at 350 K and 3.05 GPa. The highly-deformed H-O bond is less sensitive to the concentration because of the involvement of anion-anion repulsion that weakens the electric field in the hydration shells. Observations confirm that the salt solvation lengthens the O:H nonbond and softens its phonon but relaxes the H-O bond contrastingly. Compression, however, has the opposite effect from that of salt solvation. Therefore, compression recovers the polarization-deformed O:H-O bond first and then proceeds to the phase transitions. The anion-anion interaction discriminates the effect of NaI/H 2 O concentration from that of the solute type at an identical concentration on the phase transitions.

  20. Quasi-periodic Solutions to the K(-2, -2) Hierarchy

    NASA Astrophysics Data System (ADS)

    Wu, Lihua; Geng, Xianguo

    2016-07-01

    With the help of the characteristic polynomial of Lax matrix for the K(-2, -2) hierarchy, we define a hyperelliptic curve 𝒦n+1 of arithmetic genus n+1. By introducing the Baker-Akhiezer function and meromorphic function, the K(-2, -2) hierarchy is decomposed into Dubrovin-type differential equations. Based on the theory of hyperelliptic curve, the explicit Riemann theta function representation of meromorphic function is given, and from which the quasi-periodic solutions to the K(-2, -2) hierarchy are obtained.

  1. Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen.

    PubMed

    Liu, Jia-Ming; Jiao, Li; Lin, Li-Ping; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong; Jiang, Shu-Lian

    2013-12-15

    A label-free non-aggregation colorimetric sensor has been designed for the detection of Cu(2+), based on Cu(2+) catalyzing etching of gold nanorods (AuNRs) along longitudinal axis induced by dissolve oxygen in the presence of S2O3(2-), which caused the aspect ratio (length/width) of AuNRs to decrease and the color of the solution to distinctly change. The linear range and the detection limit (LD, calculated by 10 Sb/k, n=11) of this sensor were 0.080-4.8 µM Cu(2+) and 0.22 µM Cu(2+), respectively. This sensor has been utilized to detect Cu(2+) in tap water and human serum samples with the results agreeing well with those of inductively coupled plasma-mass spectroscopy (ICP-MS), showing its remarkable practicality. In order to prove the possibility of catalyzing AuNRs non-aggregation colorimetric sensor for the detection of Cu(2+), the morphological structures of AuNRs were characterized by high resolution transmission electron microscopy (HRTEM) and the sensing mechanism of colorimetric sensor for the detection of Cu(2+) was also discussed. © 2013 Elsevier B.V. All rights reserved.

  2. O(2)-dependent K(+) fluxes in trout red blood cells: the nature of O(2) sensing revealed by the O(2) affinity, cooperativity and pH dependence of transport.

    PubMed

    Berenbrink, M; Völkel, S; Heisler, N; Nikinmaa, M

    2000-07-01

    The effects of pH and O(2) tension on the isotonic ouabain-resistant K(+) (Rb+) flux pathway and on haemoglobin O2 binding were studied in trout red blood cells (RBCs) in order to test for a direct effect of haemoglobin O(2) saturation on K(+) transport across the RBC membrane. At pH values corresponding to in vivo control arterial plasma pH and higher, elevation of the O(2) partial pressure (PO(2)) from 7.8 to 157 mmHg increased unidirectional K(+) influx across the RBC membrane several-fold. At lower extracellular pH values, stimulation of K(+) influx by O(2) was depressed, exhibiting an apparent pK(a) (pK'(a)) for the process of 8.0. Under similar conditions the pK'(a) for acid-induced deoxygenation of haemoglobin (Hb) was 7.3. When trout RBCs were exposed to PO(2) values between 0 and 747 mmHg, O(2) equilibrium curves typical of Hb O(2) saturation were also obtained for K(+) influx and efflux. However, at pH 7.9, the PO(2) for half-maximal K(+) efflux and K(+) influx (P50) was about 8- to 12-fold higher than the P(50) for Hb-O(2) binding. While K(+) influx and efflux stimulation by O(2) was essentially non-cooperative, Hb-O(2) equilibrium curves were distinctly sigmoidal (Hill parameters close to 1 and 3, respectively). O(2)-stimulated K(+) influx and efflux were strongly pH dependent. When the definition of the Bohr factor for respiratory pigments (Phi = delta logP50 x delta pH(-1)) was extended to the effect of pH on O(2)-dependent K(+) influx and efflux, extracellular Bohr factors (Phi(o) of -2.00 and -2.06 were obtained, values much higher than that for Hb (Phi(o) = -0.49). The results of this study are consistent with an O(2) sensing mechanism differing markedly in affinity and cooperativity of O(2) binding, as well as in pH sensitivity, from bulk Hb.

  3. Calculated rate constants for the reaction ClO + O yields Cl + O2 between 220 and 1000 deg K. [molecular trajectories and stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Jaffee, R. L.

    1978-01-01

    Classical trajectory calculations are presented for the reaction ClO + O yields Cl + O2, a reaction which is an important step in the chlorine-catalyzed destruction of ozone which is thought to occur in the 220 and 1000 K. The calculated rate constant is 4.36 x 10 to the minus 11th power exp (-191/T)cu cm molecule (-1)s(-1) and its value at 300 K is 2.3 plus or minus 10 to the 11th power cu cm molecule (-1)s(-1), about a factor of 2 lower than recent experimental data. The empirical potential energy surface used in the calculations was constructed to fit experimental data for ClO, O2 and ClOO molecules. Other important features of this potential surface, such as the barrier to reaction, were varied systematically and calculations were performed for a range of conditions to determine the best theoretical rate constants. Results demonstrate the utility of classical trajectory methods for determining activation energies and other kinetic data for important atmospheric reactions.

  4. Excision of uranium oxide chains and ribbons in the novel one-dimensional uranyl iodates K(2)[(UO(2))3(IO(3))(4)O(2)] and Ba[(UO(2)2(IO(3))(2)O(2)](H(2)O).

    PubMed

    Bean, A C; Ruf, M; Albrecht-Schmitt, T E

    2001-07-30

    The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.

  5. Electrochemical lithium intercalation into Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Shimono, Takahiro; Kobayashi, Wataru; Nitani, Hiroaki; Kumai, Reiji; Moritomo, Yutaka

    2013-04-01

    We have prepared Li-intercalated LixBi2Sr2CaCu2O8+δ (x =0-2.0) samples by using electrochemical method, and performed synchrotron x-ray diffraction, Cu K-edge x-ray absorption fine structure (XAFS), and magnetic susceptibility measurements. With increasing x, a- and c-lattice parameters monotonically increase, which shows lithium intercalation into Bi2Sr2CaCu2O8+δ. Accompanied by the lithium insertion, the valence of Cu ion changes from Cu2+/Cu3+ to Cu1+/Cu2+ to realize charge neutrality. This change of the valence was detected by Cu K-edge XAFS measurement. A clear increase of spectral weight that corresponds to 1s→ 4pπ(3d10L) was observed at around 8982 eV with x. The superconducting (SC) transition temperature TC significantly changes from 74 K for x = 0 to 90 K for x = 0.8, which is attributed to modified density of states by the decrease of hole concentration. A volume fraction of the superconducting phase was 1-2 % for x >= 0.6 implying phase separation where Li-rich non SC phase and Li-poor SC phase coexist. Such a phase separation is universally seen in electrode active materials.

  6. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms.

    PubMed

    Wang, Shuhua; Xie, Yaling; Yan, Weifu; Wu, Xuee; Wang, Chin-Tsan; Zhao, Feng

    2018-05-22

    Solid wastes are currently produced in large amounts. Although bioleaching of metals from solid wastes is an economical and sustainable technology, it has seldom been used to recycle metals from abandoned catalyst. In this study, the bioleaching of vanadium from V 2 O 5 -WO 3 /TiO 2 catalyst were comprehensively investigated through five methods: Oligotrophic way, Eutrophic way, S-mediated way, Fe-mediated way and Mixed way of S-mediated and Fe-mediated. The observed vanadium bioleaching effectiveness of the assayed methods was follows: S-mediated > Mixed > Oligotrophic > Eutrophic > Fe-mediated, which yielded the maximum bioleaching efficiencies of approximately 90%, 35%, 33%, 20% and 7%, respectively. The microbial community analysis suggested that the predominant genera Acidithiobacillus and Sulfobacillus from the S-mediated bioleaching way effectively catalyzed the vanadium leaching, which could have occurred through the indirect mechanism from the microbial oxidation of S 0 . In addition, the direct mechanism, involving direct electron transfer between the catalyst and the microorganisms that attached to the catalyst surface, should also help the vanadium to be leached more effectively. Therefore, this work provides guidance for future research and practical application on the treatment of waste V 2 O 5 -WO 3 /TiO 2 catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    PubMed

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  8. Lattice thermal expansion of the solid solutions (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongdan; Lei, Xinrong; Zhang, Jinhua, E-mail: jhzhang1212@126.com

    2014-09-15

    Highlights: • Sm-doped La{sub 2}Ce{sub 2}O{sub 7} was prepared by the coprecipitation–calcination method. • In situ HT-XRD measurements revealed that is much stable than 8YSZ. • Its thermal expansion is better than 8YSZ. - Abstract: A series of solid solutions with the general formula (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) were prepared by the coprecipitation–calcination method. The products obtained were characterized by powder X-ray diffraction for phase purity. It was observed that La{sup 3+} and Sm{sup 3+} can form complete solid solution in (La,Sm){sub 2}Ce{sub 2}O{sub 7} with defect-fluorite-type phase. The unit cell parameters ofmore » these solutions were calculated by a least squares method and the lattice parameters decreased linearly as x increased. The lattice thermal expansion behavior of (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) was investigated by high-temperature X-ray diffraction in the temperature range 298–1623 K. The lattice parameters a{sub T} of all the solutions at different temperature can be expressed as a{sub T} = a + bT + cT{sup 2}. As x < 1, the thermal expansion has a sudden decrease at ca. 473 K. The coefficients of lattice thermal expansion of Sm{sub 2}Ce{sub 2}O{sub 7} were 10.2–13.6 × 10{sup −6} K{sup −1} from 298 to 1623 K, and without the thermal contraction at low temperature. The materials show positive or negative thermal expansion due to the asymmetric anharmonic vibration.« less

  9. Low-Temperature Heat Capacities and Standard Molar Enthalpy of Formation of Potassium Benzoate C7H5O2K(s)

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Wei; di, You-Ying; Yin, Zhen-Fen; Kong, Yu-Xia; Tan, Zhi-Cheng

    2009-04-01

    Potassium benzoate C7H5O2K (CAS Registry No. 582-25-2) was synthesized by the method of liquid phase reaction. Chemical and elemental analyses, FTIR, and X-ray powder diffraction (XRD) techniques were applied to characterize the composition and structure of the compound. Low-temperature heat capacities of the compound were measured by a precision automated adiabatic calorimeter over the temperature range from 78 K to 398 K. A polynomial equation of the heat capacities as a function of temperature was fitted by the least-squares method. Smoothed heat capacities and thermodynamic functions of the compound were calculated based on the fitted polynomial. In accordance with Hess’s law, a reasonable thermochemical cycle was designed, and 100 mL of 1 mol · dm-3 NaOH solution was chosen as the calorimetric solvent. The standard molar enthalpies of dissolution for the reactants and products of the supposed reaction in the selected solvent were measured by an isoperibol solution-reaction calorimeter. Finally, the standard molar enthalpy of formation of the title compound C7H5O2K (s) was derived to be -(610.94 ± 0.77) kJ · mol-1.

  10. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.

    1988-12-01

    Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.

  11. The influence of excess K2O on the electrical properties of (K,Na)1/2Bi1/2TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Linhao; Li, Ming; Sinclair, Derek C.

    2018-04-01

    The solid solution (KxNa0.50-x)Bi0.50TiO3 (KNBT) between Na1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 (KBT) has been extensively researched as a candidate lead-free piezoelectric material because of its relatively high Curie temperature and good piezoelectric properties, especially near the morphotropic phase boundary (MPB) at x ˜ 0.10 (20 mol. % KBT). Here, we show that low levels of excess K2O in the starting compositions, i.e., (Ky+0.03Na0.50-y)Bi0.50TiO3.015 (y-series), can significantly change the conduction mechanism and electrical properties compared to a nominally stoichiometric KNBT series (KxNa0.50-x)Bi0.50TiO3 (x-series). Impedance spectroscopy measurements reveal significantly higher bulk conductivity (σb) values for y ≥ 0.10 samples [activation energy (Ea) ≤ 0.95 eV] compared to the corresponding x-series samples which possess bandgap type electronic conduction (Ea ˜ 1.26-1.85 eV). The largest difference in electrical properties occurs close to the MPB composition (20 mol. % KBT) where y = 0.10 ceramics possess σb (at 300 °C) that is 4 orders of magnitude higher than that of x = 0.10 and the oxide-ion transport number in the former is ˜0.70-0.75 compared to <0.05 in the latter (between 600 and 800 °C). The effect of excess K2O can be rationalised on the basis of the (K + Na):Bi ratio in the starting composition prior to ceramic processing. This demonstrates the electrical properties of KNBT to be sensitive to low levels of A-site nonstoichiometry and indicates that excess K2O in KNBT starting compositions to compensate for volatilisation can lead to undesirable high dielectric loss and leakage currents at elevated temperatures.

  12. Swift adsorptive removal of Congo red from aqueous solution by K1.33Mn8O16 nanowires.

    PubMed

    Wu, Junshu; Li, Hongyi; Wang, Jinshu; Li, Zhifei

    2013-08-01

    A swift and efficient approach to converting organic dye effluents into fresh water could be of substantial benefit. In this study, we presented facile hydrothermal synthesis of K1.33Mn8O16 nanowires in ammonium fluoride (NH4F) aqueous solution. The crystallization process of K1.33Mn8O16 nanowires was investigated. The as-obtained K1.33Mn8O16 nanowires were used for swift adsorptive removal of Congo red from aqueous solution without adjusting pH value at room temperature. Adsorption kinetic experimental data are well described by pseudo-second-order rate kinetic model, and the adsorption isotherm fits Langmuir isotherm model. The present investigation provides an efficient approach to designing and fabricating manganese-based nanomaterials for environmental remediation.

  13. An isopiestic study of aqueous NaBr and KBr at 50 °C: Chemical equilibrium model of solution behavior and solubility in the NaBr-H 2O, KBr-H 2O and Na-K-Br-H 2O systems to high concentration and temperature

    NASA Astrophysics Data System (ADS)

    Christov, Christomir

    2007-07-01

    The isopiestic method has been used to determine the osmotic coefficients of the binary solutions NaBr-H 2O (from 0.745 to 5.953 mol kg -1) and KBr-H 2O (from 0.741 to 5.683 mol kg -1) at the temperature t = 50 °C. Sodium chloride solutions have been used as isopiestic reference standards. The isopiestic results obtained have been combined with all other experimental thermodynamic quantities available in literature (osmotic coefficients, water activities, bromide mineral's solubilities) to construct a chemical model that calculates solute and solvent activities and solid-liquid equilibria in the NaBr-H 2O, KBr-H 2O and Na-K-Br-H 2O systems from dilute to high solution concentration within the 0-300 °C temperature range. The Harvie and Weare [Harvie C., and Weare J. (1980) The prediction of mineral solubilities in naturalwaters: the Na-K-Mg-Ca-Cl-SO 4-H 2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta44, 981-997] solubility modeling approach, incorporating their implementation of the concentration-dependent specific interaction equations of Pitzer [Pitzer K. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem.77, 268-277] is employed. The model for binary systems is validated by comparing activity coefficient predictions with those given in literature, and not used in the parameterization process. Limitations of the mixed solutions model due to data insufficiencies are discussed. This model expands the variable temperature sodium-potassium model of Greenberg and Moller [Greenberg J., and Moller N. (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO 4-H 2O system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta53, 2503-2518] by evaluating Br - pure electrolyte and mixing solution parameters and the chemical potentials of three bromide solid phases: NaBr-2H 2O (cr), NaBr (cr) and KBr (cr).

  14. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    NASA Astrophysics Data System (ADS)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  15. Oxygen ionic conductivity of NTE materials of cubic Zr 1- xLn xW 2- yMo yO 8- x/2 (Ln = Er, Yb)

    NASA Astrophysics Data System (ADS)

    Li, Hai-Hua; Xia, Hai-Ting; Jing, Xi-Ping; Zhao, Xin-Hua

    2008-08-01

    Cubic Zr 1- xLn xW 2- yMo yO 8- x/2 (Ln = Er: x = 0.01, 0.02, 0.03; y = 0; Ln = Yb: x = 0.02, 0.03; y = 0.4) solid solutions, well-known negative thermal expansion (NTE) materials were prepared by using conventional solid state reactions. The morphology and the composition of the fracture surfaces of the ceramic pellets were determined by SEM and EDX technology. The conductance properties of the pellets, such as conductivity and conductance activation energy, were studied by AC impedance spectroscopy and the materials perform clearly oxygen ionic conduction with the conductivity of about 10 -4 S cm -1 at 673 K, a comparable value to that of ceria based solid electrolytes. The substitution of Mo for W enhanced the thermal stability of ZrW 2O 8, so that the conductivity of Zr 0.98Yb 0.02W 1.6Mo 0.4O 7.99 ceramic can be measured up to 873 K, which is about 5.9 × 10 -4 S cm -1.

  16. Expanding the remarkable structural diversity of uranyl tellurites: hydrothermal preparation and structures of K[UO(2)Te(2)O(5)(OH)], Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O, beta-Tl(2)[UO(2)(TeO(3))(2)], and Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2).

    PubMed

    Almond, Philip M; Albrecht-Schmitt, Thomas E

    2002-10-21

    The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta

  17. Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl

    NASA Astrophysics Data System (ADS)

    Popp, Robert K.; Frantz, John D.

    1980-07-01

    Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.

  18. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  19. Solid-liquid phase equilibria in the ternary system (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K

    NASA Astrophysics Data System (ADS)

    Wang, Shi-qiang; Guo, Ya-fei; Yang, Jian-sen; Deng, Tian-long

    2015-12-01

    Experimental studies on the solubilities and physicochemical properties including density, refractive index and pH value in the ternary systems (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K were determined with the method of isothermal dissolution equilibrium. Based on the experimental results, the phase diagrams and their corresponding physicochemical properties versus composition diagram in the system were plotted. In the phase diagrams of the ternary system at 288.15 and 298.15 K, there are one eutectic point and two crystallization regions corresponding to lithium metaborate octahydrate (LiBO2 · 8H2O) and lithium carbonate (Li2CO3), respectively. This system at both temperatures belongs to hydrate type I, and neither double salt nor solid solution was found. A comparison of the phase diagrams for this ternary system at 288.15 and 298.15 K shows that the solid phase numbers and exist minerals are the same, and the area of crystallization region of Li2CO3 is increased obviously with the increasing temperature while that of LiBO2 · 8H2O is decreased. The physicochemical properties (density, pH value and refractive index) of the solutions of the ternary system at two temperatures changes regularly with the increasing lithium carbonate concentration. The calculated values of density and refractive index using empirical equations of the ternary system are in good agreement with the experimental values.

  20. Wash Bottle Laboratory Exercises: Iodide-Catalyzed H[subscript 2]O[subscript 2] Decomposition Reaction Kinetics Using the Initial Rate Approach

    ERIC Educational Resources Information Center

    Barlag, Rebecca; Nyasulu, Frazier

    2010-01-01

    A wash bottle water displacement scheme is used to determine the kinetics of the iodide-catalyzed H[subscript 2]O[subscript 2] decomposition reaction. The reagents (total volume 5.00 mL) are added to a test tube that is placed in a wash bottle containing water. The mass of the water displaced in [approximately]60 s is measured. The reaction is…

  1. Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10

    NASA Astrophysics Data System (ADS)

    Urbach, J. S.; Mitzi, D. B.; Kapitulnik, A.; Wei, J. Y. T.; Morris, D. E.

    1989-06-01

    We report specific-heat measurements from 2 to 15 K on single crystals of Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0)<=1 mJ/mole K2].

  2. Improved Charge Transfer in a Mn2O3@Co1.2Ni1.8O4 Hybrid for Highly Stable Alkaline Direct Methanol Fuel Cells with Good Methanol Tolerance.

    PubMed

    Liu, Yan; Chen, Yuanzhen; Li, Sai; Shu, Chenyong; Fang, Yuan; Song, Bo

    2018-03-21

    A three-dimensional Mn 2 O 3 @Co 1.2 Ni 1.8 O 4 hybrid was synthesized via facile two-step processes and employed as a cathode catalyst in direct methanol fuel cells (DMFCs) for the first time. Because of the unique architecture with ultrathin and porous nanosheets of the Co 1.2 Ni 1.8 O 4 shell, this composite exhibits better electrochemical performance than the pristine Mn 2 O 3 . Remarkably, it shows excellent methanol tolerance, even in a high concentration solution. The DMFC was assembled with Mn 2 O 3 @Co 1.2 Ni 1.8 O 4 , polymer fiber membranes, and PtRu/C as the cathode, membrane, and anode, respectively. The power densities of 57.5 and 70.5 mW cm -2 were recorded at 18 and 28 °C, respectively, especially the former is the best result reported in the literature at such a low temperature. The stability of the Mn 2 O 3 @Co 1.2 Ni 1.8 O 4 catalyzed cathode was evaluated, and the results show that this compound possesses excellent stability in a high methanol concentration. The improved electrochemical activity could be attributed to the narrow band gap of the hybrid, which accelerates the electrons jumping from the valence band to the conduction band. Therefore, Mn III could be oxidized into Mn IV more easily, simultaneously providing an electron to the absorbed oxygen.

  3. Driving Curie temperature towards room temperature in the half-metallic ferromagnet K2Cr8O16 by soft redox chemistry.

    PubMed

    Pirrotta, I; Fernández-Sanjulián, J; Moran, E; Alario-Franco, M A; Gonzalo, E; Kuhn, A; García-Alvarado, F

    2012-02-14

    The half-metallic ferromagnet K(2)Cr(8)O(16) with the hollandite structure has been chemically modified using soft chemistry methods to increase the average oxidation state of chromium. The synthesis of the parent material has been performed under high pressure/high temperature conditions. Following this, different redox reactions have been carried out on K(2)Cr(8)O(16). Oxidation to obtain potassium-de-inserted derivatives, K(2-x)Cr(8)O(16) (0 ≤x≤ 1), has been investigated with electrochemical methods, while the synthesis of sizeable amounts was achieved chemically by using nitrosonium tetrafluoroborate as a highly oxidizing agent. The maximum amount of extracted K ions corresponds to x = 0.8. Upon oxidation the hollandite structure is maintained and the products keep high crystallinity. The de-insertion of potassium changes the Cr(3+)/Cr(4+) ratio, and therefore the magnetic properties. Interestingly, the Curie temperature increases from ca. 175 K to 250 K, getting therefore closer to room temperature.

  4. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    USGS Publications Warehouse

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  5. Melting and subsolidus reactions in the system K2O-CaO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Johannes, Wilhelm

    1980-09-01

    Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt. The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O. The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this

  6. Phase behaviour, thermal expansion and compressibility of SnMo2O8

    NASA Astrophysics Data System (ADS)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.; Evans, John S. O.

    2018-02-01

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298-513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ‧. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family. Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ∼36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.

  7. Phase behaviour, thermal expansion and compressibility of SnMo 2 O 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298–513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ'. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family.more » Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ~36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.« less

  8. Interplay of H2O and K+ inside the channels of Mn8O16

    NASA Astrophysics Data System (ADS)

    Sharma, Vidushi; Kaltak, Merzuk; Hybertsen, Mark; Fernandez-Serra, Marivi

    With the rapid growth in consumer electronics and electric vehicles, there is an increasing interest in developing high-density batteries, which requires investigation of robust electrode materials. One of these, α-MnO2, is inexpensive and environmentally benign to manufacture. It consists of an arrangement of corner- and edge- shared MnO6 octahedra forming a 2 × 2 tunnel structure, and belongs to a family of ``octahedral molecular sieve structures'' (OMS-2). Owing to the large tunnel cavity of OMS-2, cations such as K+, Li+, Ag+, etc. as well as water molecules can be introduced into the 2 × 2 tunnel, thereby enabling us to tailor its chemical and physical properties. In this work, we focus on the incorporation of K+ in the tunnel, which stabilizes α-MnO2, in agreement with experiment. Our primary goal is to investigate the role of water in stabilizing the ions already present in a tunnel cavity, using first-principles density functional theory (DFT) calculations, including van der Waals interactions. We also analyze how the hydrogen-bond network competes with the ionic bonding of K+ in the channel.

  9. Concentration dependences of the density, viscosity, and refraction index of Cu(NO3)2 · 3H2O solutions in DMSO at 298 K

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, A. K.

    2013-03-01

    Physicochemical properties (density, dynamic viscosity, refraction index) of the DMSO-Cu(NO3)2 · 3H2O system are studied in the concentration range of 0.01-2 M at 298 K. The refraction index of a solution of copper(II) nitrate in dimethylsulfoxide (DMSO) is measured at 288-318 K. The excess and partial molar volumes of the solvent and dissolved substance are calculated analytically.

  10. Water activities of NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines from experimental heat capacities: Water activity >0.6 below 200 K

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.

    2016-05-01

    Perchlorate salts found on Mars are extremely hygroscopic and form low eutectic temperature aqueous solutions, which could allow liquid water to exist on Mars despite cold and dry conditions. The formation, dynamics, and potential habitability of perchlorate salt solutions can be broadly understood in terms of water activity. Water activity controls condensation and evaporation of water vapor in brines, deliquescence and efflorescence of crystalline salts, and ice formation during freezing. Furthermore, water activity is a basic parameter defining the habitability of aqueous solutions. Despite the importance of water activity, its value in perchlorate solutions has only been measured at 298.15 K and at the freezing point of water. To address this lack of data, we have determined water activities in NaClO4, Ca(ClO4)2, and Mg(ClO4)2 solutions using experimental heat capacities measured by Differential Scanning Calorimetry. Our results include concentrations up to near-saturation and temperatures ranging from 298.15 to 178 K. We find that water activities in NaClO4 solutions increase with decreasing temperature, by as much as 0.25 aw from 298.15 to 178 K. Consequently, aw reaches ∼0.6-0.7 even for concentrations up to 15 molal NaClO4 below 200 K. In contrast, water activities in Ca(ClO4)2 and Mg(ClO4)2 solutions generally decrease with decreasing temperature. The temperature dependence of water activity indicates that low-temperature NaClO4 solutions will evaporate and deliquesce at higher relative humidity, crystallize ice at higher temperature, and potentially be more habitable for life (at least in terms of water activity) compared to solutions at 298.15 K. The opposite effects occur in Ca(ClO4)2 and Mg(ClO4)2 solutions.

  11. Gadolinium heteropoly complex K 17[Gd(P 2W 17O 61) 2] as a potential MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Wu, Huifeng; Pei, Fengkui; Fang, Ke; Lei, Hao

    2004-10-01

    Gadolinium heteropoly complex K17[Gd(P2W17O61)2] has been evaluated by in vitro and in vivo experiments as a potential contrast agent for magnetic resonance imaging (MRI). The thermal analysis and conductivity study indicate that this complex has good thermal stability and wide pH stability range. The T1 relaxivity is 7.59 mM-1 s-1 in aqueous solution and 7.97 mM-1 s-1 in 0.725 mmol l-1 bovine serum albumin (BSA) solution at 25 °C and 9.39 T, respectively. MR imaging of three male Sprague-Dawley rats showed remarkable enhancement in rat liver after intravenous injection, which persisted longer than with Gd-DTPA. The signal intensity increased by 57.1±16.9% during the whole imaging period at 0.082 mmol kg-1dose. Our preliminary in vitro and in vivo studies indicate that K17[Gd(P2W17O61)2] is a potential liver-specific MRI contrast agent.

  12. ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Prabhakar Vattikuti, Surya Veerendra; Byon, Chan; Reddy, Chandragiri Venkata

    2016-10-01

    We report a simple solution-chemistry approach for the synthesis of ZrO2/MoS2 hybrid photocatalysts, which contain MoS2 as a cocatalyst. The material is usually obtained by a wet chemical method using ZrO(NO3)2 or (NH4)6Mo7O24·4H2O and C8H6S as precursors. The structural features of obtained materials were characterized by X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG-DTA), N2 adsorption-desorption, and photoluminescence (PL). The influence on the photocatalytic activity of the MoS2 cocatalyst concentration with ZrO2 nanoparticles was studied. The MZr-2 hybrid sample had the highest photocatalytic activity for the degradation of methyl orange (MO), which was 8.45 times higher than that of pristine ZrO2 ascribed to high specific surface area and absorbance efficiency. Recycling experiments revealed that the reusability of the MZr-2 hybrid was due to the low photocorrosive effect and good catalytic stability. PL spectra confirmed the electronic interaction between ZrO2 and MoS2. The photoinduced electrons could be easily transferred from CB of ZrO2 to the MoS2 cocatalyst, which facilitate effective charge separation and enhanced the photocatalytic degradation in the UV region. A photocatalytic mechanism is proposed. It is believed that the ZrO2/MoS2 hybrid structure has promise as a photocatalyst with low cost and high efficiency for photoreactions.

  13. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  14. High-K (Ba0.8Bi0.2)(Zn0.1Ti0.9)O3 ceramics for high-temperature capacitor applications.

    PubMed

    Raengthon, Natthaphon; Cann, David P

    2011-09-01

    Solid solutions of BaTiO(3)-Bi(Zn(1/2)Ti(1/2))O(3) were investigated for high-temperature capacitor applications. Compositions close to 0.8BaTiO(3)-0.2Bi(Zn(1/2)Ti(1/2))O(3) revealed pseudo-cubic symmetry and showed a linear dielectric response. The existence of a nearly flat temperature dependence of the relative permittivity over the temperature range of 100 to 350°C was also obtained. In this study, the effects of cation non-stoichiometry and doping were investigated in an attempt to optimize the insulation resistance for high-temperature applications. The dielectric response of (Ba(0.8)-xBi(0.2))(Zn(0.1)Ti(0.9)) O(3) ceramics where 0 ≤ X ≤ 0.08, as well as ZrO2- and Mn(2)O(3)-doped ceramics were studied. The optimum compositions exhibited a relative permittivity in excess of 1150 with a low loss tangent (tan δ < 0.05) that persisted up to a temperature of 460δC. The temperature dependence of resistivity also revealed the improved insulation resistance of Ba-deficient compositions. Additionally, we suggest that an ionic conduction mechanism is responsible for the degradation of resistivity at high temperatures. The temperature coefficient of permittivity ((τ)K) and the RC time constant were also investigated.

  15. Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hao, Pengfei; Zhu, Ting; Su, Qiong; Lin, Jiande; Cui, Rong; Cao, Xinxin; Wang, Yaping; Pan, Anqiang

    2018-06-01

    Single crystalline fork-like potassium vanadate (K2V8O21) has been successfully prepared through electrospinning combined with a subsequent annealing process. The as-obtained K2V8O21 forks show a unique layer-by-layer stacked structure with conductive carbon. When used as cathode materials for lithium-ion batteries, the as-prepared fork-like materials exhibit high specific discharge capacity and excellent cyclic stability. High specific discharge capacity of 200.2 mA h g-1 and 131.5 mA h g-1 can be delivered at the current densities of 50 mA g-1 and 500 mA g-1, respectively. Furthermore, the K2V8O21 electrodes exhibit excellent long-term cycling stability that maintain a capacity of 108.3 mA h g-1 after 300 cycles at 500 mA g-1 with a fading rate of only 0.054% per cycle, revealing their potential applications in next generation high-performance lithium-ion batteries.

  16. Magnetic properties of 1 : 4 complexes of CoCl2 and pyridines carrying carbenes (S(0) = 4/2, 6/2, and 8/2) in diluted frozen solution; influence of carbene multiplicity on heterospin single-molecule magnets.

    PubMed

    Karasawa, Satoru; Nakano, Kimihiro; Tanokashira, Jun-ichi; Yamamoto, Noriko; Yoshizaki, Takahito; Koga, Noboru

    2012-11-28

    The microcrystalline sample of a parent complex, [CoCl(2)(py)(4)], showed a single-molecule magnet (SMM) behavior with an effective activation barrier, U(eff)/k(B), of 16 K for reversal of the magnetism in the presence of a dc field of 3 kOe. Pyridine ligands having 2-4 diazo moieties, DYpy; Y = 2, 3l, 3b, and 4, were prepared and confirmed to be quintet, septet, septet, and nonet in the ground state, respectively, after irradiation. The 1 : 4 complexes, CoCl(2)(DYpy)(4); Y = 2, 3l, 3b, and 4 in frozen solutions after irradiation showed the magnetic behaviors of SMMs with total spin multiplicity, S(total) = 17/2, 25/2, 25/2, and 33/2, respectively. Hysteresis loops depending on the temperature were observed and the values of coercive force, H(c), at 1.9 K were 12, 8.4, 11, and 8.1 kOe for CoCl(2)(CYpy)(4); Y = 2, 3l, 3b, and 4, respectively. In dynamic magnetic susceptibility experiments, ac magnetic susceptibility data obeyed the Arrhenius law to give U(eff)/k(B) values of 94, 92, 93, and 87 K for CoCl(2)(CYpy)(4); Y = 2, 3l, 3b, and 4, respectively, while the relaxation times for CoCl(2)(CYpy)(4); Y = 2 and 3l, obtained by dc magnetization decay in the range of 3.5-1.9 K slightly deviated downward from Arrhenius plots on cooling. The dynamic magnetic behaviors for CoCl(2)(CYpy)(4) including [CoCl(2)(py)(4)] and CoCl(2)(C1py)(4) suggested that the generated carbenes interacted with the cobalt ion to increase the relaxation time, τ(q), due to the spin quantum tunneling magnetization, which became larger with increasing S(total) of the complex.

  17. Crystal structure of Cr-bearing Mg3BeAl8O16, a new polytype of magnesiotaaffeite-2N'2S.

    PubMed

    Malcherek, Thomas; Schlüter, Jochen

    2016-07-01

    The crystal structure of a new polytype of magnesiotaaffeite-2N'2S, ideally Mg3BeAl8O16 (trimagnesium beryllium octa-aluminium hexa-deca-oxide), is described in space-group symmetry P-3m1. It has been identified in a fragment of a mineral sample from Burma (Myanmar). The new polytype is composed of two Mg2Al4O8 (S)- and two BeMgAl4O8 (N')-modules in a stacking sequence N'SSN'' which differs from the N'SN'S-stacking sequence of the known magnesiotaaffeite-2N'2S polytype. The crystal structure can be derived from a close-packed arrangement of O atoms and is discussed with regard to its polytypism and its Cr(3+) chromophore content.

  18. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  19. Nodeless pairing in superconducting copper-oxide monolayer films on Bi 2Sr 2CaCu 2O 8

    DOE PAGES

    Zhong, Yong; Wang, Yang; Han, Sha; ...

    2016-07-12

    We report that the pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO 2 layers. Here, by growing CuO 2 monolayer films on Bi 2Sr 2CaCu 2O 8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherencemore » and is immune to scattering by K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO 2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. In conclusion, our results support an s-wave superconductivity in Bi 2Sr 2CaCu 2O 8+δ, which, we propose, originates from the modulation-doping resultant two-dimensional hole liquid confined in the CuO 2 layers.« less

  20. Nodeless pairing in superconducting copper-oxide monolayer films on Bi 2Sr 2CaCu 2O 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Yong; Wang, Yang; Han, Sha

    We report that the pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO 2 layers. Here, by growing CuO 2 monolayer films on Bi 2Sr 2CaCu 2O 8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherencemore » and is immune to scattering by K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO 2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. In conclusion, our results support an s-wave superconductivity in Bi 2Sr 2CaCu 2O 8+δ, which, we propose, originates from the modulation-doping resultant two-dimensional hole liquid confined in the CuO 2 layers.« less

  1. [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36-: a molecular quantum spin icosidodecahedron.

    PubMed

    Botar, Bogdan; Kögerler, Paul; Hill, Craig L

    2005-07-07

    Self-assembly of aqueous solutions of molybdate and vanadate under reducing, mildly acidic conditions results in a polyoxomolybdate-based {Mo72V30} cluster compound Na8K16(VO)(H2O)5[K10 subset{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20].150H2O, 1, a quantum spin-based Keplerate structure.

  2. Giant strain with low cycling degradation in Ta-doped [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} lead-free ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoming; Tan, Xiaoli, E-mail: xtan@iastate.edu

    2016-07-21

    Non-textured polycrystalline [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}](Ti{sub 1−x}Ta{sub x})O{sub 3} ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d{sub 33}* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater thanmore » most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} ceramics show great potential for large displacement devices.« less

  3. Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: an example of serendipity

    USGS Publications Warehouse

    Roedder, E.

    1978-01-01

    The concept of silicate liquid immiscibility was invoked early in the history of petrology to explain certain pairs of compositionally divergent rocks, but. as a result of papers by Greig (Am. J. Sci. 13, 1-44, 133-154) and Bowen (The Evolution of the Igneous Rocks), it fell into disfavor for many years. The discovery of immiscibility in geologically reasonable temperature ranges and compositions in experimental work on the system K2O-FeO-Al2O3-SiO2, and of evidence for immiscibility in a variety of lunar and terrestrial rocks, has reinstated the process. Phase equilibria in the high-silica corner of the tetrahedron representing the system K2O- FeO-Al2O3-SiO2 are presented, in the form of constant FeO sections through the tetrahedron, at 10% increments. Those sections, showing the tentative relationships of the primary phase volumes, are based on 5631 quenching runs on 519 compositions, made in metallic iron containers in pure nitrogen. Thirteen crystalline compounds are involved, of which at least six show two or more crystal modifica-tions. Two separate phase volumes, in each of which two immiscible liquids, one iron-rich and the other iron-poor, are present at the liquidus. One of these volumes is entirely within the quaternary system, astride the 1:1 K2O:Al2O3 plane. No quaternary compounds as such have been found, but evidence does point toward at least partial quaternary solid solution, with rapidly lowering liquidus temperatures, from K2O??Al2O3?? 2SiO2 ('potash nepheline', kalsilite. kaliophilite) to the isostructural compound K2O??FeO??3SiO2, and from K2O??Al2O3??4SiO2 (leucite) to the isostructural compound K2O??FeO??5SiO2, Both of these series apparently involve substitution, in tetrahedral coordination. of a ferrous iron and a silicon ion for two aluminum ions. Some of the 'impurities' found in analyses of the natural phases may reflect these substitutions. As a result of the geometry of the immiscibility volume located entirely within the quaternary

  4. CrIII-Substituted Heteropoly-16-Tungstates [CrIII2(B-β-XIVW8O31)2]14- (X = Si, Ge): Magnetic, Biological, and Electrochemical Studies.

    PubMed

    Liu, Wenjing; Al-Oweini, Rami; Meadows, Karen; Bassil, Bassem S; Lin, Zhengguo; Christian, Jonathan H; Dalal, Naresh S; Bossoh, A Martin; Mbomekallé, Israël M; de Oliveira, Pedro; Iqbal, Jamshed; Kortz, Ulrich

    2016-11-07

    The dichromium(III)-containing heteropoly-16-tungstates [Cr III 2 (B-β-Si IV W 8 O 31 ) 2 ] 14- (1) and [Cr III 2 (B-β-Ge IV W 8 O 31 ) 2 ] 14- (2) were prepared via a one-pot reaction of the composing elements in aqueous, basic medium. Polyanions 1 and 2 represent the first examples of Cr III -containing heteropolytungstates comprising the octatungstate unit {XW 8 O 31 } (X = Si, Ge). Magnetic studies demonstrated that, in the solid state, the two polyanions exhibit a weak antiferromagnetic interaction between the two Cr III centers with J = -3.5 ± 0.5 cm -1 , with no long-range ordering down to 1.8 K. The ground-state spin of polyanions 1 and 2 was thus deduced to be 0, but the detection of a complex set of EPR signals implies that there are thermally accessible excited states containing unpaired spins resulting from the two S = 3 / 2 Cr III ions. A comprehensive electrochemistry study on 1 and 2 in solution was performed, and biological tests showed that both polyanions display significant antidiabetic and anticancer activities.

  5. Spatially resolved vacuum tunneling spectroscopy on Bi 2Sr 2CaCu 2O 8 by STM at 4.8K

    NASA Astrophysics Data System (ADS)

    Renner, Ch.; Fischer, Ø.; Kent, A. D.; Mitzi, D. B.; Kapitulnik, A.

    1994-02-01

    We report scanning tunneling spectroscopy investigations on in-situ cleaved superconducting Bi 2Sr 2CaCu 2O 8 single crystals. Although many investigators report reproducible tunneling studies on high temperature superconductors, there nevertheless remains uncertainties about the correct intrinsic shape of the tunneling spectra. We have been able to obtain higly reproducible spectra while scanning single crystal surfaces in many different areas and taking a spectra every 5Å along lines of several hundred Ångstroms. Furthermore, we show that the spectra are independent of modifacations of the barrier obtained by changing the tip/sample distance. The experimental density of states clearly shows some filling of the gap which does not fit with a BCS-like s-wave prediction, even if some scattering in the tunneling process is accounted for.

  6. Nitrosonium-Catalyzed Decomposition of S-Nitrosothiols in Solution

    PubMed Central

    Zhao, Yi-Lei; McCarren, Patrick R.; Houk, K. N.; Choi, Bo Yoon; Toone, Eric J.

    2008-01-01

    The decomposition of S-nitrosothiols (RSNO) in solution under oxidative conditions is significantly faster than can be accounted for by homolysis of the S-N bond. Here we propose a cationic chain mechanism in which nitrosylation of nitrosothiol produces a nitrosylated cation that, in turn, reacts with a second nitrosothiol to produce disulfide and the NO dimer. Nitrosylated dimer acts as a source of nitrosonium for nitrosothiol nitrosylation, completing the catalytic cycle. The mechanism accounts for several unexplained facets of nitrosothiol chemistry in solution, including the observation that the decomposition of an RSNO is accelerated by O2, mixtures of O2 and NO, and other oxidants, that decomposition is inhibited by thiols and other antioxidants, that decomposition is dependent on sulfur substitution, and that decomposition often shows non-integral kinetic orders. PMID:16076198

  7. Electron excitation cross sections for the 2s(2)2p(3)4S(O) -- 2s(2)2p(3)2D(O) (forbidden) and 4S(O) -- 2s2p(4) 4P (resonance) transitions in O II

    NASA Technical Reports Server (NTRS)

    Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.

    1995-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.

  8. Inhibition of dipeptidyl-peptidase IV catalyzed peptide truncation by Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile).

    PubMed

    Brandt, Inger; Joossens, Jurgen; Chen, Xin; Maes, Marie-Berthe; Scharpé, Simon; De Meester, Ingrid; Lambeir, Anne-Marie

    2005-07-01

    Vildagliptin (NVP-LAF237/(2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile) was described as a potent, selective and orally bio-available dipeptidyl-peptidase IV (DPP IV, EC 3.4.14.5) inhibitor [Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, et al.1-[[(3-Hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2003;46:2774-89]. Phase III clinical trials for the use of this compound in the treatment of Type 2 diabetes were started in the first quarter of 2004. In this paper, we report on (1) the kinetics of binding, (2) the type of inhibition, (3) the selectivity with respect to other peptidases, and (4) the inhibitory potency on the DPP IV catalyzed degradation of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and substance P. Vildagliptin behaved as a slow-binding DPP IV inhibitor with an association rate constant of 1.4x10(5)M(-1)s(-1) and a K(i) of 17nM. It is a micromolar inhibitor for dipeptidyl-peptidase 8 and does not significantly inhibit dipeptidyl-peptidase II (EC 3.4.11.2), prolyl oligopeptidase (EC 3.4.21.26), aminopeptidase P (EC 3.4.11.9) or aminopeptidase M (EC 3.4.11.2). There was no evidence for substrate specific inhibition of DPP IV by Vildagliptin or for important allosteric factors affecting the inhibition constant in presence of GIP and GLP-1.

  9. K0.78Na0.22MoO2AsO4

    PubMed Central

    Jouini, Raja; Bouzidi, Chahira; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    The title compound, potassium sodium dioxidomolybden­um(VI) arsenate, K0.78Na0.22MoO2AsO4, was synthesized by a solid-state reaction route. The structure is built up from corner-sharing MoO6 octa­hedra and AsO4 tetra­hedra, creating infinite [MoAsO8]∞ chains running along the b-axis direction. As, Mo and all but one O atom are on special positions (4c) with m symmetry and K (occupancy 0.78) is on a position (4a) of -1 in the tunnels. The possible motion of the alkali cations has been investigated by means of the bond-valance sum (BVS) model. The simulation shows that the Na+ motion appears to be easier mainly along the b-axis direction. Structural relationships between the different compounds of the AMoO2AsO4 (A = Ag, Li, Na, K, Rb) series and MXO8 (M = V; X = P, As) chains are discussed. PMID:24109253

  10. Complexation of NpO2+ with (2-Hydroxyethyl)ethylenediaminetriacetic Acid (HEDTA) in Aqueous Solutions: Thermodynamic Studies and Structural Analysis

    DOE PAGES

    Li, Xingliang; Zhang, Zhicheng; Martin, Leigh R; ...

    2016-12-02

    Complexation of Np(V) with N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) was studied in aqueous solution (I = 1.0 mol L -1 NaClO 4, t = 25 °C) by spectrophotometry, microcalorimetry and Extended X-ray absorption fine structure (EXAFS) spectroscopy. Equilibrium constants for the formation of three complexes, NpO 2L 2-, NpO 2(HL) -, and (NpO 2)2(OH)2L26 -, were determined to be (6.91 ± 0.06), (4.28 ± 0.03) and -(4.93 ± 0.03), respectively. The enthalpies of complexation were determined to be -(8.0 ± 2.0) kJ mol -1 for NpO 2L 2 - and -(2.2 ± 2.0) kJ mol-1 for NpO 2(HL) -. Thermodynamic data ofmore » the complexation of Np(V) with HEDTA were compared to those of Np(V) with other aminopolycarboxylic acids, gaining insight into the possible coordination modes of the complexes. The EXAFS studies provided further structural information on those modes. In both NpO 2L 2 - and NpO 2(HL) - complexes, HEDTA coordinates to Np(V) in a tridentate mode through two oxygens of two carboxylic groups and one nitrogen of the amine group. In the (NpO 2) 2(OH) 2L 2 6- complex, two Np(V) atoms are bridged by two hydroxides and each HEDTA maintains the tridentate coordination mode.« less

  11. Complexation of NpO2+ with (2-Hydroxyethyl)ethylenediaminetriacetic Acid (HEDTA) in Aqueous Solutions: Thermodynamic Studies and Structural Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xingliang; Zhang, Zhicheng; Martin, Leigh R

    Complexation of Np(V) with N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) was studied in aqueous solution (I = 1.0 mol L -1 NaClO 4, t = 25 °C) by spectrophotometry, microcalorimetry and Extended X-ray absorption fine structure (EXAFS) spectroscopy. Equilibrium constants for the formation of three complexes, NpO 2L 2-, NpO 2(HL) -, and (NpO 2)2(OH)2L26 -, were determined to be (6.91 ± 0.06), (4.28 ± 0.03) and -(4.93 ± 0.03), respectively. The enthalpies of complexation were determined to be -(8.0 ± 2.0) kJ mol -1 for NpO 2L 2 - and -(2.2 ± 2.0) kJ mol-1 for NpO 2(HL) -. Thermodynamic data ofmore » the complexation of Np(V) with HEDTA were compared to those of Np(V) with other aminopolycarboxylic acids, gaining insight into the possible coordination modes of the complexes. The EXAFS studies provided further structural information on those modes. In both NpO 2L 2 - and NpO 2(HL) - complexes, HEDTA coordinates to Np(V) in a tridentate mode through two oxygens of two carboxylic groups and one nitrogen of the amine group. In the (NpO 2) 2(OH) 2L 2 6- complex, two Np(V) atoms are bridged by two hydroxides and each HEDTA maintains the tridentate coordination mode.« less

  12. A new nonlinear optical silicate carbonate K2Ca[Si2O5](CO3) with a hybrid structure of kalsilite and soda-like layered fragments

    NASA Astrophysics Data System (ADS)

    Belokoneva, Elena L.; Stefanovich, Sergey Yu.; Volkov, Anatoly S.; Dimitrova, Olga V.

    2016-10-01

    Single crystals of a new silicate carbonate, K2Ca[Si2O5](CO3), have been synthesized in a multi-components hydrothermal solution with a pH value close to neutral and a high concentration of a carbonate mineralizer. The new compound has an axial structure (s.g. P6322) with unit cell parameters a = 5.04789 (15), c = 17.8668 (6) Å. Pseudosymmetry of the structure corresponds to s.g. P63/mmc which is broken only by one oxygen position. The structure consists of two layered fragments: one of the type of the mineral kalsilite (KAlSiO4) and the other of the high-temperature soda-like α-Na2CO3, Ca substituting for Na. The electro-neutral layer K2[Si2O5] (denoted K) as well as the layer Ca(CO3) (denoted S) may separately correspond to individual structures. In K2Ca[Si2O5](CO3) the S-K layers are connected together via Ca-O interactions between Ca atoms from the carbonate layer and apical O atoms from the silicate one, and also via K-O interlayer interactions. A hypothetical acentric structure, sp.gr. P-62c, is predicted on the basis of the order-disorder theory. It presents another symmetrical option for the arrangement of K-layers relative to S-layers. The K,Ca-silicate-carbonate powder produces a moderate SHG signal that is two times larger that of the α-quartz powder standard and close to other silicates with acentric structures and low electronic polarizability.

  13. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2.

    PubMed

    Brink, M; Turunen, T; Happonen, R P; Yli-Urpo, A

    1997-10-01

    The bioactivity, i.e., bone-bonding ability, of 26 glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2 was studied in vivo. This investigation of bioactivity was performed to establish the compositional dependence of bioactivity, and enabled a model to be developed that describes the relation between reactions in vivo and glass composition. Reactions in vivo were investigated by inserting glass implants into rabbit tibia for 8 weeks. The glasses and the surrounding tissue were examined using scanning electron microscopy (SEM), light microscopy, and energy-dispersive X-ray analysis (EDXA). For most of the glasses containing < 59 mol % SiO2, SEM and EDXA showed two distinct layers at the glass surface after implantation, one silica-rich and another containing calcium phosphate. The build-up of these layers in vivo was taken as a sign of bioactivity. The in vivo experiments showed that glasses in the investigated system are bioactive when they contain 14-30 mol % alkali oxides, 14-30 mol % alkaline earth oxides, and < 59 mol % SiO2. Glasses containing potassium and magnesium bonded to bone in a similar way as bioactive glasses developed so far.

  14. Photoluminescence properties of novel KBaBP2O8:M (M = Pb2+ and Bi3+) phosphors

    NASA Astrophysics Data System (ADS)

    Han, Bing; Zhang, Jie; Li, Pengju; Li, Jianliang; Bian, Yang; Shi, Hengzhen

    2014-11-01

    A series of novel inorganic phosphors KBa1-xPbxBP2O8 and K1+xBa1-2xBixBP2O8 (0.01 ⩽ x ⩽ 0.08) were synthesized by using a solid-state reaction technique at high-temperature and their photoluminescence properties were investigated. The dependence of the emission intensity on the Pb2+ and Bi3+ concentration for the KBa1-xPbxBP2O8 and K1+xBa1-2xBixBP2O8 was studied, in which the optimal concentration as well as the critical transfer distance Rc for Pb2+ and Bi3+ was obtained and determined. The as-prepared phosphors can be effectively excited with ultraviolet (UV), and exhibit UV - blue emission with large Stokes shift. The above work indicates these phosphors could be potential candidates for application in UV lamps industry.

  15. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode

    PubMed Central

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that CuS and GeO2 had dispersed in this CuS-GeO2-TiO2 composite coating (mass percentages for CuS and GeO2 were 1.23% and 2.79%, respectively). The electrochemical studies (cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization) of this CuS-GeO2-TiO2 composite coating electrode were performed in pH = 9.51 Na2CO3-NaHCO3 buffer solution containing 0.50 mol/L CH3OH under the conditions of visible light, ultraviolet light (λ = 365 nm), and dark (without light irradiation as control), respectively. Electrochemical studies indicated that this CuS-GeO2-TiO2 composite coating electrode had better photoelectrocatalytic activity than the pure TiO2 electrode in the electrocatalysis of methanol under visible light. PMID:27055277

  16. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode.

    PubMed

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that CuS and GeO2 had dispersed in this CuS-GeO2-TiO2 composite coating (mass percentages for CuS and GeO2 were 1.23% and 2.79%, respectively). The electrochemical studies (cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization) of this CuS-GeO2-TiO2 composite coating electrode were performed in pH = 9.51 Na2CO3-NaHCO3 buffer solution containing 0.50 mol/L CH3OH under the conditions of visible light, ultraviolet light (λ = 365 nm), and dark (without light irradiation as control), respectively. Electrochemical studies indicated that this CuS-GeO2-TiO2 composite coating electrode had better photoelectrocatalytic activity than the pure TiO2 electrode in the electrocatalysis of methanol under visible light.

  17. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    PubMed

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  18. Symmetry of the oxygen hole states in Bi 2Sr 2CaCu 2O 8 investigated by XAS

    NASA Astrophysics Data System (ADS)

    Kuiper, P.; Grioni, M.; Sawatzky, G. A.; Mitzi, D. B.; Kapitulnik, A.; Santaniello, A.; de Padova, P.; Thiry, P.

    1989-02-01

    We have observed strong polarization dependence in the X-ray absorption near the oxygen K edge in a single crystal of Bi 2Sr 2CaCu 2O 8 ( Tc=85 K). The results show that O-derived holes near the Fermi-level have p x, y (perpendicular to the c-axis) symmetry. Some consequences for models of superconductivity are discussed. The concentration of holes is estimated to be about equal to that in YBa 2Cu 3O 7.

  19. Study of Bc→ψ (2 S )K , ηc(2 S )K , ψ (3770 )K decays with perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Duan, Feng-Bo; Yu, Xian-Qiao

    2018-05-01

    We study the Bc→ψ (2 S ) K , ηc(2 S ) K , ψ (3770 ) K decays with perturbative QCD approach based on kT factorization. The new orbitally excited charmonium distribution amplitudes ψ (1 3D1) based on the Schrödinger wave function of the n =1 , l =2 state for the harmonic-oscillator potential are employed. By using the corresponding distribution amplitudes, we calculate the branching ratio of Bc→ψ (2 S ) K , ηc(2 S ) K , ψ (3770 ) K decays and the form factors A0 ,1 ,2 and V for the transition Bc→ψ (1 3D1) . We obtain the branching ratio of both Bc→ψ (2 S ) K and Bc→ηc(2 S ) K are at the order of 10-5. The effects of two sets of the S-D mixing angle θ =-1 2 ° and θ =2 7 ° for the decay Bc→ψ (3770 ) K are studied first in this paper. Our calculations show that the branching ratio of the decay Bc→ψ (3770 ) K can be raised from the order of 10-6 to the order of 10-5 at the mixing angle θ =-1 2 ° , which can be tested by the running LHC-b experiments.

  20. Vaporization thermodynamics of K2S and K2SO3

    NASA Technical Reports Server (NTRS)

    Bennet, J. E.

    1982-01-01

    The vaporization reactions, vapor pressures, and thermodynamics of potassium sulfide and potassium sulfite were studied for purposes of providing fundamental data for the seed cycle in magnetohydrodynamic electric power generation. Rate of effusion studies, supported by tube furnace experiments, X-ray powder diffraction, mass spectrometry and appropriate chemical analyses and tests, revealed that potassium sulfite disproportionates at high temperatures to form potassium sulfide and potassium sulfate. Potassium sulfide was observed to vaporize incongruently, the initial vapors beng predominantly potassium atoms, with minor species being S2 and various K-S molecules. The ratio of K/S2 in the vapor is very large initially and decreases steadily with prolonged heating. Several materials were evaluated for purposes of containing K2S/K2SO3 at temperatures or = 800 C: Pt, Mo, W, quartz, machinable glass, BN, high density graphite, pyrolytic coated graphite, and alumina. Of these, only alumina was observed to be chemically inert to both K2S but reacted with K2SO3. The other materials were not suitable for either substance. Thermodynamic calculations based on measured vapor pressures and approximate free energy functions are described. Results from isothermal total mass loss experiments and from thermogravimetric experiments are also included.

  1. Ultra-sensitive non-aggregation colorimetric sensor for detection of iron based on the signal amplification effect of Fe3+ catalyzing H2O2 oxidize gold nanorods.

    PubMed

    Liu, Jia-Ming; Wang, Xin-Xing; Jiao, Li; Cui, Ma-Lin; Lin, Li-Ping; Zhang, Li-Hong; Jiang, Shu-Lian

    2013-11-15

    Fe(3+) can catalyze H2O2 to oxidize along on the longitudinal axis of gold nanorods (AuNRs), which caused the aspect ratio of AuNRs to decrease, longitudinal plasmon absorption band (LPAB) of AuNRs to blueshift (Δλ) and the color of the solution to change obviously. Thus, a rapid response and highly sensitive non-aggregation colorimetric sensor for the determination of Fe(3+) has been developed based on the signal amplification effect of catalyzing H2O2 to oxidize AuNRs. This simple and selective sensor with a wide linear range of 0.20-30.00 μM has been utilized to detect Fe(3+) in blood samples, and the results consisted with those obtained by inductively coupled plasma-mass spectroscopy (ICP-MS). Simultaneously, the mechanism of colorimetric sensor for the detection of Fe(3+) was also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K

    NASA Astrophysics Data System (ADS)

    Crovetto, Rosa; Fernández-Prini, R.; Japas, María Laura

    1982-01-01

    The solubility of inert gases and methane in H2O and D2O has been measured between room temperature and 600 K. The calculation of Henry's constants kH, from the solubility data is analyzed in detail; if due account is taken of the nonideality in the gas phase, they can be determined unambiguously up to 520 K. Above this temperature, the ambiguity in kH increases sharply as contributions of third and higher order virial coefficients to the equation of state of the gaseous mixture become more important. The differences of gas solubilities in light and heavy water essentially disappear above the temperature of minimum solubility of the gases. The characteristic thermodynamic features of the aqueous solutions of gases (i.e., large values of -ΔS02 and of ΔC0p2) are still present at 520 K. It is shown that mean-field theories can account for the

  3. Enhanced photocatalytic performance from NiS/TiO2 p-n heterojunction nanosheet arrays

    NASA Astrophysics Data System (ADS)

    Qian, Long-Long; Li, Yan; Li, Jian-feng; Wang, Cheng-Wei

    2018-05-01

    A novel p-n heterostructural film photocatalyst of oriented NiS/TiO2 nanosheet arrays were designed and successfully fabricated via a simple two-step hydrothermal process, and its photodegradation activities of methyl orange (MO) were detailedly investigated. Combining p-type NiS nanoparticles with n-type TiO2 nanosheets to construct distributed p-n heterojunctions, the absorption edge of NiS/TiO2 red-shifted to about 471 nm and its photoresponse in visible range significantly enhanced. Compared with pure TiO2 nanosheet arrays (NSAs), the assembled NiS/TiO2 p-n heterostructural arrays with 0.003 M NiS in hydrothermal precursor solution showed an optimal degradation rate of k = 0.7368 h-1 for MO, achieving 76.3% photocatalytic efficiency within 120 min, which is about 2.34 times higher than that of pure TiO2 nanosheet arrays (k = 0.3144 h-1). Such enhanced photocatalytic activities should be attributed to both the high efficiency of photogenerated charge separation by the built-in electric field at interfaces of NiS-TiO2 and the oriented thin nanosheet structures for smoothly charge transportation for redox reactions at surfaces of NiS/TiO2.

  4. Kinetics of the Reactions of Cl((sup 2)P(sub J)) and Br((sup 2)P(sub 3/2)) with O3

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Kreutter, K. D.; Wine, P. H.

    1997-01-01

    A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the important stratospheric reactions Cl((sup 2)P(sub J)) + O3 yields ClO + O2 and Br((sup 2)P(sub 3/2)) + O3 yields BrO + O2 as a function of temperature. The temperature dependence observed for the Cl((sup 2)P(sub J)) + O3 reaction is nonArrhenius, but can be adequately described by the following two Arrhenius expressions (units are cu cm/(molecule.s), errors are 2 sigma and represent precision only): k(sub 1)(T) = (1.19 +/- 0.21) x 10(exp -11) exp[(-33 +/- 37)/T] for T = 189-269 K and k(sub 1)(T) = (2.49 +/- 0.38) x 10(exp -11) exp[(-233 +/- 46)/T] for 269-385 K. At temperatures below 230 K, the rate coefficients determined in this study are faster than any reported previously. Incorporation of our values for k(sub 1)(T) into stratospheric models would increase calculated ClO levels and decrease calculated HCI levels; hence the calculated efficiency of ClO catalyzed ozone destruction would increase. The temperature dependence observed for the Br((sup 2)P(sub 3/2)) + O3 reaction is adequately described by the following Arrhenius expression (units are cu cm/(molecule.s), errors are 2 sigma and represent precision only): k(sub 2)(T) = (1.50 +/- 0.16) x 10(exp -11)exp[(-775 +/- 30)/T for 195-392 K. While not in quantitative agreement with Arrhenius parameters reported in most previous studies, our results almost exactly reproduce the average of all earlier studies and therefore will not affect the choice of k(sub 2)(T) for use in modeling stratospheric BrO2 chemistry.

  5. Acid-catalyzed ring-opening reactions of a cyclopropanated 3-aza-2-oxabicyclo[2.2.1]hept-5-ene with alcohols.

    PubMed

    Tait, Katrina; Horvath, Alysia; Blanchard, Nicolas; Tam, William

    2017-01-01

    The acid-catalyzed ring-opening reactions of a cyclopropanated 3-aza-2-oxabicylic alkene using alcohol nucleophiles were investigated. Although this acid-catalyzed ring-opening reaction did not cleave the cyclopropane unit as planned, this represent the first examples of ring-openings of cyclopropanated 3-aza-2-oxabicyclo[2.2.1]alkenes that lead to the cleavage of the C-O bond instead of the N-O bond. Different acid catalysts were tested and it was found that pyridinium toluenesulfonate in methanol gave the best yields in the ring-opening reactions. The scope of the reaction was successfully expanded to include primary, secondary, and tertiary alcohol nucleophiles. Through X-ray crystallography, the stereochemistry of the product was determined which confirmed an S N 2-like mechanism to form the ring-opened product.

  6. Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite

    NASA Astrophysics Data System (ADS)

    Zhou, Jianren; Yao, Tiankai; Lian, Jie; Shen, Yiqiang; Dong, Zhili; Lu, Fengyuan

    2016-07-01

    Ce-doped Mg2Y8(SiO4)6O2 silicate apatite (Ce = 0.05 and 0.5) were irradiated with 1 MeV Kr2+ ion beam irradiation at different temperatures and their radiation response and the cation composition dependence of the radiation-induced amorphization were studied by in situ TEM. The two Ce-doped Mg2Y8(SiO4)6O2 silicate apatites are sensitive to ion beam induced amorphization with a low critical dose (0.096 dpa) at room temperature, and exhibits significantly different radiation tolerance at elevated temperatures. Ce concentration at the apatite AI site plays a critical role in determining the radiation response of this silicate apatite, in which the Ce3+ rich Mg2Y7.5Ce0.5(SiO4)6O2 displays lower amorphization susceptibility than Mg2Y7.95Ce0.05(SiO4)6O2 with a lower Ce3+ occupancy at the AI sites. The critical temperature (Tc) and activation energy (Ea) change from 667.5 ± 33 K and 0.162 eV of Mg2Y7.5Ce0.5(SiO4)6O2 to 963.6 ± 64 K and 0.206 eV of Mg2Y7.95Ce0.05(SiO4)6O2. We demonstrate that the radiation tolerance can be controlled by varying the chemical composition, and enhanced radiation tolerance is achieved by increasing the Ce concentration at the AI site.

  7. Improved GaSb surfaces using a (NH4)2S/(NH4)2S04 solution

    NASA Astrophysics Data System (ADS)

    Murape, D. M.; Eassa, N.; Nyamhere, C.; Neethling, J. H.; Betz, R.; Coetsee, E.; Swart, H. C.; Botha, J. R.; Venter, A.

    2012-05-01

    Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH4)2S/(NH4)2SO4) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height (ϕb) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at -0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb-O, present on the as-received material is effectively removed on treating with ([(NH4)2S/(NH4)2SO4]+S) and (NH4)2S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is ≤8.5 nm.

  8. A Rhodium(I)-Xylyl-BINAP Catalyzed Asymmetric Ynamide-[2 + 2 + 2] Cycloaddition in the Synthesis of Optically Enriched N,O-Biaryls

    PubMed Central

    Oppenheimer, Jossian; Johnson, Whitney L.; Figueroa, Ruth; Hayashi, Ryuji; Hsung, Richard P.

    2009-01-01

    A rhodium(I)-xylyl-BINAP catalyzed asymmetric [2 + 2 + 2] cycloaddition of achiral conjugated aryl ynamides with various diynes is described here. This asymmetric cycloaddition provides a series of structurally interesting chiral N,O-biaryls with excellent enantioselectivity along with a modest diastereoselectivity with respect to both C-C and C-N axial chirality. PMID:20161177

  9. Electrical Conductivity of Cancrinite-Type Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) Crystals

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-05-01

    The electrical conductivity of crystals of artificial cancrinite Na8 - 2 x Ca x [Al6Si6O24][CO3] · 2H2O ( x ≤ 0.03) has been studied in the temperature range of 498-604 K. These crystals were grown by hydrothermal synthesis on a seed in the Na2O-Al2O3-SiO2-H2O system ( t = 380-420°C, P = 3 × 107-9 × 107 Pa). The ionic conductivity of a single-crystal sample (sp. gr. P63), measured along the crystallographic axis c, is low: σ = 8 × 10-7 S/cm at 300°C. The electric transport activation energy is E a = 0.81 ± 0.05 eV. The relationship between the ionic conductivity and specific features of the atomic structure of cancrinites is discussed.

  10. Observation of the decay B +→ψ(2S)Φ(1020)K + in pp collisions at s = 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2017-01-10

    Here, the decay B +→ψ(2S)Φ(1020)K + is observed for the first time using data collected from pp collisions at √s=8TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb -1 . The branching fraction of this decay is measured, using the mode B +→ψ(2S)K + as normalization, to be (4.0±0.4(stat)±0.6(syst)±0.2(B))×10 -6, where the third uncertainty is from the measured branching fraction of the normalization channel.

  11. Observation of the decay B +→ψ(2S)Φ(1020)K + in pp collisions at s = 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    Here, the decay B +→ψ(2S)Φ(1020)K + is observed for the first time using data collected from pp collisions at √s=8TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb -1 . The branching fraction of this decay is measured, using the mode B +→ψ(2S)K + as normalization, to be (4.0±0.4(stat)±0.6(syst)±0.2(B))×10 -6, where the third uncertainty is from the measured branching fraction of the normalization channel.

  12. Removal kinetics for gaseous NO and SO2 by an aqueous NaClO2 solution mist in a wet electrostatic precipitator.

    PubMed

    Park, Hyun-Woo; Park, Dong-Wha

    2017-04-01

    Removal kinetics for NO and SO 2 by NaClO 2 solution mist were investigated in a wet electrostatic precipitator. By varying the molar concentrations of NO, SO 2 , and NaClO 2 , the removal rates of NO and SO 2 confirmed to range from 34.8 to 72.9 mmol/m 3  s and 36.6 to 84.7 mmol/m 3  s, respectively, at a fixed gas residence time of 0.25 s. The rate coefficients of NO and SO 2 were calculated to be 0.679 (mmol/m 3 ) -0.33  s -1 and 1.401 (mmol/m 3 ) -0.1  s -1 based on the rates of the individual removal of NO and SO 2 . Simultaneous removal of NO and SO 2 investigated after the evaluation of removal rates for their individual treatment was performed. At a short gas residence time, SO 2 gas removed more quickly by a mist of NaClO 2 solution than NO gas in simultaneous removal experiments. This is because SO 2 gas, which has a relatively high solubility in solution, was absorbed more rapidly at the gas-liquid interface than NO gas. NO and SO 2 gases were absorbed as nitrite [Formula: see text] and sulfite [Formula: see text] ions, respectively, by the NaClO 2 solution mist at the gas-liquid interface. Then, [Formula: see text] and [Formula: see text] were oxidized to nitrate [Formula: see text] and sulfate [Formula: see text], respectively, by reactions with [Formula: see text], ClO 2 , HClO, and ClO in the liquid phase.

  13. Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.

  14. Reactions of O- with D2 at temperatures below 300 K

    NASA Astrophysics Data System (ADS)

    Plašil, Radek; Tran, Thuy D.; Roučka, Štěpán; Rednyk, Serhiy; Kovalenko, Artem; Jusko, Pavol; Mulin, Dmytro; Zymak, Illia; Dohnal, Petr; Glosík, Juraj

    2017-11-01

    The reaction of O- anions with molecular deuterium D2 has been studied experimentally using a cryogenic 22-pole radiofrequency ion trap. Two reaction channels were observed. In the associative detachment D2O and an electron are formed and for atom transfer formation OD- + D was observed. The rate coefficients of the reactions have been determined at temperatures below 300 K. The reaction rate coefficient k 1 of the associative detachment increases with decreasing temperature from k 1(300 K) = 0.5 × 10-9 cm3 s-1 at 300 K up to k 1(70 K) = 1.2 × 10-9 cm3 s-1 at 70 K both with 30 % overall uncertainty.

  15. K-shell photoabsorption coefficients of O2, CO2, CO, and N2O

    NASA Technical Reports Server (NTRS)

    Barrus, D. M.; Blake, R. L.; Burek, A. J.; Chambers, K. C.; Pregenzer, A. L.

    1979-01-01

    The total photoabsorption coefficient has been measured from 500 to 600 eV around the K edge of oxygen in gases O2, CO2, CO, and N2O by means of a gold continuum source and crystal spectrometer with better than 1-eV resolution. The cross sections are dominated by discrete molecular-orbital transitions below the K-edge energy. A few Rydberg transitions were barely detectable. Broad shape resonances appear at or above the K edge. Additional broad, weak features above the K edge possibly arise from shake up. Quantitative results are given that have about 10% accuracy except on the very strong peaks. All the measured features are discussed in relation to other related measurements and theory.

  16. Kinetics of Ni3S2 sulfide dissolution in solutions of sulfuric and hydrochloric acids

    NASA Astrophysics Data System (ADS)

    Palant, A. A.; Bryukvin, V. A.; Vinetskaya, T. N.; Makarenkova, T. A.

    2008-02-01

    The kinetics of Ni3S2 sulfide (heazlewoodite) dissolution in solutions of hydrochloric and sulfuric acids is studied. The process under study in the temperature range of 30 90°C is found to occur in a kinetic regime and is controlled by the corresponding chemical reactions of the Ni3S2 decomposition by solutions of inorganic acids ( E a = 67 92 kJ/mol, or 16 22 kcal/mol). The only exception is the Ni3S2-HCl system at elevated temperatures (60 90°C). In this case, the apparent activation energy decreases sharply to 8.8 kJ/mol (2.1 kcal/mol), which is explained by the catalytic effect of gaseous chlorine formed under these conditions. The studies performed are related to the physicochemical substantiation of the hydrometallurgical processing of the copper-nickel converter mattes produced in the industrial cycle of the Norilsk Mining Company.

  17. Investigation of the system ThO 2-NpO 2-P 2O 5. Solid solutions of thorium-neptunium (IV) phosphate-diphosphate

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M.

    1998-11-01

    Considering that phosphate matrices could be potential candidates for the immobilization of actinides or for the final disposal of the excess plutonium from dismantled nuclear weapons, the chemistry of thorium phosphates has been re-examined. In the ThO 2-P 2O 5 system, the thorium phosphate-diphosphate Th 4(PO 4) 4P 2O 7 (TPD) can be synthesized by wet and dry chemical processes. The substitution of thorium by other tetravalent actinides like uranium or plutonium can be obtained for 0 < x < 3.0 and 0 < x < 1.63, respectively. In this work, we report the chemical conditions of synthesis of thorium-neptunium (IV) phosphate-diphosphate solid solutions Th 4- xNp x(PO 4) 4P 2O 7 (TNPD) with 0 < x < 1.6 from a mixture of thorium and neptunium (IV) nitrates and concentrated phosphoric acid. From the variation of the cell parameters and volume, the maximum substitution of Th 4+ by Np 4+ in the TPD structure is evaluated to 2.08 (which corresponds to about 52 mol% of thorium replaced by neptunium (IV)). The field of existence of solid solutions Th 4- xU- xNp- xPuU xUNp xNpPu xPu(PO 4)4P 2O 7 has been calculated. These solid solutions should be synthesized for 5 xU+7 xNp+9 xPu⩽15. In the NpO 2-P 2O 5 system, the unit cell parameters of Np 2O(PO 4) 2 were refined by analogy with U 2O(PO 4) 2 which crystallographic data have been published recently. For Np 2O(PO 4) 2 the unit cell is orthorhombic with the following cell parameters: a=7.033(2) Å, b=9.024(3) Å, c=12.587(6) Å and V=799(1) Å 3. The unit cell parameter obtained for α-NpP 2O 7 ( a=8.586(1) Å) is in good agreement with those already reported in literature.

  18. Co2(CO)8-catalyzed intramolecular hetero-Pauson-Khand reaction of alkynecarbodiimide: synthesis of (+/-)-physostigmine.

    PubMed

    Mukai, Chisato; Yoshida, Tatsunori; Sorimachi, Mao; Odani, Akira

    2006-01-05

    [reaction: see text] Herein we describe a novel Co(2)(CO)(8)-catalyzed intramolecular aza-Pauson-Khand-type reaction of alkynecarbodiimide derivatives affords pyrrolo[2,3-b]indol-2-one ring systems in reasonable yields. This is the first reported Co(2)(CO)(8) successfully applied in the hetero-Pauson-Khand reaction. Significantly, the transformation of one of our pyrrolo[2,3-b]indol-2-one derivatives into the indole alkaloid, (+/-)-physostigmine, was completed in a highly stereoselective manner.

  19. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP.

    PubMed

    Renalier, Marie-Hélène; Joseph, Nicole; Gaspin, Christine; Thebault, Patricia; Mougin, Annie

    2005-07-01

    We identified the first archaeal tRNA ribose 2'-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2'-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2'-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs.

  20. New silicate-germanate Cs2Pb2[(Si0.6Ge0.4)2O7] from the series A2Pb2[B2O7], A = K, Cs, B = Si, Ge with the umbrella-like [PbO3]4- group

    NASA Astrophysics Data System (ADS)

    Belokoneva, Elena L.; Morozov, Ivan A.; Volkov, Anatoly S.; Dimitrova, Olga V.; Stefanovich, Sergey Yu.

    2018-04-01

    New silicate-germanate Cs2Pb2[(Si0.6Ge0.4)2O7] was synthesized in multi-components hydrothermal solution with 20 w.% concentration of Cs2CO3 mineralizer, pH = 10. Novel mixed compound belongs to the structure type A2Pb2[B2O7] previously indicated for powders with A = K, B=Si or Ge. Singe crystal structure determination of Cs2Pb2[(Si0.6Ge0.4)2O7] revealed the need for the correction of the space group of the earlier suggested structural model from P-3 to P-3m1, as well as for the splitting of the Pb-atom position. Umbrella-like groups [PbO3]4- are located between [(Si,Ge)O4]4- tetrahedra in mica-like honeycomb layers and play the role of tetrahedra with the Pb-lone-pair as the forth apex. Crystal chemical comparison revealed similarities and differences with the classical structure type of α-celsian Ba[Al2Si2O8] with the tetrahedral double layer. Recently investigated nonlinear optical acentric borates Pb2(BO3)(NO3) and Pb2(BO3)Cl are both related to this structural type, possessing umbrella-like groups [PbO3]4- and honeycomb layers [Pb2(BO3)]+ with the BO3-triangles on the tetrahedral positions.

  1. Analysis of oxygen potential of (U 0.7Pu 0.3)O 2±x and (U 0.8Pu 0.2)O 2±x based on point defect chemistry

    NASA Astrophysics Data System (ADS)

    Kato, Masato; Konashi, Kenji; Nakae, Nobuo

    2009-06-01

    Stoichiometries in (U 0.7Pu 0.3)O 2±x and (U 0.8Pu 0.2)O 2±x were analyzed with the experimental data of oxygen potential based on point defect chemistry. The relationship between the deviation x of stoichiometric composition and the oxygen partial pressure P was evaluated using a Kröger-Vink diagram. The concentrations of the point defects in uranium and plutonium mixed oxide (MOX) were estimated from the measurement data of oxygen potentials as functions of temperature and P. The analysis results showed that x was proportional to PO2±1/2 near the stoichiometric region of both (U 0.7Pu 0.3)O 2±x and (U 0.8Pu 0.2)O 2±x, which suggested that intrinsic ionization was the dominant defect. A model to calculate oxygen potential was derived and it represented the experimental data accurately. Further, the model estimated the thermodynamic data, ΔH and ΔS, of stoichiometric (U 0.7Pu 0.3)O 2.00 and (U 0.8Pu 0.2)O 2.00 as -552.5 kJ·mol -1 and -149.7 J·mol -1, and -674.0 kJ · mol -1 and -219.4 J · mol -1, respectively.

  2. Codominant Expression of N-Acetylation and O-Acetylation Activities Catalyzed by N-Acetyltransferase 2 in Human Hepatocytes

    PubMed Central

    Doll, Mark A.; Zang, Yu; Moeller, Timothy

    2010-01-01

    Human populations exhibit genetic polymorphism in N-acetylation capacity, catalyzed by N-acetyltransferase 2 (NAT2). We investigated the relationship between NAT2 acetylator genotype and phenotype in cryopreserved human hepatocytes. NAT2 genotypes determined in 256 human samples were assigned as rapid (two rapid alleles), intermediate (one rapid and one slow allele), or slow (two slow alleles) acetylator phenotypes based on functional characterization of the NAT2 alleles reported previously in recombinant expression systems. A robust and significant relationship was observed between deduced NAT2 phenotype (rapid, intermediate, or slow) and N-acetyltransferase activity toward sulfamethazine (p < 0.0001) and 4-aminobiphenyl (p < 0.0001) and for O-acetyltransferase-catalyzed metabolic activation of N-hydroxy-4-aminobiphenyl (p < 0.0001), N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (p < 0.01), and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (p < 0.0001). NAT2-specific protein levels also significantly associated with the rapid, intermediate, and slow NAT2 acetylator phenotypes (p < 0.0001). As a negative control, p-aminobenzoic acid (an N-acetyltransferase 1-selective substrate) N-acetyltransferase activities from the same samples did not correlate with the three NAT2 acetylator phenotypes (p > 0.05). These results clearly document codominant expression of human NAT2 alleles resulting in rapid, intermediate, and slow acetylator phenotypes. The three phenotypes reflect levels of NAT2 protein catalyzing both N- and O-acetylation. Our results suggest a significant role of NAT2 acetylation polymorphism in arylamine-induced cancers and are consistent with differential cancer risk and/or drug efficacy/toxicity in intermediate compared with rapid or slow NAT2 acetylator phenotypes. PMID:20430842

  3. Iron-Catalyzed Intramolecular C(sp(2))-N Cyclization of 1-(N-Arylpyrrol-2-yl)ethanone O-Acetyl Oximes toward Pyrrolo[1,2-a]quinoxaline Derivatives.

    PubMed

    Zhang, Zhiguo; Li, Junlong; Zhang, Guisheng; Ma, Nana; Liu, Qingfeng; Liu, Tongxin

    2015-07-02

    An efficient and convenient iron-catalyzed protocol has been developed for the synthesis of substituted pyrrolo[1,2-a]quinoxalines from 1-(N-arylpyrrol-2-yl)ethanone O-acetyl oximes through N-O bond cleavage and intramolecular directed C-H arylation reactions in acetic acid.

  4. Measurements of the O+ plus N2 and O+ plus O2 reaction rates from 300 to 900 K

    NASA Technical Reports Server (NTRS)

    Chen, A.; Johnsen, R.; Biondi, M. A.

    1977-01-01

    Rate coefficients for the O(+) + N2 atom transfer and O(+) + O2 charge transfer reactions are determined at thermal energies between 300 K and 900 K difference in a heated drift tube mass spectrometer apparatus. At 300 K the values K(O(+) + N2) = (1.2 plus or minus 0.1) x 10 to the negative 12 power cubic cm/sec and k(O(+) + O2) = (2.1 plus or minus 0.2) x 10 to the negative 11 power cubic cm/sec were obtained, with a 50% difference decrease in the reaction rates upon heating to 700 K. These results are in good agreement with heated flowing afterglow results, but the O(+) + O2 thermal rate coefficients are systematically lower than equivalent Maxwellian rates inferred by conversion of nonthermal drift tube and flow drift data.

  5. Phase equilibria in the quasiternary system Ag2S-Ga2S3-In2S3 and optical properties of (Ga55In45)2S300, (Ga54.59In44.66Er0.75)2S300 single crystals

    NASA Astrophysics Data System (ADS)

    Ivashchenko, I. A.; Danyliuk, I. V.; Olekseyuk, I. D.; Pankevych, V. Z.; Halyan, V. V.

    2015-07-01

    The quasiternary system Ag2S-Ga2S3-In2S3 was investigated by differential thermal, X-ray diffraction analyses. The phase diagram of the Ga2S3-In2S3 system and nine polythermal sections, isothermal section at 820 K and the liquidus surface projection were constructed. The existence of the large solid solutions ranges of binary and ternary compounds was established. The range of the existence of the quaternary phase AgGaxIn5-xS8 (2.25≤x≤2.85) at 820 K was determined. The single crystals (Ga55In45)2S300 and (Ga54.59In44.66Er0.75)2S300 were grown by a directional crystallization method from solution-melt. Optical absorption spectra in the 500-1600 nm range were recorded. The luminescence of the (Ga54.59In44.66Er0.75)2S300 single crystal shows a maximum at 1530 nm for the excitation wavelengths of 532 and 980 nm at 80 and 300 K.

  6. Compositions of supersaturated solutions for enhanced growth of {alpha}-NiSO{sub 4} . 6H{sub 2}O, Me{sub 2}Ni(SO{sub 4}){sub 2} . 6H{sub 2}O, MeH{sub 2}PO{sub 4} [Me = Li, Na, K, Rb, Cs, NH{sub 4}], and K(H{sub x}D{sub 1-x}){sub 2}PO{sub 4} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soboleva, L. V., E-mail: afkonst@ns.crys.ras.ru

    2008-05-15

    The possibility of determining the optimal compositions and temperatures of supersaturated solutions for enhanced growth of single crystals of congruently and incongruently dissolving solid phases from the solubility diagrams of ternary systems is shown, and this approach is justified. The NiSO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O, Me{sub 2}SO{sub 4}-NiSO{sub 4}-H{sub 2}O, and Me{sub 2}O-P{sub 2}O{sub 5}-H{sub 2}O(D{sub 2}O) systems have been used to determine the optimal compositions and temperatures of supersaturated solutions for growth of {alpha}-NiSO{sub 4} . 6H{sub 2}O, Me{sub 2}Ni(SO{sub 4}){sub 2} . 6H{sub 2}O, MeH{sub 2}PO{sub 4} [Me = Li, Na, K, Rb, Cs, NH{sub 4}], and Kmore » (H{sub x} D{sub 1-x}){sub 2}PO{sub 4} (D is deuterium) single crystals.« less

  7. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  8. Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries.

    PubMed

    Liu, Xin; Li, Zhiwei; Fei, Hailong; Wei, Mingdeng

    2015-11-21

    A layer structured K-doped (NH4)2V3O8/graphene (K-NVG) was prepared via a hydrothermal route and then used as an anode material for sodium-ion batteries for the first time. The K-NVG nanosheets have a diameter in the range of 200-500 nm. The K-NVG electrode exhibited stable cycling and a good rate performance with a reversible capacity of 235.4 mA h g(-1), which is much higher than the 90.5 mA h g(-1) value of the (NH4)2V3O8/graphene electrode after 100 cycles at a current density of 100 mA g(-1). Simultaneously, the retention rate was maintained at 82% even after 250 cycles at the current density of 300 mA g(-1). Such good electrochemical properties may be attributed to the K-NVG's stable layered structure.

  9. Manganese Vanadate Chemistry in Hydrothermal BaF 2 Brines: Ba 3 Mn 2 (V 2 O 7 ) 2 F 2 and Ba 7 Mn 8 O 2 (VO 4 ) 2 F 23

    DOE PAGES

    Sanjeewa, Liurukara D.; McMillen, Colin D.; McGuire, Michael A.; ...

    2016-12-05

    We synthesized manganese vanadate fluorides using high-temperature hydrothermal techniques with BaF 2 as a mineralizer. Ba 3Mn 2(V 2O 7) 2F 2 crystallizes in space group C2/c and consists of dimers built from edge-sharing MnO 4F 2 trigonal prisms with linking V 2O 7 groups. Ba 7Mn 8O 2(VO 4) 2F 23 crystallizes in space group Cmmm, with a manganese oxyfluoride network built from edge- and corner-sharing Mn 2+/3+(O,F) 6 octahedra. The resulting octahedra form alternating Mn 2+ and Mn 2+/3+ layers separated by VO 4 tetrahedra. This latter compound exhibits a canted antiferromagnetic order below TN = 25 K.

  10. Reactivity and operational stability of N-tailed TAMLs through kinetic studies of the catalyzed oxidation of orange II by H2 O2 : synthesis and X-ray structure of an N-phenyl TAML.

    PubMed

    Warner, Genoa R; Mills, Matthew R; Enslin, Clarissa; Pattanayak, Shantanu; Panda, Chakadola; Panda, Tamas Kumar; Gupta, Sayam Sen; Ryabov, Alexander D; Collins, Terrence J

    2015-04-13

    The catalytic activity of the N-tailed ("biuret") TAML (tetraamido macrocyclic ligand) activators [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 NR}Cl](2-) (3; N atoms in boldface are coordinated to the central iron atom; the same nomenclature is used in for compounds 1 and 2 below), [X, R=H, Me (a); NO2 , Me (b); H, Ph (c)] in the oxidative bleaching of Orange II dye by H2 O2 in aqueous solution is mechanistically compared with the previously investigated activator [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 CMe2 }OH2 ](-) (1) and the more aggressive analogue [Fe(Me2 C{CON(1,2-C6 H3 -4-X)NCO}2 )OH2 ](-) (2). Catalysis by 3 of the reaction between H2 O2 and Orange II (S) occurs according to the rate law found generally for TAML activators (v=kI kII [Fe(III) ][S][H2 O2 ]/(kI [H2 O2 ]+kII [S]) and the rate constants kI and kII at pH 7 both decrease within the series 3 b>3 a>3 c. The pH dependency of kI and kII was investigated for 3 a. As with all TAML activators studied to-date, bell-shaped profiles were found for both rate constants. For kI , the maximal activity was found at pH 10.7 marking it as having similar reactivity to 1 a. For kII , the broad bell pH profile exhibits a maximum at pH about 10.5. The condition kI ≪kII holds across the entire pH range studied. Activator 3 b exhibits pronounced activity in neutral to slightly basic aqueous solutions making it worthy of consideration on a technical performance basis for water treatment. The rate constants ki for suicidal inactivation of the active forms of complexes 3 a-c were calculated using the general formula ln([S0 ]/[S∞ ])=(kII /ki )[Fe(III) ]; here [Fe(III) ], [S0 ], and [S∞ ] are the total catalyst concentration and substrate concentration at time zero and infinity, respectively. The synthesis and X-ray characterization of 3 c are also described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Perovskites Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3: Crystal structure and magnetic and charge states of iron ions

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Pokatilov, V. S.; Makarova, A. O.; Pokatilov, V. V.

    2014-06-01

    Perovskites of the Bi0.8La0.2Fe1 - x Cr x O3 system ( x = 0, 0.05) were investigated by Mössbauer spectroscopy in the temperature range of 298-800 K. The samples were fabricated by solid-state synthesis and had a rhombic structure. Iron ions in Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3 are situated in trivalent states. The magnetic transition temperatures (the Néel temperatures T N ) T N = 677.5 ± 2.5 K for Bi0.8La0.2FeO3 and T N = 647.6 ± 2.5 K for Bi0.8La0.2Fe0.95Cr0.05O3 are measured. The substitution of trivalent iron ions from trivalent chromium ions in the amount x = 0.05 in Bi0.8La0.2Fe0.95Cr0.05O3 perovskite decreases the hyperfine magnetic field at nuclei 57Fe in Fe+3-O-Cr+3 chains by 30 kOe.

  12. X-ray fluorescence analysis of Cr(6+) component in mixtures of Cr(2)O(3) and K(2)CrO(4).

    PubMed

    Tochio, Tatsunori; Sakakura, Shusuke; Oohashi, Hirofumi; Mizota, Hirohisa; Zou, Yanhui; Ito, Yoshiaki; Fukushima, Sei; Tanuma, Shigeo; Shoji, Takashi; Fujimura, Hajime; Yamashita, Michiru

    2010-01-01

    X-ray fluorescence analysis using Cr K(alpha) spectra was applied to the determination of the mixing ratio of Cr(6+) to (Cr(6+) + Cr(3+)) in several mixtures of K(2)CrO(4) and Cr(2)O(3). Because the powder of K(2)CrO(4) contained large particles that were more than 50 microm in diameter, it was ground between a pestle and a mortar for about 8 h. The coarse particles still remaining were removed by using a sieve with 325-mesh (44 microm) in order to reduce the difference in absorption effects between emissions from Cr(6+) and those from Cr(3+). The mixing ratio, K(2)CrO(4)/(K(2)CrO(4) + Cr(2)O(3)), of the five mixtures investigated is 0.50, 0.40, 0.20, 0.10, and 0.05 in weight, respectively. Each spectrum obtained was analyzed by decomposing it into two reference spectra, those of the two pure materials, K(2)CrO(4) and Cr(2)O(3), with a constant background. The results for the mixtures containing K(2)CrO(4) of more than 20 wt% are that the relative deviation from the true value is less than approximately 5%. On the other hand, when the content of K(2)CrO(4) decreases to less than 10 wt%, the relative deviation gets so large as 20 - 25%. The error coming from a peak separation of spectrum involved in our results were estimated by applying our method to five sets of data for each mixture computationally generated, taking into account the uncertainty in total counts of real measurements.

  13. Rapid reagent-less on-line H2O2 quantification in alkaline semiconductor etching solution, Part 2: Nephelometry application.

    PubMed

    Zlatev, Roumen; Stoytcheva, Margarita; Valdez, Benjamin

    2018-03-01

    A simple and rapid reagent less nephelometric method for on-line H 2 O 2 quantification in semiconductors etching solutions was developed, optimized, characterized and validated. The intensity of the light scattered by the oxygen gas suspension resulted from H 2 O 2 catalytic decomposition by immobilized MnO 2 was registered as analytical response. The influences of the light wave length, the agitation rate, the temperature and the catalyst surface area on the response amplitude were studied and optimization was done. The achieved linear concentration range from 10 to 150mmolL -1 at 0.9835 calibration curve correlation coefficient, precision from 3.65% to 0.95% and response time from 35 to 20s respectively, at sensitivity of 8.01µAmmol -1 L and LOD of 2.9mmolL -1 completely satisfy the semiconductor industry requirements. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  15. Structural investigations of vanadyl doped Nb2OK2O·B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Anshu; Sanghi, S.; Agarwal, A.; Lather, M.; Bhatnagar, V.; Khasa, S.

    2009-07-01

    Pottasium nioborate glasses of composition xNb2O5·(30-x)K2O·69B2O3 containing 1 mol % of V2O5 were prepared by melt quench technique (1473K, 1h). The electron paramagnetic resonance spectra of VO2+ in these glasses have been recorded in X- band (v approx 9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameters, P and Fermi contact interaction parameter, K have been calculated. It is found that V4+ ions in these glasses exist as VO2+ in octahedral coordination with a tetragonal distortion. The tetragonality of V4+O6 complex decreases with increasing Nb2O5: K2O ratio and also there is an expansion of 3dXY orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400- 4000 cm-1 depicts the presence of both BO3 and BO4 structural units and Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups.

  16. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release.

    PubMed

    Moran, Ernesto E; Timerghazin, Qadir K; Kwong, Elizabeth; English, Ann M

    2011-03-31

    The denitrosation of three primary S-nitrosothiols (RSNO; S-nitrosocysteine, S-nitroso-N-acetylcysteine, and S-nitrosoglutathione) and two tertiary RSNOs (S-nitrosopenicillamine and S-nitroso-N-acetylpenicillamine) was investigated in 3.75 M H(2)SO(4) to probe the mechanism of acid-catalyzed RSNO hydrolysis and its dependence on RSNO structure. This reversible reaction was forced to proceed in the denitrosation direction by trapping the nitrosating agent with HN(3). The primary RSNOs exhibited hydrolysis k(obs) values of ∼2 × 10(-4) s(-1), and the tertiary RSNO k(obs) values were an order of magnitude higher. Product analysis by HPLC revealed that the parent thiols (RSHs) were formed in 90-100% yield on 79-99% RSNO denitrosation. Possible hydrolysis mechanisms were studied computationally at the CBS-QB3 level using S-nitrosomethanethiol (MeSNO) as a model RSNO. Consideration of RSNOs as a combination of conventional R-S-N═O, zwitterionic R-S(+)═N-O(-), and RS(-)/NO(+) ion-pair resonance structures was key in understanding the mechanistic details of acid-catalyzed hydrolysis. Protonation of the S-nitroso oxygen or nitrogen activates the sulfur and nucleophilic attack by H(2)O at this atom leads to the formation of the sulfoxide-protonated N-hydroxysulfinamide, MeS(+)(OH)NHOH, with barriers of 19 and 29 kcal/mol, respectively. Proton loss and reprotonation at the nitrogen lead to secondary hydrolysis that produces the sulfinic acid MeS(═O)OH and NH(2)OH. Notably, no low-energy RSNO hydrolysis pathway for HNO release was found in the computational analysis. Protonation of the S-nitroso sulfur gives rise to NO(+) release with a low activation barrier (ΔH(double dagger)(calc) ≈ 6 kcal/mol) and the formation of MeSH in agreement with experiment. The experimental k(obs) can be expressed as K(a)k(1), where K(a) is the acid dissociation constant for protonation of the S-nitroso sulfur and k(1) the pseudo-first-order hydrolysis rate constant. Given the low

  17. Photogeneration of H2O2 in SPEEK/PVA aqueous polymer solutions.

    PubMed

    Little, Brian K; Lockhart, PaviElle; Slaten, B L; Mills, G

    2013-05-23

    Photolysis of air-saturated aqueous solutions containing sulphonated poly(ether etherketone) and poly(vinyl alcohol) results in the generation of hydrogen peroxide. Consumption of oxygen and H2O2 formation are initially concurrent processes with a quantum yield of peroxide generation of 0.02 in stirred or unstirred solutions within the range of 7 ≤ pH ≤ 9. The results are rationalized in terms of O2 reduction by photogenerated α-hydroxy radicals of the polymeric ketone in competition with radical-radical processes that consume the macromolecular reducing agents. Generation of H2O2 is controlled by the photochemical transformation that produces the polymer radicals, which is most efficient in neutral and slightly alkaline solutions. Quenching of the excited state of the polyketone by both H3O(+) and OH(-) affect the yields of the reducing macromolecular radicals and of H2O2. Deprotonation of the α-hydroxy polymeric radicals at pH > 9 accelerate their decay and contribute to suppressing the peroxide yields in basic solutions. Maxima in [H2O2] are observed when illuminations are performed with static systems, where O2 reduction is faster than diffusion of oxygen into the solutions. Under such conditions H2O2 can compete with O2 for the reducing radicals resulting in a consumption of the peroxide.

  18. Accelerating effect of silica on the indicator reaction o-dianisidine-H(2)O(2).

    PubMed

    Beklemishev, M K; Kapanadze, A L; Bakhilina, N V; Dolmanova, I F

    2000-02-07

    Reaction of oxidation of o-dianisidine (o-D) with H(2)O(2) which is widely used in catalytic methods of analysis in solution has been conducted on silica plates for thin-layer chromatography. The rate of the reaction catalyzed by model compounds (p-toluenesulphonyl chloride, methyl benzoate, benzoic acid, and acrylamide) is noticeably higher on silica than in solution in comparable conditions. The degree of acceleration varies depending on the catalyst and is more pronounced at its lower concentrations. By use of p-toluenesulphonyl chloride determination as an example it has been shown that the accelerating effect of silica enables to decrease the detection limit down to 0.07 nmol cm(-2) (as compared with 4 nmol.cm(-2) in solution); the accuracy is not diminished. It is concluded that catalytic indicator reactions on solid supports may represent high interest for analytical chemists.

  19. Thermal and fragility studies on microwave synthesized K2O-B2O3-V2O5 glasses

    NASA Astrophysics Data System (ADS)

    Harikamalasree, Reddy, M. Sudhakara; Viswanatha, R.; Reddy, C. Narayana

    2016-05-01

    Glasses with composition xK2O-60B2O3-(40-x) V2O5 (15 ≤ x ≤ 39 mol %) was prepared by an energy efficient microwave method. The heat capacity change (ΔCp) at glass transition (Tg), width of glass transition (ΔTg), heat capacities in the glassy (Cpg) and liquid (Cpl) state for the investigated glasses were extracted from Modulated Differential Scanning Calorimetry (MDSC) thermograms. The width of glass transition is less than 30°C, indicating that these glasses belongs to fragile category. Fragility functions [NBO]/(Vm3Tg) and (ΔCp/Cpl)increases with increasing modifier oxide concentration. Increase in fragility is attributed to the increasing coordination of boron. Further, addition of K2O creates NBOs and the flow mechanism involves bond switching between BOs and NBOs. Physical properties exhibit compositional dependence and these properties increase with increasing K2O concentration. The observed variations are qualitatively analyzed.

  20. Superconductivity in semimetallic B i 3 O 2 S 3

    DOE PAGES

    Li, L.; Parker, D.; Babkevich, P.; ...

    2015-03-12

    We report in this paper a further investigation on the thermodynamic and transport properties, and an assessment of theoretical calculations, for the BiS 2-layered Bi 3O 2S 3 superconductor. The polycrystalline sample is synthesized with a superconducting transition temperature of T c onset=5.75K and T c zero=4.03K (≈Tc mag) that drops to 3.3 K by applying a hydrostatic pressure of 6 kbar. Density-of-states (DOS) calculations give substantial hybridization between Bi, O, and S, with Bi the largest component of DOS, which supports the idea that the BiS 2 layer is relevant for producing electron-phonon coupling. An analysis of previously publishedmore » specific heat data for Bi 3O 2S 3 is additionally suggestive of a strong electron-phonon interaction in the Bi-O-S system. The analysis of the Seebeck coefficient results strongly suggests that Bi 3O 2S 3 is a semimetal. In fact, we found the semimetallic or narrow band gap behavior may occur in certain other materials in the BiS 2-layered class of materials, such as Bi 4O 4S 3.« less

  1. Polyoxometalates paneling through {Mo2O2S2} coordination: cation-directed conformations and chemistry of a supramolecular hexameric scaffold.

    PubMed

    Marrot, Jérôme; Pilette, Marie Anne; Haouas, Mohamed; Floquet, Sébastien; Taulelle, Francis; López, Xavier; Poblet, Josep M; Cadot, Emmanuel

    2012-01-25

    The chemical system based on the [Mo(2)O(2)S(2)(OH(2))(6)](2+) aqua cation (noted L) and the trivacant [AsW(9)O(33)](9-) polyoxometalate (noted POM) has been investigated. Depending upon the ionic strength and the nature of the alkali cations, these complementary components assemble to yield three different architectures derived as hexamer (1), tetramer (2), and dimer (3). This series of clusters displays the same stoichiometry {POM(6)L(9)}(36-), {POM(4)L(6)}(24-), and {POM(2)L(3)}(12-) for 1, 2, and 3, respectively, and their conditions of formation differ mainly by the nature and the concentration of the alkali cation (from Li to Cs). Structural characterizations of 1 reveal a large hexameric supramolecular scaffold (about 25 Å in diameter), which encloses a large internal hole (about 200 Å(3)) filled by water molecules and alkali cations (Na(+) or K(+)). The hexameric scaffold 1 exhibits a rare flexibility property evidenced in the solid state by two distinct conformations, either eclipsed (1a) or staggered-off (1b). Both conformations appear clearly separated by a large twist angle (~40°) and depend mainly on the composition of the internal hole. Structure of anion 2 shows a tetrahedral arrangement where the four POM units and the six connecting {Mo(2)O(2)S(2)} linkers are located at the corners and at the edges, respectively. The structure of anion 3 corresponds to the simplest arrangement, described as a dimeric association of two POM units linked by three {Mo(2)S(2)O(2)} pillars. Stability of the hexameric scaffold has been investigated in solution by (183)W and (39)K NMR and by UV-vis, showing that stability of 1 depends strongly on the proportion of potassium ions, which interfere through host-guest exchange. Density functional methodology (DFT) has been applied to compute the geometries and energies of dimer (3), tetramer (2) and hexamer (1) based on {AsW(9)O(33)} (POM) and {Mo(2)O(2)S(2)} (L) units. Calculations tend to show that internal cations act

  2. Thermodynamic data of lawsonite and zoisite in the system CaO-Al2O3-SiO2-H2O based on experimental phase equilibria and calorimetric work

    NASA Astrophysics Data System (ADS)

    Grevel, Klaus-Dieter; Schoenitz, Mirko; Skrok, Volker; Navrotsky, Alexandra; Schreyer, Werner

    2001-08-01

    The enthalpy of drop-solution in molten 2PbO.B2O3 of synthetic and natural lawsonite, CaAl2(Si2O7)(OH)2.H2O, was measured by high-temperature oxide melt calorimetry. The enthalpy of formation determined for the synthetic material is ΔfHOxides=-168.7+/-3.4 kJ mol-1, or ΔfH0298=-4,872.5+/-4.0 kJ mol-1. These values are in reasonable agreement with previously published data, although previous calorimetric work yielded slightly more exothermic data and optimisation methods resulted in slightly less exothermic values. The equilibrium conditions for the dehydration of lawsonite to zoisite, kyanite and quartz/coesite at pressures and temperatures up to 5 GPa and 850 °C were determined by piston cylinder experiments. These results, other recent phase equilibrium data, and new calorimetric and thermophysical data for lawsonite and zoisite, Ca2Al3(SiO4)(Si2O7)O(OH), were used to constrain a mathematical programming analysis of the thermodynamic data for these two minerals in the chemical system CaO-Al2O3-SiO2-H2O (CASH). The following data for lawsonite and zoisite were obtained: ΔfH0298 (lawsonite)=-4,865.68 kJ mol-1 , S0298 (lawsonite)=229.27 J K-1 mol-1 , ΔfH0298 (zoisite)=-6,888.99 kJ mol-1 , S0298 (zoisite)=297.71 J K-1 mol-1 . Additionally, a recalculation of the bulk modulus of lawsonite yielded K=120.7 GPa, which is in good agreement with recent experimental work.

  3. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO2 , γ-Al2 O3 , CeO2 /SiO2 , Al2 O3 /SiO2 and TiO2 /SiO2.

    PubMed

    Kulyk, Kostiantyn; Palianytsia, Borys; Alexander, John D; Azizova, Liana; Borysenko, Mykola; Kartel, Mykola; Larsson, Mats; Kulik, Tetiana

    2017-07-19

    Valeric acid is an important renewable platform chemical that can be produced efficiently from lignocellulosic biomass. Upgrading of valeric acid by catalytic pyrolysis has the potential to produce value added biofuels and chemicals on an industrial scale. Understanding the different mechanisms involved in the thermal transformations of valeric acid on the surface of nanometer-sized oxides is important for the development of efficient heterogeneously catalyzed pyrolytic conversion techniques. In this work, the thermal decomposition of valeric acid on the surface of nanoscale SiO 2 , γ-Al 2 O 3 , CeO 2 /SiO 2 , Al 2 O 3 /SiO 2 and TiO 2 /SiO 2 has been investigated by temperature-programmed desorption mass spectrometry (TPD MS). Fourier transform infrared spectroscopy (FTIR) has also been used to investigate the structure of valeric acid complexes on the oxide surfaces. Two main products of pyrolytic conversion were observed to be formed depending on the nano-catalyst used-dibutylketone and propylketene. Mechanisms of ketene and ketone formation from chemisorbed fragments of valeric acid are proposed and the kinetic parameters of the corresponding reactions were calculated. It was found that the activation energy of ketenization decreases in the order SiO 2 >γ-Al 2 O 3 >TiO 2 /SiO 2 >Al 2 O 3 /SiO 2 , and the activation energy of ketonization decreases in the order γ-Al 2 O 3 >CeO 2 /SiO 2 . Nano-oxide CeO 2 /SiO 2 was found to selectively catalyze the ketonization reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optical anisotropy of Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.

    1990-04-01

    The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.

  5. Electronic structure of layered ferroelectric high-k titanate Pr2Ti2O7

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.; Troitskaia, I. B.

    2012-11-01

    The spectroscopic parameters and electronic structure of binary titanate Pr2Ti2O7 have been studied by IR-, Raman and X-ray photoelectron spectroscopy (XPS) for the powder sample prepared by solid state synthesis. The spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Pr2Ti2O7 have been determined as αTi=872.8 and αO=1042.3 eV. Variations of cation-anion bond ionicity have been discussed using binding energy differences ΔTi=(BE O 1s-BE Ti 2p3/2)=71.6 eV and ΔPr=BE(Pr 3d5/2)-BE(O 1s)=403.8 eV as key parameters in comparison with those of other titanium- and praseodymium-bearing oxides.

  6. Research on the synergistic doped effects and the catalysis properties of Cu2+ and Zn2+ co-doped CeO2 solid solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Guofang; Li, Yiming; Hou, Zhonghui; Xv, Jianyi; Wang, Qingchun; Zhang, Yanghuan

    2018-08-01

    The Cu2+ and Zn2+ co-doped CeO2-based solid solutions were synthesized via hydrothermal method. The microstructure and the spectra features of the solid solutions were characterized systematically. The XRD results showed that the dopants were incorporated into the CeO2 lattice to form Ce1-xCu0.5xZn0.5xO2 solid solutions when x was lower than 0.14. The cell parameters and the crystalline size decreased linearly, and the lattice strain gradually increased with increasing the doping level. The TEM patterns showed that the particle size in the solid solution was lower than 10 nm which is in accordance with the XRD results. The ICP analysis indicated that the real doped content in the solid solution was close to the nominal proportion. XPS proved that the Ce3+ component was increased by doping. The Raman and PL spectra indicated that the lattice distortion and the oxygen vacancies also increased following the same trend. At the same time, the synergistic effects of two ions co-doped solid solutions were studied by comparing them with that of single ions doped samples. The catalysis effects of Cu2+ and Zn2+ co-doped CeO2-based solid solutions on the hydrogen storage electrochemical and kinetic properties of Mg2Ni alloys were detected. The electrochemistry properties of the Mg2Ni-Ni-5 wt% Ce1-xCu0.5xZn0.5xO2 composites indicated that the doped catalysts could provide better optimizations to improve the maximum discharge capacities and the discharge potentials. On the other hand, the charge transfer abilities on the surface and diffusion rate of H atoms in the bulk of alloys also got improved. The DSC measurements showed that the hydrogen desorption activation of the hydrogenated composites with Ce0.88Cu0.06Zn0.06O2 solid solutions decreased to 77.03 kJ mol-1, while that of the composites with pure CeO2 was 97.62 kJ mol-1. The catalysis effect was enhanced by the doped content increase that means that the catalysis mechanism had close links to the oxygen vacancy

  7. Internally consistent database for sulfides and sulfosalts in the system Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.

    2000-11-01

    An updated thermodynamic database for Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3 sulfides and sulfosalts applicable to temperatures above 119°C is developed to calculate phase relations for polybasite-pearceite- and fahlore-bearing assemblages. It is based on pre-existing and new constraints on activity-composition, Ag-Cu and As-Sb partitioning, and other relations, and on experiments (200-300°C, evacuated silica tubes) conducted to define the stability of the polybasite-pearceite [(Ag 1- x,Cu x) 16(Sb 1- y,As y) 2S 11] + ZnS sphalerite assemblage with respect to assemblages containing (Ag,Cu) 2S sulfides coexisting with (Cu, Ag) 10Zn 2(Sb,As) 4S 13 fahlore sulfosalts. It was found that the thermodynamics of mixing of bcc- and hcp-(Ag,Cu) 2S solutions, which are fast-ion conductors, may be described by using site multiplicities of metals α Ag,Cu > 2 and temperature-dependent regular solution parameters. We obtained estimates for the Gibbs energies of formation for Ag 16Sb 2S 11 and Cu 16Sb 2S 11 polybasite endmembers from the simple sulfides (Ag 2S, Cu 2S, and Sb 2S 3) of -30.79 and -4.07 kJ/gfw at 200°C, and -32.04 and -0.59 kJ/gfw at 400°C, respectively, that are about one half kJ/gfw more positive and about 6 kJ/gfw more negative than those estimated by Harlov and Sack (1995b). The corresponding estimates for formation energies of Ag 10Zn 2Sb 4S 13 and Cu 10Zn 2Sb 4S 13 fahlores (-20.29 and -105.29 kJ/gfw at 200°C and -23.72 and -105.76 kJ/gfw at 400°C) are comparable to, and roughly 110 kJ/gfw more positive than, the corresponding estimates of Ebel and Sack (1994). We also determined that the Gibbs energies of the As-Sb exchange reactions: 1/4Ag 10Zn2Sb4S13+1/2Ag 16As2S11=1/2Ag 16Sb2S11+1/4Ag 10Zn2As4S13Sb-fahlorepearceitepolybasiteAs-fahlore and Ag3SbS3+1/2Ag 16As2S11=1/2Ag 16Sb2S11+Ag3AsS3pyrargyritepearceitepolybasiteproustite are, respectively, 8.75 and 0.40 kJ/gfw in the range 150-350°C, and these predictions are consistent with As-Sb partitioning relations

  8. Nickel-catalyzed hydrocarboxylation of ynamides with CO2 and H2O: observation of unexpected regioselectivity.

    PubMed

    Doi, Ryohei; Abdullah, Iman; Taniguchi, Takahisa; Saito, Nozomi; Sato, Yoshihiro

    2017-07-06

    We describe the nickel-catalyzed hydrocarboxylation of ynamides with CO 2 and H 2 O to afford a variety of α-amino-α,β-unsaturated esters with high regioselectivities. The selective α-carboxylation of ynamides with this catalytic protocol is unexpected in view of the electronic bias of ynamides and is in sharp contrast to our previous study in which a stoichiometric amount of Ni(0) was used to form a β-carboxylated product exclusively. We revealed that this unexpected C-C bond formation was induced by the combination of Zn and MgBr 2 .

  9. Temperature evolution of polar states in GdMn2O5 and Gd0.8Ce0.2Mn2O5

    NASA Astrophysics Data System (ADS)

    Sanina, V. A.; Golovenchits, E. I.; Khannanov, B. Kh.; Scheglov, M. P.; Zalesskii, V. G.

    2014-11-01

    The polar order along the c axis is revealed in GdMn2O5 and Gd0.8Ce0.2Mn2O5 at T ≤ T C1 ≈ 160 K for the first time. This polar order is induced by the charge disproportion in the 2D superstructures emerged due to phase separation. The dynamic state with restricted polar domains of different sizes is found at T > T C1 which is typical of the diffuse ferroelectric phase transition. At the lowest temperatures ( T < 40 K) two polar orders of different origins with perpendicular orientations (along the b and c axes) coexist. The 1D superlattices studied by us earlier in the set of RMn2O5 multiferroics are the charged domain walls which separate of these polar order domains.

  10. Thermal decomposition of europium sulfates Eu2(SO4)3·8H2O and EuSO4

    NASA Astrophysics Data System (ADS)

    Denisenko, Yu. G.; Khritokhin, N. A.; Andreev, O. V.; Basova, S. A.; Sal'nikova, E. I.; Polkovnikov, A. A.

    2017-11-01

    Reactions of europium sulfates Eu2(SO4)3·8H2O and EuSO4 complete decomposition were studied by Simultaneous Thermal Analysis. It was revealed that one-step dehydratation of Eu2(SO4)3·8H2O crystallohydrate is accompanied by the formation of amorphous anhydrous europium sulfate Eu2(SO4)3. Crystallization of amorphous europium (III) sulfate occurs at 381.1 °C (in argon) and 391.3 °C (in air). The average enthalpy values for dehydratation reaction of Eu2(SO4)3·8H2O (ΔH° = 141.1 kJ/mol), decomposition reactions of Eu2(SO4)3 (ΔH = 463.1 kJ/mol), Eu2O2SO4 (ΔH = 378.4 kJ/mol) and EuSO4 (ΔH = 124.1 kJ/mol) were determined. The step process mechanisms of thermal decomposition of europium (III) sulfate in air and europium (II) sulfate in inert atmosphere were established and justified. The kinetic parameters of complete thermal decomposition of europium (III) sulfate octahydrate were calculated by Kissinger model. The standard enthalpies of compound formation were calculated using thermal effects and formation enthalpy data for binary compounds.

  11. B a2NiOs O6 : A Dirac-Mott insulator with ferromagnetism near 100 K

    NASA Astrophysics Data System (ADS)

    Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad; Yuan, Ya-Hua; Shirako, Yuichi; Tsujimoto, Yoshihiro; Matsushita, Yoshitaka; Hu, Zhiwei; Kuo, Chang-Yang; Tjeng, Liu Hao; Pi, Tun-Wen; Soo, Yun-Liang; He, Jianfeng; Tanaka, Masahiko; Katsuya, Yoshio; Richter, Manuel; Yamaura, Kazunari

    2016-12-01

    The ferromagnetic semiconductor B a2NiOs O6 (Tmag˜100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [F m -3 m ; a =8.0428 (1 )Å ], where the N i2 + and O s6 + ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of O s6 + plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag<180 K ), the spin-gapless semiconductor M n2CoAl (Tmag˜720 K ), and the ferromagnetic insulators EuO (Tmag˜70 K ) and B i3C r3O11 (Tmag˜220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of B a2NiOs O6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.

  12. α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8: new quaternary mixed metal oxides composed of only second-order Jahn-Teller distortive cations.

    PubMed

    Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min

    2013-10-07

    Three new quaternary scandium vanadium selenium/tellurium oxides, α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8 have been synthesized through hydrothermal and standard solid-state reactions. Although all three reported materials are stoichiometrically similar, they exhibit different crystal structures: α-ScVSe2O8 has a three-dimensional framework structure consisting of ScO6, VO6, and SeO3 groups. β-ScVSe2O8 reveals another three-dimensional framework composed of ScO7, VO5, and SeO3 polyhedra. ScVTe2O8 shows a layered structure with ScO6, VO4, and TeO4 polyhedra. Interestingly, the constituent cations, that is, Sc(3+), V(5+), Se(4+), and Te(4+) are all in a distorted coordination environment attributable to second-order Jahn-Teller (SOJT) effects. Complete characterizations including infrared spectroscopy, elemental analyses, thermal analyses, dipole moment calculation, and the magnitudes of out-of-center distortions for the compounds are reported. Transformation reactions suggest that α-ScVSe2O8 may change to β-ScVSe2O8, and then to Sc2(SeO3)3·H2O under hydrothermal conditions.

  13. Preparation and crystal structure of K/sub 2/Nb/sub 2/As/sub 2/O/sub 11/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faouzi Zid, M.; Jouini, T.; Juoini, N.

    1988-06-01

    K/sup 2/Nb/sub 2/As/sub 2/O/sub 11/ crystallizes in the monoclinic system, space group P21/a, with a = 10.342(6), b = 10.446(5), c = 9.971(4) A, ..beta.. = 96.72(4)/sup 0/, M = 589.86, V = 1069.8(5) A/sup 3/, Z = 4, rho = 3.67 g cm/sup -1/. The crystal structure was refined (105 variables) from 1782 independent reflections collected on a Philips PW 1100 automatic diffractometer with AgK anti ..cap alpha.. radiation. The final R index and weighted R/sub w/ index are 0.058 and 0.056, respectively. The structure consists of NbO/sub 6/ octahedra and AsO/sub 4/ tetrahedra sharing vertices, forming infinite chainsmore » (NbO/sub 6/-AsO/sub 4/)infinity parallel to the a axis. Two chains are linked together by Nb-O-Nb and Nb-O-As bonds. These double chains are connected by vertices, forming a three-dimensional network. The potassium atoms are located in tunnels parallel to the a axis.« less

  14. The shape of the Sc22-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc22-S)@C(s)(6)-C82 and Sc22-S)@C(3v)(8)-C82.

    PubMed

    Mercado, Brandon Q; Chen, Ning; Rodríguez-Fortea, Antonio; Mackey, Mary A; Stevenson, Steven; Echegoyen, Luis; Poblet, Josep M; Olmstead, Marilyn M; Balch, Alan L

    2011-05-04

    Single-crystal X-ray diffraction studies of Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82)·Ni(II)(OEP)·2C(6)H(6) reveal that both contain fully ordered fullerene cages. The crystallographic data for Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) show two remarkable features: the presence of two slightly different cage sites and a fully ordered molecule Sc(2)(μ(2)-S)@C(s)(6)-C(82) in one of these sites. The Sc-S-Sc angles in Sc(2)(μ(2)-S)@C(s)(6)-C(82) (113.84(3)°) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82) differ (97.34(13)°). This is the first case where the nature and structure of the fullerene cage isomer exerts a demonstrable effect on the geometry of the cluster contained within. Computational studies have shown that, among the nine isomers that follow the isolated pentagon rule for C(82), the cage stability changes markedly between 0 and 250 K, but the C(s)(6)-C(82) cage is preferred at temperatures ≥250 °C when using the energies obtained with the free encapsulated model (FEM). However, the C(3v)(8)-C(82) cage is preferred at temperatures ≥250 °C using the energies obtained by rigid rotor-harmonic oscillator (RRHO) approximation. These results corroborate the fact that both cages are observed and likely to trap the Sc(2)(μ(2)-S) cluster, whereas earlier FEM and RRHO calculations predicted only the C(s)(6)-C(82) cage is likely to trap the Sc(2)(μ(2)-O) cluster. We also compare the recently published electrochemistry of the sulfide-containing Sc(2)(μ(2)-S)@C(s)(6)-C(82) to that of corresponding oxide-containing Sc(2)(μ(2)-O)@C(s)(6)-C(82). © 2011 American Chemical Society

  15. SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose.

    PubMed

    Zhao, Kai; Gu, Wei; Zheng, Sisi; Zhang, Cuiling; Xian, Yuezhong

    2015-08-15

    In this work, we find that the peroxidase-like activity of MoS2 nanoparticles (NPs) is dependent on the surface charge. Negatively charged sodium dodecyl sulfate modified MoS2 nanoparticles (SDS-MoS2 NPs) possess highly-efficient peroxidase-like activity. MoS2 NPs with intrinsic peroxidase-like activity were synthesized through a simple one-pot hydrothermal route. The peroxidase-like activities of different surfactants modified MoS2 NPs were discussed. Compared with bare MoS2 NPs and positively charged cetyltrimethyl ammonium bromide modified MoS2 NPs, SDS-MoS2 NPs have the best peroxidase-like activity. SDS-MoS2 NPs can efficiently catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 to generate a blue product. On basis of this, we have successfully established a novel platform for colorimetric detection of H2O2, and the detection limit is 0.32μM. Furthermore, the SDS-MoS2 NPs based platform can also be used for high sensitivity and selectivity detection of glucose with a wide linear range of 5.0-500μM by controlling the generation of H2O2 in the presence of glucose oxidase. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effect of matrix components on UV/H2O2 and UV/S2O8(2-) advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities.

    PubMed

    Yang, Yi; Pignatello, Joseph J; Ma, Jun; Mitch, William A

    2016-02-01

    When reverse osmosis brines from potable wastewater reuse plants are discharged to poorly-flushed estuaries, the concentrated organic contaminants are a concern for receiving water ecosystems. UV/hydrogen peroxide (UV/H2O2) and UV/persulfate (UV/S2O8(2-)) advanced oxidation processes (AOPs) may reduce contaminant burdens prior to discharge, but the effects of the high levels of halide, carbonate and effluent organic matter (EfOM) normally present in these brines are unclear. On the one hand, these substances may reduce process efficiency by scavenging reactive oxygen species (ROS), hydroxyl (OH) and sulfate (SO4(-) radicals. On the other, the daughter radicals generated by halide and carbonate scavenging may themselves degrade organics, offsetting the effect of ROS scavenging. UV/H2O2 and UV/S2O8(2-) AOPs were compared for degradation of five pharmaceuticals spiked into brines obtained from two reuse facilities and the RO influent from one of them. For UV/H2O2, EfOM scavenged ∼75% of the OH, reducing the degradation efficiency of the target contaminants to a similar extent; halide and carbonate scavenging and the reactivities of associated daughter radicals were less important. For UV/S2O8(2-), anions (mostly Cl(-)) scavenged ∼93% of the SO4(-). Because daughter radicals of Cl(-) contributed to contaminant degradation, the reduction in contaminant degradation efficiency was only ∼75-80%, with the reduction driven by daughter radical scavenging by EfOM. Conversion of SO4(-) to more selective halogen and carbonate radicals resulted in a wider range of degradation efficiencies among the contaminants. For both AOPs, 250 mJ/cm(2) average fluence achieved significant removal of four pharmaceuticals, with significantly better performance by UV/S2O8(2-) treatment for some constituents. Accounting for the lower brine flowrates, the energy output to achieve this fluence in brines is comparable to that often applied to RO permeates. However, much higher fluence was

  17. Hierarchical domain structure of lead-free piezoelectric (Na{sub 1/2} Bi{sub 1/2})TiO{sub 3}-(K{sub 1/2} Bi{sub 1/2})TiO{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Chengtao, E-mail: lchentao@vt.edu; Wang, Yaojin; Ge, Wenwei

    2016-05-07

    We report a unique hierarchical domain structure in single crystals of (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}-xat. %(K{sub 1/2}Bi{sub 1/2})TiO{sub 3} for x = 5 and 8 by transmission electron microscopy (TEM). A high density of polar nano-domains with a lamellar morphology was found, which were self-assembled into a quadrant-like configuration, which then assembled into conventional ferroelectric macro-domains. Studies by high resolution TEM revealed that the polar lamellar regions contained a coexistence of in-phase and anti-phase oxygen octahedral tilt regions of a few nanometers in size. Domain frustration over multiple length scales may play an important role in the stabilization of the hierarchy, andmore » in reducing the piezoelectric response of this Pb-free piezoelectric solid solution.« less

  18. Kinetic study of Bi 1.8Pb 0.4Ca 2Sr 2Cu 3O y superconductor in water

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Wei, T. P.; Kao, H.-C. I.

    1993-10-01

    The reaction of Bi 1.8Pb 0.4Ca 2Sr 2Cu 3O y powder in water was studied quantitatively. It was found that the [H 3O +] ion would act as a catalyst in this reaction and the initial rate equation was R 0 = - {d[A] 0}/{dt } = k[A] 0[ H3O+] 0.20, where [ A] represented the surface area of the superconducting powder. The rate constant, k, obtained at 10, 25 and 40°C was 3.98, 8.8 and 19.6 × 10 -4 mol min -1 cm -2 M 0.8, respectively. The activation energy and pre-exponential factor calculated from the Arrhenius equation were respectively 39.1 kJ mol -1 and 6.4 × 10 3 mol min -1 cm -2 M 0.8.

  19. Treatment of landfill leachate biochemical effluent using the nano-Fe3O4/Na2S2O8 system: Oxidation performance, wastewater spectral analysis, and activator characterization.

    PubMed

    Liu, Zhanmeng; Li, Xian; Rao, Zhiwei; Hu, Fengping

    2018-02-15

    Nano-Fe 3 O 4 was used as heterogeneous catalyst to activate Na 2 S 2 O 8 for the generation of the sulfate radicals (SO 4 - ) to oxidize the residual pollutants in landfill leachate biochemical effluent. The oxidation performance, wastewater spectral analysis and activator characterization were discussed. Oxidation experimental result shows that nano-Fe 3 O 4 has obvious catalytic effect on Na 2 S 2 O 8 and can significantly enhance the oxidation efficiencies of Na 2 S 2 O 8 on landfill leachate biochemical effluent, with COD and color removals above 63% and 95%, respectively. Based on the analyses of three-dimensional excitation emission matrix fluorescence spectrum (3DEEM), ultraviolet-visible spectra (UV-vis), and Fourier Transform infrared spectroscopy (FTIR) of wastewater samples before and after treatment, it can be concluded that the pollution level of dissolved organic matter (DOM) declined and that the humic acid (HA) fractions were efficiently degraded into small molecules of fulvic acid (FA) fractions with less weight and stable structure. Compared to the raw wastewater sample, the aromaticity and substituent groups of the DOM were lessened in the treated wastewater sample. Moreover, the main structure of the organics and functional groups were changed by the Fe 3 O 4 /Na 2 S 2 O 8 system, with substantial decrease of conjugated double bonds. The micro morphology of nano-Fe 3 O 4 was characterized before and after reaction by the methods of scanning electron microscope spectra (SEM), X-ray diffraction pattern (XRD), and X-ray photoelectron spectroscopy (XPS). The XRD pattern analysis showed that nano-Fe 3 O 4 was oxidized into r-Fe 2 O 3 and that the particle size of it also became smaller after reaction. XPS was employed to analyze the content and iron valence on the nano-Fe 3 O 4 surface, and it can be found that the ratio of Fe 3+ /Fe 2+ decreased from 1.8 before reaction to 0.8 after reaction. From the SEM analysis after the treatment, it was

  20. O 1s core levels in Bi2Sr2CaCu2O8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Parmigiani, F.; Shen, Z. X.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1991-02-01

    High-quality Bi2Sr2CaCu2O8+δ superconducting single crystals, annealed at different oxygen partial pressures, have been studied using angular-resolved x-ray photoelectron spectroscopy with a resolution higher than that used in any previous study. Two states of the oxygen, separated by ~=0.7 eV, are unambiguously observed. Examining these components at different angles makes it possible to distinguish bulk from surface components. Using this capability we discover that annealing under lower oxygen partial pressure (1 atm) results in oxygen intercalation beneath the Bi-O surface layer of the crystal, whereas for higher-pressure anneals (12 atm) additional oxygen is found on the Bi-O surfaces. This steplike intercalation mechanism is also confirmed by the changes observed in the Cu and Bi core lines as a function of the annealing oxygen partial pressure.

  1. Lateral variation of H2O/K2O ratios in Quaternary Magma of the Northeastern Japan arc

    NASA Astrophysics Data System (ADS)

    Miyagi, I.

    2012-12-01

    Water plays a fundamental role in the magma genesis beneath subduction zones. In order to estimate a spatial distribution of the density of water flux in the wedge mantle of the Northeastern Japan arc, this study examines a lateral variation of pre-eruptive bulk rock H2O/K2O contents among volcanoes located both in the frontal and in back arc settings. The analytical targets are the frontal volcanoes Nigorikawa (N42.12 E140.45), Zenikame (N41.74 E140.85), Adachi (N38.22 E140.65), and Nanashigure (N40.07 E141.11), and the back arc ones Hijiori (N38.61 E140.17) and Kanpu (N39.93 E139.88). The bulk magmatic H2O content (TH2O) is calculated from a mass balance of hydrogen isotopic ratios among three phases in a batch of magma; dissolved water in melt, excess H2O vapor, and hydrous phenocrysts such as amphiboles (Miyagi and Matsubaya, 2003). Since the amount of H2O in hydrous phenocryst is negligible, the bulk magmatic H2O content can be written as TH2O = (30 XD CD) / (15 - dT + dMW), where dMW is the measured hydrogen isotopic ratio of hydrous phenocrysts, XD is a melt fraction of magma, CD is a water concentration of the melt, and dT is hydrogen isotopic ratios of a bulk magma (assumed to be -50 per-mil). Both XD and CD are estimated from bulk rock chemistry of the sample using the MELTS program (Ghiorso and Sack, 1995). Hydrogen isotopic fractionation factors are assumed to be -15 and -30 per-mil for vapor and hydrous mineral, and vapor and silicate melt, respectively. There observed a clear difference among the H2O/K2O ratios of bulk magmas from the frontal and back arc volcanoes. For instance higher H2O/K2O wt ratios was observed in the frontal volcanoes (Nigorikawa 5.3, Zenikame 11-12, Adachi 8-10, and Nanashigure 4-18), while lower H2O/K2O wt ratios was observed in the back arc ones (Kanpu 0-2.5 and Hijiori 1.4). The lateral variation of H2O/K2O ratios infer the higher water flux through the frontal side of wedge mantle, which can be a potential cause of the

  2. Construction of viscosity diagrams for CaO-SiO2-Al2O3-8% MgO-4% B2O3 slags by the simplex lattice method

    NASA Astrophysics Data System (ADS)

    Babenko, A. A.; Istomin, S. A.; Zhuchkov, V. I.; Sychev, A. V.; Ryabov, V. V.; Upolovnikova, A. G.

    2017-05-01

    The simplex lattice method of planning experiments is used to study the viscosities of CaO-SiO2-Al2O3-8% MgO-4% B2O3 slags in a wide chemical composition range. For each viscosity, we developed an adequate mathematical model in the form of a reduced third-order polynomial. The results of mathematical simulation are presented in composition-viscosity diagrams. Composition regions with a high fluidity of slags, the viscosities of which are 0.8-1.2 Pa s in the temperature range 1500-1600°C, are indicated in the diagrams.

  3. Laser Direct Writing Process for Making Electrodes and High-k Sol-Gel ZrO2 for Boosting Performances of MoS2 Transistors.

    PubMed

    Kwon, Hyuk-Jun; Jang, Jaewon; Grigoropoulos, Costas P

    2016-04-13

    A series of two-dimensional (2D) transition metal dichalcogenides (TMDCs), including molybdenum disulfide (MoS2), can be attractive materials for photonic and electronic applications due to their exceptional properties. Among these unique properties, high mobility of 2D TMDCs enables realization of high-performance nanoelectronics based on a thin film transistor (TFT) platform. In this contribution, we report highly enhanced field effect mobility (μ(eff) = 50.1 cm(2)/(V s), ∼2.5 times) of MoS2 TFTs through the sol-gel processed high-k ZrO2 (∼22.0) insulator, compared to those of typical MoS2/SiO2/Si structures (μ(eff) = 19.4 cm(2)/(V s)) because a high-k dielectric layer can suppress Coulomb electron scattering and reduce interface trap concentration. Additionally, in order to avoid costly conventional mask based photolithography and define the patterns, we employ a simple laser direct writing (LDW) process. This process allows precise and flexible control with reasonable resolution (up to ∼10 nm), depending on the system, and enables fabrication of arbitrarily patterned devices. Taking advantage of continuing developments in laser technology offers a substantial cost decrease, and LDW may emerge as a promising technology.

  4. Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments

    NASA Astrophysics Data System (ADS)

    Cortés-Arriagada, Diego; Villegas-Escobar, Nery; Ortega, Daniela E.

    2018-01-01

    The adsorption of pollutant gases (CO, CO2, SO2 and H2S) onto Fe-doped graphene nanosheets (FeG) is studied on the basis of density functional theory calculations at the PBE/Def2-SVP level of theory. The most stable adsorption configurations, binding characteristics, electronic properties and stability at room temperature of the FeG-Gas interactions is fully analyzed. The gas molecules are chemisorbed onto FeG with adsorption energies in the range of 0.54-1.8 eV, with an enhanced adsorption strength compared to intrinsic graphene. The stability of the FeG-Gas interactions is dominated by Lewis-acid-base interactions, and its strength is sorted as SO2 > CO > H2S > CO2. The adsorption stability is also retained at room temperature (300 K). Due to the strong interaction of SO2, CO, and H2S, FeG could catalyze or activate these gas molecules, suggesting the possibility of FeG as a catalyst substrate. The electron acceptor/donor character of CO, CO2, SO2 and H2S molecules when adsorbed onto FeG causes charge transfer processes that are responsible for the change in conductance of FeG; thus, the response of the HOMO-LUMO gap of FeG under gas adsorption could be useful for sensing applications. Furthermore, the analysis of the co-adsorption in O2 environments shows that the CO2 interaction turns unstable onto FeG, while the sensing response towards H2S is suppressed. Finally, these results give new insights into the emerging applications of Fe-doped graphene in gas capture/filtration devices, solid-state gas sensors or as a catalyst substrate.

  5. Magnetism of the spin-1 tetramer compound A2Ni2Mo3O12(A =Rb or K)

    NASA Astrophysics Data System (ADS)

    Hase, Masashi; Matsuo, Akira; Kindo, Koichi; Matsumoto, Masashige

    2017-12-01

    We measured the temperature dependence of the magnetic susceptibility χ (T ) and the specific heat C (T ) and the magnetic-field dependence of the magnetization M (H ) of A2Ni2Mo3O12 (A = Rb or K) powder. We consider that the probable spin model is an interacting spin-1 antiferromagnetic tetramer model. We evaluated values of the intratetramer interactions as J1=9 K and J2=18 K, and the effective intertetramer interaction as Jeff=4 K for Rb2Ni2Mo3O12 . The susceptibility and magnetization at 1.3 K of K2Ni2Mo3O12 are very close to those of Rb2Ni2Mo3O12 . We observed a phase transition to a magnetically ordered state in C (T )/T in magnetic fields above 3 T. The transition temperature increases with magnetic field. Probably, the ordered state appears around 1.8 K even in 0 T. The ordered state in 0 T, however, is not stable enough like an order in the vicinity of a quantum critical point. Longitudinal-mode magnetic excitations may be observable in single crystalline A2Ni2Mo3O12 (A = Rb or K).

  6. Electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7 - delta interfaces as studied by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dessau, D. S.; Shen, Z.-X.; Wells, B. O.; Spicer, W. E.; List, R. S.; Arko, A. J.; Bartlett, R. J.; Fisk, Z.; Cheong, S.-W.; Mitzi, D. B.; Kapitulnik, A.; Schirber, J. E.

    1990-07-01

    High-resolution photoemission has been used to probe the electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7-δ interface formed by a low-temperature (20 K) gold evaporation on cleaved high quality single crystals. We find that the metallicity of the EuBa2Cu3O7-δ substrate in the near surface region (˜5 Å) is essentially destroyed by the gold deposition, while the near surface region of Bi2Sr2CaCu2O8 remains metallic. This has potentially wide ranging consequences for the applicability of the different types of superconductors in real devices.

  7. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Jung Han; Kim, Jong Gu; Song, Junghyun; Bae, Tae-Sung; Kim, Kyou-Hyun; Lee, Young-Seak; Pang, Yoonsoo; Oh, Kyu Hwan; Chung, Hee-Suk

    2018-04-01

    We investigated the semiconductor-catalyzed formation of semiconductor nanowires (NWs) - silver sulfide (Ag2S)-catalyzed zinc sulfide (ZnS) NWs - based on a vapor-liquid-solid (VLS) growth mechanism through metal-organic chemical vapor deposition (MOCVD) with a Ag thin film. The Ag2S-catalyzed ZnS NWs were confirmed to have a wurtzite structure with a width and length in the range of ∼30 nm to ∼80 nm and ∼1 μm, respectively. Using extensive transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analyses from plane and cross-sectional viewpoints, the ZnS NWs were determined to have a c-axis, [0001] growth direction. In addition, the catalyst at the top of the ZnS NWs was determined to consist of a Ag2S phase. To support the Ag2S-catalyzed growth of the ZnS NWs by a VLS reaction, an in situ heating TEM experiment was conducted from room temperature to 840 °C. During the experiment, the melting of the Ag2S catalyst in the direction of the ZnS NWs was first observed at approximately 480 °C along with the formation of a carbon (C) shell. Subsequently, the Ag2S catalyst melted completely into the ZnS NWs at approximately 825 °C. As the temperature further increased, the Ag2S and ZnS NWs continuously melted and vaporized up to 840 °C, leaving only the C shell behind. Finally, a possible growth mechanism was proposed based on the structural and chemical investigations.

  8. Suitability of the rare-earth compounds Dy2Ti2O7 and Gd3Al5O12 for low temperature (4K-20K) magnetic refrigeration cycle

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1973-01-01

    Measurements were made of the magnetic entropy and magnetization of powered samples of the compounds Dy2Ti2O7 and Gd3Al5O12. The magnetization was measured for temperatures at and below 4.2 K, in applied fields ranging to 7.0 tesla. Isothermal changes in magnetic entropy were measured for temperatures from 1.2 to 20 K, in applied fields up to 10 tesla. The results of the measurements are consistent with a doublet ground state for Dy2Ti2O7, and an eight-fold degenerate ground state for Gd3Al5O12. Absolute values of magnetic entropy have been obtained at the lower temperatures, permitting the isotherms to be properly located in the S-H plane with the use of adiabatic magnetization data. The iso-field lines in the S-T plane were determined. The results indicate that Dy2Ti2O7 can absorb a maximum of 71 + or - 4 joules/kg of heat at 4.2 K, while Gd3Al5O12 can absorb 233 + or - joules/kg at the same temperature. The large difference between the two is most likely a result of crystal field interactions in the dysoprosium compound. Both materials can be cycled adiabatically between 4.2 and 20 K.

  9. The high-temperature heat capacity of the (Th,U)O 2 and (U,Pu)O 2 solid solutions

    DOE PAGES

    Valu, S. O.; Benes, O.; Manara, D.; ...

    2016-11-09

    The enthalpy increment data for the (Th,U)O 2 and (U,Pu)O 2 solid solutions are reviewed and complemented with new experimental data (400–1773 K) and many-body potential model simulations. The results of the review show that from room temperature up to about 2000 K the enthalpy data are in agreement with the additivity rule (Neumann-Kopp) in the whole composition range. Above 2000 K the effect of Oxygen Frenkel Pair (OFP) formation leads to an excess enthalpy (heat capacity) that is modeled using the enthalpy and entropy of OFP formation from the end-members. Here, a good agreement with existing experimental work ismore » observed, and a reasonable agreement with the results of the many-body potential model, which indicate the presence of the diffuse Bredig (superionic) transition that is not found in the experimental enthalpy increment data.« less

  10. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  11. Phase Equilibria Study in the TeO2-Na2O-SiO2 System in Air Between 723 K (500 °C) and 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Santoso, Imam; Taskinen, Pekka

    2016-08-01

    Knowledge of phase equilibria in the TeO2-Na2O-SiO2 system at elevated temperatures is important for ceramic and glass industries and for improving the operation of the smelting process of tellurium-containing materials. A review of previous investigations has indicated, however, that there are omissions in the available datasets on the liquidus temperatures of the molten TeO2-Na2O-SiO2 mixtures. The employed experimental method included equilibration of mixtures made from high purity oxides, rapid quenching of the equilibrated samples in water and followed by compositional analysis of the phases using an electron probe X-ray microanalyzer. The liquidus and phase equilibria in the TeO2-SiO2, TeO2-Na2O, and SiO2-TeO2-Na2O systems have been studied for a wide range of compositions between 723 K (500 °C) and 1473 K (1200 °C) at TeO2, SiO2, and Na2SiO3 saturations. New data have been generated in the SiO2-TeO2-Na2O system at SiO2 saturation. The liquidus compositions in the TeO2-Na2O system at TeO2 saturation have been compared with the previous data and an assessed phase diagram.

  12. Phase transformations in SrAl2Si2O8 glass

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Bansal, Narottam P.

    1992-01-01

    Bulk glass of SrAl2Si2O8 composition crystallized at temperatures below 1000 C into hexacelsian, a hexagonal phase which undergoes a reversible, rapid transformation to an orthorhombic phase at 758 C, and at higher temperatures crystallized as celsian, a monoclinic phase. The glass transition temperature and crystallization onset temperature were determined to be 883 C and 1086 C, respectively, from DSC at a heating rate of 20 C/min. Thermal expansion of the various phases and density and bend strengths of cold isostatically pressed glass powder bars, sintered at various temperatures, were measured. The kinetics of the hexacelsian-to-celsian transformation for SrAl2Si2O8 were studied. Hexacelsian flakes were isothermally heat treated at temperatures from 1025-1200 C for various times. Avrami plots were determined by quantitatively measuring the amount of monoclinic celsian formed at various times using x ray diffraction. The Avrami constant was determined to be 1.1, suggesting a diffusionless, one dimensional transformation mechanism. The activation energy was determined from an Arrhenius plot of 1n k vs. 1/T to be 125 kilocal/mole. This value is consistent with a mechanism which transforms the layered hexacelsian structure to a three dimensional framework celsian structure and involves the breaking of Si-O bonds.

  13. Impact and Origin of Interface States in MOS Capacitor with Monolayer MoS2 and HfO2 High-k Dielectric

    PubMed Central

    Xia, Pengkun; Feng, Xuewei; Ng, Rui Jie; Wang, Shijie; Chi, Dongzhi; Li, Cequn; He, Zhubing; Liu, Xinke; Ang, Kah-Wee

    2017-01-01

    Two-dimensional layered semiconductors such as molybdenum disulfide (MoS2) at the quantum limit are promising material for nanoelectronics and optoelectronics applications. Understanding the interface properties between the atomically thin MoS2 channel and gate dielectric is fundamentally important for enhancing the carrier transport properties. Here, we investigate the frequency dispersion mechanism in a metal-oxide-semiconductor capacitor (MOSCAP) with a monolayer MoS2 and an ultra-thin HfO2 high-k gate dielectric. We show that the existence of sulfur vacancies at the MoS2-HfO2 interface is responsible for the generation of interface states with a density (Dit) reaching ~7.03 × 1011 cm−2 eV−1. This is evidenced by a deficit S:Mo ratio of ~1.96 using X-ray photoelectron spectroscopy (XPS) analysis, which deviates from its ideal stoichiometric value. First-principles calculations within the density-functional theory framework further confirms the presence of trap states due to sulfur deficiency, which exist within the MoS2 bandgap. This corroborates to a voltage-dependent frequency dispersion of ~11.5% at weak accumulation which decreases monotonically to ~9.0% at strong accumulation as the Fermi level moves away from the mid-gap trap states. Further reduction in Dit could be achieved by thermally diffusing S atoms to the MoS2-HfO2 interface to annihilate the vacancies. This work provides an insight into the interface properties for enabling the development of MoS2 devices with carrier transport enhancement. PMID:28084434

  14. Impact and Origin of Interface States in MOS Capacitor with Monolayer MoS2 and HfO2 High-k Dielectric.

    PubMed

    Xia, Pengkun; Feng, Xuewei; Ng, Rui Jie; Wang, Shijie; Chi, Dongzhi; Li, Cequn; He, Zhubing; Liu, Xinke; Ang, Kah-Wee

    2017-01-13

    Two-dimensional layered semiconductors such as molybdenum disulfide (MoS 2 ) at the quantum limit are promising material for nanoelectronics and optoelectronics applications. Understanding the interface properties between the atomically thin MoS 2 channel and gate dielectric is fundamentally important for enhancing the carrier transport properties. Here, we investigate the frequency dispersion mechanism in a metal-oxide-semiconductor capacitor (MOSCAP) with a monolayer MoS 2 and an ultra-thin HfO 2 high-k gate dielectric. We show that the existence of sulfur vacancies at the MoS 2 -HfO 2 interface is responsible for the generation of interface states with a density (D it ) reaching ~7.03 × 10 11  cm -2  eV -1 . This is evidenced by a deficit S:Mo ratio of ~1.96 using X-ray photoelectron spectroscopy (XPS) analysis, which deviates from its ideal stoichiometric value. First-principles calculations within the density-functional theory framework further confirms the presence of trap states due to sulfur deficiency, which exist within the MoS 2 bandgap. This corroborates to a voltage-dependent frequency dispersion of ~11.5% at weak accumulation which decreases monotonically to ~9.0% at strong accumulation as the Fermi level moves away from the mid-gap trap states. Further reduction in D it could be achieved by thermally diffusing S atoms to the MoS 2 -HfO 2 interface to annihilate the vacancies. This work provides an insight into the interface properties for enabling the development of MoS 2 devices with carrier transport enhancement.

  15. Sorption characteristics and separation of tellurium ions from aqueous solutions using nano-TiO2.

    PubMed

    Zhang, Lei; Zhang, Min; Guo, Xingjia; Liu, Xueyan; Kang, Pingli; Chen, Xia

    2010-12-15

    Titanium dioxide nanoparticles (nano-TiO(2)) were employed for the sorption of Te(IV) ions from aqueous solution. A detailed study of the process was performed by varying the sorption time, pH, and temperature. The sorption was found to be fast, equilibrium was reached within 8 min. When the concentration of Te(IV) was below 40 mg L(-1), at least 97% of tellurium was adsorbed by nano-TiO(2) in the pH range of 1-2 and 8-9. The sorbed Te(IV) ions were desorbed with 2.0 mL of 0.5 mol L(-1) NaOH. The sorption data could be well interpreted by the Langmuir model with the maximum adsorption capacity of 32.75 mg g(-1) (20 ± 0.1 °C) of Te(IV) on nano-TiO(2). The kinetics and thermodynamics of the sorption of Te(IV) onto nano-TiO(2) were also studied. The kinetic experimental data properly correlated with the second-order kinetic model (k(2)=0.0368 g mg(-1)min(-1), 293 K). The overall rate process appeared to be influenced by both boundary layer diffusion and intra-particle diffusion. The mean energy of adsorption was calculated to be 17.41 kJ mol(-1) from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. Moreover, the thermodynamic parameters for the sorption were estimated, and the ΔH(0) and ΔG(0) values indicated the exothermic and spontaneous nature of the sorption process, respectively. Finally, Nano-TiO(2) as sorbent was successfully applied to the separation of Te(IV) from the environmental samples with satisfactory results (recoveries >95%, relative standard deviations was 2.0%). Copyright © 2010 Elsevier B.V. All rights reserved.

  16. μSR study of Eu{sub 0.8}Ce{sub 0.2}Mn{sub 2}O{sub 5} and EuMn{sub 2}O{sub 5} multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorob’ev, S. I., E-mail: vsiloa@pnpi.spb.ru; Andrievskii, D. S.; Barsov, S. G.

    2016-12-15

    A comparative μSR study of ceramic samples of the EuMn{sub 2}O{sub 5} and Eu{sub 0.8}Ce{sub 0.2}Mn{sub 2}O{sub 5} multiferroics is performed in the temperature range from 15 to 300 K. It is found that the Ce doping of the EuMn{sub 2}O{sub 5} sample slightly reduces the temperature of the magnetic phase transition from T{sub N} = 45 K for the EuMn{sub 2}O{sub 5} sample to T{sub N} = 42.5 K for the Eu{sub 0.8}Ce{sub 0.2}Mn{sub 2}O{sub 5} sample. Below the temperature T{sub N} for both samples, there are two types of localization of a thermalized muon with different temperature dependencesmore » of the precession frequency of the magnetic moment of the muon in an internal magnetic field. The higher frequency in both samples refers to the initial antiferromagnetic matrix. The behavior of this frequency in Eu{sub 0.8}Ce{sub 0.2}Mn{sub 2}O{sub 5} follows the Curie–Weiss law with the exponent β = 0.29 ± 0.02, which differs from the value β = 0.39 standard for 3D Heisenberg magnetics and is observed in EuMn{sub 2}O{sub 5}, because of the strong frustration of the doped sample. The temperature-independent low frequency is due to the presence of Mn{sup 3+}–Mn{sup 4+} ferromagnetic pairs located along the b axis of the antiferromagnetic matrix and in the regions of phase separation, which contain such ion pairs and e{sub g} electrons recharging them. In both samples, polarization losses are the same (about 20%) and are associated with the formation of Mn{sup 4+}–Mn{sup 4+} + Mu complexes near Mn{sup 3+}–Mn{sup 4+} ferromagnetic pairs. In the temperature interval from 25 to 45 K, the separation of the Eu{sub 0.8}Ce{sub 0.2}Mn{sub 2}O{sub 5} structure into two fractions where the relaxation rates of polarization of muons differ by an order of magnitude is revealed. This effect is due to a change in the state of regions of phase separation (1D superlattices) at the indicated temperatures. Such effect in EuMn{sub 2}O{sub 5} is significantly weaker.« less

  17. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (nsolution.

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  18. Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose.

    PubMed

    Gebald, Christoph; Wurzbacher, Jan A; Borgschulte, Andreas; Zimmermann, Tanja; Steinfeld, Aldo

    2014-02-18

    A fundamental analysis of single-component and binary CO2 and H2O adsorption of amine-functionalized nanofibrillated cellulose is carried out in the temperature range of 283-353 K and at CO2 partial pressures in the range of 0.02-105 kPa, where the ultralow partial pressure range is relevant for the direct capture of CO2 from atmospheric air. Single-component CO2 and H2O adsorption experimental data are fitted to the Toth and Guggenheim-Anderson-de Boer models, respectively. Corresponding heats of adsorption, derived from explicit solutions of the van't Hoff equation, are -50 kJ/mol CO2 and -48.8 kJ/mol H2O. Binary CO2/H2O adsorption measurements for humid air reveal that the presence of H2O at 2.55 kPa enhances CO2 adsorption, while the presence of CO2 at 0.045 kPa does not influence H2O adsorption. The energy demand of the temperature-vacuum-swing adsorption/desorption cycle for delivering pure CO2 from air increases significantly with H2O adsorption and indicates the need to reduce the hygroscopicity of the adsorbent.

  19. Thermodynamic properties of Na2O-SiO2-CaO melts at 1000 to 1100 °C

    NASA Astrophysics Data System (ADS)

    Neudorf, D. A.; Elliott, J. F.

    1980-12-01

    The thermodynamic properties of Na2O-SiO2 and Na2O-SiO2-CaO melts have been measured using the galvanic cellbegin{array}{*{20}c} {O_2 (g), (Na_2 O), Pt} \\ {Na_2 O - WO_3 liq} \\ left| begin{gathered} Na^ + \\ β - alumina \\ right| begin{array}{*{20}c} {Pt,(Na_2 O), O_2 (g)} \\ {Na_2 O - SiO_2 - CaO liq} \\ Activities of Na2O were calculated from the reversible emf of the cell. This is possible because the activity of Na2O in the Na2O-WO3 liquid is known from previous work. Data for the binary Na2O-SiO2 system were obtained between 1000 and 1100 °C and for compositions ranging from 25 wt pct to 40 wt pct Na2O. At 1050 °C, Loga_{Na_2 O} varied from approximately 10.2 at 25 wt pct Na2O to approximately -8.3 at 40 wt pct Na2O, the dependence with respect to composition being nearly linear. The Gibbs-Duhem equation was used to calculate the activities of SiO2(s), and the integral mixing properties, G M, HM, and S M, were derived. At the di-silicate composition, G M = -83 kJ/mol, H M = -41 kJ mol and S M = 33 J/mol K at 1000 °C. (Standard states are pure, liquid Na2O and pure, solid tridymite.) The activity data are interpreted in terms of the polymeric nature of silicate melts. Activities of Na2O in the Na2O-CaO-SiO2 system were measured for the 25, 30 and 35 wt pct Na2O binary compositions with up to 10 wt pct CaO added. The addition of CaO caused an increase in the activity of Na2O at constantN_{Na_2 O} /N_{SiO_2 } . The experimental data agree well with the behavior predicted by Richardson’s ternary mixing model.

  20. Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor.

    PubMed

    Lei, Hongwei; Yang, Guang; Guo, Yaxiong; Xiong, Liangbin; Qin, Pingli; Dai, Xin; Zheng, Xiaolu; Ke, Weijun; Tao, Hong; Chen, Zhao; Li, Borui; Fang, Guojia

    2016-06-28

    Efficient planar antimony sulfide (Sb2S3) heterojunction solar cells have been made using chemical bath deposited (CBD) Sb2S3 as the absorber, low-temperature solution-processed tin oxide (SnO2) as the electron conductor and poly (3-hexylthiophene) (P3HT) as the hole conductor. A solar conversion efficiency of 2.8% was obtained at 1 sun illumination using a planar device consisting of F-doped SnO2 substrate/SnO2/CBD-Sb2S3/P3HT/Au, whereas the solar cells based on a titanium dioxide (TiO2) electron conductor exhibited a power conversion efficiency of 1.9%. Compared with conventional Sb2S3 sensitized solar cells, the high-temperature processed mesoscopic TiO2 scaffold is no longer needed. More importantly, a low-temperature solution-processed SnO2 layer was introduced for electron transportation to substitute the high-temperature sintered dense blocking TiO2 layer. Our planar solar cells not only have simple geometry with fewer steps to fabricate but also show enhanced performance. The higher efficiency of planar Sb2S3 solar cell devices based on a SnO2 electron conductor is attributed to their high transparency, uniform surface, efficient electron transport properties of SnO2, suitable energy band alignment, and reduced recombination at the interface of SnO2/Sb2S3.

  1. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.

    PubMed

    Placek, L M; Keenan, T J; Wren, A W

    2016-08-01

    The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. © The Author(s) 2016.

  2. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth.

    PubMed

    Xu, Jing; Wang, Qiufan; Wang, Xiaowei; Xiang, Qingyi; Liang, Bo; Chen, Di; Shen, Guozhen

    2013-06-25

    We have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on acicular Co9S8 nanorod arrays as positive materials and Co3O4@RuO2 nanosheet arrays as negative materials on woven carbon fabrics. Co9S8 nanorod arrays were synthesized by a hydrothermal sulfuration treatment of acicular Co3O4 nanorod arrays, while the RuO2 was directly deposited on the Co3O4 nanorod arrays. Carbon cloth was selected as both the substrate and the current collector for its good conductivity, high flexibility, good physical strength, and lightweight architecture. Both aqueous KOH solutions and polyvinyl alcohol (PVA)/KOH were employed as electrolyte for electrochemical measurements. The as-fabricated ASCs can be cycled reversibly in the range of 0-1.6 V and exhibit superior electrochemical performance with an energy density of 1.21 mWh/cm(3) at a power density of 13.29 W/cm(3) in aqueous electrolyte and an energy density of 1.44 mWh/cm(3) at the power density of 0.89 W/cm(3) in solid-state electrolyte, which are almost 10-fold higher than those reported in early ASC work. Moreover, they present excellent cycling performance at multirate currents and large currents after thousands of cycles. The high-performance nanostructured ASCs have significant potential applications in portable electronics and electrical vehicles.

  3. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    PubMed

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fractional-exponent behavior of magnetization near Tc in Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Li, Lu; Naughton, M. J.; Ono, S.; Ong, N. P.

    2005-03-01

    Using high-resolution torque magnetometry, we have investigated in detail how long-range phase coherence develops as the critical temperature Tc (88.7 K) is approached in optimally-doped Bi2Sr2CaCuO8+δ with field H||c. Three distinct regimes are observed. Above ˜92 K, |M| increases rapidly as T->Tc in step with the vortex Nernst signal. M is strictly linear in H in weak H, but shows strong curvature at large H (5-14 T). The curvature provides a determination of the correlation length ξsc which grows as a power law, viz. ξsc˜1/t^ν. In the second regime, 86 < T < 92 K, M becomes nonlinear in H, viz. M˜H^α(T), where the exponent α(T) decreases from 1 to 0. This interesting fractional-exponent behavior is highly unusual and fits poorly with conventional pictures of `fluctuating diamagnetism.' As previously known, M is virtually H independent below 2 Tesla at the ``crossing temperature'' Tcr = 86 K. Below Tcr, M is a function of H. We compare this behavior with predictions of the 3DXY and Kosterlitz-Thouless theory. Supported by funds from the U.S. National Science Foundation under grant DMR 0213706.

  5. Q(n) species distribution in K2O.2SiO2 glass by 29Si magic angle flipping NMR.

    PubMed

    Davis, Michael C; Kaseman, Derrick C; Parvani, Sahar M; Sanders, Kevin J; Grandinetti, Philip J; Massiot, Dominique; Florian, Pierre

    2010-05-06

    Two-dimensional magic angle flipping (MAF) was employed to measure the Q((n)) distribution in a (29)Si-enriched potassium disilicate glass (K(2)O.2SiO(2)). Relative concentrations of [Q((4))] = 7.2 +/- 0.3%, [Q((3))] = 82.9 +/- 0.1%, and [Q((2))] = 9.8 +/- 0.6% were obtained. Using the thermodynamic model for Q((n)) species disproportionation, these relative concentrations yield an equilibrium constant k(3) = 0.0103 +/- 0.0008, indicating, as expected, that the Q((n)) species distribution is close to binary in the potassium disilicate glass. A Gaussian distribution of isotropic chemical shifts was observed for each Q((n)) species with mean values of -82.74 +/- 0.03, -91.32 +/- 0.01, and -101.67 +/- 0.02 ppm and standard deviations of 3.27 +/- 0.03, 4.19 +/- 0.01, and 5.09 +/- 0.03 ppm for Q((2)), Q((3)), and Q((4)), respectively. Additionally, nuclear shielding anisotropy values of zeta =-85.0 +/- 1.3 ppm, eta = 0.48 +/- 0.02 for Q((2)) and zeta = -74.9 +/- 0.2 ppm, eta = 0.03 +/- 0.01 for Q((3)) were observed in the potassium disilicate glass.

  6. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Zhao, Di; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Wang, Deping

    2009-05-01

    The effect of replacing varying amounts (0-2.5 mol.%) of B2O3 with Al2O3 in a borate glass on (1) the conversion of the glass to HA in an aqueous phosphate solution and (2) the compressive strength of the as-formed HA product was investigated. Samples of each glass (10 x 10 x 8 mm) were placed in 0.25 M K2HPO4 solution at 60 degrees C, and the conversion kinetics to HA were determined from the weight loss of the glass and the pH of the solution. The structure and composition of the solid reaction products were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. While the conversion rate of the glass to HA decreased considerably with increasing Al2O3 content, the microstructure of the HA product became denser and the compressive strength of the HA product increased. The addition of SiO2 to the Al2O3-containing borate glass reversed the deterioration of the conversion rate, and produced a further improvement in the strength of the HA product. The compressive strength of the HA formed from the borate glass with 2.5 mol.% Al2O3 and 5 mol.% SiO2 was 11.1 +/- 0.2 MPa, which is equal to the highest strengths reported for trabecular bone. The results indicated that simultaneous additions of Al2O3 and SiO2 could be used to control the bioactivity of the borate glass and to enhance the mechanical strength of the HA product. Furthermore, the HA product formed from the glass containing both SiO2 and Al2O3 could be applied to bone repair.

  7. Solution structure, mutagenesis, and NH exchange studies of the MutT enzyme-Mg 2+-8-oxo-dGMP complex

    NASA Astrophysics Data System (ADS)

    Massiah, M. A.; Saraswat, V.; Azurmendi, H. F.; Mildvan, A. S.

    2004-08-01

    The MutT pyrophosphohydrolase from E. coli (129 residues) catalyzes the hydrolysis of nucleoside triphosphates (NTP), including 8-oxo-dGTP, by substitution at Pβ, to yield NMP and pyrophosphate. The product, 8-oxo-dGMP is an unusually tight binding, slowly exchanging inhibitor with a KD=52 nM, (Δ G°=-9.8 kcal/mol) which is 6.1 kcal/mol tighter than the binding of dGMP (Δ G°=-3.7 kcal/mol). The higher affinity for 8-oxo-dGMP results from a more favorable Δ Hbinding (-32 kcal/mol) despite an unfavorable - TΔ S° binding (+22 kcal/mol). The solution structure of the MutT-Mg 2+-8-oxo-dGMP complex shows a narrowed, hydrophobic nucleotide-binding cleft with Asn-119 and Arg-78 among the few polar residues. The N119A, N119D, R78K and R78A single mutations, and the R78K+N119A double mutant all showed largely intact active sites, on the basis of small changes in the kinetic parameters of dGTP hydrolysis and in 1H- 15N HSQC spectra. However, the N119A mutation profoundly weakened the active site binding of 8-oxo-dGMP by 4.3 kcal/mol (1650-fold). The N119D mutation also weakened 8-oxo-dGMP binding but only by 2.1 kcal/mol (37-fold), suggesting that Asn-119 functioned both as a hydrogen bond donor to C8O, and a hydrogen bond acceptor from N7H of 8-oxo-dGMP, while aspartate at position -119 functioned as an acceptor of a single hydrogen bond. Much smaller weakening effects (0.3-0.4 kcal/mol) on the binding of dGMP and dAMP were found, indicating specific hydrogen bonding of Asn-119 to 8-oxo-dGMP. While formation of the wild type MutT-Mg 2+-8-oxo-dGMP complex slowed the backbone NH exchange rates of 45 residues distributed throughout the protein, the same complex of the N119A mutant slowed the exchange rates of only 11 residues at or near the active site, indicating an increase in conformational flexibility of the N119A mutant. The R78K and R78A mutations weakened the binding of 8-oxo-dGMP by 1.7 and 1.1 kcal/mol, respectively, indicating a lesser role of Arg-78 than of

  8. Partial molar volumes and viscosities of aqueous hippuric acid solutions containing LiCl and MnCl2 · 4H2O at 303.15 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.

    2015-09-01

    Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.

  9. Valence-band states in Bi2(Ca,Sr,La)3Cu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.

    1989-09-01

    We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La-doped superconductor Bi2(Ca,Sr,La)3Cu2O8. While the oxygen states near the bottom of the 7-eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence-band features for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence-band features, are not consistent with either simple final-state effects or direct O 2s transitions to unoccupied O 2p states.

  10. Edge-shape barrier irreversibility and decomposition of vortices in Bi 2Sr 2CaCu 2O 8

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; D'Anna, G.; André, M.-O.; Kabanov, V. V.; Benoit, W.

    1994-12-01

    Magnetic flux dynamics is studied in Bi 2Sr 2CaCu 2O 8 single crystals by means of magneto-optical technique. It is clearly demonstrated that the magnetic irreversibility of these crystals in a magnetic field perpendicular to the basal plane at temperatures higher than approximately 35 K is governed by an edge-shape barrier and its disappearance determines the high temperature part of the magnetic irreversibility line which is commonly associated in the literature with vortex lattice melting. We argue that this barrier exists because of the non ellipsoidal shape of the samples and can disappear only when the flux lines lose their rigidity decomposing into pancakes, which is the only true magnetic phase transition on the B-T diagram for Bi 2Sr 2CaCu 2O 8.

  11. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol

    PubMed Central

    Wang, Jijie; Li, Guanna; Li, Zelong; Tang, Chizhou; Feng, Zhaochi; An, Hongyu; Liu, Hailong; Liu, Taifeng; Li, Can

    2017-01-01

    Although methanol synthesis via CO hydrogenation has been industrialized, CO2 hydrogenation to methanol still confronts great obstacles of low methanol selectivity and poor stability, particularly for supported metal catalysts under industrial conditions. We report a binary metal oxide, ZnO-ZrO2 solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO2 single-pass conversion of more than 10% under reaction conditions of 5.0 MPa, 24,000 ml/(g hour), H2/CO2 = 3:1 to 4:1, 320° to 315°C. Experimental and theoretical results indicate that the synergetic effect between Zn and Zr sites results in the excellent performance. The ZnO-ZrO2 solid solution catalyst shows high stability for at least 500 hours on stream and is also resistant to sintering at higher temperatures. Moreover, no deactivation is observed in the presence of 50 ppm SO2 or H2S in the reaction stream. PMID:28989964

  12. The Vaporization of B2O3(l) to B2O3(g) and B2O2(g)

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.

    2011-01-01

    The vaporization of B2O3 in a reducing environment leads to formation of both B2O3(g) and B2O2(g). While formation of B2O3(g) is well understood, many questions about the formation of B2O2(g) remain. Previous studies using B(s) + B2O3(l) have led to inconsistent thermodynamic data. In this study, it was found that after heating, B(s) and B2O3(l) appear to separate and variations in contact area likely led to the inconsistent vapor pressures of B2O2(g). To circumvent this problem, an activity of boron is fixed with a two-phase mixture of FeB and Fe2B. Both second and third law enthalpies of formation were measured for B2O2(g) and B2O3(g). From these the enthalpies of formation at 298.15 K are calculated to be -479.9 +/- 41.5 kJ/mol for B2O2(g) and -833.4 +/- 13.1 kJ/mol for B2O3(g). Ab initio calculations to determine the enthalpies of formation of B2O2(g) and B2O3(g) were conducted using the W1BD composite method and show good agreement with the experimental values.

  13. Hollow TiO2@Co9S8 Core–Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production

    PubMed Central

    Deng, Shengjue; Zhong, Yu; Zeng, Yinxiang; Wang, Yadong; Wang, Xiuli; Tu, Jiangping

    2017-01-01

    Abstract Designing ever more efficient and cost‐effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder‐free hollow TiO2@Co9S8 core–branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core–branch arrays of TiO2@Co9S8 are readily realized by the rational combination of crosslinked Co9S8 nanoflakes on TiO2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as‐obtained TiO2@Co9S8 core–branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm−2 as well as low Tafel slopes of 55 and 65 mV Dec−1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO2@Co9S8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm−2 and long‐term durability with no decay after 10 d. The versatile fabrication protocol and smart branch‐core design provide a new way to construct other advanced metal sulfides for energy conversion and storage. PMID:29593976

  14. Hollow TiO2@Co9S8 Core-Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production.

    PubMed

    Deng, Shengjue; Zhong, Yu; Zeng, Yinxiang; Wang, Yadong; Wang, Xiuli; Lu, Xihong; Xia, Xinhui; Tu, Jiangping

    2018-03-01

    Designing ever more efficient and cost-effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder-free hollow TiO 2 @Co 9 S 8 core-branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core-branch arrays of TiO 2 @Co 9 S 8 are readily realized by the rational combination of crosslinked Co 9 S 8 nanoflakes on TiO 2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as-obtained TiO 2 @Co 9 S 8 core-branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm -2 as well as low Tafel slopes of 55 and 65 mV Dec -1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO 2 @Co 9 S 8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm -2 and long-term durability with no decay after 10 d. The versatile fabrication protocol and smart branch-core design provide a new way to construct other advanced metal sulfides for energy conversion and storage.

  15. Solvothermal synthesis of a new 3-D mixed-metal sulfide framework, (H1.33tren)[In2.67Sb1.33S8]·tren

    NASA Astrophysics Data System (ADS)

    Lampkin, John D.; Powell, Anthony V.; Chippindale, Ann M.

    2016-11-01

    A new indium(III) antimony(V) sulfide, (H1.33tren)[In2.67Sb1.33S8]·tren, has been prepared solvothermally at 433 K. The compound crystallises in the tetragonal space group I-42d (lattice parameters, a=12.6248(5) and c=19.4387(18) Å at 150 K) and contains adamantane-like T2 supertetrahedral units comprised of corner-sharing InS45- and SbS43- tetrahedra. The adamantane-like units are then linked through sulfur vertices to generate an open, 3-D framework structure containing large pores in which neutral, protonated tren (tris(2-aminoethylene)amine) molecules reside. The presence of the organic components was confirmed by solid-state 13C NMR (10 kHz), combustion and thermogravimetric analysis. The band gap, obtained from UV-vis diffuse reflectance measurements, is 2.7(2) eV. Stirring with either water or alkali-metal salt solution leads to removal of the neutral tren molecules and an 9% reduction in unit-cell volume on formation of (H1.33tren)[In2.67Sb1.33S8]·(H2O)4.

  16. Photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films in an aerated 0.5 M NaCl solution

    NASA Astrophysics Data System (ADS)

    Boonserm, Aleena; Kruehong, Chaiyaput; Seithtanabutara, Varinrumpai; Artnaseaw, Apichart; Kwakhong, Panomkorn

    2017-10-01

    This research aimed to investigate the photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films using electrochemical measurements in an aerated 0.5 M NaCl solution under white light illumination. The CdS/TiO2 nanocomposite films were prepared by chemical bath deposition technique in a solution of cadmium and sulfide ions. The high resolution images of CdS/TiO2 nanocomposite films were provided by field emission scanning electron microscope. Theirs chemical identification and quantitative compositional information, crystallinity and actual chemical compounds formed were determined by energy dispersive spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The results indicated that the photoelectrochemical activity of the films depended strongly on CdS content. From the preparation of CdS/TiO2 nanocomposite films by 5, 10 and 15 dipping cycles in the chemical solutions, the best photoelectrochemical response was revealed by the 10 dipping cycles-prepared film. Galvanic couple testing demonstrated that the photoelectrochemical response of the film decreased continuously compared to that of anodized nanoporous TiO2 substrate which described by photocorrosion of CdS nanoparticles. In addition, chloride-ion attack also induced pitting corrosion leading to fluctuation and deterioration of photoelectrochemical response. CdO2 and Cd(OH)2 depositions were found as the main photocorrosion products on collapsed nanostructured-surface. The relevance between photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite film was discussed in detail.

  17. Effect of Sulfur on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-S System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-10-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.

  18. Diamagnetic Torque Signal and Temperature-Dependent Paramagnetism in Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Satoshi; Mochiku, Takashi; Ooi, Shuichi; Hirata, Kazuto; Sugii, Kaori; Terashima, Taichi; Uji, Shinya

    2017-11-01

    Magnetic torque and resistance measurements for the superconducting cuprate Bi2Sr2CaCu2O8+δ with Tc = 87 K have been performed to determine the phase diagram in a parallel magnetic field fields up to 14 T. The anisotropy of the magnetization, derived from the torque, is found to decrease with decreasing temperature below 125 K, which can be ascribed to the temperature dependent paramagnetic spin susceptibility. The angular dependence of the torque clearly shows small diamagnetism due to fluctuating or inhomogeneous superconductivity at temperatures between Tc and ˜100 K. The results suggest that the pseudogap is not of superconducting origin.

  19. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] metallotectons

    NASA Astrophysics Data System (ADS)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)3]·2H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  20. Volume properties and refraction of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids lysine, threonine, and oxyproline (C60(C6H13N2O2)2, C60(C4H8NO3)2, and C60(C5H9NO2)2) at 25°C

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Ivanova, N. M.; Charykov, N. A.; Keskinov, V. A.; Kalacheva, S. S.; Duryagina, N. N.; Garamova, P. V.; Kulenova, N. A.; Nabieva, A.

    2017-02-01

    Concentration dependences of the density of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids are studied by pycnometry. Concentration dependences of the average molar volumes and partial volumes of components (H2O and corresponding bisadducts) are calculated for C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems at 25°C. Concentration dependences of the indices of refraction of C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems are determined at 25°C. The concentration dependences of specific refraction and molar refraction of bisadducts and aqueous solutions of them are calculated.

  1. High temperature calorimetric studies of heat of solution of NiO, CuO, La2O3, TiO2, HfO2 in sodium silicate liquids

    NASA Astrophysics Data System (ADS)

    Linard, Yannick; Wilding, Martin C.; Navrotsky, Alexandra

    2008-01-01

    The enthalpies of solution of La2O3, TiO2, HfO2, NiO and CuO were measured in sodium silicate melts at high temperature. When the heat of fusion was available, we derived the corresponding liquid-liquid enthalpies of mixing. These data, combined with previously published work, provide insight into the speciation reactions in sodium silicate melts. The heat of solution of La2O3 in these silicate solvents is strongly exothermic and varies little with La2O3 concentration. The variation of heat of solution with composition of the liquid reflects the ability of La(III) to perturb the transient silicate framework and compete with other cations for oxygen. The enthalpy of solution of TiO2 is temperature-dependent and indicates that the formation of Na-O-Si species is favored over Na-O-Ti at low temperature. The speciation reactions can be interpreted in terms of recent spectroscopic studies of titanium-bearing melts which identify a dual role of Ti4+ as both a network-former end network-modifier. The heats of solution of oxides of transition elements (Ni and Cu) are endothermic, concentration-dependent and reach a maximum with concentration. These indicate a charge balanced substitution which diminishes the network modifying role of Na+ by addition of Ni2+ or Cu2+. The transition metal is believed to be in tetrahedral coordination, charge balanced by the sodium cation in the melts.

  2. Infrared spectroscopy of solid normal hydrogen doped with CH3F and O2 at 4.2 K: CH3F:O2 complex and CH3F migration

    NASA Astrophysics Data System (ADS)

    Abouaf-Marguin, L.; Vasserot, A.-M.

    2011-04-01

    Double doping of solid normal hydrogen with CH3F and O2 at about 4.2 K gives evidence of (ortho-H2)n:CH3F clusters and of O2:CH3F complex formation. FTIR analysis of the time evolution of the spectra in the region of the v3 C-F stretching mode indicates that these clusters behave very differently from (ortho-H2)n:H2O clusters. The main point is the observed migration of CH3F molecules in solid para-H2 at 4.2 K which differs from that of H2O under identical experimental conditions. This is confirmed by an increase over time of the integrated intensity of the CH3F:O2 complex with a rate constant K = 2.7(2) . 10-4 s-1.

  3. CdS/TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Krishna Karuturi, Siva; Yew, Rowena; Reddy Narangari, Parvathala; Wong-Leung, Jennifer; Li, Li; Vora, Kaushal; Tan, Hark Hoe; Jagadish, Chennupati

    2018-03-01

    Cadmium sulfide (CdS) is a unique semiconducting material for solar hydrogen generation applications with a tunable, narrow bandgap that straddles water redox potentials. However, its potential towards efficient solar hydrogen generation has not yet been realized due to low photon-to-current conversions, high charge carrier recombination and the lack of controlled preparation methods. In this work, we demonstrate a highly efficient CdS/TiO2 heterostructured photoelectrode using atomic layer deposition and solution ion transfer reactions. Enabled by the well-controlled deposition of CdS nanocrystals on TiO2 inverse opal (TiIO) nanostructures using the proposed method, a saturation photocurrent density of 9.1 mA cm-2 is realized which is the highest ever reported for CdS-based photoelectrodes. We further demonstrate that the passivation of a CdS surface with an ultrathin amorphous layer (˜1.5 nm) of TiO2 improves the charge collection efficiency at low applied potentials paving the way for unassisted solar hydrogen generation.

  4. Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature

    PubMed Central

    Fernández-Barquín, Ana; Casado-Coterillo, Clara; Valencia, Susana; Irabien, Angel

    2016-01-01

    In this work, mixed matrix membranes (MMMs) composed of small-pore zeolites with various topologies (CHA (Si/Al = 5), LTA (Si/Al = 1 and 5), and Rho (Si/Al = 5)) as dispersed phase, and the hugely permeable poly(1-trimethylsilyl-1-propyne) (PTMSP) as continuous phase, have been synthesized via solution casting, in order to obtain membranes that could be attractive for oxygen-enriched air production. The O2/N2 gas separation performance of the MMMs has been analyzed in terms of permeability, diffusivity, and solubility in the temperature range of 298–333 K. The higher the temperature of the oxygen-enriched stream, the lower the energy required for the combustion process. The effect of temperature on the gas permeability, diffusivity, and solubility of these MMMs is described in terms of the Arrhenius and Van’t Hoff relationships with acceptable accuracy. Moreover, the O2/N2 permselectivity of the MMMs increases with temperature, the O2/N2 selectivities being considerably higher than those of the pure PTMSP. In consequence, most of the MMMs prepared in this work exceeded the Robeson’s upper bound for the O2/N2 gas pair in the temperature range under study, with not much decrease in the O2 permeabilities, reaching O2/N2 selectivities of up to 8.43 and O2 permeabilities up to 4,800 Barrer at 333 K. PMID:27196937

  5. Experimental and theoretical study of pure and doped crystals: Gd2O2S, Gd2O2S:Eu3+ and Gd2O2S:Tb3+

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Chen, Xiumin; Liu, Dachun; Yang, Bin; Dai, Yongnian

    2012-08-01

    Quantum chemistry and experimental method were used to study on pure and doped Gd2O2S crystals in this paper. The band structure and DOS diagrams of pure and doped Gd2O2S crystals which calculated by using DFT (Density Functional Theory) method were illustrated to explain the luminescent properties of impurities in crystals. The calculations of the crystal structure were finished by using the program of CASTEP (Cambridge Sequential Total Energy Package). The samples showed the characteristic emissions of Tb3+ ions with 5D4-7FJ transitions and Eu3+ ions with 5D0-7FJ transitions which emit pure green luminescence and red luminescence respectively. The experimental excitation spectra of Tb3+ and Eu3+ doped Gd2O2S are in agreement of the DOS diagrams over the explored energy range, which has allowed a better understanding of different luminescence mechanisms of Tb3+ and Eu3+ in Gd2O2S crystals.

  6. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment.

    PubMed

    Kovacic, Marin; Kusic, Hrvoje; Fanetti, Mattia; Stangar, Urska Lavrencic; Valant, Matjaz; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2017-08-01

    The study is aimed at evaluating TiO 2 -SnS 2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO 2 -SnS 2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO 2 and SnS 2 ) within the immobilization step. The as-prepared TiO 2 -SnS 2 composites and their sole components (TiO 2 or SnS 2 ) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO 2 -SnS 2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO 2 -SnS 2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO 2 -SnS 2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO 2 -SnS 2 composites showed higher activity at neutral pH.

  7. Effect of heat treatment on the efficient adsorption of Cd2+ ions by nanosized SiO2, TiO2 and their composite

    NASA Astrophysics Data System (ADS)

    Waseem, M.; Muntha, S. T.; Nawaz, M.; Rehman, W.; Rehman, M. A.; Shah, K. H.

    2017-01-01

    In this study nanosized SiO2, TiO2 and their composite were synthesized via the oil in water (o/w) microemulsion method and their thermal treatment was performed at 378, 573, 973 and 1273 K. The physicochemical properties of the samples were studied by surface area measurements, scanning electron microscopy, Fourier transform infra-red spectroscopy and x-ray diffraction analysis. The Brunauer, Emmett and Teller surface area of all the adsorbents increases from 378 to 573 K, while it decreases upon further heat treatment. The average crystallite size decreases by heating the samples from 378 to 573 K while it increases when the adsorbents were thermally heat treated at 973 and 1273 K. The intensity of a few IR bands was reduced along with the disappearance of most of the bands at higher temperatures. The appearance of the beta-cristobalite phase in SiO2 and the rutile phase in TiO2 was confirmed from the diffraction data. The heat treated samples were subjected to preliminary adsorption of Cd2+ ions from aqueous solution at 293 K. Based on the preliminary adsorption experiments, SiO2, TiO2 and their composite heat treated at 573 K were selected for further adsorption studies. The Langmuir model was found to be fitted to the sorption data of TiO2 and the nanocomposite while the adsorption of Cd2+ ions by the SiO2 nanoparticles was explained well based on the Freundlich model. In the present study, the maximum Cd2+ adsorption capacity of SiO2, TiO2 and their composite was found to be 79.72, 98.55 and 107.17 mg g-1, respectively. The q m and K f values obtained in the present study were found to be far better than those reported in the literature. The negative values of ΔG confirm the feasibility of an adsorption process at higher temperatures. The positive values of ΔH and ΔS represent the endothermic and physical nature of the adsorption process with the increased randomness of Cd2+ ions at the solid/solution interface.

  8. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.

    PubMed

    Muratsugu, Satoshi; Kityakarn, Sutasinee; Wang, Fei; Ishiguro, Nozomu; Kamachi, Takashi; Yoshizawa, Kazunari; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki

    2015-10-14

    Decarbonylation-promoted Ru nanoparticle formation from Ru3(CO)12 on a basic K-doped Al2O3 surface was investigated by in situ FT-IR and in situ XAFS. Supported Ru3(CO)12 clusters on K-doped Al2O3 were converted stepwise to Ru nanoparticles, which catalyzed the selective hydrogenation of nitriles to the corresponding primary amines via initial decarbonylation, the nucleation of the Ru cluster core, and the growth of metallic Ru nanoparticles on the surface. As a result, small Ru nanoparticles, with an average diameter of less than 2 nm, were formed on the support and acted as efficient catalysts for nitrile hydrogenation at 343 K under hydrogen at atmospheric pressure. The structure and catalytic performance of Ru catalysts depended strongly on the type of oxide support, and the K-doped Al2O3 support acted as a good oxide for the selective nitrile hydrogenation without basic additives like ammonia. The activation of nitriles on the modelled Ru catalyst was also investigated by DFT calculations, and the adsorption structure of a nitrene-like intermediate, which was favourable for high primary amine selectivity, was the most stable structure on Ru compared with other intermediate structures.

  9. The stability of N-[2-(4-o-fluorophenylpiperazin-1-yl)ethyl]-2,5-dimethyl-1 -phenylpyrrole-3,4-dicarboximide in aqueous-organic solutions.

    PubMed

    Zajac, Marianna; Sobczak, Agnieszka; Malinka, Wiesław; Redzicka, Aleksandra

    2010-01-01

    The first-order reaction of solvolysis of N-[2-(4-o-fluorophenylpiperazin-1-yl)ethyl]-2,5-dimethyl-1-phenylpyrrole-3,4-dicarboximide (PDI) was investigated as a function of pH at 333, 328, 323, 318 and 308 K in the pH range 1.11 - 12.78. The decomposition of PDI was followed by the HPLC method (Nucleosil 10-C8 column (250 x 4 mm I.D., dp = 10 microm), mobile phase: 0.018 mol/L ammonia acetate - acetonitrile (40: 60 v/v), UV detector: 240 nm, flow rate: 1 mL/min. Specific acid-base catalysis involves solvolysis of the undissociated molecules of PDI catalyzed by hydroxide ions and spontaneous solvolysis of the undissociated and monoprotonated forms of PDI under the influence of solvents. The thermodynamic parameters of the reactions--activation energy (E(a)), enthalpy (DH(#)), entropy (DS(#))--were calculated.

  10. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh

    2010-01-01

    We present the synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles (NPs) and TiO2 nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag2S NPs and TiO2 NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag2S NPs on TiO2 NWs was created. Due to the coupling with such a low bandgap material as Ag2S, the TiO2 nanocomposites could have a visible-light absorption capability much higher than that of pure TiO2. As a result, the synthesized Ag2S/TiO2 nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO2 (Degussa P25, Germany) under visible light.

  11. Shockwave-Loading-Induced Enhancement of T c in Superconducting Bi 2Sr 2CaCu 2O 8

    DOE PAGES

    Liu, Tiansheng; He, Chao; Wang, Fengying; ...

    2017-07-27

    Here, we report a shockwave method for altering the properties of the superconductor material Bi 2Sr 2CaCu 2O 8+δ (Bi2212). We find that the superconducting transition temperature (T c) increases from 84 K for the pristine sample to 94 K for the sample treated at a temperature and pressure of ~1200 K and ~31 GPa, respectively. X-ray diffraction and transmission electron microscopy characterizations indicate that this T c enhancement arises from a phase transition from pristine Bi2212 to a mixture of superconducting Bi2212 and semiconducting Bi 2Sr 2CuO 6+δ (Bi2201) during the shockwave treatment. The shockwave-treated sample exhibits n-type semiconductormore » properties (with an on-off ratio ~5), in contrast to the pure metallic pristine sample. This study offers an alternative route for modifying the superconducting properties via a shockwave treatment. Furthermore, this method may provide a new approach for studying other temperature- and pressure-sensitive materials.« less

  12. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    NASA Astrophysics Data System (ADS)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  13. Solution-Processed hybrid Sb2 S3 planar heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Huang, Wenxiao; Borazan, Ismail; Carroll, David

    Thin-film solar cells based on inorganic absorbers permit a high efficiency and stability. Among or those absorber candidates, recently Sb2S3 has attracted extensive attention because of its suitable band gap (1.5eV ~1.7 eV) , strong optical absorption, low-cost and earth-abundant constituents. Currently high-efficiency Sb2S3 solar cells have absorber layer deposited on nanostructured TiO2 electrodes in combination with organic hole transport material (HTM) on top. However it's challenging to fill the nanostructured TiO2 layer with Sb2S3 and subsequently by HTM, this leads to uncovered surface permits charge recombination. And the existing of Sb2S3/TiO2/HTM triple interface will enhance the recombination due to the surface trap state. Therefore, a planar junction cell would not only have simpler structure with less steps to fabricate but also ideally also have a higher open circuit voltage because of less interface carrier recombination. By far there is limited research focusing on planar Sb2S3 solar cell, so the feasibility is still unclear. Here, we developed a low-toxic solution method to fabricate Sb2S3 thin film solar cell, then we studied the morphology of the Sb2S3 layer and its impact to the device performance. The best device with a structure of FTO/TiO2/Sb2S3/P3HT/Ag has PCE over 5% which is similar or higher than yet the best nanostructure devices with the same HTM. Furthermore, based on solution engineering and surface modification, we improved the Sb2S3 film quality and achieved a record PCE. .

  14. Surface phonons on Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Phelps, R. B.; Akavoor, P.; Kesmodel, L. L.; Demuth, J. E.; Mitzi, D. B.

    1993-11-01

    We report measurements of surface optical phonons on Bi2Sr2CaCu2O8+δ with high-resolution electron-energy-loss spectroscopy (HREELS). In addition to peaks near 50 and 80 meV (403 and 645 cm-1), which have been previously observed, our loss spectra exhibit a peak at 26 meV (210 cm-1). Loss spectra were measured at temperatures from 45 to 146 K, and the temperature dependence of the peaks was found to be weak. The 50 and 80 meV peaks shift to lower frequency by ~1.5 meV over this temperature range. All three peaks are attributed to surface optical phonons. The identification of particular bulk modes corresponding to the surface modes observed with HREELS is discussed.

  15. Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures

    NASA Astrophysics Data System (ADS)

    Gröting, Melanie; Albe, Karsten

    2014-02-01

    In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

  16. Synthesis, characterization, and tuning of the liquid crystal properties of ionic materials based on the cyclic polyoxothiometalate [{Mo4O4S4(H2O)3(OH)2}2(P8W48O184)](36-).

    PubMed

    Watfa, Nancy; Floquet, Sébastien; Terazzi, Emmanuel; Haouas, Mohamed; Salomon, William; Korenev, Vladimir S; Taulelle, Francis; Guénée, Laure; Hijazi, Akram; Naoufal, Daoud; Piguet, Claude; Cadot, Emmanuel

    2015-02-14

    A series of compounds resulting from the ionic association of a nanoscopic inorganic cluster of formula [K2NaxLiy{Mo4O4S4(OH)2(H2O)3}2(HzP8W48O184)]((34-x-y-z)-), 1, with several organic cations such as dimethyldioctadecylammonium DODA(+), trimethylhexadecylammonium TMAC16(+), alkylmethylimidazoliums mimCn(+) (n = 12-20) and alkyl-dimethylimidazoliums dmimCn(+) (n = 12 and 16) was prepared and characterized in the solid state by FT-IR, EDX, Elemental analysis, TGA and solid state NMR. The solid state NMR experiments performed on (1)H, (13)C and (31)P nuclei evidenced the interactions between the cations and 1 as well as the organization of the alkyl chains of the cations within the solid. Polarized optical microscopy, DSC and SA-XRD experiments implicated mesomorphic phases for DODA(+) and mimCn(+) salts of 1. The crystallographic parameters were determined and demonstrated that the inter-lamellar spacing could be controlled upon changing the length of the alkyl chain, a very interesting result if we consider the huge size of the inorganic cluster 1 and the simple nature of the cations.

  17. K-Ion Batteries Based on a P2-Type K 0.6CoO 2 Cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Haegyeom; Kim, Jae Chul; Bo, Shou-Hang

    K-ion batteries are a potentially exciting and new energy storage technology that can combine high specific energy, cycle life, and good power capability, all while using abundant potassium resources. The discovery of novel cathodes is a critical step toward realizing K-ion batteries (KIBs). In this work, a layered P2-type K 0.6CoO 2 cathode is developed and highly reversible K ion intercalation is demonstrated. In situ X-ray diffraction combined with electrochemical titration reveals that P2-type K 0.6CoO 2 can store and release a considerable amount of K ions via a topotactic reaction. Despite the large amount of phase transitions as functionmore » of K content, the cathode operates highly reversibly and with good rate capability. The practical feasibility of KIBs is further demonstrated by constructing full cells with a graphite anode. This work highlights the potential of KIBs as viable alternatives for Li-ion and Na-ion batteries and provides new insights and directions for the development of next-generation energy storage systems.« less

  18. K-Ion Batteries Based on a P2-Type K 0.6CoO 2 Cathode

    DOE PAGES

    Kim, Haegyeom; Kim, Jae Chul; Bo, Shou-Hang; ...

    2017-05-02

    K-ion batteries are a potentially exciting and new energy storage technology that can combine high specific energy, cycle life, and good power capability, all while using abundant potassium resources. The discovery of novel cathodes is a critical step toward realizing K-ion batteries (KIBs). In this work, a layered P2-type K 0.6CoO 2 cathode is developed and highly reversible K ion intercalation is demonstrated. In situ X-ray diffraction combined with electrochemical titration reveals that P2-type K 0.6CoO 2 can store and release a considerable amount of K ions via a topotactic reaction. Despite the large amount of phase transitions as functionmore » of K content, the cathode operates highly reversibly and with good rate capability. The practical feasibility of KIBs is further demonstrated by constructing full cells with a graphite anode. This work highlights the potential of KIBs as viable alternatives for Li-ion and Na-ion batteries and provides new insights and directions for the development of next-generation energy storage systems.« less

  19. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2016-10-01

    We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.

  20. Synthesis of the new quaternary sulfides K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaLnAgS[sub 3] (Ln = Er, Y, Gd) and the structures of K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaErAgS[sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Ibers, J.A.

    1994-05-01

    Several new quarternary sulfides, K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaLnAgS[sub 3] (Ln = Er, Y, Gd), have been synthesized by the reaction of the constituent binary chalcogenides and elements at 1000[degrees]C. The crystal structures of K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaErAgS[sub 3] have been determined by single-crystal X-ray diffraction techniques. Crystal data: K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11]-space group D[sup 8][sub 4h] - P4/ncc, M = 1023.88, Z = 4, a = 8.587(1), c = 27.892(4) [angstrom] (T = 115 K), V = 2056.7(4) [angstrom][sup 3], R[sub W](F[sup 2]) = 0.093 for 1965 observations having F[sup 2][sub 0] >more » 2[sigma](F[sup 2][sub 0]); BaEr AgS[sub 3]-space group C[sup 3][sub 2H] - C2/m, M = 508.65, Z = 4, a = 17.340(4), b = 4.014(1), x = 8.509(2) [angstrom], [beta] = 103.23(3)[degrees], (T = 115 K), V = 576.5(2) [angstrom][sup 3], R[sub W](F[sup 2]) = 0.049 for 1404 observations and 48 variables, R(F) = 0.018 for 1299 observations having F[sup 2][sub 0] > 2[sigma](F[sup 2][sub 0]). In both structures, the rare-earth atoms have octahedral coordination and the octahedra form slabs through edge- and corner-sharing. These slabs are separated by K[sup +] Ba[sup 2+] cations, and are crosslinked into three-dimensional frameworks by Sn[sub 2]S[sub 6] units as edge-sharing SnS[sub 4] tetrahedral pairs in K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11], and by Ag[sub 2]S[sub 9] units as corner-sharing trigonal-bipyramidal AgS[sub 5] pairs in BaEr AgS[sub 3]. From their powder diffraction patterns, BaYAgS[sub 3] and Ba GdAgS[sub 3] appear to be isostructural with BaErAgS[sub 3].« less

  1. Kinetics of OH- and Cl-initiated oxidation of CH2dbnd CHC(O)O(CH2)2CH3 and CH2dbnd CHCH2C(O)O(CH2)2CH3 and fate of the alkoxy radicals formed

    NASA Astrophysics Data System (ADS)

    Rivela, Cynthia; Blanco, María B.; Teruel, Mariano A.

    2016-05-01

    Rate coefficients of the reactions of OH and Cl radicals with vinyl and allyl butyrate were determined for the first time at 298 K and 1 atm using the relative method to be (in cm3 molecule-1 s-1): k1(OH + CH2dbnd CHC(O)O(CH2)2CH3) = (2.61 ± 0.31) × 10-11, k2(Cl + CH2dbnd CHC(O)O(CH2)2CH3) = (2.48 ± 0.89) × 10-10, k3(OH + CH2dbnd CHCH2C(O)O(CH2)2CH3) = (2.89 ± 0.31) × 10-11, and k4(Cl + CH2dbnd CHCH2C(O)O(CH2)2CH3) = (2.25 ± 0.96) × 10-10. Reactivity trends and atmospheric lifetimes of esters are presented. Additionally, a product study shown butyric acid and polifunctional products for the reactions of vinyl and allyl butyrate, respectively and general mechanism is proposed.

  2. Photochemical degradation of an anionic surfactant by TiO2 nanoparticle doped with C, N in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zamiri, M.; Giahi, M.

    2016-12-01

    Novel C,N-doped TiO2 nanoparticles were prepared by a solid phase reaction. The catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The results showed that crystallite size of synthesized C,N-doped TiO2 particles were in nanoscale. UV light photocatalytic studies were carried out using sodium naphthalenesulfonate formaldehyde condensate (SNF) as a model pollutant. The effects of initial concentration of surfactant, catalyst amount, pH, addition of oxidant on the reaction rate were ascertained and optimum conditions for maximum degradation was determined. The results indicated that for a solution of 20 mg/L of SNF, almost 98.7% of the substance were removed at pH 4.0 and 0.44 g/L photocatalyst load, with addition of 1 mM K2S2O8 and irradiation time of 90 min. The kinetics of the process was studied, and the photodegradation rate of SNF was found to obey pseudo-first-order kinetics equation represented by the Langmuir-Hinshelwood model.

  3. The heat capacity of a natural monticellite and phase equilibria in the system CaO-MgO-SiO2-CO2

    USGS Publications Warehouse

    Sharp, Z.D.; Essene, E.J.; Anovitz, Lawrence M.; Metz, G.W.; Westrum, E.F.; Hemingway, B.S.; Valley, J.W.

    1986-01-01

    The heat capacity of a natural monticellite (Ca1.00Mg.09Fe.91Mn.01Si0.99O3.99) measured between 9.6 and 343 K using intermittent-heating, adiabatic calorimetry yields Cp0(298) and S2980 of 123.64 ?? 0.18 and 109.44 ?? 0.16 J ?? mol-1 K-1 respectively. Extrapolation of this entropy value to end-member monticellite results in an S0298 = 108.1 ?? 0.2 J ?? mol-1 K-1. High-temperature heat-capacity data were measured between 340-1000 K with a differential scanning calorimeter. The high-temperature data were combined with the 290-350 K adiabatic values, extrapolated to 1700 K, and integrated to yield the following entropy equation for end-member monticellite (298-1700 K): ST0(J ?? mol-1 K-1) = S2980 + 164.79 In T + 15.337 ?? 10-3 T + 22.791 ?? 105 T-2 - 968.94. Phase equilibria in the CaO-MgO-SiO2 system were calculated from 973 to 1673 K and 0 to 12 kbar with these new data combined with existing data for akermanite (Ak), diopside (Di), forsterite (Fo), merwinite (Me) and wollastonite (Wo). The location of the calculated reactions involving the phases Mo and Fo is affected by their mutual solid solution. A best fit of the thermodynamically generated curves to all experiments is made when the S0298 of Me is 250.2 J ?? mol-1 K-1 less than the measured value of 253.2 J ?? mol-1 K-1. A best fit to the reversals for the solid-solid and decarbonation reactions in the CaO-MgO-SiO2-CO2 system was obtained with the ??G0298 (kJ ?? mole-1) for the phases Ak(-3667), Di(-3025), Fo(-2051), Me(-4317) and Mo(-2133). The two invariant points - Wo and -Fo for the solid-solid reactions are located at 1008 ?? 5 K and 6.3 ?? 0.1 kbar, and 1361 ?? 10 K and 10.2 ?? 0.2 kbar respectively. The location of the thermodynamically generated curves is in excellent agreement with most experimental data on decarbonation equilibria involving these phases. ?? 1986.

  4. Potassium Ions Promote Solution-Route Li2O2 Formation in the Positive Electrode Reaction of Li-O2 Batteries.

    PubMed

    Matsuda, Shoichi; Kubo, Yoshimi; Uosaki, Kohei; Nakanishi, Shuji

    2017-03-16

    Lithium-oxygen system has attracted much attention as a battery with high energy density that could satisfy the demands for electric vehicles. However, because lithium peroxide (Li 2 O 2 ) is formed as an insoluble and insulative discharge product at the positive electrode, Li-O 2 batteries have poor energy capacities. Although Li 2 O 2 deposition on the positive electrode can be avoided by inducing solution-route pathway using electrolytes composed of high donor number (DN) solvents, such systems generally have poor stability. Herein we report that potassium ions promote the solution-route formation of Li 2 O 2 . The present findings suggest that potassium or other monovalent ions have the potential to increase the volumetric energy density and life cycles of Li-O 2 batteries.

  5. Autoxidative and Cyclooxygenase-2 Catalyzed Transformation of the Dietary Chemopreventive Agent Curcumin*

    PubMed Central

    Griesser, Markus; Pistis, Valentina; Suzuki, Takashi; Tejera, Noemi; Pratt, Derek A.; Schneider, Claus

    2011-01-01

    The efficacy of the diphenol curcumin as a cancer chemopreventive agent is limited by its chemical and metabolic instability. Non-enzymatic degradation has been described to yield vanillin, ferulic acid, and feruloylmethane through cleavage of the heptadienone chain connecting the phenolic rings. Here we provide evidence for an alternative mechanism, resulting in autoxidative cyclization of the heptadienone moiety as a major pathway of degradation. Autoxidative transformation of curcumin was pH-dependent with the highest rate at pH 8 (2.2 μm/min) and associated with stoichiometric uptake of O2. Oxidation was also catalyzed by recombinant cyclooxygenase-2 (COX-2) (50 nm; 7.5 μm/min), and the rate was increased ≈10-fold by the addition of 300 μm H2O2. The COX-2 catalyzed transformation was inhibited by acetaminophen but not indomethacin, suggesting catalysis occurred by the peroxidase activity. We propose a mechanism of enzymatic or autoxidative hydrogen abstraction from a phenolic hydroxyl to give a quinone methide and a delocalized radical in the heptadienone chain that undergoes 5-exo cyclization and oxygenation. Hydration of the quinone methide (measured by the incorporation of O-18 from H218O) and rearrangement under loss of water gives the final dioxygenated bicyclopentadione product. When curcumin was added to RAW264.7 cells, the bicyclopentadione was increased 1.8-fold in cells activated by LPS; vanillin and other putative cleavage products were negligible. Oxidation to a reactive quinone methide is the mechanistic basis of many phenolic anti-cancer drugs. It is possible, therefore, that oxidative transformation of curcumin, a prominent but previously unrecognized reaction, contributes to its cancer chemopreventive activity. PMID:21071447

  6. Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials

    NASA Astrophysics Data System (ADS)

    De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge

    2007-08-01

    Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.

  7. Enantioselective synthesis of C2 -symmetric spirobipyridine ligands through cationic Rh(I)/modified-BINAP- catalyzed double [2 + 2 + 2] cycloaddition.

    PubMed

    Wada, Azusa; Noguchi, Keiichi; Hirano, Masao; Tanaka, Ken

    2007-03-29

    [structure: see text]. Enantioenriched C2-symmetric spirobipyridine ligands were efficiently synthesized through a cationic rhodium(I)/(R)-Segphos or (R)-H8-BINAP complex-catalyzed enantioselective intramolecular double [2 + 2 + 2] cycloaddition of bis-diynenitriles.

  8. K2Ho(PO4)(WO4)

    PubMed Central

    Terebilenko, Katherina V.; Zatovsky, Igor V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.; Shishkin, Oleg V.

    2008-01-01

    A new compound, dipotassium holmium(III) phosphate(V) tungstate(VI), K2Ho(PO4)(WO4), has been obtained during investigation of the K2O–P2O5–WO3–HoF3 phase system using the flux technique. The compound is isotypic with K2Bi(PO4)(WO4). Its framework structure consists of flat ∞ 2[HoPO4] layers parallel to (100) that are made up of ∞ 1[HoO8] zigzag chains inter­linked via slightly distorted PO4 tetra­hedra. WO4 tetra­hedra are attached above and below these layers, leaving space for the K+ counter-cations. The HoO8, PO4 and WO4 units exhibit 2 symmetry. PMID:21580811

  9. Micropore Formation of [Zn2(Oxac) (Taz)2]·(H2O)2.5 via CO2 Adsorption.

    PubMed

    Zubir, Moondra; Hamasaki, Atom; Iiyama, Taku; Ohta, Akira; Ohki, Hiroshi; Ozeki, Sumio

    2017-01-24

    As-synthesized [Zn 2 (Oxac) (Taz) 2 ]·(H 2 O) 2.5 , referred to as ZOTW 2.5 , was prepared from aqueous methanol solutions of Zn 5 (CO 3 ) 2 (OH) 6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW 2.5 was pretreated at 383 K and 1 mPa for t pt h, ZOTW x (t pt h). ZOTW x (≥3h) showed a type I adsorption isotherm for N 2 at 77 K having a saturation amount (V s ) of 180 mg/g, but that pretreated shortly showed only 1/10 in V s . CO 2 was adsorbed at 303 K in sigmoid on nonporous ZOTW x (≤2h) and in Langmuir-type on ZOTW x (≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N 2 adsorption on ZOTW x (≤2h)deCO 2 , degassed after CO 2 adsorption on ZOTW x (≤2h), was promoted 5-fold from 180 mg/g on ZOTW x (t pt h) and ZOTW x (≥3h)deCO 2 up to ca. 1000 mg/g. The interaction of CO 2 and H 2 O molecules in micropores may lead to a new route for micropore formation.

  10. Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses.

    PubMed

    Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb

    2010-01-01

    Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.

  11. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth

    PubMed Central

    Civiš, Svatopluk; Szabla, Rafał; Szyja, Bartłomiej M.; Smykowski, Daniel; Ivanek, Ondřej; Knížek, Antonín; Kubelík, Petr; Šponer, Jiří; Ferus, Martin; Šponer, Judit E.

    2016-01-01

    Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth’s history about 4–3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde. PMID:26979666

  12. The rate of sulfide oxidation by δMnO 2 in seawater

    NASA Astrophysics Data System (ADS)

    Yao, Wensheng; Millero, Frank J.

    1993-07-01

    The rate of oxidation of hydrogen sulfide by manganese dioxide in seawater was determined as a function of pH (2.0-9.0), temperature (5-45°C), and ionic strength (0-4 M). The overall rate constant, k, in seawater at pH = 8.17 was found to be first order with respect to both sulfide and manganese dioxide: - d[H 2S] T/dt = k[H 2S] τ[MnO 2] . The rate constant, k, for seawater (S = 35.8, pH = 8.17) at 25°C was found to be 436 M -1 min -1, or 0.0244 m -2 1 min -1 when [MnO 2] is expressed in surface area (m 2/L). The energies of activation were found to be 14 ± 1 KJ mol -1 and 10 ± 1 KJ mol -1, respectively, for pH = 8.2 and pH = 5.0 in seawater (S = 35). The rate increased from pH 2.0 to a maximum at a pH of about 5.0 and decreased at higher pH. This pH dependence was attributed to formation of a surface complex between >MnO - and H 2S. As the concentration of HS - increases above pH = 5 the rate of the reaction decreases. The rate of sulfide oxidation by MnO 2 is not strongly dependent on ionic strength. The rates in 0.57 M NaCl were found to be slightly higher than the rates in seawater. Measurements made in solutions of the major sea salts indicated that Ca 2+ and Mg 2+ caused the rates to decrease, apparently by absorbing on the surface of manganese dioxide. Measurements made in artificial seawater (Na +, Mg 2+, Ca 2+, Cl -, and SO 2-4) were found to be in good agreement with the measurements in actual seawater. Phosphate was found to inhibit the reaction significantly.

  13. Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel

    NASA Astrophysics Data System (ADS)

    Li, Fangjie; Li, Huigai; Huang, Di; Zheng, Shaobo; You, Jinglin

    2018-05-01

    This study investigates the mechanism of MnS precipitation on Al2O3-SiO2 inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized Al2O3-SiO2 inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the Al2O3-rich regions of the Al2O3-SiO2 inclusions; this can be explained by the high lattice disregistry between MnS and Al2O3.

  14. Rate Coefficient for Collisional Removal of O2(X3Σ ^-g, v = 1) with O Atoms at 240 K

    NASA Astrophysics Data System (ADS)

    Pejaković, D. A.; Campbell, Z.; Kalogerakis, K. S.; Copeland, R. A.; Slanger, T. G.

    2004-12-01

    Knowledge of the water concentration profile is key to understanding of the chemistry and energy flow in the stratosphere and mesosphere. One of the tasks of the SABER instrument in NASA's TIMED mission is to measure water vapor concentration by detecting H2O2) emission in the 6.8 μ m region. An important source of the H2O2) emission is the collisional deactivation of vibrationally excited O2: O2(X3Σ ^-g, v = 1) + H2O <-> O2(X3Σ ^-g, v = 0) + H2O2). For reliable interpretation of the SABER data it is crucial to determine rate coefficient for the competing process: O2(X3Σ ^-g, v = 1) + O(3P) -> O2(X3Σ ^-g, v = 0) + O(3P) [1]. Laboratory measurements are reported of the rate coefficient for collisional removal of O2(X3Σ ^-g, v = 1) by O(3P) at a temperature of 240 K, relevant to the upper mesosphere. Instead of directly detecting the O2(X3Σ ^-g, v = 1) population, a novel, technically simpler, approach is used in which the v = 1 level of the O2(a1Δ g) state is monitored. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ ^-g, v = 1) and O2(a1Δ g, v = 1) populations via the processes O2(a1Δ g, v = 1) + O2(X3Σ ^-g, v = 0) <-> O2(a1Δ g, v = 0) + O2(X3Σ ^-g, v = 1), the information on the O2(X3Σ ^-g, v = 1) kinetics is extracted from the O2(a1Δ g, v = 1) temporal evolution. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δ g, v = 1), and the pulsed output of the second laser detects O2(a1Δ g, v = 1) via the resonance-enhanced multiphoton ionization. In the same experiment, rate coefficients for removal of O2(a1Δ g, v = 1) with the atmospherically relevant colliders O2, CO2, and O also were measured at room temperature and 240 K. The measured rate coefficient for O2(X3Σ ^-g, v = 1) removal by O(3P) is in the range 2--3 × 10-12 cm3s-1 at 240 K, compared to the recently measured room temperature value of about 3 × 10

  15. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5

    USGS Publications Warehouse

    Majzlan, J.; Navrotsky, A.; McCleskey, R. Blaine; Alpers, Charles N.

    2006-01-01

    Enthalpies of formation of ferricopiapite [nominally Fe4.67(SO4)6(OH)2 (H2O)20]. coquimbite [Fe2(SO4)3(H2O)9], rhomboclase [(H3O)Fe(SO4)2 (H2O)3], and Fe2(SO4)3(H2O)5 were measured by acid (5 N HCl) solution calorimetry. The samples were characterized by wet chemical analyses and synchrotron powder X-ray diffraction (XRD). The refinement of XRD patterns gave lattice parameters, atomic positions, thermal factors, and occupancies of the sites. The calculated formulae differ slightly from the nominal compositions: Fe4.78(SO4)6 (OH)2.34(H2O)20.71 (ferricopiapite), (Fe1.47Al0.53)(SO4)3 (H2O)9.65 (coquimbite), (H3O)1.34Fe(SO4)2.17 (H2O)3.06 (rhomboclase), and Fe2(SO4)3 (H2O)5.03. All thermodynamic data are given per mole of these formulae. The measured standard enthalpies (in kJ/mol) of formation from the elements (crystalline Fe, Al, S, and ideal gases O2 and H2) at T = 298.15 K are -4115.8??4.1 [Fe2(SO4)3 (H2O)5.03], -12045.1??9.2 (ferricopiapite), -5738.4??3.3 (coquimbite), and -3201.1??2.6 (rhomboclase). Standard entropy (S??) was estimated as a sum of entropies of oxide, hydroxide, and sulfate components. The estimated S?? (in J/mol.K) values for the iron sulfates are 488.2 [Fe2(SO4)3 (H2O)5.03], 1449.2 (ferricopiapite), 638.3 (coquimbite), and 380.1 (rhomboclase). The calculated Gibbs free energies of formation (in kJ/mol) are -3499.7??4.2 [Fe2(SO4)3 (H2O)5.03], -10089.8??9.3 (ferricopiapite), -4845.6??3.3 (coquimbite), and -2688.0??2.7 (rhomboclase). These results combined with other available thermodynamic data allow construction of mineral stability diagrams in the FeIII2(SO4)3-FeII SO4-H2O system. One such diagram is provided, indicating that the order of stability of ferric sulfate minerals with decreasing pH in the range of 1.5 to -0.5 is: hydronium jarosite, ferricopiapite, and rhomboclase. ?? 2006 E. Schweizerbart'sche Verlagsbuchhandlung.

  16. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).

    PubMed

    Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L

    2003-07-01

    Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.

  17. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    PubMed Central

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria. PMID:23760258

  18. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    NASA Astrophysics Data System (ADS)

    Ma, Yingqun; Lin, Chuxia

    2013-06-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria.

  19. Arizona porphyry copper/hydrothermal deposits II: crystal structure of ajoite, (K + Na)3Cu20Al3Si29O76(OH)16*~8H2O.

    PubMed

    Pluth, Joseph J; Smith, Joseph V

    2002-08-20

    A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16* approximately 8H2O; triclinic, P1, a = 13.634(5) A, b = 13.687(7), c = 14.522(7), alpha = 110.83(1) degrees, beta = 107.21(1), gamma = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4.H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite.

  20. Catalytic reduction of O2 by cytochrome C using a synthetic model of cytochrome C oxidase.

    PubMed

    Collman, James P; Ghosh, Somdatta; Dey, Abhishek; Decréau, Richard A; Yang, Ying

    2009-04-15

    Cytochrome c oxidase (CcO) catalyzes the four-electron reduction of oxygen to water, the one-electron reductant Cytochrome c (Cytc) being the source of electrons. Recently we reported a functional model of CcO that electrochemically catalyzes the four-electron reduction of O(2) to H(2)O (Collman et al. Science 2007, 315, 1565). The current paper shows that the same functional CcO model catalyzes the four-electron reduction of O(2) using the actual biological reductant Cytc in a homogeneous solution. Both single and steady-state turnover kinetics studies indicate that O(2) binding is rate-determining and that O-O bond cleavage and electron transfer from reduced Cytc to the oxidized model complex are relatively fast.

  1. X-ray and Mössbauer study of structural changes in K3Na(FeO4)2

    NASA Astrophysics Data System (ADS)

    Dedushenko, S. K.; Zhizhin, M. G.; Perfiliev, Yu. D.

    2005-11-01

    Mixed potassium sodium ferrate(VI), K3Na(FeO4)2, has been synthesized by precipitation from alkaline solution. At room temperature it decomposes spontaneously giving Fe(III) compounds and ferrate(VI) with a structure similar to that of K2FeO4, which is confirmed by X-ray diffraction and Mössbauer spectroscopy.

  2. Nano-TiO2, ultrasound and sequential nano-TiO2/ultrasonic degradation of N-acetyl-para-aminophenol from aqueous solution.

    PubMed

    Ayanda, Olushola S; Nelana, Simphiwe M; Petrik, Leslie F; Naidoo, Eliazer B

    2017-10-01

    The application of nano-TiO 2 as adsorbent combined with ultrasound for the degradation of N-acetyl-para-aminophenol (AAP) from aqueous solution was investigated. The nano-TiO 2 was characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Experimental results revealed that the adsorption of AAP by nano-TiO 2 fitted the pseudo-second-order kinetic model, the equilibrium could be explained by the Freundlich isotherm and the treatment process is exothermic. The optimum removal efficiency of AAP (128.89 mg/g (77.33%)) was achieved at pH 4 when 0.03 g of nano-TiO 2 was mixed with 50 mL of 100 mg/L AAP aqueous solution at ambient temperature, 60 min contact time, and a stirring speed of 120 rpm. Ultrasound at 20 kHz and pH 3 was favorable and it resulted in 52.61% and 57.43% removal efficiency with and without the addition of nano-TiO 2 , respectively. The degradation of AAP by ultrasound followed by nano-TiO 2 treatment resulted in approximately 99.50% removal efficiency. This study showed that a sequential ultrasound and nano-TiO 2 treatment process could be employed for the removal of AAP or other emerging water and wastewater contaminants.

  3. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip T.; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J.

    2012-01-01

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g3frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl1-xCrxO2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μeff is equal to the Cr3+ spin-only S = 3/2 value throughout the entire solid solution. ΘCW is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant JBB was estimated by mean-field theory to be 3.0 meV. Despite the sizable ΘCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  4. Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Dzik, Ewa A.; Sigmon, Ginger E.; Szymanowski, Jennifer E. S.; Navrotsky, Alexandra; Burns, Peter C.

    2018-04-01

    Neptunium (Np) compounds are important in the nuclear fuel cycle because of the buildup and long half-life (2.14 Ma) of Np-237 in nuclear waste, especially during long-term disposal in a geological repository. Neptunium in environmental conditions exists mainly in two oxidation states (+5 and + 4) and can substitute for uranium and/or rare earths in solid phases. Yet thermochemical data for solid neptunium compounds are scarce, despite being critical for evaluating the environmental transport of this radioactive and toxic element. Although high temperature oxide melt solution calorimetry has proven very useful in obtaining thermodynamic data for the formation of uranium and thorium oxide materials, it has not yet been applied to transuranium compounds. Continuing a program at Notre Dame to study the thermodynamics of transuranium compounds, we report the first determination of the enthalpies of drop solution of well-characterized neptunium oxides (Np2O5 and NpO2) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973 K. The enthalpy of the decomposition reaction, Np2O5(cr) = 2NpO2(cr) + 1/2O2(g) at 298 K, is determined to be 7.70 ± 5.86 kJ/mol, and this direct measurement is consistent with existing thermodynamic data. The calorimetric methodology is straightforward and produces reliable data using milligram quantities of radioactive materials, and can be applied to many other transuranium compounds.

  5. Study on tribological and electrochemistry properties of metal materials in H2O2 solutions

    NASA Astrophysics Data System (ADS)

    Yuan, Chengqing; Yu, Li; Li, Jian; Yan, Xinping

    2012-03-01

    Hydrogen peroxide (H2O2) is a kind of ideal green propellant. It is crucial to study the wear behavior and failure modes of the metal materials under the strong oxidizing environment of H2O2. This study aims to investigate the wear of rubbing pairs of 2Cr13 stainless steel against 1045 metal in H2O2 solutions, which has a great effect on wear, the decomposition and damage mechanism of materials. The comparison analysis of the friction coefficients, wear mass loss, worn surface topographies and current densities was conducted under different concentrations of H2O2 solutions. There were significant differences in the tribological and electrochemistry properties of the rubbing pairs in different H2O2 solutions.

  6. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Ellis, W. P.; Borg, A.; Kang, J.-S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-11-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO3 than in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO3 and Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d-->4f, La 4d-->4f, and Nd 4d-->4f transitions) are also reported.

  7. Effects of HfO2 encapsulation on electrical performances of few-layered MoS2 transistor with ALD HfO2 as back-gate dielectric.

    PubMed

    Xu, Jingping; Wen, Ming; Zhao, Xinyuan; Liu, Lu; Song, Xingjuan; Lai, Pui-To; Tang, Wing-Man

    2018-08-24

    The carrier mobility of MoS 2 transistors can be greatly improved by the screening role of high-k gate dielectric. In this work, atomic-layer deposited (ALD) HfO 2 annealed in NH 3 is used to replace SiO 2 as the gate dielectric to fabricate back-gated few-layered MoS 2 transistors, and good electrical properties are achieved with field-effect mobility (μ) of 19.1 cm 2 V -1 s -1 , subthreshold swing (SS) of 123.6 mV dec -1 and on/off ratio of 3.76 × 10 5 . Furthermore, enhanced device performance is obtained when the surface of the MoS 2 channel is coated by an ALD HfO 2 layer with different thicknesses (10, 15 and 20 nm), where the transistor with a 15 nm HfO 2 encapsulation layer exhibits the best overall electrical properties: μ = 42.1 cm 2 V -1 s -1 , SS = 87.9 mV dec -1 and on/off ratio of 2.72 × 10 6 . These improvements should be associated with the enhanced screening effect on charged-impurity scattering and protection from absorption of environmental gas molecules by the high-k encapsulation. The capacitance equivalent thickness of the back-gate dielectric (HfO 2 ) is only 6.58 nm, which is conducive to scaling of the MoS 2 transistors.

  8. Transparency of the ab Planes of Bi2Sr2CaCu2O8+δ to Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kossler, W. J.; Dai, Y.; Petzinger, K. G.; Greer, A. J.; Williams, D. Ll.; Koster, E.; Harshman, D. R.; Mitzi, D. B.

    1998-01-01

    A sample composed of many Bi2Sr2CaCu2O8+δ single crystals was cooled to 2 K in a magnetic field of 100 G at 45° from the c axis. Muon-spin-rotation measurements were made for which the polarization was initially approximately in the ab plane. The time dependent polarization components along this initial direction and along the c axis were obtained. Cosine transforms of these and subsequent measurements were made. Upon removing the applied field, still at 2 K, only the c axis component of the field remained in the sample, thus providing microscopic evidence for extreme 2D behavior for the vortices even at this temperature.

  9. Biotransformation of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane (CL-20) by Denitrifying Pseudomonas sp. Strain FA1

    PubMed Central

    Bhushan, Bharat; Paquet, Louise; Spain, Jim C.; Hawari, Jalal

    2003-01-01

    The microbial and enzymatic degradation of a new energetic compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), is not well understood. Fundamental knowledge about the mechanism of microbial degradation of CL-20 is essential to allow the prediction of its fate in the environment. In the present study, a CL-20-degrading denitrifying strain capable of utilizing CL-20 as the sole nitrogen source, Pseudomonas sp. strain FA1, was isolated from a garden soil. Studies with intact cells showed that aerobic conditions were required for bacterial growth and that anaerobic conditions enhanced CL-20 biotransformation. An enzyme(s) involved in the initial biotransformation of CL-20 was shown to be membrane associated and NADH dependent, and its expression was up-regulated about 2.2-fold in CL-20-induced cells. The rates of CL-20 biotransformation by the resting cells and the membrane-enzyme preparation were 3.2 ± 0.1 nmol h−1 mg of cell biomass−1 and 11.5 ± 0.4 nmol h−1 mg of protein−1, respectively, under anaerobic conditions. In the membrane-enzyme-catalyzed reactions, 2.3 nitrite ions (NO2−), 1.5 molecules of nitrous oxide (N2O), and 1.7 molecules of formic acid (HCOOH) were produced per reacted CL-20 molecule. The membrane-enzyme preparation reduced nitrite to nitrous oxide under anaerobic conditions. A comparative study of native enzymes, deflavoenzymes, and a reconstituted enzyme(s) and their subsequent inhibition by diphenyliodonium revealed that biotransformation of CL-20 is catalyzed by a membrane-associated flavoenzyme. The latter catalyzed an oxygen-sensitive one-electron transfer reaction that caused initial N denitration of CL-20. PMID:12957905

  10. A comprehensive study of magnetic exchanges in the layered oxychalcogenides Sr 3 Fe 2 O 5 Cu 2 Q 2 ( Q = S, Se)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Minfeng; Mentré, Olivier; Gordon, Elijah E.

    2017-12-01

    The layered oxysulfide Sr3Fe2O5Cu2S2 was prepared, and its crystal structure and magnetic properties were characterized by synchrotron X-ray diffraction (XRD), powder neutron diffraction (PND), Mössbauer spectroscopy measurements and by density functional theory (DFT) calculations. In addition, the spin exchange interactions leading to the ordered magnetic structure of Sr3Fe2O5Cu2S2 were compared with those of its selenium analogue Sr3Fe2O5Cu2Se2. The oxysulfide Sr3Fe2O5Cu2S2 adopts a G-type antiferromagnetic (AFM) structure at a temperature in the range 485–512 K, which is comparable with the three-dimensional (3D) AFM ordering temperature, TN ≈ 490 K, found for Sr3Fe2O5Cu2Se2. Consistent with this observation, the spin exchange interactions ofmore » the magnetic (Sr3Fe2O5)2+ layers are slightly greater (but comparable) for oxysulfide than for the oxyselenide. Attempts to reduce or oxidize Sr3Fe2O5Cu2S2 using topochemical routes yield metallic Fe.« less

  11. Experimental Determination of the Phase Diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 System

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Sun, Lifeng; Zhang, Bo; Liu, Xuqiang; Qiu, Jiyu; Wang, Zhaoyun; Jiang, Maofa

    2016-02-01

    Ti-bearing CaO-SiO2-MgO-Al2O3-TiO2 slags are important for the smelting of vanadium-titanium bearing magnetite. In the current study, the pseudo-melting temperatures were determined by the single-hot thermocouple technique for the specified content of 5 to 25 pct TiO2 in the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 phase diagram system. The 1573 K to 1773 K (1300 °C to 1500 °C) liquidus lines were first calculated based on the pseudo-melting temperatures according to thermodynamic equations in the specific primary crystal field. The phase equilibria at 1573 K (1300 °C) were determined experimentally using the high-temperature equilibrium and quench method followed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscope analysis; the liquid phase, melilite solid solution phase (C2MS2,C2AS)ss, and perovskite phase of CaO·TiO2 were found. Therefore, the phase diagram was constructed for the specified region of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system.

  12. Magnetic penetration depth and flux dynamics in single-crystal Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Harshman, D. R.; Kleiman, R. N.; Inui, M.; Espinosa, G. P.; Mitzi, D. B.; Kapitulnik, A.; Pfiz, T.; Williams, D. Ll.

    1991-11-01

    The muon-spin-relaxation technique has been used to study vortex dynamics in single-phase superconducting single crystals of Bi2Sr2CaCu2O8+δ (Tc~=90 K). The data indicate motional narrowing of the internal field distribution due to vortex motion (on a time scale comparable to the muon lifetime). A field-dependent lattice transition is also observed at Tx~30 K, as evidenced by the onset of an asymmetric line shape below Tx. Narrowing arising from disordering of the vortices along [001] is also discussed with reference to its effect on the measured penetration depth.

  13. SO2 Adsorption on CeO2(100) and CeO2(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R.

    2016-09-13

    The adsorption and reaction of sulfur dioxide, SO2, was studied on oxidized and reduced CeOX(100) and compared to previous results on CeOX(111). SO2 adsorbs on oxidized CeO2(100) as sulfite, SO32-, at 200 K and sulfite is the only adsorbate observed on the surface at any temperature. The sulfite desorbs monotonically from 200 to 700 K. The adsorption and desorption of SO2 does not result in any change in the Ce4+ oxidation state. SO2 also adsorbs as sulfite on reduced CeO1.7(100) at 200 K. There is also a small amount of elemental sulfur, S0, formed. As the sample is heated themore » sulfite decomposes into sulfide, S2-. Roughly 25 % of the adsorbed S either desorbs or diffuses into the bulk of the reduced ceria. The decomposition, and resulting formation of S2- and O2-, re-oxidize some of the Ce3+ to Ce4+. Unlike what has been observed following the adsorption and reaction of many other molecules, the adsorption and reaction of SO2 is virtually identical on CeOX(100) and CeOX(111).« less

  14. Solubility of SC2O3 in NA3ALF6-K3ALF6-ALF3 Melts

    NASA Astrophysics Data System (ADS)

    Tian, Zhongliang; Hu, Xun; Lai, Yanqing; Yang, Shu; Ye, Shaolong; Li, Jie

    The electrolyte with high solubility for Sc2O3 is very important to realize the preparation of Al-Sc master alloy by the molten salt electrolysis. The solubility of Sc2O3 in K3AlF6-Na3AlF6-AlF3 melts is determined with an isothermal saturation method. The effects of KR (ratio of K3AlF6 to K3AlF6+Na3AlF6), the concentration of Al2O3 and the temperature on the solubility of Sc2O3 are also investigated. The results indicate that the solubility of Sc2O3 in K3AlF6-Na3AlF6-AlF3 melts increases and then decreases with KR increasing. The solubility of Sc2O3 is 8.698 wt.% in (K3AlF6-Na3AlF6)(KR25%)-18 wt.%AlF3 melts at 940°C. The effect of temperature on the solubility is little, and the values are 8.575 wt.% and 8.762 wt.% respectively when the temperatures are 930°C and 960°C. The solubility decreases from 8.809 wt.% to 7.058 wt.% as the concentration of Al2O3 increases from 1.5 wt.% to 5.0 wt.% at 950°C.

  15. Long-range ordering in the Bi 1-xAe xFeO 3-x/2 perovskites: Bi 1/3Sr 2/3FeO 2.67 and Bi 1/2Ca 1/2FeO 2.75

    NASA Astrophysics Data System (ADS)

    Lepoittevin, C.; Malo, S.; Barrier, N.; Nguyen, N.; Van Tendeloo, G.; Hervieu, M.

    2008-10-01

    Two-ordered perovskites, Bi 1/3Sr 2/3FeO 2.67 and Bi 1/2Ca 1/2FeO 2.75, have been stabilized and characterized by transmission electron microscopy, Mössbauer spectroscopy and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with a≈ b≈2 ap and c≈3 ap (S.G.: Pb2 n or Pbmn) for the Sr-based compound and one with a≈ b≈2 ap and c≈8 ap (S.G.: B222, Bmm2, B2 mm or Bmmm) for the Ca-based one. The high-resolution transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeO x] ∞ layer, suggesting that Bi 1/3Sr 2/3FeO 2.67 and Bi 1/2Ca 1/2FeO 2.75 behave differently compared to their Ln-based homolog. The HAADF-STEM images allow to propose a model of cation ordering on the A sites of the perovskite. The Mössbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compounds exhibit a high value of resistivity and the inverse molar susceptibility versus temperature curves evidence a magnetic transition at about 730 K for the Bi 1/3Sr 2/3FeO 2.67 and a smooth reversible transition between 590 and 650 K for Bi 1/2Ca 1/2FeO 2.75.

  16. Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air

    NASA Astrophysics Data System (ADS)

    Kashiwaya, Yoshiaki

    2017-12-01

    A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure ( P_{{{O}2 }} ) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.

  17. Achieving high thermoelectric performance of Cu1.8S composites with WSe2 nanoparticles.

    PubMed

    Qin, Peng; Ge, Zhen-Hua; Chen, Yue-Xing; Chong, Xiaoyu; Feng, Jing; He, Jiaqing

    2018-08-24

    Polycrystalline p-type Cu 1.8 S composites with WSe 2 nanoparticles were fabricated by the mechanical alloying method combined with the spark plasma sintering technique. The Seebeck coefficient was significantly enhanced by the optimized carrier concentration, while the thermal conductivity was simultaneously decreased due to the refined grain and WSe 2 nanoparticles. An enhanced Seebeck coefficient of 110 μV K -1 and a reduced thermal conductivity of 0.68 W m -1 K -1 were obtained for the Cu 1.8 S + 1 wt% WSe 2 sample at 773 K, resulting in a remarkably enhanced peak ZT of 1.22 at 773 K, which is 2.5 times higher than that (0.49 at 773 K) of a pristine Cu 1.8 S sample. The cheap and environmentally friendly Cu 1.8 S-based materials with enhanced properties may find promising applications in thermoelectric devices.

  18. (O8 , O8 ) contribution to B ¯→Xsγ γ at Os)

    NASA Astrophysics Data System (ADS)

    Asatrian, H. M.; Greub, C.; Kokulu, A.

    2016-01-01

    In this analysis, we present the contribution associated with the chromomagnetic dipole operator O8 to the double differential decay width d Γ /(d s1d s2) for the inclusive process B ¯→Xsγ γ . The kinematical variables s1 and s2 are defined as si=(pb-qi)2/mb2, where pb, q1, q2 are the momenta of b quark and two photons. This contribution (taken at tree level) is of order αs, like the recently calculated QCD corrections to the contribution of the operator O7. In order to regulate possible collinear singularities of one of the photons with the strange quark, we introduce a nonzero mass ms for the strange quark. Our results are obtained for exact ms, which we interpret as a constituent mass being varied between 400 and 600 MeV. Numerically it turns out that the effect of the (O8 , O8 ) contribution to the branching ratio of B ¯→Xsγ γ does not exceed +0.1 % for any kinematically allowed value of our physical cutoff parameter c , confirming the expected suppression of this contribution relative to the QCD corrections to d Γ77/(d s1d s2).

  19. Magnetic structure and dispersion relation of the S = 1 2 quasi-one-dimensional Ising-like antiferromagnet BaCo 2 V 2 O 8 in a transverse magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, M.; Onishi, H.; Okutani, A.

    Here, BaCo 2V 2O 8 consists of Co chains in which a Co 2+ ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo 2V 2O 8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis.more » We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 XXZ antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.« less

  20. Magnetic structure and dispersion relation of the S =1/2 quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8 in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.

    2017-07-01

    BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.

  1. Magnetic structure and dispersion relation of the S = 1 2 quasi-one-dimensional Ising-like antiferromagnet BaCo 2 V 2 O 8 in a transverse magnetic field

    DOE PAGES

    Matsuda, M.; Onishi, H.; Okutani, A.; ...

    2017-07-25

    Here, BaCo 2V 2O 8 consists of Co chains in which a Co 2+ ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo 2V 2O 8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis.more » We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 XXZ antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.« less

  2. High Activity of Au/K/TiO 2(110) for CO Oxidation: Alkali-Metal-Enhanced Dispersion of Au and Bonding of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Jose A.; Grinter, David C.; Ramirez, Pedro J.

    In this paper, images from scanning tunneling microscopy show high mobility for potassium (K) on an oxidized TiO 2(110) surface. At low coverages, the alkali metal occupies mainly terrace sites of the o-TiO 2(110) system. The results of X-ray photoelectron spectroscopy indicate that K is fully ionized. The electron transferred from K to the titania affects the reactivity of this oxide, favoring the dispersion of Au particles on the terraces of the o-TiO 2(110) surface. When small coverages of K and Au are present on the o-TiO 2(110) system, only a few K–Au pairs are formed and the alkali metalmore » affects Au chemisorption mainly through the oxide interactions. Addition of K to Au/o-TiO 2(110) enhances the reactivity of the system, opening new reaction paths for the adsorption and oxidation of carbon monoxide. CO can undergo disproportionation (2CO → C ads + CO 2,ads) on K/o-TiO 2(110) and Au/K/o-TiO 2(110) surfaces. The Au–KO x interface binds CO much better than plain Au–TiO 2, increasing the surface coverage of CO and facilitating its oxidation. Kinetic tests show that K promotes CO oxidation on Au/TiO 2. Finally, turnover frequencies of 2.1 and 10.8 molecules (Au site) -1 s –1 were calculated for oxidation of CO on Au/o-TiO 2(110) and Au/K/o-TiO 2(110) catalysts, respectively.« less

  3. High Activity of Au/K/TiO 2(110) for CO Oxidation: Alkali-Metal-Enhanced Dispersion of Au and Bonding of CO

    DOE PAGES

    Rodriguez, Jose A.; Grinter, David C.; Ramirez, Pedro J.; ...

    2018-02-14

    In this paper, images from scanning tunneling microscopy show high mobility for potassium (K) on an oxidized TiO 2(110) surface. At low coverages, the alkali metal occupies mainly terrace sites of the o-TiO 2(110) system. The results of X-ray photoelectron spectroscopy indicate that K is fully ionized. The electron transferred from K to the titania affects the reactivity of this oxide, favoring the dispersion of Au particles on the terraces of the o-TiO 2(110) surface. When small coverages of K and Au are present on the o-TiO 2(110) system, only a few K–Au pairs are formed and the alkali metalmore » affects Au chemisorption mainly through the oxide interactions. Addition of K to Au/o-TiO 2(110) enhances the reactivity of the system, opening new reaction paths for the adsorption and oxidation of carbon monoxide. CO can undergo disproportionation (2CO → C ads + CO 2,ads) on K/o-TiO 2(110) and Au/K/o-TiO 2(110) surfaces. The Au–KO x interface binds CO much better than plain Au–TiO 2, increasing the surface coverage of CO and facilitating its oxidation. Kinetic tests show that K promotes CO oxidation on Au/TiO 2. Finally, turnover frequencies of 2.1 and 10.8 molecules (Au site) -1 s –1 were calculated for oxidation of CO on Au/o-TiO 2(110) and Au/K/o-TiO 2(110) catalysts, respectively.« less

  4. Hydrothermal-precipitation preparation of CdS@(Er3+:Y3Al5O12/ZrO2) coated composite and sonocatalytic degradation of caffeine.

    PubMed

    Huang, Yingying; Wang, Guowei; Zhang, Hongbo; Li, Guanshu; Fang, Dawei; Wang, Jun; Song, Youtao

    2017-07-01

    Here, we reported a novel method to dispose caffeine by means of ultrasound irradiation combinated with CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) coated composite as sonocatalyst. The CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) was synthesized via hydrothermal-precipitation method and then characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and UV-vis diffuse reflectance spectra (DRS). After that, the sonocatalytic degradation of caffeine in aqueous solution was conducted adopting CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) and CdS@ZrO 2 coated composites as sonocatalysts. In addition, some influencing factors such as CdS and ZrO 2 molar proportion, caffeine concentration, ultrasonic irradiation time, sonocatalyst dosage and addition of several inorganic oxidants on sonocatalytic degradation of caffeine were investigated by using UV-vis spectra and gas chromatograph. The experimental results showed that the presence of Er 3+ :Y 3 Al 5 O 12 could effectively improve the sonocatalytic degradation activity of CdS@ZrO 2 . To a certain extent some inorganic oxidants can also enhance sonocatalytic degradation of caffeine in the presence of CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ). The best sonocatalytic degradation ratio (94.00%) of caffeine could be obtained when the conditions of 5.00mg/L caffeine, 1.00g/L prepared CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ), 10.00mmol/LK 2 S 2 O 8 , 180min ultrasonic irradiation (40kHz frequency and 50W output power), 100mL total volume and 25-28°C temperature were adopted. It seems that the method of sonocatalytic degradation caused by CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) displayspotentialadvantages in disposing caffeine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nature of ferroelectric to paraelectric phase transition in multiferroic 0.8BiFeO3-0.2Pb(Fe1/2Nb1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Patel, Jay Prakash; Singh, Anar; Pandey, Dhananjai

    2010-05-01

    We present here the results of high temperature powder x-ray diffraction study on 0.8BiFeO3-0.2Pb(Fe1/2Nb1/2)O3, which is isostructural with the well known multiferroic BiFeO3 (BF). It is shown that the room temperature ferroelectric phase of 0.8BF-0.2PFN in the R3c space group transforms to the paraelectric/paraelastic cubic (Pm3¯m) phase directly without any intermediate "β" phase reported in the literature for pure BF. This transition is of first order type as confirmed by the coexistence of R3c and Pm3¯m phases over a 100 K range and discontinuous change in the unit cell volume.

  6. Unraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterability.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Su, Lianghu; Kobayashi, Takuro; Kumar, Gopalakrishnan; Zhou, Tao; Xu, Kaiqin; Li, Yu-You; Zhu, Xuefeng; Zhao, Youcai

    2018-05-01

    Dewatering of waste activated sludge (WAS) is of major interest in its volume reduction, transportation and ultimate disposal. Persulfate-based oxidation process is a newly developed option for enhancing WAS dewaterability through the generation of powerful sulfate radicals (SO 4 - ·). However, the enhancement in WAS dewaterability by persulfate differs with the species of iron catalysts used. In this study, two types of iron catalysts (i.e. Fe 2+ vs. Fe 0 ) were employed to initiate the persulfate (S 2 O 8 2- ), and the catalyzing behaviors and the underlying principles in enhancing WAS dewaterability were investigated and compared. The Fe 2+ exhibited the high effectiveness in catalyzing the decomposition of persulfate to sulfate radicals (SO 4 - ·), inducing the greater improvement in WAS dewatering. The WAS dewaterability (indicated by dry solids content after filtration) increased with the added S 2 O 8 2- /Fe 2+ dosages, with the dry solids content reaching up to 5.1 ± 0.8 wt% at S 2 O 8 2- /Fe 2+ dosages of 1.2/1.5 mmol/g-VS after only 30 s' filtration, roughly 1.8-fold increase than raw WAS (1.8 ± 0.1 wt%). In contrast, the influence of the persulfate oxidation when activated with Fe 0 on WAS dewaterability was statistically insignificant. The WAS dewaterability remained nearly unchanged (i.e. dry solids content of 2.0 ± 0.0 wt%), irrespective of the employed S 2 O 8 2- /Fe 0 dosages. Further analysis demonstrated that the WAS dewaterability negatively corresponded to loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS). The abundant SO 4 - · from S 2 O 8 2- /Fe 2+ system could effectively disrupt the gel-like EPS matrix, break apart the cells and subsequently arouse the release of the water inside EPS and cells, facilitating water-solid separation. In the case of S 2 O 8 2- /Fe 0 , the dissolution of Fe 0 particles was the rate-limiting step, due to the formation of oxide iron layer near Fe 0

  7. Effects of water vapor on protectiveness of Cr2O3 scale at 1073 K

    NASA Astrophysics Data System (ADS)

    Arifin, S. K.; Hamid, M.; Berahim, A. N.; Ani, M. H.

    2018-01-01

    Fe-Cr alloy is commonly being used as boiler tube’s material. It is subjected to prolonged exposure to water vapor oxidation. The ability to withstand high temperature corrosion can normally be attributed to the formation of a dense and slow growing Cr-rich-oxide scale known as chromia, Cr2O3 scale. However, oxidation may limit the alloy’s service lifetime due to decreasing of its protectiveness capability. This paper is to presents an experimental study of thermo gravimetric and Fourier transform infrared analysis of Cr2O3 at 1073 K in dry and humid environment. Samples were used from commercially available Cr2O3 powder. It was cold-pressed into pellet shape of 12 mm diameter and 3 mm thick with hydraulic press for 40 min at 48 MPa. It then sintered at 1173 K in inert gas environment for 8 h. The samples are cooled and placed in 5 mm diameter platinum pan. It is subjected to reaction in dry and wet environment at 1073 K by applying 100%-Ar and Ar-5%H2 gas. Each reaction period is 48 h utilizing Thermo Gravimetric Analyzer, TGA to quantify the mass changes. After the reaction, the samples then characterized with Fourier Transform Infrared Spectroscopy, FT-IR and Field Emission Electron Scanning Microscopy, FE-SEM. The TGA result shows mass decreasing ratio of Cr2O3 in wet (PH2O = 9.5x105Pa) and dry environment is at a factor of 1.2 while parabolic rate at 1.4. FT-IR results confirmed that water vapor significantly broaden the peaks, thus promotes the volatilization of Cr2O3 in wet sample. FESEM shows mostly packed and intact in dry while in wet sample, slightly porous particle arrangement compare to dry. It is concluded that water vapor species decreased Cr2O3 protectiveness capability.

  8. Decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H2O2 and UV/TiO2 oxidation processes.

    PubMed

    Yan, Yingjie; Liao, Qi-Nan; Ji, Feng; Wang, Wei; Yuan, Shoujun; Hu, Zhen-Hu

    2017-02-01

    3,5-Dinitrobenzamide has been widely used as a feed additive to control coccidiosis in poultry, and part of the added 3,5-dinitrobenzamide is excreted into wastewater and surface water. The removal of 3,5-dinitrobenzamide from wastewater and surface water has not been reported in previous studies. Highly reactive hydroxyl radicals from UV/hydrogen peroxide (H 2 O 2 ) and UV/titanium dioxide (TiO 2 ) advanced oxidation processes (AOPs) can decompose organic contaminants efficiently. In this study, the decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H 2 O 2 and UV/TiO 2 oxidation processes was investigated. The decomposition of 3,5-dinitrobenzamide fits well with a fluence-based pseudo-first-order kinetics model. The decomposition in both two oxidation processes was affected by solution pH, and was inhibited under alkaline conditions. Inorganic anions such as NO 3 - , Cl - , SO 4 2- , HCO 3 - , and CO 3 2- inhibited the degradation of 3,5-dinitrobenzamide during the UV/H 2 O 2 and UV/TiO 2 oxidation processes. After complete decomposition in both oxidation processes, approximately 50% of 3,5-dinitrobenzamide was decomposed into organic intermediates, and the rest was mineralized to CO 2 , H 2 O, and other inorganic anions. Ions such as NH 4 + , NO 3 - , and NO 2 - were released into aqueous solution during the degradation. The primary decomposition products of 3,5-dinitrobenzamide were identified using time-of-flight mass spectrometry (LCMS-IT-TOF). Based on these products and ions release, a possible decomposition pathway of 3,5-dinitrobenzamide in both UV/H 2 O 2 and UV/TiO 2 processes was proposed.

  9. N2/O2/H2 Dual-Pump Cars: Validation Experiments

    NASA Technical Reports Server (NTRS)

    OByrne, S.; Danehy, P. M.; Cutler, A. D.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method is used to measure temperature and the relative species densities of N2, O2 and H2 in two experiments. Average values and root-mean-square (RMS) deviations are determined. Mean temperature measurements in a furnace containing air between 300 and 1800 K agreed with thermocouple measurements within 26 K on average, while mean mole fractions agree to within 1.6 % of the expected value. The temperature measurement standard deviation averaged 64 K while the standard deviation of the species mole fractions averaged 7.8% for O2 and 3.8% for N2, based on 200 single-shot measurements. Preliminary measurements have also been performed in a flat-flame burner for fuel-lean and fuel-rich flames. Temperature standard deviations of 77 K were measured, and the ratios of H2 to N2 and O2 to N2 respectively had standard deviations from the mean value of 12.3% and 10% of the measured ratio.

  10. X-Ray diffraction and mu-Raman investigation of the monoclinic-orthorhombic phase transition in Th(1-x)U(x)(C(2)O(4))(2).2H(2)O solid solutions.

    PubMed

    Clavier, Nicolas; Hingant, Nina; Rivenet, Murielle; Obbade, Saïd; Dacheux, Nicolas; Barré, Nicole; Abraham, Francis

    2010-02-15

    A complete Th(1-x)U(x)(C(2)O(4))(2).2H(2)O solid solution was prepared by mild hydrothermal synthesis from a mixture of hydrochloric solutions containing cations and oxalic acid. The crystal structure has been solved from twinned single crystals for x = 0, 0.5, and 1 with monoclinic symmetry, space group C2/c, leading to unit cell parameters of a approximately 10.5 A, b approximately 8.5 A, and c approximately 9.6 A. The crystal structure consists of a two-dimensional arrangement of actinide centers connected through bis-bidentate oxalate ions forming squares. The actinide metal is coordinated by eight oxygen atoms from four oxalate entities and two water oxygen atoms forming a bicapped square antiprism. The connection between the layers is assumed by hydrogen bonds between the water molecules and the oxygen of oxalate of an adjacent layer. Under these conditions, the unit cell contains two independent oxalate ions. From high-temperature mu-Raman and X-ray diffraction studies, the compounds were found to undergo a transition to an orthorhombic form (space group Ccca). The major differences in the structural arrangement concern the symmetry of uranium, which decreases from C2 to D2, leading to a unique oxalate group. Consequently, the nu(s)(C-O) double band observed in the Raman spectra recorded at room temperature turned into a singlet. This transformation was then used to make the phase transition temperature more precise as a function of the uranium content of the sample.

  11. TiO{sub 2} flower-like nanostructures decorated with CdS/PbS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trenczek-Zajac, Anita, E-mail: anita.trenczek-zajac@agh.edu.pl; Kusior, Anna; Lacz, Agnieszka

    Highlights: • TiO{sub 2} flower-like nanostructures were prepared with the use of Ti foil and 30% H{sub 2}O{sub 2}. • QDs of CdS and PbS were deposited using the SILAR method. • The SILAR method makes it possible to control the size of QDs. • Band gap energy of CdS was found to be 2.35 eV. • Sensitization of TiO{sub 2} with CdS or PbS improves the photoelectrochemical properties. - Abstract: Flower-like nanostructures of TiO{sub 2} were prepared by immersing Ti foil in 30% H{sub 2}O{sub 2} at 80 °C for times varying from 15 to 240 min. Upon annealingmore » at 450 °C in an Ar atmosphere, the received amorphous samples crystallized in an anatase structure with rutile as a minority phase. SEM images revealed that partially formed flowers were present at the surface of the prepared samples as early as after 15 min of immersion. The size of the individual flowers increased from 400–800 nm after 15 min of reaction to 2.5–6.0 μm after 240 min. It was also found that surface is very rough and surface development is considerable. After 45 min of immersion, the nanoflowers were sensitized with CdS and PbS quantum dots (QDs-CdS/QDs-PbS) deposited using the SILAR method from water- and methanol-based precursor solutions at different concentrations (0.001–0.1 M). QDs-CdS crystallized in the hawleyite structure, while QDs-PbS in the galena form. SEM analysis showed the tendency of quantum dots to agglomerate at high concentrations of the precursor in water-based solutions. QDs obtained from methanol-based solutions were uniformly distributed. The produced QDs-PbS were smaller than QDs-CdS. Based on the optical reflectance spectra, the band-gap energies of TiO{sub 2} nanostructures with and without QDs were calculated to be 3.32 eV for flower-like TiO{sub 2} nanostructures and 2.35 eV for QDs-CdS. The photoelectrochemical behaviour of nanoflowers was found to improve significantly after the deposition of QDs-CdS.« less

  12. Dicobalt-μ-oxo polyoxometalate compound, [(α(2)-P2W17O61Co)2O](14-): a potent species for water oxidation, C-H bond activation, and oxygen transfer.

    PubMed

    Barats-Damatov, Delina; Shimon, Linda J W; Weiner, Lev; Schreiber, Roy E; Jiménez-Lozano, Pablo; Poblet, Josep M; de Graaf, Coen; Neumann, Ronny

    2014-02-03

    High-valent oxo compounds of transition metals are often implicated as active species in oxygenation of hydrocarbons through carbon-hydrogen bond activation or oxygen transfer and also in water oxidation. Recently, several examples of cobalt-catalyzed water oxidation have been reported, and cobalt(IV) species have been suggested as active intermediates. A reactive species, formally a dicobalt(IV)-μ-oxo polyoxometalate compound [(α2-P2W17O61Co)2O](14-), [(POMCo)2O], has now been isolated and characterized by the oxidation of a monomeric [α2-P2W17O61Co(II)(H2O)](8-), [POMCo(II)H2O], with ozone in water. The crystal structure shows a nearly linear Co-O-Co moiety with a Co-O bond length of ∼1.77 Å. In aqueous solution [(POMCo)2O] was identified by (31)P NMR, Raman, and UV-vis spectroscopy. Reactivity studies showed that [(POMCo)2O]2O] is an active compound for the oxidation of H2O to O2, direct oxygen transfer to water-soluble sulfoxides and phosphines, indirect epoxidation of alkenes via a Mn porphyrin, and the selective oxidation of alcohols by carbon-hydrogen bond activation. The latter appears to occur via a hydrogen atom transfer mechanism. Density functional and CASSCF calculations strongly indicate that the electronic structure of [(POMCo)2O]2O] is best defined as a compound having two cobalt(III) atoms with two oxidized oxygen atoms.

  13. Mesoporous Cu2O-CeO2 composite nanospheres with enhanced catalytic activity for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Pang, Juanjuan; Li, Wenting; Cao, Zhenhao; Xu, Jingjing; Li, Xue; Zhang, Xiaokai

    2018-05-01

    In this paper, mesoporous Cu2O-CeO2 nanospheres were fabricated via a facile, low-temperature solution route in the presence of poly(2-vinylpyridine)-b-poly(ethylene Oxide) (P2VP-b-PEO) block copolymers. The prepared mesoporous Cu2O-CeO2 nanospheres were characterized systematically by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption/desorption. The formation mechanism of mesoporous Cu2O-CeO2 nanospheres was discussed. The results show that the molar ratios of Ce3+/Cu2+ and the reaction time have an important influence on the nanostructure of Cu2O-CeO2 composite spheres. The resultant Cu2O-CeO2 nanospheres exhibit superior catalytic activities in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. The activity factor (K = k/m) for the Cu2O-CeO2 nanospheres prepared with the molar ratio of Ce3+/Cu2+ of 5/1 is 3006.6 s-1 g-1, which is much higher than reported values. This paper demonstrates a highly controllable approach to the production of mesoporous Cu2O-CeO2 nanospheres, which have potential applications in the areas of catalysis, adsorption, sensors and so on.

  14. Studies on the phase diagram of Pb-Fe-O system and standard molar Gibbs energy of formation of 'PbFe5O8.5' and Pb2Fe2O5

    NASA Astrophysics Data System (ADS)

    Sahu, Sulata Kumari; Ganesan, Rajesh; Gnanasekaran, T.

    2012-07-01

    Partial phase diagram of Pb-Fe-O system has been established by phase equilibration studies over a wide temperature range coupled with high temperature solid electrolyte based emf cells. Ternary oxides are found to coexist with liquid lead only at temperatures above 900 K. At temperatures below 900 K, iron oxides coexist with liquid lead. Standard molar Gibbs energy of formation of ternary oxides 'PbFe5O8.5' and Pb2Fe2O5 were determined by measuring equilibrium oxygen partial pressures over relevant phase fields using emf cells and are given by the following expressions: ΔfGmo 'PbFeO'±1.0(kJ mol)=-2208.1+0.6677(T/K) (917⩽T/K⩽1117) ΔfGmo PbFeO±0.8(kJ mol)=-1178.4+0.3724(T/K) (1050⩽T/K⩽1131) .

  15. Water oxidation catalyzed by the tetranuclear Mn complex [Mn(IV)4O5(terpy)4(H2O)2](ClO4)6.

    PubMed

    Gao, Yunlong; Crabtree, Robert H; Brudvig, Gary W

    2012-04-02

    The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (•)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II.

  16. In situ grown Ni9S8 nanorod/O-MoS2 nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst

    NASA Astrophysics Data System (ADS)

    Li, Songzhan; Chen, Tian; Wen, Jian; Gui, Pengbin; Fang, Guojia

    2017-11-01

    Transition metal sulfide nanostructure composites have received significant attention as energy conversion and storage devices. In this work, we report a three-dimension (3D) nanostructure with the Ni9S8 nanorods embedded in oxygen-incorporated MoS2 (O-MoS2) nanosheets for supercapacitors and hydrogen evolution catalysts. The in situ grown Ni9S8/O-MoS2 nanocomposite on carbon cloth can be used as a free binder supercapacitor electrode and hydrogen evolution catalyst. The Ni9S8/O-MoS2 nanocomposite exhibits electrochemical behaviors with a specific capacitance of 907 F g-1 (at 2 A g-1) and good cycle stability after 1200 cycles due to its unique mutual embedding 3D nanostructure. Furthermore, the Ni9S8/O-MoS2 nanocomposite also shows highly electrocatalytic features for hydrogen production with an onset overpotential of ˜150 mV and a low Tafel slope of ˜81 mV dec-1. The oxygen incorporation of MoS2 provides more active sites to participate in the catalytic process for the hydrogen evolution reaction.

  17. Characterization and application of the hetero-junction ZnFe2O4/TiO2 for Cr(VI) reduction under visible light

    NASA Astrophysics Data System (ADS)

    Rekhila, G.; Trari, M.; Bessekhouad, Y.

    2017-06-01

    The spinel ZnFe2O4 prepared by nitrate route is used as dispersed photons collector capable to sensitize TiO2 under visible light and to reduce Cr(VI) into trivalent state. The transport properties, optical and photo-electrochemical characterizations are correlated, to build the energetic diagram of the hetero-system ZnFe2O4/TiO2/CrO4 - solution. A gap of 1.97 eV is obtained for the spinel from the diffuse reflectance. The conduction band of ZnFe2O4 (-1.47 V SCE) favors the electrons injection into TiO2, permitting a physical separation of the charge carriers. The oxidation of oxalic acid by photoholes prevents the corrosion of the spinel. The best configuration ZnFe2O4 (75 %)/TiO2 (25 %) is used to catalyze the downhill reaction (2HCrO4 - + 3C2H4O4 + 1.5O2 + 8H+ → 2Cr3+ + 6CO2 + 11 H2O, Δ G° = -557 kcal mol-1). 60 % of Cr(VI) are reduced after 3 h of visible light illumination and the photoactivity follows a first-order kinetic with a half-life of 70 min. The water reduction competes with the HCrO4 - reduction which is the reason in the regression of the photoactivity; a hydrogen evolution rate of 24 µmol mg-1 h-1 is obtained.

  18. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.

    PubMed

    Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N

    2016-08-11

    Reaction of methyl peroxy radicals with hydroxyl radicals, CH3O2 + OH → CH3O + HO2 (1a) and CH3O2 + OH → CH2OO + H2O (1b) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-526 K temperature range and pressure 1 bar (bath gas He). Hydroxyl radicals were generated in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with H2O. Methyl peroxy radicals were generated in the reaction of methyl radicals, CH3, produced in the photolysis of acetone at 193.3 nm, and subsequent reaction of CH3 with O2. Temporal profiles of OH were monitored via transient absorption of light from a DC discharge H2O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The overall rate constant of the reaction is k1a+1b = (8.4 ± 1.7) × 10(-11)(T/298 K)(-0.81) cm(3) molecule(-1) s(-1) (292-526 K). The branching ratio of channel 1b at 298 K is less than 5%.

  19. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst.

    PubMed

    Le, Quang Anh Tuan; Kim, Hee Gon; Kim, Yong Hwan

    2018-09-01

    The electro-biocatalytic conversion of CO 2 into formic acid using whole-cell and isolated biocatalysts is useful as an alternative route for CO 2 sequestration. In this study, Shewanella oneidensis MR-1 (S. oneidensis MR-1), a facultative aerobic bacterium that has been extensively studied for its utility as biofuel cells as well as for the detoxification of heavy metal oxides (i.e., MnO 2 , uranium), has been applied for the first time as a whole-cell biocatalyst for formic acid synthesis from gaseous CO 2 and electrons supplied from an electrode. S. oneidensis MR-1, when aerobically grown in Luria-Bertani (LB) medium, exhibited its ability as a whole-cell biocatalyst for the conversion of CO 2 into formic acid with moderate productivity of 0.59 mM h -1 for 24 h. In addition, an optimization of growth conditions of S. oneidensis MR-1 resulted in a remarkable increase in productivity. The CO 2 reduction reaction catalyzed by S. oneidensis MR-1, when anaerobically grown in newly optimized LB medium supplemented with fumarate and nitrate, exhibited 3.2-fold higher productivity (1.9 mM h -1 for 72 h) compared to that grown aerobically in only LB medium. Furthermore, the average conversion rate of formic acid synthesis catalyzed by S. oneidensis MR-1 when grown in the optimal medium over a period of 72 h was 3.8 mM h -1  g -1 wet-cell, which is 9.6-fold higher than that catalyzed by Methylobacterium extorquens AM1 whole-cells in our previous study. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Low operation voltage and high thermal stability of a WSi2 nanocrystal memory device using an Al2O3/HfO2/Al2O3 tunnel layer

    NASA Astrophysics Data System (ADS)

    Uk Lee, Dong; Jun Lee, Hyo; Kyu Kim, Eun; You, Hee-Wook; Cho, Won-Ju

    2012-02-01

    A WSi2 nanocrystal nonvolatile memory device was fabricated with an Al2O3/HfO2/Al2O3 (AHA) tunnel layer and its electrical characteristics were evaluated at 25, 50, 70, 100, and 125 °C. The program/erase (P/E) speed at 125 °C was approximately 500 μs under threshold voltage shifts of 1 V during voltage sweeping of 8 V/-8 V. When the applied pulse voltage was ±9 V for 1 s for the P/E conditions, the memory window at 125 °C was approximately 1.25 V after 105 s. The activation energies for the charge losses of 5%, 10%, 15%, 20%, 25%, 30%, and 35% were approximately 0.05, 0.11, 0.17, 0.21, 0.23, 0.23, and 0.23 eV, respectively. The charge loss mechanisms were direct tunneling and Pool-Frenkel emission between the WSi2 nanocrystals and the AHA barrier engineered tunneling layer. The WSi2 nanocrystal memory device with multi-stacked high-K tunnel layers showed strong potential for applications in nonvolatile memory devices.

  1. The system K2Mg2(SO4)3 (langbeinite)-K2Ca2(SO4)3 (calcium-langbeinite)

    USGS Publications Warehouse

    Morey, G.W.; Rowe, J.J.; Fournier, R.O.

    1964-01-01

    The join between the compositions K2Mg2(SO4)3 and K2Ca2(SO4)3 was studied by means of high-temperature equilibrium quenching techniques and by means of a heating stage mounted on an X-ray diffractometer. Complete solid solution exists in the system, but at 25??C members of the solid solution series are isometric only in the composition range 0-73??5 wt. per cent K2Ca2(SO4)3. At compositions richer in K2Ca2(SO4)3 than 73??5 wt. per cent, members of the series are optically biaxial. At higher temperatures members of the solid solution series are isometric at successively more calcium-rich compositions and pure K2Ca2(SO4)3 is isometric above about 200 ?? 2??C. The system is not binary, as mixtures richer in K2Ca2(SO4)3 than 42 wt. per cent decompose with the formation of liquid and CaSO4. ?? 1964.

  2. (Zr,Ti)O2 interface structure in ZrO2-TiO2 nanolaminates with ultrathin periodicity

    NASA Astrophysics Data System (ADS)

    Aita, C. R.; DeLoach, J. D.; Yakovlev, V. V.

    2002-07-01

    A mixed cation interfacial structure in ZrO2-TiO2 nanolaminate films with ultrathin bilayer periodicity grown by sputter deposition at 297 K was identified by x-ray diffraction and nonresonant Raman spectroscopy. This structure consists of an amorphous phase at a ZrO2-on-TiO2 bilayer interface, followed by an extensive crystalline monoclinic (Zr,Ti)O2 solid solution predicted by Vegard's law. Monoclinic (Zr,Ti)O2 has previously been reported only once, in bulk powder of a single composition (ZrTiO4) at high pressure. Its stabilization in the nanolaminates is explained by the Gibbs-Thomson effect. This complex interfacial structure is shown to be a means of accommodating chemical mixing in the absence of a driving force for heteroepitaxy.

  3. On the development of two characteristically different crystal morphology in SiO(2)-MgO-Al (2)O (3)-K (2)O-B (2)O (3)-F glass-ceramic system.

    PubMed

    Roy, Shibayan; Basu, Bikramjit

    2009-01-01

    The present work demonstrates how crystals with two different characteristic morphologies can be formed in SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass-ceramic system by adopting two sets of heat treatment experiments. In our study, single stage heat treatment experiments were performed at 1,000 degrees C for varying holding time of 8-24 h with 4 h time interval and as a function of temperature in the range of 1,000-1,120 degrees C with 40 degrees C temperature interval. The constant heating rate of 10 degrees C/min was employed for both sets of experiments. The microstructural changes were investigated using Fourier transformed infrared spectroscopy (FT-IR), SEM-EDS and XRD. For temperature variation batches, the microstructure is characterized by interlocked, randomly oriented mica plates ('house-of-cards' morphology). An important and new observation of complex crystal morphology is made in the samples heat treated at 1,000 degrees C for varying holding times. Such morphology appears to be the results of composite spherulitic-dendritic like growth of mica rods radiating from a central nucleus. The possible mechanism for such characteristic crystal growth morphology is discussed with reference to a nucleation-growth kinetics based model. The activation energy for crystal nucleation and Avrami index are computed to be 388 kJ/mol and 1.3 respectively, assuming Johnson-Mehl-Avrami model of crystallization. Another important result is that a maximum of around 70% of spherulitic-dendritic like crystal morphology can be obtained after heat treatment at 1,000 degrees C for 24 h, while a lower amount (approximately 58%) of interlocked plate like mica crystals is formed after heat treatment at 1,040 degrees C for 4 h.

  4. RNA adducts with Na 2SeO 4 and Na 2SeO 3 - Stability and structural features

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Manouchehri, Firouzeh; Montazeri, Maryam

    2011-12-01

    Selenium compounds are widely available in dietary supplements and have been extensively studied for their antioxidant and anticancer properties. Low blood Se levels were found to be associated with an increased incidence and mortality from various types of cancers. Although many in vivo and clinical trials have been conducted using these compounds, their biochemical and chemical mechanisms of efficacy are the focus of much current research. This study was designed to examine the interaction of Na 2SeO 4 and Na 2SeO 3 with RNA in aqueous solution at physiological conditions, using a constant RNA concentration (6.25 mM) and various sodium selenate and sodium selenite/polynucleotide (phosphate) ratios of 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 and 1/1. Fourier transform infrared, UV-Visible spectroscopic methods were used to determine the drug binding modes, the binding constants, and the stability of Na 2SeO 4 and Na 2SeO 3-RNA complexes in aqueous solution. Spectroscopic evidence showed that Na 2SeO 4 and Na 2SeO 3 bind to the major and minor grooves of RNA ( via G, A and U bases) with some degree of the Se-phosphate (PO 2) interaction for both compounds with overall binding constants of K(Na 2SeO 4-RNA) = 8.34 × 10 3 and K(Na 2SeO 3-RNA) = 4.57 × 10 3 M -1. The order of selenium salts-biopolymer stability was Na 2SeO 4-RNA > Na 2SeO 3-RNA. RNA aggregations occurred at higher selenium concentrations. No biopolymer conformational changes were observed upon Na 2SeO 4 and Na 2SeO 3 interactions, while RNA remains in the A-family structure.

  5. The enthalpies of interactions of Ca2+(aq) and C2O{4/2-} (aq) ions in complexon solutions: Competition between complexation and precipitation

    NASA Astrophysics Data System (ADS)

    Kustov, A. V.; Smirnova, N. L.; Berezin, B. D.; Trostin, V. N.

    2010-04-01

    The thermal effects of mixing of aqueous calcium chloride with sodium citrate and ethylenedi-aminetetraacetate in the absence and presence of sodium oxalate have been measured at 25°C. The thermal effects of dilution of aqueous calcium chloride solutions were determined. The thermal effects of calcium oxalate precipitation and formation of calcium complexes with citrate and ethylenediaminetetraacetate ions were calculated. The 1% solution of sodium citrate inhibited the formation of CaC2O4 (s); in a 1% solution of sodium ethylenediaminetetraacetate with [Ca2+][C2O{4/2-}] > 10-5, the endothermal formation of the [CaEdta]2- complex quickly changed to exothermal precipitation. The 3 and 5% solutions of complexons showed a pronounced inhibiting effect on the formation of urinary stones even when the concentration of calcium and oxalate ions in solution exceeded the product of solubility of CaC2O4 by four and more orders of magnitude.

  6. Kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Drummond, Charles H., III

    1992-01-01

    The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds.

  7. Kinetics of hexacelsian-to-celsian phase transformation in SrAl2Si2O8

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Drummond, Charles H., III

    1993-01-01

    The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds.

  8. Electrical characterization of ALD HfO2 high-k dielectrics on ( 2 ¯ 01) β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Shahin, David I.; Tadjer, Marko J.; Wheeler, Virginia D.; Koehler, Andrew D.; Anderson, Travis J.; Eddy, Charles R.; Christou, Aris

    2018-01-01

    The electrical quality of HfO2 dielectrics grown by thermal atomic layer deposition at 175 °C on n-type ( 2 ¯ 01) β-Ga2O3 has been studied through capacitance- and current-voltage measurements on metal-oxide-semiconductor capacitors. These capacitors exhibited excellent electrical characteristics, including dual-sweep capacitance-voltage curves with low hysteresis and stretch-out and a frequency-stable dielectric constant of k˜14 when measured between 10 kHz and 1 MHz. The C-V curves exhibited a uniform and repeatable +1.05 V shift relative to the ideal case when swept from 3.5 to -5 V, yielding positively measured flatband (+2.15 V) and threshold (+1.05 V) voltages that may be useful for normally off n-channel Ga2O3 devices. Using the Terman method, an average interface trap density of 1.3 × 1011 cm-2.eV-1 was obtained between 0.2 and 0.6 eV below the conduction band edge. The forward bias current-voltage characteristic was successfully fitted to the Fowler-Nordheim tunneling model at a field strength of 5 MV/cm, allowing an extraction of a 1.3 eV conduction band offset between HfO2 and Ga2O3, which matches the value previously determined from x-ray photoelectron spectroscopy. However, a temperature dependence in the leakage current was observed. These results suggest that HfO2 is an appealing dielectric for Ga2O3 device applications.

  9. Structure and temperature-dependent phase transitions of lead-free Bi 1/2Na 1/2TiO 3-Bi 1/2K 1/2TiO 3-K 0.5Na 0.5NbO 3 piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Eva-Maria; Schmitt, Ljubomira Ana; Hinterstein, Manuel

    2014-05-28

    Structure and phase transitions of (1-y)((1-x)Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3)-yK 0.5Na 0.5NbO 3 (x; y) piezoceramics (0.1 ≤ x ≤ 0.4; 0 ≤ y ≤ 0.05) were investigated by transmission electron microscopy, neutron diffraction, temperature-dependent x-ray diffraction, and Raman spectroscopy. The local crystallographic structure at room temperature (RT) does not change by adding K 0.5Na 0.5NbO 3 to Bi 1/2Na 1/2TiO 3-xBi 1/2K 1/2TiO 3 for x = 0.2 and 0.4. The average crystal structure and microstructure on the other hand develop from mainly long-range polar order with ferroelectric domains to short-range order with polar nanoregions displaying amore » more pronounced relaxor character. The (0.1; 0) and (0.1; 0.02) compositions exhibit monoclinic Cc space group symmetry, which transform into Cc + P4bm at 185 and 130 °C, respectively. This high temperature phase is stable at RT for the morphotropic phase boundary compositions of (0.1; 0.05) and all compositions with x = 0.2. For the compositions of (0.1; 0) and (0.1; 0.02), local structural changes on heating are evidenced by Raman; for all other compositions, changes in the long-range average crystal structure were observed.« less

  10. Thermodynamic Study of Solid-Liquid Equilibrium in NaCl-NaBr-H2O System at 288.15 K

    NASA Astrophysics Data System (ADS)

    Li, Dan; Meng, Ling-zong; Deng, Tian-long; Guo, Ya-fei; Fu, Qing-Tao

    2018-06-01

    The solubility data, composition of the solid solution and refractive indices of the NaCl-NaBr-H2O system at 288.15 K were studied with the isothermal equilibrium dissolution method. The solubility diagram and refractive index diagram of this system were plotted at 288.15 K. The solubility diagram consists of two crystallization zones for solid solution Na(Cl,Br) · 2H2O and Na(Cl,Br), one invariant points cosaturated with two solid solution and two univariant solubility isothermal curves. On the basis of Pitzer and Harvie-Weare (HW) chemical models, the composition equations and solubility equilibrium constant equations of the solid solutions at 288.15 K were acquired using the solubility data, the composition of solid solutions, and binary Pitzer parameters. The solubilities calculated using the new method combining the equations are in good agreement with the experimental data.

  11. STM/STS study on electronic superstructures in the superconducting state of high-Tc cuprate Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Mizuta, S.; Kurosawa, T.; Takeyama, K.; Momono, N.; Ishii, Y.; Yoshida, H.; Oda, M.; Ido, M.

    2018-03-01

    We report STM/STS measurements at 8 K in underdoped Bi2Sr2CaCu2O8+δ crystals (T c = 76 K and hole-doping level p ∼ 0.12) whose energy spectra around the Fermi level are characterized by a two-gap structure consisting of spatially inhomogeneous pseudogap (PG) and comparatively homogeneous superconducting gap (SCG). Two electronic superstructures, checkerboard modulation (CBM) and Cu-O-Cu bond-centered modulation (BCM), are observed with mapping spectral weights at low energies within the SCG and the ratio of spectral weights at ±ΔPG (PG energy), respectively. On the basis of the present findings, we suggest that the lower-energy scale CBM is an intrinsic property of Cu-O planes and can coexist with the BCM whose characteristic energy is ∼ΔPG in identical regions in real space.

  12. Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung

    2015-07-01

    One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.

  13. Development of Xe and Kr empirical potentials for CeO 2, ThO 2, UO 2 and PuO 2, combining DFT with high temperature MD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.

    In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less

  14. Development of Xe and Kr empirical potentials for CeO 2, ThO 2, UO 2 and PuO 2, combining DFT with high temperature MD

    DOE PAGES

    Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.; ...

    2016-08-23

    In this study, the development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matchingmore » to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less

  15. Optical properties of nanocrystalline potassium lithium niobate in the glass system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5).

    PubMed

    Ahamad, M Niyaz; Varma, K B R

    2009-08-01

    Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5) (2 < or = x < or = 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T(g)). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.

  16. Decay channels of Al L sub 2,3 excitons and the absence of O K excitons in. alpha. -Al sub 2 O sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, W.L.; Jia, J.; Dong, Q.

    1991-12-15

    The Al {ital L}{sub 2,3} and O {ital K} thresholds for single-crystal {alpha}-Al{sub 2}O{sub 3} have been studied by photoemission. Energy-distribution curves, constant-initial-state (CIS), and constant-final-state (CFS) spectra are reported and compared to the absorption spectrum reported previously. An exciton appears as a doublet at threshold in the Al {ital L}{sub 2,3} CFS, CIS, and absorption spectra. The details of the Al {ital L}{sub 2,3} CFS spectrum and absorption spectrum are similar, while the exciton is the only feature present in the CIS spectrum. Comparisons of the various Al {ital L}{sub 2,3} spectra allow the probabilities of different exciton decaymore » channels to be determined. The probability for nonradiative direct recombination of the exciton is found to be (8{plus minus}1)% and the probability for Auger decay of the exciton is found to be (72{plus minus}20)%. Comparisons of the O {ital K} CIS and CFS spectra suggest that no O {ital K} exciton is formed.« less

  17. Fabrications of some kinds of 2-D frameworks consisting of nanosized polyoxomolybdate anion [Mo 36O 112(H 2O) 16] 8- via condensation processes

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Iriki, Yuichi; Kawamura, Kenjiro; Ikuki, Takeshi; Hayashi, Masahiko

    2007-12-01

    We succeeded to prepare novel [Mo 36O 112(H 2O) 16] 8- ({Mo 36}) compounds by using 1,3-diamino-2-propanol ( βOHC 3-DA) and 1,3,5-tris(aminomethyl)benzene (MES-TA)+1,3-diaminopropane (C 3-DA) as linkers, and determined their crystal structures. We have confirmed they have unique two-dimensional (2-D) molybdenum oxide frameworks, which are formed by condensation of {Mo 36}s. Side-staggered arrays of {Mo 36}s, connected in lying position by eight bridges per a {Mo 36}, are formed in the compound with βOHC 3-DA, while herringbone arrays of {Mo 36}s, connected in standing position by four bridges per a {Mo 36}, are built in the compound with MES-TA+C 3-DA. The latter compound exhibited non-stoichiometric property, and its composition and cell parameters varied depending on the relative concentration of MES-TA in the mother solution.

  18. Ultrathin ZnO interfacial passivation layer for atomic layer deposited ZrO2 dielectric on the p-In0.2Ga0.8As substrate

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Lü, Hongliang; Yang, Tong; Zhang, Yuming; Zhang, Yimen; Liu, Dong; Ma, Zhenqiang; Yu, Weijian; Guo, Lixin

    2018-06-01

    Interfacial and electrical properties were investigated on metal-oxidesemiconductor capacitors (MOSCAPs) fabricated with bilayer ZnO/ZrO2 films by atomic layer deposition (ALD) on p-In0.2Ga0.8As substrates. The ZnO passivated In0.2Ga0.8As MOSCAPs have exhibited significantly improved capacitance-voltage (C-V) characteristics with the suppressed "stretched out" effect, increased accumulation capacitance and reduced accumulation frequency dispersion as well as the lower gate leakage current. In addition, the interface trap density (Dit) estimated by the Terman method was decreased dramatically for ZnO passivated p-In0.2Ga0.8As. The inherent mechanism is attributed to the fact that an ultrathin ZnO IPL employed by ALD prior to ZrO2 dielectric deposition can effectively suppress the formation of defect-related low-k oxides and As-As dimers at the interface, thus effectively improving the interface quality by largely removing the border traps aligned near the valence band edge of the p-In0.2Ga0.8As substrate.

  19. First-principles molecular dynamics simulations of anorthite (CaAl2Si2O8) glass at high pressure

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipta B.; Karki, Bijaya B.

    2018-06-01

    We report first-principles molecular dynamics study of the equation of state, structural, and elastic properties of CaAl2Si2O8 glass at 300 K as a function of pressure up to 155 GPa. Our results for the ambient pressure glass show that: (1) as with other silicates, Si atoms remain mostly (> 95%) under tetrahedral oxygen surroundings; (2) unlike anorthite crystal, presence of high-coordination (> 4) Al atoms with 30% abundance; (3) and significant presence of both non-bridging (8%) and triply (17%) coordinated oxygen. To achieve the glass configurations at various pressures, we use two different simulation schedules: cold and hot compression. Cold compression refers to sequential compression at 300 K. Compression at 3000 K and subsequent isochoric quenching to 300 K is considered as hot compression. At the initial stages of compression (0-10 GPa), smooth increase in bond distance and coordination occurs in the hot-compressed glass. Whereas in cold compression, Si (also Al to some extent) displays mainly topological changes (without significantly affecting the average bond distance or coordination) in this pressure interval. Further increase in pressure results in gradual increases in mean coordination, with Si-O (Al-O) coordination eventually reaching and remaining 6 (6.5) at the highest compression. Similarly, the ambient pressure Ca-O coordination of 5.9 increases to 9.5 at 155 GPa. The continuous pressure-induced increase in the proportion of oxygen triclusters along with the appearance and increasing abundance of tetrahedral oxygens results in mean O-T (T = Si and Al) coordination of > 3 from a value of 2.1 at ambient pressure. Due to the absence of kinetic barrier, the hot-compressed glasses consistently produce greater densities and higher coordination numbers than the cold compression cases. Decompressed glasses show irreversible compaction along with retention of high-coordination species when decompressed from pressure ≥ 10 GPa. The different density

  20. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  1. K 2x Sn 4-x S 8-x (x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs + , Sr 2+ and UO 2 2+ ions

    DOE PAGES

    Sarma, Debajit; Malliakas, Christos D.; Subrahmanyam, K. S.; ...

    2015-10-27

    The fission of uranium produces radionuclides, 137Cs and 90Sr, which are major constituents of spent nuclear fuel. The half-life of 137Cs and 90Sr is nearly 30 years and thus that makes them harmful to human life and the environment. The selective removal of these radionuclides in the presence of high salt concentrations from industrial nuclear waste is necessary for safe storage. We report the synthesis and crystal structure of K 2xSn 4-xS 8-x (x = 0.65–1, KTS-3) a material which exhibits excellent Cs +, Sr 2+ and UO 2 2+ ion exchange properties in varying conditions. Furthermore, the compound adoptsmore » a layered structure which consists of exchangeable potassium ions sandwiched between infinite layers of octahedral and tetrahedral tin centers. K 2xSn 4-xS 8-x (x = 0.65–1, KTS-3) crystallizes in the monoclinic space group P2 1/c with cell parameters a = 13.092(3) Å, b = 16.882(2) Å, c = 7.375(1) Å and β = 98.10(1)°. Refinement of the single crystal diffraction data revealed the presence of Sn vacancies in the tetrahedra that are long range ordered. The interlayer potassium ions of KTS-3 can be exchanged for Cs +, Sr 2+ and UO 2 2+. KTS-3 exhibits rapid and efficient ion exchange behavior in a broad pH range. The distribution coefficients (K d) for KTS-3 are high for Cs + (5.5 × 10 4), Sr 2+ (3.9 × 10 5) and UO 2 2+ (2.7 × 10 4) at neutral pH (7.4, 6.9, 5.7 ppm Cs +, Sr 2+ and UO 2 2+, respectively; V/m ~ 1000 mL g -1). KTS-3 exhibits impressive Cs +, Sr 2+ and UO 2 2+ ion exchange properties in high salt concentration and over a broad pH range, which coupled with the low cost, environmentally friendly nature and facile synthesis underscores its potential in treating nuclear waste.« less

  2. Atmospheric test of the J(BrONO2)/kBrO+NO2 ratio: implications for total stratospheric Bry and bromine-mediated ozone loss

    NASA Astrophysics Data System (ADS)

    Kreycy, S.; Camy-Peyret, C.; Chipperfield, M. P.; Dorf, M.; Feng, W.; Hossaini, R.; Kritten, L.; Werner, B.; Pfeilsticker, K.

    2013-07-01

    We report on time-dependent O3, NO2 and BrO profiles measured by limb observations of scattered skylight in the stratosphere over Kiruna (67.9° N, 22.1° E) on 7 and 8 September 2009 during the autumn circulation turn-over. The observations are complemented by simultaneous direct solar occultation measurements around sunset and sunrise performed aboard the same stratospheric balloon payload. Supporting radiative transfer and photochemical modelling indicate that the measurements can be used to constrain the ratio J(BrONO2)/kBrO+NO2, for which at T = 220 ± 5 K an overall 1.7 (+0.4 -0.2) larger ratio is found than recommended by the most recent Jet Propulsion Laboratory (JPL) compilation (Sander et al., 2011). Sensitivity studies reveal the major reasons are likely to be (1) a larger BrONO2 absorption cross-section σBrONO2, primarily for wavelengths larger than 300 nm, and (2) a smaller kBrO+NO2 at 220 K than given by Sander et al. (2011). Other factors, e.g. the actinic flux and quantum yield for the dissociation of BrONO2, can be ruled out. The observations also have consequences for total inorganic stratospheric bromine (Bry) estimated from stratospheric BrO measurements at high NOx loadings, since the ratio J(BrONO2)/kBrO+NO2 largely determines the stratospheric BrO/Bry ratio during daylight. Using the revised J(BrONO2)/kBrO+NO2 ratio, total stratospheric Bry is likely to be 1.4 ppt smaller than previously estimated from BrO profile measurements at high NOx loadings. This would bring estimates of Bry inferred from organic source gas measurements (e.g. CH3Br, the halons, CH2Br2, CHBr3, etc.) into closer agreement with estimates based on BrO observations (inorganic method). The consequences for stratospheric ozone due to the revised J(BrONO2)/kBrO+NO2 ratio are small (maximum -0.8%), since at high NOx (for which most Bry assessments are made) the enhanced ozone loss by overestimating Bry is compensated for by the suppressed ozone loss due to the underestimation

  3. Nature of the high-binding-energy dip in the low-temperature photoemission spectra of Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Dessau, D. S.; Shen, Z.-X.; Wells, B. O.; King, D. M.; Spicer, W. E.; Arko, A. J.; Lombardo, L. W.; Mitzi, D. B.; Kapitulnik, A.

    1992-03-01

    At the transition to superconductivity, an anomalous high-binding-energy (~=-90 meV) dip appears in the low-temperature photoemission spectra taken along the Γ-M¯ high-symmetry direction of Bi2Sr2CaCu2O8+δ. This paper details experiments which further characterize the energy and k-space dependence of this dip structure. The dip occurs over a wide portion of the Γ-M¯ zone diagonal (110), yet shows minimal energy dispersion. In the spectra taken along the Γ-X zone edge (100), the dip is very weak or not present. We show that these results imply that the dip is not an artifact dependent on the experiment or special features of the band structure and therefore is an intrinsic feature of the superconducting state of Bi2Sr2CaCu2O8+δ. The behavior of the normal-state bands along Γ-M¯ in relation to the local-density-approximation prediction of a Bi-O-based electron ``pocket'' is also discussed, with our data explained most naturally if the Bi-O band remains above the Fermi level for all k.

  4. Rates of ligand exchange between >FeIII-OH2 functional groups on a nanometer-sized aqueous cluster and bulk solution.

    PubMed

    Balogh, Edina; Todea, Ana Maria; Müller, Achim; Casey, William H

    2007-08-20

    Variable-temperature 17O NMR experiments were conducted on the nanometer-sized Keplerate Mo72Fe30 cluster, with the stoichiometry [Mo72Fe30O252(CH3COO)12[Mo2O7(H2O)]2[H2Mo2O8(H2O)](H2O)91]. approximately 150H2O. This molecule contains on its surface 30 Fe(H2O) groups forming a well-defined icosidodecahedron, and we estimated the rates of exchange of the isolated >FeIII-OH2 waters with bulk aqueous solution. Both longitudinal and transverse 17O-relaxation times were measured, as well as chemical shifts, and these parameters were then fit to the Swift-Connick equations in order to obtain the rate parameters. Correspondingly, we estimate: k(ex)298 = 6.7(+/-0.8) x 106 s-1, which is about a factor of approximately 4 x 104 times larger than the corresponding rate coefficient for the Fe(OH2)63+ ion of k(ex)298 = 1.6 x 102 s-1 (Grant and Jordan, 1981; Inorg. Chem. 20, 55-60) and DeltaH and DeltaS are 26.3 +/- 0.6 kJ mol-1 and -26 +/- 0.9 J mol-1 K-1, respectively. High-pressure 17O NMR experiments were also conducted, but the cluster decomposed slightly under pressure, which precluded confident quantitative estimation of the DeltaV. However, the increase in the reduced transverse-relaxation time with pressure suggests a dissociative character, such as a D or Id mechanism. The enhanced reactivity of waters on the Mo72Fe30 cluster is associated with an increase in the FeIII-OH2 bond length in the solid state of approximately 0.1 A relative to the Fe(OH2)63+ ion, suggesting that a correlation exists between the FeIII-OH2 bond length and k(ex)298. Although there are only few high-spin Fe(III) complexes where both exchange rates and structural data are available, these few seem to support a general correlation.

  5. Pair momentum distribution in Bi2Sr2CaCu2O(8+delta) measured by positron annihilation - Existence and nature of the Fermi surface

    NASA Astrophysics Data System (ADS)

    Chan, L. P.; Lynn, K. G.; Harshman, D. R.; Massidda, S.; Mitzi, D. B.

    1991-09-01

    The first measurement is reported of the position-electron momentum density in superconducting single-crystal Bi2Sr2CaCu2O(8+delta)(Tc roughly 90 K). The observed anisotropy exhibits a twofold (rather than fourfold) symmetry, which is attributed to the superlattice modulation along the b axis of the BiO2 layers. Subtraction of the superlattice contribution also reveals a pair momentum distribution consistent with the CuO2 and BiO2 Fermi surfaces, and in reasonable agreement with the theoretical pair momentum density derived from band theory.

  6. Microwave Spectrum of the H_2S Dimer: Observation of K_{a}=1 Lines

    NASA Astrophysics Data System (ADS)

    Das, Arijit; Mandal, Pankaj; Lovas, Frank J.; Medcraft, Chris; Arunan, Elangannan

    2017-06-01

    Large amplitude tunneling motions in (H_2S)_{2} complicate the analysis of its microwave spectrum. The previous rotational spectrum of (H_2S)_{2} was observed using the Balle-Flygare pulsed nozzle FT microwave spectrometers at NIST and IISc. For most isotopomers of (H_2S)_{2} a two state pattern of a-type K_{a}=0 transitions had been observed and were interpreted to arise from E_{1}^{+/-} and E_{2}^{+/-} states of the six tunneling states expected for (H_2S)_{2}. K_{a}=0 lines gave us only the distance between the acceptor and donor S atoms. The (B+C)/2 for E_{1} and E_{2} states were found to be 1749.3091(8) MHz and 1748.1090(8) MHz respectively. In this work, we have observed the K_{a}=1 microwave transitions which enable us to determine finer structural details of the dimer. The observation of the K_{a}=1 lines indicate that (H_2S)_{2} is not spherical in nature, their interactions do have some anisotropy. Preliminary assignment of K_{a}=1 lines for the E_{1} state results in B=1752.859 MHz and C=1745.780 MHz. We also report a new progression of lines which probably belongs to the parent isotopomers. F. J. Lovas, P. K. Mandal and E. Arunan, unpublished work P. K. Mandal Ph.D. Dissertation, Indian Institute of Science, (2005) F. J. Lovas, R. D. Suenram, and L. H. Coudert. 43rd Int.Symp. on Molecular Spectroscopy. (1988)

  7. Effect of (Li,Ce) doping in Aurivillius phase material Na0.25K0.25Bi2.5Nb2O9

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Wang, Chun-Ming

    2007-01-01

    The effect of (Li,Ce) substitution for A site on the properties of Na0.25K0.25Bi2.5Nb2O9-based ceramics was investigated. The piezoelectric activity of Na0.25K0.25Bi2.5Nb2O9-based ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature (TC) gradually increases from 668to684°C with increasing the (Li,Ce) modification. The piezoelectric coefficient d33 of the [(Na0.5K0.5)Bi]0.44(LiCe)0.03[]0.03Bi2Nb2O9 ceramic was found to be 28pC/N, the highest value among the Na0.25K0.25Bi2.5Nb2O9-based ceramics and also almost 50% higher than the reported d33 values of other bismuth layer-structured ferroelectric systems (˜5-19pC/N). The planar coupling factors kp and kt were found to be 8.0% and 23.0%, together with the high TC (˜670°C) and stable piezoelectric properties, demonstrating that the (Li,Ce) modified Na0.25K0.25Bi2.5Nb2O9-based material a promising candidate for high temperature applications.

  8. Processes of Molecular Relaxation in Binary Crystalline Systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4

    NASA Astrophysics Data System (ADS)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2018-03-01

    The processes of molecular relaxation in binary crystalline systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4 are studied via differential thermal analysis and Raman spectroscopy. It is found that the relaxation time of the vibrations ν1( A) of anions NO- 3 and CO2- 3 in systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4 is less than that in KNO3 and K2CO3, respectively. It is shown that the increased rate of relaxation is explained by an additional relaxation mechanism presented in the system. This mechanism is associated with the excitation of vibrations of anions ClO- 4, NO- 2, and SO2- 4 and the lattice phonons that emerge. It is found that this relaxation mechanism requires correspondence of the frequency difference of these vibrations to the region of sufficiently high density of states of the phonon spectrum.

  9. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Sriram; Xia, Zhanbo; Joishi, Chandan; Zhang, Yuewei; McGlone, Joe; Johnson, Jared; Brenner, Mark; Arehart, Aaron R.; Hwang, Jinwoo; Lodha, Saurabh; Rajan, Siddharth

    2017-07-01

    Modulation-doped heterostructures are a key enabler for realizing high mobility and better scaling properties for high performance transistors. We report the realization of a modulation-doped two-dimensional electron gas (2DEG) at the β-(Al0.2Ga0.8)2O3/Ga2O3 heterojunction by silicon delta doping. The formation of a 2DEG was confirmed using capacitance voltage measurements. A modulation-doped 2DEG channel was used to realize a modulation-doped field-effect transistor. The demonstration of modulation doping in the β-(Al0.2Ga0.8)2O3/Ga2O3 material system could enable heterojunction devices for high performance electronics.

  10. Composite fuel electrode La(0.2)Sr(0.8)TiO(3-δ)-Ce(0.8)Sm(0.2)O(2-δ) for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser.

    PubMed

    Li, Yuanxin; Zhou, Jianer; Dong, Dehua; Wang, Yan; Jiang, J Z; Xiang, Hongfa; Xie, Kui

    2012-11-28

    Composite Ni-YSZ fuel electrodes are able to operate only under strongly reducing conditions for the electrolysis of CO(2) in oxygen-ion conducting solid oxide electrolysers. In an atmosphere without a flow of reducing gas (i.e., carbon monoxide), a composite fuel electrode based on redox-reversible La(0.2)Sr(0.8)TiO(3+δ) (LSTO) provides a promising alternative. The Ti(3+) was approximately 0.3% in the oxidized LSTO (La(0.2)Sr(0.8)TiO(3.1)), whereas the Ti(3+) reached approximately 8.0% in the reduced sample (La(0.2)Sr(0.8)TiO(3.06)). The strong adsorption of atmospheric oxygen in the form of superoxide ions led to the absence of Ti(3+) either on the surface of oxidized LSTO or the reduced sample. Reduced LSTO showed typical metallic behaviour from 50 to 700 °C in wet H(2); and the electrical conductivity of LSTO reached approximately 30 S cm(-1) at 700 °C. The dependence of [Ti(3+)] concentration in LSTO on P(O(2)) was correlated to the applied potentials when the electrolysis of CO(2) was performed with the LSTO composite electrode. The electrochemical reduction of La(0.2)Sr(0.8)TiO(3+δ) was the main process but was still present up to 2 V at 700 °C during the electrolysis of CO(2); however, the electrolysis of CO(2) at the fuel electrode became dominant at high applied voltages. The current efficiency was approximately 36% for the electrolysis of CO(2) at 700 °C and a 2 V applied potential.

  11. Synthesis of "trans"-4,5-Bis-dibenzylaminocyclopent-2-Enone from Furfural Catalyzed by ErCl[subscript 3]·6H[subscript 2]O

    ERIC Educational Resources Information Center

    Estevão, Mónica S.; Martins, Ricardo J. V.; Alfonso, Carlos A. M.

    2017-01-01

    An experiment exploring the chemistry of the carbonyl group for the one-step synthesis of "trans"-4,5- dibenzylaminocyclopent-2-enone is described. The reaction of furfural and dibenzylamine in the environmentally friendly solvent ethanol and catalyzed by the Lewis acid ErCl[subscript 3]·6H[subscript 2]O afforded the product in high…

  12. Tandem Cu-catalyzed ketenimine formation and intramolecular nucleophile capture: Synthesis of 1,2-dihydro-2-iminoquinolines from 1-(o-acetamidophenyl)propargyl alcohols

    PubMed Central

    Kant, Ruchir

    2014-01-01

    Summary The copper-catalyzed ketenimine formation reaction of 1-(o-acetamidophenyl)propargyl alcohols with various sulfonyl azides is found to undergo a concomitant intramolecular nucleophile attack to generate 1,2-dihydro-2-iminoquinolines after aromatization (via elimination of acetyl and hydroxy groups) and tautomerization. The reaction produces 4-substituted and 3,4-unsubstituted title compounds in moderate to good yields under mild reaction conditions. PMID:24991276

  13. Heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(s)

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Timonen, Raimo S.; Keyser, Leon F.; Yung, Yuk L.

    1995-01-01

    The heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) (eq 1) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(S) (eq 2) were investigated over the temperature range 223-296 K in a flow-tube reactor coupled to a quadrupole mass spectrometer. Either a chemical ionization mass spectrometer (CIMS) or an electron-impact ionization mass spectrometer (EIMS) was used to provide suitable detection sensitivity and selectivity. In order to mimic atmospheric conditions, partial pressures of HNO3 and N2O5 in the range 6 x 10(exp -8) - 2 x 10(exp -6) Torr were used. Granule sizes and surface roughness of the solid NaCl substrates were determined by using a scanning electron microscope. For dry NaCl substrates, decay rates of HNO3 were used to obtain gamma(1) = 0.013 +/- 0.004 (1sigma) at 296 K and > 0.008 at 223 K, respectively. The error quoted is the statistical error. After all corrections were made, the overall error, including systematic error, was estimated to be about a factor of 2. HCl was found to be the sole gas-phase product of reaction 1. The mechanism changed from heterogeneous reaction to predominantly physical adsorption when the reactor was cooled from 296 to 223 K. For reaction 2 using dry salts, gamma(2) was found to be less than 1.0 x 10(exp -4) at both 223 and 296 K. The gas-phase reaction product was identified as ClNO2 in previous studies using an infrared spectrometer. An enhancement in reaction probability was observed if water was not completely removed from salt surfaces, probably due to the reaction of N2O5(g) + H2O(s) yields 2HNO3(g). Our results are compared with previous literature values obtained using different experimental techniques and conditions. The implications of the present results for the enhancement of the hydrogen chloride column density in the lower stratosphere after the El Chichon volcanic eruption and for the chemistry of HCl and HNO3 in the marine troposphere are discussed.

  14. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  15. Arizona porphyry copper/hydrothermal deposits II: Crystal structure of ajoite, (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O

    PubMed Central

    Pluth, Joseph J.; Smith, Joseph V.

    2002-01-01

    A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O; triclinic, P1̄, a = 13.634(5) Å, b = 13.687(7), c = 14.522(7), α = 110.83(1)°, β = 107.21(1), γ = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4⋅H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite. PMID:12177404

  16. Synthesis, crystal structure, and vibrational study of K2Cu(HPO4)2·6H2O: A new metal hydrogenphosphate compound

    NASA Astrophysics Data System (ADS)

    Ettoumi, Houda; Bulou, Alain; Suñol, Joan Josep; Mhiri, Tahar

    2015-11-01

    The study reports on the synthesis, single-crystal X-ray structure, and infrared and polarized Raman spectra of a new metal phosphate. The chemical formula of the compound K2Cu(HPO4)2·6H2O resembled that of Tutton salts. The compound crystallized in the monoclinic system, space group P21/c, with a = 6.166(9), b = 12.118(19), c = 9.077(14) Å, β = 104.33(2), and Z = 2. The compound consisted of transition metal cations octahedrally coordinated by six water molecules, [Cu(H2O)6]2+, HPO4 pseudo-tetrahedra, and KO8 polyhedra. The KO8 polyhedra shared two edges with two HPO4 groups, two corners with the two other HPO4 groups, and two corners with Cu(H2O)6. The connection between [Cu(H2O)6]2+ octahedral and (HPO4)2- pseudo-tetrahedra was reinforced by hydrogen bonds formed between the water molecules and other oxygen atoms linked to the P atom. These structural results were corroborated by infrared and polarized Raman spectroscopy.

  17. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  18. The electrical and interfacial properties of metal-high-k oxide-semiconductor field effect transistors with CeO2/HfO2 laminated gate dielectrics

    NASA Astrophysics Data System (ADS)

    Chang, Ingram Yin-ku; Chen, Chun-Heng; Chiu, Fu-Chien; Lee, Joseph Ya-min

    2007-11-01

    Metal-oxide-semiconductor field-effect transistors with CeO2/HfO2 laminated gate dielectrics were fabricated. The transistors have a subthreshold slope of 74.9mV/decade. The interfacial properties were measured using gated diodes. The surface state density Dit was 9.78×1011cm-2eV-1. The surface-recombination velocity (s0) and the minority carrier lifetime in the field-induced depletion region (τ0,FIJ) measured from the gated diode were about 6.11×103cm /s and 1.8×10-8s, respectively. The effective capture cross section of surface state (σs) extracted using the subthreshold-swing measurement and the gated diode was about 7.69×10-15cm2. The effective electron mobility of CeO2/HfO2 laminated gated transistors was determined to be 212cm2/Vs.

  19. Prevalence of O1/K1- and O2/K3-Reactive Actinobacillus suis in Healthy and Diseased Swine

    PubMed Central

    Slavić, ĐurĐa; Toffner, Tania L.; Monteiro, Mario A.; Perry, Malcolm B.; MacInnes, Janet I.

    2000-01-01

    A cell surface antigen-typing system was devised for the swine pathogen Actinobacillus suis and used to examine the prevalence of different lipopolysaccharide (O) types in healthy and diseased pigs. The strains examined in this study were isolated from a variety of locations in Canada and from Kansas. Lipopolysaccharide preparations of 151 isolates of A. suis were characterized by immunoblotting using polyclonal antisera generated to strains SO4 (O1/K1), H89-1173 (O2/K3), and VSB 3714, a rough strain. Approximately 54% (62 of 114) of A. suis isolates from diseased pigs, all (11 of 11) isolates from healthy pigs, and all (4 of 4) reference strains reacted with O1/K1 antiserum. More than 80% (18 of 22) of A. suis strains used for bacterin production and approximately 41% (47 of 114) of isolates from diseased pigs bound O2/K3 antiserum. One isolate appeared to be rough, and five were untypeable. O1/K1- and O2/K3-reactive strains were equally prevalent in Kansas, whereas O2/K3-reactive strains were more common in Québec and western Canada and O1/K1 strains were most common in Ontario. The fact that virtually all of the strains submitted for bacterin production were O2/K3-reactive strains is consistent with the notion that these strains may be more virulent than O1/K1 strains; alternatively, this may reflect geographic or other biases. In addition, we observed cross-reactivity between A. suis cell surface antigens and swine antisera to several other important pathogens. This finding may explain why previous attempts to develop a simple serodiagnostic test for A. suis have been unsuccessful. PMID:11015398

  20. Enhancement of photoelectrochemical activity of SnS thin-film photoelectrodes using TiO2, Nb2O5, and Ta2O5 metal oxide layers

    NASA Astrophysics Data System (ADS)

    Vequizo, Junie Jhon M.; Yokoyama, Masanori; Ichimura, Masaya; Yamakata, Akira

    2016-06-01

    Tin sulfide (SnS) fine photoelectrodes fabricated by three-step pulsed electrodeposition were active for H2 evolution. The incident-photon-conversion-efficiency increases from 900 nm and offers a good fit with the absorption spectrum. The activity was enhanced by 3.4, 3.0, and 1.8 times compared to bare SnS by loading Nb2O5, TiO2, and Ta2O5, respectively. Nb2O5 was most efficient because its conduction band is low enough to facilitate effective electron transfer from SnS; it also has sufficiently high potential for H2 evolution. The overall activity is determined by the competitive interfacial electron transfer between SnS/metal-oxide and metal-oxide/water. Therefore, constructing appropriate heterojunctions is necessary for further improving photoelectrochemical systems.

  1. Nuclear relaxation behavior of the superconducting cuprates: Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Walstedt, R. E.; Bell, R. F.; Mitzi, D. B.

    1991-10-01

    Nuclear-magnetic-resonance data are presented and analyzed for the high-Tc compound Bi2Sr2CaCu2O8 for two oxygen doping levels. Both sample conditions lead to spin-gap behavior for the NMR shift, with a precursive downturn in the data at T>Tc. In addition, the relaxation times T1 obey the relation (T1T)-1~Ks(T) at low temperatures (T<~100 K), where Ks(T) is the spin paramagnetic shift. This relation, which is also obeyed by other superconductors, is argued to be related to the spin-gap effects and thus incompatible with a Fermi-liquid approach to the understanding of these systems.

  2. Nature of the valence band states in Bi2(Ca, Sr, La)3Cu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.

    1990-01-01

    We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La doped superconductor Bi2(Ca, Sr, La)3Cu2O8. While the oxygen states near the bottom of the 7 eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence band feature for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence band features, are not consistent with either simple final state effects or direct O2s transitions to unoccupied O2p states.

  3. Crystal Growth of the S =1/2 Antiferromagnet K2PbCu(NO2)6 Elpasolite

    NASA Astrophysics Data System (ADS)

    Dong, Lianyang; Besara, Tiglet; Siegrist, Theo

    The elpasolite K2PbCu(NO2)6is known for its two structural transitions at 281 K and 273 K. Single crystals of K2PbCu(NO2)6 have been grown in aqueous solution, but the rapid nucleation rate and convective transport renders it difficult to obtain large high quality single crystals. We developed a gel method to grow K2PbCu(NO2)6 Elpasolite with sizes up to 5x5x5 mm3, suitable for neutron diffraction measurements. Susceptibility measurements clearly show that the Jahn-Teller distortions at 286K and 273K with associated orbital ordering produce a linear chain Heisenberg antiferromagnetic system. The intrachain interaction strength has been derived from a Bonner-Fisher analysis that yielded a value of 5.4K. This work was supported by the National Science Foundation, under award DMR-1534818. A portion of this work has been performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement.

  4. 20% Efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/Cu(In,Ga)(S,Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light-Soaking and Light-Soaking Processes.

    PubMed

    Chantana, Jakapan; Kato, Takuya; Sugimoto, Hiroki; Minemoto, Takashi

    2018-04-04

    Development of Cd-free Cu(In,Ga)(S,Se) 2 (CIGSSe)-based thin-film solar cells fabricated by an all-dry process is intriguing to minimize optical loss at a wavelength shorter than 520 nm owing to absorption of the CdS buffer layer and to be easily integrated into an in-line process for cost reduction. Cd-free CIGSSe solar cells are therefore prepared by the all-dry process with a structure of Zn 0.9 Mg 0.1 O:Al/Zn 0.8 Mg 0.2 O/CIGSSe/Mo/glass. It is demonstrated that Zn 0.8 Mg 0.2 O and Zn 0.9 Mg 0.1 O:Al are appropriate as buffer and transparent conductive oxide layers with large optical band gap energy values of 3.75 and 3.80 eV, respectively. The conversion efficiency (η) of the Cd-free CIGSSe solar cell without K-treatment is consequently increased to 18.1%. To further increase the η, the Cd-free CIGSSe solar cell with K-treatment is next fabricated and followed by posttreatment called the heat-light-soaking (HLS) + light-soaking (LS) process, including HLS at 110 °C followed by LS under AM 1.5G illumination. It is disclosed that the HLS + LS process gives rise to not only the enhancement of carrier density but also the decrease in the carrier recombination rate at the buffer/absorber interface. Ultimately, the η of the Cd-free CIGSSe solar cell with K-treatment prepared by the all-dry process is enhanced to the level of 20.0%.

  5. Nanocrystalline Ce1- x La x O2- δ Solid Solutions Synthesized by Hydrolyzing and Oxidizing

    NASA Astrophysics Data System (ADS)

    Hou, Xueling; Xue, Yun; Han, Ning; Lu, Qianqian; Wang, Xiaochen; Phan, Manh-Huong; Zhong, Yunbo

    2016-05-01

    We undertook a novel batch production approach for the synthesis of CeO2 nanopowders doped with rare earth elements. Solid solution nanopowders of Ce1- x La x O2- δ ( x = 0.15) were successfully synthesized in a large-scale and low-cost production by hydrolyzing and oxidizing Ce-La-C alloys at room temperature and subsequent calcining of their powders at different temperatures (873-1073 K) for 1 h. The Ce-La-C alloys were prepared in a vacuum induction melting furnace. The final products were characterized by x-ray diffraction, transmission electron microscopy, Brunner-Emmet-Teller (BET) surface area analyzer, and Raman spectroscopy. The calculated lattice parameters of the cubic fluorite-type phase of CeO2 tended to increase when La3+ was incorporated into CeO2. The F 2g band shift and the absence of a peak corresponding to La2O3 in the Raman spectra consistently confirmed the incorporation of the La3+ ion into CeO2, and the formation of Ce1- x La x O2- δ solid solutions as manifested by increased oxygen vacancy defects. High-quality Ce1- x La x O2- δ nanopowders of ~10-15 nm diameter with a high BET surface area of ~77 m2 g-1 were obtained. The average crystallite size of Ce1- x La x O2- δ was found to be smaller than that of CeO2 for the same calcination temperature of 1073 K, demonstrating that the introduction of La3+ into CeO2 can stabilize the host lattice and refine the grain size at high temperatures.

  6. Mechanistic insight into peroxydisulfate reactivity: Oxidation of the cis,cis-[Ru(bpy) 2(OH 2)] 2O 4+ "Blue Dimmer"

    DOE PAGES

    Hurst, James K.; Roemeling, Margo D.; Lymar, Sergei V.

    2015-04-10

    One-electron oxidation of the μ-oxo dimer (cis,cis-[Ru III(bpy) 2(OH 2)] 2O 4+, {3,3}) to {3,4} by S 2O 8 2- can be described by three concurrent reaction pathways corresponding to the three protic forms of {3,3}. Free energy correlations of the rate constants, transient species dynamics determined by pulse radiolysis, and medium and temperature dependencies of the alkaline pathway all suggest that the rate determining step in these reactions is a strongly non-adiabatic dissociative electron transfer within a precursor ion pair leading to the {3,4}|SO 4 2-|SO 4 •- ion triple. As deduced from the SO 4 •- scavenging experimentsmore » with 2-propanol, the SO 4 •- radical then either oxidizes {3,4} to {4,4} within the ion triple, effecting a net two-electron oxidation of {3,3}, or escapes in solution with ~25 % probability to react with additional {3,3} and {3,4}, that is, effecting sequential one-electron oxidations. The reaction model presented also invokes rapid {3,3} + {4,4} → 2 {3,4} comproportionation, for which k com ~5×10 7 M -1 s -1 was independently measured. The model provides an explanation for the observation that despite favorable energetics, no oxidation beyond the {3,4} state was detected. As a result, the indiscriminate nature of oxidation by SO 4 •- indicates that its fate must be quantitatively determined when using S 2O 8 2- as an oxidant« less

  7. Ab initio and transition state theory study of the OH + HO2 → H2O + O2(3Σg-)/O2(1Δg) reactions: yield and role of O2(1Δg) in H2O2 decomposition and in combustion of H2.

    PubMed

    Monge-Palacios, M; Sarathy, S Mani

    2018-02-07

    Reactions of hydroxyl (OH) and hydroperoxyl (HO 2 ) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO 2 → H 2 O + O 2 ( 3 Σ g - )/O 2 ( 1 Δ g ) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200-2500 K, represented by k(T) = 3.08 × 10 12 T 0.07  exp(1151/RT) + 8.00 × 10 12 T 0.32  exp(-6896/RT) and k(T) = 2.14 × 10 6 T 1.65  exp(-2180/RT) in cm 3 mol -1 s -1 , respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755-3772). The updated kinetic model was used to perform H 2 O 2 thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565-571), and to estimate flame speeds and ignition delay times in H 2 mixtures. The simulation predicted a larger amount of O 2 ( 1 Δ g ) in H 2 O 2 decomposition than that predicted by Konnov's original model. These differences in the O 2 ( 1 Δ g ) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the H 2 O 2 decomposition and on the flame speeds and ignition delay times of different H 2 -oxidizer mixtures. However, if the oxidizer is seeded with O 3 , small differences appear in the flame speed. Given that O 2 ( 1 Δ g ) is much more reactive than O

  8. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    NASA Astrophysics Data System (ADS)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  9. Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets

    NASA Astrophysics Data System (ADS)

    Gao, Bifen; Yuan, Xia; Lu, Penghui; Lin, Bizhou; Chen, Yilin

    2015-12-01

    CdS-loaded TiO2 microspheres with highly exposed (001) facets were prepared by hydrothermal treatment of a TiF4-HCl-H2O mixed solution followed by a chemical bath deposition of CdS onto TiO2 microspheres. The crystal structure, surficial micro-structure and photo-absorption property of the samples were characterized by XRD, FE-SEM, TEM and UV-vis diffuse reflectance spectroscopy, etc. The as-prepared samples exhibited superior visible-light-driven photocatalytic H2-production activity from lactic acid aqueous solution in comparison with CdS-sensitized TiO2 nanoparticles, whose surface was dominated by (101) facets. Photoelectrochemical measurement confirmed that (001) facet is beneficial for the transfer of photo-generated electron from CdS to TiO2 microsphere, which led to the unexpected high photocatalytic activity of CdS-loaded TiO2 microspheres.

  10. Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors.

    PubMed

    Filonenko, Valeriy V; Tytarenko, Ruslana; Azatjan, Sergey K; Savinska, Lilya O; Gaydar, Yuriy A; Gout, Ivan T; Usenko, Vasiliy S; Lyzogubov, Valeriy V

    2004-12-01

    To perform an immunohistochemical analysis of human breast adenomas and adenocarcinomas as well as normal breast tissues in respect of S6 ribosomal protein kinase (S6K) expression and localization in normal and transformed cells. The expression level and localization of S6K have been detected in formalin fixed, paraffin embedded sections of normal human breast tissues, adenomas and adenocarcinomas with different grade of differentiation. Immunohistochemical detection of S6K1 and S6K2 in normal human breast tissues and breast tumors were performed using specific monoclonal and polyclonal antibodies against S6K1 and S6K2 with following semiquantitative analysis. The increase of S6K content in the cytoplasm of epithelial cells in benign and malignant tumors has been detected. Nuclear accumulation of S6K1 and to a greater extend S6K2 have been found in breast adenocarcinomas. About 80% of breast adenocarcinomas cases revealed S6K2 nuclear staining comparing to normal tissues. In 31% of cases more then 50% of cancer cells had strong nuclear staining. Accumulation of S6K1 in the nucleus of neoplastic cells has been demonstrated in 25% of cases. Nuclear localization of S6K in the epithelial cells in normal breast tissues has not been detected. Immunohistochemical analysis of S6K1 and S6K2 expression in normal human breast tissues, benign and malignant breast tumors clearly indicates that both kinases are overexpressed in breast tumors. Semiquantitative analysis of peculiarities of S6K localization in normal tissues and tumors revealed that nucleoplasmic accumulation of S6K (especially S6K2) is a distinguishing feature of cancer cells.

  11. On the thermal behavior of model Li-Li xCoO 2 systems containing ionic liquids in standard electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Larush, L.; Borgel, V.; Markevich, E.; Haik, O.; Zinigrad, E.; Aurbach, D.; Semrau, G.; Schmidt, M.

    We report herein on the possibility of using ionic liquids (ILs) as additives to conventional electrolyte solutions, based on alkyl carbonates and LiPF 6 for attenuating thermal reactions in Li battery systems. As a model, a Li-Li 0.5CoO 2 system was used. The ionic liquids chosen included cations based on derivatives of pyrrolidinium and imidazolium, and the anions bioxalato borate (C 4O 8B -, BOB), (CH 3SO 2) 2N - (TFSI), and PF 3(C 2S 5) 3 - (FAP). The thermal behavior of solutions alone, solutions with Li metal, Li 0.5CoO 2 and Li metal + Li 0.5CoO 2 was studied. It was found that the presence of 10% of ILs, with derivatives of pyrrolidinium cations and FAP or TFSI anions in standard EC-DMC/LiPF 6 solutions, improves considerably the thermal stability of Li 0.5CoO 2 in electrolyte solutions. The onset temperatures of the thermal reactions of Li 0.5CoO 2 with solution species are higher and their heat evolution is considerably lower, when they contain these ionic liquids as additives. This finding opens the door for further studies and optimization of the use of selected ILs as additives that may improve the safety features of Li-ion batteries.

  12. [Effect of K2O addition on the crystallization property of dental glass-ceramics].

    PubMed

    Liu, Xiao-Qiu; Song, Wen-Zhi; Sun, Hong-Chen; Yang, Hai-Bin; Zou, Guang-Tian; Wang, Jing-Yun; Ye, Chang-Li

    2006-10-01

    To evaluate the effect of K2O addition on the crystallization property of dental glass-ceramics in the Li2O-SiO2-Al2O3-P2O5-ZnO system. Different content of K2O was added into Li2O-SiO2-Al2O3-P2O5-ZnO glass system. The heat-treated system of the glass-ceramics was determined by differential thermal analyses (DTA), then the crystallization components and the microstmcture of the glass-ceramics with different content of K2O were investigated from X-ray diffraction (XRD) analyses and scanning electron microscopy (SEM). Addition of K2O helped to reduce the viscosity of the glass system and improved crystallization. More lithium disilicate crystals appeared after heated-treatment of the glass system which contained 5.3 wt% addition of K2O, and the homogeneously lath-shaped crystals were 4 gm in length. Certain content of K2O can improve the crystallization property of dental glass-ceramics in the Li2O-SiO2-Al2O3-P2O5-ZnO system.

  13. Enhanced optophysical properties of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] via addition of TiO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuzi, Siti Aishah Ahmad, E-mail: aishah-fuzi@yahoo.com; Jumali, Mohammad Hafizuddin Hj, E-mail: hafizhj@ukm.edu.my; Al-Asbahi, Bandar Ali Abdulqader, E-mail: alasbahibandar@gmail.com

    2015-09-25

    This work investigated the effect on 5 wt% addition of TiO{sub 2} nanoparticles (NPs) on the optical absorption characteristics of Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT). Both materials were mixed using solution blending method and then spin coated onto ITO-coated glass substrate at 1000 rpm for 30s. The optical properties of the nanocomposite were determined using UV-Vis spectroscopy. Compares to pristine film, the absorption peak of the nanocomposite film improved and shifted to longer wavelength indicating reduction in the direct and indirect band gaps. Better optophysical properties of F8BT/TiO{sub 2} nanocomposites is believed due to compatible band structures and efficient charge trapping effect displayedmore » by the NPs.« less

  14. Nitrosonium-catalyzed decomposition of s-nitrosothiols in solution: a theoretical and experimental study.

    PubMed

    Zhao, Yi-Lei; McCarren, Patrick R; Houk, K N; Choi, Bo Yoon; Toone, Eric J

    2005-08-10

    The decomposition of S-nitrosothiols (RSNO) in solution under oxidative conditions is significantly faster than can be accounted for by homolysis of the S-N bond. Here we propose a cationic chain mechanism in which nitrosation of nitrosothiol produces a nitrosated cation that, in turn, reacts with a second nitrosothiol to produce nitrosated disulfide and the NO dimer. The nitrosated disulfide acts as a source of nitrosonium for nitrosothiol nitrosation, completing the catalytic cycle. The mechanism accounts for several unexplained facets of nitrosothiol chemistry in solution, including the observation that the decomposition of an RSNO is accelerated by O(2), mixtures of O(2) and NO, and other oxidants, that decomposition is inhibited by thiols and other antioxidants, that decomposition is dependent on sulfur substitution, and that decomposition often shows nonintegral kinetic orders.

  15. Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H2O2 versus S-nitrosothiols.

    PubMed

    Bautista-Niño, Paula K; van der Stel, Marien; Batenburg, Wendy W; de Vries, René; Roks, Anton J M; Danser, A H Jan

    2018-05-15

    Protein kinase G (PKG) Iα mediates the cyclic guanosine monophosphate-mediated vasodilatory effects induced by NO. Endothelium-derived hyperpolarizing factors (EDHFs), like H 2 O 2 can activate PKGIα in a cyclic guanosine monophosphate-independent manner, but whether this is true for all EDHFs (e.g., S-nitrosothiols) is unknown. Here, we investigated the contribution of PKGIα to bradykinin-, H 2 O 2 -, L-S-nitrosocysteine-, and light-induced relaxation in porcine coronary arteries, making use of the fact that thioredoxin reductase inhibition with auranofin or 1-chloro-2,4-dinitrobenzene potentiates PKGIα. Thioredoxin reductase inhibition potentiated bradykinin and H 2 O 2 , but not L-S-nitrosocysteine or light. The relaxations by the latter 2 and bradykinin, but not those by H 2 O 2 , were prevented by the soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Yet, after S-nitrosothiol depletion with ethacrynic acid, thioredoxin reductase inhibition also potentiated light-induced relaxation, and this was prevented by the Na + -K + ATPase inhibitor ouabain. This indicates that photorelaxation depends on sGC activation by S-nitrosothiols, while only after S-nitrosothiol depletion oxidized PKGIα comes into play, and acts via Na + -K + ATPase. In conclusion, both bradykinin- and light-induced relaxation of porcine coronary arteries depend, at least partially, on oxidized PKGIα, and this does not involve sGC. H 2 O 2 also acts via oxidized PKGIα in an sGC-independent manner. Yet, S-nitrosothiol-induced relaxation is PKGIα-independent. Clearly, PKG activation does not contribute universally to all EDHF responses, and targeting PKGIα may only mimick EDHF under certain conditions. It is therefore unlikely that PKGIα activators will be universal vasodilators. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Conductivity measurements on H 2O-bearing CO 2-rich fluids

    DOE PAGES

    Capobianco, Ryan M.; Miroslaw S. Gruszkiewicz; Bodnar, Robert J.; ...

    2014-09-10

    Recent studies report rapid corrosion of metals and carbonation of minerals in contact with carbon dioxide containing trace amounts of dissolved water. One explanation for this behavior is that addition of small amounts of H 2O to CO 2 leads to significant ionization within the fluid, thus promoting reactions at the fluid-solid interface analogous to corrosion associated with aqueous fluids. The extent of ionization in the bulk CO 2 fluid was determined using a flow-through conductivity cell capable of detecting very low conductivities. Experiments were conducted from 298 to 473 K and 7.39 to 20 MPa with H 2O concentrationsmore » up to ~1600 ppmw (xH 2O ≈ 3.9 x 10 -3), corresponding to the H 2O solubility limit in liquid CO 2 at ambient temperature. All solutions showed conductivities <10 nS/cm, indicating that the solutions were essentially ion-free. Furthermore, this observation suggests that the observed corrosion and carbonation reactions are not the result of ionization in CO 2-rich bulk phase, but does not preclude ionization in the fluid at the fluid-solid interface.« less

  17. Softoxometalate [{K6.5Cu(OH)8.5(H2O)7.5}0.5@{K3PW12O40}]n (n = 1348-2024) as an Efficient Inorganic Material for CO2 Reduction with Concomitant Water Oxidation.

    PubMed

    Das, Santu; Kumar, Saurabh; Garai, Somenath; Pochamoni, Ramudu; Paul, Shounik; Roy, Soumyajit

    2017-10-11

    An immediate challenge for chemists is to devise different methods to trap chemical energy using light by reduction of carbon dioxide to a transportable fuel. To reach this goal the major obstacle lies in finding a suitable material that is abundant and possesses catalytic power to effect such reduction reaction and perform this reduction reaction without using any external photosensitizer. Here we report for the first time a softoxometalate based on a {[K 6.5 Cu(OH) 8.5 (H 2 O) 7.5 ] 0.5 [K 3 PW 12 O 40 ]} metal oxide framework which is stable in reaction conditions that effectively performs photochemical CO 2 reduction reaction in water with a very high turnover number of 613 and TOF of 47.15 h -1 . We observe that during this reaction water gets oxidized to oxygen, while the electrons released directly go to CO 2 reducing it to formic acid. A detailed account of the characterization of the catalyst along with that of products of this reaction is reported.

  18. Atomic layer deposition of TiO2 on surface modified nanoporous low-k films.

    PubMed

    Levrau, Elisabeth; Devloo-Casier, Kilian; Dendooven, Jolien; Ludwig, Karl F; Verdonck, Patrick; Meersschaut, Johan; Baklanov, Mikhail R; Detavernier, Christophe

    2013-10-01

    This paper explores the effects of different plasma treatments on low dielectric constant (low-k) materials and the consequences for the growth behavior of atomic layer deposition (ALD) on these modified substrates. An O2 and a He/H2 plasma treatment were performed on SiCOH low-k films to modify their chemical surface groups. Transmission FTIR and water contact angle (WCA) analysis showed that the O2 plasma changed the hydrophobic surface completely into a hydrophilic surface, while the He/H2 plasma changed it only partially. In a next step, in situ X-ray fluorescence (XRF), ellipsometric porosimetry (EP), and Rutherford backscattering spectroscopy (RBS) were used to characterize ALD growth of TiO2 on these substrates. The initial growth of TiO2 was found to be inhibited in the original low-k film containing only Si-CH3 surface groups, while immediate growth was observed in the hydrophilic O2 plasma treated film. The latter film was uniformly filled with TiO2 after 8 ALD cycles, while pore filling was delayed to 17 ALD cycles in the hydrophobic film. For the He/H2 plasma treated film, containing both Si-OH and Si-CH3 groups, the in situ XRF data showed that TiO2 could no longer be deposited in the He/H2 plasma treated film after 8 ALD cycles, while EP measurements revealed a remaining porosity. This can be explained by the faster deposition of TiO2 in the hydrophilic top part of the film than in the hydrophobic bulk which leaves the bulk porous, as confirmed by RBS depth profiling. The outcome of this research is not only of interest for the development of advanced interconnects in ULSI technology, but also demonstrates that ALD combined with RBS analysis is a handy approach to analyze the modifications induced by a plasma treatment on a nanoporous thin film.

  19. Permutation-symmetric three-particle hyper-spherical harmonics based on the S3 ⊗ SO(3)rot ⊂ O(2)⊗SO(3)rot ⊂ U(3)⋊S2O(6) subgroup chain

    NASA Astrophysics Data System (ADS)

    Salom, Igor; Dmitrašinović, V.

    2017-07-01

    We construct the three-body permutation symmetric hyperspherical harmonics to be used in the non-relativistic three-body Schrödinger equation in three spatial dimensions (3D). We label the state vectors according to the S3 ⊗ SO(3)rot ⊂ O (2) ⊗ SO(3)rot ⊂ U (3) ⋊S2O (6) subgroup chain, where S3 is the three-body permutation group and S2 is its two element subgroup containing transposition of first two particles, O (2) is the ;democracy transformation;, or ;kinematic rotation; group for three particles; SO(3)rot is the 3D rotation group, and U (3) , O (6) are the usual Lie groups. We discuss the good quantum numbers implied by the above chain of algebras, as well as their relation to the S3 permutation properties of the harmonics, particularly in view of the SO(3)rot ⊂ SU (3) degeneracy. We provide a definite, practically implementable algorithm for the calculation of harmonics with arbitrary finite integer values of the hyper angular momentum K, and show an explicit example of this construction in a specific case with degeneracy, as well as tables of K ≤ 6 harmonics. All harmonics are expressed as homogeneous polynomials in the Jacobi vectors (λ , ρ) with coefficients given as algebraic numbers unless the ;operator method; is chosen for the lifting of the SO(3)rot ⊂ SU (3) multiplicity and the dimension of the degenerate subspace is greater than four - in which case one must resort to numerical diagonalization; the latter condition is not met by any K ≤ 15 harmonic, or by any L ≤ 7 harmonic with arbitrary K. We also calculate a certain type of matrix elements (the Gaunt integrals of products of three harmonics) in two ways: 1) by explicit evaluation of integrals and 2) by reduction to known SU (3) Clebsch-Gordan coefficients. In this way we complete the calculation of the ingredients sufficient for the solution to the quantum-mechanical three-body bound state problem.

  20. The Partial Molar Volume and Compressibility of the FeO Component in Model Basalts (Mixed CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6 Liquids) at 0 GPa: evidence of Fe2+ in 6-fold coordination

    NASA Astrophysics Data System (ADS)

    Guo, X.; Lange, R. A.; Ai, Y.

    2010-12-01

    FeO is an important component in magmatic liquids and yet its partial molar volume at one bar is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Moreover, there is growing evidence from spectroscopic studies that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and it is expected that the partial molar volume and compressibility of the FeO component will vary accordingly. We have conducted both density and relaxed sound speed measurements on four liquids in the An-Di-Hd (CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6) system: (1) Di-Hd (50:50), (2) An-Hd (50:50), (3) An-Di-Hd (33:33:33) and (4) Hd (100). Densities were measured between 1573 and 1838 K at one bar with the double-bob Archimedean method using molybdenum bobs and crucibles in a reducing gas (1%CO-99%Ar) environment. The sound speeds were measured under similar conditions with a frequency-sweep acoustic interferometer, and used to calculate isothermal compressibility. All the density data for the three multi-component (model basalt) liquids were combined with density data on SiO2-Al2O3-CaO-MgO-K2O-Na2O liquids (Lange, 1997) in a fit to a linear volume equation; the results lead to a partial molar volume (±1σ) for FeO =11.7 ± 0.3(±1σ) cm3/mol at 1723 K. This value is similar to that for crystalline FeO at 298 K (halite structure; 12.06 cm3/mol), which suggests an average Fe2+ coordination of ~6 in these model basalt compositions. In contrast, the fitted partial molar volume of FeO in pure hedenbergite liquid is 14.6 ± 0.3 at 1723 K, which is consistent with an average Fe2+ coordination of 4.3 derived from EXAFS spectroscopy (Rossano, 2000). Similarly, all the compressibility data for the three multi-component liquids were combined with compressibility data on SiO2-Al2O3-CaO-MgO liquids (Ai and Lange, 2008) in a fit to an ideal mixing model for melt compressibility; the results lead to a partial molar

  1. Upconversion properties of Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses.

    PubMed

    Su, Fangning; Deng, Zaide

    2006-01-01

    The Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses were prepared by conventional melting procedures, and their upconversion spectra were performed. The dependence of luminescence intensity on the ratio of Yb3+/Er3+ was studied, and the relationship between green upconversion luminescence intensity and Er3+ concentration is discussed in detail. The 546 nm green upconversion luminescence intensity is optimised in the studied glasses either when the Yb3+/Er3+ ratio is 25/1 and Er3+ concentration is 0.1 mol%, or when the Yb3+/Er3+ ratio is 10/1 and Er3+ concentration is 0.15 mol%. These glasses could be one of the potential candidates for LD pumping microchip solid-state lasers.

  2. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation.

    PubMed

    Xie, Yi-Bing; Li, Xiang-Zhong

    2006-12-01

    A series of titanium dioxide (TiO(2)/Ti) film electrodes were prepared from titanium (Ti) metal mesh by an improved anodic oxidation process and were further modified by photochemically depositing gold (Au) on the TiO(2) film surface as Au-TiO(2)/Ti film electrodes. The morphological characteristics, crystal structure and photoelectroreactivity of both the TiO(2)/Ti and Au-TiO(2)/Ti electrodes were studied. The experiments confirmed that the gold modification of TiO(2) film could enhance the efficiency of e(-)/h(+) separation on the TiO(2) conduction band and resulted in the higher photocatalytic (PC) and photoelectrocatalytic (PEC) activity under UV or visible illumination. To further enhance the TiO(2) PEC reaction, a reticulated vitreous carbon (RVC) electrode was applied in the same reaction system as the cathode to electrically generate H(2)O(2) in the aqueous solution. The experiments demonstrated that such a H(2)O(2)-assisted TiO(2) PEC reaction system could achieve a much better performance of BPA degradation in aqueous solution due to an interactive effect among TiO(2), Au, and H(2)O(2). It may have good potential for application in water and wastewater treatment in the future.

  3. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    PubMed

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rate Coefficients for O-Atom Three-Body Recombination in N2 at Temperatures in the Range 170--320 K

    NASA Astrophysics Data System (ADS)

    Pejakovic, D. A.; Kalogerakis, K. S.; Copeland, R. A.; Huestis, D. L.; Robertson, R. M.; Smith, G. P.

    2005-12-01

    Three-body recombination of O-atoms, O + O + M → O_2* + M is one of the most important reactions in the upper atmospheres of Earth, Venus, and Mars. It is the only source for O2 nightglow, and the resulting emissions of electronically excited O2 are key tracers for photochemical and wave activity near the mesopause. Thus, knowledge of the rate coefficient for recombination of atomic oxygen is essential for modeling atmospheric composition. However, there exists a large discrepancy in the published estimates for this rate coefficient. For M = N2, the room temperature coefficient varies between about 3 × 10-33 cm6s-1, which is the value used in the combustion science community, and 5 × 10-33 cm6s-1, a value adopted in the atmospheric modeling community. We report measurements of the rate coefficient for O-atom recombination with N2 as the third body by two different experimental approaches. In the first experiment, we employ the pulsed output of a F2 laser at 157 nm to achieve high levels of photodissociation of molecular oxygen. In a high-pressure (760 Torr) background of N2 the produced O-atoms recombine in a time scale of several milliseconds. Oxygen atom population is monitored by observing fluorescence at 845 nm, induced by the output of a second laser near 226 nm. In the second experiment, the focused output of a KrF excimer laser at 248 nm is used to achieve complete photodissociation of measured amounts of ozone (0.2--0.9 Torr) in a background of ~500 Torr of N2, producing known initial concentrations of O-atoms. Their population decay is monitored by laser-induced fluorescence excited by the 226 nm radiation from a delayed frequency-doubled OPO system. The reaction cell can be cooled by dry ice or liquid nitrogen baths. The preliminary results of the O2 photolysis experiments give a room-temperature value for the rate coefficient of about 2.8 × 10-33 cm6s-1. The ozone photolysis experiments at 316 K (including effects of laser and kinetic heating of the

  5. A promising p-type transparent conducting material: Layered oxysulfide [Cu2S2][Sr3Sc2O5

    NASA Astrophysics Data System (ADS)

    Liu, Min-Ling; Wu, Li-Bin; Huang, Fu-Qiang; Chen, Li-Dong; Chen, I.-Wei

    2007-12-01

    Sr3Cu2Sc2O5S2, a layered oxysulfide, composed of anti-PbO-like [Cu2S2] slabs alternating with perovskitelike [Sr3Sc2O5] slabs, was systematically studied as a p-type transparent conducting material. The material has a wide energy gap of 3.1eV and a p-type electrical conductivity of 2.8Scm-1 at room temperature. The hole mobility of +150cm2V-1S-1 at room temperature, which is much higher than the typical value of ˜10-1-10width="0.3em"/>cm2V-1S-1 found in other copper compounds. The performances of bulk undoped Sr3Cu2Sc2O5S2 show the promise of copper oxysulfides as a class of p-type transparent conductive materials that is essential for optoelectronic applications.

  6. Heterogeneous Ag-TiO2-SiO2 composite materials as novel catalytic systems for selective epoxidation of cyclohexene by H2O2

    PubMed Central

    Wang, Xin; Xue, Jianyue; Wang, Xinyun; Liu, Xiaoheng

    2017-01-01

    TiO2-SiO2 composites were synthesized using cetyl trimethyl ammonium bromide (CTAB) as the structure directing template. Self-assembly hexadecyltrimethyl- ammonium bromide TiO2-SiO2/(CTAB) were soaked into silver nitrate (AgNO3) aqueous solution. The Ag-TiO2-SiO2(Ag-TS) composite were prepared via a precipitation of AgBr in soaking process and its decomposition at calcination stage. Structural characterization of the materials was carried out by various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and ultraviolet visible spectroscopy (UV-Vis). Characterization results revealed that Ag particles were incorporated into hierarchical TiO2-SiO2 without significantly affecting the structures of the supports. Further heating-treatment at 723 K was more favorable for enhancing the stability of the Ag-TS composite. The cyclohexene oxide was the major product in the epoxidation using H2O2 as the oxidant over the Ag-TS catalysts. Besides, the optimum catalytic activity and stability of Ag-TS catalysts were obtained under operational conditions of calcined at 723 K for 2 h, reaction time of 120 min, reaction temperature of 353 K, catalyst amount of 80 mg, aqueous H2O2 (30 wt.%) as oxidant and chloroform as solvent. High catalytic activity with conversion rate up to 99.2% of cyclohexene oxide could be obtainable in water-bathing. The catalyst was found to be stable and could be reused three times without significant loss of catalytic activity under the optimized reaction conditions. PMID:28493879

  7. Oxidation of atomically thin MoS2 on SiO2

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mahito; Cullen, William; Einstein, Theodore; Fuhrer, Michael

    2013-03-01

    Surface oxidation of MoS2 markedly affects its electronic, optical, and tribological properties. However, oxidative reactivity of atomically thin MoS2 has yet to be addressed. Here, we investigate oxidation of atomic layers of MoS2 using atomic force microscopy and Raman spectroscopy. MoS2 is mechanically exfoliated onto SiO2 and oxidized in Ar/O2 or Ar/O3 (ozone) at 100-450 °C. MoS2 is much more reactive to O2 than an analogous atomic membrane of graphene and monolayer MoS2 is completely etched very rapidly upon O2 treatment above 300 °C. Thicker MoS2 (> 15 nm) transforms into MoO3 after oxidation at 400 °C, which is confirmed by a Raman peak at 820 cm-1. However, few-layer MoS2 oxidized below 400 °C exhibits no MoO3 Raman mode but etch pits are formed, similar to graphene. We find atomic layers of MoS2 shows larger reactivity to O3 than to O2 and monolayer MoS2 transforms chemically upon O3 treatment even below 100 °C. Work supported by the U. of Maryland NSF-MRSEC under Grant No. DMR 05-20741.

  8. SOLID SOLUTION EFFECTS ON THE THERMAL PROPERTIES IN THE MgAl2O4-MgGa2O4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Kelley; Smith, Jeffrey D; Sander, Todd P.

    Solid solution eects on thermal conductivity within the MgO-Al2O3-Ga2O3 system were studied. Samples with systematically varied additions of MgGa2O4 to MgAl2O4 were prepared and the laser ash technique was used to determine thermal diusivity at temperatures between 200C and 1300C. Heat capacity as a function of temperature from room temperature to 800C was also determined using dierential scanning calorimetry. Solid solution in the MgAl2O4-MgGa2O4 system decreases the thermal conductivity up to 1000C. At 200C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. At 1000C the thermal conductivity decreased 13% with a 5 mol% addition.more » Steady state calculations showed a 12.5% decrease in heat ux with 5 mol% MgGa2O4 considered across a 12 inch thickness.« less

  9. Effect of ZnO Nanoparticles on the Sintering Behavior and Physical Properties of Bi0.5(Na0.8K0.2)0.5TiO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Vuong, Le Dai; Truong-Tho, Nguyen

    2017-11-01

    Sintered Bi0.5(Na0.8K0.2)0.5TiO3 + x wt.% ZnO nanoparticle (BNKT- xZnOn) ceramics have been fabricated by conventional annealing with the aid of ultrasound waves for preliminary milling. Because of the presence of the liquid Bi2O3-ZnO phase at the eutectic point of 738°C, the sintering temperature decreased from 1150°C to 1000°C, and the morphology phase boundary of BNKT- xZnOn ceramics can be clarified by two separated peaks at (002)T and (200)T of 2 θ in the x-ray diffraction (XRD) patterns. The improvement of ferroelectric properties has been obtained for BNZT-0.2 wt.% ZnOn ceramics by the increase of remanent polarization up to 20.4 μC/cm2 and a decrease of electric coercive field down to 14.2 kV/cm. The piezoelectric parameters of the ceramic included a piezoelectric charge constant of d 31 = 78 pC/N; electromechanical coupling factors k p = 0.31 and k t = 0.34, larger than the values of 42 pC/N, 0.12 and 0.13, respectively, were obtained for the BNKT ceramics.

  10. Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment.

    PubMed

    Kovacic, Marin; Kopcic, Nina; Kusic, Hrvoje; Stangar, Urska Lavrencic; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2018-01-01

    One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO 2 -SnS 2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO 2 -SnS 2 /H 2 O 2 , for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO 2 -SnS 2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO 2 -SnS 2 /H 2 O 2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO 2 -SnS 2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO 2 -SnS 2 morphology due to the partial transformation of visible-active SnS 2 into non-active SnO 2 . Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO 2 -SnS 2 composite in applied solar-driven water treatment.

  11. Gas Pressure Monitored Iodide-Catalyzed Decomposition Kinetics of H[subscript 2]O[subscript 2]: Initial-Rate and Integrated-Rate Methods in the General Chemistry Lab

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca

    2010-01-01

    The reaction kinetics of the iodide-catalyzed decomposition of [subscript 2]O[subscript 2] using the integrated-rate method is described. The method is based on the measurement of the total gas pressure using a datalogger and pressure sensor. This is a modification of a previously reported experiment based on the initial-rate approach. (Contains 2

  12. The Josephson plasma resonance in Bi2Sr2CaCu2O8 in a tilted field

    NASA Astrophysics Data System (ADS)

    Bayrakci, S.; Tsui, Ophelia K. C.; Ong, N. P.; Kishio, K.; Watauchi, S.

    1999-04-01

    The dependence of the Josephson plasma frequency ωp in Bi2Sr2CaCu2O8 on a tilted field H is reported. Measurements over a large range of B and tilt angle θ allow a detailed comparison with a recent calculation by Koshelev. With a slight modification of the model, close agreement is obtained. From the fits, we find values for the in-plane correlation length and the zero-field critical current density Jc0 (4600 A/cm2 at 30 K). An analogy to Bragg diffraction is described, as well as a picture for the fractional-exponent behavior of ωp vs. H

  13. Low-T magnetometry study of S = 1 Q2D [Ni(pyz) 2(H 2O) 2](BF 4) 2 (pyz = pyrazine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manson, J. L.; Villa, D. Y.; Blackmore, W. J. A.

    2017-02-13

    [Ni(pyz) 2(H 2O) 2](BF 4) 2 (pyz = N 2C 4H 4) was synthesized by a solvent-free technique and its structure solved by synchrotron X-ray powder diffraction.1 The compound contains S = 1 Ni(II) ions and has tetragonal symmetry. Two-D [Ni(pyz) 2(H 2O) 2] 2+ square lattices propagate in the ab-plane and stack along the c-axis (Fig. 1). Water ligands occupy axial sites and form H-bonds with interlayer BF 4 - ions. SQUID magnetometry shows a possible transition to long-range magnetic order near 3 K. We measured the magnetization of [Ni(pyz) 2(H 2O) 2](BF 4) 2 as a function ofmore » temperature to search for field-induced phase transitions and briefly report those findings here.« less

  14. Effects of Co and Mn doping in K0.8Fe2-ySe2 revisited.

    PubMed

    Zhou, Tingting; Chen, Xiaolong; Guo, Jiangang; Jin, Shifeng; Wang, Gang; Lai, Xiaofang; Ying, Tianping; Zhang, Han; Shen, Shijie; Wang, Shunchong; Zhu, Kaixing

    2013-07-10

    Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2-ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2-xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7-xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.

  15. MoS2 embedded TiO2 nanoparticles for concurrent role of adsorption and photocatalysis

    NASA Astrophysics Data System (ADS)

    Pal, Arnab; Jana, Tushar K.; Chatterjee, Kuntal

    2018-04-01

    In this work, MoS2 embedded TiO2 nanoparticles, synthesized through hydrothermal process, was successfully employed to remove organic pollutant dye like methylene blue(MB) through adsorption and as well as through photocatalysis under visible light irradiation. The system was characterized by structural and morphological study. The adsorption and photocatalytic study of MB were evaluated with different concentrations of dye in aqueous solution. This work brings the MoS2-TiO2 nanostructure as excellent adsorbent as well as efficient photocatalyst materials which can be used for organic dye removal towards waste-water treatment.

  16. New Insight into Phase Formation of MxMg2Al4+xSi5−xO18:Eu2+ Solid Solution Phosphors and Its Luminescence Properties

    PubMed Central

    Zhou, Jun; Xia, Zhiguo; Chen, Mingyue; Molokeev, Maxim S.; Liu, Quanlin

    2015-01-01

    Here we reported the phase formation of MxMg2Al4+xSi5−xO18:Eu2+ (M = K, Rb) solid solution phosphors, where M+ ions were introduced into the void channels of Mg2Al4Si5O18 via Al3+/Si4+ substitution to keep the charge balance. XRD results revealed that the as-prepared phosphors with different M+ contents were iso-structural with Mg2Al4Si5O18 phase. The combined analysis of the Rietveld refinement and high resolution transmission electron microscopy (HRTEM) results proved that M+ ions were surely introduced into the intrinsic channels in Mg2Al4Si5O18. The emission peaks of MxMg2Al4+xSi5−xO18:Eu2+ (M = K, Rb) phosphors with various x values performed a systematic red-shift tendency, which was ascribed to the elongation of [MgO6] octahedra. The temperature stable photoluminescence and internal quantum efficiency (QE) of MxMg2Al4+xSi5−xO18:Eu2+ (M = K, Rb) phosphors were enhanced owing to the filling of M+ in the void channels suggesting a new insight to design the solid solution phosphors with improved photoluminescence properties. PMID:26190348

  17. Stability of the high pressure phase Fe3S2 up to Earth's core pressures in the Fe-S-O and the Fe-S-Si systems

    NASA Astrophysics Data System (ADS)

    Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.

  18. Fabrication of MgFe2O4/MoS2 Heterostructure Nanowires for Photoelectrochemical Catalysis.

    PubMed

    Fan, Weiqiang; Li, Meng; Bai, Hongye; Xu, Dongbo; Chen, Chao; Li, Chunfa; Ge, Yilin; Shi, Weidong

    2016-02-16

    A novel one-dimensional MgFe2O4/MoS2 heterostructure has been successfully designed and fabricated. The bare MgFe2O4 was obtained as uniform nanowires through electrospinning, and MoS2 thin film appeared on the surface of MgFe2O4 after further chemical vapor deposition. The structure of the MgFe2O4/MoS2 heterostructure was systematic investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometry (XPS), and Raman spectra. According to electrochemical impedance spectroscopy (EIS) results, the MgFe2O4/MoS2 heterostructure showed a lower charge-transfer resistance compared with bare MgFe2O4, which indicated that the MoS2 played an important role in the enhancement of electron/hole mobility. MgFe2O4/MoS2 heterostructure can efficiently degrade tetracycline (TC), since the superoxide free-radical can be produced by sample under illumination due to the active species trapping and electron spin resonance (ESR) measurement, and the optimal photoelectrochemical degradation rate of TC can be achieved up to 92% (radiation intensity: 47 mW/cm(2), 2 h). Taking account of its unique semiconductor band gap structure, MgFe2O4/MoS2 can also be used as an photoelectrochemical anode for hydrogen production by water splitting, and the hydrogen production rate of MgFe2O4/MoS2 was 5.8 mmol/h·m(2) (radiation intensity: 47 mW/cm(2)), which is about 1.7 times that of MgFe2O4.

  19. Syntheses and structures of [UO2( L)5](ClO4)2 and [U( L')4(H2O)4](ClO4)4 ( L is dimethylformamide, L' is N,N-dimethylcarbamide)

    NASA Astrophysics Data System (ADS)

    Serezhkin, V. N.; Vologzhanina, A. V.; Pushkin, D. V.; Astashkina, D. A.; Savchenkov, A. V.; Serezhkina, L. B.

    2017-09-01

    The reaction of aqueous solutions of uranyl perchlorate with selected organic amides was studied in the dark and under the sunlight. The complexes [UVIO2(C3H7NO)5](ClO4)2 ( I) and [UIV(C3H8N2O)4(H2O)4](ClO4)4 ( II), where C3H7NO is N,N-dimethylformamide ( Dmfa) and C3H8N2O is N,N-dimethylcarbamide ( a-Dmur), were studied by X-ray diffraction. Complex II and the complex UIV( s-Dmur)4(H2O)4(ClO4)4 ( III), where s-Dmur is N,N'-dimethylcarbamide, were studied by IR spectroscopy. Crystals I and II are composed of mononuclear [UO2( Dmfa)5]2+ and [U( Dmur)4(H2O)4]4+ groups as uranium-containing structural units belonging to the crystal-chemical groups AM 7 1 ( A = UVI, M 1 = O2- and Dmfa) and AM 8 1 ( A = UIV, M 1 = Dmur and H2O) of uranium complexes, respectively. The mononuclear uranium- containing complexes in the crystals of U(IV) and U(VI) perchlorates were found to obey the 14 neighbors rule.

  20. Experimental and computational analysis of the transition state for ribonuclease A-catalyzed RNA 2′-O-transphosphorylation

    PubMed Central

    Gu, Hong; Zhang, Shuming; Wong, Kin-Yiu; Radak, Brian K.; Dissanayake, Thakshila; Kellerman, Daniel L.; Dai, Qing; Miyagi, Masaru; Anderson, Vernon E.; York, Darrin M.; Piccirilli, Joseph A.; Harris, Michael E.

    2013-01-01

    Enzymes function by stabilizing reaction transition states; therefore, comparison of the transition states of enzymatic and nonenzymatic model reactions can provide insight into biological catalysis. Catalysis of RNA 2′-O-transphosphorylation by ribonuclease A is proposed to involve electrostatic stabilization and acid/base catalysis, although the structure of the rate-limiting transition state is uncertain. Here, we describe coordinated kinetic isotope effect (KIE) analyses, molecular dynamics simulations, and quantum mechanical calculations to model the transition state and mechanism of RNase A. Comparison of the 18O KIEs on the 2O nucleophile, 5′O leaving group, and nonbridging phosphoryl oxygens for RNase A to values observed for hydronium- or hydroxide-catalyzed reactions indicate a late anionic transition state. Molecular dynamics simulations using an anionic phosphorane transition state mimic suggest that H-bonding by protonated His12 and Lys41 stabilizes the transition state by neutralizing the negative charge on the nonbridging phosphoryl oxygens. Quantum mechanical calculations consistent with the experimental KIEs indicate that expulsion of the 5′O remains an integral feature of the rate-limiting step both on and off the enzyme. Electrostatic interactions with positively charged amino acid site chains (His12/Lys41), together with proton transfer from His119, render departure of the 5′O less advanced compared with the solution reaction and stabilize charge buildup in the transition state. The ability to obtain a chemically detailed description of 2′-O-transphosphorylation transition states provides an opportunity to advance our understanding of biological catalysis significantly by determining how the catalytic modes and active site environments of phosphoryl transferases influence transition state structure. PMID:23878223

  1. Spectral and thermal studies of MgI2·8H2O

    NASA Astrophysics Data System (ADS)

    Koleva, Violeta; Stefov, Viktor; Najdoski, Metodija; Ilievski, Zlatko; Cahil, Adnan

    2017-10-01

    In the present contribution special attention is paid to the spectroscopic and thermal characterization of MgI2·8H2O which is the stable hydrated form at room temperature. The infrared spectra of MgI2·8H2O and its deuterated analogues recorded at room and liquid nitrogen temperature are presented and interpreted. In the low-temperature diference infrared spectrum of the slightly deuterated analogue (≈5% D) at least four bands are found out of the expected five (at 2595, 2550, 2538 and 2495 cm-1) as a result of the uncoupled O-D oscillators in the isotopically isolated HOD molecules. Multiple bands are observed in the water bending region and only two bands of the HOH librational modes are found. For more precise and deep description of the processes occurring upon heating of MgI2·8H2O we have applied simultaneous TG/DTA/Mass spectrometry technique identifying the gases evolved during the thermal transformations. We have established that the thermal decomposition of MgI2·8H2O is a complex process that takes place in two main stages. In the first stage (between 120 and 275 °C) the salt undergoes a partial stepwise dehydration to MgI2·2H2O followed by a hydrolytic decomposition with formation of magnesium hydroxyiodide Mg(OH)1.44I0.56 accompanied with simultaneous release of H2O and HI. In the second stage Mg(OH)1.44I0.56 is completely decomposed to MgO with elimination of gaseous H2O, HI, I2 and H2. Infrared spectra of the annealed samples heated between 190 and 270 °C confirmed the formation of magnesium hydroxyiodide.

  2. Preparation, crystal structure, thermal decomposition, quantum chemical calculations on [K(ZTO)ṡH2O]∞ and its ligand ZTO

    NASA Astrophysics Data System (ADS)

    Ma, Cong; Huang, Jie; Ma, Hai-Xia; Xu, Kang-Zhen; Lv, Xing-Qiang; Song, Ji-Rong; Zhao, Ning-Ning; He, Jian-Yun; Zhao, Yi-Sha

    2013-03-01

    A novel potassium complex has been synthesized and characterized under the non-isothermal conditions by DSC and TG-DTG method. The 4,4-azo-1,2,4-triazol-5-one (ZTO) has the molecular formula C4H4N8O2. The thermodynamic parameters, HOMO-LUMO energy gap, total energy and electrostatic potential (MEP) of ZTO are conducted by density functional theory DFT/B3LYP calculation method with 6-311G basis set. In the coordination polymer, with the ligand anion (ZTO-) as space linkers, two types of potassium atoms centers are joined together to form three-dimensional frameworks. The enthalpy, apparent activation energy and pre-exponential factor of the second exothermic decomposition reaction are 85.43 kJ mol-1, 414.4 kJ mol-1and 1037.92 s-1, respectively. The critical temperature of thermal explosion (Tb) for [K(ZTO)ṡH2O]∞ is 275.08 °C. [K(ZTO)ṡH2O]∞ CCDC: 902339.

  3. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    PubMed

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  4. Detection of a Cooper-pair density wave in Bi 2Sr 2CaCu 2O 8+x

    DOE PAGES

    Hamidian, M. H.; Edkins, S. D.; Joo, Sang Hyun; ...

    2016-04-13

    The quantum condensate of Cooper pairs forming a superconductor was originally conceived as being translationally invariant. In theory, however, pairs can exist with finite momentum Q, thus generating a state with a spatially modulated Cooper-pair density. Such a state has been created in ultracold 6Li gas but never observed directly in any superconductor. It is now widely hypothesized that the pseudogap phase of the copper oxide superconductors contains such a ‘pair density wave’ state. In this paper we report the use of nanometre-resolution scanned Josephson tunnelling microscopy to image Cooper pair tunnelling from a d-wave superconducting microscope tip to themore » condensate of the superconductor Bi 2Sr 2CaCu 2O 8+x. We demonstrate condensate visualization capabilities directly by using the Cooper-pair density variations surrounding zinc impurity atoms and at the Bi 2Sr 2CaCu 2O 8+x crystal supermodulation. Then, by using Fourier analysis of scanned Josephson tunnelling images, we discover the direct signature of a Cooper-pair density modulation at wavevectors Q P ≈ (0.25, 0)2π/a 0 and (0, 0.25)2π/a 0 in Bi 2Sr 2CaCu 2O 8+x. The amplitude of these modulations is about five per cent of the background condensate density and their form factor exhibits primarily s or s' symmetry. Finally, this phenomenology is consistent with Ginzburg–Landau theory when a charge density wave with d-symmetry form factor and wavevector Q C = Q P coexists with a d-symmetry superconductor; it is also predicted by several contemporary microscopic theories for the pseudogap phase.« less

  5. Utilization of Metal Sulfide Material of (CuGa)(1-x)Zn(2x)S2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems.

    PubMed

    Kato, Takaaki; Hakari, Yuichiro; Ikeda, Satoru; Jia, Qingxin; Iwase, Akihide; Kudo, Akihiko

    2015-03-19

    Upon forming a solid solution between CuGaS2 and ZnS, we have successfully developed a highly active (CuGa)(1-x)Zn(2x)S2 photocatalyst for H2 evolution in the presence of sacrificial reagents under visible light irradiation. The Ru-loaded (CuGa)0.8Zn0.4S2 functioned as a H2-evolving photocatalyst in a Z-scheme system with BiVO4 of an O2-evolving photocatalyst and Co complexes of an electron mediator. The Z-scheme system split water into H2 and O2 under visible light and simulated sunlight irradiation. The (CuGa)(1-x)Zn(2x)S2 possessed a p-type semiconductor character. The photoelectrochemical cell with a Ru-loaded (CuGa)0.5ZnS2 photocathode and a CoO(x)-modified BiVO4 photoanode split water even without applying an external bias. Thus, we successfully demonstrated that the metal sulfide material group can be available for Z-scheme and electrochemical systems to achieve solar water splitting into H2 and O2.

  6. Adsorption Assisted Photocatalytic Removal of Methyl Orange by MgAl2O4-Sb2S3 Composite Material.

    PubMed

    Muneeb, Muhammad; Ismail, Bushra; Fazal, Tanzeela; Khan, Abdur Rehman; Afzia, Mehwish

    2016-01-01

    The current article is about the water treatment in which colored water contaminated by methyl orange has been used for adsorption assisted photocatalysis. Coupling of photocatalysis with the traditional water treatment processes has been in practice since last couple of years for the improvement of degradation efficiencies, for example, photocatalysis coupled with ultrafilteration, adsorption, flocculation, biological methods, photolysis, membrane distillation, etc. Among all these coupling approaches, adsorption assisted photocatalysis being a very simple and highly efficient approach is suffering from few drawbacks on the account of high cost, low stability and surface area of the adsorbent support. The present study is a contribution towards improvement in this coupling approach. A low cost, highly stable spinel magnesium aluminate (MgAl2O4) material synthesized at nanoscale is used for composite formation with antimony sulphide (Sb2S3) material having high absorption coefficient in the visible light of solar spectrum. A review of recent patents shows that the field of photoctalysis is dominated by the traditional TiO2 catalyst. The modification of TiO2 by either composite formation or by doping is the main focus. Coprecipitation method is used for the synthesis of spinel in which the desired precursors in the respective molar ratios were mixed and annealing of the resulting precipitates was carried out at 800oC for 8 h. Sb2S3 was synthesized by the hydrothermal method in which the required molar solution of precursors was mixed with urea solution and the whole mixture was maintained at 105oC for 6 hrs in a Teflon lined autoclave. The resulting suspension was then annealed at 37oC for 3 hours. The composite of Sb2S3 and MgAl2O4 has been synthesized by mixing both the materials in 1:1 and heat treated in an oven at a temperature of 200oC. Peaks in X-ray diffraction pattern correspond to both the Sb2S3 and spinel phase. All the peaks corresponding to the Sb2S3

  7. Synthesis, structure, and magnetic properties of new layered phosphate halides Sr2Cu5(PO4)4X2·8H2O (X = Cl, Br) with a crown-like building unit.

    PubMed

    Qiu, Chaoqun; He, Zhangzhen; Cui, Meiyan; Tang, Yingying; Chen, Sihuai

    2017-03-27

    Two new compounds Sr 2 Cu 5 (PO 4 ) 4 X 2 ·8H 2 O (X = Cl and Br) are synthesized by a conventional hydrothermal method. Sr 2 Cu 5 (PO 4 ) 4 Cl 2 ·8H 2 O crystallizes in the tetragonal system with a space group of P42 1 2, while Sr 2 Cu 5 (PO 4 ) 4 Br 2 ·8H 2 O crystallizes in the space group P4/nmm, which are found to have a similar framework of layered structure, in which the crown-like {Cu 5 (PO 4 ) 4 X 2 } building units connect to each other forming a 2D corrugated sheet with vacancies, while the Sr 2+ cations are located along the vacancies. The spin lattice of two compounds built by Cu 2+ ions shows a new type of corrugated square. Magnetic measurements confirmed that both Sr 2 Cu 5 (PO 4 ) 4 X 2 ·8H 2 O (X = Cl and Br) exhibit antiferromagnetic ordering at low temperatures. A fit of theoretical model shows exchange interaction J = -25.62 K for the Cl-analogue and J/k B = -26.47 K for the Br-analogue.

  8. The two-dimensional tunnel structures of K3Sb5O14 and K2Sb4O11

    NASA Technical Reports Server (NTRS)

    Hong, H. Y.-P.

    1974-01-01

    The structures of K3Sb5O14 and K2Sb4O11 have been solved by the single-crystal X-ray direct method and the heavy-atom method, respectively. The structure of K3Sb5O14 is orthorhombic, with space group Pbam and cell parameters a = 24.247 (4), b = 7.157 (2), c = 7.334 (2) A, Z = 4. The structure of K2Sb4O11 is monoclinic, with space group C2/m and cell parameters a = 19.473 (4), b = 7.542 (1), c = 7.198 (1) A, beta = 94.82 (2) deg, Z = 4. A full-matrix least-squares refinement gave R = 0.072 and R = 0.067, respectively. In both structures, oxygen atoms form an octahedron around each Sb atom and an irregular polyhedron around each K atom. By sharing corners and edges, the octahedra form a skeleton network having intersecting b-axis and c-axis tunnels. The K(+) ions, which have more than ten oxygen near neighbors, are located in these tunnels. Evidence for K(+)-ion transport within and between tunnels comes from ion exchange of the alkali ions in molten salts and anisotropic temperature factors that are anomalously large in the direction of the tunnels.

  9. Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios

    NASA Astrophysics Data System (ADS)

    Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun

    2017-06-01

    The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.

  10. Vigrishinite, Zn2Ti4 - x Si4O14(OH,H2O,□)8, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Britvin, S. N.; Zubkova, N. V.; Chukanov, N. V.; Bryzgalov, I. A.; Lykova, I. S.; Belakovskiy, D. I.; Pushcharovsky, D. Yu.

    2013-12-01

    A new mineral vigrishinite, epistolite-group member and first layer titanosilicate with species-defining Zn, was found at Mt. Malyi Punkaruaiv, in the Lovozero alkaline complex, Kola Peninsula, Russia. It occurs in a hydrothermally altered peralkaline pegmatite and is associated with microcline, ussingite, aegirine, analcime, gmelinite-Na, and chabazite-Ca. Vigrishinite forms rectangular or irregularly shaped lamellae up to 0.05 × 2 × 3 cm flattened on [001]. They are typically slightly split and show blocky character. The mineral is translucent to transparent and pale pink, yellowish-pinkish or colorless. The luster is vitreous. The Mohs' hardness is 2.5-3. Vigrishinite is brittle. Cleavage is {001} perfect. D meas = 3.03(2), D calc = 2.97 g/cm3. The mineral is optically biaxial (-), α = 1.755(5), β = 1.82(1), γ = 1.835(8), 2 V meas = 45(10)°, 2 V calc = 50°. IR spectrum is given. The chemical composition (wt %; average of 9 point analyses, H2O is determined by modified Penfield method) is as follows: 0.98 Na2O, 0.30 K2O, 0.56 CaO, 0.05 SrO, 0.44 BaO, 0.36 MgO, 2.09 MnO, 14.39 ZnO, 2.00 Fe2O3, 0.36 Al2O3, 32.29 SiO2, 29.14 TiO2, 2.08 ZrO2, 7.34 Nb2O5, 0.46 F, 9.1 H2O, -0.19 O=F2, total is 101.75. The empirical formula calculated on the basis of Si + Al = 4 is: H7.42(Zn1.30Na0.23Mn0.22Ca0.07Mg0.07K0.05Ba0.02)Σ1.96(Ti2.68Nb0.41Fe{0.18/3+}Zr0.12)Σ3.39(Si3.95Al0.05)Σ4 20.31F0.18. The simplified formula is: Zn2Ti4- x Si4O14(OH,H2O,□)8 ( x < 1). Vigrishinite is triclinic, space group P , a = 8.743(9), b = 8.698(9), c = 11.581(11)Å, α = 91.54(8)°, β = 98.29(8)°, γ = 105.65(8)°, V = 837.2(1.5) Å3, Z = 2. The strongest reflections in the X-ray powder pattern ( d, Å, - I[ hkl]) are: 11.7-67[001], 8.27-50[100], 6.94-43[01, 10], 5.73-54[11, 002], 4.17-65[020, 2, 200], and 2.861-100[30, 22, 004, 11]. The crystal structure model was obtained on a single crystal, R = 0.171. Vigrishinite and murmanite are close in the structure of the TiSiO motif, but

  11. The decays B → Ψ(2S)π(K),ηc(2S)π(K) in the pQCD approach beyond the leading-order

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qing

    2017-09-01

    Two body B meson decays involving the radially excited meson ψ (2 S) /ηc (2 S) in the final states are studied by using the perturbative QCD (pQCD) approach. We find that: (a) The branching ratios for the decays involving a K meson are predicted as Br (B+ → ψ (2 S)K+) = (5.37-2.22+1.85) ×10-4, Br (B0 → ψ (2 S)K0) = (4.98-2.06+1.71) ×10-4, Br (B+ →ηc (2 S)K+) = (3.54-3.09+3.18) ×10-4, which are consistent with the present data when the next-to-leading-order (NLO) effects are included. Here the NLO effects are from the vertex corrections and the NLO Wilson coefficients. The large errors in the decay B+ →ηc (2 S)K+ are mainly induced by using the decay constant f ηc (2 S) =0.243-0.111+0.079 GeV with large uncertainties. (b) While there seems to be some room left for other higher order corrections or the non-perturbative long distance contributions in the decays involving a π meson, Br (B+ → ψ (2 S)π+) = (1.17-0.50+0.42) ×10-5, Br (B0 → ψ (2 S)π0) =0.54-0.23+0.20 ×10-5, which are smaller than the present data. The results for other decays can be tested via running LHCb and forthcoming Super-B experiments. (c) There is no obvious evidence of the direct CP violation being seen in the decays B → ψ (2 S) π (K) ,ηc (2 S) π (K) in the present experiments, which is supported by our calculations. If a few percent value is confirmed in the future, this would definitely indicate the existence of new physics.

  12. Phase and Physicochemical Properties Diagrams of Quaternary System Li2B4O7 + Na2B4O7 + Mg2B6O11 + H2O

    NASA Astrophysics Data System (ADS)

    Wang, Shi-qiang; Du, Xue-min; Jing, Yan; Guo, Ya-fei; Deng, Tian-long

    2017-12-01

    The phase and physicochemical properties diagrams of the quaternary system (Li2B4O7 + Na2B4O7 + Mg2B6O11) at 288.15 K and 0.1 MPa were constructed using the solubilities, densities, and refractive indices measured. In the phase diagrams of the system there are one invariant point, three univariant isothermic dissolution curves, and three crystallization regions corresponding to Li2B4O7 · 3H2O, Na2B4O7 · 10H2O, and Mg2B6O11 · 15H2O, respectively. The solution density, refractive index of the quaternary system changes regularly with the increasing of Li2B4O7 concentration. The calculated values of density and refractive index using empirical equations of the quaternary system are in good agreement with the experimental values.

  13. Tellurite‐Squarate Driven Assembly of a New Family of Nanoscale Clusters Based on (Mo2O2S2)2+

    PubMed Central

    Purcell, Jamie W.; Miras, Haralampos N.; Long, De‐Liang; Markopoulou, Panagiota

    2017-01-01

    Abstract The preparation and characterization of a new family of four polyoxothiometalate (POTM) clusters are reported, with varying size and complexity, based upon the dimeric [Mo2O2S2(H2O)6]2+ cation with the general formula (NMe4)aKb[(Mo2O2S2)c(TeO4)d(C4O4)e(OH)f] where a,b,c,d,e,f={1,7,14,2,4,10}=1, {Mo28Te2}; {2,26,36,12,10,48}=2, {Mo72Te12}; {0,11,15,3,3,21}=3, {Mo30Te3}; {2,6,12,2,4,16}=4, {Mo24Te2}. The incorporation of tellurite anions allowed the fine tuning of the templating and bridging of the available building blocks, leading to new topologies of increased complexity. The structural diversity of this family of compounds ranges from the highly symmetrical cross‐shaped {Mo24Te2} to the stacked ring structure of {Mo72Te12}, which is the largest tellurium‐containing POTM cluster reported so far. Also a detailed experimental analysis revealed that the pH isolation window extends from acidic to basic values. ESI‐MS analyses not only confirmed the stability of this family in solution but also revealed the stability of the observed virtual building blocks. PMID:28548217

  14. Kinetics and mechanism of hydration of o-thioquinone methide in aqueous solution. Rate-determining protonation of sulfur.

    PubMed

    Chiang, Yvonne; Kresge, A Jerry; Sadovski, Oleg; Zhan, Hao-Qiang

    2005-03-04

    o-Thioquinone methide, 2, was generated in aqueous solution by flash photolysis of benzothiete, 1, and rates of hydration of this quinone methide to o-mercaptobenzyl alcohol, 3, were measured in perchloric acid solutions, using H2O and D2O as the solvent, and also in acetic acid and tris(hydroxymethyl)methylammonium ion buffers, using H2O as the solvent. The rate profiles constructed from these data show hydronium-ion-catalyzed and uncatalyzed hydration reaction regions, just like the rate profiles based on literature data for hydration of the oxygen analogue, o-quinone methide, of the presently examined substrate. Solvent isotope effects on hydronium-ion catalysis of hydration for the two substrates, however, are quite different: k(H)/k(D) = 0.42 for the oxygen quinone methide, whereas k(H)/k(D) = 1.66 for the sulfur substrate. The inverse nature (k(H)/k(D) < 1) of the isotope effect in the oxygen system indicates that this reaction occurs by a preequilibrium proton-transfer reaction mechanism, with protonation of the substrate on its oxygen atom being fast and reversible and capture of the benzyl-type carbocationic intermediate so formed being rate-determining. The normal direction (k(H)/k(D) > 1) of the isotope effect in the sulfur system, on the other hand, suggests that protonation of the substrate on its sulfur atom is in this case rate-determining, with carbocation capture a fast following step. A semiquantitative argument supporting this hypothesis is presented.

  15. A new Ca3MgSi2O8 compound and some of its thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Bao, Xinjian; Zhang, Yanyao; Zhang, Zhigang; Zhang, Lifei; Liu, Xiaoyang; Dong, Jianjun; Liu, Xi

    2017-11-01

    A new calcium magnesium orthosilicate with the composition Ca3MgSi2O8 was synthesized by a solid-state reaction process at 1.2 GPa and 1373 K for 7 days. We refined the crystallographic structure of this new compound using single-crystal X-ray data, and obtained some of its thermodynamic properties by performing some first-principles simulations. Our single-crystal X-ray analysis has shown that this new compound is monoclinic with the space group C2/c, and its unit-cell parameters are a = 9.344(4) Å, b = 5.3308(3) Å, c = 13.290(6) Å, α = 90°, β = 92.072(7)°, γ = 90°, and V = 658.7(6) Å3. The compressibility of this new compound was studied with the CASTEP code using density functional theory and planewave pseudopotential technique, which led to an isothermal bulk modulus B0 of 99(2) GPa with a pressure derivative B0‧ of 3.5(5). The phonon dispersions and vibrational density of the states (VDoS) of this new compound were calculated by using density functional perturbation theory. Subsequently, the VDoS was combined with a quasi-harmonic approximation to compute the isobaric heat capacity (Cp) and standard vibrational entropy (S298SUP>0), yielding Cp = 3.927(2) × 102 - 1.159(6) × 103T-0.5 - 1.054(4) × 107T-2 + 1.362(8) × 109T-3 J mol-1 K-1 for the T range of 298-1000 K and S2980 = 270.5(60) J mol-1 K-1.

  16. Mössbauer characterization and in situ monitoring of thermal decomposition of potassium ferrate(VI), K2FeO4 in static air conditions.

    PubMed

    Machala, Libor; Zboril, Radek; Sharma, Virender K; Filip, Jan; Schneeweiss, Oldrich; Homonnay, Zoltán

    2007-04-26

    Solid orthorhombic crystals of potassium ferrate(VI) (K(2)FeO(4)) of a high-chemical purity (>99.0%) were characterized by low-temperature (1.5-5 K), high-temperature (463-863 K), and in-field (1.5 K/3 T) Mössbauer spectroscopy. Potassium ferrate(VI) reveals a Néel magnetic transition temperature (TN) of approximately 3.8 K and a saturation hyperfine magnetic field of 13.8 T at 1.5 K. Spectral line intensities recorded below TN in an external magnetic field of 3 T manifest a perfect antiferromagnetic ordering. For the in situ monitoring of the thermal behavior of K(2)FeO(4), high-temperature Mössbauer data were combined with those obtained from thermogravimetry, differential scanning calorimetry, and variable-temperature X-ray diffraction measurements. Such in situ approach allowed the identification of the reaction products and intermediates and yielded the first experimental evidence for the participation of CO2 in the decomposition process. As the primary conversion products, KFeO(2) and two potassium oxides in equivalent molar ratio, KO2 and K(2)O, were suggested. However, the KO2 phase is detectable with difficulty as it reacts very quickly with CO2 from air resulting in the formation of K(2)CO(3). The presented decomposition model is consistent with thermogravimetric data giving the mass loss of 8.0%, which corresponds to the participation of 1/6 mol of CO2 and liberation of 3/4 mol of O2 per 1 mol of K(2)FeO(4) (K(2)FeO(4) + 1/6CO2 --> KFeO(2) + 1/3K(2)O + 1/6K(2)CO(3) + 3/4O2). An explanation of the multistage reaction mechanism has an important practical impact for the optimization of the solid-state synthesis of potassium ferrate(VI).

  17. Kasatkinite, Ba2Ca8B5Si8O32(OH)3 · 6H2O6, a new mineral from the Bazhenovskoe deposit, the Central Urals, Russia

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Filinchuk, Ya. E.; Zadov, A. E.; Kononkova, N. N.; Epanchintsev, S. G.; Kaden, P.; Kutzer, A.; Göttlicher, J.

    2013-12-01

    A new mineral, kasatkinite, Ba2Ca8B5Si8O32(OH)3 · 6H2O, has been found at the Bazhenovskoe chrysotile asbestos deposit, the Central Urals, Russia in the cavities in rhodingite as a member of two assemblages: (l) on prehnite, with pectolite, calcite, and clinochlore; and (2) on grossular, with diopside and pectolite. Kasatkinite occurs as spherulites or bunches up to 3 mm in size, occasionally combined into crusts. Its individuals are acicular to hair-like, typically split, with a polygonal cross section, up to 0.5 mm (rarely, to 6 mm) in length and to 20 μm in thickness. They consist of numerous misoriented needle-shaped subindividuals up to several dozen μm long and no more than 1 μm thick. Kasatkinite individuals are transparent and colorless; its aggregates are snow white. The luster is vitreous or silky. No cleavage was observed; the fracture is uneven or splintery for aggregates. Individuals are flexible and elastic. The Mohs' hardness is 4-4.5. D meas = 2.95(5), D calc = 2.89 g/cm3. Kasatkinite is optically biaxial (+), α = 1.600(5), β = 1.603(2), γ = 1.626(2), 2 V meas = 30(20)°, 2 V calc = 40°. The IR spectrum is given. The 11B MAS NMR spectrum shows the presence of BO4 in the absence of BO3 groups. The chemical composition of kasatkinite (wt %; electron microprobe, H2O by gas chromatography) is as follows: 0.23 Na2O, 0.57 K2O, 28.94 CaO, 16.79 BaO, 11.57 B2O3, 0.28 Al2O3, 31.63 SiO2, 0.05 F, 9.05 H2O, -0.02 -O=F2; the total is 99.09. The empirical formula (calculated on the basis of O + F = 41 apfu, taking into account the TGA data) is: Na0.11K0.18Ba1.66Ca7.84B5.05Al0.08Si8.00O31.80(OH)3.06F0.04 · 6.10H2O. Kasatkinite is monoclinic, space group P21/ c, P2/ c, or Pc; the unit-cell dimensions are a = 5.745(3), b = 7.238(2), c = 20.79 (1) Å, β = 90.82(5)°, V = 864(1) Å3, Z = 1. The strongest reflections ( d Å- I[ hkl]) in the X-ray powder diffractions pattern are: 5.89-24[012], 3.48-2.1[006], 3.36-24[114]; 3.009-100[, 121, ], 2

  18. Studies on the oxidation reaction of tyrosine (Tyr) with H2O2 catalyzed by horseradish peroxidase (HRP) in alcohol-water medium by spectrofluorimetry and differential spectrophotometry.

    PubMed

    Tang, Bo; Wang, Yan; Liang, Huiling; Chen, Zhenzhen; He, Xiwen; Shen, Hanxi

    2006-03-01

    An oxidation reaction of tyrosine (Tyr) with H(2)O(2) catalyzed by horseradish peroxidase (HRP) was studied by spectrofluorimetry and differential spectrophotometry in the alcohol(methanol, ethanol, 1-propanol and isopropanol)-water mutual solubility system. Compared with the enzymatic-catalyzed reaction in the water medium, the fluorescence intensities of the product weakened, even extinguished. Because the addition of alcohols made the conformation of HRP change, the catalytic reaction shifted to the side of polymerization and the polymer (A(n)H(2), n>or=3) exhibited no fluorescence. The four alcohols cannot deactivate HRP. Moreover isopropanol activated HRP remarkably.

  19. Ba2NiOsO6: a Dirac-Mott insulator with ferromagnetism near 100 K

    NASA Astrophysics Data System (ADS)

    Feng, Hl; Calder, S.; Ghimire, M.; Yuan, Yh; Shirako, Y.; Tsujimoto, Y.; Matsushita, Y.; Hu, Z.; Kuo, Cy; Tjeng, Lh; Pi, Tw; Soo, Yl; He, Jf; Tanaka, M.; Katsuya, Y.; Richte, M.; Yamaura, Kazunari

    The ferromagnetic semiconductor Ba2NiOsO6(Tmag 100 K) was synthesized at 6 GPa and 1500 ° C. It crystallizes into a double perovskite structure [Fm-3 m; a = 8.0428(1)], where the Ni2+ and Os6+ ions are perfectly ordered at the perovskite B-site. We show that the spin-orbit coupling of Os6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21-kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag<180 K), the spin-gapless semiconductor Mn2CoAl (Tmag 720 K), and the ferromagnetic insulators EuO (Tmag 70 K) and Bi3Cr3O11(Tmag 220 K). It is also qualitatively different from known ferrimagnetic insulator/semiconductors, which are characterized by an antiparallel spin arrangement. Our report of cubic Ba2NiOsO6 heralds a new class of FM insulator oxides, which may be useful in developing a practical magnetic semiconductor that can be employed in spintronic and quantum magnetic devices.

  20. Orbital Ordering Transition in La_4Ru_2O_10 probed by O K-edge X-ray Absorption

    NASA Astrophysics Data System (ADS)

    Denlinger, J. D.; Rossnagel, Kai; Allen, J. W.; Khalifah, P.; Mandrus, D.; Cava, R. J.

    2004-03-01

    The layered ruthenate compound La_4Ru_2O_10 undergoes a first order monoclinic-to-triclinic structural phase transition at 160 K. An accompanying loss of the Ru local moment gives evidence for a full orbital ordering transition in which the Ru d_yz orbitals become completely unoccupied in the low temperature phase.(P. Khalifah et al.), Science 297, 2237 (2002). Via hybridization of Ru t_2g and O 2p orbitals this temperature-dependent Ru orbital ordering can be indirectly probed using polarized O K-edge x-ray absorption spectroscopy (XAS). O 1s core-level energy shifts allow O site-specific separation of Ru t_2g hybridizations. Identification of O sites is accomplished using polarized XAS angular dependence as well as by O 2p valence PDOS obtained from site-selective soft x-ray emission. Distinct XAS energy and intensity changes are observed upon cooling through the phase transition and are rationalized within the framework of the complete orbital ordering scenario. Supported by the U.S. NSF at U. Mich. (DMR-03-02825) and by the DOE at the Advanced Light Source (DE-AC03-76SF00098).

  1. Partition of Ni between olivine and sulfide: the effect of temperature, f_{{text{O}}_{text{2}} } and f_{{text{S}}_{text{2}} }

    NASA Astrophysics Data System (ADS)

    Fleet, M. E.; Macrae, N. D.

    1987-03-01

    The experimental distribution coefficient for Ni/ Fe exchange between olivine and monosulfide (KD3) is 35.6±1.1 at 1385° C, f_{{text{O}}_{text{2}} } = 10^{ - 8.87} ,f_{{text{S}}_{text{2}} } = 10^{ - 1.02} , and olivine of composition Fo96 to Fo92. These are the physicochemical conditions appropriate to hypothesized sulfur-saturated komatiite magma. The present experiments equilibrated natural olivine grains with sulfide-oxide liquid in the presence of a (Mg, Fe)-alumino-silicate melt. By a variety of different experimental procedures, K D3 is shown to be essentially constant at about 30 to 35 in the temperature range 900 to 1400° C, for olivine of composition Fo97 to FoO, monosulfide composition with up to 70 mol. % NiS, and a wide range of f_{{text{O}}_{text{2}} } and f_{{text{S}}_{text{2}} }.

  2. X-ray irradiation activates K+ channels via H2O2 signaling.

    PubMed

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  3. A First-Principles Theoretical Study on the Thermoelectric Properties of the Compound Cu5AlSn2S8

    NASA Astrophysics Data System (ADS)

    Li, Weijian; Zhou, Chenyi; Li, Liangliang

    2016-03-01

    A new compound of Cu5AlSn2S8, which contained earth-abundant and environment-friendly elements and had a diamond-like crystal structure, was designed, and its electronic structure and thermoelectric transport properties from 300 K to 700 K were investigated by first-principles calculations, Boltzmann transport equations, and a modified Slack's model. The largest power factors of Cu5AlSn2S8 at 700 K were 47.5 × 1010 W m-1 K-2 s-1 and 14.7 × 1010 W m-1 K-2 s-1 for p- and n-type semiconductors, respectively. The lattice thermal conductivity of Cu5AlSn2S8 was calculated with its shear modulus and isothermal bulk modulus, which were also obtained by first-principles calculations. The lattice thermal conductivity was 0.9-2.2 W m-1 K-1 from 300 K to 700 K, relatively low among thermoelectric compounds. This theoretical study showed that Cu5AlSn2S8 could be a potential thermoelectric material.

  4. Phase equilibria in the quasiternary system Ag{sub 2}S–Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3} and optical properties of (Ga{sub 55}In{sub 45}){sub 2}S{sub 300}, (Ga{sub 54.59}In{sub 44.66}Er{sub 0.75}){sub 2}S{sub 300} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivashchenko, I.A., E-mail: Ivashchenko.Inna@eenu.edu.ua; Danyliuk, I.V.; Olekseyuk, I.D.

    The quasiternary system Ag{sub 2}S–Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3} was investigated by differential thermal, X-ray diffraction analyses. The phase diagram of the Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3} system and nine polythermal sections, isothermal section at 820 K and the liquidus surface projection were constructed. The existence of the large solid solutions ranges of binary and ternary compounds was established. The range of the existence of the quaternary phase AgGa{sub x}In{sub 5−x}S{sub 8} (2.25≤x≤2.85) at 820 K was determined. The single crystals (Ga{sub 55}In{sub 45}){sub 2}S{sub 300} and (Ga{sub 54.59}In{sub 44.66}Er{sub 0.75}){sub 2}S{sub 300} were grown by a directional crystallization methodmore » from solution-melt. Optical absorption spectra in the 500–1600 nm range were recorded. The luminescence of the (Ga{sub 54.59}In{sub 44.66}Er{sub 0.75}){sub 2}S{sub 300} single crystal shows a maximum at 1530 nm for the excitation wavelengths of 532 and 980 nm at 80 and 300 K. - Graphical abstract: Isothermal section of the quasiternary system Ag{sub 2}S–Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3} at 820 K and normalized photoluminescence spectra of the single crystal (Ga{sub 54.59}In{sub 44.66}Er{sub 0.75}){sub 2}S{sub 300} at 300 K. - Highlights: • Isothermal section at 820 K, liquidus surface projection were built for Ag{sub 2}S–Ga{sub 2}S{sub 3}–In{sub 2}S{sub 3}. • Optical properties of single crystals were studied.« less

  5. Improvement in top-gate MoS2 transistor performance due to high quality backside Al2O3 layer

    NASA Astrophysics Data System (ADS)

    Bolshakov, Pavel; Zhao, Peng; Azcatl, Angelica; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.

    2017-07-01

    A high quality Al2O3 layer is developed to achieve high performance in top-gate MoS2 transistors. Compared with top-gate MoS2 field effect transistors on a SiO2 layer, the intrinsic mobility and subthreshold slope were greatly improved in high-k backside layer devices. A forming gas anneal is found to enhance device performance due to a reduction in the charge trap density of the backside dielectric. The major improvements in device performance are ascribed to the forming gas anneal and the high-k dielectric screening effect of the backside Al2O3 layer. Top-gate devices built upon these stacks exhibit a near-ideal subthreshold slope of ˜69 mV/dec and a high Y-Function extracted intrinsic carrier mobility (μo) of 145 cm2/V.s, indicating a positive influence on top-gate device performance even without any backside bias.

  6. Characterization of the activity of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-be nzopyran-6-yl-hydrogen phosphate] potassium salt in hydroxyl radical elimination.

    PubMed

    Tomita, T; Kashima, M; Tsujimoto, Y

    2000-03-01

    The effect of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H -1-benzopyran-6-yl-hydrogen phosphate] potassium salt (EPC-K1) on hydroxyl radical (*OH) elimination was studied using electron spin resonance (ESR) and spectrophotometric experiments. The addition of EPC-K, and *OH scavengers eliminated the *OH generated from Cu2+/H2O2, Fe2+/H2O2 and H2O2/UV-irradiation reaction systems. However, in competitive reactions using different concentrations of a spin-trap agent, the addition of the *OH scavenger altered the IC50 values, whereas the addition of EPC-K1 and a metal chelater did not change the value in the Cu2+/H2O2 and Fe2+/H2O2 reaction systems. The addition of EPC-K1 and metal chelater changed the ESR signal for free Cu2+. The spectrophotometric experiments confirmed that the addition of EPC-K1 and metal chelater altered the absorption spectra due to CuCl2 and FeSO4, whereas the *OH scavenger did not alter the spectra. Therefore, it was demonstrated that EPC-K, has the ability both to scavenge *OH directly and to inhibit the generation of *OH by the chelation of Cu2+ and Fe2+.

  7. Mössbauer study and magnetic properties of MgFe2O4 crystallized from the glass system B2O3/K2O/P2O5/MgO/Fe2O3

    NASA Astrophysics Data System (ADS)

    Shabrawy, S. El; Bocker, C.; Miglierini, M.; Schaaf, P.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2017-01-01

    An iron containing magnesium borate glass with the mol% composition 51.7 B2O3/9.3 K2O /1 P2O5/27.6MgO/10.4Fe2O3was prepared by the conventional melts quenching method followed by a thermal treatment process at temperatures in the range from 530 to 604 °C.The thermally treated samples were characterized by X-ray diffraction, scanning and transmission electron microscopy. It was shown that superparamagnetic MgFe2O4 nanoparticles were formed during thermal treatment. The size of the spinel type crystals was in the range from 6 to 15 nm. Mössbauer spectra of the powdered glass ceramic samples and the extracted nanoparticles after dissolving the glass matrix in diluted acid were recorded at room temperature. The deconvolution of the spectra revealed the crystallization of two spinel phases MgFe2O4 (as a dominant phase) and superparamagnetic maghemite, γ-Fe2O3 (as a secondary phase). Room temperature magnetic measurements showed that, increasing the crystallization temperature changed the superparamagnetic behavior of the samples to ferrimagnetic behavior. The Curie temperatures of the samples were measured and showed a higher value than that of the pure bulk MgFe2O4.

  8. β-K3Fe(MoO4)2Mo2O7

    PubMed Central

    Souilem, Amira; Zid, Mohamed Faouzi; Driss, Ahmed

    2014-01-01

    The title compound, tripotassium iron(III) bis­(ortho­molyb­date) dimolybdate, was obtained by a solid-state reaction. The main structural building units are one FeO6 octa­hedron, two MoO4 tetra­hedra and one Mo2O7 dimolybdate group, all with point group symmetries m. These units are linked via corner-sharing to form ribbons parallel to [010]. The three K+ cations are located between the ribbons on mirror planes and have coordination numbers of 10 and 12. Two O atoms of one of the MoO4 tetra­hedra of the dimolybdate group are disordered over two positions in a 0.524 (11):0.476 (11) ratio. The structure of the title compound is compared briefly with that of Rb3FeMo4O15. PMID:25161509

  9. Synthesis and piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3-xSr2ZrTiO6 ceramics

    NASA Astrophysics Data System (ADS)

    Onishi, Ryo; Ogawa, Hirotaka; Iida, Daiki; Kan, Akinori

    2017-10-01

    The effects of Sr2ZrTiO6 (SZT) addition on the piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT)-xSZT ceramics were characterized in this study. The X-ray powder diffraction (XRPD) profiles and Raman spectra of the ceramics in the composition range of 0-0.02 implies the presence of morphotropic phase boundary (MPB) which consists of the rhombohedral and tetragonal phases. Moreover, the temperature dependence of dielectric loss indicated a presence of the ferroelectric-relaxor transition temperature (T F-R) of around 75 °C for x = 0.005 and the temperature dependence shifted to a lower temperature at x = 0.01. The temperature dependence of the P-E hysteresis loop of the ceramics at the compositions of x = 0.005-0.02 showed pinched hysteresis loops above T F-R. Regarding the piezoelectric constant (d 33), it was increased by SZT addition in the MPB region (x = 0-0.01) and the highest d 33 of 202 pC/N was obtained at the composition of x = 0.0025. The S-E unipolar loop was also evaluated, the strain of the ceramic increased up to x = 0.02; and the highest d33* = 436 pm/V was obtained at the composition of x = 0.02.

  10. Speciation in the Fe(III)-Cl(I)-H2O System at 298.15 K, 313.15 K, and 333.15 K (25 °C, 40 °C, and 60 °C)

    NASA Astrophysics Data System (ADS)

    Jamett, Nathalie E.; Hernández, Pía C.; Casas, Jesús M.; Taboada, María E.

    2018-02-01

    This article presents the results on speciation of ferric iron generated by the dissolution of chemical reagent hydromolysite (ferric chloride hexahydrate, FeCl3:6H2O) in water at 298.15 K, 313.15 K, and 333.15 K (25 °C, 40 °C, and 60 °C). Experiments were performed with a thermoregulated system up to the equilibrium point, as manifested by solution pH. Solution samples were analyzed in terms of concentration, pH, and electrical conductivity. Measurements of density and refractive index were obtained at different temperatures and iron concentrations. A decrease of pH was observed with the increase in the amount of dissolved iron, indicating that ferric chloride is a strong electrolyte that reacts readily with water. Experimental results were modeled using the hydrogeochemical code PHREEQC in order to obtain solution speciation. Cations and neutral and anion complexes were simultaneously present in the system at the studied conditions according to model simulations, where dominant species included Cl-, FeCl2+, FeCl2 +, FeOHCl 2 0 , and H+. A decrease in the concentration of Cl- and Fe3+ ions took place with increasing temperature due to the association of Fe-Cl species. Standard equilibrium constants for the formation of FeOHCl 2 0 obtained in this study were log Kf0 = -0.8 ± 0.01 at 298.15 K (25 °C), -0.94 ± 0.02 at 313.15 K (40 °C), and -1.03 ± 0.01 at 333.15 K (60 °C).

  11. Kinetic and thermochemical studies of the ClO + ClO + M ↔ Cl2O2 + M reaction

    NASA Astrophysics Data System (ADS)

    Ferracci, V.; Rowley, D. M.

    2009-12-01

    Chlorine monoxide (ClO) radicals play a crucial role in polar ozone destruction events and the ClO dimer cycle has been identified as one of the most effective ozone-depleting catalytic cycles operating in the polar winter. A recent paper by von Hobe et al.1 highlighted significant inconsistencies between laboratory results, theoretical calculations and field observations concerning the ClO dimer ozone destruction cycle. This work has investigated the temperature dependence of the equilibrium constant of one of the key reactions in this cycle, ClO + ClO + M ↔ Cl2O2 + M (1, -1), by means of laser flash photolysis coupled with time-resolved UV absorption spectroscopy. ClO radicals were generated via laser flash photolysis of Cl2/Cl2O mixtures in synthetic air. The concentration of radicals was monitored via UV absorption spectroscopy: the use of a Charge Coupled Device (CCD) detector allowed time resolution over a broad range of wavelengths. The equilibrium constant Keq was determined as the ratio of the rate constants of the forward and reverse reaction (1, -1) over the T range 256 - 312 K. Second Law and Third Law analytical methods were employed to determine the standard enthalpy and entropy changes of reaction 1, ΔrH° and ΔrS°, from the measured equilibrium constants. The values obtained from the Second Law analysis (ΔrH° = - 80.8 ± 2.2 kJ mol-1; ΔrS° = - 168.4 ± 7.9 J K-1 mol-1) are in good agreement with previous work 2 but greater in magnitude than current NASA recommendations 3. It was also found that, under typical laboratory conditions employed in this work, [ClO] decay exhibits pure second order kinetics at T ≤ 250 K. A higher rate constant for the ClO recombination reaction (1) was also observed in this work (compared to the NASA evaluation 3), implying a higher Keq and a different partitioning between ClO and Cl2O2, shifting towards the dimer. 1. M. Von Hobe, R. J. Salawitch, T. Canty, H. Keller-Rudek, G. K. Moortgat, J.-U. Grooss, R. M

  12. S-Doped Sb2O3 Nanocrystal: an Efficient Visible-Light Catalyst for Organic Degradation

    NASA Astrophysics Data System (ADS)

    Xue, Hun; Lin, Xinyi; Chen, Qinghua; Qian, Qingrong; Lin, Suying; Zhang, Xiaoyan; Yang, Da-Peng; Xiao, Liren

    2018-04-01

    The S-doped Sb2O3 nanocrystals were successfully synthesized using SbCl3 and thioacetamide (TAA) as precursors via a facile one-step hydrothermal method. The effects of pH of the precursor reaction solution on the product composition and property were determined. The results indicated that the doping amount of S could be tuned by adjusting the pH of the precursor solution. Furthermore, the S entered into the interstitial site of Sb2O3 crystals as S2-, which broadened the absorption wavelength range of the Sb2O3 nanocrystal. The S-doped Sb2O3 exhibited an excellent visible-light-driven photocatalytic activity in the decomposition of methyl orange and 4-phenylazophenol. Last, a possible photocatalytic mechanism of the S-doped Sb2O3 under visible light irradiation was proposed.

  13. Thermochemistry and Kinetics of the Cl+O2 Association Reaction

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Kreutter, K. D.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Laser flash photolysis of Cl2/O2 mixtures has been employed in conjunction with Cl((sup 2)P(sub 3/2)) detection by time-resolved fluorescence spectroscopy to investigate equilibration kinetics for the reactions Cl + O2 + O is in equilibrium with ClOO + O2 at temperatures of 181-200 K and O2 pressures of 15-40 Torr. The third-order rate coefficient for the association reaction at 186.5 +/- 5.5 K is (8.9 +/- 2.9) x 10(exp -33) cm(exp 6) molecule(exp -2) s(exp -1) and the equilibrium constant (K(p)) at 185.4 K is 18.9 atm(exp -1) (factor of 1.7 uncertainty). A third law analysis of our data leads to a value for the Cl-OO bond dissociation energy of 4.76 +/- 0.49 kcal mol(exp -1).

  14. Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems

    NASA Astrophysics Data System (ADS)

    Kale, G. M.; Fray, D. J.

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = -470,768 + 171.77T (±20) J mol-1 (800 ≤ T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = -523,190 + 191.07T (±100) J mol-1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H{298/o} = -239.8 (±0.05) kJ mol-1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.

  15. Study of the High Resolution Spectrum of the S18O16O Molecule in the Hot 2ν2 + ν3 - ν2 Band

    NASA Astrophysics Data System (ADS)

    Ziatkova, A. G.; Gromova, O. V.; Ulenikov, O. N.

    2018-05-01

    The hot 2ν2 + ν3 - ν2 hybrid band of the S18O16O molecule is assigned in the range 1800-1900 cm-1 for the first time. The spectrum is analyzed based on the method of combination differences. 56 energy levels (Jmax = 15, {K}a^{max}=12 ) are determined based on the experimental data obtained. Rotational parameters of the (021) vibrational state are determined.

  16. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review.

    PubMed

    Zhao, Yufei; Zhang, Yuxia; Yang, Zhiyu; Yan, Yiming; Sun, Kening

    2013-08-01

    Scientists increasingly witness the applications of MoS 2 and MoO 2 in the field of energy conversion and energy storage. On the one hand, MoS 2 and MoO 2 have been widely utilized as promising catalysts for electrocatalytic or photocatalytic hydrogen evolution in aqueous solution. On the other hand, MoS 2 and MoO 2 have also been verified as efficient electrode material for lithium ion batteries. In this review, the synthesis, structure and properties of MoS 2 and MoO 2 are briefly summarized according to their applications for H 2 generation and lithium ion batteries. Firstly, we overview the recent advancements in the morphology control of MoS 2 and MoO 2 and their applications as electrocatalysts for hydrogen evolution reactions. Secondly, we focus on the photo-induced water splitting for H 2 generation, in which MoS 2 acts as an important co-catalyst when combined with other semiconductor catalysts. The newly reported research results of the significant functions of MoS 2 nanocomposites in photo-induced water splitting are presented. Thirdly, we introduce the advantages of MoS 2 and MoO 2 for their enhanced cyclic performance and high capacity as electrode materials of lithium ion batteries. Recent key achievements in MoS 2 - and MoO 2 -based lithium ion batteries are highlighted. Finally, we discuss the future scope and the important challenges emerging from these fascinating materials.

  17. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  18. High temperature kinetic study of the reactions H + O2 = OH + O and O + H2 = OH + H in H2/O2 system by shock tube-laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Dewitt, Kenneth J.

    1995-01-01

    The reactions: (1) H + O2 = OH + O; and (2) O + H2 = OH + H are the most important elementary reactions in gas phase combustion. They are the main chain-branching reaction in the oxidation of H2 and hydrocarbon fuels. In this study, rate coefficients of the reactions and have been measured over a wide range of composition, pressure, density and temperature behind the reflected shock waves. The experiments were performed using the shock tube - laser absorption spectroscopic technique to monitor OH radicals formed in the shock-heated H2/O2/Ar mixtures. The OH radicals were detected using the P(1)(5) line of (0,0) band of the A(exp 2) Sigma(+) from X(exp 2) Pi transition of OH at 310.023 nm (air). The data were analyzed with the aid of computer modeling. In the experiments great care was exercised to obtain high time resolution, linearity and signal-to-noise. The results are well represented by the Arrhenius expressions. The rate coefficient expression for reaction (1) obtained in this study is k(1) = (7.13 +/- 0.31) x 10(exp 13) exp(-6957+/- 30 K/T) cu cm/mol/s (1050 K less than or equal to T less than or equal to 2500 K) and a consensus expression for k(1) from a critical review of the most recent evaluations of k(1) (including our own) is k(1) = 7.82 x 10(exp 13) exp(-7105 K/T) cu cm/mol/s (960 K less than or equal to T less than or equal to 5300 K). The rate coefficient expression of k(2) is given by k(2) = (1.88 +/- 0.07) x 10(exp 14) exp(-6897 +/- 53 K/T) cu cm/mol/s (1424 K less than or equal to T less than or equal to 2427 K). For k(1), the temperature dependent A-factor and the correlation between the values of k(1) and the inverse reactant densities were not found. In the temperature range of this study, non-Arrhenius expression of k(2) which shows the upward curvature was not supported.

  19. Reversible [4Fe-3S] cluster morphing in an O(2)-tolerant [NiFe] hydrogenase.

    PubMed

    Frielingsdorf, Stefan; Fritsch, Johannes; Schmidt, Andrea; Hammer, Mathias; Löwenstein, Julia; Siebert, Elisabeth; Pelmenschikov, Vladimir; Jaenicke, Tina; Kalms, Jacqueline; Rippers, Yvonne; Lendzian, Friedhelm; Zebger, Ingo; Teutloff, Christian; Kaupp, Martin; Bittl, Robert; Hildebrandt, Peter; Friedrich, Bärbel; Lenz, Oliver; Scheerer, Patrick

    2014-05-01

    Hydrogenases catalyze the reversible oxidation of H(2) into protons and electrons and are usually readily inactivated by O(2). However, a subgroup of the [NiFe] hydrogenases, including the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha, has evolved remarkable tolerance toward O(2) that enables their host organisms to utilize H(2) as an energy source at high O(2). This feature is crucially based on a unique six cysteine-coordinated [4Fe-3S] cluster located close to the catalytic center, whose properties were investigated in this study using a multidisciplinary approach. The [4Fe-3S] cluster undergoes redox-dependent reversible transformations, namely iron swapping between a sulfide and a peptide amide N. Moreover, our investigations unraveled the redox-dependent and reversible occurence of an oxygen ligand located at a different iron. This ligand is hydrogen bonded to a conserved histidine that is essential for H(2) oxidation at high O(2). We propose that these transformations, reminiscent of those of the P-cluster of nitrogenase, enable the consecutive transfer of two electrons within a physiological potential range.

  20. Stability of cefozopran hydrochloride in aqueous solutions.

    PubMed

    Zalewski, Przemysław; Skibiński, Robert; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Cielecka-Piontek, Judyta; Jelińska, Anna

    2016-01-01

    The influence of pH on the stability of cefozopran hydrochloride (CZH) was investigated in the pH range of 0.44-13.00. Six degradation products were identified with a hybrid ESI-Q-TOF mass spectrometer. The degradation of CZH as a result of hydrolysis was a pseudo-first-order reaction. As general acid-base hydrolysis of CZH was not occurred in the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffers, kobs = kpH because specific acid-base catalysis was observed. Specific acid-base catalysis of CZH consisted of the following reactions: hydrolysis of CZH catalyzed by hydrogen ions (kH+), hydrolysis of dications (k1H2O), monocations (k2H2O) and zwitter ions (k3H2O) and hydrolysis of zwitter ions (k1OH-) and monoanions (k2OH-) of CZH catalyzed by hydroxide ions. The total rate of the reaction was equal to the sum of partial reactions: [Formula: see text]. CZH similarly like other fourth generation cephalosporin was most stable at slightly acidic and neutral pH and less stable in alkaline pH. The cleavage of the β-lactam ring resulting from a nucleophilic attack on the carbonyl carbon in the β-lactam moiety is the preferred degradation pathway of β-lactam antibiotics in aqueous solutions.

  1. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  2. The electronic structure of Bi 2.0Sr 1.8La 0.3Ca 0.8Cu 2.1O 8+δ superconductors studied using ultraviolet and X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Borg, A.; Ellis, W.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-07-01

    Photoemission measurements on single crystals of La-doped 2212 (Bi 2.0Sr 1.8La 0.3Ca 0.8Cu 2.1O 8+δ) superconductors were carried out utilizing both synchrotron and Al K α (1486.6 eV) radiation. A quantitative analysis of the photoemission data in comparison with similar data for the undoped 2212 material indicates that the La atoms preferentially occupy the Sr sites in the SrO layer next to the BiO plane. Evidence of alternation of the electronic environment of the Bi atoms is found in the Bi 5d core level spectra which show a shoulder at ≈ 1.2 eV higher binding energy, presumably due to the partial substitution of trivalent La ions (La 3+) for divalent Sr ions (Sr 2+). As for the undoped 2212 material, the photoemission spectra reveal a clear Fermi level cut-off at room temperature, single component O ls core level emission, and a Cu 2p satellite to main line intensity ratio of 0.4.

  3. Structural and low temperature dielectric studies on Pb0.8Bi0.2Fe0.6Nb0.4O3 multiferroic solid solution

    NASA Astrophysics Data System (ADS)

    Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshapande, S. K.; Angadi, Basavaraj

    2018-05-01

    In this paper the structural and low temperature dielectric properties of Pb0.8Bi0.2Fe0.6Nb0.4O3 (PBFNO) multiferroic solid solution were reported. PBFNO multiferroic was synthesized by single step solid state reaction method. Calcination was carried out at 700 °/2hr with different sintering temperature (800 °C, 850 °C, 900 °C, 950 °C, 1000 °C and 1050 °C for 1 hr) and time duration (800 °C for 1 to 5 hr). Single phase was confirmed through room temperature (RT) X-ray Diffraction (XRD). It was found that sintering carried out at 800°C/3 hr gives single phase. Rietveld refined lattice parameters using monoclinic structure are: a = 5.6663(1) Å, b = 5.6694(1) Å, c = 4.0112(1) Å and β = 90.038(1)° with the average grain size as 2.987 µm. The dielectric properties studied over a wide range of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K). Dielectric constant and loss tangent exhibits frequency dispersion nature at low frequency region. AC conductivity increases with increase in temperature corresponds to negative temperature coefficient of resistance (NTCR) behaviour.

  4. Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation.

    PubMed

    Na, Junhong; Joo, Min-Kyu; Shin, Minju; Huh, Junghwan; Kim, Jae-Sung; Piao, Mingxing; Jin, Jun-Eon; Jang, Ho-Kyun; Choi, Hyung Jong; Shim, Joon Hyung; Kim, Gyu-Tae

    2014-01-07

    Diagnosing of the interface quality and the interactions between insulators and semiconductors is significant to achieve the high performance of nanodevices. Herein, low-frequency noise (LFN) in mechanically exfoliated multilayer molybdenum disulfide (MoS2) (~11.3 nm-thick) field-effect transistors with back-gate control was characterized with and without an Al2O3 high-k passivation layer. The carrier number fluctuation (CNF) model associated with trapping/detrapping the charge carriers at the interface nicely described the noise behavior in the strong accumulation regime both with and without the Al2O3 passivation layer. The interface trap density at the MoS2-SiO2 interface was extracted from the LFN analysis, and estimated to be Nit ~ 10(10) eV(-1) cm(-2) without and with the passivation layer. This suggested that the accumulation channel induced by the back-gate was not significantly influenced by the passivation layer. The Hooge mobility fluctuation (HMF) model implying the bulk conduction was found to describe the drain current fluctuations in the subthreshold regime, which is rarely observed in other nanodevices, attributed to those extremely thin channel sizes. In the case of the thick-MoS2 (~40 nm-thick) without the passivation, the HMF model was clearly observed all over the operation regime, ensuring the existence of the bulk conduction in multilayer MoS2. With the Al2O3 passivation layer, the change in the noise behavior was explained from the point of formation of the additional top channel in the MoS2 because of the fixed charges in the Al2O3. The interface trap density from the additional CNF model was Nit = 1.8 × 10(12) eV(-1) cm(-2) at the MoS2-Al2O3 interface.

  5. Growth Oscillatory Zoning in Erythrite, Ideally Co3(AsO4)2·8H2O: Structural Variations in Vivianite-Group Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Dhaliwal, Inayat

    The crystal structure of an oscillatory zoned erythrite sample from Aghbar mine, Bou Azzer, Morocco, was refined using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, Rietveld refinement, space group C2/m, and Z = 2. The crystal contains two sets of oscillatory zones that appear to have developed during epitaxial growth. The unit-cell parameters obtained are a = 10.24799(3) Å, b = 13.42490(7) Å, c = 4.755885(8) Å, β = 105.1116(3)°, and V = 631.680(4) Å3. The empirical formula for erythrite, obtained with electron-probe micro-analysis (EPMA), is [Co2.78Zn0.11Ni0.07Fe0.04]Σ3.00(AsO4)2·8H2O. Erythrite belongs to the vivianite-type structure that contains M1O2(H2O)4 octahedra and M22O6(H2O)4 octahedralmore » dimers that are linked by TO4 (T5+ = As or P) tetrahedra to form complex layers parallel to the (010) plane. These layers are connected by hydrogen bonds. The average [6] = 2.122(1) Å and average [6] = 2.088(1) Å. With space group C2/m, there are two solid solutions: M3(AsO4)2·8H2O and M3(PO4)2·8H2O where M2+ = Mg, Fe, Co, Ni, or Zn. In these As- and P-series, using data from this study and from the literature, we find that their structural parameters evolve linearly with V and in a nearly parallel manner despite of the large difference in size between P5+ (0.170 Å) and As5+ (0.355 Å) cations. Average [4], [6], and [6] distances increase linearly with V. The average distance is affected by M atoms, whereas the average distance is unaffected because it contains shorter and stronger P–O bonds. Although As- and P-series occur naturally, there is no structural reason why similar V-series vivianite-group minerals do not occur naturally or cannot be synthesized.« less

  6. Searching for high-k RE2O3 nanoparticles embedded in SiO2 glass matrix

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Lin, Y. H.; Kao, T. H.; Chou, C. C.; Yang, H. D.

    2012-03-01

    Significant experimental effort has been explored to search and characterize high-k materials with magnetodielectric effect (MDE) of series of rare earth (RE) oxide (RE2O3) nanoparticles (NPs) embedded in SiO2 glass matrix by a sol-gel route. Properly annealed sol-gel glass (in which RE = Sm, Gd, and Er) shows colossal response of dielectric constant along with diffuse phase transition and MDE around room temperature. The radial distribution functions, reconstructed from extended x-ray absorption fine structure, show the shortening of RE3 + -O depending on the RE2O3 NP size, which is consistent with oxygen vacancy induced dielectric anomaly. The magnetoresistive MDE is very much conditioned by magnetic property of RE2O3 NP grain, the degree of deformation of the lattice and constituent host.

  7. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    NASA Astrophysics Data System (ADS)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-04-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  8. Electron Mobility in γ -Al2O3/SrTiO3

    NASA Astrophysics Data System (ADS)

    Christensen, D. V.; Frenkel, Y.; Schütz, P.; Trier, F.; Wissberg, S.; Claessen, R.; Kalisky, B.; Smith, A.; Chen, Y. Z.; Pryds, N.

    2018-05-01

    One of the key issues in engineering oxide interfaces for electronic devices is achieving high electron mobility. SrTiO3 -based interfaces with high electron mobility have gained a lot of interest due to the possibility of combining quantum phenomena with the many functionalities exhibited by SrTiO3 . To date, the highest electron mobility (140 000 cm2/V s at 2 K) is obtained by interfacing perovskite SrTiO3 with spinel γ -Al2O3 . The origin of the high mobility, however, remains poorly understood. Here, we investigate the scattering mechanisms limiting the mobility in γ -Al2O3/SrTiO3 at temperatures between 2 and 300 K and over a wide range of sheet carrier densities. For T >150 K , we find that the mobility is limited by longitudinal optical phonon scattering. For large sheet carrier densities (>8 ×1013 cm-2 ), the screened electron-phonon coupling leads to room-temperature mobilities up to μ ˜12 cm2/V s . For 5 K K , the mobility scales as approximately T-2 , consistent with electron-electron scattering limiting the electron mobility. For T <5 K and at an optimal sheet carrier density of approximately 4 ×1014 cm-2 , the electron mobility is found to exceed 100 000 cm2/V s . At sheet carrier densities less than the optimum, the electron mobility decreases rapidly, and the current flow becomes highly influenced by domain walls and defects in the near-interface region of SrTiO3 . At carrier densities higher than the optimum, the SrTiO3 heterostructure gradually becomes bulk conducting, and the electron mobility decreases to approximately 20 000 cm2/V s . We argue that the high electron mobility observed arises from a spatial separation of donors and electrons with oxygen-vacancy donors preferentially forming at the interface, whereas the itinerant electrons extend deeper into SrTiO3 . Understanding the scattering mechanism in γ -Al2O3/SrTiO3 paves the way for creation of high-mobility nanoscale electronic devices.

  9. Obtaining electrostatically bound CdS-SiO2 aggregates from electrophoretic concentrates of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Bulavchenko, A. I.; Sap'yanik, A. A.; Demidova, M. G.; Rakhmanova, M. I.; Popovetskii, P. S.

    2015-05-01

    Nonaqueous electrophoresis reveals that the electrokinetic potential of CdS nanoparticles increases slightly (85-120 mV) along with the concentration (0-5 × 10-3 M) of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in n-decane, while negatively charged SiO2 particles acquire positive charge (switching from -75 up to +135 mV). The energies of interparticle interactions in CdS-CdS and CdS-SiO2 systems are calculated from these parameters and the literature values of the Hamaker constants according to the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory. It is concluded that the presence of a minimum (2.5 k B T) on the potential dependences of the CdS-SiO2 system indicates the formation of CdS-SiO2 aggregates electrostatically bound by heterocoagulation at low concentrations of AOT. The luminescent properties of the obtained ultrafine CdS-SiO2 powders depend on the CdS content.

  10. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE PAGES

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang; ...

    2018-04-10

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  11. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  12. Magnetic studies of SiO2 coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Singh, Shashi B.; Das, Raja; Poddar, Pankaj; Abyaneh, Majid K.; Kulkarni, Sulabha K.

    2017-11-01

    Oleic acid capped CoFe2O4 nanoparticles which exhibit a high coercivity of ∼9.47 kOe at room temperature were coated with a robust coating of SiO2. We have used chemical synthesis method to obtain SiO2 coated CoFe2O4 nanoparticles with different weight percentages of CoFe2O4 in SiO2 (1.5, 3.1 and 4.8 wt.%). The morphological investigation of the coated nanoparticles by transmission electron microscopy shows that the particles are spherical with average size ∼160 nm. Infrared spectroscopy reveals that oleic acid capping on the surface of CoFe2O4 nanoparticles is retained after silica coating process. The complete coating of SiO2 on CoFe2O4 nanoparticles is confirmed by X-ray photoelectron spectroscopy as there is no signature of cobalt or iron ions on the surface. Magnetic measurements show that coercivity of SiO2 coated CoFe2O4 particles remains more or less unaffected as in CoFe2O4 nanoparticles at room temperature. In addition, the temperature dependent magnetic measurements show that at 5 K the CoFe2O4 and SiO2 coated 1.5 wt.% CoFe2O4 samples exhibit a very high value of coercivity (∼20 kOe) which is more than twice as compared to room temperature coercivity value (∼9.47 kOe). We conclude that silica coating in our study does not significantly affect the coercivity of CoFe2O4 nanoparticles.

  13. Thermal diffusivity of Bi 2Sr 2CaCu 2O 8 single crystals

    NASA Astrophysics Data System (ADS)

    Wu, X. D.; Fanton, J. G.; Kino, G. S.; Ryu, S.; Mitzi, D. B.; Kapitulnik, A.

    1993-12-01

    We have made direct measurements of the temperature dependence of the thermal diffusivity along all three axes of a single- crystal Bi 2Ca 2SrCu 2O 8 superconductor. We find that the thermal diffusivity is enhanced dramatically along the Cu-O planes below Tc. From our results, we estimate a 40% electronic contribution to the diffusivity along the Cu-O planes. At room temperature the total anisotropy in thermal diffusivity is 7:1, while the lattice contribution has only a 4.2:1 anisotropy.

  14. Measurement of CP violation in B 0 → J/ ψK S 0 and B 0 → ψ(2 S) K S 0 decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seuthe, A.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2017-11-01

    A measurement is presented of decay-time-dependent CP violation in the decays B 0 → J/ ψ K S 0 and B 0 → ψ(2 S) K S 0 , where the J/ ψ is reconstructed from two electrons and the ψ(2 S) from two muons. The analysis uses a sample of pp collision data recorded with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb-1. The CP -violation observables are measured to be C({B}^0\\to J/ψ {K}S^0)=0.12± 0.07± 0.02, {}S({B}^0\\to J/ψ {K}S^0)=0.83± 0.08± 0.01, {}C({B}^0\\to ψ (2S){K}S^0)=-0.05± 0.10± 0.01, {}S({B}^0\\to ψ (2S){K}S^0)=0.84± 0.10± 0.01, where C describes CP violation in the direct decay, and S describes CP violation in the interference between the amplitudes for the direct decay and for the decay after {B}^0-{\\overline{B}}^0 oscillation. The first uncertainties are statistical and the second are systematic. The two sets of results are compatible with the previous LHCb measurement using B 0 → J/ ψ K S 0 decays, where the J/ ψ meson was reconstructed from two muons. The averages of all three sets of LHCb results are C({B}^0\\to [c\\overline{c}]{K}S^0)=-0.017± 0.029, {}S({B}^0\\to [c\\overline{c}]{K}S^0)=0.760± 0.034, under the assumption that higher-order contributions to the decay amplitudes are negligible. The uncertainties include statistical and systematic contributions. [Figure not available: see fulltext.

  15. Magnetic structure of the mixed antiferromagnet NdMn0.8Fe0.2O3

    NASA Astrophysics Data System (ADS)

    Mihalik, Matúš; Mihalik, Marián; Hoser, Andreas; Pajerowski, Daniel M.; Kriegner, Dominik; Legut, Dominik; Lebecki, Kristof M.; Vavra, Martin; Fitta, Magdalena; Meisel, Mark W.

    2017-10-01

    The magnetic structure of the mixed antiferromagnet NdMn0.8Fe0.2O3 was resolved. Neutron powder diffraction data definitively resolve the Mn sublattice with a magnetic propagation vector k =(000 ) and with the magnetic structure (Ax,Fy,Gz ) for 1.6 K K). The Nd sublattice has a (0 ,fy,0 ) contribution in the same temperature interval. The Mn sublattice undergoes a spin-reorientation transition at T1≈13 K while the Nd magnetic moment abruptly increases at this temperature. Powder x-ray diffraction shows a strong magnetoelastic effect at TN but no additional structural phase transitions from 3 to 300 K. Density functional theory calculations confirm the magnetic structure of the undoped NdMnO3 as part of our analysis. Taken together, these results show that the magnetic structure of the Mn sublattice in NdMn0.8Fe0.2O3 is a combination of the Mn and Fe parent compounds, but the magnetic ordering of the Nd sublattice spans a broader temperature interval than in the case of NdMnO3 and NdFeO3. This result is a consequence of the fact that the Nd ions do not order independently, but via polarization from the Mn/Fe sublattice.

  16. The OI/1S/ state - Its quenching by O2 and formation by the dissociative recombination of vibrationally excited O2/+/ ions

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.

    1979-01-01

    The rate coefficient for the quenching of metastable O(1S) atoms by O2 was measured as a function of temperature from 250 to 550 K. The resulting Arrhenius expression correlates well with previous laboratory work. It is suggested that the much larger value of the rate coefficient inferred from an analysis of artificial auroral experiment, Precede, may be explained by overestimation of the contribution of O(1S) production from O2(+) dissociative recombination. The possibility that O(1S) atoms are produced only by the dissociative recombination of vibrationally excited O2(+) ions is examined; such excited ions would not exist in the Precede experiment because of the rapid cooling of the ions by resonant charge transfer processes.

  17. Structural, magnetic and magnetocaloric properties of La{sub 0.8}Ca{sub 0.2−x}Na{sub x}MnO{sub 3} manganites (0≤x≤0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choura Maatar, S.; M’nassri, R.; Institut NEEL, CNRS, B.P.166, 38042 Grenoble Cedex 9

    2015-05-15

    In this work, we report the effect of Na doping on the structural, magnetic and magnetocaloric properties in La{sub 0.8}Ca{sub 0.2−x}Na{sub x}MnO{sub 3} powder samples. Our polycristalline samples have been synthesized using the solid-state reaction method at high temperatures. The parent compound La{sub 0.8}Ca{sub 0.2}MnO{sub 3} crystallizes in the orthorhombic system with Pbnm space group. Na doping induces a structural transition from orthorhombic (Pbnm space group) to rhombohedral (R-3C space group) symmetry. Magnetization measurements versus temperature in a magnetic applied field of 50 mT showed that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. The Curie temperaturemore » T{sub C} increases with Na content from 240 K for x=0 to 330 K for x=0.2. A large magnetocaloric effect has been observed in all samples, the maximum entropy change, |∆S{sub M}|{sub max}, shifts to smaller values with increasing Na content, from4.56 J/kg K (x=0.05) to 2.3 J/kg K (x=0.2) under a magnetic field change ∆µ{sub 0}H of 2 T. For the same applied magnetic field of 2 T, the Relative Cooling Power (RCP) values are found to be constant around 91 J/kg. - Graphical abstract: Sodium doping induces an increase of T{sub C} from 240 K for x=0 to 330 K for x=0.2. - Highlights: • La{sub 0.8}Ca{sub 0.2−x}Na{sub x}MnO{sub 3} are synthesized using the ceramic method at high temperatures. • Na doping induces a structural transition from Pbnm to R-3C space group. • T{sub C} increases with Na content from 240 K for x=0 to 330 K for x=0.2. • RCP is constant around 91 J/kg for all compounds under 2 T.« less

  18. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  19. Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3

    NASA Astrophysics Data System (ADS)

    Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.

    2015-06-01

    We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.

  20. Magnetic ground states in the three O s6 + (5 d2 ) double perovskites B a2M Os O6 (M =Mg ,Zn,and Cd) from Néel order to its suppression

    NASA Astrophysics Data System (ADS)

    Marjerrison, C. A.; Thompson, C. M.; Sharma, A. Z.; Hallas, A. M.; Wilson, M. N.; Munsie, T. J. S.; Flacau, R.; Wiebe, C. R.; Gaulin, B. D.; Luke, G. M.; Greedan, J. E.

    2016-10-01

    Three closely related double perovskites (DP) based on the 5 d2 ion, O s6 +,B a2M Os O6 , with M =Mg , Zn, and Cd have been prepared and characterized using x-ray (XRD) and neutron diffraction (ND), dc magnetization, heat capacity, and muon spin relaxation (μ SR ) techniques. All three are cubic, Fm-3 m , at ambient temperature from XRD with Δ d /d ˜5 ×10-4 resolution. For both M =Mg and Zn, ND data at 3.5 K and lower, Δ d /d =2 ×10-3 , resolution show no signs of a distortion. The results are compared with the known DP material, B a2CaOs O6 , which shows antiferromagnetic (AF) order below TN=49 K and a moderate frustration index, f ˜4 , (f =| θCW|/ TN ), where θCW is the Curie-Weiss temperature. B a2MgOs O6 with a unit cell constant a0=8.0757 (1 ) Å , 3% smaller than for B a2CaOs O6 , also shows Néel order below TN=51 K with f ˜2 . However, B a2ZnOs O6,a0=8.0975 (1 ) Å , 0.27% larger than B a2MgOs O6 , does not show Néel order from either heat capacity or μ SR data. A zero field cooled/field cooled (ZFC/FC) irreversibility occurs near 30 K and a broad heat capacity anomaly is detected at a similar temperature. The μ SR data are consistent with a weak spin ordering with an onset below 28 K but with a coexisting dynamic component. B a2CdOs O6 with a0=8.3190 (1 ) Å , 0.5% smaller than B a2CaOs O6 , shows no evidence for any type of order/spin freezing to 0.47 K from any of the measurement techniques applied. The results for M =Zn and Cd appear to lie outside of the mean field theory of Chen and Balents [Phys. Rev. B 84, 094420 (2011), 10.1103/PhysRevB.84.094420] for cubic d2 DP with strong spin orbit coupling, but B a2MgOs O6 , along with B a2CaOs O6 , is likely one of the three predicted AF phases. The remarkable contrast between the doppelgänger pairs M =Mg /Zn and M =Ca /Cd may be traceable to differences in electronic structure of the diamagnetic M ions. All of the super-super exchange pathways in these DP materials involve Os-O-M -O-Os linkages.

  1. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Liu, Yuanxu; Wang, Zhonglei; Huang, Weixin

    2016-12-01

    CuOx/TiO2 photocatalysts employing TiO2 with different phase structures as well as P25 as supports were prepared, and their structures and activity for photocatalytic H2 production in methanol/water solution under simulated solar light were comparatively studied. Structural characterization results demonstrated that the TiO2 phase structure strongly affects the CuOx-TiO2 interaction and copper species in various CuOx/TiO2 photocatalysts. The Cu2O-rutile TiO2 interaction is much stronger than the Cu2O-anatase TiO2 interaction, facilitates the interfacial charge transfer process within the Cu2O-rutile TiO2 heterojunction but disables supported Cu2O to catalyze the hole-participated methanol oxidation. The Cu2O-anatase TiO2 heterojunction with the appropriate Cu2O-anatase TiO2 interaction and thus the balancing efficiencies between the interfacial charge transfer process and hole-participated methanol oxidation is most photocatalytic active, and CuOx/P25 with the largest population of Cu2O-anatase TiO2 heterojunction exhibits the highest photocatalytic H2 production. These results provide novel insights in the applied surface science of CuOx/TiO2 photocatalysts.

  2. La0.8Sr0.2Fe0.8Cu0.2O3-δ as “cobalt-free” cathode for La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte

    NASA Astrophysics Data System (ADS)

    Zurlo, Francesca; Di Bartolomeo, Elisabetta; D'Epifanio, Alessandra; Felice, Valeria; Natali Sora, Isabella; Tortora, Luca; Licoccia, Silvia

    2014-12-01

    A "cobalt-free" cathode material with stoichiometric composition La0.8Sr0.2Fe0.8Cu0.2O3-δ (LSFCu) was specifically developed for use with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte in intermediate temperature solid oxide fuel cell (IT-SOFC) systems. The chemical stability of LSFCu in contact with LSGM electrolyte was investigated by structural and morphological analysis. The electrochemical properties of LSFCu dense pellets were investigated in the temperature range 600-750 °C by electrochemical impedance spectroscopy (EIS). LSFCu|LSGM|LSFCu symmetrical cells were prepared and area specific resistance (ASR) values, directly depending on the rate limiting step of the oxygen reduction reaction, were evaluated. Fuel cells were prepared using LSFCu as cathode material on a LSGM pellet and electrochemical tests were performed in the 700-800 °C temperature range and compared to similar fuel cells prepared by using commercial La0.6Sr0.4Fe0.8Co0.2O3-δ (LSFCo) as a cathode. The maximum current density and power density recorded for LSFCu and LSFCo were similar. This fact demonstrates that Cu can be used as Co substitute in perovskite cathode materials.

  3. K2 Mn4 O8 /Reduced Graphene Oxide Nanocomposites for Excellent Lithium Storage and Adsorption of Lead Ions.

    PubMed

    Hao, Shu-Meng; Qu, Jin; Yang, Jing; Gui, Chen-Xi; Wang, Qian-Qian; Li, Qian-Jie; Li, Xiaofeng; Yu, Zhong-Zhen

    2016-03-01

    Ion diffusion efficiency at the solid-liquid interface is an important factor for energy storage and adsorption from aqueous solution. Although K 2 Mn 4 O 8 (KMO) exhibits efficient ion diffusion and ion-exchange capacities, due to its high interlayer space of 0.70 nm, how to enhance its mass transfer performance is still an issue. Herein, novel layered KMO/reduced graphene oxide (RGO) nanocomposites are fabricated through the anchoring of KMO nanoplates on RGO with a mild solution process. The face-to-face structure facilitates fast transfer of lithium and lead ions; thus leading to excellent lithium storage and lead ion adsorption. The anchoring of KMO on RGO not only increases electrical conductivity of the layered nanocomposites, but also effectively prevents aggregation of KMO nanoplates. The KMO/RGO nanocomposite with an optimal RGO content exhibits a first cycle charge capacity of 739 mA h g -1 , which is much higher than that of KMO (326 mA h g -1 ). After 100 charge-discharge cycles, it still retains a charge capacity of 664 mA h g -1 . For the adsorption of lead ions, the KMO/RGO nanocomposite exhibits a capacity of 341 mg g -1 , which is higher than those of KMO (305 mg g -1 ) and RGO (63 mg g -1 ) alone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Propagation Characteristics of Surface Acoustic Waves on K3Li2Nb5O15

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji; Ikeda, Yuki; Okano, Hiroshi

    2005-06-01

    The contour maps of the phase velocity vf, the temperature coefficient of delay (TCD), the electromechanical coupling coefficient K2, and the power flow angle (PFA) of surface acoustic waves (SAWs) on K3Li2Nb5O15 are presented for Euler angles (φ, θ, \\psi) with φ=0, 10°, 20°, 30°, and 40°, and -180° ≤ φ, θ < 180°. These maps computed by Campbell and Jonnes’ method reveal that SAWs on K3Li2Nb5O15 with Euler angles (4°, 49°, 92°), (33°, 76°, 126°), and (30°, 86°, 151°) have vf of 3255 m/s, 3383 m/s, and 3728 m/s, K2 of 0.0115, 0.0147, and 0.0045, the values of first-order TCD of 0.02 ppm/°C, 0.05 ppm/°C, and 0.04 ppm/°C, and PFAs of 0.005°, 4.7°, and 5.1°, respectively.

  5. X-ray irradiation activates K+ channels via H2O2 signaling

    PubMed Central

    Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  6. Kinetics and mechanisms of the oxidation of iodide and bromide in aqueous solutions by a trans-dioxoruthenium(VI) complex.

    PubMed

    Lam, William W Y; Man, Wai-Lun; Wang, Yi-Ning; Lau, Tai-Chu

    2008-08-04

    The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.

  7. Magnetization and transport properties of silver-sheathed (Hg, Re)Ba2Ca2Cu3O8+delta tapes

    NASA Astrophysics Data System (ADS)

    Su, J. H.; Sastry, P. V. P. S. S.; Schwartz, J.

    2003-10-01

    (Hg, Re)Ba2Ca2Cu3O8+delta ((Hg, Re)-1223) samples have been fabricated by wrapping Re0.2Ba2Ca2Cu3Oy precursor powder within Ag foil and pressing or rolling. The Ag/precursor composite is then reacted with CaHgO2 in sealed reaction tubes. X-ray diffraction (XRD) patterns showed only one superconducting phase, (Hg, Re)-1223, in agreement with magnetization measurements showing an onset critical temperature (Tc) of 132 K. The magnetization properties were studied by dc magnetic measurements. The irreversibility line (Hirr), deduced from magnetization hysteresis loops, is approximated by a power law, Hirr ~ (1 - T/Tc)n, with n ~ 2.5, indicating moderate coupling between CuO2 layers compared to YBa2Cu3O7 (n ~ 1.5) and Bi/Tl-based superconductors (n ~ 5.5). The temperature dependence of the magnetization hysteresis loop width DeltaM showed three regimes, dominated by weak links at low temperature (regime I), thermally activated depinning of vortices at intermediate temperature (regime II) and giant flux creep at high temperature (regime III), respectively. Two field dependences were found in the intragrain critical current density (Jmagc) versus applied field at various temperatures: a weak one at lower temperature (leq50 K) and a stronger one at high temperature (geq65 K), indicating a transition from vortex lattice to vortex liquid in the tapes. The transport critical current density (Jtranc) of ~3 × 103 A cm-2 at 4.2 K and self-field was comparable to those for bulk Hg-based superconductors, indicating granular nature of the samples, which was confirmed further by XRD, scanning electron microscopy (SEM) and magneto-optical imaging (MOI).

  8. Shifting in optoelectronic properties from pure K2O and Rb2O compounds to their V- and Cr-doped alloys

    NASA Astrophysics Data System (ADS)

    Monir, Mohammed El Amine; Ullah, Hayat; Baltach, Hadj; Mouchaal, Younes; Merabiha, Omar; Bahnes, Aicha; Rached, Djamel

    2018-04-01

    First principle calculations within the density functional theory (DFT) have been used in this approach to study the electronic and optical properties of vanadium (V) and chromium (Cr) doped K2O and Rb2O compounds. Based on the structure properties reported in our previous work, the study of electronic and optoelectronic properties of V- and Cr-doped K2O and Rb2O alloys have been vastly investigated. K2O and Rb2O are found to be semiconductors while their V- and Cr-alloys are metallic in nature. The optical functions like complex dielectric constant, complex index of refraction, absorption coefficient, and reflectivity of these alloys are computed and compared with those of pure K2O and Rb2O compounds. It has been shown that due to TM-doping (TM = V and Cr transition metals), many distinguished peaks appeared in the lower energy part (infrared) of the spectrum. The negative value of 𝜀1 (ω) in this energy range confirmed the metallic behavior of these alloys. Furthermore, the frequency-dependent optical conductivity is also predicted in the entire spectrum, where it increases with increasing photon energy for all the studied alloys. The significant results of α (ω) predict that all these compounds are useful in different optoelectronic applications in a wide part of the spectrum (between 13 eV and 27 eV).

  9. A kinetic study on the catalysis of KCl, K2SO4, and K2CO3 during oxy-biomass combustion.

    PubMed

    Deng, Shuanghui; Wang, Xuebin; Zhang, Jiaye; Liu, Zihan; Mikulčić, Hrvoje; Vujanović, Milan; Tan, Houzhang; Duić, Neven

    2018-07-15

    Biomass combustion under the oxy-fuel conditions (Oxy-biomass combustion) is one of the approaches achieving negative CO 2 emissions. KCl, K 2 CO 3 and K 2 SO 4 , as the major potassium species in biomass ash, can catalytically affect biomass combustion. In this paper, the catalysis of the representative potassium salts on oxy-biomass combustion was studied using a thermogravimetric analyzer (TGA). Effects of potassium salt types (KCl, K 2 CO 3 and K 2 SO 4 ), loading concentrations (0, 1, 3, 5, 8 wt%), replacing N 2 by CO 2 , and O 2 concentrations (5, 20, 30 vol%) on the catalysis degree were discussed. The comparison between TG-DTG curves of biomass combustion before and after water washing in both the 20%O 2 /80%N 2 and 20%O 2 /80%CO 2 atmospheres indicates that the water-soluble minerals in biomass play a role in promoting the devolatilization and accelerating the char-oxidation; and the replacement of N 2 by CO 2 inhibits the devolatilization and char-oxidation processes during oxy-biomass combustion. In the devolatilization stage, the catalysis degree of potassium monotonously increases with the increase of potassium salt loaded concentration. The catalysis degree order of the studied potassium salts is K 2 CO 3  > KCl > K 2 SO 4 . In the char-oxidation stage, with the increase of loading concentration the three kinds of potassium salts present inconsistent change tendencies of the catalysis degree. In the studied loading concentrations from 0 to 8 wt%, there is an optimal loading concentration for KCl and K 2 CO 3 , at 3 and 5 wt%, respectively; while for K 2 SO 4 , the catalysis degree on char-oxidation monotonically increases with the loading potassium concentration. For most studied conditions, regardless of the potassium salt types or the loading concentrations or the combustion stages, the catalysis degree in the O 2 /CO 2 atmosphere is stronger than that in the O 2 /N 2 atmosphere. The catalysis degree is also affected by the O 2

  10. Superconductivity versus structural phase transition in the closely related Bi 2Rh 3.5S 2 and Bi 2Rh 3S 2

    DOE PAGES

    Kaluarachchi, Udhara S.; Xie, Weiwei; Lin, Qisheng; ...

    2015-05-19

    Single crystals of Bi 2Rh 3S 2 and Bi 2Rh 3.5S 2 were synthesized by solution growth, and the crystal structures and thermodynamic and transport properties of both compounds were studied. In the case of Bi 2Rh 3S 2, a structural first-order transition at around 165 K is identified by single-crystal diffraction experiments, with clear signatures visible in resistivity, magnetization, and specific heat data. No superconducting transition for Bi 2Rh 3S 2 was observed down to 0.5 K. In contrast, no structural phase transition at high temperature was observed for Bi 2Rh 3.5S 2; however, bulk superconductivity with a criticalmore » temperature, T c ≈ 1.7 K, was observed. The Sommerfeld coefficient γ and the Debye temperature (Θ D) were found to be 9.41 mJ mol –1K2 and 209 K, respectively, for Bi 2Rh 3S 2, and 22 mJ mol –1K2 and 196 K, respectively, for Bi 2Rh 3.5S 2. As a result, the study of the specific heat in the superconducting state of Bi 2Rh 3.5S 2 suggests that Bi 2Rh 3.5S 2 is a weakly coupled, BCS superconductor.« less

  11. K2 ZnSn3 Se8 : A Non-Centrosymmetric Zinc Selenidostannate(IV) Featuring Interesting Covalently Bonded [ZnSn3 Se8 ]2- Layer and Exhibiting Intriguing Second Harmonic Generation Activity.

    PubMed

    Zhou, Molin; Jiang, Xingxing; Yang, Yi; Guo, Yangwu; Lin, Zheshuai; Yao, JJiyong; Wu, Yicheng

    2017-06-19

    Non-centrosymmetric zinc selenidostannate(IV) K 2 ZnSn 3 Se 8 was synthesized. It features interesting covalently bonded [ZnSn 3 Se 8 ] 2- layers with K + cations filling in the interlayer voids. The phonon spectrum was calculated to clarify its structural stability. Based on the X-ray diffraction data along with the Raman spectrum, the major bonding features of the title compound were identified. According to the UV/vis-NIR spectroscopy, K 2 ZnSn 3 Se 8 possesses a typical direct band gap of 2.10 eV, which is in good agreement with the band structure calculations. Moreover, our experimental measurements and detailed theoretical calculations reveal that K 2 ZnSn 3 Se 8 is a new phase-matchable nonlinear optical material with a powder second harmonic generation (SHG) signal about 0.6 times of that of AgGaS 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Glutathione S-Transferase Catalyzes the Dehalogenation of Inhibitory Metabolites of Polychlorinated Biphenyls

    PubMed Central

    Fortin, Pascal D.; Horsman, Geoff P.; Yang, Hao M.; Eltis, Lindsay D.

    2006-01-01

    BphK is a glutathione S-transferase of unclear physiological function that occurs in some bacterial biphenyl catabolic (bph) pathways. We demonstrated that BphK of Burkholderia xenovorans strain LB400 catalyzes the dehalogenation of 3-chloro 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates (HOPDAs), compounds that are produced by the cometabolism of polychlorinated biphenyls (PCBs) by the bph pathway and that inhibit the pathway's hydrolase. A one-column protocol was developed to purify heterologously produced BphK. The purified enzyme had the greatest specificity for 3-Cl HOPDA (kcat/Km, ∼104 M−1 s−1), which it dechlorinated approximately 3 orders of magnitude more efficiently than 4-chlorobenzoate, a previously proposed substrate of BphK. The enzyme also catalyzed the dechlorination of 5-Cl HOPDA and 3,9,11-triCl HOPDA. By contrast, BphK did not detectably transform HOPDA, 4-Cl HOPDA, or chlorinated 2,3-dihydroxybiphenyls. The BphK-catalyzed dehalogenation proceeded via a ternary-complex mechanism and consumed 2 equivalents of glutathione (GSH) (Km for GSH in the presence of 3-Cl HOPDA, ∼0.1 mM). A reaction mechanism consistent with the enzyme's specificity is proposed. The ability of BphK to dehalogenate inhibitory PCB metabolites supports the hypothesis that this enzyme was recruited to facilitate PCB degradation by the bph pathway. PMID:16740949

  13. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    NASA Astrophysics Data System (ADS)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  14. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    PubMed

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  16. Microstructure and Properties of KSr2Nb5O15 Ceramics with Excess K+

    NASA Astrophysics Data System (ADS)

    Wang, Min; Gao, Feng; Xu, Jie; Zhang, Chaochao; Qin, Mengjie; Wang, Li; Guo, Yiting

    2017-03-01

    KSr2Nb5O15- xK (KSN- xK, x = 0 mol.%, 4 mol.%, 8 mol.%, 12 mol.%, 16 mol.%, and 20 mol.%) lead-free ferroelectric ceramics have been prepared by a buried sintering method using needle-like KSN particles synthesized by molten salt synthesis, and their microstructure, dielectric properties, and infrared transmittance investigated. The results suggest that the KSN- xK ceramics had simplex tungsten bronze structure for x ≤ 12 mol.%, but K2Nb8O21 secondary phase appeared at higher x. Excess K+ compensated the shortage of A-site ions in KSN crystallites, alleviated lattice distortion, and drove the KSN component closer to stoichiometric ratio, all of which increased the Curie temperature. The dielectric relaxor behavior of the ceramics was enhanced as the excess K+ content was increased. The dielectric constant, dielectric tunability, and infrared transmittance initially increased then decreased with increasing x. The specimen with 12 mol.% excess K+ showed optimum electrical properties, including maximum infrared transmittance of ˜60%. This work confirms that A-site vacancies in KSN can be compensated by excess K+, and that this effect can be used to adjust the local composition, alleviate structural distortion of the oxygen octahedron, enhance the Curie temperature, etc.

  17. Quenching of I(2P1/2) by NO2, N2O4, and N2O.

    PubMed

    Kabir, Md Humayun; Azyazov, Valeriy N; Heaven, Michael C

    2007-10-11

    Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.

  18. Synergistic Effect of MoS2 and SiO2 Nanoparticles as Lubricant Additives for Magnesium Alloy–Steel Contacts

    PubMed Central

    Xie, Hongmei; Jiang, Bin; Hu, Xingyu; Peng, Cheng; Guo, Hongli; Pan, Fusheng

    2017-01-01

    The tribological performances of the SiO2/MoS2 hybrids as lubricant additives were explored by a reciprocating ball-on-flat tribometer for AZ31 magnesium alloy/AISI 52100 bearing steel pairs. The results demonstrated that the introduction of SiO2/MoS2 hybrids into the base oil exhibited a significant reduction in the friction coefficient and wear volume as well as an increase in load bearing capacity, which was better than the testing results of the SiO2 or MoS2 nanolubricants. Specifically, the addition of 0.1 wt % nano-SiO2 mixed with 1.0 wt % nano-MoS2 into the base oil reduced the friction coefficient by 21.8% and the wear volume by 8.6% compared to the 1.0 wt % MoS2 nanolubricants. The excellent lubrication behaviors of the SiO2/MoS2 hybrid nanolubricants can be explained by the micro-cooperation of different nanoparticles with disparate morphology and lubrication mechanisms. PMID:28644394

  19. Thermomechanical Properties of Sb2O3-TeO2-V2O5 Glassy Systems: Thermal Stability, Glass Forming Tendency and Vickers Hardness

    NASA Astrophysics Data System (ADS)

    Souri, Dariush; Torkashvand, Ziba

    2017-04-01

    Three-component 40TeO2-(60- x)V2O5- xSb2O3 glasses with 0 ≤ x ≤ 10 (in mol.%) were obtained by the rapid melt-quenching method. These glasses were studied with respect to some mechanical properties with the goal of obtaining information about their structure. The Vickers hardness test was employed to obtain Vickers micro-hardness ( H V) at two different loads, which was within the range of 13.187-17.557 GPa for a typical 0.1 HV (0.9807 N) load. In addition, theoretical micro-hardness ( H) was investigated and compared with experimental H V, showing the elevating trend with increase of Sb2O3 content, as for H V. Furthermore, differential scanning calorimetry (DSC) was employed within the range of 150-500°C at heating rates of φ = 3 K/min, 6 K/min, 9 K/min, 10 K/min, and 13 K/min. In this work, thermal stability ( T s = T cr - T x) and glass forming tendency ( K gl) were measured and reported for these glasses to determine the relationship between the chemical composition and the thermal stability, in order to interpret the structure of glass. Generally, from the ascertained outputs [analysis of mechanical data, titration study, the values of reduced fraction of vanadium ions ( C V) and oxygen molar volume ( V_{{O}}^{*} )], it was found that the micro-hardness had an increasing trend with increasing the Sb2O3 content. Among the studied glasses, the sample with x = 8 had a higher average micro-hardness value, the highest average thermal stability and glass forming tendency with respect to the other samples, which makes it a useful material (owning very good resistance against thermal attacks) for device manufacturing.

  20. Decomposition of Potassium Ferrate(VI) (K2FeO4) and Potassium Ferrate(III) (KFeO2): In-situ Mössbauer Spectroscopy Approach

    NASA Astrophysics Data System (ADS)

    Machala, Libor; Zboril, Radek; Sharma, Virender K.; Homonnay, Zoltan

    2008-10-01

    Mössbauer spectroscopy was shown to be very useful technique studying the mechanism of thermal decomposition or aging processes of the most known ferrate(VI), K2FeO4. In-situ Mössbauer spectroscopy approach was used to monitor the phase composition during the studied processes. The experimental set-up was designed to perform in-situ measurements at high temperatures and at different air humid conditions at room temperature. The potassium ferrate(III), KFeO2 was demonstrated to be the primary product of thermal decomposition of K2FeO4. The KFeO2 was unstable in a humid air at room temperature and reacted with components of air, H2O and CO2 to give Fe2O3 nanoparticles and KHCO3. The aging kinetics of K2FeO4 and KFeO2 under humid air were significantly dependent on the relative air humidity.

  1. Pressure-induced phase transition in La 1 – x Sm x O 0.5 F 0.5 BiS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Y.; Yazici, D.; White, B. D.

    Electrical resistivity measurements on La 1–xSm xO 0.5F 0.5BiS 2 (x = 0.1, 0.3, 0.6, 0.8) have been performed under applied pressures up to 2.6 GPa from 2 K to room temperature. The superconducting transition temperature T c of each sample significantly increases at a Sm-concentration dependent pressure P t, indicating a pressure-induced phase transition from a low-T c to a high-T c phase. At ambient pressure, T c increases dramatically from 2.8 K at x = 0.1 to 5.4 K at x = 0.8; however, the T c values at P > P t decrease slightly with x andmore » P t shifts to higher pressures with Sm substitution. In the normal state, semiconducting-like behavior is suppressed and metallic conduction is induced with increasing pressure in all of the samples. Furthermore, these results suggest that the pressure dependence of T c for the BiS 2-based superconductors is related to the lattice parameters at ambient pressure and enable us to estimate the evolution of T c for SmO 0.5F 0.5BiS 2 under pressure.« less

  2. Pressure-induced phase transition in La 1 – x Sm x O 0.5 F 0.5 BiS 2

    DOE PAGES

    Fang, Y.; Yazici, D.; White, B. D.; ...

    2015-09-15

    Electrical resistivity measurements on La 1–xSm xO 0.5F 0.5BiS 2 (x = 0.1, 0.3, 0.6, 0.8) have been performed under applied pressures up to 2.6 GPa from 2 K to room temperature. The superconducting transition temperature T c of each sample significantly increases at a Sm-concentration dependent pressure P t, indicating a pressure-induced phase transition from a low-T c to a high-T c phase. At ambient pressure, T c increases dramatically from 2.8 K at x = 0.1 to 5.4 K at x = 0.8; however, the T c values at P > P t decrease slightly with x andmore » P t shifts to higher pressures with Sm substitution. In the normal state, semiconducting-like behavior is suppressed and metallic conduction is induced with increasing pressure in all of the samples. Furthermore, these results suggest that the pressure dependence of T c for the BiS 2-based superconductors is related to the lattice parameters at ambient pressure and enable us to estimate the evolution of T c for SmO 0.5F 0.5BiS 2 under pressure.« less

  3. Hydrothermal syntheses, structures, and properties of the new uranyl selenites Ag(2)(UO(2))(SeO(3))(2), M[(UO(2))(HSeO(3))(SeO(3))] (M = K, Rb, Cs, Tl), and Pb(UO(2))(SeO(3))(2).

    PubMed

    Almond, Philip M; Albrecht-Schmitt, Thomas E

    2002-03-11

    The transition metal, alkali metal, and main group uranyl selenites, Ag(2)(UO(2))(SeO(3))(2) (1), K[(UO(2))(HSeO(3))(SeO(3))] (2), Rb[(UO(2))(HSeO(3))(SeO(3))] (3), Cs[(UO(2))(HSeO(3))(SeO(3))] (4), Tl[(UO(2))(HSeO(3))(SeO(3))] (5), and Pb(UO(2))(SeO(3))(2) (6), have been prepared from the hydrothermal reactions of AgNO(3), KCl, RbCl, CsCl, TlCl, or Pb(NO(3))(2) with UO(3) and SeO(2) at 180 degrees C for 3 d. The structures of 1-5 contain similar [(UO(2))(SeO(3))(2)](2-) sheets constructed from pentagonal bipyramidal UO(7) units that are joined by bridging SeO(3)(2-) anions. In 1, the selenite oxo ligands that are not utilized within the layers coordinate the Ag(+) cations to create a three-dimensional network structure. In 2-5, half of the selenite ligands are monoprotonated to yield a layer composition of [(UO(2))(HSeO(3))(SeO(3))](1-), and coordination of the K(+), Rb(+), Cs(+), and Tl(+) cations occurs through long ionic contacts. The structure of 6 contains a uranyl selenite layered substructure that differs substantially from those in 1-5 because the selenite anions adopt both bridging and chelating binding modes to the uranyl centers. Furthermore, the Pb(2+) cations form strong covalent bonds with these anions creating a three-dimensional framework. These cations occur as distorted square pyramidal PbO(5) units with stereochemically active lone pairs of electrons. These polyhedra align along the c-axis to create a polar structure. Second-harmonic generation (SHG) measurements revealed a response of 5x alpha-quartz for 6. The diffuse reflectance spectrum of 6 shows optical transitions at 330 and 440 nm. The trailing off of the 440 nm transition to longer wavelengths is responsible for the orange coloration of 6.

  4. Calorimetric determination of energetics of solid solutions of UO 2+ x with CaO and Y 2O 3

    NASA Astrophysics Data System (ADS)

    Mazeina, Lena; Navrotsky, Alexandra; Greenblatt, Martha

    2008-02-01

    Quantitative study of thermodynamic properties of solid solutions of UO 2+ x with divalent and trivalent oxides is important for predicting the behavior of oxide fuel. Although early literature work measured vapor pressure in some of these solid solutions, direct calorimetric measurements of enthalpies of formation have been hampered by the refractory nature of such oxides. First measurements of the enthalpies of formation in the systems UO 2+ x-CaO and UO 2+ x-YO 1.5, obtained by high-temperature oxide melt solution calorimetry, are reported. Both systems show significantly negative (exothermic) heats of formation from binary oxides (UO 2, plus O 2 and CaO or YO 1.5, as well as from UO 2 plus UO 3 and CaO or YO 1.5), consistent with reported free energy measurements in the urania-yttria system. The energetic contributions of oxygen content (oxidation of U 4+) and of charge balanced ionic substitution as well as defect clustering are discussed. Behavior of urania-yttria is compared to that of corresponding systems in which the tetravalent ion is Ce, Zr, or Hf. The substantial additional stability in the solid solutions compared to pure UO 2+ x may retard, in both thermodynamic and kinetic sense, the oxidation and leaching of spent fuel to form aqueous U 6+ and solid uranyl phases.

  5. A pure inorganic 1D chain based on {Mo8O28} clusters and Mn(II) ions: [Mn(H2O)2Mo8O28 ] n 6 n -

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofen; Yan, Yonghong; Wu, Lizhou; Yu, Chengxin; Dong, Xinbo; Hu, Huaiming; Xue, Ganglin

    2016-01-01

    A new pure inorganic polymer, (NH4)6n[Mn(H2O)2Mo8O28)]n(H2O)2n(1), has been synthesized and characterized by elemental analyses, IR spectrum, UV-vis absorption spectra, TG-DSC and electrochemical studies. In 1, [Mo8O28]8- anions act as tetradentate ligands and are alternately linked by Mn(H2O)2 2 + ions into a one-dimensional chain structure. It is interesting that 1 represents the first example of pure inorganic-inorganic hybrid based on octamolybdate and transition metal ions. Moreover, it was indicated that 1 had definite catalytic activities on the probe reaction of benzyl alcohol oxidation to benzaldehyde with H2O2.

  6. Synthesis of Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} superconductor

    DOEpatents

    Smith, M.G.

    1996-10-29

    Two-powder processes for the synthesis of superconducting (Bi, Pb)-2223/Ag-clad wires by the oxide-powder-in-the-robe are provided. The first precursor powder, of nominal stoichiometry CaCuO{sub x}, is a solution-synthesized mixture of Ca{sub 0.45}Cu{sub 0.55}O{sub 2} and CaO. Using these oxide precursor mixtures, superconducting tapes with well-aligned grains and reproducible critical current densities J{sub c} in the range of 20,000 to 26,000 A/cm{sup 2} at 75 K in self-field after annealing less than 200 hours were obtained. 2 figs.

  7. The radiative lifetime of the 5S(0)2 metastable level of O(2+)

    NASA Technical Reports Server (NTRS)

    Johnson, B. C.; Smith, P. L.; Knight, R. D.

    1984-01-01

    The radiative lifetime of the 5S(0)2 metastable level of O(2+) was measured as 1.22 + or - 0.08 ms at the 90 percent confidence level by observing the time dependence of the spontaneous emission from metastable ions created and stored in a cylindrical radio-frequency ion trap. The intersystem line emission 2s(2)2p(2) 3P - 2s2p(3) 5S(0) was observed at 1660.8 and 1666.2 A. Discrepancies between measured and calculated values indicate that certain calculated transition probabilities for intersystem lines may be less reliable than previously believed.

  8. Design and syntheses of hybrid metal–organic materials based on K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] metallotectons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran

    2016-05-15

    By using K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] (C{sub 2}O{sub 4}{sup 2−}=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C_2O_4)_2(H_2O)_2}{sub 2}]·(H–L{sub 1}){sub 2}·H{sub 2}O 1, [Fe(C{sub 2}O{sub 4})Cl{sub 2}]·(H{sub 2}–L{sub 2}){sub 0.5}·(L{sub 2}){sub 0.5}·H{sub 2}O 2, [{Fe(C_2O_4)_1_._5Cl_2}{sub 2}]·(H–L{sub 3}){sub 4}3, [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]·(H{sub 2}–L{sub 4}){sub 22H{sub 2}O 4, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H{sub 2}–L{sub 5})·2H{sub 2}O 5, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 6, K[Cr(C{sub 2}O{sub 4}){sub 3}]·2H{sub 2}O 7, Na[Fe(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 22H{sub 2}O 8 (with L{sub 1}=4-dimethylaminopyridine, L{sub 2}=2,3,5,6-tetramethylpyrazine, L{sub 3}=2-aminobenzimidazole, L{sub 4}=1,4-bis-(1H-imidazol-1-yl)benzene, L{sub 5}=1,4-bis((2-methylimidazol-1-yl)methyl)benzene,more » L{sub 6}=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C{sub 2}O{sub 4}){sub 2}(H{sub 2}O){sub 2}]{sup −} unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C{sub 2}O{sub 4})Cl{sub 2}]{sup -} anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe{sub 2}(C{sub 2}O{sub 4}){sub 3}Cl{sub 4}]{sup 4−} unit. Compound 4 features distinct [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]{sup 4−} units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C{sub 2}O{sub 4}){sub 3}]{sup 3−} units and K{sup +} cations. The 1D chains are further extended into 3D antionic H-bonded framework through O–H···O H-bonds. Compounds 6–8 show 2D [KAl

  9. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    PubMed Central

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L.; Soto, Enrique

    2016-01-01

    Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science. PMID:28773740

  10. Fluorine sites in glasses and transparent glass-ceramics of the system Na{sub 2}O/K{sub 2}O/Al{sub 2}O{sub 3}/SiO{sub 2}/BaF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocker, Christian, E-mail: christian.bocker@uni-jena.d; Munoz, Francisco; Duran, Alicia

    2011-02-15

    The transparent glass-ceramics obtained in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} show homogeneously dispersed BaF{sub 2} nano crystals with a narrow size distribution. The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses and the respective glass-ceramics in order to clarify the crystallization mechanism and the role of fluorine during crystallization. With an increasing annealing time, the concentration and also the number of crystals remain approximately constant. With an increasing annealing temperature, the crystalline fraction increases until a saturation limit is reached, while the number of crystals decreases and the size of the crystals increases.more » Fluoride in the glassy network occurs as Al-F-Ba, Al-F-Na and also as Ba-F structures. The latter are transformed into crystalline BaF{sub 2} and fluoride is removed from the Al-F-Ba/Na bonds. However, some fluorine is still present in the glassy phase after the crystallization. -- Graphical abstract: The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} and the respective glass-ceramics with BaF{sub 2} nano crystals in order to clarify the crystallization mechanism and the role of fluorine during crystallization. Display Omitted Research highlights: {yields} BaF{sub 2} nano crystals are precipitated from a silicate glass system. {yields} Ostwald ripening during the late stage of crystallization does not occur. {yields} Fluorine in the glass is coordinated with Ba as well as Al together with Ba or Na.{yields} In the glass-ceramics, the residual fluorine is coordinated as Al-F-Ba/Na.« less

  11. Effect of K2FeO4/US treatment on textile dyeing sludge disintegration and dewaterability.

    PubMed

    Ning, Xun-an; Feng, Yinfang; Wu, Junji; Chen, Changmin; Wang, Yujie; Sun, Jian; Chang, Kenlin; Zhang, Yaping; Yang, Zuoyi; Liu, Jingyong

    2015-10-01

    The effect of potassium ferrate/ultrasonic (K2FeO4/US) treatment on the physicochemical features of textile dyeing sludge was studied. The soluble chemical oxygen demand (SCOD), deoxyribonucleic acid (DNA), sludge volume index (SVI), sludge viscosity, capillary suction time (CST) and particle size were measured to understand the observed changes in the sludge physicochemical features. The results showed that the combined K2FeO4/US treatment presented great advantages for disrupting the sludge floc structure over K2FeO4 or ultrasonic treatments alone. The optimal parameters of sludge disintegration were found to be a K2FeO4 treatment time of 60 min, a K2FeO4 dosage of 0.5936 g/g SS, an ultrasonic time of 15 min and an ultrasonic intensity of 0.72 W/mL. The initial median diameter of the sludge particles was 15.24 μm, and this value decreased by 35.89%. The CST was initially 59.6 s and increased by 231%, whereas the SVI was 97.78 mL/g and decreased by 25.89%. Scanning electron microscope (SEM) images indicated that the sludge surface was irregular and loose with a large amount of channels or voids during K2FeO4/US treatment. K2FeO4/US treatment synergistically enhanced the sludge solubilization and reached 668.67 mg/L SCOD, which is 31.81% greater than the additive value obtained with K2FeO4 treatment alone (215.95 mg/L) or with ultrasonic treatment alone (240 mg/L). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Critical fields and vortex pinning in overdoped Ba 0.2 K 0.8 Fe 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, B.; Leroux, M.; Wang, Y. L.

    2015-05-19

    We determine the upper and lower critical fields, the penetration depth and the vortex pinning characteristics of single crystals of overdoped Ba 0.2K 0.8Fe 2As 2 with T c ~ 10 K. We find that bulk vortex pinning is weak and vortex dynamics to be dominated by the geometrical surface barrier. The temperature dependence of the lower critical field, H c1, displays a distinctive upturn at low temperatures, which is suggestive of two distinct superconducting gaps. Furthermore, the penetration depth, λ, varies linearly with temperature below 4 K indicative of line nodes in the superconducting gap. As a result, thesemore » observations can be well described in a model based on a multi-band nodal superconducting gap.« less

  13. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  14. Viscosity and Structure of CaO-SiO2-P2O5-FetO System with Varying P2O5 and FeO Content

    NASA Astrophysics Data System (ADS)

    Diao, Jiang; Gu, Pan; Liu, De-Man; Jiang, Lu; Wang, Cong; Xie, Bing

    2017-10-01

    A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.

  15. Ferroelectric switching in epitaxial PbZr0.2Ti0.8O3/ZnO/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Salev, Pavel; Grigoriev, Alexei

    As a wide-bandgap semiconductor, ZnO has gained substantial interest due to its favorable properties including high electron mobility, strong room-temperature luminescence, etc. The main obstacle of its application is the lack of reproducible and low-resistivity p-type ZnO. P-type doping of ZnO through the interface charge injection, which can be achieved by the polarization switching of ferroelectric films, is a tempting solution. We explored ferroelectric switching behavior of PbZr0.2Ti0.8O3/ZnO/GaN heterostructures epitaxially grown on Sapphire substrates by RF sputtering. The electrical measurements of Pt/PbZr0.2Ti0.8O3/ZnO/GaN ferroelectric-semiconductor capacitors revealed unusual behavior that is a combination of polarization switching and a diode I-V characteristics.

  16. The construction of space-like surfaces with k1k2 - m(k1 + k2) = 1 in Minkowski three-space

    NASA Astrophysics Data System (ADS)

    Cao, Xi-Fang

    2002-07-01

    From solutions of the sinh-Laplace equation, we construct a family of space-like surfaces with k1k2 - m(k1 + k2) = 1 in Minkowski three-space, where k1 and k2 are principal curvatures and m is an arbitrary constant.

  17. Stibiconite (Sb3O6OH), senarmontite (Sb2O3) and valentinite (Sb2O3): Dissolution rates at pH 2-11 and isoelectric points

    NASA Astrophysics Data System (ADS)

    Biver, M.; Shotyk, W.

    2013-05-01

    Batch reactor experiments were carried out in order to derive rate laws for the proton promoted dissolution of the main natural antimony oxide phases, namely stibiconite (idealized composition SbSb2O6OH), senarmontite (cubic Sb2O3) and (metastable) valentinite (orthorhombic Sb2O3) over the range 2 ⩽ pH ⩽ 11, under standard conditions and ionic strength I = 0.01 mol l-1. The rates of antimony release by stibiconite were r = (2.2 ± 0.2) × 10-9 a(H+)0.11±0.01 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 4.74 and r = (4.3 ± 0.2) × 10-10 a(H+)-0.030±0.003 mol m-2 s-1 for 4.74 ⩽ pH ⩽ 10.54. The rates of dissolution of senarmontite were r = (5.3 ± 2.2) × 10-7 a(H+)0.54±0.05 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 6.93 and r = (1.4 ± 0.3) × 10-14 a(H+)-0.53±0.07 mol m-2 s-1 for 6.93 ⩽ pH ⩽ 10.83. The rates of dissolution of valentinite were r = (6.3 ± 0.2) × 10-8 a(H+)0.052±0.003 mol m-2 s-1 for 1.97 ⩽ pH ⩽ 6.85. Above pH = 6.85, valentinite was found to dissolve at a constant rate of r = (2.79 ± 0.05) × 10-8 mol m-2 s-1. Activation energies were determined at selected pH values in the acidic and basic domain, over the temperature range 25-50 °C. The values for stibiconite are -10.6 ± 1.9 kJ mol-1 (pH = 2.00) and 53 ± 14 kJ mol-1 (pH = 8.7). For senarmontite, we found 46.6 ± 4.7 kJ mol-1 (pH = 3.0) and 68.1 ± 6.1 kJ mol-1 (pH = 9.9) and for valentinite 41.9 ± 1.1 kJ mol-1 (pH = 3.0) and 39.0 ± 4.6 kJ mol-1 (pH = 9.9). These activation energies are interpreted in the text. The solubility of stibiconite at 25 °C in the pH domain from 2 to 10 was determined; solubilities decrease from 452.0 μg l-1 (as Sb) at pH = 2.00 to 153.2 μg l-1 at pH = 7.55 and increase again in the basic region, up to 176.6 μg l-1 at pH = 9.92. A graphical synopsis of all the kinetic results, including those of stibnite (Sb2S3) from earlier work, is presented. This allows an easy comparison between the dissolution rates of stibnite and the minerals examined in the present work

  18. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani

    2018-02-01

    This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.

  19. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    NASA Astrophysics Data System (ADS)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  20. Magnetic structure of the mixed antiferromagnet NdMn 0.8 Fe 0.2 O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalik, Matus; Mihalik, Marian; Hoser, Andreas

    The magnetic structure of the mixed antiferromagnet NdMn 0.8Fe 0.2O 3 was resolved. Neutron powder diffraction data definitively resolve the Mn sublattice with a magnetic propagation vector k=(000) and with the magnetic structure (A x, F y, G z) for 1.6 K N(≈ 59 K). The Nd sublattice has a (0, f y, 0) contribution in the same temperature interval. The Mn sublattice undergoes a spin-reorientation transition at T 1 ≈ 13 K while the Nd magnetic moment abruptly increases at this temperature. Powder x-ray diffraction shows a strong magnetoelastic effect at T N but no additional structural phase transitionsmore » from 3 to 300 K. Density functional theory calculations confirm the magnetic structure of the undoped NdMnO 3 as part of our analysis. Taken together, these results show that the magnetic structure of the Mn sublattice in NdMn 0.8Fe 0.2O 3 is a combination of the Mn and Fe parent compounds, but the magnetic ordering of the Nd sublattice spans a broader temperature interval than in the case of NdMnO 3 and NdFeO 3. Lastly, this result is a consequence of the fact that the Nd ions do not order independently, but via polarization from the Mn/Fe sublattice.« less

  1. Magnetic structure of the mixed antiferromagnet NdMn 0.8 Fe 0.2 O 3

    DOE PAGES

    Mihalik, Matus; Mihalik, Marian; Hoser, Andreas; ...

    2017-10-27

    The magnetic structure of the mixed antiferromagnet NdMn 0.8Fe 0.2O 3 was resolved. Neutron powder diffraction data definitively resolve the Mn sublattice with a magnetic propagation vector k=(000) and with the magnetic structure (A x, F y, G z) for 1.6 K N(≈ 59 K). The Nd sublattice has a (0, f y, 0) contribution in the same temperature interval. The Mn sublattice undergoes a spin-reorientation transition at T 1 ≈ 13 K while the Nd magnetic moment abruptly increases at this temperature. Powder x-ray diffraction shows a strong magnetoelastic effect at T N but no additional structural phase transitionsmore » from 3 to 300 K. Density functional theory calculations confirm the magnetic structure of the undoped NdMnO 3 as part of our analysis. Taken together, these results show that the magnetic structure of the Mn sublattice in NdMn 0.8Fe 0.2O 3 is a combination of the Mn and Fe parent compounds, but the magnetic ordering of the Nd sublattice spans a broader temperature interval than in the case of NdMnO 3 and NdFeO 3. Lastly, this result is a consequence of the fact that the Nd ions do not order independently, but via polarization from the Mn/Fe sublattice.« less

  2. Evidence for Weakly Correlated Oxygen Holes in the Highest-Tc Cuprate Superconductor HgBa2 Ca2 Cu3 O8

    NASA Astrophysics Data System (ADS)

    Chainani, A.; Sicot, M.; Fagot-Revurat, Y.; Vasseur, G.; Granet, J.; Kierren, B.; Moreau, L.; Oura, M.; Yamamoto, A.; Tokura, Y.; Malterre, D.

    2017-08-01

    We study the electronic structure of HgBa2 Ca2 Cu3 O8 +δ (Hg1223; Tc=134 K ) using photoemission spectroscopy (PES) and x -ray absorption spectroscopy (XAS). Resonant valence band PES across the O K edge and Cu L edge identifies correlation satellites originating in O 2 p and Cu 3 d two-hole final states, respectively. Analyses using the experimental O 2 p and Cu 3 d partial density of states show quantitatively different on-site Coulomb energy for the Cu site (Ud d=6.5 ±0.5 eV ) and O site (Up p=1.0 ±0.5 eV ). Cu2 O7 -cluster calculations with nonlocal screening explain the Cu 2 p core level PES and Cu L -edge XAS spectra, confirm the Ud d and Up p values, and provide evidence for the Zhang-Rice singlet state in Hg1223. In contrast to other hole-doped cuprates and 3 d -transition metal oxides, the present results indicate weakly correlated oxygen holes in Hg1223.

  3. Syntheses, crystal structures, and magnetic properties of the oxalato-bridged mixed-valence complexes (FeII(bpm)3]2[FeIII2(ox)5].8H2O and FeII(bpm)3Na(H2O)2Fe(ox)(3).4H2O (bpm = 2,2'-bipyrimidine).

    PubMed

    Armentano, D; De Munno, G; Faus, J; Lloret, F; Julve, M

    2001-02-12

    -N(bpm) bond lengths (2.548(7) and 2.677(7) A) are longer than those of Na-O(ox) (2.514(7) and 2.380(7) A) and Na-O(water) (2.334(15) and 2.356(12) A). The intramolecular Fe(II)...Fe(III) separation is 6.763(2) A, whereas the shortest intermolecular Fe(II)...Fe(II) and Fe(III)...Fe(III) distances are 8.152(2) and 8.992(2) A, respectively. Magnetic susceptibility measurements in the temperature range 2.0-290 K for 1 reveal that the high-spin iron(III) ions are antiferromagnetically coupled (J = -6.6 cm-1, the Hamiltonian being defined as H = -JS1.S2). The magnitude of the antiferromagnetic coupling through the bridging oxalato in the magneto-structurally characterized family of formula [M2(ox)5](2m-10)+ (M = Fe(III) (1), Cr(III), and Ni(II)) is analyzed and discussed by means of a simple orbital model.

  4. Treatment Of Polychlorinated Biphenyls In Two Surface Soils Using Catalyzed H2O2 Propagations

    EPA Science Inventory

    Two surface soils contaminated with polychlorinated biphenyls (PCBs) collected from Superfund sites in the New England region of the United States, Fletcher Paints and Merrimack Industrial Metals, were evaluated for field treatment at the bench level using catalyzed H2...

  5. Upper critical field of high temperature Y(1.2)Ba(0.8)CuO(4-delta) superconductor

    NASA Technical Reports Server (NTRS)

    Hor, P. H.; Meng, R. L.; Huang, J. Z.; Chu, C. W.; Huang, C. Y.

    1987-01-01

    A 20-T high-field magnet is used to measure electrical resistance as a function of temperature in the Y(1.2)Ba(0.8)CuO(4-delta) superconductor. The temperature dependence of the critical field, Hc2(T), is obtained from the superconduction transition. A Hc2(O) value of 166T is determined which is the highest critical field yet reported. Results show Y(1.2)Ba(0.8)CuO(4-delta) to be a 90K Type-II superconductor, with a lower critical field Hc1(O) of about 0.2T and a penetration depth of about 290 A.

  6. Densification of PZT Ceramics with V2O5 Additive.

    DTIC Science & Technology

    1979-01-01

    Additions of V2O5 from 0.1 to 8.0 w/o to a coprecipitated Pb(Zr.53 Ti.47) O3 ceramic promoted rapid densification below 1025 C, eliminating the need...for PbO atmosphere control. Dielectric properties were found to be dependent on the amount of V2O5 added and on the microstructure developed, but were...comparable to reported values for this PZT composition for additions of V2O5 or = 1.5 W/O. The indicated densification mechanism is one of activated sintering catalyzed by generation of oxygen defects on decomposition of the V2O5 .

  7. In vitro cellular adhesion and antimicrobial property of SiO2-MgO-Al2O3-K2O-B2O3-F glass ceramic.

    PubMed

    Kalmodia, Sushma; Molla, Atiar Rahaman; Basu, Bikramjit

    2010-04-01

    The aim of the present study was to examine the cellular functionality and antimicrobial properties of SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramics (GC) containing fluorophlogopite as major crystalline phase. The cellular morphology and cell adhesion study using human osteoblast-like Saos-2 cells and mouse fibroblast L929 cells reveals good in vitro cytocompatibility of GC. The potential use of the GC for biomedical application was also assessed by in vitro synthesis of the alkaline phosphatase (ALP) activity of Saos-2 cells. It is proposed that B(2)O(3) actively enhances the cell adhesion and supports osteoconduction process, whereas, fluorine component significantly influences cell viability. The Saos-2 and L929 cells on GC shows extensive multidirectional network of actin cytoskeleton. The in vitro results of this study illustrate how small variation in fluorine and boron in base glass composition influences significantly the biocompatibility and antimicrobial bactericidal property, as evaluated using a range of biochemical assays. Importantly, it shows that the cell viability and osteoconduction can be promoted in glass ceramics with lower fluorine content. The underlying reasons for difference in biological properties are analyzed and reported. It is suggested that oriented crystalline morphology in the lowest fluorine containing glass ceramic enhanced cellular spreading. Overall, the in vitro cell adhesion, cell flattening, cytocompatibility and antimicrobial study of the three different compositions of glass ceramic clearly reveals that microstructure and base glass composition play an important role in enhancing the cellular functionality and antimicrobial property.

  8. Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin A.; Patil, Dipali S.; Kim, Jin Hyeok; Patil, Pramod S.; Shin, Jae Cheol

    2017-04-01

    Quantum dot sensitized solar cell (QDSSC) is fabricated based on a stepwise band structure of TiO2/CdS/Ag2S to improve the photoconversion efficiency of TiO2/CdS system by incorporating a low band gap Ag2S QDs. Vertically aligned TiO2 nanorods assembly is prepared by a simple hydrothermal technique. The formation of CdS and Ag2S QDs over TiO2 nanorods assembly as a photoanode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The synthesized electrode materials are characterized by XRD, XPS, field emission scanning electron microscopy (FE-SEM), Optical, solar cell and electrochemical performances. The results designate that the QDs of CdS and Ag2S have efficiently covered exterior surfaces of TiO2 nanorods assembly. A cautious evaluation between TiO2/CdS and TiO2/CdS/Ag2S sensitized cells tells that CdS and Ag2S synergetically helps to enhance the light harvesting ability. Under AM 1.5G illumination, the photoanodes show an improved power conversion efficiency of 1.87%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 7.03 mA cm-2 which is four fold higher than that of a TiO2/CdS system.

  9. Ba6-3 x Nd8+2 x Ti18O54 Tungsten Bronze: A New High-Temperature n-Type Oxide Thermoelectric

    NASA Astrophysics Data System (ADS)

    Azough, Feridoon; Freer, Robert; Yeandel, Stephen R.; Baran, Jakub D.; Molinari, Marco; Parker, Stephen C.; Guilmeau, Emmanuel; Kepaptsoglou, Demie; Ramasse, Quentin; Knox, Andy; Gregory, Duncan; Paul, Douglas; Paul, Manosh; Montecucco, Andrea; Siviter, Jonathan; Mullen, Paul; Li, Wenguan; Han, Guang; Man, Elena A.; Baig, Hasan; Mallick, Tapas; Sellami, Nazmi; Min, Gao; Sweet, Tracy

    2016-03-01

    Semiconducting Ba6-3 x Nd8+2 x Ti18O54 ceramics (with x = 0.00 to 0.85) were synthesized by the mixed oxide route followed by annealing in a reducing atmosphere; their high-temperature thermoelectric properties have been investigated. In conjunction with the experimental observations, atomistic simulations have been performed to investigate the anisotropic behavior of the lattice thermal conductivity. The ceramics show promising n-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical conductivity, and temperature-stable, low thermal conductivity; For example, the composition with x = 0.27 (i.e., Ba5.19Nd8.54Ti18O54) exhibited a Seebeck coefficient of S 1000K = 210 µV/K, electrical conductivity of σ 1000K = 60 S/cm, and thermal conductivity of k 1000K = 1.45 W/(m K), leading to a ZT value of 0.16 at 1000 K.

  10. Preparation, Characterization, and Structure of Two Layered Molybdenum(VI) Phosphates: KMo(H 2O)O 2PO 4 and NH 4Mo(H 2O)O 2PO 4

    NASA Astrophysics Data System (ADS)

    Millini, Roberto; Carati, Angela

    1995-08-01

    New layered Mo(VI) compounds, KMo(H 2O)O 2PO 4 (I) and NH 4Mo(H 2O)O 2PO 4 (II), were synthesized hydrothermally and their structures were determined from single-crystal X-ray analysis. Compounds (I) and (II) are isostructural and crystallize in the monoclinic P2 1/ n space group with a = 12.353(3), b = 8.623(2), c = 5.841(1) Å, β = 102.78(1)°, V = 606.8(2) Å 3, Z = 4, and R = 0.027 ( Rw = 0.030) for compound (I) and a = 12.435(3), b = 8.761(2), c = 6.015(1), β = 103.45(1)°, V = 637.3(2) Å 3, Z = 4, and R = 0.040 ( Rw = 0.041) for compound (II). The structure consists of layers built up of eight- and four-membered rings resulting from the alternation of corner-sharing [MoO 6] octahedra and [PO 4] tetrahedra. The layers stack along the (1¯01) direction by intercalating K and NH 4 ions.

  11. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish

  12. Solubility-product constant and thermodynamic properties for synthetic otavite, CdCO3(s), and aqueous association constants for the Cd(II)-CO2-H2O system

    USGS Publications Warehouse

    Stipp, S.L.S.; Parks, George A.; Nordstrom, D. Kirk; Leckie, J.O.

    1993-01-01

    Considerable disparity exists in the published thermodynamic data for selected species in the Cd(II)-CO2-H2O system near 25??C and 1 atm pressure. Evaluation of published experimental and estimated data for aqueous cadmium-carbonate species suggests an association constant, pK, of -3.0 ?? 0.4 for CdCO30, about -1.5 for CdHCO3+, and -6.4 ?? 0.1 for Cd(CO3)22- (T = 298.15 K; P = 1 atm; I = 0). Examination of all available data for cadmium-hydrolysis species and ??-Cd(OH)2(s)) confirms that the consistent set of constants presented by Baes and Mesmer (Hydrolysis of Cations, 1976) is the best available. The solubility of synthetic otavite, CdCO3(s), has been measured in KClO4 solutions where I ??? 0.1 M. We calculated pKsp = 12.1 ?? 0.1 (T = 25.0??C; P = 1 atm; I = 0) from measured concentrations of Cd2+, measured PC02 and pH, our selected set of equilibrium constants, and activity corrections estimated using the Davies equation. Values at 5 and 50??C were 12.4 ?? 0.1 and 12.2 ?? 0.1, respectively. Based on the new solubility data and the CODATA key values for Cd2+ and CO32-, a new set of thermodynamic properties is recommended for otavite: ??Gf0 = -674.7 ?? 0.6 kJ/mol; ??Hf0 = -751.9 ?? 10 kJ/mol; S0 = 106 ?? 30 J/mol K; and ??Gr0 for the reaction Cd2+ + CO32- ??? CdCO3(s) is -69.08 ?? 0.57 kJ/m. ?? 1993.

  13. Thermoelectric Properties in the TiO2/SnO2 System

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  14. Adsorption of proteins on γ-Fe2O3 and γ-Fe2O3/SiO2 magnetic materials

    NASA Astrophysics Data System (ADS)

    Khokhlova, T. D.

    2017-10-01

    γ-Fe2O3-SiO2 composites are synthesized via the coprecipitation of a γ-Fe2O3 magnetic carrier (with specific surface S = 17 m2/g and pore volume V = 0.51 cm3/g) and silicon dioxide from an aqueous glass (sodium silicate) solution. The effect coagulation agent NaCl has on the coprecipitation process and structural characteristics of the composite is discussed. Adding NaCl to the aqueous glass solution prevents the formation of SiO2 macrogel making it possible to obtain highly porous composites with high adsorption capacity for proteins cytochrome C and hemoglobin. It is established that a composite that is 50% SiO2 and produced with the addition of 5% NaCl ( S = 150 m2/g and V = 0.87 cm3/g) has a sixfold and twofold higher capacity (280 and 175 mg/g) for cytochrome C and hemoglobin, respectively, than the initial ferric oxide (45 and 82 mg/g). The capacity for cytochrome C and hemoglobin of a composite synthesized without NaCl ( S = 50 m2/g and V = 0.45 cm3/g) is 19 and 20 mg/g, respectively, which is twofold and fourfold lower than those of the initial γ-Fe2O3. The dependence of protein adsorption on pH and the ionic strength of a solution is studied, and the conditions for the maximum adsorption and complete desorption of proteins are established. It is concluded that composites synthesized with additions of NaCl can be used as magnetocontrollable sorbents for the purification, concentration, and immobilization of proteins, and for the preparation of biocatalysts based on immobilized enzymes.

  15. Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O2/H2O/H2O2 System in A Wet VUV-Spraying Reactor.

    PubMed

    Liu, Yangxian; Wang, Qian; Pan, Jianfeng

    2016-12-06

    A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.

  16. High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi 2O 6, CaSiO 3 and CaSi 2O 5-CaTiSiO 5 system

    NASA Astrophysics Data System (ADS)

    Akaogi, M.; Yano, M.; Tejima, Y.; Iijima, M.; Kojitani, H.

    2004-06-01

    Phase transitions of CaMgSi 2O 6 diopside and CaSiO 3 wollastonite were examined at pressures to 23 GPa and temperatures to 2000 °C, using a Kawai-type multiavil apparatus. Enthalpies of high-pressure phases in CaSiO 3 and in the CaSi 2O 5-CaTiSiO 5 system were also measured by high-temperature calorimetry. At 17-18 GPa, diopside dissociates to CaSiO 3-rich perovskite + Mg-rich (Mg,Ca)SiO 3 tetragonal garnet (Gt) above about 1400 °C. The solubilities of CaSiO 3 in garnet and MgSiO 3 in perovskite increase with temperature. At 17-18 GPa below about 1400 °C, diopside dissociates to Ca-perovskite + β-Mg 2SiO 4 + stishovite. The Mg, Si-phases coexisting with Ca-perovskite change to γ-Mg 2SiO 4 + stishovite, to ilmenite, and finally to Mg-perovskite with increasing pressure. CaSiO 3 wollastonite transforms to the walstromite structure, and further dissociates to Ca 2SiO 4 larnite + CaSi 2O 5 titanite. The latter transition occurs at 9-11 GPa with a positive Clapeyron slope. At 1600 °C, larnite + titanite transform to CaSiO 3 perovskite at 14.6±0.6 GPa, calibrated against the α-β transition pressure of Mg 2SiO 4. The enthalpies of formation of CaSiO 3 walstromite and CaSi 2O 5 titanite from the mixture of CaO and SiO 2 quartz at 298 K have been determined as -76.1±2.8, and -27.8±2.1 kJ/mol, respectively. The latter was estimated from enthalpy measurements of titanite solid solutions in the system CaSi 2O 5-CaTiSiO 5, because CaSi 2O 5 titanite transforms to a triclinic phase upon decompression. The enthalpy difference between titanite and the triclinic phase is only 1.5±4.8 kJ/mol. Using these enthalpies of formation and those of larnite and CaSiO 3 perovskite, the transition boundaries in CaSiO 3 have been calculated. The calculated boundaries for the wollastonite-walstromite-larnite + titanite transitions are consistent with the experimental determinations within the errors. The calculated boundary between larnite + titanite and Ca-perovskite has a slope of

  17. Lanthanite-(Nd), Nd2(CO3)3·8H2O

    PubMed Central

    Morrison, Shaunna M.; Andrade, Marcelo B.; Wenz, Michelle D.; Domanik, Kenneth J.; Downs, Robert T.

    2013-01-01

    Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa­hydrate], is a member of the lanthanite mineral group characterized by the general formula REE 2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol­ecules. PMID:23476479

  18. Middendorfite, K3Na2Mn5Si12(O,OH)36 · 2H2O, a new mineral species from the Khibiny pluton, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Dubinchuk, V. T.; Zadov, A. E.

    2007-12-01

    Middendorfite, a new mineral species, has been found in a hydrothermal assemblage in Hilairite hyperperalkaline pegmatite at the Kirovsky Mine, Mount Kukisvumchorr apatite deposit, Khibiny alkaline pluton, Kola Peninsula, Russia. Microcline, sodalite, cancrisilite, aegirine, calcite, natrolite, fluorite, narsarsukite, labuntsovite-Mn, mangan-neptunite, and donnayite are associated minerals. Middendorfite occurs as rhombshaped lamellar and tabular crystals up to 0.1 × 0.2 × 0.4 mm in size, which are combined in worm-and fanlike segregations up to 1 mm in size. The color is dark to bright orange, with a yellowish streak and vitreous luster. The mineral is transparent. The cleavage (001) is perfect, micalike; the fracture is scaly; flakes are flexible but not elastic. The Mohs hardness is 3 to 3.5. Density is 2.60 g/cm3 (meas.) and 2.65 g/cm3 (calc.). Middendorfite is biaxial (-), α = 1.534, β = 1.562, and γ = 1.563; 2 V (meas.) = 10°. The mineral is pleochroic strongly from yellowish to colorless on X through brown on Y and to deep brown on Z. Optical orientation: X = c. The chemical composition (electron microprobe, H2O determined with Penfield method) is as follows (wt %): 4.55 Na2O, 10.16 K2O, 0.11 CaO, 0.18 MgO, 24.88 MnO, 0.68 FeO, 0.15 ZnO, 0.20 Al2O3, 50.87 SiO2, 0.17 TiO2, 0.23 F, 7.73 H2O; -O=F2-0.10, total is 99.81. The empirical formula calculated on the basis of (Si,Al)12(O,OH,F)36 is K3.04(Na2.07Ca0.03)Σ2.10(Mn4.95Fe0.13Mg0.06Ti0.03Zn0.03)Σ5.20(Si11.94Al0.06)Σ12O27.57(OH)8.26F0.17 · 1.92H2O. The simplified formula is K3Na2Mn5Si12(O,OH)36 · 2H2O. Middenforite is monoclinic, space group: P21/ m or P21. The unit cell dimensions are a = 12.55, b = 5.721, c = 26.86 Å; β = 114.04°, V = 1761 Å3, Z = 2. The strongest lines in the X-ray powder pattern [ d, Å, ( I)( hkl)] are: 12.28(100)(002), 4.31(81)(11overline 4 ), 3.555(62)(301, 212), 3.063(52)(008, 31overline 6 ), 2.840(90)(312, 021, 30overline 9 ), 2.634(88)(21overline 9 , 1.0.overline 1 0

  19. Geometric magnetic frustration in RE{sub 2}O{sub 2}S oxysulfides (RE = Sm, Eu and Gd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biondo, V.; Sarvezuk, P.W.C.; Ivashita, F.F.

    2014-06-01

    Graphical abstract: Stacked planes in the <001> direction of an oxysulfide structure, showing the triangular nets formed by rare earth cations, which moments present geometric magnetic frustration. - Highlights: • We prepared monophasic RE{sub 2}O{sub 2}S Oxysulfides (RE = Sm, Eu and Gd). • RE{sub 2}O{sub 2}S compounds were characterized regarding structural and magnetic properties. • Mössbauer spectra were obtained for Eu{sub 2}O{sub 2}S and Gd{sub 2}O{sub 2}S at different temperatures. • Oxysulfides present geometric magnetic frustration of the rare-earth sublattice. - Abstract: RE{sub 2}O{sub 2}S oxysulfides (with RE = Sm, Eu and Gd) were prepared and characterized regarding theirmore » structural and magnetic properties. The compounds crystallized in the trigonal symmetry (space group P-3m/D{sub 3}{sup 3}d), with the lattice parameter varying linearly with the ionic radius of the RE cation. All these oxysulfides are magnetically frustrated and only the gadolinium sample showed magnetic order down to 3 K. The magnetic frustration is attributed to the spatial distribution of cations over the lattice, where the RE’s magnetic moments occupy the sites forming a triangular plane lattice, perpendicular to the direction. This geometric magnetic frustration was firstly recognized for these oxysulfides.« less

  20. X-ray crystallographic and tungsten-183 nuclear magnetic resonance structural studies of the [M4(H2O)2(XW9O34) 2]10- heteropolyanions (M = COII or Zn, X = P or As)

    USGS Publications Warehouse

    Evans, H.T.; Tourne, C.M.; Tourne, G.F.; Weakley, T.J.R.

    1986-01-01

    The crystal structures of K10[Co4(H2O)2(PW9O 34)2]??22H2O (1) and isomorphous K10[Zn4(H2O)2(AsW9O 34)2]??23H2O (2) have been determined {Mo-K?? radiation, space group P21/n, Z = 2; (1) a = 15.794(2), b = 21.360(2), c = 12.312(1) A??, ?? = 91.96??, R = 0.084 for 3 242 observed reflections [I ??? 3??(I)]; (2) a = 15.842(4), b = 21.327(5), c = 12.308(4) A??, ?? = 92.42(4)??, R = 0.066 for 4 675 observed reflections [F ??? 3??(F)]}. The anions have crystallographic symmetry 1 and non-crystallographic symmetry very close to 2/m (C2h). Each consists of two [XW9O34]9- moieties [??-B isomers; X = P (1) or As (2)] linked via four CoIIO6 or ZnO6 groups. Two Co or Zn atoms each carry a water ligand. The 183W n.m.r. spectra of the anions [Zn4(H2O)2(XW9O34) 2]10- (X = P or As) confirm that the anions retain 2/m symmetry in aqueous solution. Homonuclear coupling constants between 183W atoms are 5.8-9.0 Hz for adjacent WO6 octahedra sharing edges, and 19.6-25.0 Hz for octahedra sharing corners.