Sample records for k562 cells ic50

  1. Diterpenes from Xylopia langsdorffiana inhibit cell growth and induce differentiation in human leukemia cells.

    PubMed

    Castello Branco, Marianna V S; Anazetti, Maristella C; Silva, Marcelo S; Tavares, Josean F; Diniz, Margareth F F Melo; Frungillo, Lucas; Haun, Marcela; Melo, Patrícia S

    2009-01-01

    Two new diterpenes were isolated from stems and leaves of Xylopia langsdorffiana, ent-atisane-7alpha,16alpha-diol (xylodiol) and ent-7alpha-acetoxytrachyloban-18-oic acid (trachylobane), along with the known 8(17),12E,14-labdatrien-18-oic acid (labdane). We investigated their antitumour effects on HL60, U937 and K562 human leukemia cell lines. We found that xylodiol was the most potent diterpene in inhibiting cell proliferation of HL60, U937 and K562 cells, with mean IC50 values of 90, 80 and 50 microM, respectively. Based on the nitroblue tetrazolium (NBT) reduction assay, all the diterpenes were found to induce terminal differentiation in HL60 and K562 cells, with xylodiol being the most effective. NBT reduction was increased by almost 120% after 12 h exposure of HL60 cells to xylodiol at a concentration lower than the IC50 (50 microM). Thus, xylodiol inhibited human leukemia cell growth in vitro partly by inducing cell differentiation, and merits further studies to examine its mechanism of action as a potential antitumoural agent.

  2. Effectiveness of imatinib mesylate over etoposide in the treatment of sensitive and resistant chronic myeloid leukaemia cells in vitro.

    PubMed

    Husaini, Roslina; Ahmad, Munirah; Zakaria, Zubaidah

    2017-06-01

    Chronic myeloid leukaemia (CML) is a form of leukaemia derived from the myeloid cell lineage. Imatinib mesylate, the breakpoint cluster region-abelson murine leukeamia kinase inhibitor, is a specific reagent used in the clinical treatment of CML. The DNA topoisomerase II inhibitor, etoposide, is also employed as a therapeutic, though it is used to a lesser extent. The present study aims to evaluate the effects of CML-targeted therapy, utilising imatinib mesylate and etoposide in the in vitro treatment of parental sensitive and adriamycin-resistant CML in the K562 and K562/ADM cell lines, respectively. Preliminary work involved the screening of multidrug resistant (MDR) gene expression, including MDR1, MRP1 and B-cell lymphoma 2 (BCL-2) at the mRNA levels. The sensitive and resistant CML cell lines expressed the MRP1 gene, though the sensitive K562 cells expressed low, almost undetectable levels of MDR1 and BCL-2 genes relative to the K562/ADM cells. Following treatment with imatinib mesylate or etoposide, the IC50 for imatinib mesylate did not differ between the sensitive and resistant cell lines (0.492±0.024 and 0.378±0.029, respectively), indicating that imatinib mesylate is effective in the treatment of CML regardless of cell chemosensitivity. However, the IC50 for etoposide in sensitive K562 cells was markedly lower than that of K562/ADM cells (50.6±16.5 and 194±8.46 µM, respectively), suggesting that the higher expression levels of MDR1 and/or BCL-2 mRNA in resistant cells may be partially responsible for this effect. This is supported by terminal deoxynucleotidyl transferase dUTP nick-end labeling data, whereby a higher percentage of apoptotic cells were found in the sensitive and resistant K562 cells treated with imatinib mesylate (29.3±0.2 and 31.9±16.7%, respectively), whereas etoposide caused significant apoptosis of sensitive K562 cells (18.3±8.35%) relative to K562/ADM cells (5.17±3.3%). In addition, the MDR genes in K562/ADM cells were knocked down by short interfering RNAs. The percentage knockdowns were 15.4% for MRP1, 17.8% for MDR and 30.7% for BCL-2, which resulted in a non-significant difference in the half maximal inhibitory concentration value of K562/ADM cells relative to K562 cells upon treatment with etoposide.

  3. Ester of Quinoxaline-7-carboxylate 1,4-di-N-oxide as Apoptosis Inductors in K-562 Cell Line: An in vitro, QSAR and DFT Study.

    PubMed

    Rivera, Gildardo; Andrade-Ochoa, Sergio; Romero, Manolo S Ortega; Palos, Isidro; Monge, Antonio; Sanchez-Torres, Luvia Enid

    2017-01-01

    Quinoxalines have shown a wide variety of biological activities including as antitumor agents. The aims of this study were to evaluate the activity of quinoxaline 1,4-di-N-oxide derivatives on K562 cells, the establishment of the mechanism of induced cell death, and the construction of predictive QSAR models. Sixteen esters of quinoxaline-7-carboxylate 1,4-di-N-oxide were evaluated for antitumor activity on K562 chronic myelogenous leukemia cells and their IC50 values were determined. The mechanism of induced cell death by the most active molecule was assessed by flow cytometry and an in silico study was conducted to optimize and calculate theoretical descriptors of all quinoxaline 1,4-di-N-oxide derivatives. QSAR and QPAR models were created using genetic algorithms. Our results show that compounds C5, C7, C10, C12 and C15 had the lowest IC50 of the series. C15 was the most active compound (IC50= 3.02 μg/mL), inducing caspase-dependent apoptotic cell death via the intrinsic pathway. QSAR and QPAR studies are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. [Effects of Aptamer-siRNA Nucleic Acid Compound on Growth and Apoptosis in Myeloid Leukemia Cell Line K562].

    PubMed

    Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo

    2015-04-01

    To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (P<0.05). The MTT assay showed that the IC50 value of aptamer-siRNA compound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.

  5. 3'-Geranyl-mono-substituted chalcone Xanthoangelovl induces apoptosis in human leukemia K562 cells via activation of mitochondrial pathway.

    PubMed

    Teng, Yuou; Wang, Lixin; Liu, Huan; Yuan, Yuan; Zhang, Qian; Wu, Meng; Wang, Luyao; Wang, Haomeng; Liu, Zhen; Yu, Peng

    2017-01-05

    3'-Geranyl-mono-substituted chalcone Xanthoangelol (1b), a chalcone derivative, was previously reported to show selective cytotoxicity against human chronic myelogenous leukemia K562 cells with a half-maximal inhibitory concentration (IC 50 ) of 3.98 μM. In the present study, we investigated the molecular mechanism underlying the cytotoxicity of 1b in K562 cells. Treatment with compound 1b caused K562 cells to adopt a typical apoptotic morphology. Flow cytometric analysis also confirmed the presence of an apoptotic cell population following treatment of Annexin-V-FITC and propidium iodide (PI) double-labeled K562 cells with 1b. Furthermore, we observed dissipation of the mitochondrial membrane potential, caspase-3 activation, and a reduction of the Bcl-2/Bax ratio in these cells, which suggest that the mitochondrial apoptotic pathway is induced by 1b in K562 cells. Collectively, our findings demonstrate that compound 1b notably induces mitochondrial-mediated apoptosis in K562 cells, which might have a potential anticancer activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. [Cytotoxic effect of physalis peruviana in cell culture of colorectal and prostate cancer and chronic myeloid leukemia].

    PubMed

    Quispe-Mauricio, Angel; Callacondo, David; Rojas, José; Zavala, David; Posso, Margarita; Vaisberg, Abraham

    2009-01-01

    The plants have been used as drugs for centuries. However, limited research has been done on its great potential as sources of new therapeutic agents. The purpose of this study was to evaluate Physalis peruviana cytotoxic activity on cell lines HT-29, PC-3, K-562 and VERO. The HT-29 cell lines, PC-3, K-562 and VERO, were exposed to four concentrations of P. peruviana ethanolic leave and stem extracts, also at different concentrations of cisplatin and 5-fluorouracil (5-FU), which were used as positive controls. We found rates of growth within 48 hours, then we determined the inhibitory concentration 50 (IC50) using linear regression analysis and the index of selectivity of each sample. The P. peruviana ethanolic leave and stem extracts showed cytotoxic activity. The IC50 in g/mL in leaves and stems were, 0.35 (r =-0.95 p <0.025) and 0.37 (r =- 0.90 p <0.05 ) for HT-29; 0.87 (r =-0.98 p <0.01) and 1.01 (r =-0.95 p <0.025) for PC-3; 0.02 (r =-0.98 p <0.01) and 0.03 (r =-0.98 p <0.01) for K-562; 4.9 (r =-0.95 p <0.025) and 6.2 (r =-0.98 p <0.01) for VERO. The IC50 for antineoplastic were: for cisplatin: 4.2 (r =-0.96 p <0.025), 10.3 (r =-0.97 p <0.025), 0.15 (r =-0.98 p = 0.01) and 1.1 (r =- 0.98 p = 0.01); for 5-FU: 2.3 (r =-0.97 p <0.025), 17.9 (r =-0.95 p <0.025), 0.15 (r =-0.98 p = 0.01) and 1.1 (r =-0.94 p = 0.05) for HT-29, PC-3, K562 and VERO respectively. The leaves and stems extracts selectivity index were between 5.6 and 245 for tumor cell lines evaluated, by contrast, cisplatin and 5-FU, only showed values between 0.11 and 7.3. The P. peruviana leaves and steams ethanolic extracts were more cytotoxic than cisplatin and 5 FU, on the lines HT-29, PC-3 and K562. Furthermore the P. peruviana cytotoxic effects were less than cisplatin and 5-FU for VERO control cells lines.

  7. Cyclopentenone derivatives and polyhydroxylated steroids from the soft coral Sinularia acuta.

    PubMed

    Zhang, Nai-Xia; Tang, Xu-Li; van Ofwegen, Leen; Xue, Lei; Song, Wen-Juan; Li, Ping-Lin; Li, Guo-Qiang

    2015-02-01

    Four new polyhydroxylated steroids, 1-4, and the racemic form of cyclopentenone 9, together with four known steroids, 5-8, one known cyclopentenone derivative, 10, and one known butenolide derivative, 11, were isolated from the soft coral Sinularia acuta collected from Weizhou Island of Guangxi Province, P. R. China. Their structures were elucidated on the basis of spectroscopic analyses and by comparison of the corresponding data with those previously reported. The cytotoxicities of the isolates 1-11 in vitro against the selected tumor cell lines HL-60, HeLa, and K562 were evaluated. Compounds 2 and 5 showed potent cytotoxicities against HL-60 cell lines with IC50 values of 7.3 and 9.9 μM, respectively. Compounds 5 and 6 showed moderate activities against K562 cell lines with IC50 values of 10.9 and 11.7 μM, respectively, while compounds 1, 2, and 6 showed weak activities against HeLa cell lines with respective IC50 values of 44.8, 27.1, and 18.2 μM. This is the first report on chemical and bioactivity research of S. acuta. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Synthesis of novel amides based on acridone scaffold with interesting antineoplastic activity.

    PubMed

    Mahajan, Anand A; Rane, Rajesh A; Amritkar, Anish A; Naphade, Shital S; Miniyar, Pankaj B; Bangalore, Pavan Kumar; Karpoormath, Rajshekhar

    2015-01-01

    In search of novel cytotoxic agents based on acridone scaffold, twenty five derivatives of acridone-2- carboxamide were synthesized and evaluated against a panel of eleven cancer cell lines by using MTT assay. Amides, A5 and A8 (IC50 = 0.3 µM) exhibited good cytotoxicity against MCF7. Compound A22 (IC50 = 4.3 µM) was found to be selectively cytotoxic against cancer cell line MCF7 and KB403. Particularly, promising cytotoxic activities were shown by amides A6 (IC50 = 0.7 µM), A16 (IC50 = 6.3 µM), A8 (IC50 = 0.9 µM ), A21 (IC50 = 1.3 µM), A5 (IC50 = 2.9 µM), A8 (IC50 = 2.8 µM), A14 (IC50 = 0.8 µM), A9 (IC50 = 0.8 µM) and A8 (IC50 = 0.4 µM) against cell lines; PA1, WRL68, CaCO2, TK-10, K-562, PC-3, HOP-92, ECV-304 and UACC-257, respectively. The favorable cytotoxic profile and non-toxicity towards normal human cells displayed by the derivative revealed their potential for further anticancer drug developments.

  9. Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics.

    PubMed

    Lu, Yang; Li, Hui; Geng, Yue

    2018-01-31

    δ-Tocopherol (δ-TOH) is a form of vitamin E with higher bioactivity. In this study, we studied the bioactivity of δ-TOH using the IC 50 of δ-TOH on RAW264.7 (80 μM) and K562 (110 μM) cells. We compared the differential metabolites from the cell lines with and without δ-TOH treatment by 1 H NMR metabonomics analysis. It was found that δ-TOH affected the protein biosynthesis, betaine metabolism, and urea cycle in various ways in both cell lines. Metabolic levels of the cell lines were changed after treatment with δ-TOH as differential metabolites were produced. The betaine level in RAW264.7 cells was reduced significantly, while the l-lactic acid level in K562 cells was significantly enhanced. The metabolic changes might contribute to the switch of the respiration pattern from aerobic respiration to anaerobic respiration in K562 cells. These results are helpful in further understanding the subtoxicity of δ-TOH.

  10. EFFECT OF THAI SARAPHI FLOWER EXTRACTS ON WT1 AND BCR/ABL PROTEIN EXPRESSION IN LEUKEMIC CELL LINES.

    PubMed

    Sangkaruk, Rungkarn; Rungrojsakul, Methee; Tima, Singkome; Anuchapreeda, Songyot

    2017-01-01

    Saraphi (Mammea siamensis) is a Thai traditional herb. In this study, the cytotoxic effects of crude ethanolic and fractional extracts including hexane, ethyl acetate, and methanol fractions from M. siamensis flowers were investigated in order to determine their effect on WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. The flowers of M. siamensis were extracted using ethanol. The ethanol flower extract was further fractionated with hexane, ethyl acetate, and methanol. Cytotoxic effects were measured by the MTT assay. Bcr/Abl and WT1 protein levels after treatments were determined by Western blotting. The total cell number was determined via the typan blue exclusion method. The hexane fraction showed the strongest cytotoxic activity on Molt4 and K562 cells, with IC 50 values of 2.6 and 77.6 μg/ml, respectively. The hexane extract decreased Bcr/Abl protein expression in K562 cells by 74.6% and WT1 protein expressions in Molt4 and K562 cells by 68.4 and 72.1%, respectively. Total cell numbers were decreased by 66.2 and 48.7% in Molt4 and K562 cells, respectively. Mammea E/BB (main active compound) significantly decreased both Bcr/Abl and WTlprotein expressions by 75 and 49.5%, respectively when compared to vehicle control. The hexane fraction from M. siamensis flowers inhibited cell proliferation via the suppression of WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. The active compound may be mammea E/BB. Extracts from M. siamensis flowers show promise as naturally occurring anti-cancer drugs.

  11. Two new meroterpenoids produced by the endophytic fungus Penicillium sp. SXH-65.

    PubMed

    Sun, Xinhua; Kong, Xianglan; Gao, Huquan; Zhu, Tianjiao; Wu, Guangwei; Gu, Qianqun; Li, Dehai

    2014-08-01

    Two new meroterpenoids, arisugacins I (1) and J (2), together with five known meroterpenoids including arisugacin B (3), arisugacin F (4), arisugacin G (5), territrem B (6) and territrem C (7) were isolated from an endophytic fungus Penicillium sp. SXH-65. Their structures were determined by extensive spectroscopic experiments and comparison with literature data. Their cytotoxicities were evaluated against Hela, HL-60 and K562 cell lines, and only 3 and 4 exhibited weak cytotoxicities against Hela, HL-60 and K562 cell lines with IC50 values ranging from 24 to 60 μM.

  12. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562more » cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.« less

  13. Gold Rods Irradiated with Ultrasound for Combination of Hyperthermia and Cancer Chemotherapy.

    PubMed

    Barros, Andre; Austerlitz, Carlos; Gkigkitzis, Ioannis; Campos, Diana; Andrade, Jeyce; Peixoto, Christina; Aguiar, Jaciana; Nascimento, Silene; Silva, Teresinha G; Haranas, Ioannis

    2017-01-01

    The aim of this study was to analyze feasibility (in vitro and in vivo) the use of hyperthermia produced by gold rods irradiated with ultrasound and their combination with chemotherapy with doxorubicin. initially was determined the cell viability and Hsp70 levels after treatment by gold rods irradiated with ultrasound (GR+U) in cell culture. The pretreatment with GR+U combined with doxorubicin (DOX) was evaluated from IC 50 , caspase-3 expression and mechanisms of cell death by electron microscopy. For evaluate the in vivo effects was used solid Ehrlich carcinoma (SEC) Tumor. The animals received three treatments with the combination of GR+U+DOX over 16 days. The cell viability was completely inhibited after 40 min of treatment with GR+U and significant increases the expression of HSP70 was only observed after 10 min of treatment. GR+U+DOX presented significant reduction of IC 50 representing 50.7%, 76.5% 45.2% and 46.6% for cell lines K562, NCI-H292, Hep-2 and MCF-7 respectively. GR+U+DOX presented significant reduction of IC 50 representing 50.7%, 76.5% 45.2% and 46.6% for cell lines K562, NCI-H292, Hep-2 and MCF-7 respectively. The caspase-3 level and ultraestructural analysis showed that treatment with GR+U+DOX enhances induction of apoptosis. Pretreatment with GR+U combined with doxorubicin (1 mg) showed 87% inhibition against SEC. and no showed cardiotoxic effect. The combined treatment of GR+U and DOX exhibit synergistic characteristics observed by increasing the efficiency of doxorubicin.

  14. Small Molecule TH-39 Potentially Targets Hec1/Nek2 Interaction and Exhibits Antitumor Efficacy in K562 Cells via G0/G1 Cell Cycle Arrest and Apoptosis Induction.

    PubMed

    Zhu, Yongxia; Wei, Wei; Ye, Tinghong; Liu, Zhihao; Liu, Li; Luo, Yong; Zhang, Lidan; Gao, Chao; Wang, Ningyu; Yu, Luoting

    2016-01-01

    Cancer is still a major public health issue worldwide, and new therapeutics with anti-tumor activity are still urgently needed. The anti-tumor activity of TH-39, which shows potent anti-proliferative activity against K562 cells with an IC50 of 0.78 µM, was investigated using immunoblot, co-immunoprecipitation, the MTT assay, and flow cytometry. Mechanistically, TH-39 may disrupt the interaction between Hec1 and Nek2 in K562 cells. Moreover, TH-39 inhibited cell proliferation in a concentration- and time-dependent manner by influencing the morphology of K562 cells and inducing G0/G1 phase arrest. G0/G1 phase arrest was associated with down-regulation of CDK2-cyclin E complex and CDK4/6-cyclin D complex activities. Furthermore, TH-39 also induced cell apoptosis, which was associated with activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax. TH-39 could also decrease mitochondrial membrane potential (Δψm) and increase reactive oxygen species (ROS) accumulation in K562 cells. The results indicated that TH-39 might induce apoptosis via the ROS-mitochondrial apoptotic pathway. This study highlights the potential therapeutic efficacy of the anti-cancer compound TH-39 in treatment-resistant chronic myeloid leukemia. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Chemistry and Selective Tumor Cell Growth Inhibitory Activity of Polyketides from the South China Sea Sponge Plakortis sp.

    PubMed

    Li, Jiao; Li, Cui; Riccio, Raffaele; Lauro, Gianluigi; Bifulco, Giuseppe; Li, Tie-Jun; Tang, Hua; Zhuang, Chun-Lin; Ma, Hao; Sun, Peng; Zhang, Wen

    2017-05-03

    Simplextone E ( 1 ), a new metabolite of polyketide origin, was isolated with eight known analogues ( 2 - 9 ) from the South China Sea sponge Plakortis sp. The relative configuration of the new compound was elucidated by a detailed analysis of the spectroscopic data and quantum mechanical calculation of NMR chemical shifts, aided by the newly reported DP4+ approach. Its absolute configuration was determined by the TDDFT/ECD calculation. Simplextone E ( 1 ) is proven to be one of the isomers of simplextone D. The absolute configuration at C-8 in alkyl chain of plakortone Q ( 2 ) was also assigned based on the NMR calculation. In the preliminary in vitro bioassay, compounds 6 and 7 showed a selective growth inhibitory activity against HCT-116 human colon cancer cells with IC 50 values of 8.3 ± 2.4 and 8.4 ± 2.3 μM, corresponding to that of the positive control, adriamycin (IC 50 4.1 μM). The two compounds also showed selective activities towards MCF-7 human breast cancer and K562 human erythroleukemia cells while compound 3 only displayed weak activity against K562 cells.

  16. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis.

    PubMed

    Flores-Alvarez, Luis José; Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2018-06-01

    Plant defensins, a group of antimicrobial peptides, show selective cytotoxicity toward cancer cells. However, their mechanisms of action remain poorly understood. Here, we evaluated the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on K562 chronic myeloid leukemia cells and analyzed the pathway involved in the induction of cell death. The defensin PaDef was not cytotoxic against human PBMCs; however, it was cytotoxic for K562 cell line (IC 50  = 97.3 μg/ml) activating apoptosis at 12 h. PaDef did not affect the mitochondrial membrane potential (ΔΨm), neither the transmembranal potential or the release of intracellular calcium. Also, PaDef induced gene expression of caspase 8 (∼2 fold), TNF-α (∼4 fold) and TNFR1 (∼10 fold). In addition, the activation of caspase 8 was detected at 24 h, whereas caspase 9 activity was not modified, suggesting that the extrinsic apoptosis pathway could be activated. In conclusion, PaDef induces apoptosis on K562 cells, which is related to the activation of caspase 8 and involves the participation of TNF-α, which is a novel property for a plant defensin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Antiproliferative Activity of Xanthones Isolated from Artocarpus obtusus

    PubMed Central

    Hashim, Najihah Mohd; Rahmani, Mawardi; Ee, Gwendoline Cheng Lian; Sukari, Mohd Aspollah; Yahayu, Maizatulakmal; Oktima, Winda; Ali, Abd Manaf; Go, Rusea

    2012-01-01

    An investigation of the chemical constituents in Artocarpus obtusus species led to the isolation of three new xanthones, pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2), and pyranocycloartobiloxanthone B (3). The compounds were subjected to antiproliferative assay against human promyelocytic leukemia (HL60), human chronic myeloid leukemia (K562), and human estrogen receptor (ER+) positive breast cancer (MCF7) cell lines. Pyranocycloartobiloxanthone A (1) consistently showed strong cytotoxic activity against the three cell lines compared to the other two with IC50 values of 0.5, 2.0 and 5.0 μg/mL, respectively. Compound (1) was also observed to exert antiproliferative activity and apoptotic promoter towards HL60 and MCF7 cell lines at respective IC50 values. The compound (1) was not toxic towards normal cell lines human nontumorigenic breast cell line (MCF10A) and human peripheral blood mononuclear cells (PBMCs) with IC50 values of more than 30 μg/mL. PMID:21960741

  18. Apoptosis induction in MV4-11 and K562 human leukemic cells by Pereskia sacharosa (Cactaceae) leaf crude extract.

    PubMed

    Asmaa, Mat Jusoh Siti; Al-Jamal, Hamid Ali Nagi; Ang, Cheng Yong; Asan, Jamaruddin Mat; Seeni, Azman; Johan, Muhammad Farid

    2014-01-01

    Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

  19. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    PubMed

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A gallotannin-rich fraction from Caesalpinia spinosa (Molina) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line

    PubMed Central

    2012-01-01

    Background Enhancement of tumor cell sensitivity may help facilitate a reduction in drug dosage using conventional chemotherapies. Consequently, it is worthwhile to search for adjuvants with the potential of increasing chemotherapeutic drug effectiveness and improving patient quality of life. Natural products are a very good source of such adjuvants. Methods The biological activity of a fraction enriched in hydrolysable polyphenols (P2Et) obtained from Caesalpinia spinosa was evaluated using the hematopoietic cell line K562. This fraction was tested alone or in combination with the conventional chemotherapeutic drugs doxorubicin, vincristine, etoposide, camptothecin and taxol. The parameters evaluated were mitochondrial depolarization, caspase 3 activation, chromatin condensation and clonogenic activity. Results We found that the P2Et fraction induced mitochondrial depolarization, activated caspase 3, induced chromatin condensation and decreased the clonogenic capacity of the K562 cell line. When the P2Et fraction was used in combination with chemotherapeutic drugs at sub-lethal concentrations, a fourfold reduction in doxorubicin inhibitory concentration 50 (IC50) was seen in the K562 cell line. This finding suggested that P2Et fraction activity is specific for the molecular target of doxorubicin. Conclusions Our results suggest that a natural fraction extracted from Caesalpinia spinosa in combination with conventional chemotherapy in combination with natural products on leukemia cells may increase therapeutic effectiveness in relation to leukemia. PMID:22490328

  1. Cytotoxic and apoptotic effects of different extracts of Artemisia biennis Willd. on K562 and HL-60 cell lines

    PubMed Central

    Tayarani-Najaran, Zahra; Makki, Farideh-Sadat; Alamolhodaei, Nafiseh-Sadat; Mojarrab, Mahdi; Emami, Seyed Ahmad

    2017-01-01

    Objective(s): Artemisia is a genus of herbs and small shrubs forms an important part of natural vegetation in Iran. It has been reported that several Artemisia species possess anti-proliferative effects. Considering the value of this genus in anti-cancer researches we have chosen Artemisia biennis for cytotoxic and mechanistic studies. Materials and Methods: In this study we have investigated the cytotoxic and apoptotic effects of petroleum ether, dichloromethane, ethyl acetate, ethanol, and ethanol: water (1:1 v/v) extracts of A. biennis Willd. on two cancer human cell lines (K562 and HL-60) and J774 as normal cells. Results: CH2Cl2 extract was found to have the highest anti-proliferative effect on cancer cells. IC50 values obtained in AlamarBlue® assay for CH2Cl2 extract were 64.86 and 54.31 µg/ml on K562 and HL-60 cells respectively. In flow cytometry histogram of the cells treated with CH2Cl2 extract, sub-G1 peak was induced. DNA fragmentation, increased in the level of Bax and cleavage of PARP protein all showed the induction of apoptosis with CH2Cl2 extract after 48 hr contact with cells. Conclusion: The results can corroborate the cytotoxic and apoptotic effects of the CH2Cl2 extract of A. biennis on the K562 and HL-60 cancer cell lines. PMID:28293393

  2. Anti-Tumor Activity of Eurycoma longifolia Root Extracts against K-562 Cell Line: In Vitro and In Vivo Study

    PubMed Central

    Majid, Amin Malik Shah Abdul; Kit-Lam, Chan; Abdullah, Wan Zaidah; Zaki, Abdelhamid; Jamal Din, Shah Kamal Khan; Yusoff, Narazah Mohd

    2014-01-01

    Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 107 K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management. PMID:24409284

  3. Cytotoxic Properties of Three Isolated Coumarin-hemiterpene Ether Derivatives from Artemisia armeniaca Lam.

    PubMed

    Mojarrab, Mahdi; Emami, Seyed Ahmad; Delazar, Abbas; Tayarani-Najaran, Zahra

    2017-01-01

    Considering multiple reports on cytotoxic activity of the Artemisia genus and its phytochemicals, in the current study A. armeniaca Lam. and the three components isolated from the plant were subjected to cytotoxic studies. Analytical fractionation of A. armeniaca aerial parts for the first time was directed to the isolation of 7-hydroxy-8-(4-hydroxy-3-methylbutoxy) comarin (armenin), 8-hydroxy-7-(4-hydroxy-3-methylbutoxy) comarin (isoarmenin) and deoxylacarol. Cytotoxicity assessed with alamalBlue® assay and apoptosis was detected by PI staining and western blot analysis of Bax and PARP proteins. Extracts and all compounds exhibited cytotoxic activity against apoptosis-proficient HL-60 and apoptosis-resistant K562 cells, with the lowest cytotoxic activity on J774 cell line as non-malignant cell. Armenin as the most potent component decreased the viability of cell with IC50 of 22.5 and 71.1 µM for K562 and HL-60 cells respectively and selected for further mechanistic study. Armenin increased the sub-G1 peak in flow cytometry histogram of HL-60 and K562 treated cells and increase in the amount of Bax protein and the cleavage of PARP in comparison with the control after treatment for 48 h in K562 treated cells verified the apoptotic activity of the armenin. Taken together, according to the finding of this study armenin was introduced as a novel cytotoxic compound with apoptotic activity, which is encouraging for further mechanistic and clinical studies.

  4. Rotenone isolated from Pachyrhizus erosus displays cytotoxicity and genotoxicity in K562 cells.

    PubMed

    Estrella-Parra, Edgar A; Gomez-Verjan, Juan C; González-Sánchez, Ignacio; Vázquez-Martínez, Edgar Ricardo; Vergara-Castañeda, Edgar; Cerbón, Marco A; Alavez-Solano, Dagoberto; Reyes-Chilpa, Ricardo

    2014-01-01

    Pachyrhizus erosus (Fabaceae) is a herb commonly known as 'yam bean', which has been cultivated in México since pre-Columbian times for its edible tubers. The seeds are also known for their acaricidal and insecticidal properties due to rotenone and other isoflavonoid contents. Rotenone has exhibited cytotoxic activity against several human tumour cell lines; however, its mechanism of action is still not fully understood. In this study, we determined the cytotoxicity of rotenone isolated from P. erosus seeds on K562 human leukaemia cells. Rotenone exhibited significant cytotoxic activity (IC50 = 13.05 μM), as determined by the MTT assay. Three other isolated isoflavonoids were not cytotoxic. Rotenone genotoxicity was detected using the comet assay. Rotenone induced cell death, and caspase-3 activation as indicated by TUNEL assay, and immunocytofluorescence. Plasmid nicking assay indicated that rotenone does not interact directly with DNA.

  5. Design, Synthesis, and Biological Evaluation of Novel 1,3,4-Thiadiazole Derivatives as Potential Antitumor Agents against Chronic Myelogenous Leukemia: Striking Effect of Nitrothiazole Moiety

    DOE PAGES

    Altıntop, Mehlika; Ciftci, Halil; Radwan, Mohamed; ...

    2017-12-27

    In an attempt to develop potent antitumor agents, new 1,3,4-thiadiazole derivatives were synthesized and evaluated for their cytotoxic effects on multiple human cancer cell lines, including the K562 chronic myelogenous leukemia cell line that expresses the Bcr-Abl tyrosine kinase. N-(5-Nitrothiazol-2-yl)-2-((5-((4-(trifluoromethyl)phenyl)amino)-1,3,4-thiadiazol-2-yl)thio)acetamide (2) inhibited the Abl protein kinase with an IC 50 value of 7.4 µM and showed selective activity against the Bcr-Abl positive K562 cell line. Furthermore, a Bcr-Abl-compound 2 molecular modelling simulation highlighted the anchoring role of the nitrothiazole moiety in bonding and hydrophobic interaction with the key amino acid residues. These results provide promising starting points for further developmentmore » of novel kinase inhibitors.« less

  6. Design, Synthesis, and Biological Evaluation of Novel 1,3,4-Thiadiazole Derivatives as Potential Antitumor Agents against Chronic Myelogenous Leukemia: Striking Effect of Nitrothiazole Moiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altıntop, Mehlika; Ciftci, Halil; Radwan, Mohamed

    In an attempt to develop potent antitumor agents, new 1,3,4-thiadiazole derivatives were synthesized and evaluated for their cytotoxic effects on multiple human cancer cell lines, including the K562 chronic myelogenous leukemia cell line that expresses the Bcr-Abl tyrosine kinase. N-(5-Nitrothiazol-2-yl)-2-((5-((4-(trifluoromethyl)phenyl)amino)-1,3,4-thiadiazol-2-yl)thio)acetamide (2) inhibited the Abl protein kinase with an IC 50 value of 7.4 µM and showed selective activity against the Bcr-Abl positive K562 cell line. Furthermore, a Bcr-Abl-compound 2 molecular modelling simulation highlighted the anchoring role of the nitrothiazole moiety in bonding and hydrophobic interaction with the key amino acid residues. These results provide promising starting points for further developmentmore » of novel kinase inhibitors.« less

  7. 4-Nerolidylcatechol: apoptosis by mitochondrial mechanisms with reduction in cyclin D1 at G0/G1 stage of the chronic myelogenous K562 cell line.

    PubMed

    Benfica, Polyana Lopes; Ávila, Renato Ivan de; Rodrigues, Bruna Dos Santos; Cortez, Alane Pereira; Batista, Aline Carvalho; Gaeti, Marilisa Pedroso Nogueira; Lima, Eliana Martins; Rezende, Kênnia Rocha; Valadares, Marize Campos

    2017-12-01

    4-Nerolidylcatechol (4-NRC) has showed antitumor potential through apoptosis. However, its apoptotic mechanisms are still unclear, especially in leukemic cells. To evaluate the cytotoxic potential of 4-NRC and its cell death pathways in p53-null K562 leukemic cells. Cytotoxicity of 4-NRC (4.17-534.5 μM) over 24 h of exposure was evaluated by MTT assay. 4-NRC-induced apoptosis in K562 cells was investigated by phosphatidylserine (PS) externalization, cell cycle, sub-G1, mitochondrial evaluation, cytochrome c, cyclin D1 and intracellular reactive oxygen species (ROS) levels, and caspase activity analysis. IC 50 values obtained were 11.40, 27.31, 15.93 and 15.70 μM for lymphocytes, K562, HL-60 and Jurkat cells, respectively. In K562 cells, 4-NRC (27 μM) promoted apoptosis as verified by cellular morphological changes, a significant increase in PS externalization and sub-G1 cells. Moreover, it significantly arrested the cells at the G0/G1 phase due to a reduction in cyclin D1 expression. These effects of 4-NRC also significantly promoted a reduction in mitochondrial activity and membrane depolarization, accumulation of cytosolic cytochrome c and ROS overproduction. Additionally, it triggered an increase in caspases -3/7, -8 and -9 activities. When the cells were pretreated with N-acetyl-l-cysteine ROS scavenger, 4-NRC-induced apoptosis was partially blocked, which suggests that it exerts cytotoxicity though not exclusively through ROS-mediated mechanisms. 4-NRC has antileukemic properties, inducing apoptosis mediated by mitochondrial-dependent mechanisms with cyclin D1 inhibition. Given that emerging treatment concepts include novel combinations of well-known agents, 4-NRC could offer a promising alternative for chemotherapeutic combinations to maximize tumour suppression.

  8. The novel piperazine-containing compound LQFM018: Necroptosis cell death mechanisms, dopamine D4 receptor binding and toxicological assessment.

    PubMed

    Costa, Fabiana Bettanin; Cortez, Alane P; de Ávila, Renato Ivan; de Carvalho, Flávio S; Andrade, Wanessa M; da Cruz, Andrezza F; Reis, Karinna B; Menegatti, Ricardo; Lião, Luciano M; Romeiro, Luiz Antônio S; Noël, François; Fraga, Carlos Alberto M; Barreiro, Eliezer J; Sanz, Germán; Rodrigues, Marcella F; Vaz, Boniek G; Valadares, Marize Campos

    2018-06-01

    Piperazine is a promising scaffold for drug development due to its broad spectrum of biological activities. Based on this, the new piperazine-containing compound LQFM018 (2) [ethyl 4-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)piperazine-1-carboxylate] was synthetized and some biological activities investigated. In this work, we described its ability to bind aminergic receptors, antiproliferative effects as well as the LQFM018 (2)-triggered cell death mechanisms, in K562 leukemic cells, by flow cytometric analyses. Furthermore, acute oral systemic toxicity and potential myelotoxicity assessments of LQFM018 (2) were carried out. LQFM018 (2) was originally obtained by molecular simplification from LASSBio579 (1), an analogue compound of clozapine, with 33% of global yield. Binding profile assay to aminergic receptors showed that LQFM018 (2) has affinity for the dopamine D 4 receptor (K i  = 0.26 μM). Moreover, it showed cytotoxicity in K562 cells, in a concentration and time-dependent manner; IC 50 values obtained were 399, 242 and 119 μM for trypan blue assay and 427, 259 and 50 μM for MTT method at 24, 48 or 72 h, respectively. This compound (427 μM) also promoted increase in LDH release and cell cycle arrest in G2/M phase. Furthermore, it triggered necrotic morphologies in K562 cells associated with intense cell membrane rupture as confirmed by Annexin V/propidium iodide double-staining. LQFM018 (2) also triggered mitochondrial disturb through loss of ΔΨm associated with increase of ROS production. No significant accumulation of cytosolic cytochrome c was verified in treated cells. Furthermore, it was verified an increase of expression of TNF-R1 and mRNA levels of CYLD with no involviment in caspase-3 and -8 activation and NF-κB in K562 cells. LQFM018 (2) showed in vitro myelotoxicity potential, but it was orally well tolerated and classified as UN GHS category 5 (LD 50  > 2000-5000 mg/Kg). Thus, LQFM018 (2) seems to have a non-selective action considering hematopoietic cells. In conclusion, it is suggested LQFM018 (2) promotes cell death in K562 cells via necroptotic signaling, probably with involvement of dopamine D 4 receptor. These findings open new perspectives in cancer therapy by use of necroptosis inducing agents as a strategy of reverse cancer cell chemoresistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Investigation of chemical reactivity of 2-alkoxy-1,4-naphthoquinones and their anticancer activity.

    PubMed

    Manickam, Manoj; Boggu, Pulla Reddy; Cho, Jungsuk; Nam, Yeo Jin; Lee, Seung Jin; Jung, Sang-Hun

    2018-06-15

    To establish the structure-activity relationship of 5-hydroxy-1,4-naphthoquinones toward anticancer activity, a series of its derivatives were prepared and tested for the activity (IC 50 in µM) against three cell lines; colo205 (colon adenocarcinoma), T47D (breast ductal carcinoma) and K562 (chronic myelogenous leukemia). Among them 2 (IC 50 : 2.3; 2.0; 1.4 µM), 6 (IC 50 : 1.9; 2.2; 1.3 µM), 9 (IC 50 : 0.7; 1.7; 0.9 µM) and 10 (IC 50 :1.7; 1.0; 1.2 µM) showed moderate to excellent activity. Our perception toward the DNA substitution of alkoxy groups at the C2 position of these naphthoquinones for the anticancer activity led us to investigate their reactivity of substitution toward dimethylamine as a nucleophile. The ease of the substitution of alkoxy groups at the C2 position with dimethylamine is strongly accelerated by hydroxyl group at C5 position and is well correlated with the found anticancer activity results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. An Investigation of the Growth Inhibitory Capacity of Several Medicinal Plants From Iran on Tumor Cell Lines

    PubMed Central

    Esmaeilbeig, Maryam; Kouhpayeh, Seyed Amin; Amirghofran, Zahra

    2015-01-01

    Background: Traditional herbal medicine is a valuable resource that provides new drugs for cancer treatment. Objectives: In this study we aim to screen and investigate the in vitro anti-tumor activities of ten species of plants commonly grown in Southern Iran. Materials and Methods: We used the MTT colorimetric assay to evaluate the cytotoxic activities of the methanol extracts of these plants on various tumor cell lines. The IC50 was calculated as a scale for this evaluation. Results: Satureja bachtiarica, Satureja hortensis, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed the inhibitoriest effects on Jurkat cells with > 80% inhibition at 200 µg/mL. Satureja hortensis (IC50: 66.7 µg/mL) was the most effective. These plants also strongly inhibited K562 cell growth; Satureja bachtiarica (IC50: 28.3 µg/mL), Satureja hortensis (IC50: 52 µg/mL) and Thymus vulgaris (IC50: 87 µg/mL) were the most effective extracts. Cichorium intybus, Rheum ribes, Alhagi pseudalhagi and Glycyrrihza glabra also showed notable effects on the leukemia cell lines. The Raji cell line was mostly inhibited by Satureja bachtiarica and Thymus vulgaris with approximately 40% inhibition at 200µg/ml. The influence of these extracts on solid tumor cell lines was not strong. Fen cells were mostly affected by Glycyrrihza glabra (IC50: 182 µg/mL) and HeLa cells by Satureja hortensis (31.6% growth inhibitory effect at 200 µg/mL). Conclusions: Leukemic cell lines were more sensitive to the extracts than the solid tumor cell lines; Satureja hortensis, Satureja bachtiarica, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed remarkable inhibitory potential. PMID:26634114

  11. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients.

    PubMed

    Pardanani, A; Lasho, T; Smith, G; Burns, C J; Fantino, E; Tefferi, A

    2009-08-01

    Somatic mutations in Janus kinase 2 (JAK2), including JAK2V617F, result in dysregulated JAK-signal transducer and activator transcription (STAT) signaling, which is implicated in myeloproliferative neoplasm (MPN) pathogenesis. CYT387 is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases (IC(50)=11 and 18 nM, respectively), with significantly less activity against other kinases, including JAK3 (IC(50)=155 nM). CYT387 inhibits growth of Ba/F3-JAK2V617F and human erythroleukemia (HEL) cells (IC(50) approximately 1500 nM) or Ba/F3-MPLW515L cells (IC(50)=200 nM), but has considerably less activity against BCR-ABL harboring K562 cells (IC=58 000 nM). Cell lines harboring mutated JAK2 alleles (CHRF-288-11 or Ba/F3-TEL-JAK2) were inhibited more potently than the corresponding pair harboring mutated JAK3 alleles (CMK or Ba/F3-TEL-JAK3), and STAT-5 phosphorylation was inhibited in HEL cells with an IC(50)=400 nM. Furthermore, CYT387 selectively suppressed the in vitro growth of erythroid colonies harboring JAK2V617F from polycythemia vera (PV) patients, an effect that was attenuated by exogenous erythropoietin. Overall, our data indicate that the JAK1/JAK2 selective inhibitor CYT387 has potential for efficacious treatment of MPN harboring mutated JAK2 and MPL alleles.

  12. Cytotoxic and Apoptotic Effects of Different Extracts of Artemisia turanica Krasch. on K562 and HL-60 Cell Lines

    PubMed Central

    Tayarani-Najaran, Zahra; Sareban, Mahla; Gholami, Atefeh; Emami, Seyed Ahmad; Mojarrab, Mahdi

    2013-01-01

    Artemisia is an important genus of Iranian flora. Cytotoxic activities for some species of the genus have already been reported. In this study, we have investigated the cytotoxic effects of n-hexane, CH2Cl2, EtOAc, EtOH, and EtOH/H2O (1 : 1) extracts of A. turanica Krasch. on two human leukemic cancer cell lines (K562 and HL-60) and J774 as normal cells using alamarBlue (resazurin) assay. PI staining of the fragmented DNA and western blot analysis were used to evaluate the possible apoptotic effect of the extract. The CH2Cl2 extract of A. turanica showed the most antiproliferative effect on cancer cells among all tested extracts with IC50 values of 69 and 104 μg/mL on K562 and HL-60 cells, respectively, whereas the normal cells were not affected significantly by this extract. Sub-G1 peak in the flow cytometry histogram of the cells treated with CH2Cl2 extract of A. turanica and cleavage of PARP protein confirmed the induction of apoptosis with CH2Cl2 extract. Taken together, the findings of the present work suggest the anticancer potential of CH2Cl2 extract of A. turanica on human leukemic cancer cell lines. PMID:24288497

  13. A nanocomplex of Cu(II) with theophylline drug; synthesis, characterization, and anticancer activity against K562 cell line

    NASA Astrophysics Data System (ADS)

    Sahlabadi, Maryam; Daryanavard, Marzieh; Hadadzadeh, Hassan; Amirghofran, Zahra

    2018-03-01

    A new mononuclear of copper (II), [Cu(theophylline)2(H2O)3]·2H2O, has been synthesized by reaction of theophylline (1,3-dimethyl-7H-purine-2,6-dione) with copper (II) nitrate in water. Further, its nanocomplex has been prepared through the three different methods including sonication, grinding, and a combination thereof, sonication-grinding. The prepared nanocomplex was characterized using different techniques including FT-IR, UV-Vis, X-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy (FE-SEM). Moreover, the anticancer activity of the precursor complex, nanocomplex, free theophylline ligand, and the starting copper salt (Cu(NO3)2·3H2O) was investigated against the K562 cell line. The results show that the nanocomplex is an effective nano metal-based anticancer agent with IC50 = 11.7 μM.

  14. Five novel naphthylisoquinoline alkaloids with growth inhibitory activities against human leukemia cells HL-60, K562 and U937 from stems and leaves of Ancistrocladus tectorius.

    PubMed

    Jiang, Chao; Li, Zhan-Lin; Gong, Ping; Kang, Sheng-Li; Liu, Ming-Sheng; Pei, Yue-Hu; Jing, Yong-Kui; Hua, Hui-Ming

    2013-12-01

    Two new 7,6'-coupled naphthylisoquinolines, namely ancistrotectorines A (1) and B (2), two new 5,3'-coupled naphthylisoquinolines, namely ancistrotectorines C (3) and D (4), and one new 7,8-coupled naphthylisoquinoline, namely ancistrotectorine E (5), together with 9 known naphthylisoquinoline alkaloids, hamatine (6), ancistrobertsonine B (7), ancistrocladinine (8), hamatinine (9), ancistrotanzanine A (10), ancistrotanzanine B (11), ancistrotectoriline B (12), 7-epi-ancistrobrevine D (13), and ancistrotectorine (14), were isolated from the 70% EtOH extract of Ancistrocladus tectorius. Their structures were elucidated based on the extensive analysis of spectroscopic data (1D, 2D NMR and MS). Compound 5 exhibited inhibitory activities against HL-60, K562 and U937 cell lines with IC50 values of 1.70, 4.18 and 2.56 μM respectively. © 2013.

  15. Leucocontextins A-R, lanostane-type triterpenoids from Ganoderma leucocontextum.

    PubMed

    Zhao, Zhen-Zhu; Chen, He-Ping; Li, Zheng-Hui; Dong, Ze-Jun; Bai, Xue; Zhou, Zhong-Yu; Feng, Tao; Liu, Ji-Kai

    2016-03-01

    Eighteen new lanostane-type triterpenoids, namely leucocontextins A-R (1-18) were isolated from the fruiting bodies of Ganoderma leucocontextum. Their structures were established by 1D and 2D NMR data in conjunction with HRESIMS/HREIMS, X-ray single crystal diffraction analysis. Compound 18 exhibited weak cytotoxicity against K562 and MCF-7 cell lines with IC50 of 20-30 μM. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.

    PubMed

    Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava

    2012-12-05

    Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.

  17. Cytotoxic Activity of Extracts from Plants of Central Argentina on Sensitive and Multidrug-Resistant Leukemia Cells: Isolation of an Active Principle from Gaillardia megapotamica

    PubMed Central

    González, María Laura; Joray, Mariana Belén; Laiolo, Jerónimo; Crespo, María Inés; Palacios, Sara María; Ruiz, Gustavo Miguel

    2018-01-01

    Plants are a significant reservoir of cytotoxic agents, including compounds with the ability to interfere with multidrug-resistant (MDR) cells. With the aim of finding promising candidates for chemotherapy, 91 native and naturalized plants collected from the central region of Argentina were screened for their cytotoxic effect toward sensitive and MDR P-glycoprotein (P-gp) overexpressing human leukemia cells by means of MTT assays. The ethanol extracts obtained from Aldama tucumanensis, Ambrosia elatior, Baccharis artemisioides, Baccharis coridifolia, Dimerostemma aspilioides, Gaillardia megapotamica, and Vernonanthura nudiflora presented outstanding antiproliferative activity at 50 μg/mL, with inhibitory values from 93 to 100%, when tested on the acute lymphoblastic leukemia (ALL) cell line CCRF-CEM and the resistant derivative CEM-ADR5000, while 70–90% inhibition was observed against the chronic myelogenous leukemia (CML) cell K562 and its corresponding resistant subline, Lucena 1. Subsequent investigation showed these extracts to possess marked cytotoxicity with IC50 values ranging from 0.37 to 29.44 μg/mL, with most of them being below 7 μg/mL and with ALL cells, including the drug-resistant phenotype, being the most affected. G. megapotamica extract found to be one of the most effective and bioguided fractionation yielded helenalin (1). The sesquiterpene lactone displayed IC50 values of 0.63, 0.19, 0.74, and 0.16 μg/mL against K562, CCRF-CEM, Lucena 1, and CEM/ADR5000, respectively. These results support the potential of these extracts as a source of compounds for treating sensitive and multidrug-resistant leukemia cells and support compound 1 as a lead for developing effective anticancer agents. PMID:29861776

  18. Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs.

    PubMed

    Wang, Hao-Meng; Zhang, Li; Liu, Jiang; Yang, Zhao-Liang; Zhao, Hong-Ye; Yang, Yao; Shen, Di; Lu, Kui; Fan, Zhen-Chuan; Yao, Qing-Wei; Zhang, Yong-Min; Teng, Yu-Ou; Peng, Yu

    2015-03-06

    Four natural chalcones bearing prenyl or geranyl groups, i.e., bavachalcone (1a), xanthoangelol (1b), isobavachalcone (1c), and isoxanthoangelol (1d) were synthesized by using a regio-selective iodination and the Suzuki coupling reaction as key steps. The first total synthesis of isoxanthoangelol (1d) was achieved in 36% overall yield. A series of diprenylated and digeranylated chalcone analogs were also synthesized by alkylation, regio-selective iodination, aldol condensation, Suzuki coupling and [1,3]-sigmatropic rearrangement. The structures of the 11 new derivatives were confirmed by (1)H NMR, (13)C NMR and HRMS. The anticancer activity of these new chalcone derivatives against human tumor cell line K562 were evaluated by MTT assay in vitro. SAR studies suggested that the 5'-prenylation/geranylation of the chalcones significantly enhance their cytotoxic activity. Among them, Bavachalcone (1a) displayed the most potent cytotoxic activity against K562 with IC50 value of 2.7 μM. The morphology changes and annexin-V/PI staining studies suggested that those chalcone derivatives inhibited the proliferation of K562 cells by inducing apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Antimicrobial and Cytotoxic Activity of Extracts of Ferula heuffelii Griseb. ex Heuff. and Its Metabolites.

    PubMed

    Pavlović, Ivan; Petrović, Silvana; Milenković, Marina; Stanojković, Tatjana; Nikolić, Dejan; Krunić, Aleksej; Niketić, Marjan

    2015-10-01

    The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb. ex Heuff. were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram-positive than Gram-negative bacteria, especially against Staphylococcus aureus (MIC=12.5 μg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5 μg/ml, resp.). Among the tested metabolites, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyldodeca-6,10-dien-1-one (2) and (2S*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2-c]coumarin (4) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2 μM, resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5 μM, resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2 μM). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF-7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50 <11.0 μg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF-7 cell line, comparable to that of cisplatin (IC50 =22.32±1.32 vs. 18.67±0.75μM). Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Anticancer potential of new steroidal thiazolidin-4-one derivatives. Mechanisms of cytotoxic action and effects on angiogenesis in vitro.

    PubMed

    Živković, Marijana B; Matić, Ivana Z; Rodić, Marko V; Novaković, Irena T; Krivokuća, Ana M; Sladić, Dušan M; Krstić, Natalija M

    2017-11-01

    The synthesis and cytotoxic activities determination of new steroidal mono- and bis(thiazolidin-4-ones) 4a-f and 5a-f have been performed. Their anticancer action was also evaluated in comparison to previously synthesized and reported corresponding steroidal thiosemicarbazones. All compounds were obtained as stereoisomeric mixtures with different configuration (E or Z) in the hydrazone moiety at the C-3 position. After several consecutive crystallizations diastereomerically pure major (E)-isomers of mono-thiazolidin-4-ones were isolated. The structure and stereochemistry of 2,4-thiazolidinedione,2-[(17-oxoandrost-4-en-3-ylidene)hydrazone] were confirmed by X-ray analysis. A pathway for the formation of thiazolidin-4-one ring was proposed. The steroid thiazolidinone derivatives examined in this study exerted selective concentration-dependent cytotoxic activities on six tested malignant cell lines. Ten out of twelve examined compounds exhibited strong cytotoxic effects on K562 cells (IC 50 values from 8.5μM to 14.9μM), eight on HeLa cells (IC 50 values ranging from 8.9μM to 15.1μM) while against MDA-MB-361 cells six compouds exerted similar or even higher cytotoxic action (IC 50 values from 12.7μM to 25.6μM) than cisplatin (21.5μM) which served as a positive control. Eight of these ten compounds showed high selectivity in the cytotoxic action against HeLa and K562 cancer cell lines when compared with normal human fibroblasts MRC-5 and normal human PBMC. The study of mechanisms of the anticancer activity of the two selected compounds, mono- and bis(thiazolidin-4-one) derivatives of 19-norandrost-4-ene-3,17-dione 4a and 5a, revealed that both of these compounds induced apoptosis in HeLa cells through extrinsic and intrinsic signalling pathways. Treatment of EA.hy926 cells with sub-toxic concentrations of these compounds led to the inhibition of cell connecting and sprouting, and tube formation. The synthesized compounds exhibited poor antioxidant activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Three new aaptamine derivatives from the South China Sea sponge Aaptos aaptos.

    PubMed

    Gan, Jian-Hong; Hu, Wen-Zhen; Yu, Hao-Bing; Yang, Fan; Cao, Meng-Xue; Shi, Hua-Jin; Kang, Yong-Feng; Han, Bing-Nan

    2015-01-01

    Three new aaptamine derivatives (1-3), together with six known related compounds (4-9), have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated on the basis of spectroscopic analyses. Compounds 1, 4, 5, 7, and 9 showed cytotoxic activities against HeLa, K562, MCF-7, and U937 cell lines with IC50 values in the range of 0.90-12.32 μM.

  2. Induction of apoptosis in K562 cells by dicyclohexylammonium salt of hyperforin through a mitochondrial-related pathway.

    PubMed

    Liu, Jin-Yun; Liu, Zhong; Wang, Dong-Mei; Li, Man-Mei; Wang, Shao-Xiang; Wang, Rui; Chen, Jian-Ping; Wang, Yi-Fei; Yang, De-Po

    2011-04-25

    Hyperforin is an abundant phloroglucinol-type constituent isolated from the extract of the flowering upper portion of the plant Hypericum perforatum L. The dicyclohexylammonium salt of hyperforin (DCHA-HF) has exhibited antitumor and antiangiogenic activities in various cancer cells. Here, the antitumor effects of DCHA-HF on the chronic myeloid leukemia K562 cell line were investigated for the first time. DCHA-HF exhibited dose- and time-dependent inhibitory activities against K562 cells, with IC(50) values of 8.6 and 3.2 μM for 48 h and 72 h of treatment, respectively, which was more effective than that of the hyperforin. In contrast, little cytotoxic activity was observed with DCHA-HF on HUVECs. DCHA-HF treatment resulted in induction of apoptosis as evidenced from DNA fragmentation, nuclear condensation and increase of early apoptotic cells by DAPI staining analysis, TUNEL assay and Annexin V-FITC/PI double-labeled staining analysis, respectively. Moreover, DCHA-HF elicited dissipation of mitochondrial transmembrane potential that commenced with the release of cytochrome c through down-regulation of expression of anti-apoptotic proteins and up-regulation of expression of pro-apoptotic proteins. DCHA-HF treatment induced activation of the caspase 3, 8, and 9 cascade and subsequent PARP cleavage, and DCHA-HF-induced apoptosis was significantly inhibited by caspase inhibitors. Treated cells were arrested at the G1 phase of the cell cycle and the expression of p53 and p27(Kip1), two key regulators related to cell cycle and apoptosis, was up-regulated. These results suggest that DCHA-HF inhibits K562 cell growth by inducing caspase-dependent apoptosis mediated by a mitochondrial pathway and arresting the cell cycle at the G1 phase. Therefore, DCHA-HF is a potential chemotherapeutic antitumor drug for chronic myeloid leukemia therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. In-vitro antitumor activity evaluation of hyperforin derivatives.

    PubMed

    Sun, Feng; Liu, Jin-Yun; He, Feng; Liu, Zhong; Wang, Rui; Wang, Dong-Mei; Wang, Yi-Fei; Yang, De-Po

    2011-08-01

    The derivatives of hyperforin, namely hyperforin acetate (2), 17,18,22,23,27,28,32,33-octahydrohyperforin acetate (3), and N,N-dicyclohexylamine salt of hyperforin (4), have been investigated for their antitumor properties. In-vitro studies demonstrated that 2 and 4 were active against HeLa (human cervical cancer), A375 (human malignant melanoma), HepG2 (human hepatocellular carcinoma), MCF-7 (human breast cancer), A549 (human nonsmall cell lung cancer), K562 (human chronic myeloid leukemia), and K562/ADR (human adriamycin-resistant K562) cell lines with IC(50) values in the range of 3.2-64.1 μM. The energy differences between highest occupied molecular orbital and lowest unoccupied molecular orbital of 2-4 were calculated to be 0.39778, 0.43106, and 0.30900 a.u., respectively, using the Gaussian 03 software package and ab initio method with the HF/6-311 G* basis set. The result indicated that the biological activity of 4 might be the strongest and that of 3 might be the weakest, which was in accordance with their corresponding antiproliferative effects against the tested tumor cell lines. Compound 4 caused cell cycle arrest at G2/M phase in flow cytometry experiment and induced apoptosis by 4',6-diamidino-2-phenylindole staining and Annexin V-FITC/PI (propidium iodide) double-labeled staining in HepG2 cells. The results indicated a potential for N,N-dicyclohexylamine salt of hyperforin as a new antitumor drug.

  4. Immunotoxicological effects of streptozotocin and alloxan: in vitro and in vivo studies.

    PubMed

    Diab, Randa A Hadi; Fares, Mona; Abedi-Valugerdi, Manuchehr; Kumagai-Braesch, Makiko; Holgersson, Jan; Hassan, Moustapha

    2015-02-01

    Streptozotocin (STZ) and alloxan (ALX), widely used to induce diabetes in experimental animals, have different structures and mechanisms of action. We investigated those effects of these drugs on the immune system that might influence engraftment efficiency and graft survival in transplantation models, and their cytotoxicity on hematopoietic cell lines. We used the minimum dose to induce diabetes in a mouse, i.e. 180 mg/kg i.v. STZ and 75 mg/kg i.v. ALX. Both groups exhibited significant decrease in body weight during 4 days post-treatment as compared to controls. We found that blood glucose in ALX-injected mice increased faster than in STZ-injected mice. The total number of recovered splenocytes was lower in STZ-injected animals than in ALX-injected animals. The survival periods of rat islet grafts in recipient mice were longer and more diverse in STZ-injected recipients (7-24 days) compared to ALX-injected recipients (6-7 days). The in vitro study showed that ALX was less cytotoxic in cell lines with IC50 values of 2809, 3679 and >4000 μg/ml for HL60, K562 and C1498 cells respectively. STZ was more toxic, especially in HL60 cells, with IC50 values of 11.7, 904 and 1024 μg/ml for HL60, K562 and C1498 cells respectively. Furthermore, in response to concanavalin A (Con-A), splenocytes from STZ-injected mice produced higher amounts of interferon-gamma (IFN-γ) than those from ALX-injected mice. In conclusion, STZ was more cytotoxic than ALX in vitro and in vivo. STZ caused lymphocytopenia, which may result in longer graft survival in STZ-treated animals than in ALX-treated animals. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Antiproliferative and anti-inflammatory furostanol saponins from the rhizomes of Tupistra chinensis.

    PubMed

    Xiang, Limin; Wang, Yihai; Yi, Xiaomin; He, Xiangjiu

    2016-12-01

    Phytochemical investigations of the rhizome of Tupistra chinensis led to the isolation of ten new furostanol saponins along with fourteen known spirostanols. Their chemical structures were elucidated on the basis of spectroscopic and chemical methods, including IR, NMR, MS, and GC analyses. The antiproliferative effects against FaDu and Detroit 562 cell lines and inhibitory activities on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in a macrophage cell line RAW 264.7 were assayed for all the isolated compounds. Compound 14 exhibited significant antiproliferative effects against FaDu and Detroit 562 cells with IC 50 values of 1.1±0.1 and 1.2±0.1μM, respectively. Compounds 1, 2, 6, 13, 16, 19 and 24 exhibited inhibitory effects on NO production with IC 50 values ranging from 15.7 to 46.2μM. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Synthesis and Biological Evaluation of 1-(2-Aminophenyl)-3-arylurea Derivatives as Potential EphA2 and HDAC Dual Inhibitors.

    PubMed

    Zhu, Yong; Ran, Ting; Chen, Xin; Niu, Jiaqi; Zhao, Shuang; Lu, Tao; Tang, Weifang

    2016-01-01

    A series of 1-(2-aminophenyl)-3-arylurea novel derivatives were synthesized and evaluated against Ephrin type-A receptor 2 (EphA2) and histone deacetylases (HDACs) kinase. Most of the compounds exhibited inhibitory activity against EphA2 and HDAC. The antiproliferative activities were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (thiazolyl blue, tetrazolium blue) against the human cancer cell lines HCT116, K562 and MCF7. Compounds 5a and b showed the most potent inhibitory activity against EphA2 and HDAC. However, compound 5b exhibited higher potency against HCT116 (IC50=5.29 µM) and MCF7 (IC50=7.42 µM). 1-(2-Aminophenyl)-3-arylurea analogues may serve as new EphA2-HDAC dual inhibitors.

  7. Antitumor effects and mechanisms of Ganoderma extracts and spores oil

    PubMed Central

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-01-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC50) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle. PMID:27900038

  8. Synthesis, molecular properties prediction and cytotoxic screening of 3-(2-aryl-2-oxoethyl)isobenzofuran-1(3H)-ones.

    PubMed

    da Silva Maia, Angélica Faleiros; Siqueira, Raoni Pais; de Oliveira, Fabrício Marques; Ferreira, Joana Gasperazzo; da Silva, Silma Francielle; Caiuby, Clarice Alves Dale; de Oliveira, Leandro Licursi; de Paula, Sérgio Oliveira; Souza, Rafael Aparecido Carvalho; Guilardi, Silvana; Bressan, Gustavo Costa; Teixeira, Róbson Ricardo

    2016-06-15

    In the present investigation, a collection of nineteen 3-(2-aryl-2-oxoethyl)isobenzofuran-1(3H)-ones was synthesized and screened for their cytotoxic activity against a panel of three leukemia cancer cell lines. The compounds were prepared via ZrOCl2·8H2O catalyzed condensation reactions between phthalaldehydic acid and different acetophenones. The reactions were carried out free of solvent and the isobenzofuran-1(3H)-ones were obtained in good yields (80-92%). The identities of the synthesized compounds were confirmed upon IR and NMR ((1)H and (13)C) spectroscopy as well as high resolution mass spectrometry analyses. Structures of compounds 1, 4 and 16 were also investigated by X-ray analysis. The synthesized compounds were submitted to in vitro bioassays against HL-60, K562 and NALM6 cancer cell lines using MTT cytotoxicity assay. After 48h of treatment, twelve derivatives were able to reduce cell viability and presented IC50 values equal to or below 20μmolL(-1) against at least one of the evaluated lineages. The most active compound corresponded to 3-(3-methylphenyl-2-oxoethyl)isobenzofuran-1(3H)-one (18) (IC50 values obtained for HL-60, K562 and NALM6 were, respectively, 13.5μmolL(-1), 8.83μmolL(-1), and 5.24μmolL(-1)). In addition, compound 18 was capable of triggering apoptosis on NALM6 cells. All isobenzofuranones herein evaluated did not present cytotoxicity on peripheral blood mononuclear cells (PBMC), suggesting selective cytotoxic effect on leukemic cells. A computational study allowed prediction of pharmacokinetics and drug-likeness properties of the synthesized compounds. DFT calculations were performed to obtain the energy values of HOMO, LUMO, and dipole moments of isobenzofuranones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis of cyclic 1,9-acetal derivatives of forskolin and their bioactivity evaluation.

    PubMed

    Ponnam, Devendar; Shilpi, Singh; Srinivas, K V N S; Suiab, Luqman; Alam, Sarfaraz; Amtul, Zehra; Arigari, Niranjan Kumar; Jonnala, Kotesh Kumar; Siddiqui, Lubna; Dubey, Vijaya; Tiwari, Ashok Kumar; Balasubramanian, Sridhar; Khan, Feroz

    2014-11-24

    A new series of 1,9-acetals of forskolin were synthesized by treating with aromatic and aliphatic aldehydes using Ceric ammonium nitrate as catalyst and evaluated for anticancer and α-glucosidase inhibition activities. Among the synthesized compounds 2a, 2b and 3a showed potential cytotoxic activity towards human cancer cell lines MCF-7 (Human Breast Adenocarcinoma), MDA-MB (Human Breast Carcinoma), HeLa (Human Cervix Adenocarcinoma), A498 (Human Kidney Carcinoma), K562 (Human Erythromyeloblastoid leukemia), SH-SY5Y (Human Neuroblastoma), Hek293 (Human Embryonic Kidney) and WRL68 (Human Hepatic) with IC50 values ranging between 0.95 and 47.96 μg/ml. Osmotic fragility test revealed compound 3a as non-toxic to human erythrocytes at the tested concentrations of 50 and 100 μg/ml. Compounds 1g (IC50 value 0.76 μg/ml) and 1p (IC50 value 0.74 μg/ml) significantly inhibited α-glucosidase in in vitro system. In silico based docking, ADME and toxicity risk assessment studies also showed discernible α-glucosidase activity for compounds 1g, 1p compared to standard acarbose. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Myricetin is a novel inhibitor of human inosine 5′-monophosphate dehydrogenase with anti-leukemia activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Huiling; Hu, Qian; Wang, Jingyuan

    Human inosine 5′-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC{sub 50} values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanningmore » fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity. - Highlights: • Myricetin, a common dietary flavonoid, is a novel inhibitor of hIMPDH1/2. • Myricetin directly binds with hIMPDH1/2 and induces cell cycle arrest and apoptosis of leukemia cells. • The cytotoxicity of myricetin on K562 cells is markedly attenuated by exogenous addition of guanosine.« less

  11. Apoptosis of leukemia K562 and Molt-4 cells induced by emamectin benzoate involving mitochondrial membrane potential loss and intracellular Ca2+ modulation.

    PubMed

    Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Huang, Qingchun

    2017-06-01

    Leukemia threatens millions of people's health and lives, and the pesticide-induced leukemia has been increasingly concerned because of the etiologic exposure. In this paper, cytotoxic effect of emamectin benzoate (EMB), an excellent natural-product insecticide, was evaluated through monitoring cell viability, cell apoptosis, mitochondrial membrane potential and intracellular Ca 2+ concentration ([Ca 2+ ] i ) in leukemia K562 and Molt-4 cells. Following the exposure to EMB, cell viability was decreased and positive apoptosis of K562 and Molt-4 cells was increased in a concentration- and time- dependent fashion. In the treatment of 10μM EMB, apoptotic cells accounted for 93.0% to K562 cells and 98.9% to Molt-4 cells based on the control, meanwhile, 63.47% of K562 cells and 81.15% of Molt-4 cells exhibited late apoptotic and necrotic features with damaged cytoplasmic membrane. 48h exposure to 10μM EMB increased significantly the great number of cells with mitochondrial membrane potential (MMP) loss, and the elevation of [Ca 2+ ] i level was peaked and persisted within 70s in K562 cells whilst 50s in Molt-4 cells. Moreover, a stronger cytotoxicity of EMB was further observed than that of imatinib. The results authenticate the efficacious effect of EMB as a potential anti-leukemia agent and an inconsistency with regard to insecticide-induced leukemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms

    PubMed Central

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V.; Baer, Maria R.

    2013-01-01

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC50s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC50 of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. PMID:23261525

  13. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms.

    PubMed

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V; Baer, Maria R

    2013-02-15

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC(50)s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC(50) of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalle, Arunasree M., E-mail: arunasreemk@ilsresearch.org; Mallika, A.; Badiger, Jayasree

    2010-10-08

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistrymore » approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.« less

  15. 4α-Methylated steroids with cytotoxic activity from the soft coral Litophyton mollis.

    PubMed

    Zovko Končić, Marijana; Ioannou, Efstathia; Sawadogo, Wamtinga Richard; Abdel-Razik, Ayman F; Vagias, Constantinos; Diederich, Marc; Roussis, Vassilios

    2016-11-01

    Seven new (1-3, 5 and 8-10) and three previously reported (4, 6 and 7) 4α-methylated steroids were isolated from the organic extract of the gorgonian Litophyton mollis. The structures and the relative configurations of the isolated natural products were determined on the basis of extensive analyses of their NMR and MS data. Metabolites 1 and 5-8 exhibited cytotoxic activity against K562 human chronic myelogenous leukemia cells with IC 50 values below 10μM, while at the same time displaying low toxicity against healthy PBMCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Lanostane-type triterpenoids from the fruiting body of Ganoderma calidophilum.

    PubMed

    Huang, Sheng-Zhuo; Ma, Qing-Yun; Kong, Fan-Dong; Guo, Zhi-Kai; Cai, Cai-Hong; Hu, Li-Li; Zhou, Li-Man; Wang, Qi; Dai, Hao-Fu; Mei, Wen-Li; Zhao, You-Xing

    2017-11-01

    To search for active anti-cancer constituents in the fruiting body of Ganoderma calidophilum, we have successfully isolated four previously undescribed spiro-lactone lanostane triterpenoids (spiroganocalitones A-D), two previously undescribed lanostanoids (ganodecalones A and B) together with twenty-three known ones. The structures of the six previously undescribed compounds were elucidated based on 1D, 2D-NMR, and HRMS analyses. Ganoderone A showed moderate cytotoxic activity against K562, BEL7402, and SGC790 cell lines with IC 50 values of 7.62, 6.28, and 3.55 μM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Structural characterization and in vitro antitumor activity of a novel polysaccharide from Taxus yunnanensis.

    PubMed

    Yan, Chunyan; Yin, Yin; Zhang, Dawei; Yang, Wei; Yu, Rongmin

    2013-07-25

    The shrub, Taxus yunnanensis is famed as the source of the important anticancer drug, paclitaxel. But research on its polysaccharides contents has been scarce. The present research aimed to investigate the polysaccharide content of T. yunnanensis leaves and study the antitumor activities of isolated polysaccharide(s) using human tumor cells (K-562 and MCF). A novel heteropolysaccharide (TMP70W) was isolated and purified by anion-exchange and gel-permeation chromatography. Its molecular weight was 36.94 kDa and structural features were elucidated by partial acid hydrolysis, periodate oxidation-Smith degradation, methylation analysis, GC-MS, HPAEC-PAD, FT-IR, and NMR. The repeating unit of TMP70W had a backbone composed of (1→5)-linked-α-l-Araf, (1→2,5)-linked-α-l-Araf, and (1→6)-linked-β-d-Galp with a branch of α-d-Glcp-(1→2)-α-d-Galp-(1→ at the position of C-2 of arabinose. TMP70W displayed mild cytotoxicity against K562 cells with the IC50 value of 39.63 ± 2.37 μg/mL and inhibitory activity against MCF-7 cells (32.08 ± 0.39% at the concentration of 400 μg/mL) in a concentration-dependent manner. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  19. Synthesis and biological activity of pyrrole analogues of combretastatin A-4.

    PubMed

    Jung, Eun-Kyung; Leung, Euphemia; Barker, David

    2016-07-01

    A series of pyrrole analogues of combretastatin (CA-4) were synthesized and tested for their anti-proliferative activity. The highly diastereoselective acyl-Claisen rearrangement was used to provide 2,3-syn disubstituted morpholine amides which were used as precursors for the various analogues. This synthesis allows for the preparation of 1,2- and 2,3-diaryl-1H-pyrroles which are both geometrically similar to CA-4. These pyrrolic analogues were tested for their anti-proliferative activity against two human cell lines, K562 and MDA-MB-231 with 2,3-diaryl-1H-pyrrole 35 exhibiting the most potent activity with IC50 value of 0.07μM against MDA-MB-231 cell line. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Further drimane sesquiterpenes from Drimys brasiliensis stem barks with cytotoxic potential.

    PubMed

    Fratoni, Eduarda; Claudino, Vanessa Duarte; Yunes, Rosendo Augusto; Franchi, Gilberto C; Nowill, Alexandre E; Filho, Valdir Cechinel; Monache, Franco Delle; Malheiros, Angela

    2016-07-01

    Drimys brasiliensis Miers (Winteraceae) is used in folk medicine for the treatment of cancer. Its anti-tumor activity has been demonstrated in vitro models using extracts and isolated compounds. This study investigates the cytotoxic effects of stem bark extracts of D. brasiliensis as well as isolated compounds that may be responsible for the activitys and evaluates them in leukemia cells. The stem bark extract were subjected to column chromatography, and the structures of compounds were elucidated based on spectroscopic methods by using NMR and infrared spectroscopy and GC/MS. The cytotoxicity of the isolated compounds was evaluated in chronic myeloid (K562) and acute B lymphoblastic (Nalm6) leukemia cells using tetrazolium assay (MTT). Two new compounds were isolated 1β-O-p-methoxy-E-cinnamoyl-5α-keto-11α-enol-albicanol (1a) and the isomer 1β-O-p-methoxy-E-cinnamoyl-5α-keto-11β-enol-albicanol (1b) and 1β-O-p-methoxy-E-cinnamoyl-isodrimeninol (2). The known compounds polygonal acid (3a) and the isomer isopolygonal acid (3b), fuegin (4a) and the isomer epifuegin (4b), the mixture drimanial (5) and 1β-O-(p-methoxy-E-cinnamoyl)-6α-hydroxypolygodial (6) were also isolated. The drimanes (1-4) and drimanial (5), 1β-(p-coumaroyloxy)-polygodial (7), 1β-(p-methoxycinnamoyl)-polygodial (8), and polygodial (9) isolated previously were assessed in tumor cells. The IC50 values were between 3.56 and 128.91 μM. 1-β-(p-cumaroiloxi)-polygodial showed the best result with IC50 8.18 and 3.56 μM by K562 and Nalm6, respectively. The chloroform extract of the stem bark of D. brasiliensis is a great source of drimane sesquiterpenes. Our experimental data suggest that drimanes are responsible for cytotoxicity activity demonstrated by this species, especially those with the aldehyde group linked to carbons C-11 and C-12.

  1. Synthesis, Biological Evaluation, and Autophagy Mechanism of 12N-Substituted Sophoridinamines as Novel Anticancer Agents.

    PubMed

    Bi, Chongwen; Zhang, Na; Yang, Peng; Ye, Cheng; Wang, Yanxiang; Fan, Tianyun; Shao, Rongguang; Deng, Hongbin; Song, Danqing

    2017-02-09

    A series of 12 N -substituted sophoridinamine derivatives were synthesized and evaluated for their cytotoxic activities in human HepG2 hepatoma cells. Structure-activity relationship revealed that introduction of a suitable arylidene or arylethyl at the N '-end could greatly enhance antiproliferation potency. Among them, compound 6b possessing a N '-trimethoxyphenyl methylene exhibited potent antiproliferation effect against three human tumor cell lines including HepG2, leukemia (K562), and breast cancer (HMLE), with IC 50 between 0.55 and 1.7 μM. The underlying mechanism of 6b against tumor cells is to block autophagic flux, mainly through neutralizing lysosomal acidity. Our results indicated that compound 6b is a potent lysosomal deacidification agent and is accordingly able to block autophagic flux and inhibit tumor cell growth.

  2. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Zhao, Hong-Ye; Jiang, Du

    The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC{sub 50}) of 2- to 3-fold lower than HCPT asmore » a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC{sub 50} of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl{sub 3} 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC{sub 50} of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC{sub 50} of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.« less

  3. Polyanthumin, a novel cyclobutane chalcone trimmer from Memecylon polyanthum.

    PubMed

    Chen, Guan; Cui, Cheng-Bin; Qi, Ai-Di; Li, Chang-Wei; Tao, Zun-Wei; Ren, Rong

    2015-01-01

    A novel unusual trimmer chalcone, polyanthumin (1), together with five known compounds myricetin 3-O-(3″-O-galloyl)-α-l-rhamnopyranoside (2), sulfuretin (3), fustin (4), gallic acid (5), and ethyl gallate (6), was isolated from the dry stems of Memecylon polyanthum H.L. Li. Among them, compound 1 is a new chalcone trimmer with a novel cyclobutane skeleton in nature. Compounds 3 and 4 are flavonoids carrying a single 7-OH in A ring, which provided the first example of these class flavonoids from the family Melastomataceae. In addition, the antitumor activities for 2-4 were reported for the first time in this study. The antitumor effects of the isolated compounds 1-6 in vitro were assayed by the SRB method using human cancer K562 cells, with the inhibition rates ranging from 39.4% to 54.5% at 100 μg/ml. The IC50 values of compounds 1 and 3 for the inhibition of K562 cell proliferation were determined to be 45.4 and 30.5 μg/ml, respectively. To the best of our knowledge, compound 1 was the second sample as chalcone trimer. In addition, the antitumor activities for 2-4 were reported for the first time in this study.

  4. Anti-inflammatory steroidal glycosides from the berries of Solanum nigrum L. (European black nightshade).

    PubMed

    Xiang, Limin; Wang, Yihai; Yi, Xiaomin; He, Xiangjiu

    2018-04-01

    Seven previously undescribed steroidal glycosides, along with three known congeners were isolated from the unripe berries of Solanum nigrum L. (Solanaceae). Their structures were elucidated on basis of 1D and 2D NMR, HR-ESI-MS spectroscopic data and GC analysis after acid hydrolysis. The potential inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide in RAW 264.7 cell line and the anti-proliferative activities against five cancer cell lines (HL-60, U-937, Jurkat, K562 and HepG2) were evaluated. Seven compounds exhibited inhibition activities on NO production with IC 50 values ranging from 11.33 to 49.35 μM. Structure-activity relationships of the isolated compounds were also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Serial interactome capture of the human cell nucleus.

    PubMed

    Conrad, Thomas; Albrecht, Anne-Susann; de Melo Costa, Veronica Rodrigues; Sauer, Sascha; Meierhofer, David; Ørom, Ulf Andersson

    2016-04-04

    Novel RNA-guided cellular functions are paralleled by an increasing number of RNA-binding proteins (RBPs). Here we present 'serial RNA interactome capture' (serIC), a multiple purification procedure of ultraviolet-crosslinked poly(A)-RNA-protein complexes that enables global RBP detection with high specificity. We apply serIC to the nuclei of proliferating K562 cells to obtain the first human nuclear RNA interactome. The domain composition of the 382 identified nuclear RBPs markedly differs from previous IC experiments, including few factors without known RNA-binding domains that are in good agreement with computationally predicted RNA binding. serIC extends the number of DNA-RNA-binding proteins (DRBPs), and reveals a network of RBPs involved in p53 signalling and double-strand break repair. serIC is an effective tool to couple global RBP capture with additional selection or labelling steps for specific detection of highly purified RBPs.

  6. The First Pentacyclic Triterpenoid Gypsogenin Derivative Exhibiting Anti-ABL1 Kinase and Anti-chronic Myelogenous Leukemia Activities.

    PubMed

    Ciftci, Halil Ibrahim; Ozturk, Safiye Emirdag; Ali, Taha F S; Radwan, Mohamed O; Tateishi, Hiroshi; Koga, Ryoko; Ocak, Zeynep; Can, Mustafa; Otsuka, Masami; Fujita, Mikako

    2018-04-01

    The discovery of the chimeric tyrosine kinase breakpoint cluster region kinase-Abelson kinase (BCR-ABL)-targeted drug imatinib conceptually changed the treatment of chronic myelogenous leukemia (CML). However, some CML patients show drug resistance to imatinib. To address this issue, some artificial heterocyclic compounds have been identified as BCR-ABL inhibitors. Here we examined whether plant-derived pentacyclic triterpenoid gypsogenin and/or their derivatives show inhibitory activity against BCR-ABL. Among the three derivatives, benzyl 3-hydroxy-23-oxoolean-12-en-28-oate (1c) was found to be the most effective anticancer agent on the CML cell line K562, with an IC 50 value of 9.3 µM. In contrast, the IC 50 against normal peripheral blood mononuclear cells was 276.0 µM, showing better selectivity than imatinib. Compound 1c had in vitro inhibitory activity against Abelson kinase 1 (ABL1) (IC 50 =8.7 µM), the kinase component of BCR-ABL. In addition, compound 1c showed a different inhibitory profile against eight kinases compared with imatinib. The interaction between ATP binding site of ABL and 1c was examined by molecular docking study, and the binding mode was different from imatinib and newer generation inhibitors. Furthermore, 1c suppressed signaling downstream of BCR-ABL. This study suggests the possibility that plant extracts may be a source for CML treatment and offer a strategy to overcome drug resistance to known BCR-ABL inhibitors.

  7. Discovery of 4-Methyl-N-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-((1-nicotinoylpiperidin-4-yl)oxy)benzamide (CHMFL-ABL/KIT-155) as a Novel Highly Potent Type II ABL/KIT Dual Kinase Inhibitor with a Distinct Hinge Binding.

    PubMed

    Wang, Qiang; Liu, Feiyang; Wang, Beilei; Zou, Fengming; Qi, Ziping; Chen, Cheng; Yu, Kailin; Hu, Chen; Qi, Shuang; Wang, Wenchao; Hu, Zhenquan; Liu, Juan; Wang, Wei; Wang, Li; Liang, Qianmao; Zhang, Shanchun; Ren, Tao; Liu, Qingsong; Liu, Jing

    2017-01-12

    The discovery of a novel potent type II ABL/c-KIT dual kinase inhibitor compound 34 (CHMFL-ABL/KIT-155), which utilized a hydrogen bond formed by NH on the kinase backbone and carbonyl oxygen of 34 as a unique hinge binding, is described. 34 potently inhibited purified ABL (IC 50 : 46 nM) and c-KIT kinase (IC 50 : 75 nM) in the biochemical assays and displayed high selectivity (S Score (1) = 0.03) at the concentration of 1 μM among 468 kinases/mutants in KINOMEscan assay. It exhibited strong antiproliferative activities against BCR-ABL/c-KIT driven CML/GISTs cancer cell lines through blockage of the BCR-ABL/c-KIT mediated signaling pathways, arresting cell cycle progression and induction of apoptosis. 34 possessed a good oral PK property and effectively suppressed the tumor progression in the K562 (CML) and GIST-T1 (GISTs) cells mediated xenograft mouse model. The distinct hinge-binding mode of 34 provided a novel pharmacophore for expanding the chemical structure diversity for the type II kinase inhibitors discovery.

  8. Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel.

    PubMed

    Jensen, B S; Strobaek, D; Christophersen, P; Jorgensen, T D; Hansen, C; Silahtaroglu, A; Olesen, S P; Ahring, P K

    1998-09-01

    The human intermediate-conductance, Ca2+-activated K+ channel (hIK) was identified by searching the expressed sequence tag database. hIK was found to be identical to two recently cloned K+ channels, hSK4 and hIK1. RNA dot blot analysis showed a widespread tissue expression, with the highest levels in salivary gland, placenta, trachea, and lung. With use of fluorescent in situ hybridization and radiation hybrid mapping, hIK mapped to chromosome 19q13.2 in the same region as the disease Diamond-Blackfan anemia. Stable expression of hIK in HEK-293 cells revealed single Ca2+-activated K+ channels exhibiting weak inward rectification (30 and 11 pS at -100 and +100 mV, respectively). Whole cell recordings showed a noninactivating, inwardly rectifying K+ conductance. Ionic selectivity estimated from bi-ionic reversal potentials gave the permeability (PK/PX) sequence K+ = Rb+ (1.0) > Cs+ (10.4) > Na+, Li+, N-methyl-D-glucamine (>51). NH+4 blocked the channel completely. hIK was blocked by the classical inhibitors of the Gardos channel charybdotoxin (IC50 28 nM) and clotrimazole (IC50 153 nM) as well as by nitrendipine (IC50 27 nM), Stichodactyla toxin (IC50 291 nM), margatoxin (IC50 459 nM), miconazole (IC50 785 nM), econazole (IC50 2.4 microM), and cetiedil (IC50 79 microM). Finally, 1-ethyl-2-benzimidazolinone, an opener of the T84 cell IK channel, activated hIK with an EC50 of 74 microM.

  9. Inhibition of P-glycoprotein in Caco-2 cells: effects of herbal remedies frequently used by cancer patients.

    PubMed

    Engdal, S; Nilsen, O G

    2008-06-01

    1. The herbal products Natto K2, Agaricus, mistletoe, noni juice, green tea and garlic were investigated for in vitro inhibitory potential on P-glycoprotein (P-gp)-mediated transport of digoxin (30 nM) in differentiated and polarized Caco-2 cells. 2. Satisfactory cell functionality was demonstrated through measurements of assay linearity, transepithelial electric resistance (TEER), cytotoxicity, mannitol permeability, and inclusion of the positive inhibition control verapamil. 3. The most potent inhibitors of the net digoxin flux (IC(50)) were mistletoe > Natto K2 > Agaricus > green tea (0.022, 0.62, 3.81, >4.5 mg ml(-1), respectively). Mistletoe also showed the lowest IC(25) value, close to that obtained by verapamil (1.0 and 0.5 microg ml(-1), respectively). The IC(50)/IC(25) ratio was found to be a good parameter for the determination of inhibition profiles. Garlic and noni juice were classified as non-inhibitors. 4. This study shows that mistletoe, Natto K2, Agaricus and green tea inhibit P-gp in vitro. Special attention should be paid to mistletoe due to very low IC(50) and IC(25) values and to Natto K2 due to a low IC(50) value and a low IC(50)/IC(25) ratio.

  10. Nanoassemblies from amphiphilic cytarabine prodrug for leukemia targeted therapy.

    PubMed

    Liu, Jing; Zhao, Dujuan; He, Wenxiu; Zhang, Huiyuan; Li, Zhonghao; Luan, Yuxia

    2017-02-01

    The anti-leukemia effect of cytarabine (Ara-C) is severely restricted by its high hydrophilic properties and rapid plasma degradation. Herein, a novel amphiphilic small molecular prodrug of Ara-C was developed by coupling a short aliphatic chain, hexanoic acid (HA) to 4-NH 2 of the parent drug. Based on the amphiphilic nature, the resulting bioconjugate (HA-Ara) could spontaneously self-assemble into stable spherical nanoassemblies (NAs) with an extremely high drug loading (∼71wt%). Moreover, folate receptor (FR)-targeting NAs with high grafting efficient folic acid - bovine serum albumin (FA-BSA) conjugate immobilized on the surface (NAs/FA-BSA) was prepared. The results of MTT assays on FR-positive K562 cells and FR-negative A549 cells demonstrated higher cytotoxicity of HA-Ara NAs than the native drug. Especially, the IC 50 values revealed that NAs/FA-BSA was 3 and 2-fold effective than non-targeted NAs after 24 and 48h treatment with K562 cells, respectively indicating FR-mediated enhanced anti-tumor efficacy. In vitro cellular uptake, larger accumulation of HA-Ara NAs were observed in comparative with the free FITC and the results further confirmed the selective uptake of NAs/FA-BSA in folate receptor enriched cancer cells. Above all, self-assembled HA-Ara NAs exhibited potential superiority for Ara-C delivery and FA-modified NAs would be an excellent candidate for targeting leukemia therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The Recognition of N-Glycans by the Lectin ArtinM Mediates Cell Death of a Human Myeloid Leukemia Cell Line

    PubMed Central

    Carvalho, Fernanda Caroline; Soares, Sandro Gomes; Tamarozzi, Mirela Barros; Rego, Eduardo Magalhães; Roque-Barreira, Maria-Cristina

    2011-01-01

    ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment. PMID:22132163

  12. [Study on the chemical components, antimicrobial and antitumor activities of the essential oil from the leaves of Zanthoxylum avicennae].

    PubMed

    Zhang, Da-Shuai; Zhong, Qiong-Xin; Song, Xin-Ming; Liu, Wen-Jie; Wang, Jing; Zhang, Qiong-Yu

    2012-08-01

    To study the chemical constituents, antimicrobial activity and antitumor activity of the essential oil from Zanthoxylum avicennae. The essential oil from the leaves of Zanthoxylum avicennae was extracted by steam distillation. The components of the essential oil were separated and identified by GC-MS. 72 components were identified and accounted for 98.15% of the all peak area. The essential oil exhibited strong antitumor activity against K-562 human tumor cell lines with IC50 of 1.76 microg/mL. It also exhibited moderate antimicrobial activity against three bacteria. The essential oil of Zanthoxylum avicennae contains various active constituents. This result provides scientific reference for the pharmacological further research of Zanthoxylum avicennae.

  13. Antileukemic Activity of Tillandsia recurvata and Some of its Cycloartanes

    PubMed Central

    LOWE, HENRY I.C.; TOYANG, NGEH J.; WATSON, CHARAH T.; AYEAH, KENNETH N.N.; BRYANT, JOSEPH

    2015-01-01

    Background Approximately 250,000 deaths were caused by leukemia globally in 2012 and about 40%-50% of all leukemia diagnoses end-up in death. Medicinal plants are a rich source for the discovery of new drugs against leukemia and other types of cancers. To this end, we subjected the Jamaican ball moss (Tillandsia recurvata) and its cycloartanes, as well as some analogs, to in vitro screening against a number of leukemia cell lines. The WST-1 anti-proliferation assay was used to determine the anticancer activity of ball moss and two cycloartanes isolated from ball moss and four of their analogs against four leukemia cell lines (HL-60, K562, MOLM-14, monoMac6). Ball moss crude methanolic extract showed activity with a 50% inhibition concentration (IC50) value of 3.028 μg/ml against the Molm-14 cell line but was ineffective against HL-60 cells. The six cycloartanes tested demonstrated varying activity against the four leukemia cancer cell lines with IC50 values ranging from 1.83 μM to 18.3 μM. Five out of the six cycloartanes demonstrated activity, while one was inactive against all four cell lines. The preliminary activity demonstrated by the Jamaican ball moss and its cycloartanes against selected leukemia cell lines continues to throw light on the broad anticancer activity of ball moss. Further studies to evaluate the efficacy of these molecules in other leukemia cell lines are required in order to validate the activity of these molecules, as well as to determine their mechanisms of action and ascertain the activity in vivo in order to establish efficacy and safety profiles. PMID:24982361

  14. Antileukemic activity of Tillandsia recurvata and some of its cycloartanes.

    PubMed

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Ayeah, Kenneth N N; Bryant, Joseph

    2014-07-01

    Approximately 250,000 deaths were caused by leukemia globally in 2012 and about 40%-50% of all leukemia diagnoses end-up in death. Medicinal plants are a rich source for the discovery of new drugs against leukemia and other types of cancers. To this end, we subjected the Jamaican ball moss (Tillandsia recurvata) and its cycloartanes, as well as some analogs, to in vitro screening against a number of leukemia cell lines. The WST-1 anti-proliferation assay was used to determine the anticancer activity of ball moss and two cycloartanes isolated from ball moss and four of their analogs against four leukemia cell lines (HL-60, K562, MOLM-14, monoMac6). Ball moss crude methanolic extract showed activity with a 50% inhibition concentration (IC50) value of 3.028 μg/ml against the Molm-14 cell line but was ineffective against HL-60 cells. The six cycloartanes tested demonstrated varying activity against the four leukemia cancer cell lines with IC50 values ranging from 1.83 μM to 18.3 μM. Five out of the six cycloartanes demonstrated activity, while one was inactive against all four cell lines. The preliminary activity demonstrated by the Jamaican ball moss and its cycloartanes against selected leukemia cell lines continues to throw light on the broad anticancer activity of ball moss. Further studies to evaluate the efficacy of these molecules in other leukemia cell lines are required in order to validate the activity of these molecules, as well as to determine their mechanisms of action and ascertain the activity in vivo in order to establish efficacy and safety profiles. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    PubMed

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.

  16. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriguga,; Li, Xiao-Fei; Li, Yang

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependentmore » increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.« less

  17. Differentiation of K562 cells under ELF-EMF applied at different time courses.

    PubMed

    Ayşe, Inhan-Garip; Zafer, Akan; Sule, Oncul; Işil, Işal-Turgut; Kalkan, Tunaya

    2010-08-01

    The time-course of ELF-EMF application to biological systems is thought to be an important parameter determining the physiological outcome. This study investigated the effect of ELF-EMF on the differentiation of K562 cells at different time courses. ELF-EMF (50 Hz, 5 mT, 1 h) was applied at two different time-courses; first at the onset of hemin induction for 1 h, and second, daily 1 h for four days. While single exposure to ELF-EMF resulted in a decrease in differentiation, ELF-EMF applied everyday for 1 h caused an increase in differentiation. The effect of co-stressors, magnesium, and heat-shock was also determined and similar results were obtained. ELF-EMF increased ROS levels in K562 cells not treated with hemin, however did not change ROS levels of hemin treated cells indicating that ROS was not the cause. Overall, these results imply that the time-course of application is an important parameter determining the physiological response of cells to ELF-EMF.

  18. Polyamine analog TBP inhibits proliferation of human K562 chronic myelogenous leukemia cells by induced apoptosis

    PubMed Central

    WANG, QING; WANG, YAN-LIN; WANG, KAI; YANG, JIAN-LIN; CAO, CHUN-YU

    2015-01-01

    The aim of the present study was to investigate the effects of the novel polyamine analog tetrabutyl propanediamine (TBP) on the growth of K562 chronic myelogenous leukemia (CML) cells and the underlying mechanism of these effects. MTT was used for the analysis of cell proliferation and flow cytometry was performed to analyze cell cycle distribution. DNA fragmentation analysis and Annexin V/propidium iodide double staining were used to identify apoptotic cells. The activity of the key enzymes in polyamine catabolism was detected using chemiluminescence. TBP can induce apoptosis and significantly inhibit K562 cell proliferation in a time- and dose-dependent manner. TBP treatment significantly induced the enzyme activity of spermine oxidase and acetylpolyamine oxidase in K562 cells, and also enhanced the inhibitory effect of the antitumor drug doxorubicin on K562 cell proliferation. As a novel polyamine analog, TBP significantly inhibited proliferation and induced apoptosis in K562 cells by upregulating the activity of the key enzymes in the polyamine catabolic pathways. TBP also increased the sensitivity of the K562 cells to the antitumor drug doxorubicin. These data indicate an important potential value of TBP for clinical therapy of human CML. PMID:25435975

  19. E-configuration structures of EPA and DHA derived from Euphausia superba and their significant inhibitive effects on growth of human cancer cell lines in vitro.

    PubMed

    Zheng, Weilong; Wang, Xudong; Cao, Wenjing; Yang, Bowen; Mu, Ying; Dong, Yuesheng; Xiu, Zhilong

    2017-02-01

    Many bioactive components such as poly-unsaturated fatty acids (e.g. EPA and DHA), phospholipids and astaxanthin are known in Antarctic krill (Euphausia superba) oil. The krill DHA and EPA are generally considered to be similar to natural ones. However, two chemical compounds which were separated from Antarctic krill oil and identified as EPA and DHA by HRESIMS and NMR acted much more effective inhibitive activities on growth of several cell lines (U937, K562, SMMC-7721, PC-3, MDA-MB-231, HL60 and MCF-7) than those from sturgeon liver and commercial fish oil. Taking MCF-7 as an example, the IC 50 values of Antarctic krill EPA and DHA were 14.01 and 19.94μM,while the IC 50 values of sturgeon liver and commercial fish EPA and DHA were 81.45, 73.13, 82.11 and 75.31μM, respectively. Raman spectra revealed that the Antarctic krill EPA and DHA have E-configuration structures, which were different from those in commercial fish oil. Additionally, the Antarctic krill EPA and DHA had no effects on human normal liver cell line HL7702. These results indicated that the Antarctic krill E-EPA and E-DHA had a great prospect in cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Antitumor Properties of the Essential Oil From the Leaves of Duguetia gardneriana.

    PubMed

    Rodrigues, Ana Carolina B C; Bomfim, Larissa M; Neves, Sara P; Menezes, Leociley R A; Dias, Rosane B; Soares, Milena B P; Prata, Ana Paula N; Rocha, Clarissa A Gurgel; Costa, Emmanoel V; Bezerra, Daniel P

    2015-07-01

    Duguetia gardneriana, popularly known in the Brazilian northeast as "jaquinha", is a species belonging to the family Annonaceae. The aim of this work was to assess the chemical composition and antitumor properties of the essential oil from the leaves of D. gardneriana in experimental models. The chemical composition of the essential oil was analyzed via gas chromatography-flame ionization detector and gas chromatography-mass spectrometry. In vitro cytotoxic activity was determined in cultured tumor cells, and in vivo antitumor activity was assessed in B16-F10-bearing mice. The identified compounds were β-bisabolene (80.99%), elemicin (8.04%), germacrene D (4.15%), and cyperene (2.82%). The essential oil exhibited a cytotoxic effect, with IC50 values of 16.89, 19.16, 13.08, and 19.33 µg/mL being obtained for B16-F10, HepG2, HL-60, and K562 cell lines, respectively. On the other hand, β-bisabolene was inactive in all of the tested tumor cell lines (showing IC50 values greater than 25 µg/mL). The in vivo analysis revealed tumor growth inhibition rates of 5.37-37.52% at doses of 40 and 80 mg/kg/day, respectively. Herein, the essential oil from the leaves of D. gardneriana presented β-bisabolene as the major constituent and showed cytotoxic and antitumor potential. Georg Thieme Verlag KG Stuttgart · New York.

  1. 9,11-Secosteroids and polyhydroxylated steroids from two South China Sea soft corals Sarcophyton trocheliophorum and Sinularia flexibilis.

    PubMed

    Chen, Wen-Ting; Liu, Hai-Li; Yao, Li-Gong; Guo, Yue-Wei

    2014-12-01

    A new 9,11-secosteroid, 25(26)-dehydrosarcomilasterol (1), two new polyhydroxylated steroids, 7α-hydroxy-crassarosterol A (2) and 11-acetoxy-7α-hydroxy-crassarosterol A (3), together with three known related ones (4-6), were isolated from the South China Sea soft corals Sarcophyton trocheliophorum and Sinularia flexibilis, respectively. The structures of the new steroids were elucidated on the basis of extensive spectroscopic analyses, comparison with the literature data and chemical correlation. Compound 2 exhibited a moderate protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with an IC50 value of 33.05μM. Compounds 1-3 showed weak in vitro cytotoxicities against the tumor cell lines K562 and HL-60. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. In vitro antitumor activity, metal uptake and reactivity with ascorbic acid and BSA of some gold(III) complexes with N,N'-ethylenediamine bidentate ester ligands.

    PubMed

    Pantelić, Nebojša; Zmejkovski, Bojana B; Kolundžija, Branka; Crnogorac, Marija Đorđić; Vujić, Jelena M; Dojčinović, Biljana; Trifunović, Srećko R; Stanojković, Tatjana P; Sabo, Tibor J; Kaluđerović, Goran N

    2017-07-01

    Four novel gold(III) complexes of general formulae [AuCl 2 {(S,S)-R 2 eddl}]PF 6 (R 2 eddl=O,O'-dialkyl-(S,S)-ethylenediamine-N,N'-di-2-(4-methyl)pentanoate, R=n-Pr, n-Bu, n-Pe, i-Bu; 1-4, respectively), were synthesized and characterized by elemental analysis, UV/Vis, IR, and NMR spectroscopy, as well as high resolution mass spectrometry. Density functional theory calculations pointed out that (R,R)-N,N'-configuration diastereoisomers were energetically the most favorable. Duo to high cytotoxic activity complex 3 was chosen for stability study in DMSO, no decomposition occurs within 24h, and for the reaction with ascorbic acid in which was reduced immediately. Additionally, 3 interacts with bovine serum albumin (BSA) as proven by UV/Vis spectroscopy. In vitro antitumor activity was determined against human cervix adenocarcinoma (HeLa), human myelogenous leukemia (K562), and human melanoma (Fem-x) cancer cell lines, as well as against non-cancerous human embryonic lung fibroblast cells MRC-5. The highest activity was observed against K562 cells (IC 50 : 5.04-6.51μM). Selectivity indices showed that these complexes are less toxic than cisplatin. 3 had a similar viability kinetics on HeLa cells as cisplatin. Drug accumulation studies in HeLa cells showed that the total gold uptake increased much faster than that of cisplatin pointing out that 3 more efficiently enters the cells than cisplatin. Furthermore, morphological and cell cycle analysis reveal that gold(III) complexes induced apoptosis in time- and dose-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Multiwalled carbon nanotubes effect on the bioavailability of artemisinin and its cytotoxity to cancerous cells

    NASA Astrophysics Data System (ADS)

    Rezaei, Behzad; Majidi, Najmeh; Noori, Shokoofe; Hassan, Zuhair M.

    2011-12-01

    Artemisinin regarded as one of the most promising anticancer drugs can bind to DNA with a binding constant of 1.04 × 104 M-1. The electrochemical experiments indicated that for longer incubation time periods, the reduction peak current of artemisinin on carbon nanotube modified electrode increases. Therefore, the uptake of drug molecules from a solution into CNTs will be achieved automatically by adsorption of 88.7% of artemisinin onto carbon nanotubes surface without alteration in drug properties. Hence, capability of carbon nanotubes to have synergistic effect on the bioavailability of artemisinin was investigated. Experimental tests on K562 cancer cell lines growth by MTT assay proved that multi-walled carbon nanotubes can enhance the cytotoxity of artemisinin to the targeted cancer cells with unprecedented accuracy and efficiency. The IC50 values were 65 and 35 μM for artemisinin and artemisinin loaded on multi-walled carbon nanotubes, respectively; demonstrating that artemisinin loaded on multi-walled carbon nanotubes is more effective in inhibition of cancer cell lines growth.

  4. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jingyun; Wei, Xing; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressedmore » MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.« less

  5. Flow cytometric estimation on cytotoxic activity of leaf extracts from seashore plants in subtropical Japan: isolation, quantification and cytotoxic action of (-)-deoxypodophyllotoxin.

    PubMed

    Masuda, Toshiya; Oyama, Yasuo; Yonemori, Shigetomo; Takeda, Yoshio; Yamazaki, Yuko; Mizuguchi, Shinichi; Nakata, Mami; Tanaka, Tomochika; Chikahisa, Lumi; Inaba, Yuzuru; Okada, Yoshihiko

    2002-06-01

    The cytotoxic activity of methanol extracts of leaves collected from 39 seashore plants in Iriomote Island, subtropical Japan was examined on human leukaemia cells (K562 cells) using a flow cytometer with two fluorescent probes, ethidium bromide and annexin V-FITC. Five extracts (10 microg/mL) from Hernandia nymphaeaefolia, Cerbera manghas, Pongamia pinnata, Morus australis var. glabra and Thespesia populnea greatly inhibited the growth of K562 cells. When the concentration was decreased to 1 microg/mL, only one extract from H. nymphaeaefolia still inhibited the cell growth. A cytotoxic compound was isolated from the leaves by bioassay-guided fractionation and was identified as (-)-deoxypodophyllotoxin (DPT). The fresh leaves of H. nymphaeaefolia contained a remarkably high amount of DPT (0.21 +/- 0.07% of fresh leaf weight), being clarified by a quantitative HPLC analysis. DPT at 70-80 pM started to inhibit the growth of K562 cells in an all-or-none fashion and at 100 pM or more it produced complete inhibition in all cases. Therefore, the slope of the dose-response curve was very steep. DPT at 100 pM or more decreased the cell viability to 50%-60% and increased the number of cells undergoing apoptosis (annexin V-positive cells). The results indicate that DPT contributes to the cytotoxic action of the extract from the leaves of H. nymphaeaefolia on K562 cells. Copyright 2002 John Wiley & Sons, Ltd.

  6. The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation.

    PubMed

    Yu, Chun Hong; Suriguga; Li, Yang; Li, Yi Ran; Tang, Ke Ya; Jiang, Liang; Yi, Zong Chun

    2014-03-01

    The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation was investigated. After K562 cells were treated with hydroquinone for 24 h, and hemin was later added to induce erythroid differentiation for 48 h, hydroquinone inhibited hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells in a concentration-dependent manner. The 24-h exposure to hydroquinone also caused a concentration-dependent increase at an intracellular ROS level, while the presence of N- acetyl-L-cysteine prevented hydroquinone- induced ROS production in K562 cells. The presence of N-acetyl-L-cysteine also prevented hydroquinone inhibiting hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells. These evidences indicated that ROS production played a role in hydroquinone-induced inhibition of erythroid differentiation. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  7. [Effect of Recombinant Adenovirus AdE-SH2-Caspase 8 on the Apoptosis of Imatinib-resistant K562/G01 Cell Line].

    PubMed

    Wang, Lin; Fei, Chang; Huang, Zheng-Lan; Li, Hui; Liu, Zhang-Lin; Feng, Wen-Li

    2015-08-01

    To investigate the effect of SH2-Caspase 8 fusion protein expressed by recombinant adenovirus AdE-SH2-Caspase8-HA-GFP (SC) on the apoptosis of K562/G01 cell line, which is a BCR/ABL positive chronic myeloid leukemia cell line and resistant to imatinib. The K562/G01 cell line was infected with AdE-SH2-Caspase 8-HA-GFP adenovirus (SC), then the cells were divided into 3 groups: AdE-SH2m-Caspase 8-HA-GFP (SmC) group, AdE-GFP (CMV) group and PBS group as control. The infection efficiency was observed under fluorescent microscopy and by flow cytometry. The expression of fusion protein SH2-Caspase 8-HA was measured by Western blot. The morphology of the cells detected by Wright's staining. The apoptosis of the cells were detected by flow cytometry and DNA ladder. The expression of Caspase 3 and PARP were detected by Western blot. The infection efficiency of SC on K562/G01 cells was high which was confirmed by fluorescent microscopy and FCM. SH2-Caspase 8-HA fusion protein were expressed correctly in K562/G01 cells. After treatment with SC the apoptosis of K562/G01 cells could be observed by microscopy. The result of FCM showed that early apoptosis of K562/G01 cells increased significantly as compared with control groups (P < 0.05). DNA ladder showed that the classic DNA ladders appeared in K562/G01 cells after treatment with SC. The wester blot detection showed that the expression level of apoptosis-related protein Caspase 3 and PARP increased. The recombinant adenovirus SC expressing SH2-Caspase 8 fusion protein can induces the apoptosis of K562/G01 cells.

  8. Cinnamic acid derivatives induce cell cycle arrest in carcinoma cell lines.

    PubMed

    Sova, Matej; Žižak, Željko; Stanković, Jelena A Antic; Prijatelj, Matevž; Turk, Samo; Juranić, Zorica D; Mlinarič-Raščan, Irena; Gobec, Stanislav

    2013-08-01

    Cinnamic acid derivatives can be found in plant material, and they possess a remarkable variety of biological effects. In the present study, we have investigated the cytotoxic effects of representative cinnamic acid esters and amides. The cytotoxicity was determined by MTT test on human cervix adenocarcinoma (HeLa), myelogenous leukemia (K562), malignant melanoma (Fem-x), and estrogen-receptor-positive breast cancer (MCF-7) cells, versus peripheral blood mononuclear cells (PBMCs) without or with the addition of the plant lectin phytohemaglutinin (PHA). The compounds tested showed significant cytotoxicity (IC50s between 42 and 166 µM) and furthermore selectivity of these cytotoxic effects on the malignant cell lines versus the PBMCs was also seen, especially when electron-withdrawing groups, such as a cyano group (compound 5), were present on the aromatic rings of the alcohol or amine parts of the cinnamic acid derivatives. The additional study on cell cycle phase distribution indicated that novel cinnamic acid derivatives inhibit cell growth by induction of cell death. Thus, cinnamic acids derivatives represent important lead compounds for further development of antineoplastic agents.

  9. A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening.

    PubMed

    Ciossek, Thomas; Julius, Heiko; Wieland, Heike; Maier, Thomas; Beckers, Thomas

    2008-01-01

    Most cellular assays that quantify the efficacy of histone deacetylase (HDAC) inhibitors measure hyperacetylation of core histone proteins H3 and H4. Here we describe a new approach, directly measuring cellular HDAC enzymatic activity using the substrate Boc-K(Ac)-7-amino-4-methylcoumarin (AMC). After penetration into HeLa cervical carcinoma or K562 chronic myeloid leukemia cells, the deacetylated product Boc-K-AMC is formed which, after cell lysis, is cleaved by trypsin, finally releasing the fluorophor AMC. The cellular potency of suberoylanilide hydroxamic acid, LBH589, trichostatin A, and MS275 as well-known HDAC inhibitors was determined using this assay. IC(50) values derived from concentration-effect curves correlated well with EC(50) values derived from a cellomics array scan histone H3 hyperacetylation assay. The cellular HDAC activity assay was adapted to a homogeneous format, fully compatible with robotic screening. Concentration-effect curves generated on a Tecan Genesis Freedom workstation were highly reproducible with a signal-to-noise ratio of 5.7 and a Z' factor of 0.88, indicating a very robust assay. Finally, a HDAC-inhibitor focused library was profiled in a medium-throughput screening campaign. Inhibition of cellular HDAC activity correlated well with cytotoxicity and histone H3 hyperacetylation in HeLa cells and with inhibition of human recombinant HDAC1 in a biochemical assay. Thus, by using Boc-K(Ac)-AMC as a cell-permeable HDAC substrate, the activity of various protein lysine-specific deacetylases including HDAC1-containing complexes is measurable in intact cells in a simple and homogeneous manner.

  10. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Lin; Song, Quansheng; Zhang, Yingmei

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosismore » rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.« less

  11. Discovery of compounds blocking the proliferation of Toxoplasma gondii and Plasmodium falciparum in a chemical space based on piperidinyl-benzimidazolone analogs.

    PubMed

    Saïdani, Nadia; Botté, Cyrille Y; Deligny, Michael; Bonneau, Anne-Laure; Reader, Janette; Lasselin, Ronald; Merer, Goulven; Niepceron, Alisson; Brossier, Fabien; Cintrat, Jean-Christophe; Rousseau, Bernard; Birkholtz, Lyn-Marie; Cesbron-Delauw, Marie-France; Dubremetz, Jean-François; Mercier, Corinne; Vial, Henri; Lopez, Roman; Maréchal, Eric

    2014-05-01

    A piperidinyl-benzimidazolone scaffold has been found in the structure of different inhibitors of membrane glycerolipid metabolism, acting on enzymes manipulating diacylglycerol and phosphatidic acid. Screening a focus library of piperidinyl-benzimidazolone analogs might therefore identify compounds acting against infectious parasites. We first evaluated the in vitro effects of (S)-2-(dibenzylamino)-3-phenylpropyl 4-(1,2-dihydro-2-oxobenzo[d]imidazol-3-yl)piperidine-1-carboxylate (compound 1) on Toxoplasma gondii and Plasmodium falciparum. In T. gondii, motility and apical complex integrity appeared to be unaffected, whereas cell division was inhibited at compound 1 concentrations in the micromolar range. In P. falciparum, the proliferation of erythrocytic stages was inhibited, without any delayed death phenotype. We then explored a library of 250 analogs in two steps. We selected 114 compounds with a 50% inhibitory concentration (IC50) cutoff of 2 μM for at least one species and determined in vitro selectivity indexes (SI) based on toxicity against K-562 human cells. We identified compounds with high gains in the IC50 (in the 100 nM range) and SI (up to 1,000 to 2,000) values. Isobole analyses of two of the most active compounds against P. falciparum indicated that their interactions with artemisinin were additive. Here, we propose the use of structure-activity relationship (SAR) models, which will be useful for designing probes to identify the target compound(s) and optimizations for monotherapy or combined-therapy strategies.

  12. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines

    PubMed Central

    Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Spodine, Evgenia; Manzur, Jorge; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar

    2013-01-01

    The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.). PMID:24391528

  13. Synthesis of a Novel Series of 2-Methylsulfanyl Fatty Acids and their Toxicity on the Human K-562 and U-937 Leukemia Cell Lines

    PubMed Central

    Carballeira, Néstor M.; Miranda, Carlos; Orellano, Elsie A.; González, Fernando A.

    2006-01-01

    The hitherto unknown 2-methylsulfanyldecanoic acid and 2-methylsulfanyldodecanoic acid were synthesized from methyl decanoate and methyl dodecanoate, respectively, through the reaction of lithium diisopropylamide and dimethyldisulfide in THF followed by saponification with potassium hydroxide in ethanol. Both α-methylsulfanylated FA were cytotoxic to the human chronic myelogenous leukemia K-562 and the human histiocytic lymphoma U-937 cell lines with EC50 values in the 200-300 μM range, which makes them more cytotoxic to these cell lines than either decanoic acid or dodecanoic acid. The cytotoxicity of the studied FA towards K-562 followed the order: 2-SCH3-12:0 > 2-SCH3-10:0 > 10:0 > 12:0 > 2-OCH3-12:0, while towards U-937 the cytotoxicity was found to be: 2-SCH3-10:0 > 2-SCH3-12:0 > 12:0 > 10:0 > 2-OCH3-12:0. These results indicate that the α-methylsulfanyl substitution increases the cytotoxicity of the C10 and C12 fatty acids towards the studied leukemia cell lines. PMID:16382579

  14. Decursin and PDBu: two PKC activators distinctively acting in the megakaryocytic differentiation of K562 human erythroleukemia cells.

    PubMed

    Kim, Hyeon Ho; Ahn, Kyung Seop; Han, Hogyu; Choung, Se Young; Choi, Sang-Yun; Kim, Ik-Hwan

    2005-12-01

    Protein kinase C (PKC) plays an important role in the proliferation and differentiation of various cell types including normal and leukemic hematopoietic cells. Phorbol 12,13-dibutyrate (PDBu) induces the megakaryocytic differentiation of K562 human erythroleukemia cells through PKC activation. Decursin, a pyranocoumarin from Angelica gigas, exhibits the cytotoxic effects on various human cancer cell lines and in vitro PKC activation. We report here the differences between two PKC activators, tumor-suppressing decursin and tumor-promoting PDBu, in their actions on the megakaryocytic differentiation of K562 cells. First of all, decursin inhibited PDBu-induced bleb formation in K562 cells. Decursin also inhibited the PDBu-induced megakaryocytic differentiation of K562 cells that is characterized by an increase in substrate adhesion, the secretion of granulocyte/macrophage colony stimulating factor (GM-CSF) and interleukin-6 (IL-6), and the surface expression of integrin beta3. The binding of PDBu to PKC was competitively inhibited by decursin. Decursin induced the more rapid down-regulation of PKC alpha and betaII isozymes than that induced by PDBu in K562 cells. Unlike PDBu, decursin promoted the translocation of PKC alpha and betaII to the nuclear membrane. Decursin-induced faster down-regulation and nuclear translocation of PKC alpha and betaII were not affected by the presence of PDBu. All these results indicate that decursin and phorbol ester are PKC activators distinctively acting in megakaryocytic differentiation and PKC modulation in K562 leukemia cells.

  15. Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins.

    PubMed

    Thibado, Seth P; Thornthwaite, Jerry T; Ballard, Thomas K; Goodman, Brandon T

    2018-02-01

    Rapidly accumulating laboratory and clinical research evidence indicates that anthocyanins exhibit anticancer activity and the evaluation of bilberry anthocyanins as chemo-preventive agents is progressing. It has previously been demonstrated that anthocyanins upregulate tumor suppressor genes, induce apoptosis in cancer cells, repair and protect genomic DNA integrity, which is important in reducing age-associated oxidative stress, and improve neuronal and cognitive brain function. Bilberry anthocyanins have pronounced health effects, even though they have a low bioavailability. To increase the bioavailability, Bilberry was encapsulated in 5.5 nm diameter liposomal micelles, called NutraNanoSpheres (NNS), at a concentration of 2.5 mg/50 µl [25% (w/w) anthocyanins]. These Bilberry NNS were used to study the apoptotic/cytotoxic effects on K562 Human Erythroleukemic cancer cells. Flow cytometric fluorescent quantification of the uptake of propidium iodide in a special cell viability formulation into dead K562 cells was used to determine the effects of Bilberry on the viability of K562 cells. The concentrations of Bilberry that demonstrated the greatest levels of percentage inhibition, relative to the control populations, were biphasic, revealing a 60-70% inhibition between 0.018-1.14 mg/ml (n=6) and 60% inhibition at 4 mg/ml. The lowest percentage inhibition (30%) occurred at 2 mg/ml. The lethal dose 50 was determined to be 0.01-0.04 mg/ml of Bilberry per 105 K562 cells at 72 h of cell culture exposure. At 48 h incubation, the highest percentage of inhibition was only 27%, suggesting involvement of a long-term apoptotic event. These levels, which demonstrated direct cytotoxic effects, were 8-40 times lower than levels required for Bilberry that is not encapsulated. The increase in bioavailability with the Bilberry NNS and its water solubility demonstrated the feasibility of using Bilberry NNS in cancer patient clinical trials.

  16. Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins

    PubMed Central

    Thibado, Seth P.; Thornthwaite, Jerry T.; Ballard, Thomas K.; Goodman, Brandon T.

    2018-01-01

    Rapidly accumulating laboratory and clinical research evidence indicates that anthocyanins exhibit anticancer activity and the evaluation of bilberry anthocyanins as chemo-preventive agents is progressing. It has previously been demonstrated that anthocyanins upregulate tumor suppressor genes, induce apoptosis in cancer cells, repair and protect genomic DNA integrity, which is important in reducing age-associated oxidative stress, and improve neuronal and cognitive brain function. Bilberry anthocyanins have pronounced health effects, even though they have a low bioavailability. To increase the bioavailability, Bilberry was encapsulated in 5.5 nm diameter liposomal micelles, called NutraNanoSpheres (NNS), at a concentration of 2.5 mg/50 µl [25% (w/w) anthocyanins]. These Bilberry NNS were used to study the apoptotic/cytotoxic effects on K562 Human Erythroleukemic cancer cells. Flow cytometric fluorescent quantification of the uptake of propidium iodide in a special cell viability formulation into dead K562 cells was used to determine the effects of Bilberry on the viability of K562 cells. The concentrations of Bilberry that demonstrated the greatest levels of percentage inhibition, relative to the control populations, were biphasic, revealing a 60–70% inhibition between 0.018–1.14 mg/ml (n=6) and 60% inhibition at 4 mg/ml. The lowest percentage inhibition (30%) occurred at 2 mg/ml. The lethal dose 50 was determined to be 0.01–0.04 mg/ml of Bilberry per 105 K562 cells at 72 h of cell culture exposure. At 48 h incubation, the highest percentage of inhibition was only 27%, suggesting involvement of a long-term apoptotic event. These levels, which demonstrated direct cytotoxic effects, were 8–40 times lower than levels required for Bilberry that is not encapsulated. The increase in bioavailability with the Bilberry NNS and its water solubility demonstrated the feasibility of using Bilberry NNS in cancer patient clinical trials. PMID:29399357

  17. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance.

    PubMed

    Shen, Hong; Yang, Zheng; Zhao, Weiping; Zhang, Yueping; Rodrigues, A David

    2013-12-01

    Vandetanib was evaluated as an inhibitor of human organic anion transporter 1 (OAT1), OAT3, organic cation transporter 2 (OCT2), and multidrug and toxin extrusion (MATE1 and MATE2K) transfected (individually) into human embryonic kidney 293 cells (HEK293). Although no inhibition of OAT1 and OAT3 was observed, inhibition of OCT2-mediated uptake of 1-methyl-4-phenylpyridinium (MPP(+)) and metformin was evident (IC(50) of 73.4 ± 14.8 and 8.8 ± 1.9 µM, respectively). However, vandetanib was an even more potent inhibitor of MATE1- and MATE2K-mediated uptake of MPP(+) (IC(50) of 1.23 ± 0.05 and 1.26 ± 0.06 µM, respectively) and metformin (IC(50) of 0.16 ± 0.05 and 0.30 ± 0.09 µM, respectively). Subsequent cytotoxicity studies demonstrated that transport inhibition by vandetanib (2.5 µM) significantly decreased the sensitivity [right shift in concentration of cisplatin giving rise to 50% cell death; IC(50(CN))] of MATE1-HEK and MATE2K-HEK cells to cisplatin [IC(50(CN)) of 1.12 ± 0.13 versus 2.39 ± 0.44 µM; 0.85 ± 0.09 versus 1.99 ± 0.16 µM; P < 0.05), but not OCT2-HEK cells (1.36 ± 0.19 versus 1.47 ± 0.24 µM) versus vandetanib untreated cells and Mock-HEK cells [IC(50(CN)) of 2.34 ± 0.31 µM]. In summary, the results show that vandetanib is a potent inhibitor of MATE1 and MATE2K (versus OCT2). Inhibition of the two transporters may explain why there are reports of decreased creatinine clearance, and increased cisplatin nephrotoxicity (reduced cisplatin clearance), in some subjects receiving vandetanib therapy.

  18. Diversity and function of the Antarctic krill microorganisms from Euphausia superba

    NASA Astrophysics Data System (ADS)

    Cui, Xiaoqiu; Zhu, Guoliang; Liu, Haishan; Jiang, Guoliang; Wang, Yi; Zhu, Weiming

    2016-11-01

    The diversity and ecological function of microorganisms associated with Euphausia superba, still remain unknown. This study identified 75 microbial isolates from E. superba, that is 42 fungi and 33 bacteria including eight actinobacteria. And all the isolates showed NaF tolerance in conformity with the nature of the fluoride krill. The maximum concentration was 10%, 3% and 0.5% NaF for actinobacteria, bacteria and fungi, respectively. The results demonstrated that 82.4% bacteria, 81.3% actinobacteria and 12.3% fungi produced antibacterial metabolites against pathogenic bacteria without NaF; the MIC value reached to 3.9 μg/mL. In addition, more than 60% fungi produced cytotoxic metabolites against A549, MCF-7 or K562 cell lines. The presence of NaF led to a reduction in the producing antimicrobial compounds, but stimulated the production of cytotoxic compounds. Furthermore, seven cytotoxic compounds were identified from the metabolites of Penicillium citrinum OUCMDZ4136 under 0.5% NaF, with the IC50 values of 3.6-13.1 μM for MCF-7, 2.2-19.8 μM for A549 and 5.4-15.4 μM for K562, respectively. These results indicated that the krill microbes exert their chemical defense by producing cytotoxic compounds to the mammalians and antibacterial compounds to inhibiting the pathogenic bacteria.

  19. Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01.

    PubMed

    Luo, Xiaowei; Zhou, Xuefeng; Lin, Xiuping; Qin, Xiaochu; Zhang, Tianyu; Wang, Junfeng; Tu, Zhengchao; Yang, Bin; Liao, Shengrong; Tian, Yongqi; Pang, Xiaoyan; Kaliyaperumal, Kumaravel; Li, Jian Lin; Tao, Huaming; Liu, Yonghong

    2017-08-01

    Eleven diketopiperazine and fumiquinazoline alkaloids (1-11) together with a tetracyclic triterpenoid helvolic acid (12) were obtained from the cultures of a deep-sea derived fungus Aspergillus sp. SCSIO Ind09F01. The structures of these compounds (1-12) were determined mainly by the extensive NMR, ESIMS spectra data and by comparison with previously described compounds. Besides, anti-tuberculosis, cytotoxic, antibacterial, COX-2 inhibitory and antiviral activities of these compounds were evaluated. Gliotoxin (3), 12,13-dihydroxy-fumitremorgin C (11) and helvolic acid (12) exhibited very strong anti-tuberculosis activity towards Mycobacterium tuberculosis with the prominent MIC 50 values of <0.03, 2.41 and 0.894 μM, respectively, which was here reported for the first time. Meanwhile gliotoxin also displayed significant selective cytotoxicities against K562, A549 and Huh-7 cell lines with the IC 50 values of 0.191, 0.015 and 95.4 μM, respectively.

  20. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells

    PubMed Central

    Peng, Xing-Xiang; Tiwari, Amit K.; Wu, Hsiang-Chun; Chen, Zhe-Sheng

    2012-01-01

    Imatinib, a breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) tyrosine kinase inhibitor (TKI), has revolutionized the treatment of chronic myelogenous leukemia (CML). However, development of multidrug resistance (MDR) limits the use of imatinib. In the present study, we aimed to investigate the mechanisms of cellular resistance to imatinib in CML. Therefore, we established an imatinib-resistant human CML cell line (K562-imatinib) through a stepwise selection process. While characterizing the phenotype of these cells, we found that K562-imatinib cells were 124.6-fold more resistant to imatinib than parental K562 cells. In addition, these cells were cross-resistant to second- and third-generation BCR-ABL TKIs. Western blot analysis and reverse transcription-polymerase chain reaction(RT-PCR) demonstrated that P-glycoprotein (P-gp) and MDR1 mRNA levels were increased in K562-imatinib cells. In addition, accumulation of [14C]6-mercaptopurine (6-MP) was decreased, whereas the ATP-dependent efflux of [14C] 6-MP and [3H]methotrexate transport were increased in K562-imatinib cells. These data suggest that the overexpression of P-gp may play a crucial role in acquired resistance to imatinib in CML K562-imatinib cells. PMID:22098951

  1. CM363, a novel naphthoquinone derivative which acts as multikinase modulator and overcomes imatinib resistance in chronic myelogenous leukemia

    PubMed Central

    Díaz-Chico, Juan Carlos; McNaughton-Smith, Grant; Jiménez-Alonso, Sandra; Hueso-Falcón, Idaira; Montero, Juan Carlos; Blanco, Raquel; León, Javier; Rodríguez-González, Germán; Estévez-Braun, Ana; Pandiella, Atanasio; Díaz-Chico, Bonifacio Nicolás; Fernández-Pérez, Leandro

    2017-01-01

    Human Chronic Myelogenous Leukemia (CML) is a hematological stem cell disorder which is associated with activation of Bcr-Abl-Stat5 oncogenic pathway. Direct Bcr-Abl inhibitors are initially successful for the treatment of CML but over time many patients develop drug resistance. In the present study, the effects of CM363, a novel naphthoquinone (NPQ) derivative, were evaluated on human CML-derived K562 cells. CM363 revealed an effective cell growth inhibition (IC50 = 0.7 ± 0.5 μM) by inducing cancer cells to undergo cell cycle arrest and apoptosis. CM363 caused a dose- and time-dependent reduction of cells in G0/G1 and G2/M phases. This cell cycle arrest was associated with increased levels of cyclin E, pChk1 and pChk2 whereas CM363 downregulated cyclin B, cyclin D3, p27, pRB, Wee1, and BUBR1. CM363 increased the double-strand DNA break marker γH2AX. CM363 caused a time-dependent increase of annexin V-positive cells, DNA fragmentation and increased number of apoptotic nuclei. CM363 triggered the mitochondrial apoptotic pathway as reflected by a release of cytochrome C from mitochondria and induction of the cleavage of caspase-3 and -9, and PARP. CM363 showed multikinase modulatory effects through an early increased JNK phosphorylation followed by inhibition of pY-Bcrl-Abl and pY-Stat5. CM363 worked synergistically with imatinib to inhibit cell viability and maintained its activity in imatinib-resistant cells. Finally, CM363 (10 mg/Kg) suppressed the growth of K562 xenograft tumors in athymic mice. In summary, CM363 is a novel multikinase modulator that offers advantages to circumvent imanitib resistance and might be therapeutically effective in Bcrl-Abl-Stat5 related malignancies. PMID:27557509

  2. CM363, a novel naphthoquinone derivative which acts as multikinase modulator and overcomes imatinib resistance in chronic myelogenous leukemia.

    PubMed

    Guerra, Borja; Martín-Rodríguez, Patricia; Díaz-Chico, Juan Carlos; McNaughton-Smith, Grant; Jiménez-Alonso, Sandra; Hueso-Falcón, Idaira; Montero, Juan Carlos; Blanco, Raquel; León, Javier; Rodríguez-González, Germán; Estévez-Braun, Ana; Pandiella, Atanasio; Díaz-Chico, Bonifacio Nicolás; Fernández-Pérez, Leandro

    2017-05-02

    Human Chronic Myelogenous Leukemia (CML) is a hematological stem cell disorder which is associated with activation of Bcr-Abl-Stat5 oncogenic pathway. Direct Bcr-Abl inhibitors are initially successful for the treatment of CML but over time many patients develop drug resistance. In the present study, the effects of CM363, a novel naphthoquinone (NPQ) derivative, were evaluated on human CML-derived K562 cells. CM363 revealed an effective cell growth inhibition (IC50 = 0.7 ± 0.5 μM) by inducing cancer cells to undergo cell cycle arrest and apoptosis. CM363 caused a dose- and time-dependent reduction of cells in G0/G1 and G2/M phases. This cell cycle arrest was associated with increased levels of cyclin E, pChk1 and pChk2 whereas CM363 downregulated cyclin B, cyclin D3, p27, pRB, Wee1, and BUBR1. CM363 increased the double-strand DNA break marker γH2AX. CM363 caused a time-dependent increase of annexin V-positive cells, DNA fragmentation and increased number of apoptotic nuclei. CM363 triggered the mitochondrial apoptotic pathway as reflected by a release of cytochrome C from mitochondria and induction of the cleavage of caspase-3 and -9, and PARP. CM363 showed multikinase modulatory effects through an early increased JNK phosphorylation followed by inhibition of pY-Bcrl-Abl and pY-Stat5. CM363 worked synergistically with imatinib to inhibit cell viability and maintained its activity in imatinib-resistant cells. Finally, CM363 (10 mg/Kg) suppressed the growth of K562 xenograft tumors in athymic mice. In summary, CM363 is a novel multikinase modulator that offers advantages to circumvent imanitib resistance and might be therapeutically effective in Bcrl-Abl-Stat5 related malignancies.

  3. Norisoboldine, an alkaloid from Radix linderae, inhibits NFAT activation and attenuates 2,4-dinitrofluorobenzene-induced dermatitis in mice.

    PubMed

    Gao, Shuang; Li, Wencai; Lin, Guochao; Liu, Guangrong; Deng, Wenjuan; Zhai, Chuntao; Bian, Chunliang; He, Gaiying; Hu, Zhenlin

    2016-10-01

    The nuclear factor of activated T-cells (NFAT) is a family of transcription factors, essential for T-cell activation. Norisoboldine (NOR), an isoquinoline alkaloid from Radix linderae, has been demonstrated to possess anti-inflammatory activity. This study examines NOR's effect on NFAT activation and its therapeutic potential for atopic dermatitis (AD). The transcriptional activity of NFAT was examined with luciferase reporter assay, using K562-luc cells, stimulated with 20 ng/mL PMA plus 1 μM ionomycin. NFAT dephosphorylation was examined by immuno-blotting in K562-luc cells and Jurkat cells. Interleukin-2 (IL-2) expression in Jurkat cells was examined by real-time PCR. A mouse model of dermatitis, induced by 2,4-dinitrochlorobenzene (DNCB), was used to test NOR's therapeutic potential for AD. NOR, dose-dependently, inhibited PMA and ionomycin-induced NFAT reporter gene expression in K562-luc cells in the range of 2-50 μM. NOR also inhibited PMA and ionomycin-induced NFAT dephosphorylation in K562-luc cells and Jurkat cells. Consequently, NOR suppressed PMA plus ionomycin-induced IL-2 expression in Jurkat cells. The administration of NOR (10 mg/kg, i.p.), alleviated DNCB-induced dermatitis in mice, by the reduction of ear swelling and attenuation of inflammatory infiltration into ear tissue. Moreover, mRNA levels of INF-γ, TNF-α, IL-4 and IL-6 in ears of NOR-treated mice were reduced by 78.4, 77.8, 72.3 and 73.9%, respectively, compared with untreated controls. This study demonstrates that NOR inhibits NFAT activation in T-cells and alleviates AD-like inflammatory reaction in a DNCB-induced dermatitis model, highlighting NOR as a potential therapeutic agent for AD.

  4. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.

    PubMed

    Díaz, Cecilia; Quesada, Silvia; Brenes, Oscar; Aguilar, Gilda; Cicció, José F

    2008-01-01

    The leaf essential oil hydrodistilled from Schinus molle grown in Costa Rica was characterised in terms of its chemical composition, antioxidant activity, ability to induce cytotoxicity and the mechanism of cell death involved in the process. As a result, 42 constituents, accounting for 97.2% of the total oil, were identified. The major constituents of the oil were beta-pinene and alpha-pinene. The antioxidant activity showed an IC(50) of 36.3 microg mL(-1). The essential oil was cytotoxic in several cell lines, showing that it is more effective on breast carcinoma and leukemic cell lines. The LD(50) for cytotoxicity at 48 h in K562 corresponded to 78.7 microg mL(-1), which was very similar to the LD(50) obtained when apoptosis was measured. The essential oil did not induce significant necrosis up to 200 microg mL(-1), which together with the former results indicate that apoptosis is the main mechanism of toxicity induced by S. molle essential oil in this cell line. In conclusion, the essential oil tested was weak antioxidant and induced cytotoxicity in different cell types by a mechanism related to apoptosis. It would be interesting to elucidate the role that different components of the oil play in the effect observed here, since some of them could have potential anti-tumoural effects, either alone or in combination.

  5. Anti-proliferative effects, cell cycle G2/M phase arrest and blocking of chromosome segregation by probimane and MST-16 in human tumor cell lines

    PubMed Central

    Lu, Da Yong; Huang, Min; Xu, Cheng Hui; Yang, Wei Yi; Hu, Chao Xin; Lin, Li Ping; Tong, Lin Jiang; Li, Mei Hong; Lu, Wei; Zhang, Xiong Wen; Ding, Jian

    2005-01-01

    Background Anticancer bisdioxopiperazines, including ICRF-154, razoxane (Raz, ICRF-159) and ICRF-193, are a family of anticancer agents developed in the UK, especially targeting metastases of neoplasms. Two other bisdioxopiperazine derivatives, probimane (Pro) and MST-16, were synthesized at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. Cytotoxic activities and mechanisms of Raz (+)-steroisomer (ICRF-187, dexrazoxane), Pro and MST-16 against tumor cells were evaluated by MTT colorimetry, flow cytometry and karyotyping. Results Pro was cytotoxic to human tumor cell lines in vitro (IC50<50 μM for 48 h). Four human tumor cell lines (SCG-7901, K562, A549 and HL60) were susceptible to Pro at low inhibitory concentrations (IC50 values < 10 μM for 48 h). Although the IC50 against HeLa cell line of vincristine (VCR, 4.56 μM), doxorubicin (Dox, 1.12 μM) and 5-fluoruouracil (5-Fu, 0.232 μM) are lower than Pro (5.12 μM), ICRF-187 (129 μM) and MST-16 (26.4 μM), VCR, Dox and 5-Fu shows a low dose-related – high cytotoxic activity. Time-response studies showed that the cytotoxic effects of Pro are increased for 3 days in human tumor cells, whereas VCR, Dox and 5-Fu showed decreased cytotoxic action after 24 h. Cell cycle G2/M phase arrest and chromosome segregation blocking by Pro and MST-16 were noted. Although there was similar effects of Pro and MST-16 on chromosome segregation blocking action and cell cycle G2/M phase arrest at 1- 4 μM, cytotoxicity of Pro against tumor cells was higher than that of MST-16 in vitro by a factor of 3- 10 folds. Our data show that Pro may be more effective against lung cancer and leukemia while ICRF-187 and MST-16 shows similar IC50 values only against leukemia. Conclusion It suggests that Pro has a wider spectrum of cytotoxic effects against human tumor cells than other bisdioxopiperazines, especially against solid tumors, and with a single cytotoxic pathway of Pro and MST-16 affecting chromosome segregation and leading also to cell G2/ M phase arrests, which finally reduces cell division rates. Pro may be more potent than MST-16 in cytotoxicity. High dose- and time- responses of Pro, when compared with VCR, 5-Fu and Dox, were seen that suggest a selectivity of Pro against tumor growth. Compounds of bisdioxopiperazines family may keep up their cytotoxic effects longer than many other anticancer drugs. PMID:15963241

  6. Induction of apoptosis against cancer cell lines by four ascomycetes (endophytes) from Malaysian rainforest.

    PubMed

    Hazalin, Nurul Aqmar Mohamad Nor; Ramasamy, Kalavathy; Lim, Siong Meng; Cole, Anthony L J; Majeed, Abu Bakar Abdul

    2012-05-15

    Endophytic fungi have been shown to be a promising source of biologically active natural products. In the present study, extracts of four endophytic fungi isolated from plants of the National Park, Pahang were evaluated for their cytotoxic activity and the nature of their active compounds determined. Those extracts exhibiting activity with IC(50) values less than 17 μg/ml against HCT116, MCF-7 and K562 cell lines were shown to induce apoptosis in these cell lines. Molecular analysis, based on sequences of the rDNA internal transcribed spacers ITS1 and ITS4, revealed all four endophytic fungi to be ascomycetes: three sordariomycetes and a dothideomycete. Six known compounds, cytochalasin J, dechlorogriseofulvin, demethylharzianic-acid, griseofulvin, harzianic acid and 2-hexylidene-3-methyl-succinic acid were identified from a rapid dereplication technique for fungal metabolites using an in-house UV library. The results from the present study suggest the potential of endophytic fungi as cytotoxic agents, and there is an indication that the isolates contain bioactive compounds that mainly kill cancer cells by apoptosis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Houcai; Yu, Jing; Zhang, Lixia

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL)more » patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.« less

  8. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations.

    PubMed

    Pardanani, A; Hood, J; Lasho, T; Levine, R L; Martin, M B; Noronha, G; Finke, C; Mak, C C; Mesa, R; Zhu, H; Soll, R; Gilliland, D G; Tefferi, A

    2007-08-01

    JAK2V617F and MPLW515L/K represent recently identified mutations in myeloproliferative disorders (MPD) that cause dysregulated JAK-STAT signaling, which is implicated in MPD pathogenesis. We developed TG101209, an orally bioavailable small molecule that potently inhibits JAK2 (IC(50)=6 nM), FLT3 (IC(50)=25 nM) and RET (IC(50)=17 nM) kinases, with significantly less activity against other tyrosine kinases including JAK3 (IC(50)=169 nM). TG101209 inhibited growth of Ba/F3 cells expressing JAK2V617F or MPLW515L mutations with an IC(50) of approximately 200 nM. In a human JAK2V617F-expressing acute myeloid leukemia cell line, TG101209-induced cell cycle arrest and apoptosis, and inhibited phosphorylation of JAK2V617F, STAT5 and STAT3. Therapeutic efficacy of TG101209 was demonstrated in a nude mouse model. Furthermore, TG101209 suppressed growth of hematopoietic colonies from primary progenitor cells harboring JAK2V617F or MPL515 mutations.

  9. Electrochemical K-562 cells sensor based on origami paper device for point-of-care testing.

    PubMed

    Ge, Shenguang; Zhang, Lina; Zhang, Yan; Liu, Haiyun; Huang, Jiadong; Yan, Mei; Yu, Jinghua

    2015-12-01

    A low-cost, simple, portable and sensitive paper-based electrochemical sensor was established for the detection of K-562 cell in point-of-care testing. The hybrid material of 3D Au nanoparticles/graphene (3D Au NPs/GN) with high specific surface area and ionic liquid (IL) with widened electrochemical windows improved the good biocompatibility and high conductivity was modified on paper working electrode (PWE) by the classic assembly method and then employed as the sensing surface. IL could not only enhance the electron transfer ability but also provide sensing recognition interface for the conjugation of Con A with cells, with the cell capture efficiency and the sensitivity of biosensor strengthened simultaneously. Concanavalin A (Con A) immobilization matrix was used to capture cells. As proof-of-concept, the paper-based electrochemical sensor for the detection of K-562 cells was developed. With such sandwich-type assay format, K-562 cells as model cells were captured on the surface of Con A/IL/3D AuNPs@GN/PWE. Con A-labeled dendritic PdAg NPs were captured on the surface of K-562 cells. Such dendritic PdAg NPs worked as catalysts promoting the oxidation of thionine (TH) by H2O2 which was released from K-562 cells via the stimulation of phorbol 12-myristate-13-acetate (PMA). Therefore, the current signal response was dependent on the amount of PdAg NPs and the concentration of H2O2, the latter of which corresponded with the releasing amount from cells. So, the detection method of K-562 cell was also developed. Under optimized experimental conditions, 1.5×10(-14) mol of H2O2 releasing from each cell was calculated. The linear range and the detection limit for K-562 cells were determined to be 1.0×10(3)-5.0×10(6) cells/mL and 200 cells/mL, respectively. Such as-prepared sensor showed excellent analytical performance with good fabrication reproducibility, acceptable precision and satisfied accuracy, providing a novel protocol in point-of-care testing of cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Label-free image-based detection of drug resistance with optofluidic time-stretch microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hirofumi; Lei, Cheng; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    Acquired drug resistance is a fundamental predicament in cancer therapy. Early detection of drug-resistant cancer cells during or after treatment is expected to benefit patients from unnecessary drug administration and thus play a significant role in the development of a therapeutic strategy. However, the development of an effective method of detecting drug-resistant cancer cells is still in its infancy due to their complex mechanism in drug resistance. To address this problem, we propose and experimentally demonstrate label-free image-based drug resistance detection with optofluidic time-stretch microscopy using leukemia cells (K562 and K562/ADM). By adding adriamycin (ADM) to both K562 and K562/ADM (ADM-resistant K562 cells) cells, both types of cells express unique morphological changes, which are subsequently captured by an optofluidic time-stretch microscope. These unique morphological changes are extracted as image features and are subjected to supervised machine learning for cell classification. We hereby have successfully differentiated K562 and K562/ADM solely with label-free images, which suggests that our technique is capable of detecting drug-resistant cancer cells. Our optofluidic time-stretch microscope consists of a time-stretch microscope with a high spatial resolution of 780 nm at a 1D frame rate of 75 MHz and a microfluidic device that focuses and orders cells. We compare various machine learning algorithms as well as various concentrations of ADM for cell classification. Owing to its unprecedented versatility of using label-free image and its independency from specific molecules, our technique holds great promise for detecting drug resistance of cancer cells for which its underlying mechanism is still unknown or chemical probes are still unavailable.

  11. Reversal effect of a macrocyclic bisbibenzyl plagiochin E on multidrug resistance in adriamycin-resistant K562/A02 cells.

    PubMed

    Shi, Yan-Qiu; Qu, Xian-Jun; Liao, Yong-Xiang; Xie, Chun-Feng; Cheng, Yan-Na; Li, Song; Lou, Hong-Xiang

    2008-04-14

    Plagiochin E is a new macrocyclic bisbibenzyl compound isolated from Marchantia polymorpha. In the previous studies, we reported that when combined with fluconazole, plagiochin E had synergetic effects against the resistant strain of Candida albicans. Herein, we examined the reversal effect of plagiochin E on multidrug resistance in adriamycin-induced resistant K562/A02 cells and the parental K562 cells. Its cytotoxicity and reversal effects on multidrug resistance were assessed by MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide) assay. Apoptosis percentage of cells was obtained from Annexin V/fluorescein isothiocyanate (FITC) and propridium iodide (PI) double-staining. The effects of plagiochin E on P-glycoprotein activity were evaluated by measuring rhodamine 123 (Rh123)-associated mean fluorescence intensity and P-glycoprotein expression on the basis of the flow cytometric technology, respectively. The results showed that plagiochin E ranging from 2 to 12 mug/ml had little cytotoxicity against K562/A02 cells. When combined with adriamycin, it significantly promoted the sensitivity of K562/A02 cells toward adriamycin through increasing intracellular accumulation of adriamycin in a dose-dependent manner. Further study demonstrated that the inhibitory effect of plagiochin E on P-glycoprotein activity was the major cause of increased stagnation of adriamycin inside K562/A02 cells, indicating that plagiochin E, as a new class of mutidrug resistance inhibitor, may effectively reverse the multidrug resistance in K562/A02 cells via inhibiting expression and drug-transport function of P-glycoprotein.

  12. DNA Binding and Antitumor Activity of α-Diimineplatinum(II) and Palladium(II) Dithiocarbamate Complexes

    PubMed Central

    Mansouri-Torshizi, Hassan; Saeidifar, Maryam; Khosravi, Fatemeh; Divsalar, Adeleh; Saboury, Ali Akbar; Hassani, Fatemeh

    2011-01-01

    The two water-soluble designed platinum(II) complex, [Pt(Oct-dtc)(bpy)]NO3 (Oct-dtc = Octyldithiocarbamate and bpy = 2,2′ -bipyridine) and palladium(II) complex, [Pd(Oct-dtc)(bpy)]NO3, have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR, 1H NMR, and electronic spectra studies. Studies of antitumor activity of these complexes against human cell tumor lines (K562) have been carried out. They show Ic50 values lower than that of cisplatin. The complexes have been investigated for their interaction with calf thymus DNA (CT-DNA) by utilizing the electronic absorption spectroscopy, fluorescence spectra, and ethidium bromide displacement and gel filtration techniques. Both of these water-soluble complexes bound cooperatively and intercalatively to the CT-DNA at very low concentrations. Several binding and thermodynamic parameters are also described. PMID:22110410

  13. Antitumor Effects and Mechanism of Novel Emodin Rhamnoside Derivatives against Human Cancer Cells In Vitro

    PubMed Central

    Deng, Jun-peng; Jiang, Ling-zhi; Xiong, Ping; Yang, Bin-jie; Liu, Shan-shan

    2015-01-01

    A series of novel anthracene L-rhamnopyranosides compounds were designed and synthesized and their anti-proliferative activities on cancer cell lines were investigated. We found that one derivative S-8 (EM-d-Rha) strongly inhibited cell proliferation of a panel of different human cancer cell lines including A549, HepG2, OVCAR-3, HeLa and K562 and SGC-790 cell lines, and displayed IC50 values in low micro-molar ranges, which are ten folds more effective than emodin. In addition, we found EM-d-Rha (3-(2”,3”-Di-O-acetyl-α-L-rhamnopyranosyl-(1→4)-2’,3’-di-O-acetyl-α-L-rhamnopyranosyl)-emodin) substantially induced cellular apoptosis of HepG2 and OVCAR-3 cells in the early growth stage. Furthermore, EM-d-Rha led to the decrease of mitochondrial transmembrane potential, and up-regulated the express of cells apoptosis factors in a concentration- and time-dependent manner. The results indicated the EM-d-Rha may inhibit the growth and proliferation of HepG2 cells through the pathway of apoptosis induction, and the possible molecular mechanism may due to the activation of intrinsic apoptotic signal pathway. PMID:26682731

  14. Automated and manual patch clamp data of human induced pluripotent stem cell-derived dopaminergic neurons.

    PubMed

    Franz, Denise; Olsen, Hervør Lykke; Klink, Oliver; Gimsa, Jan

    2017-04-25

    Human induced pluripotent stem cells can be differentiated into dopaminergic neurons (Dopa.4U). Dopa.4U neurons expressed voltage-gated Na V and K V channels and showed neuron-like spontaneous electrical activity. In automated patch clamp measurements with suspended Dopa.4U neurons, delayed rectifier K + current (delayed K V ) and rapidly inactivating A-type K + current (fast K V ) were identified. Examination of the fast K V current with inhibitors yielded IC 50 values of 0.4 mM (4-aminopyridine) and 0.1 mM (tetraethylammonium). In manual patch clamp measurements with adherent Dopa.4U neurons, fast K V current could not be detected, while the delayed K V current showed an IC 50 of 2 mM for 4-aminopyridine. The Na V channels in adherent and suspended Dopa.4U neurons showed IC 50 values for tetrodotoxin of 27 and 2.9 nM, respectively. GABA-induced currents that could be observed in adherent Dopa.4U neurons could not be detected in suspended cells. Application of current pulses induced action potentials in approx. 70 % of the cells. Our results proved the feasibility of automated electrophysiological characterization of neuronal cells.

  15. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity

    PubMed Central

    Wang, Zeng; Hu, Wei; Zhang, Jia-Li; Wu, Xiu-Hua; Zhou, Hui-Jun

    2012-01-01

    Dihydroartemisinin (DHA), an active metabolite of artemisinin derivatives, is the most remarkable anti-malarial drug and has little toxicity to humans. Recent studies have shown that DHA effectively inhibits the growth of cancer cells. In the present study, we intended to elucidate the mechanisms underlying the inhibition of growth of iron-loaded human myeloid leukemia K562 cells by DHA. Mitochondria are important regulators of both autophagy and apoptosis, and one of the triggers for mitochondrial dysfunction is the generation of reactive oxygen species (ROS). We found that the DHA-induced autophagy of leukemia K562 cells, whose intracellular organelles are primarily mitochondria, was ROS dependent. The autophagy of these cells was followed by LC3-II protein expression and caspase-3 activation. In addition, we demonstrated that inhibition of the proliferation of leukemia K562 cells by DHA is also dependent upon iron. This inhibition includes the down-regulation of TfR expression and the induction of K562 cell growth arrest in the G2/M phase. PMID:23650588

  16. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressedmore » c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.« less

  17. CIP-36, a novel topoisomerase II-targeting agent, induces the apoptosis of multidrug-resistant cancer cells in vitro.

    PubMed

    Cao, Bo; Chen, Hong; Gao, Ying; Niu, Cong; Zhang, Yuan; Li, Ling

    2015-03-01

    The need to overcome cancer multidrug resistance (MDR) has fueled considerable interest in the development of novel synthetic antitumor agents with cytotoxicity against cancer cell lines with MDR. In this study, we aimed to investigate CIP-36, a novel podophyllotoxin derivative, for its inhibitory effects on human cancer cells from multiple sources, particularly cells with MDR in vitro. The human leukemia cell line, K562, and the adriamycin-resistant subline, K562/A02, were exposed to CIP-36 or anticancer agents, and various morphological and biochemical properties were assessed by Hoechst 33342 staining under a fluorescence microscope. Subsequently, cytotoxicity, cell growth curves and the cell cycle were analyzed. Finally, the effects of CIP-36 on topoisomerase IIα (Topo IIα) activity were determined. Treatment with CIP-36 significantly inhibited the growth of the K562 and MDR K562/A02 cells. Our data demonstrated that CIP-36 induced apoptosis, inhibited cell cycle progression and inhibited Topo IIα activity. These findings suggest that CIP-36 has the potential to overcome the multidrug resistance of K562/A02 cells by mediating Topo IIα activity.

  18. Biological activities and chemical composition of lichens from Serbia

    PubMed Central

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  19. Inhibition of Siah2 Ubiquitin Ligase by Vitamin K3 Attenuates Chronic Myeloid Leukemia Chemo-Resistance in Hypoxic Microenvironment.

    PubMed

    Huang, Jixian; Lu, Ziyuan; Xiao, Yajuan; He, Bolin; Pan, Chengyun; Zhou, Xuan; Xu, Na; Liu, Xiaoli

    2018-02-05

    BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.

  20. Detecting T-cell reactivity to whole cell vaccines

    PubMed Central

    Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M.; DeAngelo, Daniel J.; Stone, Richard M.; Lee, Jeng-Shin; Mulligan, Richard C.; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J.

    2012-01-01

    BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown. PMID:23170257

  1. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catecholmore » enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.« less

  2. Bardoxolone methyl (CDDO-Me or RTA402) induces cell cycle arrest, apoptosis and autophagy via PI3K/Akt/mTOR and p38 MAPK/Erk1/2 signaling pathways in K562 cells.

    PubMed

    Wang, Xin-Yu; Zhang, Xue-Hong; Peng, Li; Liu, Zheng; Yang, Yin-Xue; He, Zhi-Xu; Dang, Hong-Wan; Zhou, Shu-Feng

    2017-01-01

    Chronic myeloid leukemia (CML) treatment remains a challenge due to drug resistance and severe side effect, rendering the need on the development of novel therapeutics. CDDO-Me (Bardoxolone methyl), a potent Nrf2 activator and NF-κB inhibitor, is a promising candidate for cancer treatment including leukemia. However, the underlying mechanism for CDDO-Me in CML treatment is unclear. This study aimed to evaluate the molecular interactome of CDDO-Me in K562 cells using the quantitative proteomics approach stable-isotope labeling by amino acids in cell culture (SILAC) and explore the underlying mechanisms using cell-based functional assays. A total of 1,555 proteins responded to CDDO-Me exposure, including FANCI, SRPK2, XPO5, HP1BP3, NELFCD, Na + ,K + -ATPase 1, etc. in K562 cells. A total of 246 signaling pathways and 25 networks regulating cell survival and death, cellular function and maintenance, energy production, protein synthesis, response to oxidative stress, and nucleic acid metabolism were involved. Our verification experiments confirmed that CDDO-Me down-regulated Na + ,K + -ATPase α1 in K562 cells, and significantly arrested cells in G 2 /M and S phases, accompanied by remarkable alterations in the expression of key cell cycle regulators. CDDO-Me caused mitochondria-, death receptor-dependent and ER stress-mediated apoptosis in K562 cells, also induced autophagy with the suppression of PI3K/Akt/mTOR signaling pathway. p38 MAPK/Erk1/2 signaling pathways contributed to both apoptosis- and autophagy-inducing effects of CDDO-Me in K562 cells. Taken together, these data demonstrate that CDDO-Me is a potential anti-cancer agent that targets cell cycle, apoptosis, and autophagy in the treatment of CML.

  3. Bardoxolone methyl (CDDO-Me or RTA402) induces cell cycle arrest, apoptosis and autophagy via PI3K/Akt/mTOR and p38 MAPK/Erk1/2 signaling pathways in K562 cells

    PubMed Central

    Wang, Xin-Yu; Zhang, Xue-Hong; Peng, Li; Liu, Zheng; Yang, Yin-Xue; He, Zhi-Xu; Dang, Hong-Wan; Zhou, Shu-Feng

    2017-01-01

    Chronic myeloid leukemia (CML) treatment remains a challenge due to drug resistance and severe side effect, rendering the need on the development of novel therapeutics. CDDO-Me (Bardoxolone methyl), a potent Nrf2 activator and NF-κB inhibitor, is a promising candidate for cancer treatment including leukemia. However, the underlying mechanism for CDDO-Me in CML treatment is unclear. This study aimed to evaluate the molecular interactome of CDDO-Me in K562 cells using the quantitative proteomics approach stable-isotope labeling by amino acids in cell culture (SILAC) and explore the underlying mechanisms using cell-based functional assays. A total of 1,555 proteins responded to CDDO-Me exposure, including FANCI, SRPK2, XPO5, HP1BP3, NELFCD, Na+,K+-ATPase 1, etc. in K562 cells. A total of 246 signaling pathways and 25 networks regulating cell survival and death, cellular function and maintenance, energy production, protein synthesis, response to oxidative stress, and nucleic acid metabolism were involved. Our verification experiments confirmed that CDDO-Me down-regulated Na+,K+-ATPase α1 in K562 cells, and significantly arrested cells in G2/M and S phases, accompanied by remarkable alterations in the expression of key cell cycle regulators. CDDO-Me caused mitochondria-, death receptor-dependent and ER stress-mediated apoptosis in K562 cells, also induced autophagy with the suppression of PI3K/Akt/mTOR signaling pathway. p38 MAPK/Erk1/2 signaling pathways contributed to both apoptosis- and autophagy-inducing effects of CDDO-Me in K562 cells. Taken together, these data demonstrate that CDDO-Me is a potential anti-cancer agent that targets cell cycle, apoptosis, and autophagy in the treatment of CML. PMID:29118925

  4. Development of second generation peptides modulating cellular adiponectin receptor responses

    NASA Astrophysics Data System (ADS)

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  5. Aqueous extract of Crataegus azarolus protects against DNA damage in human lymphoblast Cell K562 and enhances antioxidant activity.

    PubMed

    Mustapha, Nadia; Bouhlel, Inès; Chaabane, Fadwa; Bzéouich, Imèn Mokdad; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2014-02-01

    The present study was carried out to characterize the cellular antioxidant effect of the aqueous extract of Crataegus azarolus and its antigenotoxic potential using human myelogenous cells, K562. The antioxidant capacity of this extract was evaluated by determining its cellular antioxidant activity (CAA) in K562 cells. Also, preceding antigenotoxicity assessment, its eventual genotoxicity property was investigated by evaluating its capacity to induce the DNA degradation of treated cell nuclei. As no genotoxicity was detected at different exposure times, its ability to protect cell DNA against H2O2 oxidative effect was investigated, using the "comet assay." It appears that 800 μg/mL of extract inhibited the genotoxicity induced by H2O2 with a rate of 41.30 %, after 4 h of incubation. In addition, this extract revealed a significant cellular antioxidant capacity against the reactive oxygen species in K562 cells.

  6. Olive (Olea europaea) Leaf Extract Induces Apoptosis and Monocyte/Macrophage Differentiation in Human Chronic Myelogenous Leukemia K562 Cells: Insight into the Underlying Mechanism

    PubMed Central

    Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells. PMID:24803988

  7. Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism.

    PubMed

    Samet, Imen; Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.

  8. Anti-tumor effect of hot aqueous extracts from Sonchus oleraceus (L.) L. and Juniperus sabina L - Two traditional medicinal plants in China.

    PubMed

    Huyan, Ting; Li, Qi; Wang, Yi-Lin; Li, Jing; Zhang, Jian-Yang; Liu, Ya-Xiong; Shahid, Muhammad Riaz; Yang, Hui; Li, Huan-Qing

    2016-06-05

    Sonchus oleraceus (L.) L (SO) and Juniperus sabina L (JS) are traditional medicinal plants in China. And the aqueous extracts of them have been used to treat tumor, inflammatory diseases, infection and so on in Chinese folk culture. However, the underlying mechanisms of their anti-tumor activities have not been illustrated yet. This study aims to evaluate the inhibitory effects of aqueous extracts from SO and JS on tumor cells. The prepared aqueous extracts of SO and JS were used to treat HepG-2 and K562 tumor cells, while the human peripheral blood mononuclear cells (PBMCs) were set as normal control. The viabilities, cell cycle and apoptosis of tumor cells after extracts treatment were assessed, in addition the expression of apoptosis-related genes (FasL, caspase 3, 6, 7, 8, 9, and 10) were analyzed. Meanwhile, the adherence and migration of HepG-2 were tested, and the expression levels of MMPs and ICAM-1 were analyzed. On top of that, the pSTAT in the two cells were also analyzed and suggested the related signaling pathway that the extracts acted on with in these tumor cells. Results showed that aqueous extracts of SO and JS have inhibitory effects on HepG-2 and K562 cells by decreasing cell viability and inducing apoptosis via up-regulation of the expression of the apoptosis-related genes FasL, caspase 3 and caspase 9. The extracts had different IC50 on tumor cells and PBMCs, which could block the tumor cell cycle at the G(0)/G(1) stage and significantly inhibit the adherence of HepG-2 cells. The extracts inhibited migration of these cells by inhibiting the expression of ICAM-1, MMP-2 and MMP-9. Further study indicated that the inhibition of pSTAT1 and 3 might be responsible for the inhibitory effects of the extracts on tumor cells. The results of this study indicated that SO and JS extracts had the anti-tumor effects, which may be developed as novel anti-tumor drugs and used in cancer therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells

    PubMed Central

    Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Park, Nam Gyu; Chang, Young-Chae; Lee, Young-Choon; Chung, Tae-Wook; Ha, Ki-Tae; Son, Jong-Keun

    2017-01-01

    Jellyfish species are widely distributed in the world’s oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura’s jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells. PMID:28133573

  10. JS-K has potent anti-angiogenic activity in vitro and inhibits tumour angiogenesis in a multiple myeloma model in vivo.

    PubMed

    Kiziltepe, Tanyel; Anderson, Kenneth C; Kutok, Jeffery L; Jia, Lee; Boucher, Kenneth M; Saavedra, Joseph E; Keefer, Larry K; Shami, Paul J

    2010-01-01

    Glutathione S-transferases (GSTs) play an important role in multidrug resistance and are upregulated in multiple cancers. We have designed a prodrug class that releases nitric oxide on metabolism by GST. O(2)-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent antineoplastic activity. We studied the effect of JS-K on angiogenesis in human umbilical vein endothelial cells (HUVECs), OPM1 multiple myeloma cells, chick aortic rings and in mice. JS-K inhibited the proliferation of HUVECs with a 50% inhibitory concentration (IC50) of 0.432, 0.466 and 0.505 microm at 24, 48 and 72 h, respectively. In the cord formation assay, JS-K led to a decrease in the number of cord junctions and cord length with an IC50 of 0.637 and 0.696 microm, respectively. JS-K inhibited cell migration at 5 h using VEGF as a chemoattractant. Migration inhibition occurred with an IC50 of 0.493 microm. In the chick aortic ring assay using VEGF or FGF-2 for vessel growth stimulation, 0.5 microm JS-K completely inhibited vessel growth. JS-K inhibited tumour angiogenesis in vivo in NIH III mice implanted subcutaneously with OPM1 multiple myeloma cells. JS-K is a potent inhibitor of angiogenesis in vitro and tumour vessel growth in vivo. As such, it establishes a new class of antineoplastic agent that targets the malignant cells directly as well as their microenvironment.

  11. Cytotoxicity and Antiproliferative Activity Assay of Clove Mistletoe (Dendrophthoe pentandra (L.) Miq.) Leaves Extracts

    PubMed Central

    Elsyana, Vida; Bintang, Maria; Priosoeryanto, Bambang Pontjo

    2016-01-01

    Clove mistletoe (Dendrophthoe pentandra (L.) Miq.) is a semiparasitic plant that belongs to Loranthaceae family. Clove mistletoe was traditionally used for cancer treatment in Indonesia. In the present study, we examined cytotoxicity of clove mistletoe leaves extracts against brine shrimps and conducted their antiproliferative activity on K562 (human chronic myelogenous leukemia) and MCM-B2 (canine benign mixed mammary) cancer cell lines in vitro. The tested samples were water extract, ethanol extract, ethanol fraction, ethyl acetate fraction, and n-hexane fraction. Cytotoxicity was screened using Brine Shrimp Lethality Test (BSLT). Antiproliferative activity was conducted using Trypan Blue Dye Method and cells were counted using haemocytometer. The results showed that n-hexane fraction exhibited significant cytotoxicity with LC50 value of 55.31 μg/mL. The n-hexane fraction was then considered for further examination. The n-hexane fraction of clove mistletoe could inhibit growth of K562 and MCM-B2 cancer cell lines in vitro. The inhibition activity of clove mistletoe n-hexane fraction at concentration of 125 μg/mL on K562 cancer cell lines was 38.69%, while on MCM-B2 it was 41.5%. Therefore, it was suggested that clove mistletoe had potential natural anticancer activity. PMID:27099614

  12. Overexpression of Hiwi Inhibits the Cell Growth of Chronic Myeloid Leukemia K562 Cells and Enhances Their Chemosensitivity to Daunomycin.

    PubMed

    Wang, Yalin; Jiang, Yan; Bian, Cuicui; Dong, Yi; Ma, Chao; Hu, Xiaolin; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a clonal disorder characterized by excessive accumulation of myeloid cells in the peripheral blood. In the present study, to investigate the role of Hiwi in leukemogenesis, lentivirus-mediated Hiwi overexpression was performed in a CML cell line, K562 cells. Our data revealed that Hiwi protein expression was undetectable in K562 cells, and its overexpression suppressed cell proliferation, induced cell cycle arrest at G0/G1 and G2/M phases, and promoted apoptosis in K562 cells in vitro. Expression of anti-apoptotic protein, Bcl-2, was decreased in cells expressing Hiwi, whereas that of pro-apoptotic proteins, Bax, activated caspase-3, -9, and cleaved poly (ADP-ribose) polymerase were increased. Additionally, Hiwi upregulation enhanced the chemosensitivity of CML cells to daunomycin. Our study illustrates that expression deletion of Hiwi may be involved in the pathogenesis of human CML and suggests a possible role of Hiwi in regulating the cell growth, cell cycle, and apoptosis of CML cells in vitro.

  13. In-vitro singlet oxygen threshold dose at PDT with Radachlorin photosensitizer

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Shmakov, S. V.; Kaydanov, N. E.; Knyazev, N. A.; Kazakov, N. V.; Rusanov, A. A.; Bogdanov, A. A.; Dubina, M. V.

    2017-07-01

    In this present study we investigate the Radachlorin photosensitizer accumulation in K562 cells and Hela cells and determined the cell viability after PDT. Using the macroscopic singlet oxygen modeling and cellular photosensitizer concentration the singlet oxygen threshold doses for K562 cells and Hela cells were calculated.

  14. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    PubMed

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101 exhibited no notable effect on the inhibition of the ERK1/2 pathway. HtrA2 and its regulatory effect on WT1 may affect the sensitivity of BCR/ABL(+) cell lines to target therapy drugs through different mechanisms. Regulation of WT1 by HtrA2 occurs in K562 cells, and the regulation may affect the apoptosis of K562 cells under the stress caused by chemotherapeutic treatment. The p38 MAPK signaling pathway, which serves an important role in cell apoptosis, is a downstream pathway of this regulation.

  15. Proliferation-Attenuating and Apoptosis-Inducing Effects of Tryptanthrin on Human Chronic Myeloid Leukemia K562 Cell Line in Vitro

    PubMed Central

    Miao, Shan; Shi, Xiaopeng; Zhang, Hai; Wang, Siwang; Sun, Jiyuan; Hua, Wei; Miao, Qing; Zhao, Yong; Zhang, Caiqin

    2011-01-01

    Tryptanthrin, a kind of indole quinazoline alkaloid, has been shown to exhibit anti-microbial, anti-inflammation and anti-tumor effects both in vivo and in vitro. However, its biological activity on human chronic myeloid leukemia cell line K562 is not fully understood. In the present study, we investigated the proliferation-attenuating and apoptosis-inducing effects of tryptanthrin on leukemia K562 cells in vitro and explored the underlying mechanisms. The results showed that tryptanthrin could significantly inhibit K562 cells proliferation in a time- and dose-dependent manner as evidenced by MTT assay and flow cytometry analysis. We also observed pyknosis, chromatin margination and the formation of apoptotic bodies in the presence of tryptanthrin under the electron microscope. Nuclei fragmentation and condensation by Hoechst 33258 staining were detected as well. The amount of apoptotic cells significantly increased whereas the mitochondrial membrane potential decreased dramatically after tryptanthrin exposure. K562 cells in the tryptanthrin treated group exhibited an increase in cytosol cyt-c, Bax and activated caspase-3 expression while a decrease in Bcl-2, mito cyt-c and pro-caspase-3 contents. However, the changes of pro-caspase-3 and activated caspase-3 could be abolished by a pan-caspase inhibitor ZVAD-FMK. These results suggest that tryptanthrin has proliferation-attenuating and apoptosis-inducing effects on K562 cells. The underlying mechanism is probably attributed to the reduction in mitochondria membrane potential, the release of mito cyt-c and pro-caspase-3 activation. PMID:21747710

  16. Chronic myeloid leukemia progenitor cells require autophagy when leaving hypoxia-induced quiescence

    PubMed Central

    Ianniciello, Angela; Dumas, Pierre-Yves; Drullion, Claire; Guitart, Amélie; Villacreces, Arnaud; Peytour, Yan; Chevaleyre, Jean; Brunet de la Grange, Philippe; Vigon, Isabelle; Desplat, Vanessa; Priault, Muriel; Sbarba, Persio Dello; Ivanovic, Zoran; Mahon, François-Xavier; Pasquet, Jean-Max

    2017-01-01

    Albeit tyrosine kinase inhibitors anti-Abl used in Chronic Myeloid Leukemia (CML) block the deregulated activity of the Bcr-Abl tyrosine kinase and induce remission in 90% of patients, they do not eradicate immature hematopoietic compartments of leukemic stem cells. To elucidate if autophagy is important for stem cell survival and/or proliferation, we used culture in low oxygen concentration (0.1% O2 for 7 days) followed back by non-restricted O2 supply (normoxic culture) to mimic stem cell proliferation and commitment. Knockdown of Atg7 expression, a key player in autophagy, in K562 cell line inhibited autophagy compared to control cells. Upon 7 days at 0.1% O2 both K562 and K562 shATG7 cells stopped to proliferate and a similar amount of viable cells remained. Back to non-restricted O2 supply K562 cells proliferate whereas K562 shATG7 cells exhibited strong apoptosis. Using immunomagnetic sorted normal and CML CD34+ cells, we inhibited the autophagic process by lentiviral infection expressing shATG7 or using a Vps34 inhibitor. Both, normal and CML CD34+ cells either competent or deficient for autophagy stopped to proliferate in hypoxia. Surprisingly, while normal CD34+ cells proliferate back to non restricted O2 supply, the CML CD34+ cells deficient for autophagy failed to proliferate. All together, these results suggest that autophagy is required for CML CD34+ commitment while it is dispensable for normal CD34 cells. PMID:29228587

  17. TAN-1813, a novel Ras-farnesyltransferase inhibitor produced by Phoma sp. taxonomy, fermentation, isolation and biological activities in vitro and in vivo.

    PubMed

    Ishii, T; Hayashi, K; Hida, T; Yamamoto, Y; Nozaki, Y

    2000-08-01

    A novel Ras-farnesyltransferase inhibitor designated TAN-1813 was isolated from the culture broth of a fungus strain, FL-41510, isolated as a plant endophyte. The producer was taxonomically characterized as Phoma sp. FL-41510. TAN-1813 inhibited rat brain farnesyltransferase and geranylgeranyltransferase I activity with IC50 values of 23 microg/ml and 47/microg/ml, respectively. TAN-1813 showed mixed-type inhibition with respect to farnesylpyrophosphate and noncompetitive inhibition with respect to a K-Ras C-terminal peptide. It also inhibited the in situ farnesylation of cellular Ras proteins in a K-ras transformant (NIH3T3/K-ras) of mouse embryonic fibroblast cell line NIH3T3. TAN- 1813 inhibited the proliferation of various human cancer cells, some of which harbor activated ras alleles, with IC50 values of 15 approximately 110 ng/ml as well as that of NIH3T3 and NIH3T3/K-ras cells with IC50S of 540 and 310 ng/ml, respectively. Flow cytometric analysis indicated that TAN-1813 arrests NIH3T3/K-ras cells at both G1 and G2/M phases of the cell cycle. In addition, TAN-1813 was found to induce morphological reversion of NIH3T3/K-ras cells from the transformed phenotype. Antitumor activity of TAN-1813 against human fibrosarcoma HT-1080 and NIH3T3/K-ras tumors in nude mice was also verified.

  18. Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China

    PubMed Central

    Wang, Jing; Zhou, Lianming; Yang, Peiming

    2014-01-01

    The chemical composition, anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita (MEO) grown in China were investigated. Using GC-MS analysis, the chemical composition of MEO was characterized, showing that it was mainly composed of menthol, menthone and menthy acetate. MEO exhibited potent anti-inflammatory activities in a croton oil-induced mouse ear edema model. It could also effectively inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cytotoxic effect was assessed against four human cancer cells. MEO was found to be significantly active against human lung carcinoma SPC-A1, human leukemia K562 and human gastric cancer SGC-7901 cells, with an IC50 value of 10.89, 16.16 and 38.76 µg/ml, respectively. In addition, MEO had moderate antioxidant activity. The results of this study may provide an experimental basis for further systematic research, rational development and clinical utilization of peppermint resources. PMID:25493616

  19. Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China.

    PubMed

    Sun, Zhenliang; Wang, Huiyan; Wang, Jing; Zhou, Lianming; Yang, Peiming

    2014-01-01

    The chemical composition, anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita (MEO) grown in China were investigated. Using GC-MS analysis, the chemical composition of MEO was characterized, showing that it was mainly composed of menthol, menthone and menthy acetate. MEO exhibited potent anti-inflammatory activities in a croton oil-induced mouse ear edema model. It could also effectively inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cytotoxic effect was assessed against four human cancer cells. MEO was found to be significantly active against human lung carcinoma SPC-A1, human leukemia K562 and human gastric cancer SGC-7901 cells, with an IC50 value of 10.89, 16.16 and 38.76 µg/ml, respectively. In addition, MEO had moderate antioxidant activity. The results of this study may provide an experimental basis for further systematic research, rational development and clinical utilization of peppermint resources.

  20. Cyclic RGD peptidomimetics containing 4- and 5-amino-cyclopropane pipecolic acid (CPA) templates as dual αVβ3 and α5β1 integrin ligands.

    PubMed

    Sernissi, Lorenzo; Trabocchi, Andrea; Scarpi, Dina; Bianchini, Francesca; Occhiato, Ernesto G

    2016-02-15

    4-Amino- and 5-amino-cyclopropane pipecolic acids (CPAs) with cis relative stereochemistry between the carboxylic and amino groups were used as templates to prepare cyclic peptidomimetics containing the RGD sequence as possible integrin binders. The peptidomimetic c(RGD8) built on the 5-amino-CPA displayed an inhibition activity (IC50=2.4nM) toward the αvβ3 integrin receptor (expressed in M21 human melanoma cell line) comparable to that of the most potent antagonists reported so far and it was ten times more active than the corresponding antagonist c(RGD7) derived from the isomeric 4-amino-CPA. Both compounds were also nanomolar ligands of the α5β1 integrin (expressed in human erythroleukemia cell line K562). These results suggest that the CPA-derived templates are suitable for the preparation of dual αvβ3 and α5β1 ligands to suppress integrin-mediated events as well as for targeted drug delivery in cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. JS-K has Potent Anti-Angiogenic Activity in vitro and Inhibits Tumor Angiogenesis in a Multiple Myeloma Model in vivo

    PubMed Central

    Kaur, Gurmeet; Kiziltepe, Tanyel; Anderson, Kenneth C.; Kutok, Jeffery L.; Jia, Lee; Boucher, Kenneth M.; Saavedra, Joseph E.; Keefer, Larry K.; Shami, Paul J.

    2009-01-01

    Glutathione S-Transferases (GST) play an important role in multidrug resistance and are upregulated in multiple cancers. We have designed a prodrug class that releases NO on metabolism by GST. O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent anti-neoplastic activity. We studied the effect of JS-K on angiogenesis. JS-K inhibited the proliferation of HUVEC’s with a 50% inhibitory concentration (IC50) of 0.432, 0.466, and 0.505 µM at 24, 48, and 72 hours, respectively. In the cord formation assay, JS-K led to a decrease in the number of cord junctions and cord length with an IC50 of 0.637 and 0.696 µM, respectively. JS-K inhibited cell migration at 5 hours using VEGF as a chemoattractant. Migration inhibition occurred with an IC50 of 0.493 µM. In the chick aortic ring assay using VEGF or FGF-b for vessel growth stimulation, 0.5 µM JS-K completely inhibited vessel growth. JS-K inhibited tumor angiogenesis in vivo in NIH III mice implanted subcutaneously with OPM1 multiple myeloma cells. JS-K is a potent inhibitor of angiogenesis in vitro and tumor vessel growth in vivo. As such, it establishes a new class of anti-neoplastic agents that target the malignant cells directly as well as their microenvironment. PMID:20723011

  2. Undifferentiated HL-60 cells internalize an antitumor alkyl ether phospholipid more rapidly than resistant K562 cells.

    PubMed

    Tsutsumi, T; Tokumura, A; Kitazawa, S

    1998-02-05

    In this study, we confirmed a previous finding that 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (methyl-PAF) expresses higher antineoplastic activity against the promyelocytic leukemia cell line HL-60, than against the erythroleukemic cell line K562, and intended to clarify the reason for this. Using an albumin back-exchange method, we measured the rates of binding and internalization of [3H]methyl-PAF by HL-60 and K562 cells. We found that methyl-PAF associated very rapidly and to similar extents with the two types of cells at low concentrations of extracellular bovine serum albumin, but that when bound to the cell surface, it was internalized into HL-60 cells faster than into K562 cells. The internalization of methyl-PAF by HL-60 cells was concentration-independent, intracellular ATP-independent and susceptible to thiol group-modifying reagents and cytochalasin B. Thus the inward transbilayer movement of methyl-PAF seems to occur by cytochalasin B-sensitive protein-mediated mechanism based on passive diffusion not requiring energy, in which SH-groups of protein play a critical role. We also found that the internalization of 1-hexadecanoyl-2-(4,4-difluoro-5,7- dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphocholine (Bodipy-C5-PC), whose structure resembles that of methyl-PAF, into HL-60 cells was faster than that into K562 cells. Using a combination of an albumin back-exchange method and observation by confocal laser scanning microscopy, we next examined the intracellular distribution of this fluorescent phospholipid probe after its internalization. Intracellular membranes, especially those peripheral to nuclei, were fluorescence-labeled in both HL-60 and K562 cells, but fluorescence of the nuclear membranes was weak, suggesting that this probe seems mainly to accumulate in intracellular granules, and may interact directly with several key enzymes for phospholipid metabolism, leading to cell injury. Because the difference between the internalization rates of methyl-PAF in HL-60 and K562 cells was correlated with their different susceptibilities to the cytotoxic effect of methyl-PAF, we suggest that the capacities for uptake of methyl-PAF and its accumulation in intracellular membranes are critical factor for its induction of apoptosis. (c) 1998 Elsevier Science B.V.

  3. The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.

    PubMed

    Sengupta, P K; Lavelle, D E; DeSimone, J

    1994-03-01

    Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.

  4. Research on the effect of formononetin on photodynamic therapy in K562 cells.

    PubMed

    Sun, Dan; Lu, Yao; Zhang, Su-Juan; Wang, Kai-Ge; Sun, Zhe

    2017-10-01

    At the present time, many cancer patients combine some forms of complementary and alternative medicine therapies with their conventional therapies. The most common choice of these therapies is the use of antioxidants. Formononetin is presented in different foods. It has a variety of biological activities including antioxidant and anti-cancer properties. On account of its antioxidant activity, formononetin might protect cancer cells from free radical damage in photodynamic therapy (PDT) during which reactive oxygen species (ROS) production was stimulated leading to irreversible tumor cell injury. In this study, the influence of formononetin on K562 cells in PDT was demonstrated. The results showed that formononetin supplementation alone did not affect the lipid peroxidation, DNA damage and apoptosis in K562 cells. It increases the lipid peroxidation, DNA damage and apoptosis in K562 cells induced by PDT. The singlet oxygen quencher sodium azide suppresses the apoptosis induced by PDT with formononetin. In conclusion, formononetin consumption during PDT increases the effectiveness of cancer therapy on malignant cells. The effect of antioxidants on PDT maybe was determined by its sensitization ability to singlet oxygen.

  5. Efficient synthesis of RITA and its analogues: derivation of analogues with improved antiproliferative activity via modulation of p53/miR-34a pathway.

    PubMed

    Lin, Jinshun; Jin, Xiuli; Bu, Yiwen; Cao, Deliang; Zhang, Nannan; Li, Shangfu; Sun, Qinsheng; Tan, Chunyan; Gao, Chunmei; Jiang, Yuyang

    2012-12-28

    A novel approach to synthesize RITA by practical palladium-catalyzed C-C bond-forming Suzuki reactions at room temperature was developed, which was used for deriving a series of substituted tricyclic α-heteroaryl (furan/thiophene) analogues of RITA under mild conditions. These novel analogues showed notable antiproliferative activity against cancer cell lines with wild-type p53 (i.e., HCT116, A549, MCF-7 and K562), but much less activity in HCT116/p53(-/-) cells. In particular, compound 1f demonstrated promising antiproliferative activity compared to RITA, with IC(50) = 28 nM in MCF-7 vs. 54 nM for RITA, and cancer cell selectivity. Compound 1f markedly activated p53 in HCT116 cells at 100 nM, triggering apoptosis. Importantly, we found that both RITA and compound 1f induced G(0)/G(1) cell cycle arrest by up-regulating miR-34a, which in turn down-regulated the expression of cell cycle-related proteins CDK4 and E2F1. In summary, this study reports an effective synthetic approach for RITA and its analogues, and elucidates a novel antiproliferative mechanism of these compounds.

  6. Bcr-Abl-independent mechanism of resistance to imatinib in K562 cells: Induction of cyclooxygenase-2 (COX-2) by histone deacetylases (HDACs).

    PubMed

    Kalle, Arunasree M; Sachchidanand, Sachchidanand; Pallu, Reddanna

    2010-09-01

    Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1

    PubMed Central

    van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2015-01-01

    Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312

  8. Expression of transcription factors during sodium phenylacetate induced erythroid differentiation in K562 cells.

    PubMed

    Rath, A V; Schmahl, G E; Niemeyer, C M

    1997-01-01

    During 15 days of treatment of K562 cells with sodium phenylacetate, we observed an increase in the cellular hemoglobin concentration with a similar increase in the expression of gamma-globin mRNA. Morphological studies demonstrated characteristic features of erythroid differentiation and maturation. At the same time there was no change in the level of expression of the cell surface antigenes CD33, CD34, CD45, CD71 and glycophorin A. Likewise, the level of expression of the erythroid transcription factors GATA-1, GATA-2, NF-E2, SCL and RBTN2, all expressed in untreated K562 cells, did not increase during sodium phenylacetate induced erythroid differentiation. The expression of the nuclear factors Evi-1 and c-myb, known to inhibit erythroid differentiation, did not decrease. We conclude that sodium phenylacetate treatment of K562 cells increases gamma-globin mRNA and induces cell maturation as judged by morphology without affecting the expression of the erythroid transcription factors, some of which are known to be involved in the regulation of beta-like globin genes.

  9. Bio-inactivation of human malignant cells through highly responsive diluted colloidal suspension of functionalized magnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ferreira, Roberta V.; Silva-Caldeira, Priscila P.; Pereira-Maia, Elene C.; Fabris, José D.; Cavalcante, Luis Carlos D.; Ardisson, José D.; Domingues, Rosana Z.

    2016-04-01

    Magnetic fluids, more specifically aqueous colloidal suspensions containing certain magnetic nanoparticles (MNPs), have recently been gaining special interest due to their potential use in clinical treatments of cancerous formations in mammalians. The technological application arises mainly from their hyperthermic behavior, which means that the nanoparticles dissipate heat upon being exposed to an alternating magnetic field (AMF). If the temperature is raised to slightly above 43 °C, cancer cells are functionally inactivated or killed; however, normal cells tend to survive under those same conditions, entirely maintaining their bioactivity. Recent in vitro studies have revealed that under simultaneous exposure to an AMF and magnetic nanoparticles, certain lines of cancer cells are bio-inactivated even without experiencing a significant temperature increase. This non-thermal effect is cell specific, indicating that MNPs, under alternating magnetic fields, may effectively kill cancer cells under conditions that were previously thought to be implausible, considering that the temperature does not increase more than 5 °C, which is also true in cases for which the concentration of MNPs is too low. To experimentally test for this effect, this study focused on the feasibility of inducing K562 cell death using an AMF and aqueous suspensions containing very low concentrations of MNPs. The assay was designed for a ferrofluid containing magnetite nanoparticles, which were obtained through the co-precipitation method and were functionalized with citric acid; the particles had an average diameter of 10 ± 2 nm and a mean hydrodynamic diameter of approximately 40 nm. Experiments were first performed to test for the ability of the ferrofluid to release heat under an AMF. The results show that for concentrations ranging from 2.5 to 1.0 × 103 mg L-1, the maximum temperature increase was actually less than 2 °C. However, the in vitro test results from K562 cells and suspensions containing these MNPs at concentrations varying within a narrower range from 2.5 to 10 mg L-1, typically under an AMF of 15 kA m-1 at 356 kHz, indicate efficient cytotoxic activity against malignant cells and inhibition of cell growth, even at very low hyperthermally induced temperature increases. The IC50 value varied with time, reaching 3.5 mg L-1 after 10 min under the AMF. Our results effectively demonstrate new prospective uses for such nanoparticles in advanced medical practices in oncology.

  10. Synthesis of Nanodiamond-Daunorubicin Conjugates to Overcome Multidrug Chemoresistance in Leukemia

    PubMed Central

    Man, Han B.; Kim, Hansung; Kim, Ho-Joong; Robinson, Erik; Liu, Wing Kam; Chow, Edward Kai-Hua; Ho, Dean

    2013-01-01

    Nanodiamonds (NDs) are promising candidates in nanomedicine, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. We have synthesized ND vectors capable of chemotherapeutic loading and delivery with applications towards chemoresistant leukemia. The loading of Daunorubicin (DNR) onto NDs was optimized by adjusting reaction parameters such as acidity and concentration. The resulting conjugate, a novel therapeutic payload for NDs, was characterized extensively for size, surface charge, and loading efficiency. A K562 human myelogenous leukemia cell line, with multidrug resistance conferred by incremental DNR exposure, was used to demonstrate the efficacy enhancement resulting from ND-based delivery. While resistant K562 cells were able to overcome treatment from DNR alone, as compared with non-resistant K562 cells, NDs were able to improve DNR delivery into resistant K562 cells. By overcoming efflux mechanisms present in this resistant leukemia line, ND-enabled therapeutics have demonstrated the potential to improve cancer treatment efficacy, especially towards resistant strains. PMID:23916889

  11. Voltage-Gated K+ Channel, Kv3.3 Is Involved in Hemin-Induced K562 Differentiation

    PubMed Central

    Song, Min Seok; Choi, Seon Young; Ryu, Pan Dong; Lee, So Yeong

    2016-01-01

    Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes. PMID:26849432

  12. Genetically re-engineered K562 cells significantly expand and functionally activate cord blood natural killer cells: Potential for adoptive cellular immunotherapy.

    PubMed

    Ayello, Janet; Hochberg, Jessica; Flower, Allyson; Chu, Yaya; Baxi, Laxmi V; Quish, William; van de Ven, Carmella; Cairo, Mitchell S

    2017-02-01

    Natural killer (NK) cells play a significant role in reducing relapse in patients with hematological malignancies after allogeneic stem cell transplantation, but NK cell number and naturally occurring inhibitory signals limit their capability. Interleukin-15 (IL-15) and 4-1BBL are important modulators of NK expansion and functional activation. To overcome these limitations, cord blood mononuclear cells (CB MNCs) were ex vivo expanded for 7 days with genetically modified K562-mbIL15-41BBL (MODK562) or wild-type K562 (WTK562). NK cell expansion; expression of lysosome-associated membrane protein-1 (LAMP-1), granzyme B, and perforin; and in vitro and in vivo cytotoxicity against B-cell non-Hodgkin lymphoma (B-NHL) were evaluated. In vivo tumor growth in B-NHL-xenografted nonobese diabetic severe combined immune deficient (NOD-scid) gamma (NSG) mice was monitored by tumor volume, cell number, and survival. CB MNCs cultured with MODK562 compared with WTK562 demonstrated significantly increased NK expansion (thirty-fivefold, p < 0.05); LAMP-1 (p < 0.05), granzyme B, and perforin expression (p < 0.001); and in vitro cytotoxicity against B-NHL (p < 0.01). Xenografted mice treated with MODK562 CB experienced significantly decreased B-NHL tumor volume (p = 0.0086) and B-NHL cell numbers (p < 0.01) at 5 weeks and significantly increased survival (p < 0.001) at 10 weeks compared with WTK562. In summary, MODK562 significantly enhanced CB NK expansion and cytotoxicity, enhanced survival in a human Burkitt's lymphoma xenograft NSG model, and could be used in the future as adoptive cellular immunotherapy after umbilical CB transplantation. Future directions include expanding anti-CD20 chimeric receptor-modified CB NK cells to enhance B-NHL targeting in vitro and in vivo. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  13. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    PubMed

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  14. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, andmore » IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.« less

  15. Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis.

    PubMed

    D'Souza, P; Amit, A; Saxena, V S; Bagchi, D; Bagchi, M; Stohs, S J

    2004-01-01

    Allergic rhinitis, a frequently occurring immunological disorder affecting men, women and children worldwide, is a state of hypersensitivity that occurs when the body overreacts to a substance such as pollen, mold, mites or dust. Allergic rhinitis exerts inflammatory response and irritation of the nasal mucosal membranes leading to sneezing; stuffy/runny nose; nasal congestion; and itchy, watery and swollen eyes. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. In this study, the antioxidant efficacy of Aller-7 was investigated by various assays including hydroxyl radical scavenging assay, superoxide anion scavenging assay, 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical scavenging assays. The protective effect of Aller-7 on free radical-induced lysis of red blood cells and inhibition of nitric oxide release by Aller-7 in lipopolysaccharide-stimulated murine macrophages were determined. Aller-7 exhibited concentration-dependent scavenging activities toward biochemically generated hydroxyl radicals (IC50 741.73 microg/ml); superoxide anion (IC50 24.65 microg/ml by phenazine methosulfate-nicotinamide adenine dinucleotide [PMS-NADH] assay and IC50 4.27 microg/ml by riboflavin/nitroblue tetrazolium [NBT] light assay), nitric oxide (IC50 16.34 microg/ml); 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical (IC50 5.62 microg/ml); and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical (IC50 7.35 microg/ml). Aller-7 inhibited free radical-induced hemolysis in the concentration range of 20-80 microg/ml. Aller-7 also significantly inhibited nitric oxide release from lipopolysaccharide-stimulated murine macrophages. These results demonstrate that Aller-7 is a potent scavenger of free radicals and that it may serve.

  16. Comparison of vitamins K1, K2 and K3 effects on growth of rat glioma and human glioblastoma multiforme cells in vitro.

    PubMed

    Oztopçu, Pinar; Kabadere, Selda; Mercangoz, Ayşe; Uyar, Ruhi

    2004-09-01

    Glioblastoma multiforme is characterized as highly invasive and rapidly growing astrocytomas, and scientists have sought for efficient treatment against malignant gliomas for a long time. Therefore, we compared the respond of rat glioma (C6) and glioblastoma multiforme cells derived from two patients to vitamins K1, K2 and K3. The cells were exposed to 100, 250, 500, 750 and 1000 microM of vitamins K1 and K2, and 1, 10, 25, 50, 75 and 100 microM of vitamin K3 for 24 hours in an incubator atmosphere of 5% CO2, 37 degrees C and 100% humidity. Cell viability was estimated by MTT assay. Vitamin K1 showed no growth effect on all the glioma cells examined. Vitamin K2 did not cause any change in number of C6, however induced growth inhibition in a dose-dependent manner on glioblastoma multiforme. The IC50 values of vitamin K2 were 960 microM and 970 microM for glioblastoma multiforme, respectively. Vitamin K3 had also growth inhibitory effect in a dose-dependent manner on both C6 and glioblastoma multiforme. The IC50 values were 41 microM, 24 microM and 23 microM for vitamin K3, respectively. We concluded that vitamin K3 is more effective than vitamin K2 for inhibition of cancer cell growth, and might have an alternative value as an anticancer drug against glioblastoma multiforme.

  17. The fusarin analogue NG-391 impairs nucleic acid formation in K-562 leukemia cells

    USDA-ARS?s Scientific Manuscript database

    The clavicipitaceous fungus Metarhizium robertsii produces the fusarin-like mycotoxin NG-391. We report on the biological effects of NG-391 on K-562 human cancer cells, obtained with radionuclide incorporation assays, along with nucleosome release and caspase assays, respectively. Our data suggests ...

  18. Inhibition of hyaluronic acid formation sensitizes chronic myelogenous leukemia to treatment with doxorubicin.

    PubMed

    Uchakina, Olga N; Ban, Hao; Hostetler, Bryan J; McKallip, Robert J

    2016-11-01

    In the current study we examined the ability of 4-methylumbelliferone (4-MU), which can inhibit hyaluronic acid synthesis, to sensitize K562 chronic myelogenous leukemia (CML) cells to doxorubicin therapy. Exposure of K562 cells to doxorubicin led to increased hyaluronic acid synthase (HAS) gene expression and increased levels of cell surface hyaluronic acid. Furthermore, exposure of K562 cells to exogenous HA caused resistance to doxorubicin-induced cell death. The combination of low dose 4-MU and doxorubicin led to increased apoptosis when compared to higher doses of any agent alone. Additionally, treatment with 4-MU led to a significant reduction in doxorubicin-induced increase in HA cell surface expression. Mechanistically, 4-MU treatment led to an increase in p38 activation and PARP cleavage. The role of p38 in 4-MU/doxorubicin-treated K562 cells was confirmed when p38 inhibitors led to protection from 4-MU/doxorubicin-induced apoptosis. Together, results from this study suggest that treatment with 4-MU increases the sensitivity of CML to chemotherapeutics by decreasing their HA-mediated resistance to apoptosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Gamma reactivation using the spongy effect of KLF1-binding site sequence: an approach in gene therapy for beta-thalassemia

    PubMed Central

    Heydari, Nasrin; Shariati, Laleh; Khanahmad, Hossein; Hejazi, Zahra; Shahbazi, Mansoureh; Salehi, Mansoor

    2016-01-01

    Objective(s): β-thalassemia is one of the most common genetic disorders in the world. As one of the promising treatment strategies, fetal hemoglobin (Hb F) can be induced. The present study was an attempt to reactivate the γ-globin gene by introducing a gene construct containing KLF1 binding sites to the K562 cell line. Materials and Methods: A plasmid containing a 192 bp sequence with two repeats of KLF1 binding sites on β-globin and BCL11A promoters was constructed and used to transfect the K562 cell line. Positive selection was performed under treatment with 150 μg/ml hygromycin B. The remaining cells were expanded and harvested on day 28, and genomic DNA was extracted. The PCR was carried out to verify insertion of DNA fragment to the genome of K562 cells. The cells were differentiated with 15 μg/ml cisplatin. Flowcytometry was performed to identify erythroid differentiation by detection of CD235a+ cells. Real-time RT-PCR was performed to evaluate γ-globin expression in the transfected cells. Results: A 1700 bp fragment was observed on agarose gel as expected and insertion of DNA fragment to the genome of K562 cells was verified. Totally, 84% of cells were differentiated. The transfected cells significantly increased γ-globin expression after differentiation compared to untransfected ones. Conclusion: The findings demonstrate that the spongy effect of KLF1-binding site on BCL11A and β-globin promoters can induce γ-globin expression in K562 cells. This novel strategy can be promising for the treatment of β-thalassemia and sickle cell disease. PMID:27872702

  20. The effects of tumor treating fields and temozolomide in MGMT expressing and non-expressing patient-derived glioblastoma cells.

    PubMed

    Clark, Paul A; Gaal, Jordan T; Strebe, Joslyn K; Pasch, Cheri A; Deming, Dustin A; Kuo, John S; Robins, H Ian

    2017-02-01

    A recent Phase 3 study of newly diagnosed glioblastoma (GBM) demonstrated the addition of tumor treating fields (TTFields) to temozolomide (TMZ) after combined radiation/TMZ significantly increased survival and progression free survival. Preliminary data suggested benefit with both methylated and unmethylated O-6-methylguanine-DNA methyl-transferase (MGMT) promoter status. To date, however, there have been no studies to address the potential interactions of TTFields and TMZ. Thus, the effects of TTFields and TMZ were studied in vitro using patient-derived GBM stem-like cells (GSCs) including MGMT expressing (TMZ resistant: 12.1 and 22GSC) and non-MGMT expressing (TMZ sensitive: 33 and 114GSC) lines. Dose-response curves were constructed using cell proliferation and sphere-forming assays. Results demonstrated a ⩾10-fold increase in TMZ resistance of MGMT-expressing (12.1GSCs: IC 50 =160μM; 22GSCs: IC 50 =44μM) compared to MGMT non-expressing (33GSCs: IC 50 =1.5μM; 114GSCs: IC 50 =5.2μM) lines. TTFields inhibited 12.1 GSC proliferation at all tested doses (50-500kHz) with an optimal frequency of 200kHz. At 200kHz, TTFields inhibited proliferation and tumor sphere formation of both MGMT GSC subtypes at comparable levels (12.1GSC: 74±2.9% and 38±3.2%, respectively; 22GSC: 61±11% and 38±2.6%, respectively; 33GSC: 56±9.5% and 60±7.1%, respectively; 114 GSC: 79±3.5% and 41±4.3%, respectively). In combination, TTFields (200kHz) and TMZ showed an additive anti-neoplastic effect with equal efficacy for TTFields in both cell types (i.e., ± MGMT expression) with no effect on TMZ resistance. This is the first demonstration of the effects of TTFields on cancer stem cells. The expansion of such studies may have clinical implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Effects of Tumor Treating Fields and Temozolomide in MGMT Expressing and Non-Expressing Patient-Derived Glioblastoma Cells

    PubMed Central

    Clark, Paul A.; Gaal, Jordan T; Strebe, Joslyn K.; Pasch, Cheri A; Deming, Dustin A; Kuo, John S.; Robins, H. Ian

    2016-01-01

    A recent Phase 3 study of newly diagnosed glioblastoma (GBM) demonstrated the addition of Tumor Treating Fields (TTFields) to temozolomide (TMZ) after combined radiation/TMZ significantly increased survival and progression free survival. Preliminary data suggested benefit with both methylated and unmethylated O-6-methylguanine-DNA methyl-transferase (MGMT) promoter status. To date, however, there have been no studies to address the potential interactions of TTFields and TMZ. Thus, the effects of TTFields and TMZ were studied in vitro using patient-derived GBM stem-like cells (GSCs) including MGMT expressing (TMZ resistant:12.1 and 22 GSC) and non-MGMT expressing (TMZ sensitive:33 and 114 GSC) lines. Dose-response curves were constructed using cell proliferation and sphere-forming assays. Results demonstrated a ≥10-fold increase in TMZ resistance of MGMT-expressing (12.1 GSCs: IC50=160 μM; 22 GSCs: IC50=44 μM) compared to MGMT non-expressing (33 GSCs: IC50=1.5 μM; 114 GSCs: IC50=5.2 μM) lines. TTFields inhibited 12.1 GSC proliferation at all tested doses (50-500 kHz) with an optimal frequency of 200 kHz. At 200 kHz, TTFields inhibited proliferation and tumor sphere formation of both MGMT GSC subtypes at comparable levels (12.1 GSC: 74±2.9% and 38±3.2%, respectively; 22 GSC: 61±11% and 38±2.6%, respectively; 33 GSC: 56±9.5% and 60±7.1%, respectively; 114 GSC: 79± 3.5% and 41±4.3%, respectively). In combination, TTFields (200 kHz) and TMZ showed an additive anti-neoplastic effect with equal efficacy for TTFields in both cell types (i.e., +/- MGMT expression) with no effect on TMZ resistance. This is the first demonstration of the effects of TTFields on cancer stem cells. The expansion of such studies may have clinical implications. PMID:27865821

  2. The cytotoxic action of the CD56+ fraction of cytokine-induced killer cells against a K562 cell line is mainly restricted to the natural killer cell subset.

    PubMed

    Chieregato, Katia; Zanon, Cristina; Castegnaro, Silvia; Bernardi, Martina; Amati, Eliana; Sella, Sabrina; Rodeghiero, Francesco; Astori, Giuseppe

    2017-01-01

    Cytokine-induced killer cells are polyclonal T cells generated ex vivo and comprise two main subsets: the CD56- fraction, possessing an alloreactive potential caused by T cells (CD3+CD56-), and the CD56+ fraction, characterised by a strong antitumour capacity induced by natural killer-like T cells (NK-like T, CD3+CD56+) and natural killer cells (NK, CD3-CD56+ bright). We investigated the cytotoxic action of selected CD56+ cell subpopulations against a human chronic myeloid leukaemia (K562) cell line. After immunomagnetic selection of the CD56+ cell fraction, NK bright cells (CD3-CD56+ bright) and two subsets of NK-like T cells (CD3+CD56+), called NK-like T CD56 dim and NK-like T CD56 bright, could be identified. The cytotoxic effect against K562 cells was mainly exerted by the NK bright subpopulation and resulted to be inversely correlated with the percentage of NK-like T CD56 dim cells in the culture. The lytic action appeared to be independent of cell degranulation as suggested by the lack of change in the expression of CD107a. We conclude that the cytotoxic action of CD56+ cells against a K562 cell line is mainly due to the NK cells.

  3. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.

    PubMed

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-11-07

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  4. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-01-01

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein. PMID:27827994

  5. Ionophore-A23187-induced cellular cytotoxicity: a cell fragment mediated process.

    PubMed Central

    Nash, G S; Niedt, G W; MacDermott, R P

    1980-01-01

    Calcium ionophore A23187 was found to induce human white blood cells to kill human red blood cells. Optimal conditions for ionophore-induced cellular cytotoxicity (IICC) included an 18 h time period, an incubation temperature of 25 degrees, a 25:1 or 50:1 killer:target cell ratio,and a final ionophore concentration of 2 . 5 microgram/ml. WBC or granulocytes which were either frozen and thawed three times or sonicated were capable of mediating IICC. As intact cells, granulocytes (67 . 2% cytotoxicity), monocytes (34 . 8%), B cells (22 . 0%) and Null cells (19 . 3%) were effector cells but T cells (7 . 4%) were not. After fragmenting these cells, all cell types including T cells were able to mediate IICC. When cell lines (K562, Chang, and NCTC) were used as effectors, none would mediate IICC when intact. After freezing and thawing, Chang and NCTC would not mediate IICC, whereas K562 cells did. These studies may be indicative of a calcium-dependent, membrane-localized mechanism in cellular cytotoxic processes, and may provide a useful indicator system for isolation of the enzyme systems involved in cellular cytotoxicity. PMID:6773881

  6. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines

    PubMed Central

    Fernández-Araujo, Andrea; Sánchez, Jon A.; Alfonso, Amparo; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed. PMID:26136685

  7. Glycometabolic adaptation mediates the insensitivity of drug-resistant K562/ADM leukaemia cells to adriamycin via the AKT-mTOR/c-Myc signalling pathway.

    PubMed

    Zhang, Xueyan; Ai, Ziying; Chen, Jing; Yi, Juan; Liu, Zhuan; Zhao, Huaishun; Wei, Hulai

    2017-04-01

    In human leukaemia, resistance to chemotherapy leads to treatment ineffectiveness or failure. Previous studies have indicated that cancers with increased levels of aerobic glycolysis are insensitive to numerous forms of chemotherapy and respond poorly to radiotherapy. Whether glycolysis serves a key role in drug resistance of leukaemia cells remains unclear. The present study systematically investigated aerobic glycolytic alterations and regulation in K562/adriamycin (ADM) multidrug‑resistant (MDR) and ADM‑sensitive K562 leukaemia cells in normoxia, and the association between drug resistance and improper glycometabolism. The cell proliferating activity was assessed with an MTT colorimetric assay, glycolysis, including glucose consumption, lactate export and key‑enzyme activity was determined by corresponding commercial testing kits. The expression levels of hexokinase‑II (HK‑II), lactate dehydrogenase A (LDHA), glucose transporter‑4 (GLUT‑4), AKT, p‑AKT473/308, mammalian target of rapamycin (mTOR), p‑mTOR, c‑Myc and hypoxia‑inducible factor‑1α (HIF‑1α) were analyzed by western blot or reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). K562/ADM cells exhibited increased glucose consumption and lactate accumulation, increased lactate dehydrogenase, hexokinase and pyruvate kinase activities, and reduced phosphofructokinase activity. In addition, K562/ADM cells expressed significantly more HK‑II and GLUT‑4. Notably, inhibition of glycolysis effectively killed sensitive and resistant leukaemia cells and potently restored the sensitivity of MDR cells to the anticancer agent ADM. The AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway, a crucial regulator of glycometabolic homeostasis, mediated over‑activation and upregulation of c‑Myc expression levels in K562/ADM cells, which directly stimulated glucose consumption and enhanced glycolysis. In conclusion, the present study demonstrated that MDR leukaemia cells exhibit increased aerobic glycolytic activity and that this may be responsible for resistance to chemotherapeutics in leukaemia MDR cells via activation of the AKT‑mTOR‑c‑Myc signalling pathway. Therefore, inhibition of aerobic glycolysis may be a potential therapeutic strategy to efficiently treat multidrug resistance in relapsed or refractory leukaemia and cancers.

  8. Mastic oil from Pistacia lentiscus var. chia inhibits growth and survival of human K562 leukemia cells and attenuates angiogenesis.

    PubMed

    Loutrari, Heleni; Magkouta, Sophia; Pyriochou, Anastasia; Koika, Vasiliki; Kolisis, Fragiskos N; Papapetropoulos, Andreas; Roussos, Charis

    2006-01-01

    Mastic oil from Pistacia lentiscus var. chia, a natural plant extract traditionally used as a food additive, has been extensively studied for its antimicrobial activity attributed to the combination of its bioactive components. One of them, perillyl alcohol (POH), displays tumor chemopreventive, chemotherapeutic, and antiangiogenic properties. We investigated whether mastic oil would also suppress tumor cell growth and angiogenesis. We observed that mastic oil concentration and time dependently exerted an antiproliferative and proapoptotic effect on K562 human leukemia cells and inhibited the release of vascular endothelial growth factor (VEGF) from K562 and B16 mouse melanoma cells. Moreover, mastic oil caused a concentration-dependent inhibition of endothelial cell (EC) proliferation without affecting cell survival and a significant decrease of microvessel formation both in vitro and in vivo. Investigation of underlying mechanism(s) demonstrated that mastic oil reduced 1) in K562 cells the activation of extracellular signal-regulated kinases 1/2 (Erk1/2) known to control leukemia cell proliferation, survival, and VEGF secretion and 2) in EC the activation of RhoA, an essential regulator of neovessel organization. Overall, our results underscore that mastic oil, through its multiple effects on malignant cells and ECs, may be a useful natural dietary supplement for cancer prevention.

  9. Antitumor Activity and Induction of TP53-Dependent Apoptosis toward Ovarian Clear Cell Adenocarcinoma by the Dual PI3K/mTOR Inhibitor DS-7423

    PubMed Central

    Kashiyama, Tomoko; Oda, Katsutoshi; Ikeda, Yuji; Shiose, Yoshinobu; Hirota, Yasuhide; Inaba, Kanako; Makii, Chinami; Kurikawa, Reiko; Miyasaka, Aki; Koso, Takahiro; Fukuda, Tomohiko; Tanikawa, Michihiro; Shoji, Keiko; Sone, Kenbun; Arimoto, Takahide; Wada-Hiraike, Osamu; Kawana, Kei; Nakagawa, Shunsuke; Matsuda, Koichi; McCormick, Frank; Aburatani, Hiroyuki; Yano, Tetsu; Osuga, Yutaka; Fujii, Tomoyuki

    2014-01-01

    DS-7423, a novel, small-molecule dual inhibitor of phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR), is currently in phase I clinical trials for solid tumors. Although DS-7423 potently inhibits PI3Kα (IC50 = 15.6 nM) and mTOR (IC50 = 34.9 nM), it also inhibits other isoforms of class I PI3K (IC50 values: PI3Kβ = 1,143 nM; PI3Kγ = 249 nM; PI3Kδ = 262 nM). The PI3K/mTOR pathway is frequently activated in ovarian clear cell adenocarcinomas (OCCA) through various mutations that activate PI3K-AKT signaling. Here, we describe the anti-tumor effect of DS-7423 on a panel of nine OCCA cell lines. IC50 values for DS-7423 were <75 nM in all the lines, regardless of the mutational status of PIK3CA. In mouse xenograft models, DS-7423 suppressed the tumor growth of OCCA in a dose-dependent manner. Flow cytometry analysis revealed a decrease in S-phase cell populations in all the cell lines and an increase in sub-G1 cell populations following treatment with DS-7423 in six of the nine OCCA cell lines tested. DS-7423-mediated apoptosis was induced more effectively in the six cell lines without TP53 mutations than in the three cell lines with TP53 mutations. Concomitantly with the decreased phosphorylation level of MDM2 (mouse double minute 2 homolog), the level of phosphorylation of TP53 at Ser46 was increased by DS-7423 in the six cell lines with wild-type TP53, with induction of genes that mediate TP53-dependent apoptosis, including p53AIP1 and PUMA at 39 nM or higher doses. Our data suggest that the dual PI3K/mTOR inhibitor DS-7423 may constitute a promising molecular targeted therapy for OCCA, and that its antitumor effect might be partly obtained by induction of TP53-dependent apoptosis in TP53 wild-type OCCAs. PMID:24504419

  10. Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells.

    PubMed

    Chen, Ying-Jung; Liu, Wen-Hsin; Kao, Pei-Hsiu; Wang, Jeh-Jeng; Chang, Long-Sen

    2010-06-15

    CMS-9, a phospholipase A(2) (PLA(2)) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA(2) activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation. 2010 Elsevier Ltd. All rights reserved.

  11. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid

    PubMed Central

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-01-01

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions. PMID:28165036

  12. Antiproliferative and antibacterial activity of some glutarimide derivatives.

    PubMed

    Popović-Djordjević, Jelena B; Klaus, Anita S; Žižak, Željko S; Matić, Ivana Z; Drakulić, Branko J

    2016-12-01

    Antiproliferative and antibacterial activities of nine glutarimide derivatives (1-9) were reported. Cytotoxicity of compounds was tested toward three human cancer cell lines, HeLa, K562 and MDA-MB-453 by MTT assay. Compound 7 (2-benzyl-2-azaspiro[5.11]heptadecane-1,3,7-trione), containing 12-membered ketone ring, was found to be the most potent toward all tested cell lines (IC50 = 9-27 μM). Preliminary screening of antibacterial activity by a disk diffusion method showed that Gram-positive bacteria were more susceptible to the tested compounds than Gram-negative bacteria. Minimum inhibitory concentration (MIC) determined by a broth microdilution method confirmed that compounds 1, 2, 4, 6-8 and 9 inhibited the growth of all tested Gram-positive and some of the Gram-negative bacteria. The best antibacterial potential was achieved with compound 9 (ethyl 4-(1-benzyl-2,6-dioxopiperidin-3-yl)butanoate) against Bacillus cereus (MIC 0.625 mg/mL; 1.97 × 10(-3 )mol/L). Distinction between more and less active/inactive compounds was assessed from the pharmacophoric patterns obtained by molecular interaction fields.

  13. Complexes of platinum and palladium with β-diketones and DMSO: Synthesis, characterization, molecular modeling, and biological studies

    NASA Astrophysics Data System (ADS)

    do Couto Almeida, J.; Marzano, I. M.; de Paula, F. C. Silva; Pivatto, M.; Lopes, N. P.; de Souza, P. C.; Pavan, F. R.; Formiga, A. L. B.; Pereira-Maia, E. C.; Guerra, W.

    2014-10-01

    This work reports on the synthesis and characterization of new complexes of the type [MCl(L)DMSO], where L = 4,4,4-trifluoro-1-phenyl-1,3-butanedione (HTPB) or 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (HTTA) and M = Pt2+ or Pd2+. These complexes were characterized by elemental analyses, conductivity measurements, FT-IR, UV-Vis, high-resolution mass spectra (HRESIMS) and TG/DTA. In the complexes, the metallic ions bind to β-diketone via the oxygen atoms and to DMSO molecule via sulfur atom. The structures of complexes were optimized and theoretical data showed good agreement with the experimental results. The cytotoxic activity of the compounds was evaluated in a chronic myelogenous leukemia cell line. The platinum complexes were more cytotoxic than the free ligands and carboplatin and are promising candidates for further investigations. As example, the compound [PtCl(TPB)(DMSO)] inhibits the growth of K562 cells with an IC50 value equal to 2.5 μM. Furthermore, microbiological assays against Mycobacterium tuberculosis showed that all complexes exhibit low cytotoxicity against this bacterial strain while the free ligands exhibited MIC values of approximately 10 μg mL-1.

  14. The anti-cancer peptide, PNC-27, induces tumor cell necrosis of a poorly differentiated non-solid tissue human leukemia cell line that depends on expression of HDM-2 in the plasma membrane of these cells.

    PubMed

    Davitt, Katlin; Babcock, Blake D; Fenelus, Maly; Poon, Chi Kong; Sarkar, Abhishek; Trivigno, Vincent; Zolkind, Paul A; Matthew, Sheena M; Grin'kina, Natalia; Orynbayeva, Zulfiya; Shaikh, Mohammad F; Adler, Victor; Michl, Josef; Sarafraz-Yazdi, Ehsan; Pincus, Matthew R; Bowne, Wilbur B

    2014-01-01

    We have developed the anti-cancer peptide, PNC-27, which is a membrane-active peptide that binds to the HDM-2 protein expressed in the cancer cell membranes of solid tissue tumor cells and induces transmembrane pore formation in cancer, but not in normal cells, resulting in tumor cell necrosis that is independent of p53 activity in these cells. We now extend our study to non-solid tissue tumor cells, in this case, a primitive, possible stem cell human leukemia cell line (K562) that is also p53-homozygously deleted. Our purpose was twofold: to investigate if these cells likewise express HDM-2 in their plasma membranes and to determine if our anti-cancer peptide induces tumor cell necrosis in these non-solid tissue tumor cells in a manner that depends on the interaction between the peptide and membrane-bound HDM-2. The anti-cancer activity and mechanism of PNC-27, which carries a p53 aa12-26-leader sequence connected on its carboxyl terminal end to a trans-membrane-penetrating sequence or membrane residency peptide (MRP), was studied against p53-null K562 leukemia cells. Murine leukocytes were used as a non-cancer cell control. Necrosis was determined by measuring the lactate dehydrogenase (LDH) release and apoptosis was determined by the detection of Caspases 3 and 7. Membrane colocalization of PNC-27 with HDM-2 was analyzed microscopically using fluorescently labeled antibodies against HDM-2 and PNC-27 peptides. We found that K562 cells strongly express HDM-2 protein in their membranes and that PNC-27 co-localizes with this protein in the membranes of these cells. PNC-27, but not the negative control peptide PNC-29, is selectively cytotoxic to K562 cells, inducing nearly 100 percent cell killing with LDH release. In contrast, this peptide had no effect on the lymphocyte control cells. The results suggest that HDM-2 is expressed in the membranes of non-solid tissue tumor cells in addition to the membranes of solid tissue tumor cells. Since K-562 cells appear to be in the stem cell family, the results suggest that early developing tumor cells also express HDM-2 protein in their membranes. Since PNC-27 induces necrosis of K-562 leukemia cells and co-localizes with HDM-2 in the tumor cell membrane as an early event, we conclude that the association of PNC-27 with HDM-2 in the cancer cell membrane results in trans-membrane pore formation which results in cancer cell death, as previously discovered in a number of different solid tissue tumor cells. Since K562 cells lack p53 expression, these effects of PNC-27 on this leukemia cell line occur by a p53-independent pathway. © 2014 by the Association of Clinical Scientists, Inc.

  15. Cytotoxic Oxygenated Steroids from the Soft Coral Nephthea erecta.

    PubMed

    Tsai, Tsung-Chang; Huang, Yu-Ting; Chou, Shih-Kai; Shih, Ming-Cheng; Chiang, Ching-Ying; Su, Jui-Hsin

    2016-10-01

    A new 10-demethylated steroid, nephtheasteroid A (1), a new 19-oxygenated steroid, nephtheasteroid B (2) as well as five known steroids 3-7 were isolated from the organic extract of a Taiwanese soft coral Nephthea erecta. The structure was determined by means of IR, MS, and NMR techniques. Among these metabolites, 1 is rarely found in steroids possessing a 19-norergostane skeleton. In vitro cytotoxicity study using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that compounds 3 and 4 exhibited cytotoxicity against human chronic myelogenous leukemia (K562), human acute lymphoblastic leukemia (Molt-4), human T lymphoblastoid (Sup-T1), and human leukemic monocyte lymphoma (U937), with IC 50 of 6.5-14.0 µM.

  16. Microselection – affinity selecting antibodies against a single rare cell in a heterogeneous population

    PubMed Central

    Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta; Kølvraa, Steen; Kristensen, Peter

    2010-01-01

    Abstract Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non-invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific. PMID:20726925

  17. Thiosemicarbazone p-Substituted Acetophenone Derivatives Promote the Loss of Mitochondrial Δψ, GSH Depletion, and Death in K562 Cells

    PubMed Central

    Pessoto, Felipe S.; Yokomizo, Cesar H.; Prieto, Tatiana; Fernandes, Cleverton S.; Silva, Alan P.; Kaiser, Carlos R.; Basso, Ernani A.; Nantes, Iseli L.

    2015-01-01

    A series of thiosemicarbazone (TSC) p-substituted acetophenone derivatives were synthesized and chemically characterized. The p-substituents appended to the phenyl group of the TSC structures were hydrogen, fluor, chlorine, methyl, and nitro, producing compounds named TSC-H, TSC-F, TSC-Cl, TSC-Me, and TSC-NO2, respectively. The TSC compounds were evaluated for their capacity to induce mitochondrial permeability, to deplete mitochondrial thiol content, and to promote cell death in the K562 cell lineage using flow cytometry and fluorescence microscopy. TSC-H, TSC-F, and TSC-Cl exhibited a bell-shaped dose-response curve for the induction of apoptosis in K562 cells due to the change from apoptosis to necrosis as the principal mechanism of cell death at the highest tested doses. TSC-Me and TSC-NO2 exhibited a typical dose-response profile, with a half maximal effective concentration of approximately 10 µM for cell death. Cell death was also evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which revealed lower toxicity of these compounds for peripheral blood mononuclear cells than for K562 cells. The possible mechanisms leading to cell death are discussed based on the observed effects of the new TSC compounds on the cellular thiol content and on mitochondrial bioenergetics. PMID:26075034

  18. 20(S)-Ginsenoside Rh2 Induce the Apoptosis and Autophagy in U937 and K562 Cells.

    PubMed

    Zhuang, Jianjian; Yin, Juxin; Xu, Chaojian; Mu, Ying; Lv, Shaowu

    2018-03-08

    Acute myeloid leukemia (AML) and Chronic myelogenous leukemia (CML) are common leukemia in adults. 20(S)-GRh2 is an important bioactive substance that is present in Panax ginseng. However, there are no investigations that deal with the comparison of apoptosis, the occurrence of autophagy, and the relationship between apoptosis and autophagy after being treated with 20(S)-GRh2 in AML and CML. In this study, we explored the effect of 20(S)-GRh2 on the AML and CML (U937 and K562). Fluorescence microscopy, CCK-8, Quantitative realtime PCR, Western blot, transmission electron microscopy (TEM), and flow cytometric analysis were used to detect the occurrence of cell proliferation inhibition, apoptosis, and autophagy. By using the above methods, it was determined that apoptosis induced by 20(S)-GRh2 was more obvious in K562 than U937 cells and 20(S)-GRh2 could generate autophagy in K562 and U937 cells. When pretreated by a specific inhibitor of autophagy, (3-methyladenine), the 20(S)-GRh2-induced apoptosis was enhanced, which indicated that 20(S)-GRh2-induced autophagy may protect U937 and K562 cells from undergoing apoptotic cell death. On the other hand, pretreated by an apoptosis suppressor (Z-VAD-FMK), it greatly induced the autophagy and partially prevented 20(S)-GRh2 induced apoptosis. This phenomenon indicated that 20(S)-GRh2-induced autophagy may serve as a survival mechanism and apoptosis and autophagy could act as partners to induce cell death in a cooperative manner. These findings may provide a rationale for future clinical application by using 20(S)-GRh2 combined autophagy inhibitors for AML and CML.

  19. Inhibition of Catalase by Tea Catechins in Free and Cellular State: A Biophysical Approach

    PubMed Central

    Pal, Sandip; Dey, Subrata Kumar; Saha, Chabita

    2014-01-01

    Tea flavonoids bind to variety of enzymes and inhibit their activities. In the present study, binding and inhibition of catalase activity by catechins with respect to their structure-affinity relationship has been elucidated. Fluorimetrically determined binding constants for (−)-epigallocatechin gallate (EGCG) and (−)-epicatechin gallate (ECG) with catalase were observed to be 2.27×106 M−1 and 1.66×106 M−1, respectively. Thermodynamic parameters evidence exothermic and spontaneous interaction between catechins and catalase. Major forces of interaction are suggested to be through hydrogen bonding along with electrostatic contributions and conformational changes. Distinct loss of α-helical structure of catalase by interaction with EGCG was captured in circular dichroism (CD) spectra. Gallated catechins demonstrated higher binding constants and inhibition efficacy than non-gallated catechins. EGCG exhibited maximum inhibition of pure catalase. It also inhibited cellular catalase in K562 cancer cells with significant increase in cellular ROS and suppression of cell viability (IC50 54.5 µM). These results decipher the molecular mechanism by which tea catechins interact with catalase and highlight the potential of gallated catechin like EGCG as an anticancer drug. EGCG may have other non-specific targets in the cell, but its anticancer property is mainly defined by ROS accumulation due to catalase inhibition. PMID:25025898

  20. Phloridzin docosahexaenoate, a novel flavonoid derivative, suppresses growth and induces apoptosis in T-cell acute lymphoblastic leukemia cells.

    PubMed

    Arumuggam, Niroshaathevi; Melong, Nicole; Too, Catherine Kl; Berman, Jason N; Rupasinghe, Hp Vasantha

    2017-01-01

    The overall clinical outcome in T-cell acute lymphoblastic leukemia (T-ALL) can be improved by minimizing risk for treatment failure using effective pharmacological adjuvants. Phloridzin (PZ), a flavonoid precursor found in apple peels, was acylated with docosahexaenoic acid (DHA) yielding a novel ester known as phloridzin docosahexaenoate (PZ-DHA). Here, we have studied the cytotoxic effects of PZ-DHA on human leukemia cells using in vitro and in vivo models. The inhibitory effects of PZ-DHA were tested on human Jurkat T-ALL cells in comparison to K562 chronic myeloid leukemia (CML) cells and non-malignant murine T-cells. PZ-DHA, not PZ or DHA alone, reduced cell viability and ATP levels, increased intracellular LDH release, and caused extensive morphological alterations in both Jurkat and K562 cells. PZ-DHA also inhibited cell proliferation, and selectively induced apoptosis in Jurkat and K562 cells while sparing normal murine T-cells. The cytotoxic effects of PZ-DHA on Jurkat cells were associated with caspase activation, DNA fragmentation, and selective down-regulation of STAT3 phosphorylation. PZ-DHA significantly inhibited Jurkat cell proliferation in zebrafish larvae; however, the proliferation of K562 cells was not affected in vivo . We propose that PZ-DHA-induced cytotoxic response is selective towards T-ALL in the presence of a tumor-stromal microenvironment. Prospective studies evaluating the combinatorial effects of PZ-DHA with conventional chemotherapy for T-ALL are underway.

  1. Phloridzin docosahexaenoate, a novel flavonoid derivative, suppresses growth and induces apoptosis in T-cell acute lymphoblastic leukemia cells

    PubMed Central

    Arumuggam, Niroshaathevi; Melong, Nicole; Too, Catherine KL; Berman, Jason N; Rupasinghe, HP Vasantha

    2017-01-01

    The overall clinical outcome in T-cell acute lymphoblastic leukemia (T-ALL) can be improved by minimizing risk for treatment failure using effective pharmacological adjuvants. Phloridzin (PZ), a flavonoid precursor found in apple peels, was acylated with docosahexaenoic acid (DHA) yielding a novel ester known as phloridzin docosahexaenoate (PZ-DHA). Here, we have studied the cytotoxic effects of PZ-DHA on human leukemia cells using in vitro and in vivo models. The inhibitory effects of PZ-DHA were tested on human Jurkat T-ALL cells in comparison to K562 chronic myeloid leukemia (CML) cells and non-malignant murine T-cells. PZ-DHA, not PZ or DHA alone, reduced cell viability and ATP levels, increased intracellular LDH release, and caused extensive morphological alterations in both Jurkat and K562 cells. PZ-DHA also inhibited cell proliferation, and selectively induced apoptosis in Jurkat and K562 cells while sparing normal murine T-cells. The cytotoxic effects of PZ-DHA on Jurkat cells were associated with caspase activation, DNA fragmentation, and selective down-regulation of STAT3 phosphorylation. PZ-DHA significantly inhibited Jurkat cell proliferation in zebrafish larvae; however, the proliferation of K562 cells was not affected in vivo. We propose that PZ-DHA-induced cytotoxic response is selective towards T-ALL in the presence of a tumor-stromal microenvironment. Prospective studies evaluating the combinatorial effects of PZ-DHA with conventional chemotherapy for T-ALL are underway. PMID:29312799

  2. Allium Roseum L. Extract Exerts Potent Suppressive Activities on Chronic Myeloid Leukemia K562 Cell Viability Through the Inhibition of BCR-ABL, PI3K/Akt, and ERK1/2 Pathways and the Abrogation of VEGF Secretion.

    PubMed

    Souid, Soumaya; Najjaa, Hanen; Riahi-Chebbi, Ichrak; Haoues, Meriam; Neffati, Mohamed; Arnault, Ingrid; Auger, Jacques; Karoui, Habib; Essafi, Makram; Essafi-Benkhadir, Khadija

    2017-01-01

    Use of plant extracts, alone or combined to the current chemotherapy as chemosensitizers, has emerged as a promising strategy to overcome tumor drug resistance. Here, we investigated the anticancer activity of Allium roseum L. extracts, a wild edible species in North Africa, on human Chronic Myeloid Leukemia (CML) K562 cells. The dehydrated aqueous extract (DAE) disturbed the cell cycle progression and induced the apoptosis of K562 cells. Chemical analysis of DAE showed a diversity of organosulfur compounds S-alk(en)yl-cysteine sulfoxides (RCSO) and high amount of allicin, suggesting that such molecule may be behind its antitumor effect. DAE was efficient in inhibiting K562 cell viability. DAE inhibitory effect was associated with the dephosphorylation of the BCR-ABL kinase and interfered with ERK 1/2 , Akt, and STAT5 pathways. Furthermore, we found that DAE-induced inactivation of Akt kinase led to the activation of its target FOXO3 transcription factor, enhancing the expression of FOXO3-regulated proapoptotic effectors, Bim and Bax, and cell cycle inhibitor p27. Finally, we found that DAE reduced the secretion of vascular endothelial growth factor. Overall, our data suggest that A. roseum extract has great potential as a nontoxic cheap and effective alternative to conventional chemotherapy.

  3. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA

    PubMed Central

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-01-01

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. PMID:23770036

  4. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA.

    PubMed

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-08-15

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice.

    PubMed

    Verrax, Julien; Stockis, Julie; Tison, Aurélie; Taper, Henryk S; Calderon, Pedro Buc

    2006-09-14

    The effect of oxidative stress induced by the ascorbate/menadione-redox association was examined in K562 cells, a human erythromyeloid leukaemia cell line. Our results show that ascorbate enhances menadione redox cycling, leading to the formation of intracellular reactive oxygen species (as shown by dihydrorhodamine 123 oxidation). The incubation of cells in the presence of both ascorbate/menadione and aminotriazole, a catalase inhibitor, resulted in a strong decrease of cell survival, reinforcing the role of H(2)O(2) as the main oxidizing agent killing K562 cells. This cell death was not caspase-3-dependent. Indeed, neither procaspase-3 and PARP were processed and only a weak cytochrome c release was observed. Moreover, we observed only 23% of cells with depolarized mitochondria. In ascorbate/menadione-treated cells, DNA fragmentation was observed without any sign of chromatin condensation (DAPI and TUNEL tests). The cell demise by ascorbate/menadione is consistent with a necrosis-like cell death confirmed by both cytometric profile of annexin-V/propidium iodide labeled cells and by light microscopy examination. Finally, we showed that a single i.p. administration of the association of ascorbate and menadione is able to inhibit the growth of K562 cells by about 60% (in both tumour size and volume) in an immune-deficient mice model. Taken together, these results reinforced our previous claims about a potential application of the ascorbate/menadione association in cancer therapy.

  6. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications.

    PubMed

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M; Paik, Pradip

    2016-03-29

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (∼279 and ∼480 ng μg(-1), respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ∼96.6%). Our nanoformulation arrests the cell divisions due to 'cellular scenescence' and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.

  7. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M.; Paik, Pradip

    2016-03-01

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (˜279 and ˜480 ng μg-1, respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ˜96.6%). Our nanoformulation arrests the cell divisions due to ‘cellular scenescence’ and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.

  8. Silencing of BCR/ABL Chimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates.

    PubMed

    Shinkai, Yasuhiro; Kashihara, Shinichi; Minematsu, Go; Fujii, Hirofumi; Naemura, Madoka; Kotake, Yojiro; Morita, Yasutaka; Ohnuki, Koichiro; Fokina, Alesya A; Stetsenko, Dmitry A; Filichev, Vyacheslav V; Fujii, Masayuki

    2017-06-01

    Herein we described the synthesis of siRNA-NES (nuclear export signal) peptide conjugates by solid phase fragment coupling and the application of them to silencing of bcr/abl chimeric gene in human chronic myelogenous leukemia cell line K562. Two types of siRNA-NES conjugates were prepared, and both sense strands at 5' ends were covalently linked to a NES peptide derived from TFIIIA and HIV-1 REV, respectively. Significant enhancement of silencing efficiency was observed for both of them. siRNA-TFIIIA NES conjugate suppressed the expression of BCR/ABL gene to 8.3% at 200 nM and 11.6% at 50 nM, and siRNA-HIV-1REV NES conjugate suppressed to 4.0% at 200 nM and 6.3% at 50 nM, whereas native siRNA suppressed to 36.3% at 200 nM and 30.2% at 50 nM. We could also show complex of siRNA-NES conjugate and designed amphiphilic peptide peptideβ7 could be taken up into cells with no cytotoxicity and showed excellent silencing efficiency. We believe that the complex siRNA-NES conjugate and peptideβ7 is a promising candidate for in vivo use and therapeutic applications.

  9. Effect of spaceflight on natural killer cell activity

    NASA Technical Reports Server (NTRS)

    Rykova, Marina P.; Sonnenfeld, Gerald; Lesniak, A. T.; Taylor, Gerald R.; Meshkov, Dimitrii O.; Mandel, Adrian D.; Medvedev, Andrei E.; Berry, Wallace D.; Fuchs, Boris B.; Konstantinova, Irina V.

    1992-01-01

    The effects of spaceflight on immune cell function were determined in rats flown on Cosmos 2044. Control groups included vivarium, synchronous, and antiorthostatically suspended rats. The ability of natural killer cells to lyse two different target cell lines was determined. Spleen and bone marrow cells obtained from flight rats showed significantly inhibited cytotoxicity for YAC-1 target cells compared with cells from synchronous control rats. This could have been due to exposure of the rats to microgravity. Antiorthostatic suspension did not affect the level of cytotoxicity from spleen cells of suspended rats for YAC-1 cells. On the other hand, cells from rats flown in space showed no significant differences from vivarium and synchronous control rats in cytotoxicity for K-562 target cells. Binding of natural killer cells to K-562 target cells was unaffected by spaceflight. Antiorthostatic suspension resulted in higher levels of cytotoxicity from spleen cells for Cr-51-labeled K-562 cells. The results indicate differential effects of spaceflight on function of natural killer cells. This shows that spaceflight has selective effects on the immune response.

  10. A new disposable electrode for electrochemical study of leukemia K562 cells and anticancer drug sensitivity test.

    PubMed

    Yu, Chunmei; Zhu, Zhenkun; Wang, Li; Wang, Qiuhong; Bao, Ning; Gu, Haiying

    2014-03-15

    Developing cost-effective and simple analysis tools is of vital importance for practical applications in bioanalysis. In this work, a new disposable electrochemical cell sensor with low cost and simple fabrication was proposed to study the electrochemical behavior of leukemia K562 cells and the effect of anticancer drugs on cell viability. The analytical device was integrated by using ITO glass as the substrate of working electrodes and paper as the electrolytic cell. The cyclic voltammetry of the K562 cells at the disposable electrode exhibited an irreversible anodic peak and the peak current is proportional to the cell number. This anodic peak is attributed to the oxidation of guanine in cells involving two protons per transfer of two electrons. For the drug sensitivity tests, arsenic trioxide and cyclophosphamide were added to cell culture media. As a result, the electrochemical responses of the K562 cells decreased significantly. The cytotoxicity curves and results obtained corresponded well with the results of CCK-8 assays. In comparison to conventional methods, the proposed method is simple, rapid and inexpensive. More importantly, the developed sensor is supposed to be a single-use disposable device and electrodes were prepared "as new" for each experiment. We think that such disposable electrodes with these characteristics are suitable for experimental study with cancer cells or other types of pathogens for disease diagnosis, drug selection and on-site monitoring. © 2013 Elsevier B.V. All rights reserved.

  11. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines.

    PubMed

    Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J

    2015-12-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.

  12. Mechanistic Evaluation for Mixed-field Agglutination in the K562 Cell Study Model with Exon 3 Deletion of A1 Gene.

    PubMed

    Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng

    2015-01-01

    In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. © 2015 by the Association of Clinical Scientists, Inc.

  13. Cerumen of Australian stingless bees ( Tetragonula carbonaria): gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties

    NASA Astrophysics Data System (ADS)

    Massaro, Flavia Carmelina; Brooks, Peter Richard; Wallace, Helen Margaret; Russell, Fraser Donald

    2011-04-01

    Cerumen, or propolis, is a mixture of plant resins enriched with bee secretions. In Australia, stingless bees are important pollinators that use cerumen for nest construction and possibly for colony's health. While extensive research attests to the therapeutic properties of honeybee ( Apis mellifera) propolis, the biological and medicinal properties of Australian stingless bee cerumen are largely unknown. In this study, the chemical and biological properties of polar extracts of cerumen from Tetragonula carbonaria in South East Queensland, Australia were investigated using gas chromatography-mass spectrometry (GC-MS) analyses and in vitro 5-lipoxygenase (5-LOX) cell-free assays. Extracts were tested against comparative (commercial tincture of A. mellifera propolis) and positive controls (Trolox and gallic acid). Distinct GC-MS fingerprints of a mixed diterpenic profile typical of native bee cerumen were obtained with pimaric acid (6.31 ± 0.97%, w/w), isopimaric acid (12.23 ± 3.03%, w/w), and gallic acid (5.79 ± 0.81%, w/w) tentatively identified as useful chemical markers. Characteristic flavonoids and prenylated phenolics found in honeybee propolis were absent. Cerumen extracts from T. carbonaria inhibited activity of 5-LOX, an enzyme known to catalyse production of proinflammatory mediators (IC50 19.97 ± 2.67 μg/ml, mean ± SEM, n = 4). Extracts had similar potency to Trolox (IC50 12.78 ± 1.82 μg/ml), but were less potent than honeybee propolis (IC50 5.90 ± 0.62 μg/ml) or gallic acid (IC50 5.62 ± 0.35 μg/ml, P < 0.001). These findings warrant further investigation of the ecological and medicinal properties of this stingless bee cerumen, which may herald a commercial potential for the Australian beekeeping industry.

  14. Design and synthesis of novel C14-urea-tetrandrine derivatives with potent anti-cancer activity.

    PubMed

    Lan, Junjie; Huang, Lan; Lou, Huayong; Chen, Chao; Liu, Tangjingjun; Hu, Shengcao; Yao, Yao; Song, Junrong; Luo, Jun; Liu, Yazhou; Xia, Bin; Xia, Lei; Zeng, Xueyi; Ben-David, Yaacov; Pan, Weidong

    2018-01-01

    Tetrandrine is a dibenzyltetrahydroisoquinoline alkaloid, isolated from traditional Chinese medicinal plant Stephania tetrandra, with anti-tumor activity. Our previous study identified several derivatives of tetrandrine showing better activities than parental compound against human hepatocellular carcinoma cells. To increase diversity and cytotoxic activities of the original compound, a series of novel 14-urea-tetrandrine derivatives were synthesized through structural modification of tetrandrine. These derivaties demonstrated a moderate to strong anti-proliferative activities against human cell lines HEL and K562 (Leukemia), prostate (PC3), breast (MDA-MB-231) and melanoma (WM9). Compound 4g showed strongest cytotoxic effect against PC3 cells with IC 50 value of 0.64 μM, which was 12-fold, 31-fold and 26-fold lower than the parental tetrandrine, 5-fluorouracil and cisplatin, respectively. Preliminary structure-activity relationship study indicated that urea subsititution was the key pharmacophore for the enhancement of their antitumor activities. Induction of apoprosis by 4g was associated with the activation of pro-apoptotic protein BAX and inhibition of antiapoptosis proteins survivin as well as Bcl-2. Moreover, activation of caspases led to increase cleavage of PARP, which further accelerates apoptotic cell death. These results reveal that the compound 4g may be used as a potential anticancer drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Ultrasonic Scattering Measurements of a Live Single Cell at 86 MHz

    PubMed Central

    Lee, Changyang; Jung, Hayong; Lam, Kwok Ho; Yoon, Changhan; Shung, K. Kirk

    2016-01-01

    Cell separation and sorting techniques have been employed biomedical applications such as cancer diagnosis and cell gene expression analysis. The capability to accurately measure ultrasonic scattering properties from cells is crucial in making an ultrasonic cell sorter a reality if ultrasound scattering is to be used as the sensing mechanism as well. To assess the performance of sensing and identifying live single cells with high-frequency ultrasound, an 86-MHz lithium niobate press-focused single-element acoustic transducer was used in a high-frequency ultrasound scattering measurement system that was custom designed and developed for minimizing noise and allowing better mobility. Peak-to-peak echo amplitude, integrated backscatter (IB) coefficient, spectral parameters including spectral slope and intercept, and midband fit from spectral analysis of the backscattered echoes were measured and calculated from a live single cell of two different types on an agar surface: leukemia cells (K562 cells) and red blood cells (RBCs). The amplitudes of echo signals from K562 cells and RBCs were 48.25 ± 11.98 mVpp and 56.97 ± 7.53 mVpp, respectively. The IB coefficient was −89.39 ± 2.44 dB for K562 cells and −89.00 ± 1.19 dB for RBCs. The spectral slope and intercept were 0.30 ± 0.19 dB/MHz and −56.07 ± 17.17 dB, respectively, for K562 cells and 0.78 ± 0.092 dB/MHz and −98.18 ± 8.80 dB, respectively, for RBCs. Midband fits of K562 cells and RBCs were −31.02 ± 3.04 dB and −33.51 ± 1.55 dB, respectively. Acoustic cellular discrimination via these parameters was tested by Student’s t-test. Their values, except for the IB value, showed statistically significant difference (p < 0.001). This paper reports for the first time that ultrasonic scattering measurements can be made on a live single cell with a highly focused high-frequency ultrasound microbeam at 86 MHz. These results also suggest the feasibility of ultrasonic scattering as a sensing mechanism in the development of ultrasonic cell sorters. PMID:26559626

  16. Antiproliferative activity of cardenolide glycosides from Asclepias subulata.

    PubMed

    Rascón-Valenzuela, L; Velázquez, C; Garibay-Escobar, A; Medina-Juárez, L A; Vilegas, W; Robles-Zepeda, R E

    2015-08-02

    Asclepias subulata Decne. is a shrub occurring in Sonora-Arizona desert (Mexico-USA). The ethnic groups, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To isolate the compounds responsible for antiproliferative activity of the methanol extract of A. subulata. A bioguided fractionation of methanol extract of A. subulata was performed using MTT assay to measure the antiproliferative activity of different compounds on three human cancer cell lines (A549, LS 180 and PC-3), one murine cancer cell line (RAW 264.7) and one human normal cell line (ARPE-19). The methanol extract was partitioned with hexane, ethyl acetate and ethanol. The active fractions, ethanol and residual, were fractioned by silica-column chromatography and active sub-fractions were separated using HPLC. The chemical structures of isolated compounds were elucidated with different chemical and spectroscopic methods. A new cardenolide glycoside, 12, 16-dihydroxycalotropin, and three known, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, were isolated of active sub-fractions. All isolated compounds showed a strong antiproliferative activity in human cancer cells. Calotropin was the more active with IC50 values of 0.0013, 0.06 and 0.41 µM on A549, LS 180 and PC-3 cell lines, respectively; while 12, 16-dihydroxycalotropin reached values of 2.48, 5.62 and 11.70 µM, on the same cells; corotoxigenin 3-O-glucopyranoside had IC50 of 2.64, 3.15 and 6.62 µM and desglucouzarin showed values of 0.90, 6.57 and 6.62, µM. Doxorubicin, positive control, showed IC50 values of 1.78, 6.99 and 3.18 µM, respectively. The isolated compounds had a weak effect on murine cancer cells and human normal cells, exhibiting selectivity to human cancer cells. In this study, we found that 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin are responsible of antiproliferative properties of A. subulata, and that these compounds are highly selective to human cancer cells. Further studies are needed in order to establish the action mechanisms of the isolated compounds. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells.

    PubMed

    Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua

    2017-06-01

    Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.

  18. Spontaneous cytotoxic earthworm leukocytes kill K562 tumor cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-08-01

    Earthworm coelomocytes may act as effector cells which destroy targets in vitro. In a 51Cr release assay, Lumbricus coelomocyte effectors showed lytic activities of 3-14% against K562 human tumor cells when incubated 1-4 hr at 23 degrees C or 37 degrees C. Cytotoxicity was correlated with effector: target ratio. However, targets were not killed by incubating them in cell-free, 0.2 micron filtered coelomic fluid. The supernatant from coelomocytes cultured alone failed to kill K562 targets but coelomocyte lysates were toxic to target cells in a concentration-dependent manner. Coelomocytes were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When effectors and targets were examined under TEM, we found close apposition of effector granulocytic coelomocytes and target cell membranes but not with coelomocytes nor eleocytes at up to 15 min incubation. By SEM, effector cells appeared not only to be in close contact with targets, but instances of target lysis were observed. These results suggest that effector cell/target cell contact is essential for cytotoxicity to occur.

  19. Fucoidan cytotoxicity against human breast cancer T47D cell line increases with higher level of sulfate ester group

    NASA Astrophysics Data System (ADS)

    Saepudin, Endang; Alfita Qosthalani, Fildzah; Sinurat, Ellya

    2018-01-01

    The anticancer activity of different sulfate ester group content in different molecular weight was examined. The anticancer activity was achieved in vitro on human breast cancer T47D cell line. Fucoidan with lower molecular weight (5.79 kDa) tends to have lower sulfate ester group content (8.69%) and resulted in higher IC50 value (184.22 μg/mL). While fucoidan with higher molecular weight (785.12 kDa) tends to have higher sulfate level (18.63%) and achieved lower IC50 value (75.69 μg/mL). The result showed that in order to maintain fucoidan cytotoxic activity against human breast cancer T47D cell line, the sulfate content should be remain high. Keywords: fucoidan, sulfate ester group, human breast cancer

  20. Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2

    PubMed Central

    Everett, Peter; Clish, Clary B.; Sukhatme, Vikas P.

    2010-01-01

    Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy. PMID:20824065

  1. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines.

    PubMed

    Zandi, K; Ahmadzadeh, S; Tajbakhsh, S; Rastian, Z; Yousefi, F; Farshadpour, F; Sartavi, K

    2010-08-01

    Antitumor drug resistance and side effects of antitumor compounds are the most common problems in medicine. Therefore, finding new antitumor agents with low side effects could be interesting. This study was designed to assay antitumor activity of the extract from brown alga Sargassum oligocystum, gathered from Persian Gulf seashore, against K562 and Daudi human cancer cell lines. The research was performed as an in vitro study. The effect of the alga extract on proliferation of cell lines were measured by two methods: MTT assay and trypan blue exclusion test. The most effective antitumor activity has been shown at concentrations 500 microg/ml and 400 microg/ml of the alga extract against Daudi and K562 cell lines, respectively. The results showed that the extracts of brown alga Sargassum oligocystum have remarkable antitumor activity against K562 and Daudi cell lines. It is justified to be suggested for further research such as algal extract fractionation and purification and in vivo studies in order to formulate natural compounds with antitumor activities.

  2. Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.

  3. Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow

    PubMed Central

    Yago, Tadayuki; Leppänen, Anne; Qiu, Haiying; Marcus, Warren D.; Nollert, Matthias U.; Zhu, Cheng; Cummings, Richard D.; McEver, Rodger P.

    2002-01-01

    Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin–binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-β-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin–ligand interactions. PMID:12177042

  4. Molecular rationale delineating the role of lycopene as a potent HMG-CoA reductase inhibitor: in vitro and in silico study.

    PubMed

    Alvi, Sahir Sultan; Iqbal, Danish; Ahmad, Saheem; Khan, M Salman

    2016-09-01

    This study initially aimed to depict the molecular rationale evolving the role of lycopene in inhibiting the enzymatic activity of β-hydroxy-β-methylglutaryl-CoA (HMG-CoA) reductase via in vitro and in silico analysis. Our results illustrated that lycopene exhibited strong HMG-CoA reductase inhibitory activity (IC50 value of 36 ng/ml) quite better than pravastatin (IC50 = 42 ng/ml) and strong DPPH free radical scavenging activity (IC50 value = 4.57 ± 0.23 μg/ml) as compared to ascorbic acid (IC50 value = 9.82 ± 0.42 μg/ml). Moreover, the Ki value of lycopene (36 ng/ml) depicted via Dixon plot was well concurred with an IC50 value of 36 ± 1.8 ng/ml. Moreover, molecular informatics study showed that lycopene exhibited binding energy of -5.62 kcal/mol indicating high affinity for HMG-CoA reductase than HMG-CoA (ΔG: -5.34 kcal/mol). Thus, in silico data clearly demonstrate and support the in vitro results that lycopene competitively inhibit HMG-CoA reductase activity by binding at the hydrophobic portion of HMG-CoA reductase.

  5. 1,2,3-Triazolyl ester of Ketorolac: A "Click Chemistry"-based highly potent PAK1-blocking cancer-killer.

    PubMed

    Nguyen, Binh Cao Quan; Takahashi, Hideaki; Uto, Yoshihiro; Shahinozzaman, M D; Tawata, Shinkichi; Maruta, Hiroshi

    2017-01-27

    An old anti-inflammatory/analgesic drug called Toradol is a racemic form of Ketorolac (50% R-form and 50% S-form) that blocks the oncogenic RAC-PAK1-COX-2 (cyclooxygenase-2) signaling, through the direct inhibition of RAC by the R-form and of COX-2 by the S-form, eventually down-regulating the production of prostaglandins. However, due to its COOH moiety which is clearly repulsive to negatively-charged phospholipid-based plasma membrane, its cell-permeability is rather poor (the IC 50 against the growth of human cancer cells such as A549 is around 13 μM). In an attempt to boost its anti-cancer activity, hopefully by increasing its cell-permeability through abolishing the negative charge, yet keeping its water-solubility, here we synthesized a 1,2,3-triazolyl ester of Toradol through "Click Chemistry". The resultant water-soluble "azo" derivative called "15K" was found to be over 500 times more potent than Toradol with the IC 50 around 24 nM against the PAK1-dependent growth of A549 cancer cells, inactivating PAK1 in cell culture with the apparent IC 50 around 65 nM, and inhibiting COX-2 in vitro with the IC 50 around 6 nM. Furthermore, the Click Chemistry boosts the anti-cancer activity of Ketorolac by 5000 times against the PAK1-independent growth of B16F10 melanoma cells. Using a multi-drug-resistant (MDR) cancer cell line (EMT6), we found that the esterization of Ketorolac boosts its cell-permeability by at least 10 folds. Thus, the Click Chemistry dramatically boosts the anti-cancer activity of Ketorolac, at least in three ways: increasing its cell-permeability, the anti-PAK1 activity of R-form and anti-COX-2 activity of S-form. The resultant "15K" is so far among the most potent PAK1-blockers, and therefore would be potentially useful for the therapy of many different PAK1-dependent diseases/disorders such as cancers. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Photoaffinity labelling of cyclic GMP-inhibited phosphodiesterase (PDE III) in human and rat platelets and rat tissues: effects of phosphodiesterase inhibitors.

    PubMed

    Tang, K M; Jang, E K; Haslam, R J

    1994-06-15

    Ultraviolet irradiation of human platelet cytosol in the presence of 32P-labelled cyclic GMP (cGMP) can specifically label 110, 80, 55, 49 and 38 kDa proteins; the 110 kDa species is the subunit of cGMP-inhibited phosphodiesterase (PDE III) and the 80 kDa species that of cGMP-dependent protein kinase (Tang et al., 1993, Biochem. J. 294, 329). We have now shown that although photolabelling of platelet PDE III was inhibited by unlabelled cGMP, 8-bromo-cGMP and cyclic AMP (cAMP), it was not affected by phosphorothioate analogues of these cyclic nucleotides. Specific concentration-dependent inhibitions of the photolabelling of PDE III were observed with the following PDE inhibitors: trequinsin (IC50 = 13 +/- 2 nM), lixazinone (IC50 = 22 +/- 4 nM), milrinone (IC50 = 56 +/- 12 nM), cilostamide (IC50 = 70 +/- 9 nM), siguazodan (IC50 = 117 +/- 29 nM) and 3-isobutyl 1-methylxanthine (IBMX) (IC50 = 3950 +/- 22 nM). Thus, measurements of the inhibitory effects of compounds on the photolabelling of platelet PDE III provide a simple quantitative means of investigating their actions at a molecular level that avoids the need to purify the enzyme. Photolabelling of rat platelet lysate or rat heart homogenate by [32P]cGMP showed that the 110 kDa PDE III present in human material was replaced by a 115 kDa protein, labelling of which was also blocked by PDE III inhibitors. Heart and other rat tissues contained much less of this putative 115 kDa PDE III than rat platelets. In contrast, the 80 kDa protein was labelled much less in platelets than in many other rat tissue homogenates (e.g., heart, aorta, uterus and lung). Thus, comparison of the relative amounts of specific photolabelled proteins in different cells may provide an indication of different patterns of cyclic nucleotide action. We compared the abilities of phosphodiesterase inhibitors to block the photolabelling of PDE III in human platelet cytosol and to increase the iloprost-stimulated accumulation of cAMP in intact platelets. Whereas trequinsin (EC50 = 19 +/- 3 nM), lixazinone (EC50 = 122 +/- 8 nM), milrinone (EC50 = 5320 +/- 970 nM) and siguazodan (EC50 = 18880 +/- 3110 nM) all increased platelet cAMP to the same maximum extent, cilostamide and IBMX increased cAMP further, indicating that they inhibited a PDE isozyme in addition to PDE III.

  7. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    PubMed

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  8. Dendritic Cells Pulsed with Leukemia Cell-Derived Exosomes More Efficiently Induce Antileukemic Immunities

    PubMed Central

    Wei, Wei; Shen, Chang; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Hao, Siguo

    2014-01-01

    Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. However, the biological properties and antileukemic effects of leukemia cell-derived exosomes (LEXs) are not well described. In this study, the biological properties and induction of antileukemic immunity of LEXs were investigated using transmission electron microscopy, western blot analysis, cytotoxicity assays, and animal studies. Similar to other tumor cells, leukemia cells release exosomes. Exosomes derived from K562 leukemia cells (LEXK562) are membrane-bound vesicles with diameters of approximately 50–100 μm and harbor adhesion molecules (e.g., intercellular adhesion molecule-1) and immunologically associated molecules (e.g., heat shock protein 70). In cytotoxicity assays and animal studies, LEXs-pulsed DCs induced an antileukemic cytotoxic T-lymphocyte immune response and antileukemic immunity more effectively than did LEXs and non-pulsed DCs (P<0.05). Therefore, LEXs may harbor antigens and immunological molecules associated with leukemia cells. As such, LEX-based vaccines may be a promising strategy for prolonging disease-free survival in patients with leukemia after chemotherapy or hematopoietic stem cell transplantation. PMID:24622345

  9. Kinetic properties of Streptomyces canarius L- Glutaminase and its anticancer efficiency.

    PubMed

    Reda, Fifi M

    2015-01-01

    L-glutaminase was produced by Streptomyces canarius FR (KC460654) with an apparent molecular mass of 44 kDa. It has 17.9 purification fold with a final specific activity 132.2 U/mg proteins and 28% yield recovery. The purified L-glutaminase showed a maximal activity against L-glutamine when incubated at pH 8.0 at 40 °C for 30 min. It maintained its stability at wide range of pH from 5.0 11.0 and thermal stable up to 60 °C with Tm value 57.5 °C. It has high affinity and catalytic activity for L-glutamine (Km 0.129 mM, Vmax 2.02 U/mg/min), followed by L-asparagine and L-aspartic acid. In vivo, L-glutaminase showed no observed changes in liver; kidney functions; hematological parameters and slight effect on RBCs and level of platelets after 10 days of rabbit's injection. The anticancer activity of L-glutaminase was also tested against five types of human cancer cell lines using MTT assay in vitro. L-glutaminase has a significant efficiency against Hep-G2 cell (IC50, 6.8 μg/mL) and HeLa cells (IC50, 8.3 μg/mL), while the growth of MCF-7 cells was not affected. L-glutaminase has a moderate cytotoxic effect against HCT-116 cell (IC50, 64.7 μg/mL) and RAW 264.7 cell (IC50, 59.3 μg/mL).

  10. Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites.

    PubMed

    Zhang, Haijun; Jiang, Hui; Sun, Feifei; Wang, Huangping; Zhao, Juan; Chen, Baoan; Wang, Xuemei

    2011-03-15

    The multidrug resistance (MDR) in cancer is a major chemotherapy obstacle, rendering many currently available chemotherapeutic drugs ineffective. The aim of this study was to explore the new strategy to early diagnose the MDR by electrochemical sensor based on carbon nanotubes-drug supramolecular interaction. The carbon nanotubes modified glassy carbon electrodes (CNTs/GCE) were directly immersed into the cells suspension of the sensitive leukemia cells K562 and/or its MDR cells K562/A02 to detect the response of the electrochemical probe of daunorubicin (DNR) residues after incubated with cells for 1h. The fresh evidence from the electrochemical studies based on CNTs/GCE demonstrated that the homogeneous, label-free strategy could directly measure the function of cell membrane transporters in MDR cancer cells, identify the cell phenotype (sensitive or MDR). When the different ratios of the sensitive leukemia cells K562 and its MDR ones K562/A02 were applied as a model of MDR levels to simulate the MDR occurrence in cancer, the cathodic peak current showed good linear response to the fraction of MDR with a correlation coefficient of 0.995. Therefore, the MDR fraction can be easily predicted based on the calibration curve of the cathodic peak current versus the fraction of MDR. These results indicated that the sensing strategy could provide a powerful tool for assessment of MDR in cancer. The new electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites could represent promising approach in the rapid diagnosis of MDR in cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Melipona mondury produces a geopropolis with antioxidant, antibacterial and antiproliferative activities.

    PubMed

    Santos, Tássia L A Dos; Queiroz, Raphael F; Sawaya, Alexandra C H F; Lopez, Begoña Gimenez-Cassina; Soares, Milena B P; Bezerra, Daniel P; Rodrigues, Ana Carolina B C; Paula, Vanderlúcia F DE; Waldschmidt, Ana Maria

    2017-01-01

    Geopropolis is a special type of propolis produced by stingless bees. Several pharmacological properties have been described for different types of geopropolis, but there have been no previous studies of the geopropolis from Melipona mondury. In this study, we investigated the antioxidant, antibacterial, and antiproliferative activities of M. mondury geopropolis, and determined its chemical profile. The antioxidant activity was determined using in vitro ABTS·+, ·DPPH, and β-carotene/linoleic acid co-oxidation methods. The antibacterial activity was determined using a microdilution method with Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus. The antiproliferative effect was determined in tumor cell lines using the Alamar Blue assay. The chemical profile was obtained using UHPLC-MS and UHPLC-MS/MS. The butanolic fraction had the highest concentration of phenolic compounds and more potent antioxidant properties in all assays. This fraction also had bacteriostatic and bactericidal effects against all bacterial strains at low concentrations, especially S. aureus. The hexane fraction had the highest antiproliferative potential, with IC50 values ranging from 24.2 to 46.6 µg/mL in HL-60 (human promyelocytic leukemia cell) and K562 (human chronic myelocytic leukemia cell), respectively. Preliminary chemical analysis indicates the presence of terpenes and gallic acid in the geopropolis. Our results indicate the therapeutic potential of geopropolis from M. mondury against inflammatory, oxidative, infectious, and neoplastic diseases.

  12. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    PubMed Central

    2011-01-01

    An investigation of the electrochemical activity of human white blood cells (WBC) for biofuel cell (BFC) applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM) fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc) between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient), a B lymphoblastoid cell line (BLCL), and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester) activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT) from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents. PMID:21569243

  13. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays

    PubMed Central

    Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph

    2015-01-01

    Objectives: To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Materials and methods: Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. Results: 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Conclusion: Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs. PMID:26069372

  14. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays.

    PubMed

    Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph

    2015-01-01

    To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs.

  15. A combination of exosomes carrying TSA derived from HLA-A2-positive human white buffy coat and polyI:C for use as a subcellular antitumor vaccination.

    PubMed

    Ren, Wei-na; Chang, Chun-kang; Fan, Hua-hua; Guo, Fang; Ren, Ya-na; Yang, Jie; Guo, Juan; Li, Xiao

    2011-01-01

    To improve its antitumor effect, we used human leukocyte antigen -A2 (HLA-A2)-positive human dendritic cell (DC)-derived DEXs (DC-derived exosomes) to support NY-ESO-1 antigen and polyI:C, with the aim of increasing the proliferation of specific cytotoxic T lymphocytes (CTL) in transgenic mice. Mature dendritic cells derived from peripheral blood mononuclear cells (PBMC) were isolated from the blood of healthy adults with positive HLA-2A. Using centrifuge and membrane ultrafiltration, EXO (exosomes) were extracted from the supernatant of DCs secretions. Transgenic C57 mice were immunized with human-derived tumor testis antigen NY-ESO-1/EXO, with or without polyI:C. Mice were sacrificed four weeks after immunization, and spleen cells were isolated and tested for function. The experiments included antigen-specific CTL proliferation, as tested by dimerization and antitumor effects for K562 cells as well as melanoma, tested at different ratios of effected cells:target cells (0:1, 10:1, 50:1, and 100:1). Dimerization experiments indicated that the effect of DEX/TSA (tumor specific antigens) + PolyI:C was 2.36 ± 1.10% and the control was 0.38 ± 0.31%, while the effect of DEX/TSA was 1.97 ± 0.63% and the control was 0.36 ± 0.07%. Antitumor effects by DEX/TSA: PolyI:C for the cell ratios of 0:1, 10:1, 50:1, and 100:1 were 11.14 ± 1.36%, 14.17 ± 0.62%, 15.71 ± 2.48%, and 24.31 ± 2.91%, respectively, for K562 cells. The antitumor effects for DEX/TSA for the cell ratios of 0:1, 10:1, 50:1, and 100:1 were 12.23 ± 2.25%, 13.10 ± 1.57%, 15.27 ± 2.93%, and 19.87 ± 2.72%, respectively, for K562 cells. With ratios of 10:1 and 100:1, the antitumor effects of DEX/TSA + PolyI:C were better than for the DEX/TSA group (P < 0.05). However, higher ratios of effecter cells to target cells increased, and there were no significant improvements in antitumor effect for control cells. Combining PolyI:C with DEX/TSA derived from healthy human blood positive for HLA-A2 is a promising strategy for developing new subcellular antitumor vaccination.

  16. Aclacinomycin A Sensitizes K562 Chronic Myeloid Leukemia Cells to Imatinib through p38MAPK-Mediated Erythroid Differentiation

    PubMed Central

    Liu, Fu-Hwa; Huang, Yu-Wen; Huang, Huei-Mei

    2013-01-01

    Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches. PMID:23613979

  17. Aclacinomycin A sensitizes K562 chronic myeloid leukemia cells to imatinib through p38MAPK-mediated erythroid differentiation.

    PubMed

    Lee, Yueh-Lun; Chen, Chih-Wei; Liu, Fu-Hwa; Huang, Yu-Wen; Huang, Huei-Mei

    2013-01-01

    Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches.

  18. Emodin reverses leukemia multidrug resistance by competitive inhibition and downregulation of P-glycoprotein

    PubMed Central

    Min, Hongping; Niu, Miaomiao; Zhang, Weilin; Yan, Jia; Li, Jiachang; Tan, Xiying; Li, Bo; Su, Mengxiang; Di, Bin; Yan, Fang

    2017-01-01

    Development of multidrug resistance (MDR) is a continuous clinical challenge partially due to the overexpression of P-glycoprotein (P-gp) for chronic myelogenous leukemia (CML) patients. Herein, we evaluated the inhibitory potency of emodin, a natural anthraquinone derivative isolated from Rheum palmatum L, on P-gp in P-gp positive K562/ADM cells. Competition experiments combined with molecular docking analysis were utilized to investigate the binding modes between emodin and binding sites of P-gp. Emodin reversed adriamycin resistance in K562/ADM cells accompanied with the decrease of P-gp protein expression, further increasing the uptake of rhodamine123 in both K562/ADM and Caco-2 cells, indicating the inhibition of P-gp efflux function. Moreover, when incubated with emodin under different conditions where P-gp was inhibited, K562/ADM cells displayed increasing intracellular uptake of emodin, suggesting that emodin may be the potential substrate of P-gp. Importantly, rhodamine 123 could increase the Kintrinsic (Ki) value of emodin linearly, whereas, verapamil could not, implying that emodin competitively bound to the R site of P-gp and noncompetition existed between emodin and verapamil at the M site, in a good accordance with the results of molecular docking that emodin bound to the R site of P-gp with higher affinity. Based on our results, we suggest that emodin might be used to modulate P-gp function and expression. PMID:29121121

  19. Emodin reverses leukemia multidrug resistance by competitive inhibition and downregulation of P-glycoprotein.

    PubMed

    Min, Hongping; Niu, Miaomiao; Zhang, Weilin; Yan, Jia; Li, Jiachang; Tan, Xiying; Li, Bo; Su, Mengxiang; Di, Bin; Yan, Fang

    2017-01-01

    Development of multidrug resistance (MDR) is a continuous clinical challenge partially due to the overexpression of P-glycoprotein (P-gp) for chronic myelogenous leukemia (CML) patients. Herein, we evaluated the inhibitory potency of emodin, a natural anthraquinone derivative isolated from Rheum palmatum L, on P-gp in P-gp positive K562/ADM cells. Competition experiments combined with molecular docking analysis were utilized to investigate the binding modes between emodin and binding sites of P-gp. Emodin reversed adriamycin resistance in K562/ADM cells accompanied with the decrease of P-gp protein expression, further increasing the uptake of rhodamine123 in both K562/ADM and Caco-2 cells, indicating the inhibition of P-gp efflux function. Moreover, when incubated with emodin under different conditions where P-gp was inhibited, K562/ADM cells displayed increasing intracellular uptake of emodin, suggesting that emodin may be the potential substrate of P-gp. Importantly, rhodamine 123 could increase the Kintrinsic (Ki) value of emodin linearly, whereas, verapamil could not, implying that emodin competitively bound to the R site of P-gp and noncompetition existed between emodin and verapamil at the M site, in a good accordance with the results of molecular docking that emodin bound to the R site of P-gp with higher affinity. Based on our results, we suggest that emodin might be used to modulate P-gp function and expression.

  20. Development and characterization of K562 cell clones expressing BCL11A-XL: Decreased hemoglobin production with fetal hemoglobin inducers and its rescue with mithramycin

    PubMed Central

    Finotti, Alessia; Gasparello, Jessica; Breveglieri, Giulia; Cosenza, Lucia Carmela; Montagner, Giulia; Bresciani, Alberto; Altamura, Sergio; Bianchi, Nicoletta; Martini, Elisa; Gallerani, Eleonora; Borgatti, Monica; Gambari, Roberto

    2015-01-01

    Induction of fetal hemoglobin (HbF) is considered a promising strategy in the treatment of β-thalassemia, in which production of adult hemoglobin (HbA) is impaired by mutations affecting the β-globin gene. Recent results indicate that B-cell lymphoma/leukemia 11A (BCL11A) is a major repressor of γ-globin gene expression. Therefore, disrupting the binding of the BCL11A transcriptional repressor complex to the γ-globin gene promoter provides a novel approach for inducing expression of the γ-globin genes. To develop a cellular screening system for the identification of BCL11A inhibitors, we produced K562 cell clones with integrated copies of a BCL11A-XL expressing vector. We characterized 12 K562 clones expressing different levels of BCL11A-XL and found that a clear inverse relationship does exist between the levels of BCL11A-XL and the extent of hemoglobinization induced by a panel of HbF inducers. Using mithramycin as an inducer, we found that this molecule was the only HbF inducer efficient in rescuing the ability to differentiate along the erythroid program, even in K562 cell clones expressing high levels of BCL11A-XL, suggesting that BCL11A-XL activity is counteracted by mithramycin. PMID:26342260

  1. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice.

    PubMed

    Stocker, Jonathan W; De Franceschi, Lucia; McNaughton-Smith, Grant A; Corrocher, Roberto; Beuzard, Yves; Brugnara, Carlo

    2003-03-15

    A prominent feature of sickle cell anemia is the presence of dehydrated red blood cells (RBCs) in circulation. Loss of potassium (K(+)), chloride (Cl(-)), and water from RBCs is thought to contribute to the production of these dehydrated cells. One main route of K(+) loss in the RBC is the Gardos channel, a calcium (Ca(2+))-activated K(+) channel. Clotrimazole (CLT), an inhibitor of the Gardos channel, has been shown to reduce RBC dehydration in vitro and in vivo. We have developed a chemically novel compound, ICA-17043, that has greater potency and selectivity than CLT in inhibiting the Gardos channel. ICA-17043 blocked Ca(2+)-induced rubidium flux from human RBCs with an IC(50) value of 11 +/- 2 nM (CLT IC(50) = 100 +/- 12 nM) and inhibited RBC dehydration with an IC(50) of 30 +/- 20 nM. In a transgenic mouse model of sickle cell disease (SAD), treatment with ICA-17043 (10 mg/kg orally, twice a day) for 21 days showed a marked and constant inhibition of the Gardos channel activity (with an average inhibition of 90% +/- 27%, P <.005), an increase in RBC K(+) content (from 392 +/- 19.9 to 479.2 +/- 40 mmol/kg hemoglobin [Hb], P <.005), a significant increase in hematocrit (Hct) (from 0.435 +/- 0.007 to 0.509 +/- 0.022 [43.5% +/- 0.7% to 50.9% +/- 2.2%], P <.005), a decrease in mean corpuscular hemoglobin concentration (MCHC) (from 340 +/- 9.0 to 300 +/- 15 g/L [34.0 +/- 0.9 to 30 +/- 1.5 g/dL], P <.05), and a left-shift in RBC density curves. These data indicate that ICA-17043 is a potent inhibitor of the Gardos channel and ameliorates RBC dehydration in the SAD mouse.

  2. Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols

    PubMed Central

    2010-01-01

    Background Multidrug resistance (MDR) is a major obstacle in cancer treatment and is often the result of overexpression of the drug efflux protein, P-glycoprotein (P-gp), as a consequence of hyperactivation of NFκB, AP1 and Nrf2 transcription factors. In addition to effluxing chemotherapeutic drugs, P-gp also plays a specific role in blocking caspase-dependent apoptotic pathways. One feature that cytotoxic treatments of cancer have in common is activation of the transcription factor NFκB, which regulates inflammation, cell survival and P-gp expression and suppresses the apoptotic potential of chemotherapeutic agents. As such, NFκB inhibitors may promote apoptosis in cancer cells and could be used to overcome resistance to chemotherapeutic agents. Results Although the natural withanolide withaferin A and polyphenol quercetin, show comparable inhibition of NFκB target genes (involved in inflammation, angiogenesis, cell cycle, metastasis, anti-apoptosis and multidrug resistance) in doxorubicin-sensitive K562 and -resistant K562/Adr cells, only withaferin A can overcome attenuated caspase activation and apoptosis in K562/Adr cells, whereas quercetin-dependent caspase activation and apoptosis is delayed only. Interestingly, although withaferin A and quercetin treatments both decrease intracellular protein levels of Bcl2, Bim and P-Bad, only withaferin A decreases protein levels of cytoskeletal tubulin, concomitantly with potent PARP cleavage, caspase 3 activation and apoptosis, at least in part via a direct thiol oxidation mechanism. Conclusions This demonstrates that different classes of natural NFκB inhibitors can show different chemosensitizing effects in P-gp overexpressing cancer cells with impaired caspase activation and attenuated apoptosis. PMID:20438634

  3. Low‑dose radiation‑induced apoptosis in human leukemia K562 cells through mitochondrial pathways.

    PubMed

    Xin, Yong; Zhang, Hai-Bin; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Jiang, Guan; Zhang, Long-Zhen

    2014-09-01

    High‑dose total body irradiation (TBI) has an established role as preparative regimen for bone‑marrow transplantation in the treatment of chronic myelogenous leukemia (CML), but this regimen still has a relatively high rate of acute and late toxicity. Low‑dose radiation (LDR) induces apoptosis of tumor cells and has numerous beneficial effects on normal tissues, including radiation homeostasis and adaptive response. Based on the previous evidence, in the present study, K562 cells were exposed to LDR, high‑dose radiation (HDR), and LDR in combination with HDR to investigate the possible mechanism of the apoptotic effect and hypersensitivity induced by LDR. The apoptotic rate increased in all radiation groups in a time‑dependent manner. An upregulation of Bax protein expression and a downregulation of Bcl‑xl in a dose‑dependent manner in human leukemia K562 cells was observed. However, the expression of p53 protein did not change in all of the radiation cell groups. The mitochondrial membrane potential (ΔΨm) in K562 cells decreased in all of the radiation cell groups in a dose‑dependent manner. Furthermore, the decrease of ΔΨm was enhanced in the LDR/HDR group compared with that in the LDR or HDR groups. The activity of caspase‑3 was enhanced in all of the radiation groups. In the LDR/HDR group, the activity of caspase‑3 was higher than that in the HDR or LDR groups. The present study provided preliminary experimental evidence of LDR being beneficial in combination with TBI in the treatment of CML.

  4. Synthesis, conformational analysis, and biological activity of new analogues of thiazole-4-carboxamide adenine dinucleotide (TAD) as IMP dehydrogenase inhibitors.

    PubMed

    Franchetti, Palmarisa; Cappellacci, Loredana; Pasqualini, Michela; Petrelli, Riccardo; Jayaprakasan, Vetrichelvan; Jayaram, Hiremagalur N; Boyd, Donald B; Jain, Manojkumar D; Grifantini, Mario

    2005-03-15

    Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).

  5. The flavonoid tangeretin activates the unfolded protein response and synergizes with imatinib in the erythroleukemia cell line K562.

    PubMed

    Lust, Sofie; Vanhoecke, Barbara; Van Gele, Mireille; Philippé, Jan; Bracke, Marc; Offner, Fritz

    2010-06-01

    We explored the mechanism of cell death of the polymethoxyflavone tangeretin (TAN) in K562 breakpoint cluster region-abelson murine leukemia (Bcr-Abl+) cells. Flow cytometric analysis showed that TAN arrested the cells in the G(2)/M phase and stimulated an accumulation of the cells in the sub-G(0) phase. TAN-induced cell death was evidenced by poly(ADP)-ribose polymerase cleavage, DNA laddering fragmentation, activation of the caspase cascade and downregulation of the antiapoptotic proteins Mcl-1 and Bcl-x(L). Pretreatment with the pancaspase inhibitor Z-VAD-FMK_blocked caspase activation and cell cycle arrest but did not inhibit apoptosis which suggest that other cell killing mechanisms like endoplasmic reticulum (ER)-associated cell death pathways could be involved. We demonstrated that TAN-induced apoptosis was preceded by a rapid activation of the proapoptotic arm of the unfolded protein response, namely PKR-like ER kinase. This was accompanied by enhanced levels of glucose-regulated protein of 78 kDa and of spliced X-box binding protein 1. Furthermore, TAN sensitized K562 cells to the cell killing effects of imatinib via an apoptotic mechanism. In conclusion, our results suggest that TAN is able to induce apoptosis in Bcr-Abl+ cells via cell cycle arrest and the induction of the unfolded protein response, and has synergistic cytotoxicity with imatinib.

  6. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells.

    PubMed

    Chen, Bao-an; Mao, Pei-pei; Cheng, Jian; Gao, Feng; Xia, Guo-hua; Xu, Wen-lin; Shen, Hui-lin; Ding, Jia-hua; Gao, Chong; Sun, Qian; Chen, Wen-ji; Chen, Ning-na; Liu, Li-jie; Li, Xiao-mao; Wang, Xue-mei

    2010-08-09

    In many instances, multidrug resistance (MDR) is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp), a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe(3)O(4) nanoparticle [MNP (Fe(3)O(4))] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of "classical" MDR by short hairpin RNA (shRNA) aiming directly at the target sequence (3491-3509, 1539-1557, and 3103-3121 nucleotide) of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1-1, PGY1-2, and PGY1-3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe(3)O(4)) for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM). PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1-2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR) and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe(3)O(4)) or PGY1-2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe(3)O(4)) and PGY1-2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe(3)O(4)) and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia.

  7. Simian immunodeficiency virus (SIV)/immunoglobulin G immune complexes in SIV-infected macaques block detection of CD16 but not cytolytic activity of natural killer cells.

    PubMed

    Wei, Qing; Stallworth, Jackie W; Vance, Patricia J; Hoxie, James A; Fultz, Patricia N

    2006-07-01

    Natural killer cells are components of the innate immune system that play an important role in eliminating viruses and malignant cells. Using simian immunodeficiency virus (SIV) infection of macaques as a model, flow cytometry revealed a gradual loss of CD16+ NK cell numbers that was associated with disease progression. Of note, the apparent loss of NK cells was detected in whole-blood samples but not in isolated peripheral blood mononuclear cells (PBMC), suggesting that an inhibitor(s) of the antibody used to detect CD16, the low-affinity immunoglobulin G (IgG) receptor, was present in blood but was removed during PBMC isolation. (Actual decreases in CD16+ cell numbers in PBMC generally were not detected until animals became lymphopenic.) The putative decrease in CD16+ cell numbers in whole blood correlated with increasing SIV-specific antibody titers and levels of plasma virion RNA. With the addition of increasing amounts of plasma from progressor, but not nonprogressor, macaques to PBMC from an uninfected animal, the apparent percentage of CD16+ cells and the mean fluorescence intensity of antibodies binding to CD16 declined proportionately. A similar decrease was observed with the addition of monomeric IgG (mIgG) and IgG immune complexes (IgG-ICs) purified from the inhibitory plasma samples; some of the ICs contained SIV p27(gag) antigen and/or virions. Of interest, addition of purified IgG/IgG-ICs to NK cell lytic assays did not inhibit killing of K562 cells. These results indicate that during progressive SIV and, by inference, human immunodeficiency virus disease, CD16+ NK cell numbers can be underestimated, or the cells not detected at all, when one is using a whole-blood fluorescence-activated cell sorter assay and a fluorochrome-labeled antibody that can be blocked by mIgG or IgG-ICs. Although this blocking had no apparent effect on NK cell activity in vitro, the in vivo effects are unknown.

  8. Downregulation of an Aim-1 Kinase Couples with Megakaryocytic Polyploidization of Human Hematopoietic Cells

    PubMed Central

    Kawasaki, Akira; Matsumura, Itaru; Miyagawa, Jun-ichiro; Ezoe, Sachiko; Tanaka, Hirokazu; Terada, Yasuhiko; Tatsuka, Masaaki; Machii, Takashi; Miyazaki, Hiroshi; Furukawa, Yusuke; Kanakura, Yuzuru

    2001-01-01

    During the late phase of megakaryopoiesis, megakaryocytes undergo polyploidization, which is characterized by DNA duplication without concomitant cell division. However, it remains unknown by which mechanisms this process occurs. AIM-1 and STK15 belong to the Aurora/increase-in-ploidy (Ipl)1 serine/threonine kinase family and play key roles in mitosis. In a human interleukin-3–dependent cell line, F-36P, the expressions of AIM-1 and STK15 mRNA were specifically observed at G2/M phase of the cell cycle during proliferation. In contrast, the expressions of AIM-1 and STK15 were continuously repressed during megakaryocytic polyploidization of human erythro/megakaryocytic cell lines (F-36P, K562, and CMK) treated with thrombopoietin, activated ras (H-rasG12V), or phorbol ester. Furthermore, their expressions were suppressed during thrombopoietin-induced polyploidization of normal human megakaryocytes. Activation of AIM-1 by the induced expression of AIM-1(wild-type) canceled TPA-induced polyploidization of K562 cells significantly, whereas that of STK15 did not. Moreover, suppression of AIM-1 by the induced expression of AIM-1 (K/R, dominant-negative type) led to polyploidization in 25% of K562 cells, whereas STK15(K/R) showed no effect. Also, the induced expression of AIM-1(K/R) in CMK cells provoked polyploidization up to 32N. These results suggested that downregulation of AIM-1 at M phase may be involved in abortive mitosis and polyploid formation of megakaryocytes. PMID:11266445

  9. Osthole shows the potential to overcome P-glycoprotein‑mediated multidrug resistance in human myelogenous leukemia K562/ADM cells by inhibiting the PI3K/Akt signaling pathway.

    PubMed

    Wang, Hong; Jia, Xiu-Hong; Chen, Jie-Ru; Wang, Jian-Yong; Li, You-Jie

    2016-06-01

    P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) has been reported to play a pivotal role in tumor chemotherapy failure. Study after study has illustrated that the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with P-gp expression in many human malignancies. In the present study, osthole, an O-methylated coumarin, exhibited potent reversal capability of MDR in myelogenous leukemia K562/ADM cells. Simultaneously, the uptake and efflux of Rhodamine-123 (Rh-123) and the accumulation of doxorubicin assays combined with flow cytometric analysis suggested that osthole could increase intracellular drug accumulation. Furthermore, osthole decreased the expression of multidrug resistance gene 1 (MDR1) at both the mRNA and protein levels. Further experiments elucidated that osthole could suppress P-gp expression by inhibiting the PI3K/Akt signaling pathway which might be the main mechanism accounting for the reversal potential of osthole in the MDR in K562/ADM cells. In conclusion, osthole combats MDR and could be a promising candidate for the development of novel MDR reversal modulators.

  10. Cytotoxic activity of quassinoids from Eurycoma longifolia.

    PubMed

    Miyake, Katsunori; Li, Feng; Tezuka, Yasuhiro; Awale, Suresh; Kadota, Shigetoshi

    2010-07-01

    Twenty-four quassinoids isolated from Eurycoma longifolia Jack were investigated for their cytotoxicity against a panel of four different cancer cell lines, which includes three murine cell lines [colon 26-L5 carcinoma (colon 26-L5), B16-BL6 melanoma (B16-BL6), Lewis lung carcinoma (LLC)] and a human lung A549 adenocarcinoma (A549) cell line. Among the tested compounds, eurycomalactone (9) displayed the most potent activity against all the tested cell lines; colon 26-L5 (IC50 = 0.70 microM), B16-BL6 (IC50 = 0.59 microM), LLC (IC50 = 0.78 microM), and A549 (IC50 = 0.73 microM). These activities were comparable to clinically used anticancer agent doxorubicin (colon 26-L5, IC50 = 0.76 microM; B16-BL6, IC50 = 0.86 microM; LLC, IC50 = 0.80 microM; A549, IC50 = 0.66 microM).

  11. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL

    PubMed Central

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-01-01

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML. PMID:27329306

  12. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL.

    PubMed

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-06-22

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.

  13. Diverse Effects of Glutathione and UPF Peptides on Antioxidant Defense System in Human Erythroleukemia Cells K562.

    PubMed

    Kairane, Ceslava; Mahlapuu, Riina; Ehrlich, Kersti; Kilk, Kalle; Zilmer, Mihkel; Soomets, Ursel

    2012-01-01

    The main goal of the present paper was to examine the influence of the replacement of γ-Glu moiety to α-Glu in glutathione and in its antioxidative tetrapeptidic analogue UPF1 (Tyr(Me)-γ-Glu-Cys-Gly), resulting in α-GSH and UPF17 (Tyr(Me)-Glu-Cys-Gly), on the antioxidative defense system in K562 cells. UPF1 and GSH increased while UPF17 and α-GSH decreased the activity of CuZnSOD in K562 cells, at peptide concentration of 10 μM by 42% and 38% or 35% and 24%, respectively. After three-hour incubation, UPF1 increased and UPF17 decreased the intracellular level of total GSH. Additionally, it was shown that UPF1 is not degraded by γ-glutamyltranspeptidase, which performs glutathione breakdown. These results indicate that effective antioxidative character of peptides does not depend only on the reactivity of the thiol group, but also of the other functional groups, and on the spatial structure of peptides.

  14. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.

    PubMed

    Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan

    2010-08-01

    Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Development and characterization of K562 cell clones expressing BCL11A-XL: Decreased hemoglobin production with fetal hemoglobin inducers and its rescue with mithramycin.

    PubMed

    Finotti, Alessia; Gasparello, Jessica; Breveglieri, Giulia; Cosenza, Lucia Carmela; Montagner, Giulia; Bresciani, Alberto; Altamura, Sergio; Bianchi, Nicoletta; Martini, Elisa; Gallerani, Eleonora; Borgatti, Monica; Gambari, Roberto

    2015-12-01

    Induction of fetal hemoglobin (HbF) is considered a promising strategy in the treatment of β-thalassemia, in which production of adult hemoglobin (HbA) is impaired by mutations affecting the β-globin gene. Recent results indicate that B-cell lymphoma/leukemia 11A (BCL11A) is a major repressor of γ-globin gene expression. Therefore, disrupting the binding of the BCL11A transcriptional repressor complex to the γ-globin gene promoter provides a novel approach for inducing expression of the γ-globin genes. To develop a cellular screening system for the identification of BCL11A inhibitors, we produced K562 cell clones with integrated copies of a BCL11A-XL expressing vector. We characterized 12 K562 clones expressing different levels of BCL11A-XL and found that a clear inverse relationship does exist between the levels of BCL11A-XL and the extent of hemoglobinization induced by a panel of HbF inducers. Using mithramycin as an inducer, we found that this molecule was the only HbF inducer efficient in rescuing the ability to differentiate along the erythroid program, even in K562 cell clones expressing high levels of BCL11A-XL, suggesting that BCL11A-XL activity is counteracted by mithramycin. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  16. Nonviral transfection of suspension cells in ultrasound standing wave fields.

    PubMed

    Lee, Yu-Hsiang; Peng, Ching-An

    2007-05-01

    Ultrasound-induced cavitation has been widely used for delivering DNA vectors into cells. However, this approach may seriously disrupt cell membranes and cause lethal damage when cells are exposed to the inertial cavitation field. In this study, instead of using sonoporation, ultrasound standing wave fields (USWF) were explored for nonviral transfection of suspension cells. Acoustic resonance in a tubular chamber was generated from the interference of waves emitted from a piezoelectric transducer and consequently reflected from a borosilicate glass coverslip. The suspended K562 erythroleukemia cells were transfected by polyethyleneimine (PEI)/DNA complexes with and without exposure to 1-MHz USWF for 5 min. During USWF exposure, K562 cells moved to the pressure nodal planes first and formed cell bands by the primary radiation force. Nanometer-sized PEI/DNA complexes, circulated between nodal planes by acoustic microstreaming, then used the cell agglomerates as the nucleating sites on which to attach. After incubation at 37 degrees C for 48 h, the efficiency of nonviral transfection based on EGFP transgene expression was determined by fluorescent microscopy and fluorometry. Both studies showed that USWF brought suspended K562 cells and PEI/DNA complexes into close contact at the pressure nodal planes, yielding an approximately 10-fold increment of EGFP transgene expression compared with the group without ultrasonic treatment.

  17. Mecambridine induces potent cytotoxic effects, autophagic cell death and modulation of the mTOR/PI3K/Akt signaling pathway in HSC-3 oral squamous cell carcinoma cells

    PubMed Central

    Lin, Na; Li, Zhiping; Wang, Deli; Zheng, Kewen; Wu, Yiyan; Wang, Huiqi

    2018-01-01

    Plant secondary metabolites including alkaloids, demonstrate a complex diversity in their molecular scaffolds and exhibit tremendous pharmacological potential as anti-cancerous therapeutics. The present study aimed to evaluate the anticancer activity of a natural alkaloid, mecambridine, against human oral squamous cell carcinoma (OSCC). An MTT assay was used to evaluate cytotoxic effects of mecambridine on HSC-3 oral squamous cell carcinoma cells. Effects of mecambridine on autophagy-associated proteins were analyzed by western blotting. Effects on reactive oxygen species (ROS) and mitochondrial membrane potential were assessed by flow cytometry. Results indicated that mecambridine exhibited an IC50 value of 50 µM and exerted its cytotoxic effects in a dose dependent manner on OSCC HSC-3 cells. Furthermore, it was observed that mecambridine decreases cell viability and induces autophagy in a dose-dependent manner. The underlying mechanism for the induction of autophagy was demonstrated to be associated with ROS-mediated alterations in mitochondrial membrane potential and modulation of the mechanistic target of rapamycin/phosphoinositide 3-kinase/protein kinase B (m-TOR/PI3K/Akt) signaling pathway in HSC-3 at the IC50. In conclusion, the present study suggests that mecambridine exhibits substantial anticancer activity against OSCC HSC-3 cells by induction of autophagy and modulates the expression of the mTOR/PI3K/Akt signaling cascade which is considered a potential target pathway for anti-cancer agents. PMID:29422960

  18. Targeted Blockage of Signal Transducer and Activator of Transcription 5 Signaling Pathway with Decoy Oligodeoxynucleotides Suppresses Leukemic K562 Cell Growth

    PubMed Central

    Wang, Xiaozhong; Zeng, Jianming; Shi, Mei; Zhao, Shiqiao; Bai, Weijun; Cao, Weixi; Tu, Zhiguang; Huang, Zonggan

    2011-01-01

    The protein signal transducer and activator of transcription 5 (STAT5) of the JAK/STAT pathway is constitutively activated because of its phosphorylation by tyrosine kinase activity of fusion protein BCR-ABL in chronic myelogenous leukemia (CML) cells. This study investigated the potential therapeutic effect of STAT5 decoy oligodeoxynucleotides (ODN) using leukemia K562 cells as a model. Our results showed that transfection of 21-mer-long STAT5 decoy ODN into K562 cells effectively inhibited cell proliferation and induced cell apoptosis. Further, STAT5 decoy ODN downregulated STAT5 targets bcl-xL, cyclinD1, and c-myc at both mRNA and protein levels in a sequence-specific manner. Collectively, these data demonstrate the therapeutic effect of blocking the STAT5 signal pathway by cis-element decoy for cancer characterized by constitutive STAT5 activation. Thus, our study provides support for STAT5 as a potential target downstream of BCR-ABL for CML treatment and helps establish the concept of targeting STAT5 by decoy ODN as a novel therapy approach for imatinib-resistant CML. PMID:21091189

  19. Distinct Hypericum perforatum L. total extracts exert different antitumour activity on erythroleukemic K562 cells.

    PubMed

    Valletta, Elena; Rinaldi, Annamaria; Marini, Mario; Franzese, Ornella; Roscetti, Gianna

    2018-05-22

    Total flower extracts of Hypericum perforatum L. obtained with 3 different solvent systems were tested on tumour cell line cultures by comparing two groups of plants harvested in different times and places. The extracts, characterized according to the spectroscopic profile and the hypericin content, were tested on the growth and apoptotic death of K562 cells, a human erythroleukemic cell line. Growth and apoptosis were analysed by viable cell count, flow cytometry, and fluorescence microscopy at 6, 24, and 48 hr of culture following 1 hr exposure to the extracts under investigation. Here, we show that Hypericum extracts are able to reduce the growth of K562 cells and induce different degrees and kinetics of apoptosis according to the group of plants of origin. Also, we highlighted interesting differences in terms of efficacy among the extracts, with some samples losing their effectiveness along the culture time and others able to maintain or even increase their efficacy. Furthermore, the data herein obtained confirm the role of non hypericin compounds that are present in different proportions in the two plant groups and in the extracts analysed. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Insulin increases excitability via a dose-dependent dual inhibition of voltage-activated K+ currents in differentiated N1E-115 neuroblastoma cells.

    PubMed

    Lima, Pedro A; Vicente, M Inês; Alves, Frederico M; Dionísio, José C; Costa, Pedro F

    2008-04-01

    A role in the control of excitability has been attributed to insulin via modulation of potassium (K(+)) currents. To investigate insulin modulatory effects on voltage-activated potassium currents in a neuronal cell line with origin in the sympathetic system, we performed whole-cell voltage-clamp recordings in differentiated N1E-115 neuroblastoma cells. Two main voltage-activated K(+) currents were identified: (a) a relatively fast inactivating current (I(fast) - time constant 50-300 ms); (b) a slow delayed rectifying K(+) current (I(slow) - time constant 1-4 s). The kinetics of inactivation of I(fast), rather than I(slow), showed clear voltage dependence. I(fast) and I(slow) exhibited different activation and inactivation dependence for voltage, and have different but nevertheless high sensitivities to tetraethylammonium, 4-aminopyridine and quinidine. In differentiated cells - rather than in non-differentiated cells - application of up to 300 nm insulin reduced I(slow) only (IC(50) = 6.7 nm), whereas at higher concentrations I(fast) was also affected (IC(50) = 7.7 microm). The insulin inhibitory effect is not due to a change in the activation or inactivation current-voltage profiles, and the time-dependent inactivation is also not altered; this is not likely to be a result of activation of the insulin-growth-factor-1 (IGF1) receptors, as application of IGF1 did not result in significant current alteration. Results suggest that the current sensitive to low concentrations of insulin is mediated by erg-like channels. Similar observations concerning the insulin inhibitory effect on slow voltage-activated K(+) currents were also made in isolated rat hippocampal pyramidal neurons, suggesting a widespread neuromodulator role of insulin on K(+) channels.

  1. Synthesis and leishmanicidal activity of eugenol derivatives bearing 1,2,3-triazole functionalities.

    PubMed

    Teixeira, Róbson Ricardo; Gazolla, Poliana Aparecida Rodrigues; da Silva, Adalberto Manoel; Borsodi, Maria Paula Gonçalves; Bergmann, Bartira Rossi; Ferreira, Rafaela Salgado; Vaz, Boniek Gontijo; Vasconcelos, Géssica Adriana; Lima, Wallace Pacienza

    2018-02-25

    In this paper, it is described the synthesis and the evaluation of the leishmanicidal activity of twenty-six eugenol derivatives bearing 1,2,3-triazole functionalities. The evaluation of the compounds on promastigotes of Leishmania amazonensis (WHOM/BR/75/Josefa) showed that eugenol derivatives present leishmanicidal activities with varying degrees of effectiveness. The most active compound, namely 4-(3-(4-allyl-2-methoxyphenoxy)propyl)-1-(4-methylbenzyl)-1H-1,2,3-triazole (7k) (IC 50  = 7.4 ± 0.8 μmol L -1 ), also targeted Leishmania parasites inside peritoneal macrophages (IC 50  = 1.6 μmol L -1 ) without interfering with cell viability. The cytotoxicity of 7k against macrophage cells presented IC 50 of 211.9 μmol L -1 and the selective index was equal to 132.5. Under similar conditions, compound 7k was more effective than glucantime and pentamidine, two drugs currently in the clinic. In addition, theoretical calculations showed that this compound also presents most physicochemical and pharmacokinetic properties within the ranges expected for orally available drugs. It is believed that eugenol bearing 1,2,3-triazole functionalities may represent a scaffold to be explored toward the development of new agents to treat leishmaniasis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer (NK) cells.

    PubMed

    Stangl, Stefan; Gross, Catharina; Pockley, Alan G; Asea, Alexzander A; Multhoff, Gabriele

    2008-01-01

    This study compared the effects of the human 70-kDa stress protein (Hsp70) peptide, TKDNNLLGRFELSG (TKD), proinflammatory cytokines, or a combination of both on the repertoire of receptors expressed by human natural killer (NK) cells and their capacity to kill human CX colon carcinoma cells, K562 erythroleukemic cells, and leukemic blasts from two patients with acute myelogenous leukemia. Low-dose interleukin (IL) 2/IL-15 and TKD increase the expression density of activatory (NKG2D, NKp30, NKp44, NKp46, CD94/NKG2C) and inhibitory (CD94/NKG2A) receptors on NK cells. Concomitantly, IL-2/TKD treatment enhances the cytotoxicity of NK cells (as reflected by their secretion of granzyme B) against Hsp70 membrane-positive and human leukocyte antigen (HLA)-E membrane-negative (Hsp70(+)/HLA-E(-)) CX(+) and K562 cells. However, it had no effect on the responsiveness to Hsp70(-)/HLA-E(-) CX(-) cells over that induced by IL-2 alone. The cytotoxicity of IL-2/TKD-activated, purified NK cells and peripheral blood mononuclear cells against Hsp70(+)/HLA-E(+) leukemic blasts was weaker than that against Hsp70(+)/HLA-E(-) K562 cells. Hsp70-blocking and HLA-E transfection experiments confirmed membrane-bound Hsp70 as being a recognition/activatory ligand for NK cells, as cytotoxicity was reduced by the presence of the anti-Hsp70 monoclonal antibody cmHsp70.2 and by inhibiting Hsp70 synthesis using short interference ribonucleic acid. HLA-E was confirmed as an inhibitory ligand, as the extent of NK cell-mediated lysis of K562 cell populations that had been transfected with HLA-E(R) or HLA-E(G) alleles was dependent on the proportion of HLA-E-expressing cells. These findings indicate that Hsp70 (as an activatory molecule) and HLA-E (as an inhibitory ligand) expression influence the susceptibility of leukemic cells to the cytolytic activities of cytokine/TKD-activated NK cells.

  3. Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against leukemic cells.

    PubMed

    Endo, Masahiro; Beppu, Hidehiko; Akiyama, Hidehiko; Wakamatsu, Kazumasa; Ito, Shosuke; Kawamoto, Yasuko; Shimpo, Kan; Sumiya, Toshimitu; Koike, Takaaki; Matsui, Taei

    2010-07-01

    Mushrooms of the genus Agaricus are a common folk remedy against carcinoma. The active ingredients, polysaccharides and protein-polysaccharide complexes containing beta-glucan, have been isolated and shown to have indirect tumor-suppressing activity via an immunological activation. The diffusible fraction of a hot-water extract of Agaricus blazei Murrill (ABM) powder was fractionated by HPLC based on the anti-tumor activity against leukemic cells in vitro. The structure of the anti-tumor substance was determined by NMR and MS analyses. We purified a tumorcidal substance from the diffusible fraction of ABM and identified it as agaritine, beta-N-(gamma-l(+)-glutamyl)-4-(hydroxymethyl) phenylhydrazine, having a molecular mass of 267 Da. This compound inhibited the proliferation of leukemic cell lines such as U937, MOLT4, HL60 and K562 with IC(50) values of 2.7, 9.4, 13.0, and 16.0 microg/mL, respectively, but showed no significant effect on normal lymphatic cells at concentrations up to 40 microg/mL. Although agaritine has been suspected of having genotoxic or carcinogenic properties, agaritine did not activate the umu gene of Salmonella, which reacts to carcinogens. The results indicate that agaritine from ABM has direct anti-tumor activity against leukemic tumor cells in vitro. This is in contrast to the carcinogenic activity previously ascribed to this compound. Our results also show that this activity is distinct from that of beta-glucan, which indirectly suppresses proliferation of tumor cells. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells.

    PubMed

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Bishayee, Anupam; Kalle, Arunasree M; Satya, Alapati Krishna

    2017-11-01

    Identification of isoform-specific histone deacetylase inhibitors (HDACi) is a significant advantage to overcome the adverse side effects of pan-HDACi for the treatment of various diseases, including cancer. We have designed, and synthesized novel 1,3,4 oxadiazole with glycine/alanine hybrids as HDAC8-specific inhibitors and preliminary evaluation has indicated that 1,3,4 oxadiazole with alanine hybrid [(R)-2-amino-N-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)propanamide (10b)] to be a potent HDAC8 inhibitor. In the present study, the in vitro efficacy of the molecule in inhibiting the cancer cell proliferation and the underlying molecular mechanism was studied. 10b inhibited the growth of MDA-MB-231 and MCF7 breast cancer cells, with a lower IC 50 of 230 and 1000 nM, respectively, compared to K562, COLO-205 and HepG2 cells and was not cytotoxic to normal breast epithelial cells, MCF10A. 10b was specific to HDAC8 and did not affect the expression of other class I HDACs. Further, a dose-dependent increase in H3K9 acetylation levels demonstrated the HDAC-inhibitory activity of 10b in MDA-MB-231 cells. Flow cytometric analysis indicated a dose-dependent increase and decrease in the percent apoptotic cells and mitochondrial membrane potential, respectively, when treated with 10b. Immunoblot analysis showed a modulation of Bax/Bcl2 ratio with a decrease in Bcl2 expression and no change in Bax expression. 10b treatment resulted in induction of p21 and inhibition of CDK1 proteins along with cytochrome c release from mitochondria, activation of caspases-3 and -9 and cleavage of poly ADP-ribose polymerase leading to apoptotic death of MDA-MB-231 and MCF7 cells. In conclusion, our results clearly demonstrated the efficacy of 10b as an anticancer agent against breast cancer.

  5. Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1)by bosentan: a mechanism for species differences in hepatotoxicity.

    PubMed

    Leslie, Elaine M; Watkins, Paul B; Kim, Richard B; Brouwer, Kim L R

    2007-06-01

    Bile acid accumulation in hepatocytes due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) has been proposed as a mechanism for bosentan-induced hepatotoxicity. The observation that bosentan does not induce hepatotoxicity in rats, although bosentan has been reported to inhibit rat Bsep and cause elevated serum bile acids, challenges this mechanism. The lack of hepatotoxicity could be explained if bosentan inhibited hepatocyte uptake as well as canalicular efflux of bile acids. In the current study, bosentan was found to be a more potent inhibitor of Na(+)-dependent taurocholate uptake in rat (IC(50) 5.4 microM) than human (IC(50) 30 microM) suspended hepatocytes. In addition, bosentan was a more potent inhibitor of taurocholate uptake by rat Na(+)-dependent taurocholate co-transporting polypeptide (Ntcp/Slc10a1) (IC(50) 0.71 microM) than human NTCP (SLC10A1) (IC(50) 24 microM) expressed in HEK293 cells. Thus, bosentan is a more potent inhibitor of Ntcp than NTCP, and this should result in less intrahepatocyte accumulation of bile acids in rats during bosentan treatment. To begin characterization of this species difference, two chimeric molecules were generated and expressed in HEK293 cells; NTCP(1-140)/Ntcp(141-362) and Ntcp(1-140)/NTCP(141-349). The mode of bosentan inhibition was noncompetitive for Ntcp, and competitive for NTCP (K(i) 18 microM) and NTCP(1-140)/Ntcp(141-362) (K(i) 1.7 microM); bosentan affected both the K(m) and V(max) of Ntcp(1-140)/NTCP(141-349) (K(i) 7.0 microM). The carboxyl portions of NTCP and Ntcp were found to confer species differences in basal taurocholate transport V(max). In conclusion, differential inhibition of Ntcp and NTCP may represent a novel mechanism for species differences in bosentan-induced hepatotoxicity.

  6. Toxicological evaluation of the natural products and some semisynthetic derivatives of Heterotheca inuloides Cass (Asteraceae).

    PubMed

    Rodríguez-Chávez, José Luis; Coballase-Urrutia, Elvia; Sicilia-Argumedo, Gloria; Ramírez-Apan, Teresa; Delgado, Guillermo

    2015-12-04

    Heterotheca ineuloides Cass (Asteraceae), popularly known as árnica mexicana, is widely used in Mexican traditional medicine to treat bruises, dermatological problems, rheumatic pains, and other disorders as cancer. The major constituents in H. inuloides are cadinane type sesquiterpenes, flavonoids and phytosterols. Compounds with a cadinane skeleton have been proved to possess cytotoxic activity against human-tumor cell lines and brine shrimp, and display toxic effects in different animal species. Although this plant has been widely used, there is little available information on the safety and toxicity especially of pure compounds. Evaluate the potential toxicity of the natural products isolated from H. inuloides and some semisynthetic derivatives. The toxic aspects of the following natural products isolated from dried flowers of H. inuloides: 7-hydroxy-3,4-dihydrocadalene (1), 7-hydroxycadalene (2), 3,7-dihydroxy-3(4H)-isocadalen-4-one (3), (1R,4R)-1-hydroxy-4H-1,2,3,4- tetrahydrocadalen-15-oic acid (4), D-chiro-inositol (5), quercetin (6), quercetin-3,7,3'-trimethyl ether (7), quercetin-3,7,3',4'-tetramethyl ether (8), eriodictyol-7,4'-dimethyl ether (9), α-spinasterol (10), caryolan-1,9β-diol (11) and 7-(3,3-dimethylallyloxy)-coumarin (12) as well as the toxic aspects of the semisynthetic compounds 7-acetoxy-3,4-dihydrocadalene (13), 7-benzoxy-3,4-dihydrocadalene (14), 7-acetoxycadalene (15), 7-benzoxycadalene (16), quercetin pentaacetate (17), 7-hydroxycalamenene (18), 3,8-dimethyl-5-(1-methylethyl)-1,2-naphthoquinone (19), and 4-isopropyl-1,6-dimethylbenzo[c]oxepine-7,9-dione (20). Toxic activities of compounds were determined by sulforhodamine B (SRB) assay, Artemia salina assay, RAW264.7 macrophage cells. Additionally, the acute toxicity in mouse of compound 1, the major natural sesquiterpene isolated from the acetone extract, was evaluated. The best cytotoxicity activity was observed for mansonone C (19) on K562 cell line with IC50 1.45 ± 0.14 μM, for 7-hydroxycadalene (2) on HCT-15 cell line with IC50 18.89 ± 1.2 μM, and for quercetin pentaacetate (17) on MCF-7 cell line with IC50 22.57 ± 2.4 μM. Sesquiterpenes mansonone C (19) and 7-hydroxy-3,4-dihydrocadalene (1) caused the strongest deleterious effects against A. salina with IC50 39.4 ± 1.07, and 45.47 ± 1.74 μM, respectively. The number of viable RAW 264.7 cells was reduced with sesquiterpenes 1 and 2 by more than 90%. In addition, the acute study of 1 revealed no lethal effects at 300 mg/kg body weight, however, a reduction in the body weight of mice, morphological changes in the tissues of the liver and kidney and toxic signs were observed at very high doses (2000 mg/kg). The results provided evidence for the cytotoxicity of Mexican arnica (H. inuloides) metabolites and may be correlated with one of the popular uses of this plant, in traditional Mexican medicine, as anticancer remedy. Among the active compounds contained in the acetone extract, the cytotoxic activity is mainly ascribable to cadinene type sesquiterpenes. In addition, evidence of acute toxicity suggests that 7-hydroxy-3,4-dihydrocadalene (1) may lead to toxicity at very high doses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. [Determination of the healing effect of Piper aduncum (spiked pepper or matico) on human fibroblasts].

    PubMed

    Paco, Karen; Ponce-Soto, Luis Alberto; Lopez-Ilasaca, Marco; Aguilar, José L

    2016-01-01

    To evaluate the healing effect of a Piper aduncum ethanol-water extract on an adult human dermal fibroblast cell line (hDFa). After obtaining the extract via solid-liquid extraction, concentration, and lyophilization, extract proteins were purified using reverse phase high-performance liquid chromatography, identified using tandem mass spectrometry of tryptic peptides, and analyzed using MALDI-TOF-TOF on an ABSciex4800 mass spectrometer. Half maximum effective concentration values (EC50), half maximum inhibiting concentration (IC50), and percentages of cell proliferation were determined using tetrazolium salt assays. Cell migration was evaluated using a "scratch assay". Growth factor expression in cells was analyzed via quantitative real-time reverse transcription polymerase chain reaction. Against the hDFa cell line, the extract had an IC50 of 200 μg/mL and EC50 of 103.5 µg/mL. In the proliferation assay, protein K2 (obtained from the extract) exhibited increased proliferative activity relative to other treatments (1 µg/mL); this agent also exhibited increased activity (50 µg/mL) in the fibroblast migration assay.Furthermore, the relative expression of platelet-derived growth factor increased by 8.6-fold in the presence of K2 protein relative to the control. The hydroethanolic extract of Piper aduncum and its component proteins increased the proliferation and migration of hDFa and increased the expression of growth factors involved in the healing process.

  8. The multidrug resistance pumps are inhibited by silibinin and apoptosis induced in K562 and KCL22 leukemia cell lines.

    PubMed

    Noori-Daloii, Mohammad Reza; Saffari, Mojtaba; Raoofian, Reza; Yekaninejad, Mirsaeed; Dinehkabodi, Orkideh Saydi; Noori-Daloii, Ali Reza

    2014-05-01

    Silibinin have been introduced for several years as a potent antioxidant in the field of nutraceuticals. Based on wide persuasive effects of this drug, we have decided to investigate the effects of silibinin on chronic myelogenous leukemia (CML) in vitro models, K562 and KCL22 cell lines. Lactate dehydrogenase (LDH) release, microculture tetrazolium test (MTT assay) and real-time PCR were employed to evaluate the effects of silibinin on cell cytotoxicity, cell proliferation and expression of various multidrug resistance genes in these cell lines, respectively. Our results have shown that presence of silibinin has inhibitory effects on cell proliferation of K562 and KCL22 cell lines. Also, our data indicated that silibinin, in a dose-dependent manner with applying no cytotoxic effects, inhibited cell proliferation and reduced mRNA expression levels of some transporter genes e.g. MDR1, MRP3, MRP2, MRP1, MRP5, MRP4, ABCG2, ABCB11, MRP6 and MRP7. The multifarious in vitro inhibitory effects of silibinin are in agreement with growing body of evidence that silibinin would be an efficient anticancer agent in order to be used in multi-target therapy to prevail the therapeutic hold backs against CML. Copyright © 2014. Published by Elsevier Ltd.

  9. Characterization and comparison of perezone with some analogues. Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Escobedo-González, Rene Gerardo; Bahena, Luis; Arias Tellez, José Luis; Hinojosa Torres, Jaime; Ruvalcaba, Rene Miranda; Aceves-Hernández, Juan Manuel

    2015-10-01

    Perezone had been used for centuries in the traditional Mexican medicine, it is useful and a handful of illness. Perezone and other derivatives also present activity against certain lines of cancer, such as the myeloblastoid leukemia cell line K-562 and carcinoma cell lines (PC-3 and SKLU-1) with IC50 <10 μM. Perezone and isoperezone have shown the major cytotoxic potency. Characterization of perezone was carried out by UV-Visible, IR, DSC, TGA and powder X-ray diffraction, as well as docking studies using caspase-3 structures as receptors. Theoretical studies for optimizing the geometry of perezone were carried out and the results compared with values of single crystal X-ray diffraction. The experimental values of atomic distances, angles and dihedral angles are in good agreement with the theoretical values. Interaction of perezone with the cysteine catalytic site with the caspase-3 was found in the docking studies. A docking study of perezone, with horminone, thymoquinone and isoperezone as ligands and the protein apoptein, caspase-3 as receptor, was carried to demonstrate that the hindrance steric factor, chemical structure and the functional groups are important in the biological activity of these natural products. The docking score energetic values are in good agreement with the experimental cytotoxic results obtained from the experiments when perezone and analogues were studied in different types of cancer.

  10. Phenolic compounds of Hibiscus sabdariffa and influence of organic residues on its antioxidant and antitumoral properties.

    PubMed

    Formagio, A S N; Ramos, D D; Vieira, M C; Ramalho, S R; Silva, M M; Zárate, N A H; Foglio, M A; Carvalho, J E

    2015-01-01

    The aim of this study was to evaluate the phenolic and flavonoids contents and the antioxidant and antitumoral activity of leaf and calyx methanolic extracts from Hibiscus sabdariffa (roselle) cultivated with poultry litter and organosuper® under three modes of application. The total phenolic content in the each extract was determined using the Folin-Ciocalteu reagent and for aluminium chloride flavonoids. The antioxidant parameters were analyzed using a 2, 2-diphenyl-1-picrylhydrazyl (DPPH.) free radical scavenging assay. An antitumor colorimetric assay using sulforhodamine B. The highest contents of phenolic and flavonoids were observed in leaf extracts (389.98 and 104.52 mg g-1, respectively) and calyx extracts (474.09 and 148.35 mg g-1, respectively) from plants cultivated with organosuper®, although these values did not differ significantly from those observed for the other treatments. The average IC50 of leaves (43.48 μg mL-1) and calyces (37.15 μg mL-1) demonstrated that both have substances that may contribute to free radical scavenging action. The methanol extract from calyces showed significant selective activity against a leukemia line (K-562), with IC50 values of 0.12 mg mL-1 (organosuper®) and 1.16 mg mL-1 (poultry litter), with concentration-dependent, cytotoxic and cytocidal effects.

  11. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell sensitivity to natural killing.

  12. Bergamot (Citrus bergamia Risso) fruit extracts as γ-globin gene expression inducers: phytochemical and functional perspectives.

    PubMed

    Guerrini, Alessandra; Lampronti, Ilaria; Bianchi, Nicoletta; Zuccato, Cristina; Breveglieri, Giulia; Salvatori, Francesca; Mancini, Irene; Rossi, Damiano; Potenza, Rocco; Chiavilli, Francesco; Sacchetti, Gianni; Gambari, Roberto; Borgatti, Monica

    2009-05-27

    Epicarps of Citrus bergamia fruits from organic farming were extracted with the objective of obtaining derived products differently rich in coumarins and psoralens. The extracts were chemically characterized by (1)H nuclear magnetic resonance (NMR), gas chromatography-flame ionization detection (GC-FID), gas chromatography-mass spectrometry (GC-MS), and high-pressure liquid chromatography (HPLC) for detecting and quantifying the main constituents. Both bergamot extracts and chemical standards corresponding to the main constituents detected were then assayed for their capacity to increase erythroid differentiation of K562 cells and expression of γ-globin genes in human erythroid precursor cells. Three experimental cell systems were employed: (a) the human leukemic K562 cell line, (b) K562 cell clones stably transfected with a pCCL construct carrying green-enhanced green fluorescence protein (EGFP) under the γ-globin gene promoter, and (c) the two-phase liquid culture of human erythroid progenitors isolated from healthy donors. The results suggest that citropten and bergapten are powerful inducers of differentiation and γ-globin gene expression in human erythroid cells. These data could have practical relevance, because pharmacologically mediated regulation of human γ-globin gene expression, with the consequent induction of fetal hemoglobin, is considered to be a potential therapeutic approach in hematological disorders, including β-thalassemia and sickle cell anemia.

  13. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34⁺ haematopoietic stem cells.

    PubMed

    Limb, Jin-Kyung; Song, Doona; Jeon, Mijeong; Han, So-Yeop; Han, Gyoonhee; Jhon, Gil-Ja; Bae, Yun Soo; Kim, Jaesang

    2015-04-01

    In this study we showed that 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient differentiation of megakaryocytes. Specifically, (R)-TEMOSPho induces cell cycle arrest, cell size increase and polyploidization from K562 and HEL cells, which are used extensively to model megakaryocytic differentiation. In addition, megakaryocyte-specific cell surface markers showed a dramatic increase in expression in response to (R)-TEMOSPho treatment. Importantly, we demonstrated that such megakaryocytic differentiation can also be induced from primary human CD34(+) haematopoietic stem cells. Activation of the PI3K-AKT pathway and, to a lesser extent, the MEK-ERK pathway appears to be required for this process, as blocking with specific inhibitors interferes with the differentiation of K562 cells. A subset of (R)-TEMOSPho-treated K562 cells undergoes spontaneous apoptosis and produces platelets that are apparently functional, as they bind to fibrinogen, express P-selectin and aggregate in response to SFLLRN and AYPGFK, the activating peptides for the PAR1 and PAR4 receptors, respectively. Taken together, these results indicate that (R)-TEMOSPho will be useful for dissecting the molecular mechanisms of megakaryocytic differentiation, and that this class of compounds represents potential therapeutic reagents for thrombocytopenia. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Dietary flavonoid tangeretin induces reprogramming of epithelial to mesenchymal transition in prostate cancer cells by targeting the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Zhu, Wen-Bin; Xiao, Ning; Liu, Xing-Jie

    2018-01-01

    Tangeretin, a natural polymethoxyflavone present in the peel of citrus fruits is known to exhibit anticancer properties against a variety of carcinomas. Previous experimental evidence suggests that lifestyle and dietary habits affect the risk of prostate cancer to a certain extent. As the effect of tangeretin on prostate cancer is unexplored, the present study investigated the effect of tangeretin on androgen-insensitive PC-3 cells and androgen-sensitive LNCaP cells. Tangeretin reduced the cell viability of PC-3 cells in a dose- and time-dependent manner, with the half-maximal inhibitory concentration (IC 50 ) observed at 75 µM dose following 72 h of incubation, while in LNCaP cells, the IC 50 was identified to be ~65 µM. Expression levels of the mesenchymal proteins including vimentin, cluster of differentiation 44 and Neural cadherin in PC-3 cells were reduced by tangeretin treatment, whereas those of the epithelial proteins, including Epithelial cadherin and cytokeratin-19 were upregulated. Treatment of PC-3 cells also resulted in the downregulation of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. Therefore, it may be concluded that tangeretin induces reprogramming of epithelial-mesenchymal transition in PC-3 cells by targeting the PI3K/Akt/mTOR signaling pathway.

  15. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    PubMed Central

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 × 107 cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe3O4 combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe3O4 combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe3O4 combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe3O4 inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe3O4 combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model. PMID:19421372

  16. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice.

    PubMed

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (MNP-Fe(3)O(4)) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 x 10(7) cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe(3)O(4) combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe(3)O(4) combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe(3)O(4) combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe(3)O(4) inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe(3)O(4) combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.

  17. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways.

    PubMed

    Dharmapuri, Gangappa; Doneti, Ravinder; Philip, Gundala Harold; Kalle, Arunasree M

    2015-07-01

    Imatinib mesylate, a tyrosine kinase inhibitor, is very effective in the treatment of chronic myeloid leukemia (CML). However, development of resistance to imatinib therapy is also a very common mechanism observed with long-term administration of the drug. Our previous studies have highlighted the role of cyclooxygenase-2 (COX-2) in regulating the expression of multidrug resistant protein-1 (MDR1), P-gp, in imatinib-resistant K562 cells (IR-K562) via PGE2-cAMP-PKC-NF-κB pathway and inhibition of COX-2 by celecoxib, a COX-2 specific inhibitor, inhibits this pathway and reverses the drug resistance. Studies have identified that not only MDR1 but other ATP-binding cassette transport proteins (ABC transporters) are involved in the development of imatinib resistance. Here, we tried to study the role of COX-2 in the regulation of other ABC transporters such as MRP1, MRP2, MRP3, ABCA2 and ABCG2 that have been already implicated in imatinib resistance development. The results of the study clearly indicated that overexpression of COX-2 lead to upregulation of MRP family proteins in IR-K562 cells and celecoxib down-regulated the ABC transporters through Wnt and MEK signaling pathways. The study signifies that celecoxib in combination with the imatinib can be a good alternate treatment strategy for the reversal of imatinib resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Antiprotozoal Activity of 1-Phenethyl-4-Aminopiperidine Derivatives ▿

    PubMed Central

    Dardonville, Christophe; Fernández-Fernández, Cristina; Gibbons, Sarah-Louise; Jagerovic, Nadine; Nieto, Lidia; Ryan, Gary; Kaiser, Marcel; Brun, Reto

    2009-01-01

    A series of 44 4-aminopiperidine derivatives was screened in vitro against four protozoan parasites (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum). This screening identified 29 molecules selectively active against bloodstream-form T. b. rhodesiense trypomastigotes, with 50% inhibitory concentrations (IC50) ranging from 0.12 to 10 μM, and 33 compounds active against the chloroquine- and pyrimethamine-resistant K1 strain of P. falciparum (IC50 range, 0.17 to 5 μM). In addition, seven compounds displayed activity against intracellular T. cruzi amastigotes in the same range as the reference drug benznidazole (IC50, 1.97 μM) but were also cytotoxic to L-6 cells, showing little selectivity for T. cruzi. None of the molecules tested showed interesting antileishmanial activity against axenic amastigotes of L. donovani. To our knowledge, this is the first report of the antitrypanosomal activity of molecules bearing the 4-aminopiperidine skeleton. PMID:19564359

  19. The Plasmodium falciparum chloroquine resistance transporter is associated with the ex vivo P. falciparum African parasite response to pyronaridine.

    PubMed

    Madamet, Marylin; Briolant, Sébastien; Amalvict, Rémy; Benoit, Nicolas; Bouchiba, Housem; Cren, Julien; Pradines, Bruno

    2016-02-09

    The pyronaridine-artesunate combination is one of the most recent oral artemisinin-based therapeutic combinations (ACTs) recommended for the treatment of uncomplicated P. falciparum malaria. The emergence of P. falciparum resistance to artemisinin has recently developed in Southeast Asia. Little data are available on the association between pyronaridine susceptibility and polymorphisms in genes involved in antimalarial drug resistance. The objective of the present study was to investigate the association between ex vivo responses to pyronaridine and the K76T mutation in the pfcrt gene in P. falciparum isolates. The assessment of ex vivo susceptibility to pyronaridine was performed on 296 P. falciparum isolates using a standard 42-h 3H-hypoxanthine uptake inhibition method. The K76T mutation was also investigated. The pyronaridine IC50 (inhibitory concentration 50 %) ranged from 0.55 to 80.0 nM. Ex vivo responses to pyronaridine were significantly associated with the K76T mutation (p-value = 0.020). The reduced susceptibility to pyronaridine, defined as IC50 > 60 nM, was significantly associated with the K76T mutation (p-value = 0.004). Using a Bayesian mixture modelling approach, the pyronaridine IC50 were classified into three components: component A (IC50 median 15.9 nM), component B (IC50 median 34.2 nM) and component C (IC50 median 63.3 nM). The K76T mutation was represented in 46.3% of the isolates in component A, 47.2% of the isolates in component B and 73.3% of the isolates in component C (p-value = 0.021). These results showed the ex vivo reduced susceptibility to pyronaridine, i.e., IC50 > 60 nM, associated with the K76T mutation.

  20. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo.

    PubMed

    Yang, Jing; Ikezoe, Takayuki; Nishioka, Chie; Tasaka, Taizo; Taniguchi, Ayuko; Kuwayama, Yoshio; Komatsu, Naoki; Bandobashi, Kentaro; Togitani, Kazuto; Koeffler, H Phillip; Taguchi, Hirokuni; Yokoyama, Akihito

    2007-09-15

    Aurora kinases play an important role in chromosome alignment, segregation, and cytokinesis during mitosis. We have recently shown that hematopoietic malignant cells including those from acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) aberrantly expressed Aurora A and B kinases, and ZM447439, a potent inhibitor of Aurora kinases, effectively induced growth arrest and apoptosis of a variety of leukemia cells. The present study explored the effect of AZD1152, a highly selective inhibitor of Aurora B kinase, on various types of human leukemia cells. AZD1152 inhibited the proliferation of AML lines (HL-60, NB4, MOLM13), ALL line (PALL-2), biphenotypic leukemia (MV4-11), acute eosinophilic leukemia (EOL-1), and the blast crisis of chronic myeloid leukemia K562 cells with an IC50 ranging from 3 nM to 40 nM, as measured by thymidine uptake on day 2 of culture. These cells had 4N/8N DNA content followed by apoptosis, as measured by cell-cycle analysis and annexin V staining, respectively. Of note, AZD1152 synergistically enhanced the antiproliferative activity of vincristine, a tubulin depolymerizing agent, and daunorubicin, a topoisomerase II inhibitor, against the MOLM13 and PALL-2 cells in vitro. Furthermore, AZD1152 potentiated the action of vincristine and daunorubicin in a MOLM13 murine xenograft model. Taken together, AZD1152 is a promising new agent for treatment of individuals with leukemia. The combined administration of AZD1152 and conventional chemotherapeutic agent to patients with leukemia warrants further investigation.

  1. Cholinergic and neuroprotective drugs for the treatment of Alzheimer and neuronal vascular diseases. II. Synthesis, biological assessment, and molecular modelling of new tacrine analogues from highly substituted 2-aminopyridine-3-carbonitriles.

    PubMed

    Samadi, Abdelouahid; Valderas, Carolina; de los Ríos, Cristóbal; Bastida, Agatha; Chioua, Mourad; González-Lafuente, Laura; Colmena, Inés; Gandía, Luis; Romero, Alejandro; Del Barrio, Laura; Martín-de-Saavedra, María D; López, Manuela G; Villarroya, Mercedes; Marco-Contelles, José

    2011-01-01

    The synthesis, biological assessment, and molecular modelling of new tacrine analogues 11-22 is described. Compounds 11-22 have been obtained by Friedländer-type reaction of 2-aminopyridine-3-carbonitriles 1-10 with cyclohexanone or 1-benzyl-4-piperidone. The biological evaluation showed that some of these molecules were good AChE inhibitors, in the nanomolar range, and quite selective regarding the inhibition of BuChE, the most potent being 5-amino-2-(dimethylamino)-6,7,8,9-tetrahydrobenzo[1,8-b]-naphthyridine-3-carbonitrile (11) [IC(50) (EeAChE: 14nM); IC(50) (eqBuChE: 5.2μM]. Kinetic studies on the easily available and potent anticholinesterasic compound 5-amino-2-(methoxy)-6,7,8,9-tetrahydrobenzo[1,8-b]-naphthyridine-3-carbonitrile (16) [IC(50) (EeAChE: 64nM); IC(50) (eqBuChE: 9.6μM] showed that this compound is a mixed-type inhibitor (K(i)=69.2nM) of EeAChE. Molecular modelling on inhibitor 16 confirms that this compound, as expected and similarly to tacrine, binds at the catalytic active site of EeAChE. The neuroprotective profile of molecules 11-22 has been investigated in SH-SY5Y neuroblastoma cells stressed with a mixture of oligomycin-A/rotenone. Compound 16 was also able to rescue by 50% cell death induced by okadaic acid in SH-SY5Y cells. From these results we conclude that the neuroprotective profile of these molecules is moderate, the most potent being compounds 12 and 17 which reduced cell death by 29%. Compound 16 does not affect ACh- nor K(+)-induced calcium signals in bovine chromaffin cells. Consequently, tacrine analogues 11-22 can be considered attractive therapeutic molecules on two key pharmacological targets playing key roles in the progression of Alzheimer, that is, cholinergic dysfunction and oxidative stress, as well as in neuronal cerebrovascular diseases. Copyright © 2010. Published by Elsevier Ltd.

  2. Synergistic inhibitory effects of deferasirox in combination with decitabine on leukemia cell lines SKM-1, THP-1, and K-562.

    PubMed

    Li, Nianyi; Chen, Qinfen; Gu, Jingwen; Li, Shuang; Zhao, Guangjie; Wang, Wei; Wang, Zhicheng; Wang, Xiaoqin

    2017-05-30

    A multi-center study from the French Myelodysplastic Syndrome (MDS) Group confirmed that iron chelation therapy is an independent prognostic factor that can increase the survival rate of patients who are suffering from transfusion-dependent low-risk MDS. In this study, we aimed to explore this clinical phenomena in vitro, by exploring the synergistic effect of the iron chelator Deferasirox (DFX) and the DNA methyl transferase inhibitor Decitabine (DAC) in the leukemia cell lines SKM-1, THP-1, and K-562. Treatment with both DFX or DAC promoted apoptosis, induced cell cycle arrest, and inhibited proliferation in all three of these cell lines. The combination of DFX and DAC was much greater than the effect of using either drug alone. DFX showed a synergistic effect with DAC on cell apoptosis in all three cell lines and on cell cycle arrest at the G0/G1 phase in K-562 cells. DFX decreased the ROS levels to varying degrees. In contrast, DAC increased ROS levels and an increase in ROS was also noted when the two drugs were used in combination. Treatment of cells with DAC induced re-expression of ABAT, APAF-1, FADD, HJV, and SMPD3, presumably through demethylation. However the combination of DAC and DFX just had strong synergistic effect on the re-expression of HJV.

  3. Synergistic inhibitory effects of deferasirox in combination with decitabine on leukemia cell lines SKM-1, THP-1, and K-562

    PubMed Central

    Li, Nianyi; Chen, Qinfen; Gu, Jingwen; Li, Shuang; Zhao, Guangjie; Wang, Wei; Wang, Zhicheng; Wang, Xiaoqin

    2017-01-01

    A multi-center study from the French Myelodysplastic Syndrome (MDS) Group confirmed that iron chelation therapy is an independent prognostic factor that can increase the survival rate of patients who are suffering from transfusion-dependent low-risk MDS. In this study, we aimed to explore this clinical phenomena in vitro, by exploring the synergistic effect of the iron chelator Deferasirox (DFX) and the DNA methyl transferase inhibitor Decitabine (DAC) in the leukemia cell lines SKM-1, THP-1, and K-562. Treatment with both DFX or DAC promoted apoptosis, induced cell cycle arrest, and inhibited proliferation in all three of these cell lines. The combination of DFX and DAC was much greater than the effect of using either drug alone. DFX showed a synergistic effect with DAC on cell apoptosis in all three cell lines and on cell cycle arrest at the G0/G1 phase in K-562 cells. DFX decreased the ROS levels to varying degrees. In contrast, DAC increased ROS levels and an increase in ROS was also noted when the two drugs were used in combination. Treatment of cells with DAC induced re-expression of ABAT, APAF-1, FADD, HJV, and SMPD3, presumably through demethylation. However the combination of DAC and DFX just had strong synergistic effect on the re-expression of HJV. PMID:28388554

  4. Curcumin induces apoptosis in human leukemic cell lines through an IFIT2-dependent pathway

    PubMed Central

    Zhang, Yonglu; Kong, Yunyuan; Liu, Shuyuan; Zeng, Lingbing; Wan, Lagen; Zhang, Zhanglin

    2017-01-01

    ABSTRACT Curcumin, the primary bioactive component isolated from turmeric, has been shown to possess variety of biologic functions including anti-cancer activity. However, molecular mechanisms in different cancer cells are various. In the present study, we demonstrated that curcumin induced G2/M cell cycle arrest and apoptosis by increasing the expression levels of cleaved caspase-3, cleaved PARP and decreasing the expression of BCL−2 in U937 human leukemic cells but not in K562 cells. We found some interferon induced genes, especially interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were significantly upregulated when treated with curcumin in U937 cells by gene expression chip array, and further confirmed that the expression of IFIT2 was obviously higher in U937 than that in K562 cells by Western blot assay. In addition, inhibiting the expression of IFIT2 by shRNA in U937 rescued curcumin-induced apoptosis and exogenous overexpression of IFIT2 by lentiviral transduction or treating with IFNγ in K562 cells enhanced anti-cancer activity of curcumin. These results indicated for the first time that curcumin induced leukemic cell apoptosis via an IFIT2-dependent signaling pathways. The present study identified a novel mechanism underlying the antitumor effects of curcumin, and may provide a theoretical basis for curcumin combined with interferon in the cancer therapeutics. PMID:28071969

  5. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    PubMed

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Discovering some novel 7-chloroquinolines carrying a biologically active benzenesulfonamide moiety as a new class of anticancer agents.

    PubMed

    Al-Dosari, Mohammed Salem; Ghorab, Mostafa Mohamed; Al-Said, Mansour Sulaiman; Nissan, Yassin Mohammed

    2013-01-01

    Based on the reported anticancer activity of quinolines, a new series of 7-chloroquinoline derivatives bearing the biologically active benzenesulfonamide moiety 2-17 and 19-25 were synthesized starting with 4,7-dichloroquinolne 1. Compound 17 was the most active compound with IC(50) value 64.41, 75.05 and 30.71 µM compared with Doxorubicin as reference drug with IC(50) values 82.53, 88.32 and 73.72 µM on breast cancer cells, skin cancer cells and neuroblastoma, respectively. All the synthesized compounds were evaluated for their in vitro anticancer activity on breast cancer cells, skin cancer cells and neuroblastoma cells. Most of the synthesized compounds showed moderate activity. In order to suggest the mechanism of action for their cytotoxic activity, molecular docking for all synthesized compounds was done on the active site of phosphoinositide kinase (PI3K) and good results were obtained.

  7. Cellular Location and Expression of Na+, K+-ATPase α Subunits Affect the Anti-Proliferative Activity of Oleandrin

    PubMed Central

    Yang, Peiying; Cartwright, Carrie; Efuet, Ekem; Hamilton, Stanley R.; Wistuba, Ignacio Ivan; Menter, David; Addington, Crandell; Shureiqi, Imad; Newman, Robert A.

    2015-01-01

    The purpose of this study was to investigate whether intracellular distribution of Na+, K+-ATPase α3 subunit, a receptor for cardiac glycosides including oleandrin, is differentially altered in cancer versus normal cells and whether this altered distribution can be therapeutically targeted to inhibit cancer cell survival. The cellular distribution of Na+, K+-ATPase α3 isoform was investigated in paired normal and cancerous mucosa biopsy samples from patients with lung and colorectal cancers by immunohistochemical staining. The effects of oleandrin on α3 subunit intracellular distribution, cell death, proliferation, and EKR phosphorylation were examined in differentiated and undifferentiated human colon cancer CaCO-2 cells. While Na+, K+-ATPase α3 isoform was predominantly located near the cytoplasmic membrane in normal human colon and lung epithelia, the expression of this subunit in their paired cancer epithelia was shifted to a peri-nuclear position in both a qualitative and quantitative manner. Similarly, distribution of α3 isoform was also shifted from a cytoplasmic membrane location in differentiated human colon cancer CaCO-2 cells to a peri-nuclear position in undifferentiated CaCO-2 cells. Intriguingly, oleandrin exerted threefold stronger anti-proliferative activity in undifferentiated CaCO-2 cells (IC50, 8.25 nM) than in differentiated CaCO-2 cells (IC50, >25 nM). Oleandrin (10 to 20 nM) caused an autophagic cell death and altered ERK phosphorylation in undifferentiated but not in differentiated CaCO-2 cells. These data demonstrate that the intracellular location of Na+, K+-ATPase α3 isoform is altered in human cancer versus normal cells. These changes in α3 cellular location and abundance may indicate a potential target of opportunity for cancer therapy. PMID:23073998

  8. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Tohru; Department of Molecular Hematology/Oncology, Tohoku University Graduate School, Sendai; Okamoto, Koji

    2014-11-07

    Highlights: • Treatment with ALA induces erythroid differentiation of K562 cells. • Transportation of ALA into erythroid cells occurs predominantly via SLC36A1. • ALA restores defects in ALAS2 in human iPS cell-derived erythroblasts. • ALA may represent a novel therapeutic option for CSA caused by ALAS2 mutations. - Abstract: Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), amore » crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly expressed in erythroid cells. Thus, gamma-aminobutyric acid (GABA) was added to K562 cells to competitively inhibit SLC36A1-mediated transport. GABA treatment significantly impeded the ALA-mediated increase in the number of hemoglobinized cells as well as the induction of HBG, HBA, and HMOX1. Finally, small-interfering RNA-mediated knockdown of ALAS2 in HiDEP cells considerably decreased the expression of HBA, HBG, and HMOX1, and these expression levels were rescued with ALA treatment. In summary, ALA appears to be transported into erythroid cells mainly by SLC36A1 and is utilized to generate heme. ALA may represent a novel therapeutic option for CSA treatment, particularly for cases harboring ALAS2 mutations.« less

  9. Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts.

    PubMed

    Bigović, Dubravka; Savikin, Katarina; Janković, Teodora; Menković, Nebojsa; Zdunić, Gordana; Stanojković, Tatjana; Djurić, Zorica

    2011-06-01

    Flowers of Helichrysum plicatum were extracted under different experimental conditions, and their antioxidant activity was determined by DPPH radical scavenging assay. Extracts obtained with higher concentration of ethyl acetate (90% or 100%) were found to contain the greatest amount of total phenolics (> 250 mg gallic acid equivalents/g of dried extract), and high correlation between total phenolic content and antiradical activity was observed (r = -0.79). Based on the total phenolic content and antiradical activity, some extracts were selected for investigation of cytotoxic activity toward PC3, HeLa and K562 human cancer cell lines in vitro. All tested extracts exhibited moderate activity against HeLa cells (41.9-42.1 microg/mL), whereas the extract obtained with 100% ethyl acetate was the most active against K562 and PC3 cell lines (25.9 and 39.2 microg/mL, respectively). Statistical analysis revealed significant correlation between total phenolic content and cytotoxic activity against PC3 and K562 cells. HPLC identification of phenolic compounds from the extracts indicated the presence of apigenin, naringenin and kaempferol as free aglycones, and glycosides of apigenin, naringenin, quercetin and kaempferol. Among aglycones, kaempferol displayed moderate cytostatic activity against all cell lines (24.8-64.7 microM).

  10. The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil.

    PubMed

    Bui, Peter H; Quesada, Arnulfo; Handforth, Adrian; Hankinson, Oliver

    2008-07-01

    A novel mibefradil derivative, NNC55-0396, designed to be hydrolysis-resistant, was shown to be a selective T-type Ca(2+) channel inhibitor without L-type Ca(2+) channel efficacy. However, its effects on cytochromes P450 (P450s) have not previously been examined. We investigated the inhibitory effects of NNC55-0396 toward seven major recombinant human P450s--CYP3A4, CYP2D6, CYP1A2, CYP2C9, CYP2C8, CYPC19, and CYP2E1--and compared its effects with those of mibefradil and its hydrolyzed metabolite, Ro40-5966. Our results show that CYP3A4 and CYP2D6 are the two P450s most affected by mibefradil, Ro40-5966, and NNC55-0396. Mibefradil (IC(50) = 33 +/- 3 nM, K(i) = 23 +/- 0.5 nM) and Ro40-5966 (IC(50) = 30 +/- 7.8 nM, K(i) = 21 +/- 2.8 nM) have a 9- to 10-fold greater inhibitory activity toward recombinant CYP3A4 benzyloxy-4-trifluoromethylcoumarin-O-debenzylation activity than NNC55-0396 (IC(50) = 300 +/- 30 nM, K(i) = 210 +/- 6 nM). More dramatically, mibefradil (IC(50) = 566 +/- 71 nM, K(i) = 202 +/- 39 nM) shows 19-fold higher inhibition of CYP3A-associated testosterone 6beta-hydroxylase activity in human liver microsomes compared with NNC55-0396 (IC(50) = 11 +/- 1.1 microM, K(i) = 3.9 +/- 0.4 microM). Loss of testosterone 6beta-hydroxylase activity by recombinant CYP3A4 was shown to be time- and concentration-dependent with both compounds. However, NNC55-0396 (K(I) = 3.87 microM, K(inact) = 0.061/min) is a much less potent mechanism-based inhibitor than mibefradil (K(I) = 83 nM, K(inact) = 0.048/min). In contrast, NNC55-0396 (IC(50) = 29 +/- 1.2 nM, K(i) = 2.8 +/- 0.3 nM) and Ro40-5966 (IC(50) = 46 +/- 11 nM, K(i) = 4.5 +/- 0.02 nM) have a 3- to 4-fold greater inhibitory activity toward recombinant CYP2D6 than mibefradil (IC(50) = 129 +/- 21 nM, K(i) = 12.7 +/- 0.9 nM). Our results suggest that NNC55-0396 could be a more favorable T-type Ca(2+) antagonist than its parent compound, mibefradil, which was withdrawn from the market because of strong inhibition of CYP3A4.

  11. Correlation between in vitro and in vivo antimalarial activity of compounds using CQ-sensitive and CQ-resistant strains of Plasmodium falciparum and CQ-resistant strain of P. yoelii.

    PubMed

    Srivastava, Kumkum; Agarwal, Pooja; Soni, Awakash; Puri, S K

    2017-07-01

    Present efforts have been made to establish a correlation between in vitro and in vivo antimalarial activity using MIC, IC 50 and IC 90 values against CQ-sensitive (3D7) and CQ-resistant (K1) strains of Plasmodium falciparum and in vivo activity against Plasmodium yoelii. The method of discriminant function analysis (DFA) was applied to analyze the data. It was observed that in vitro IC 90 values against both 3D7 and K1 strains (p < 0.001) have strong correlation with in vivo curative activity. The respective IC 50 and IC 90 values of compounds, which cured mice (i.e., animals did not show recrudescence of parasitemia even after 60 days posttreatment), ranged between 3 and 14 nM and 14 and 186 nM against 3D7 and between 9 and 65 nM and 24 and 359 nM against the K1 strain of P. falciparum. Whereas the IC 50 and IC 90 values of compounds which exhibited in vivo suppressive activity in mice ranged between 10 and 307 nm and 61 and >965 nM, respectively, against 3D7 and 75 and >806 nm and 241 and >1232 nM against the K1 strain of P. falciparum. The findings suggest that IC 90 values against both 3D7 and K1 strains (p < 0.02) are the main contributors for the prediction of in vivo curative activity of a new molecule. Apart from this, a reasonable correlation between MIC and IC 50 values of compounds has also been established.

  12. Stress-induced release of HSC70 from human tumors.

    PubMed

    Barreto, Alfonso; Gonzalez, John Mario; Kabingu, Edith; Asea, Alexzander; Fiorentino, Susana

    2003-04-01

    In this study, we demonstrate that the pro-inflammatory cytokine interferon-gamma (IFN-gamma) induces the active release of the constitutive form of the 70-kDa heat shock protein (HSC70) from K562 erythroleukemic cells. Treatment of K562 cells with IFN-gamma induced the upregulation of the inducible form of the 70-kDa heat shock protein (HSP70), but not the constitutive form of HSC70 within the cytosol, in a proteasome-dependent manner. In addition, IFN-gamma induced the downregulation of surface-bound HSC70, but did not significantly alter surface-bound HSP70 expression. These findings indicate that HSC70 can be actively released from tumor cells and is indicative of a previously unknown mechanism by which immune modulators stimulate the release of intracellular HSC70. This mechanism may account for the potent chaperokine activity of heat shock proteins recently observed during heat shock protein-based immunotherapy against a variety of cancers.

  13. Vaccination with autologous myeloblasts admixed with GM-K562 cells in patients with advanced MDS or AML after allogeneic HSCT

    PubMed Central

    Kim, Haesook T.; Bavli, Natalie; Mihm, Martin; Pozdnyakova, Olga; Piesche, Matthias; Daley, Heather; Reynolds, Carol; Souders, Nicholas C.; Cutler, Corey; Koreth, John; Alyea, Edwin P.; Antin, Joseph H.; Ritz, Jerome; Dranoff, Glenn; Soiffer, Robert J.

    2017-01-01

    We report a clinical trial testing vaccination of autologous myeloblasts admixed with granulocyte-macrophage colony-stimulating factor secreting K562 cells after allogeneic hematopoietic stem cell transplantation (HSCT). Patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) with ≥5% marrow blasts underwent myeloblast collection before HSCT. At approximately day +30, 6 vaccines composed of irradiated autologous myeloblasts mixed with GM-K562 were administered. Tacrolimus-based graft-versus-host disease (GVHD) prophylaxis was not tapered until vaccine completion (∼day 100). Thirty-three patients with AML (25) and MDS (8) enrolled, 16 (48%) had ≥5% marrow blasts at transplantation. The most common vaccine toxicity was injection site reactions. One patient developed severe eosinophilia and died of eosinophilic myocarditis. With a median follow-up of 67 months, cumulative incidence of grade 2-4 acute and chronic GVHD were 24% and 33%, respectively. Relapse and nonrelapse mortality were 48% and 9%, respectively. Progression-free survival (PFS) and overall survival (OS) at 5 years were 39% and 39%. Vaccinated patients who were transplanted with active disease (≥5% marrow blasts) had similar OS and PFS at 5 years compared with vaccinated patients transplanted with <5% marrow blasts (OS, 44% vs 35%, respectively, P = .81; PFS, 44% vs 35%, respectively, P = .34). Postvaccination antibody responses to angiopoietin-2 was associated with superior OS (hazard ratio [HR], 0.43; P = .031) and PFS (HR, 0.5; P = .036). Patients transplanted with active disease had more frequent angiopoeitin-2 antibody responses (62.5% vs 20%, P = .029) than those transplanted in remission. GM-K562/leukemia cell vaccination induces biologic activity, even in patients transplanted with active MDS/AML. This study is registered at www.clinicaltrials.gov as #NCT 00809250. PMID:29296875

  14. Anti-Helicobacter pylori activity of bioactive components isolated from Hericium erinaceus.

    PubMed

    Liu, Jian-Hui; Li, Liang; Shang, Xiao-Dong; Zhang, Jun-Ling; Tan, Qi

    2016-05-13

    The fungus Hericium erinaceus (Bull.) Pers is used in Chinese traditional medicine to treat symptoms related to gastric ulcers. Different extracts from the fungus were assessed for anti-Helicobacter pylori activity to investigate the antibacterial activity of the ethanol extracts from H. erinaceus and verify the traditional indication of use. The fruiting bodies of H. erinaceus were concentrated with ethanol by HPD-100 macroporous resin and the whole extract was partitioned by petroleum ether and chloroform to afford fractions with using a silica gel column. Several pure compounds of petroleum ether extracts were obtained and analyzed using nuclear magnetic resonance (NMR). The activity of the extracts and fractions towards H. pylori was assessed by the microdilution assay and by the disk diffusion assay in vitro. From the most active fraction, two pure compounds were isolated and identified as the main components with anti-H. pylori activity from the fungus H. erinaceus. The cytotoxicity of these two compounds against the human erythroleu-kemia cell line K562 was also evaluated. The crude ethanol extracts from the fungus H. erinaceus were inhibitory to H. pylori. The petroleum ether extracts (PE1s, PE2s) and the chloroform extracts (TEs) demonstrated strong inhibition to H. pylori. The inhibition of H. pylori was observed through an agar dilution test with minimal inhibition concentration (MIC) values from 400μg/mL to 12.5µg/mL. Two pure compounds, 1-(5-chloro-2-hydroxyphenyl)-3-methyl-1-butanone and 2,5-bis(methoxycarbonyl)terephthalic acid were isolated from the petroleum ether fractions and identified using (1)H NMR and (13)C NMR spectra analysis. The MIC value for 1-(5-chloro-2-hydroxyphenyl)-3-methyl-1-butanone was 12.5-50µg/mL and the MIC value for 2,5-bis(methoxycarbonyl)terephthalic acid was 6.25-25µg/mL. Both two compounds showed weak cytotoxicity against K562 with IC50<200mM. This study revealed that the extracts from petroleum ether contribute to the anti-H. pylori activity. The compounds obtained from petroleum ether extracts, 1-(5-chloro-2-hydroxyphenyl)-3-methyl-1-butanone and 2,5-bis(methoxycarbonyl)terephthalic acid, inhibit the growth of H. pylori. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. A novel glutamine-rich putative transcriptional adaptor protein (TIG-1), preferentially expressed in placental and bone-marrow tissues.

    PubMed

    Abraham, S; Solomon, W B

    2000-09-19

    We used a subtractive hybridization protocol to identify novel expressed sequence tags (ESTs) corresponding to mRNAs whose expression was induced upon exposure of the human leukemia cell line K562 to the phorbol ester 12-O-tetradecanolyphorbol-13-acetate (TPA). The complete open reading frame of one of the novel ESTs, named TIG-1, was obtained by screening K562 cell and placental cDNA libraries. The deduced open reading frame of the TIG-1 cDNA encodes for a glutamine repeat-rich protein with a predicted molecular weight of 63kDa. The predicted open reading frame also contains a consensus bipartite nuclear localization signal, though no specific DNA-binding domain is found. The corresponding TIG-1 mRNA is ubiquitously expressed. Placental tissue expresses the TIG-1 mRNA 200 times more than the lowest expressing tissues such as kidney and lung. There is also preferential TIG-1 mRNA expression in cells of bone-marrow lineage.In-vitro transcription/translation of the TIG-1 cDNA yielded a polypeptide with an apparent molecular weight of 97kDa. Using polyclonal antibodies obtained from a rabbit immunized with the carboxy-terminal portion of bacterially expressed TIG-1 protein, a polypeptide with molecular weight of 97kDa was identified by Western blot analyses of protein lysates obtained from K562 cells. Cotransfection assays of K562 cells, using a GAL4-TIG-1 fusion gene and GAL4 operator-CAT, indicate that the TIG-1 protein may have transcriptional regulatory activity when tethered to DNA. We hypothesize that this novel glutamine-rich protein participates in a protein complex that regulates gene transcription. It has been demonstrated by Naar et al. (Naar, A.M., Beaurang, P.A., Zhou, S., Abraham, S., Solomon, W.B., Tjian, R., 1999, Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828-830) that the amino acid sequences of peptide fragments obtained from a polypeptide found in a complex of proteins that alters chromatin structure (ARC) are identical to portions of the deduced open reading frame of TIG-1 mRNA.

  16. Diosgenin-3-O-alpha-L-rhamnopyranosyl-(1 --> 4)-beta-D-glucopyranoside obtained as a new anticancer agent from Dioscorea futschauensis induces apoptosis on human colon carcinoma HCT-15 cells via mitochondria-controlled apoptotic pathway.

    PubMed

    Wang, San-Long; Cai, Bing; Cui, Cheng-Bin; Liu, Hong-Wei; Wu, Chun-Fu; Yao, Xin-Sheng

    2004-06-01

    Diosgenin-3-O-alpha-L-rhamnopyranosyl-(1 --> 4)-beta-D-glucopyranoside (DRG) is a well-known pentacyclic triterpene glycoside newly isolated from the rhizomes of Dioscorea futschauensis R. Kunth (Dioscoreaceae) by our group. In the present work, the inhibitory effect of DRG on the cell proliferation of human cancer cell lines was examined to reveal for the first time that DRG shows stronger anticancer activity than that of the positive control cisplatin. DRG inhibited the proliferation of human cancer cells, A431, A2780, A549, K562, and HCT-15, with IC50 (micromol L(-1)) values of 9.33 +/- 0.22, 18.7 +/- 0.16, 9.98 +/- 0.38, 6.44 +/- 0.10, and 5.86 +/- 0.14 respectively. It was then found, by morphological observation, "DNA ladder" detection and flow cytometric analysis, that DRG exerts its anticancer effect through inducing apoptosis on HCT-15 cells. Furthermore, it has been demonstrated that DRG triggers a mitochondria-controlled apoptotic pathway to induce apoptosis on HCT-15 cells, which involves the reduction of the mitochondrial potential (deltapsim), the release of cytochrome c from mitochondria into the cytosol, and the down-regulation of the ratio of Bcl-2/Bax expression level. The present results reasonably suggest that regulating the balance of Bcl-2/Bax expression level plays a key role in the DRG-induced apoptosis. Such findings provide novel knowledge to elucidate the biological properties of DRG, even though DRG was discovered early in the late 1960s. These results suggest that DRG may be a good candidate as a chemotherapeutic agent to treat human colon carcinoma.

  17. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Alexander M.; Brundage, Kathleen M.; Center for Immunopathology and Microbial Pathogenesis, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506

    2007-06-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesizedmore » that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.« less

  18. Polyphenol profile by UHPLC-MS/MS, anti-glycation, antioxidant and cytotoxic activities of several samples of propolis from the northeastern semi-arid region of Brazil.

    PubMed

    Xavier, Jadriane de Almeida; Valentim, Iara Barros; Camatari, Fabiana O S; de Almeida, Alberto M M; Goulart, Henrique Fonseca; Ferro, Jamylle Nunes de Souza; Barreto, Emiliano de Oliveira; Cavalcanti, Bruno Coelho; Bottoli, Carla B G; Goulart, Marília Oliveira Fonseca

    2017-12-01

    Propolis has promising biological activities. Propolis samples from the Northeast of Bahia, Brazil - sample A from Ribeira do Pombal and B, from Tucano - were investigated, with new information regarding their biological activities. This paper describes the chemical profile, antioxidant, anti-glycation and cytotoxic activities of these propolis samples. Ethanol extracts of these propolis samples (EEP) and their fractions were analyzed to determine total phenolic content (TPC); antioxidant capacity through DPPH • , FRAP and lipid peroxidation; anti-glycation activity, by an in vitro glucose (10 mg/mL) bovine serum albumine (1 mg/mL) assay, during 7 d; cytotoxic activity on cancer (SF295, HCT-116, OVCAR-8, MDA-MB435, MX-1, MCF7, HL60, JURKAT, MOLT-4, K562, PC3, DU145) and normal cell lines (V79) at 0.04-25 μg/mL concentrations, for 72 h. The determination of primary phenols by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) and volatile organic compounds content by gas chromatography-mass spectrometry (GC-MS) were also performed. The EEP polar fractions exhibited up to 90% protection against lipid peroxidation. The IC 50 value for anti-glycation activity of EEP was between 16.5 and 19.2 μg/mL, close to aminoguanidine (IC 50  = 7.7 μg/mL). The use of UHPLC-MS/MS and GC-MS allowed the identification of 12 bioactive phenols in the EEP and 24 volatile compounds, all already reported. The samples present good antioxidant/anti-glycation/cytotoxic activities and a plethora of biologically active compounds. These results suggest a potential role of propolis in targeting ageing and diseases associated with oxidative and carbonylic stress, aggregating value to them.

  19. Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells.

    PubMed

    Dash, Tapan K; Konkimalla, V Badireenath

    2017-02-01

    Curcumin is very well established as a chemo-therapeutic, chemo-preventive and chemo-sensitizing agent in diverse disease conditions. As the isolated pure form has poor solubility and pharmacokinetic problems, therefore it is encapsulated in to several nano-formulations to improve its bioavailability. Here in the current study, we aim to compare different nano-formulations of curcumin for their chemo-sensitizing activity in doxorubicin (DOX) resistant K562 cells. Four different curcumin formulations were prepared namely DMSO assisted curcumin nano-dispersion (CurD, 260 nm), liposomal curcumin (CurL, 165 nm), MPEG-PCL micellar curcumin (CurM, 18 nm) and cyclodextrin encapsulated curcumin (CurN, 37 nm). The formulations were subjected to particle characterizations (size, zeta potential, release studies), followed by biological assays such as cellular uptake, P-gp inhibitory activity and reversal of DOX resistance by co-treatment with DOX. Curcumin uptake in K562N and K562R cells was mildly reduced when treated with CurL and CurM, while for CurD and CurN the uptake remained equivalent. However, CurL retained P-gp inhibitory activity of curcumin and with a considerable chemo-sensitizing effect but CurM showed no P-gp inhibitory activity. CurN retained above biological activities, but requires a secondary carrier under in vivo conditions. From the results, CurM was found to be most suitable for solubilization of curcumin where as CurL can be considered as most suitable nano-formulation for reversal of DOX resistance.

  20. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    PubMed

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  1. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    NASA Astrophysics Data System (ADS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  2. Decreased natural killer cell activity in atopic eczema.

    PubMed Central

    Hall, T J; Rycroft, R; Brostoff, J

    1985-01-01

    We have studied NK cell activity in atopic and non-atopic subjects using a standard 51Cr-release assay and K562 target cells. In atopics (AT) with allergic rhinitis and/or asthma, NK cell activity was similar to that in non-atopic (N) subjects, whilst patients with severe atopic eczema (AE) had depressed NK cell activity compared to AT or N subjects. In addition, circulating T-cell numbers and Con A responsiveness was decreased in AE, although neither parameter was correlated with decreased NK cell activity. However, decreased NK cell activity in atopic eczema was positively correlated with decreased numbers of Fc gamma + lymphocytes (P = 0.01) and decreased effector: target cell binding (P = 0.05), and negatively correlated with increased monocytes in AE (P = 0.09). AE NK cell activity was equally or more sensitive to the inhibitory effects of drugs such as dibutyryl cyclic AMP, prostaglandins (PG) D2,E2 and histamine. The relative percentage increase in NK cell activity by the interferon inducer poly I:C was similar in AE patients and controls. The results suggest that reduced numbers of circulating NK cells and pre-NK cells account for the depressed level of NK cell activity in subjects with severe atopic eczema. PMID:3876984

  3. PA-6 inhibits inward rectifier currents carried by V93I and D172N gain-of-function KIR2.1 channels, but increases channel protein expression.

    PubMed

    Ji, Yuan; Veldhuis, Marlieke G; Zandvoort, Jantien; Romunde, Fee L; Houtman, Marien J C; Duran, Karen; van Haaften, Gijs; Zangerl-Plessl, Eva-Maria; Takanari, Hiroki; Stary-Weinzinger, Anna; van der Heyden, Marcel A G

    2017-07-15

    The inward rectifier potassium current I K1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased I K1 , short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC 50  = 14 nM with inside-out patch clamp methodology) and specific I K1 inhibitor that interacts with the cytoplasmic pore region of the K IR 2.1 ion channel, encoded by KCNJ2. At 10 μM, PA-6 increases wild-type (WT) K IR 2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N K IR 2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. Molecular modelling was performed with the human K IR 2.1 closed state homology model using FlexX. WT and mutant K IR 2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. K IR 2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. PA-6 docking in the V93I/D172N double mutant homology model of K IR 2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC 50  = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC 50  = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 μM of PA-6 inhibited outward I K1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 μM, 24 h) increased K IR 2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular K IR 2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 μM). 1) KCNJ2 gain-of-function mutations V93I and D172N in the K IR 2.1 ion channel do not impair PA-6 mediated inhibition of I K1 , 2) PA-6 elevates K IR 2.1 protein expression and induces intracellular K IR 2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.

  4. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications

    PubMed Central

    LAPTEVA, NATALIA; DURETT, APRIL G.; SUN, JIALI; ROLLINS, LISA A.; HUYE, LESLIE L.; FANG, JIAN; DANDEKAR, VARADA; MEI, ZHUYONG; JACKSON, KIMBERLEY; VERA, JUAN; ANDO, JUN; NGO, MINHTRAN C.; COUSTAN-SMITH, ELAINE; CAMPANA, DARIO; SZMANIA, SUSANN; GARG, TARUN; MORENO-BOST, AMBERLY; VANRHEE, FRITS; GEE, ADRIAN P.; ROONEY, CLIONA M.

    2016-01-01

    Background aims Interest in natural killer (NK) cell-based immunotherapy has resurged since new protocols for the purification and expansion of large numbers of clinical-grade cells have become available. Methods We have successfully adapted a previously described NK expansion method that uses K562 cells expressing interleukin (IL)-15 and 4-1 BB Ligand (BBL) (K562-mb15-41BBL) to grow NK cells in novel gas-permeable static cell culture flasks (G-Rex). Results Using this system we produced up to 19 × 109 functional NK cells from unseparated apheresis products, starting with 15 × 107 CD3− CD56+ NK cells, within 8–10 days of culture. The G-Rex yielded a higher fold expansion of NK cells than conventional gas-permeable bags and required no cell manipulation or feeding during the culture period. We also showed that K562-mb15-41BBL cells up-regulated surface HLA class I antigen expression upon stimulation with the supernatants from NK cultures and stimulated alloreactive CD8+ T cells within the NK cultures. However, these CD3+ T cells could be removed successfully using the CliniMACS system. We describe our optimized NK cell cryopreservation method and show that the NK cells are viable and functional even after 12 months of cryopreservation. Conclusions We have successfully developed a static culture protocol for large-scale expansion of NK cells in the gas permeable G-Rex system under good manufacturing practice (GMP) conditions. This strategy is currently being used to produce NK cells for cancer immunotherapy. PMID:22900959

  5. Purification and Characterization of a Novel and Robust L-Asparaginase Having Low-Glutaminase Activity from Bacillus licheniformis: In Vitro Evaluation of Anti-Cancerous Properties

    PubMed Central

    Mahajan, Richi V.; Kumar, Vinod; Rajendran, Vinoth; Saran, Saurabh; Ghosh, Prahlad C.; Saxena, Rajendra Kumar

    2014-01-01

    L-asparaginase having low glutaminase has been a key therapeutic agent in the treatment of acute lymphpoblastic leukemia (A.L.L). In the present study, an extracellular L-asparaginase with low glutaminase activity, produced by Bacillus licheniformis was purified to homogeneity. Protein was found to be a homotetramer of 134.8 KDa with monomeric size of 33.7 KDa and very specific for its natural substrate i.e. L-asparagine. The activity of purified L-asparaginase enhanced in presence of cations including Na+ and K+, whereas it was moderately inhibited in the presence of divalent cations and thiol group blocking reagents. The purified enzyme was maximally active over the range of pH 6.0 to 10.0 and temperature of 40°C and enzyme was stable maximum at pH 9.0 and −20°C. CD spectra of L-asparaginase predicted the enzyme to consist of 63.05% α- helix and 3.29% β-sheets in its native form with T222 of 58°C. Fluorescent spectroscopy showed the protein to be stable even in the presence of more than 3 M GdHCl. Kinetic parameters Km, Vmax and kcat of purified enzyme were found as 1.4×10−5 M, 4.03 IU and 2.68×103 s−1, respectively. The purified L-asparaginase had cytotoxic activity against various cancerous cell lines viz. Jurkat clone E6-1, MCF-7 and K-562 with IC50 of 0.22 IU, 0.78 IU and 0.153 IU respectively. However the enzyme had no toxic effect on human erythrocytes and CHO cell lines hence should be considered potential candidate for further pharmaceutical use as an anticancer drug. PMID:24905227

  6. Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti-cancerous properties.

    PubMed

    Mahajan, Richi V; Kumar, Vinod; Rajendran, Vinoth; Saran, Saurabh; Ghosh, Prahlad C; Saxena, Rajendra Kumar

    2014-01-01

    L-asparaginase having low glutaminase has been a key therapeutic agent in the treatment of acute lymphpoblastic leukemia (A.L.L). In the present study, an extracellular L-asparaginase with low glutaminase activity, produced by Bacillus licheniformis was purified to homogeneity. Protein was found to be a homotetramer of 134.8 KDa with monomeric size of 33.7 KDa and very specific for its natural substrate i.e. L-asparagine. The activity of purified L-asparaginase enhanced in presence of cations including Na+ and K+, whereas it was moderately inhibited in the presence of divalent cations and thiol group blocking reagents. The purified enzyme was maximally active over the range of pH 6.0 to 10.0 and temperature of 40°C and enzyme was stable maximum at pH 9.0 and -20°C. CD spectra of L-asparaginase predicted the enzyme to consist of 63.05% α-helix and 3.29% β-sheets in its native form with T222 of 58°C. Fluorescent spectroscopy showed the protein to be stable even in the presence of more than 3 M GdHCl. Kinetic parameters Km, Vmax and kcat of purified enzyme were found as 1.4×10(-5) M, 4.03 IU and 2.68×10(3) s(-1), respectively. The purified L-asparaginase had cytotoxic activity against various cancerous cell lines viz. Jurkat clone E6-1, MCF-7 and K-562 with IC50 of 0.22 IU, 0.78 IU and 0.153 IU respectively. However the enzyme had no toxic effect on human erythrocytes and CHO cell lines hence should be considered potential candidate for further pharmaceutical use as an anticancer drug.

  7. DNA damage, lysosomal degradation and Bcl-xL deamidation in doxycycline- and minocycline-induced cell death in the K562 leukemic cell line.

    PubMed

    Fares, Mona; Abedi-Valugerdi, Manuchehr; Hassan, Moustapha; Potácová, Zuzana

    2015-07-31

    We investigated mechanisms of cytotoxicity induced by doxycycline (doxy) and minocycline (mino) in the chronic myeloid leukemia K562 cell line. Doxy and mino induced cell death in exposure-dependent manner. While annexin V/propidium iodide staining was consistent with apoptosis, the morphological changes in Giemsa staining were more equivocal. A pancaspase inhibitor Z-VAD-FMK partially reverted cell death morphology, but concurrently completely prevented PARP cleavage. Mitochondrial involvement was detected as dissipation of mitochondrial membrane potential and cytochrome C release. DNA double strand breaks detected with γH2AX antibody and caspase-2 activation were found early after the treatment start, but caspase-3 activation was a late event. Decrement of Bcl-xL protein levels and electrophoretic shift of Bcl-xL molecule were induced by both drugs. Phosphorylation of Bcl-xL at serine 62 was ruled out. Similarly, Bcr/Abl tyrosine kinase levels were decreased. Lysosomal inhibitor chloroquine restored Bcl-xL and Bcr/Abl protein levels and inhibited caspase-3 activation. Thus, the cytotoxicity of doxy and mino in K562 cells is mediated by DNA damage, Bcl-xL deamidation and lysosomal degradation with activation of mitochondrial pathway of apoptosis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkes, J.M.; Kajimura, M.; Scott, D.R.

    Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of themore » H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the (Ca)i transient.« less

  9. Synthesis, structure elucidation, DNA-PK and PI3K and anti-cancer activity of 8- and 6-aryl-substituted-1-3-benzoxazines.

    PubMed

    Morrison, Rick; Al-Rawi, Jasim M A; Jennings, Ian G; Thompson, Philip E; Angove, Michael J

    2016-03-03

    The synthesis of 6-aryl, 8- aryl, and 8-aryl-6-chloro-2-morpholino-1,3-benzoxazines with potent activity against PI3K and DNA-PK is described. Synthesis of thirty one analogues was facilitated by an improved synthesis of 3-bromo-2-hydroxybenzoic acid 13 by de-sulphonation of 3-bromo-2-hydroxy-5-sulfobenzoic acid 12 en route to 2-methylthio-substituted-benzoxazine intermediates 17-19. From this series, compound 20k (LTURM34) (dibenzo[b,d]thiophen-4-yl) (IC50 = 0.034 μM) was identified as a specific DNA-PK inhibitor, 170 fold more selective for DNA-PK activity compared to PI3K activity. Other compounds of the series show markedly altered selectivity for various PI3K isoforms including compound 20i (8-(naphthalen-1-yl) a potent and quite selective PI3Kδ inhibitor (IC50 = 0.64 μM). Finally, nine compounds were evaluated and showed antiproliferative activity against an NCI panel of cancer cell lines. Compound 20i (8-(naphthalen-1-yl) showed strong anti-proliferative activity against A498 renal cancer cells that warrants further investigation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Effect of Spaceflight on the Functions of NK and LAK Cells

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Grimm, Elizabeth A.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Spaceflight-associated stress alters some aspects of the human immune response. In this study, we determined the effects of 10 days aboard the Space Shuttle on the cytotoxic activity of NK and LAK cells. The subjects of this study were crewmembers of two 10-day shuttle flights. Ten-ml blood specimens were obtained from ten astronauts 10 days before launch, immediately after landing, and 3 days after landing. PBMCs were separated from the blood specimens and stored at -800 C. All PBMCs were thawed simultaneously, and the cytotoxic activities of NK and LAK cells were measured by a 4-hour Cr-51 release assay. K562 cells were used to assess NK-cell cytotoxicity. After 4 days of IL-2 activation, the LAK cell cytotoxic activity was determined using K562 and Daudi cells as the target cells. NK-cell cytotoxicity was decreased at landing (p less than 0.0005) in 9/10 astronauts, and in most cases recovered to preflight levels by 3 days after landing; NK-cell cytotoxicity was increased in one astronaut at landing. LAK cytotoxic activity against K562 cells was decreased at landing in 6/10 astronauts (p=0.018), and activity against Daudi cells was decreased in 7/10 astronauts (p=0.01). Phenotyping of PBMCs and LAK cells showed alterations in some surface markers and adhesion molecules (CD1 1 b, CD1 1 c, CD1 1 a, CD1 6, L-Selectin and CD3). Thus spaceflight leads to a decrease in the functions of NK and LAK cells in most astronauts.

  11. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    PubMed Central

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-01-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate for gene therapy of nondividing cells, a very high MOI or improvements in basic aspects of AAV-based vectors may be necessary to improve integration frequency in the rapidly dividing hematopoietic cell population. PMID:9032306

  12. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    PubMed

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-03-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate for gene therapy of nondividing cells, a very high MOI or improvements in basic aspects of AAV-based vectors may be necessary to improve integration frequency in the rapidly dividing hematopoietic cell population.

  13. Metabolic changes associated with metformin potentiates Bcl-2 inhibitor, Venetoclax, and CDK9 inhibitor, BAY1143572 and reduces viability of lymphoma cells.

    PubMed

    Chukkapalli, Vineela; Gordon, Leo I; Venugopal, Parameswaran; Borgia, Jeffrey A; Karmali, Reem

    2018-04-20

    Metformin exerts direct anti-tumor effects by activating AMP-activated protein kinase (AMPK), a major sensor of cellular metabolism in cancer cells. This, in turn, inhibits pro-survival mTOR signaling. Metformin has also been shown to disrupt complex 1 of the mitochondrial electron transport chain. Here, we explored the lymphoma specific anti-tumor effects of metformin using Daudi (Burkitt), SUDHL-4 (germinal center diffuse large B-cell lymphoma; GC DLBCL), Jeko-1 (Mantle-cell lymphoma; MCL) and KPUM-UH1 (double hit DLBCL) cell lines. We demonstrated that metformin as a single agent, especially at high concentrations produced significant reductions in viability and proliferation only in Daudi and SUDHL-4 cell lines with associated alterations in mitochondrial oxidative and glycolytic metabolism. As bcl-2 proteins, cyclin dependent kinases (CDK) and phosphoinositol-3- kinase (PI3K) also influence mitochondrial physiology and metabolism with clear relevance to the pathogenesis of lymphoma, we investigated the potentiating effects of metformin when combined with novel agents Venetoclax (bcl-2 inhibitor), BAY-1143572 (CDK9 inhibitor) and Idelalisib (p110δ- PI3K inhibitor). Co-treating KPUM-UH1 and SUDHL-4 cells with 10 mM of metformin resulted in 1.4 fold and 8.8 fold decreases, respectively, in IC-50 values of Venetoclax. By contrast, 3-fold and 10 fold reduction in IC-50 values of BAY-1143572 in Daudi and Jeko-1 cells respectively was seen in the presence of 10 mM of metformin. No change in IC-50 value for Idelalisib was observed across cell lines. These data suggest that although metformin is not a potent single agent, targeting cancer metabolism with similar but more effective drugs in novel combination with either bcl-2 or CDK9 inhibitors warrants further exploration.

  14. The effect of size and polymer architecture of doxorubicin-poly(ethylene) glycol conjugate nanocarriers on breast duct retention, potency and toxicity.

    PubMed

    Gu, Zichao; Gao, Dayuan; Al-Zubaydi, Firas; Li, Shike; Singh, Yashveer; Rivera, Kristia; Holloway, Jennifer; Szekely, Zoltan; Love, Susan; Sinko, Patrick J

    2018-04-23

    Although systemic administration of chemotherapeutic agents is routinely used for treating invasive breast cancer, the only therapeutic options for ductal carcinoma in situ (DCIS) are surgery and radiation. Treating DCIS by delivering drugs locally to the affected milk duct offers significant advantages over systemic administration, including reduced systemic and breast toxicities, as well as a greatly reduced need for surgery and radiation. In this study, mammary gland retention and toxicity of intraductally administered poly(ethylene) glycol-doxorubicin (PEG-DOX) polymeric conjugate nanocarriers of varying molecular sizes and architectures were investigated. Nanocarriers were formed by conjugating one or more copies of doxorubicin to PEG polymers, of varying molecular weights (5, 10, 20, and 40 kDa) and architectures (linear, four-arm and eight-arm). Cytotoxicity against MCF7 cells, a human breast cancer cell line, was assessed, and IC 50 values were calculated. The nanocarriers were intraductally administered into the mammary glands of female retired breeder Sprague-Dawley rats. Whole body images were captured using in vivo optical imaging, and changes in ductal structure as well local inflammation were monitored. Fluorescence intensities were monitored, over time, to evaluate nanocarrier mammary gland retention half-lives (t 1/2 ). The IC 50 values of PEG-DOX nanocarriers against MCF7 cells were 40 kDa PEG-(DOX) 4 (1.23 μM) < 5 kDa PEG-DOX (1.76 μM) < 40 kDa PEG-(DOX) 8 (3.49 μM) < 10 kDa PEG-DOX (3.86 μM) < 20 kDa PEG-DOX (8.96 μM) < 40 kDa PEG-DOX (18.11 μM), whereas the IC 50 of free DOX was only 0.14 μM. The t 1/2 of linear 5, 20, and 40 kDa nanocarriers were 2.2 ± 0.3, 3.6 ± 0.6, and 13.1 ± 3.4 h, whereas the retention t 1/2 of 4- and 8-arm 40 kDa nanocarriers were 14.9 ± 5.6 h and 11.9 ± 2.9 h, respectively. The retention t 1/2 of free doxorubicin was 2.0 ± 0.4 h, which was significantly shorter than that of the linear and branched 40 kDa PEG-DOX nanocarriers. Increased molecular weight and decreased branching both demonstrated a strong correlation to enhanced mammary gland retention. Intraductally administered free doxorubicin resulted in ductal damage, severe inflammation and generation of atypical cell neoplasms, whereas PEG-DOX nanocarriers induced only minor and transient inflammation (i.e., damaged epithelial cells and detached cellular debris). The 40 kDa 4-arm PEG-DOX nanocarrier demonstrated the longest ductal retention half-life, the lowest IC 50 (i.e., most potent), and minimal ductal damage and inflammation. The current results suggest that PEG-DOX nanocarriers with prolonged ductal retention may present the best option for intraductal treatment of DCIS, due to their low local toxicity and potential for sustained therapeutic effect. Copyright © 2017. Published by Elsevier B.V.

  15. VEGFR2-targeted fusion antibody improved NK cell-mediated immunosurveillance against K562 cells.

    PubMed

    Ren, Xueyan; Xie, Wei; Wang, Youfu; Xu, Menghuai; Liu, Fang; Tang, Mingying; Li, Chenchen; Wang, Min; Zhang, Juan

    2016-08-01

    MHC class I polypeptide-related sequence A (MICA), which is normally expressed on cancer cells, activates NK cells via NK group 2-member D pathway. However, some cancer cells escape NK-mediated immune surveillance by shedding membrane MICA causing immune suppression. To address this issue, we designed an antibody-MICA fusion targeting tumor-specific antigen (vascular endothelial growth factor receptor 2, VEGFR2) based on our patented antibody (mAb04) against VEGFR2. In vitro results demonstrate that the fusion antibody retains both the antineoplastic and the immunomodulatory activity of mAb04. Further, we revealed that it enhanced NK-mediated immunosurveillance against K562 cells through increasing degranulation and cytokine production of NK cells. The overall data suggest our new fusion protein provides a promising approach for cancer-targeted immunotherapy and has prospects for potential application of chronic myeloid leukemia.

  16. Reversal of multidrug resistance in xenograft nude-mice by magnetic Fe(3)O(4) nanoparticles combined with daunorubicin and 5-bromotetrandrine.

    PubMed

    Wu, Ya-Nan; Chen, Bao-An; Cheng, Jian; Gao, Feng; Xu, Wen-Lin; Ding, Jia-Hua; Gao, Chong; Sun, Xin-Chen; Li, Guo-Hong; Chen, Wen-Ji; Liu, Li-Jie; Li, Xiao-Mao; Wang, Xue-Mei

    2009-02-01

    This study was aimed to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (Fe(3)O(4)-MNPs) combined with DNR in vivo. The xenograft leukemia model with stable multiple drug resistance in nude mice was established. The two sub-clones of K562 and K562/A02 cells were respectively inoculated subcutaneously into back of athymic nude mice (1 x 10(7) cells/each) to establish the leukemia xenograft models. Drug resistant and the sensitive tumor-bearing nude mice were both assigned randomly into 5 groups: group A was treated with NS; group B was treated with DNR; group C was treated with nanoparticle of Fe(3)O(4) combined with DNR; group D was treated with 5-BrTet combined with DNR; group E was treated with 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR. The incidence of tumor formation, growth characteristics, weight and volume of tumor were observed. The histopathologic examination of tumors and organs were carried out. The protein levels of BCL-2, BAX, and Caspase-3 in resistant tumors were detected by Western blot. The results indicated that 5-BrTet and magnetic nanoparticle of Fe(3)O(4) combined with DNR significantly suppressed growth of K562/A02 cell xenograft tumor, histopathologic examination of tumors showed the tumors necrosis obviously. Application of 5-BrTet and magnetic nanoparticle of Fe(3)O(4) inhibited the expression of BCL-2 protein and up-regulated the expression of BAX, and Caspase-3 protein in K562/A02 cell xenograft tumor. It is concluded that 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR have significant tumor-suppressing effect on MDR leukemia cell xenograft model.

  17. Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism.

    PubMed

    Bonilla-Porras, Angelica R; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2011-06-10

    Secondary therapy-related acute lymphoblastic leukemia might emerge following chemotherapy and/or radiotherapy for primary malignancies. Therefore, other alternatives should be pursued to treat leukemia. It is shown that vitamin K3- or vitamin C- induced apoptosis in leukemia cells by oxidative stress mechanism involving superoxide anion radical and hydrogen peroxide generation, activation of NF-κB, p53, c-Jun, protease caspase-3 activation and mitochondria depolarization leading to nuclei fragmentation. Cell death was more prominent when Jurkat and K562 cells are exposed to VC and VK3 in a ratio 1000:1 (10 mM: 10 μM) or 100:1 (300 μM: 3 μM), respectively. We provide for the first time in vitro evidence supporting a causative role for oxidative stress in VK3- and VC-induced apoptosis in Jurkat and K562 cells in a domino-like mechanism. Altogether these data suggest that VK3 and VC should be useful in the treatment of leukemia.

  18. Type XVII collagen (BP180) can function as a cell-matrix adhesion molecule via binding to laminin 332

    PubMed Central

    Van den Bergh, F.; Eliason, S.L.; Giudice, G.J.

    2010-01-01

    Collagen XVII (COL17) is a transmembrane glycoprotein that is expressed on the basal surface of basal epidermal keratinocytes. Previous observations have led to the hypothesis that an interaction between COL17 and laminin 332, an extracellular matrix protein, contributes to the attachment of the basal keratinocyte to the basement membrane. In order to isolate and manipulate COL17 interactions with ECM components, we induced COL17 expression in two cells lines, SK-MEL1 and K562, that exhibit little or no capacity to attach to our test substrates, including laminin 332, types I and IV collagen, and fibronectin. Cells expressing high levels of COL17 preferentially adhered to a laminin 332 matrix, and, to a lesser extent, type IV collagen, while showing little or no binding to type I collagen or fibronectin. A quantitative analysis of cell adhesive forces revealed that, compared with COL17-negative cells, COL17-positive cells required over 7-fold greater force to achieve 50% detachment from a laminin 332 substrate. When a cell preparation (either K562 or SK-MEL1) with heterogeneous COL17 expression levels was allowed to attach to a laminin 332 matrix, the COL17-positive and COL17-negative cells differentially sorted to the bound and unbound cell fractions, respectively. COL17-dependent attachment to laminin 332 could be reduced or abolished by siRNA-mediated knockdown of COL17 expression or by adding to the assay wells specific antibodies against COL17 or laminin 332. These findings provide strong support for the hypothesis that cell surface COL17 can interact with laminin 332 and, together, participate in the adherence of a cell to the extracellular matrix. PMID:21034821

  19. Identification of a novel 82 kDa proMMP-9 species associated with the surface of leukaemic cells: (auto-)catalytic activation and resistance to inhibition by TIMP-1

    PubMed Central

    Ries, Christian; Pitsch, Thomas; Mentele, Reinhard; Zahler, Stefan; Egea, Virginia; Nagase, Hideaki; Jochum, Marianne

    2007-01-01

    MMP-9 (matrix metalloproteinase 9) plays a critical role in tumour progression. Although the biochemical properties of the secreted form of proMMP-9 are well characterized, little is known about the function and activity of cell surface-associated proMMP-9. We purified a novel 82 kDa species of proMMP-9 from the plasma membrane of THP-1 leukaemic cells, which has substantial differences from the secreted 94 kDa proMMP-9. The 82 kDa form was not detected in the medium even upon stimulation with a phorbol ester. It is truncated by nine amino acid residues at its N-terminus, lacks O-linked oligosaccharides present in the 94 kDa proMMP-9, but retains N-linked carbohydrates. Incubation of 94 kDa proMMP-9 with MMP-3 generated the well-known 82 kDa active form, but the 82 kDa proMMP-9 was converted into an active species of 35 kDa, which was also produced by autocatalytic processing in the absence of activating enzymes. The activated 35 kDa MMP-9 efficiently degraded gelatins, native collagen type IV and fibronectin. The enzyme was less sensitive to TIMP-1 (tissue inhibitor of metalloproteinase 1) inhibition with IC50 values of 82 nM compared with 1 nM for the 82 kDa active MMP-9. The synthetic MMP inhibitor GM6001 blocked the activity of both enzymes, with similar IC50 values below 1 nM. The 82 kDa proMMP-9 is also produced in HL-60 and NB4 leukaemic cell lines as well as ex vivo leukaemic blast cells. It is, however, absent from neutrophils and mononuclear cells isolated from peripheral blood of healthy individuals. Thus, the 82 kDa proMMP-9 expressed on the surface of malignant cells may escape inhibition by natural TIMP-1, thereby facilitating cellular invasion in vivo. PMID:17489740

  20. Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon

    PubMed Central

    Zhang, Jin; Halm, Susan T.

    2012-01-01

    Secretagogues acting at a variety of receptor types activate electrogenic K+ secretion in guinea pig distal colon, often accompanied by Cl− secretion. Distinct blockers of KCa1.1 (BK, Kcnma1), iberiotoxin (IbTx), and paxilline inhibited the negative short-circuit current (Isc) associated with K+ secretion. Mucosal addition of IbTx inhibited epinephrine-activated Isc (epiIsc) and transepithelial conductance (epiGt) consistent with K+ secretion occurring via apical membrane KCa1.1. The concentration dependence of IbTx inhibition of epiIsc yielded an IC50 of 193 nM, with a maximal inhibition of 51%. Similarly, IbTx inhibited epiGt with an IC50 of 220 nM and maximal inhibition of 48%. Mucosally added paxilline (10 μM) inhibited epiIsc and epiGt by ∼50%. IbTx and paxilline also inhibited Isc activated by mucosal ATP, supporting apical KCa1.1 as a requirement for this K+ secretagogue. Responses to IbTx and paxilline indicated that a component of K+ secretion occurred during activation of Cl− secretion by prostaglandin-E2 and cholinergic stimulation. Analysis of KCa1.1α mRNA expression in distal colonic epithelial cells indicated the presence of the ZERO splice variant and three splice variants for the COOH terminus. The presence of the regulatory β-subunits KCaβ1 and KCaβ4 also was demonstrated. Immunolocalization supported the presence of KCa1.1α in apical and basolateral membranes of surface and crypt cells. Together these results support a cellular mechanism for electrogenic K+ secretion involving apical membrane KCa1.1 during activation by several secretagogue types, but the observed K+ secretion likely required the activity of additional K+ channel types in the apical membrane. PMID:23064759

  1. (Q)SAR studies to design new human choline kinase inhibitors as antiproliferative drugs.

    PubMed

    Campos, J M; Sánchez-Martín, R M; Conejo-García, A; Entrena, A; Gallo, M A; Espinosa, A

    2006-01-01

    Most of the signal transduction pathways are mediated by protein kinases regulating every aspect of cell function. Mutations which deregulate their expression or their function or both result in cancers. Therefore, protein kinase inhibitors have become the focus of development of new therapies for cancer. A comprehensive review of Choline kinase (ChoK) was published by us in 2003. Since then, molecular information of ChoK inhibitors has been accumulated. In this review, we intend to summarize the new lines of evidence that will include the design of the most active antiproliferative agents so far described against ChoK. Studies have been aimed at the establishment of structure-activity relationships and the structural parameters that define ChoK inhibitory and antiproliferative activities of a set of twenty-five acyclic biscationic pyridophane and forty acyclic biscationic quinolinephane compounds. The corresponding QSAR equation was obtained for the whole set of bisquinolinium compounds for the antiproliferative activity, taking into consideration the electronic parameter sigma(R) of R(4), the molar refractivity (MR) of R(8), and the lipophilic parameters clog P and pi(linker). The most potent antiproliferative agent shows an IC(50) = 0.45 microM, predicted by the QSAR equation, whilst its experimental value is IC(50) = 0.20 microM. Finally, toxicity assays were performed for the most promising compounds because of their interesting antiproliferative activities [IC(50 HT-29) = 0.70, 0.80, 1.50 and 1.90 microM] and low toxicity [LD(50) = 16.7, 12.5, > 25 and > 20 mg/kg of mouse]. These biological activities justify further analysis for antitumoral assays under in vivo conditions.

  2. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    PubMed

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  3. Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism.

    PubMed

    Tan, Xue Fei; Uddin, Zia; Park, Chanin; Song, Yeong Hun; Son, Minky; Lee, Keun Woo; Park, Ki Hun

    2017-04-15

    Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play a critical role in enzyme inhibition such as 1-6 (IC 50 s=0.47-4.69µM), whereas compounds having hydroxymethylbutenyl 7 (IC 50 =70.25µM) and methylbutenyl 8 (IC 50 >200µM) showed less activity. The most potent inhibitor, gambogic acid 1 (IC 50 =0.47µM) showed 30-fold more potency than ursolic acid (IC 50 =15.5µM), a positive control. In kinetic study, all isolated xanthones behaved as competitive inhibitors which were fully demonstrated with K m , V max and K ik /K iv ratio. It was also proved that inhibitor 1 operated under the enzyme isomerization model having k 5 =0.0751µM - 1 S - 1 , k 6 =0.0249µM - 1 S - 1 and K i app =0.499µM. To develop a pharmacophore model, we explored the binding sites of compound 1 and 7 in PTP1B. These modeling results were in agreement with our findings, which revealed that the inhibitory activities are tightly related to caged motif and prenyl group in A ring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Polychromatic Light (480-3400 nm) Upregulates Sensitivity of Tumor Cells to Lysis by Natural Killers.

    PubMed

    Knyazev, Nickolay A; Samoilova, Kira A; Abrahamse, Heidi; Filatova, Natalia A

    2016-09-01

    This study evaluates the participation of immunological mechanisms of downregulation of murine hepatoma cells MH22a after direct exposure to polychromatic polarized light. Previous studies have shown that exposure to a combination of visible (VIS) and infrared (IR) light leads to decreased tumorigenicity of the murine hepatoma cells MH22a, which correlated with an increase in the amount of cells with reorganized cytoskeleton in the submembrane region. The mechanism of tumor inhibition and elimination has not been determined. Polychromatic light (480-3400 nm) has been used at doses of 4.8 and 9.6 J/cm(2) to determine the sensitivity of murine MH22a cells and human erythroleukemia cells K562 exposed to this light, to lysis by effector cells of innate immunity (NK cells), and enhancement of the glycocalyx of the studied tumor cells. This was determined using flow cytometry, the H(3)-uridine cytotoxic test followed by spectrophotometry. VIS-IR light increases the sensitivity of MH-22a cells at a dose 4.8 J/cm(2) and K562 cells at 9.6 J/cm(2). The enhancement of sensitivity of tumor cells to NK lysis changed their ability to absorb alcian blue, reflecting a change in the expression of the glycocalyx. Increasing the sensitivity of the murine tumor cells MH22a and human K562 irradiated VIS-IR light correlated with a change in the expression of their glycocalyx. The results of the present study demonstrate that the reduction of tumorigenicity of irradiated tumor cells is due to their sensitivity to lysis by NK cells of the immune system.

  5. Involvement of PKC and ROS in the cytotoxic mechanism of anti-leukemic decursin and its derivatives and their structure-activity relationship in human K562 erythroleukemia and U937 myeloleukemia cells.

    PubMed

    Kim, Hyeon Ho; Sik Bang, Sung; Seok Choi, Jin; Han, Hogyu; Kim, Ik-Hwan

    2005-06-08

    Protein kinase C (PKC) plays an important role in the proliferation and differentiation of various cell types including normal and leukemic hematopoietic cells. Recently, various PKC modulators were used as a chemotherapeutic agent of leukemia. Decursin (1), a pyranocoumarin from Angelica gigas, exhibits the cytotoxic effects on various human cancer cell lines and in vitro PKC activation. For the development of more effective anticancer agents with PKC modulation activity, 11 decursin derivatives 2-12 were chemically synthesized and evaluated for their ability to act as a tumor-suppressing PKC activator and as an antagonist to phorbol 12-myristate 13-acetate (PMA), a tumor-promoting PKC activator. In the presence of phosphatidylserine (PS), all of 12 compounds 1-12 activated PKC (mainly alpha, beta, and gamma isozymes) but only three compounds 1-3 activated PKC even in the absence of PS. Six compounds 1-6 containing the coumarin structure were cytotoxic to human K562 erythroleukemia and U937 myeloleukemia cells. A cytotoxic mechanism of decursin and its derivatives was investigated using TUR cells, a PKC betaII-deficient variant of U937 cells. Among six compounds 1-6 with cytotoxicity to K562 and U937 leukemia cells, only three compounds 1-3 were cytotoxic to TUR cells. Therefore, compounds 1-3 and 4-6 inhibit the proliferation of leukemia cells in a PKC betaII-independent and dependent manner, respectively, indicating that the side chain of compounds determines the dependency of their cytotoxicity on PKC betaII. To further elucidate the cytotoxic mechanism of compounds 1 and 2, levels of PKC isozymes and generation of reactive oxygen species (ROS) were investigated. Compounds 1-2 induced the down-regulation of PKC alpha and betaII in K562 cells and the production of ROS in U937 cells. Thus, PKC and ROS are probably important factors in the cytotoxic mechanism of compounds 1-2. From these results, the structure-activity relationship of decursin and its derivatives is as follows: (i) the coumarin structure is required for anti-leukemic activity and (ii) the side chain is a determinant of PKC activation and the cytotoxic mechanism in leukemia cells.

  6. Short Communication: Inhibition of DC-SIGN-Mediated HIV-1 Infection by Complementary Actions of Dendritic Cell Receptor Antagonists and Env-Targeting Virus Inactivators.

    PubMed

    Pustylnikov, Sergey; Dave, Rajnish S; Khan, Zafar K; Porkolab, Vanessa; Rashad, Adel A; Hutchinson, Matthew; Fieschi, Frank; Chaiken, Irwin; Jain, Pooja

    2016-01-01

    The DC-SIGN receptor on human dendritic cells interacts with HIV gp120 to promote both infection of antigen-presenting cells and transinfection of T cells. We hypothesized that in DC-SIGN-expressing cells, both DC-SIGN ligands such as dextrans and gp120 antagonists such as peptide triazoles would inhibit HIV infection with potential complementary antagonist effects. To test this hypothesis, we evaluated the effects of dextran (D66), isomaltooligosaccharides (D06), and several peptide triazoles (HNG156, K13, and UM15) on HIV infection of B-THP-1/DC-SIGN cells. In surface plasmon resonance competition assays, D66 (IC50 = 35.4 μM) and D06 (IC50 = 3.4 mM) prevented binding of soluble DC-SIGN to immobilized mannosylated bovine serum albumin (BSA). An efficacious dose-dependent inhibition of DC-SIGN-mediated HIV infection in both pretreatment and posttreatment settings was observed, as indicated by inhibitory potentials (EC50) [D66 (8 μM), D06 (48 mM), HNG156 (40 μM), UM15 (100 nM), and K13 (25 nM)]. Importantly, both dextrans and peptide triazoles significantly decreased HIV gag RNA levels [D66 (7-fold), D06 (13-fold), HNG156 (7-fold), K-13 (3-fold), and UM15 (6-fold)]. Interestingly, D06 at the highest effective concentration showed a 14-fold decrease of infection, while its combination with 50 μM HNG156 showed a 26-fold decrease. Hence, these compounds can combine to inactivate the viruses and suppress DC-SIGN-mediated virus-cell interaction that as shown earlier leads to dendritic cell HIV infection and transinfection dependent on the DC-SIGN receptor.

  7. Short Communication: Inhibition of DC-SIGN-Mediated HIV-1 Infection by Complementary Actions of Dendritic Cell Receptor Antagonists and Env-Targeting Virus Inactivators

    PubMed Central

    Pustylnikov, Sergey; Dave, Rajnish S.; Khan, Zafar K.; Porkolab, Vanessa; Rashad, Adel A.; Hutchinson, Matthew; Fieschi, Frank; Chaiken, Irwin

    2016-01-01

    Abstract The DC-SIGN receptor on human dendritic cells interacts with HIV gp120 to promote both infection of antigen-presenting cells and transinfection of T cells. We hypothesized that in DC-SIGN-expressing cells, both DC-SIGN ligands such as dextrans and gp120 antagonists such as peptide triazoles would inhibit HIV infection with potential complementary antagonist effects. To test this hypothesis, we evaluated the effects of dextran (D66), isomaltooligosaccharides (D06), and several peptide triazoles (HNG156, K13, and UM15) on HIV infection of B-THP-1/DC-SIGN cells. In surface plasmon resonance competition assays, D66 (IC50 = 35.4 μM) and D06 (IC50 = 3.4 mM) prevented binding of soluble DC-SIGN to immobilized mannosylated bovine serum albumin (BSA). An efficacious dose-dependent inhibition of DC-SIGN-mediated HIV infection in both pretreatment and posttreatment settings was observed, as indicated by inhibitory potentials (EC50) [D66 (8 μM), D06 (48 mM), HNG156 (40 μM), UM15 (100 nM), and K13 (25 nM)]. Importantly, both dextrans and peptide triazoles significantly decreased HIV gag RNA levels [D66 (7-fold), D06 (13-fold), HNG156 (7-fold), K-13 (3-fold), and UM15 (6-fold)]. Interestingly, D06 at the highest effective concentration showed a 14-fold decrease of infection, while its combination with 50 μM HNG156 showed a 26-fold decrease. Hence, these compounds can combine to inactivate the viruses and suppress DC-SIGN-mediated virus–cell interaction that as shown earlier leads to dendritic cell HIV infection and transinfection dependent on the DC-SIGN receptor. PMID:26383762

  8. Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells.

    PubMed

    Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A

    2001-07-01

    YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.

  9. Ascomycin macrolactam derivative SDZ ASM 981 inhibits the release of granule-associated mediators and of newly synthesized cytokines in RBL 2H3 mast cells in an immunophilin-dependent manner.

    PubMed

    Hultsch, T; Müller, K D; Meingassner, J G; Grassberger, M; Schopf, R E; Knop, J

    1998-09-01

    Mast cells play an important role in the pathological development of many inflammatory and allergic diseases and inhibition of mast cell activation is a potential target for therapeutic intervention. Therefore, the effect of the novel ascomycin macrolactam derivative SDZ ASM 981 on Fc epsilonRI-mediated activation of rat basophilic leukemia (RBL) cells, as a model for mast cell activation, was investigated. First, the ability to inhibit different mast cell immunophilins in vitro was tested. Using recombinant macrophilin-12 (FKBP-12), inhibition of rotamase activity with an IC50 of approximately 6 nM was observed. The rotamase activity of cyclophilin A (18 kDa) was not affected. Secondly, the effect of SDZ ASM 981 on Fc epsilonRI-mediated mast cell activation was investigated in the RBL cell model. SDZ ASM 981 inhibited exocytosis of preformed mediators (e.g. serotonin) with an IC50 of approximately 30 nM. Transcription and release of newly synthesized mediators (e.g. TNF-alpha) was inhibited with an IC50 of approximately 100 nM. The inhibitory effect of SDZ ASM 981 was antagonized by rapamycin. We conclude that SDZ ASM 981 is a potent inhibitor of Fc epsilonRI-mediated activation of mast cells in vitro. The mechanism of action involves formation of (calcineurin) inhibitory complexes with macrophilins. We suggest that this inhibitory action on mast cells might contribute to the antiinflammatory effect of SDZ ASM 981 observed in vivo (e.g. in aptopic dermatitis and psoriasis).

  10. Monoalkylated barbiturate derivatives: X-ray crystal structure, theoretical studies, and biological activities

    NASA Astrophysics Data System (ADS)

    Barakat, Assem; Al-Majid, Abdullah Mohammed; Soliman, Saied M.; Islam, Mohammad Shahidul; Ghawas, Hussain Mansur; Yousuf, Sammer; Choudhary, M. Iqbal; Wadood, Abdul

    2017-08-01

    Barbiturate derivatives are privileged structures with a broad range of pharmaceutical applications. We prepared a series of 5-monoalkylated barbiturate derivatives (3a-l) and evaluated, in vitro, their antioxidant (DPPH assay), and α-glucosidase inhibitory activities. Compounds 3a-l were synthesized via Michael addition. The structure of compound 3k was determined using X-ray single-crystal diffraction, and geometric parameters were calculated using density functional theory at the B3LYP/6-311G(d,p) level of theory. Further, the structural analysis of 3k were also investigated. Biological studies revealed that compounds 3b (IC50 = 133.1 ± 3.2 μM), 3d (IC50 = 305 ± 7.7 μM), and 3e (IC50 = 184 ± 2.3 μM) have potent α-glucosidase enzyme inhibitors and showed greater activity than the standard drug acarbose (IC50 = 841 ± 1.73 μM). Compounds 3a-3i were found to show weak antioxidant activity against 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals (IC50 = 91 ± 0.75 to 122 ± 1.0 μM) when tested against a standard antioxidant, gallic acid (IC50 = 23 ± 0.43 μM).

  11. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity.

    PubMed

    Chinthala, Yakaiah; Thakur, Sneha; Tirunagari, Shalini; Chinde, Srinivas; Domatti, Anand Kumar; Arigari, Niranjana Kumar; K V N S, Srinivas; Alam, Sarfaraz; Jonnala, Kotesh Kumar; Khan, Feroz; Tiwari, Ashok; Grover, Paramjit

    2015-03-26

    A series of novel chalcone-triazole derivatives were synthesized and screened for in vitro anticancer activity on the human cancer cell lines IMR32 (neuroblastoma), HepG2 (hepatoma) and MCF-7 (breast adenocarcinoma), DU-145 (prostate carcinoma), and A549 (lung adenocarcinoma). Among the tested compounds, 4r showed the most promising anticancer activity in all the cell lines whereas, compounds 4c (IC50 65.86 μM), 4e (IC50 66.28 μM), 4o (IC50 35.81 μM), 4q (IC50 50.82 μM) and 4s (IC50 48.63 μM) showed better activity than the standard doxorubicin (IC50 69.33 μM) in A549 cell line alone. Rat intestinal α-glucosidase inhibitory activity of the synthesized derivatives showed 4m (IC50 67.77 μM), 4p (IC50 74.94 in μM) and 4s (IC50 102.10 μM) as most active compared to others. The in silico docking of synthesized derivatives 4a-4t with DNA topoisomerase IIα revealed the LibDock score in the range of 71.2623-118.29 whereas, compounds 4h, 4m, 4p and 4s with docking target α-glucosidase were in the range of 100.372-107.784. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Biological activities of extracts from Chenopodium ambrosioides Lineu and Kielmeyera neglecta Saddi

    PubMed Central

    2012-01-01

    Background Chenopodium ambrosioides and Kielmeyera neglecta are plants traditionally used in Brazil to treat various infectious diseases. The study of the biological activities of these plants is of great importance for the detection of biologically active compounds. Methods Extracts from these plants were extracted with hexane (Hex), dichloromethane (DCM), ethyl acetate (EtOAc) and ethanol (EtOH) and assessed for their antimicrobial properties, bioactivity against Artemia salina Leach and antifungal action on the cell wall of Neurospora crassa. Results Extracts from C. ambrosioides (Hex, DCM and EtOH) and K. neglecta (EtOAc and EtOH) showed high bioactivity against A. salina (LD50 < 1000 μg/mL), which might be associated with cytotoxic activity against cancer cells. C. ambrosioides Hex and DCM showed specific activity against yeasts, highlighting the activity of hexanic extract against Candida krusei (MIC = 100 μg/mL). By comparing the inhibitory concentration of 50% growth (IC 50%) with the growth control, extracts from K. neglecta EtOAc and EtOH have shown activities against multidrug-resistant bacteria (Enterococcus faecalis ATCC 51299 and Staphylococcus aureus ATCC 43300), with IC 50% of 12.5 μg/mL The assay carried out on N. crassa allowed defining that extracts with antifungal activity do not have action through inhibition of cell wall synthesis. Conclusions Generally speaking, extracts from C. ambrosioides and K. neglecta showed biological activities that have made the search for bioactive substances in these plants more attractive, illustrating the success of their use in the Brazilian folk medicine. PMID:22839690

  13. Comparison of different methods for erythroid differentiation in the K562 cell line.

    PubMed

    Shariati, Laleh; Modaress, Mehran; Khanahmad, Hossein; Hejazi, Zahra; Tabatabaiefar, Mohammad Amin; Salehi, Mansoor; Modarressi, Mohammad Hossein

    2016-08-01

    To compare methods for erythroid differentiation of K562 cells that will be promising in the treatment of beta-thalassemia by inducing γ-globin synthesis. Cells were treated separately with: RPMI 1640 medium without glutamine, RPMI 1640 medium without glutamine supplemented with 1 mM sodium butyrate, RPMI 1640 medium supplemented with 1 mM sodium butyrate, 25 µg cisplatin/ml, 0.1 µg cytosine arabinoside/ml. The highest differentiation (84 %) with minimum toxicity was obtained with cisplatin at 15 µg /ml. Real-time RT-PCR showed that expression of the γ-globin gene was significantly higher in the cells differentiated with cisplatin compared to undifferentiated cells (P < 0.001). Cisplatin is useful in the experimental therapy of ß-globin gene defects and can be considered for examining the basic mechanism of γ-reactivation.

  14. Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Pelegrino, Milena T.; Silva, Letícia C.; Watashi, Carolina M.; Haddad, Paula S.; Rodrigues, Tiago; Seabra, Amedea B.

    2017-02-01

    Nitric oxide (NO) is involved in several biological processes, including toxicity against tumor cells. The aim of this study was to synthesize, characterize, and evaluate the cytotoxicity of NO-releasing chitosan nanoparticles. A thiol-containing molecule, mercaptosuccinic acid (MSA), was encapsulated (encapsulation efficiency of 99%) in chitosan/sodium tripolyphosphate nanoparticles (CS NPs). The obtained nanoparticles showed an average hydrodynamic size of 108.40 ± 0.96 nm and polydispersity index of 0.26 ± 0.01. MSA-CS NPs were nitrosated leading to S-nitroso-MSA-CS NPs, which act as NO donor. The cytotoxicity of CS NPs, MSA-CS NPs, and S-nitroso-MSA-CS NPs were evaluated in several tumor cells, including human hepatocellular carcinoma (HepG2), mouse melanoma (B16F10), and human chronic myeloid leukemia (K562) cell lines and Lucena-1, a vincristine-resistant K562 cell line. Both CS NPs and MSA-CS NPs did not cause toxic effects in these cells, whereas S-nitroso-MSA-CS NPs caused potent cytotoxic effects in all the tested tumor cell lines. The half-maximal inhibitory concentration values of S-nitroso-MSA-CS NPs were 19.7, 10.5, 22.8, and 27.8 μg·mL-1 for HepG2, B16F10, K562, and Lucena-1 cells, respectively. In contrast, S-nitroso-MSA-CS NPs exhibited lower cytotoxic to non-tumorigenic melanocytes (Melan-A) when compared with melanoma B16F10. Therefore, the results highlight the potential use of NO-releasing CS NPs in antitumor chemotherapy.

  15. Purification and characterization of charantin, a napin-like ribosome-inactivating peptide from bitter gourd (Momordica charantia) seeds.

    PubMed

    Parkash, A; Ng, T B; Tso, W W

    2002-05-01

    A peptide designated charantin, with a molecular mass of 9.7 kDa, was isolated from bitter gourd seeds. The procedure comprised affinity chromatography on Affi-gel blue gel, ion-exchange chromatography on Mono S and gel filtration on Superdex 75. The N-terminal sequence of charantin exhibited marked similarity to that of the 7.8-kDa napin-like peptide previously isolated from bitter gourd seeds. Charantin inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC50 of 400 nm, a potency lower than that of the previously reported small ribosome-inactivating protein gamma-momorcharin (IC50 = 55 nm) which also exhibited an abundance of arginine and glutamate/glutamine residues. Charantin reacted positively in the N-glycosidase assay, yielding a band similar to that formed by the small ribosome-inactivating proteins gamma-momorcharin and luffin S.

  16. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase

    PubMed Central

    WANG, CHUNHUAI; XIANG, RU; ZHANG, XIANGZHONG; CHEN, YUNXIAN

    2015-01-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix-coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti-β1-integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, incubation with blocking anti-β1-integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia. PMID:26004127

  17. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells.

    PubMed

    Pongkorpsakol, Pawin; Yimnual, Chantapol; Chatsudthipong, Varanuj; Rukachaisirikul, Vatcharin; Muanprasat, Chatchai

    2017-06-01

    Intestinal Cl - secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA) suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl - secretion in human intestinal epithelial (T84) cells. FFA inhibited cAMP-dependent Cl - secretion in T84 cell monolayers with IC 50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl - channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K + channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca 2+ -dependent Cl - secretion with IC 50 of ∼10 μM. FFA inhibited activities of Ca 2+ -activated Cl - channels and K Ca 3.1, a Ca 2+ -activated basolateral K + channels, but had no effect on activities of Na + -K + -Cl - cotransporters and Na + -K + ATPases. These results indicate that FFA inhibits both cAMP and Ca 2+ -dependent Cl - secretion by suppressing activities of both apical Cl - channels and basolateral K + channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Purification, characterization, and biological activities of broccolini lectin.

    PubMed

    Xu, Pingping; Zhang, Ting; Guo, Xiaolei; Ma, Chungwah; Zhang, Xuewu

    2015-01-01

    Plant lectins have displayed a variety of biological activities. In this study, for the first time, a 27 kDa arabinose- and mannose-specific lectin from Broccolini (Brassica oleracea Italica × Alboglabra), named as BL (Broccolini lectin), was purified by an activity-driven protocol. Mass spectrometry analysis and database search indicated that no matches with any plant lectin were found, but BL contained some peptide fragments (QQQGQQGQQLQQVISR, QQGQQQGQQGQQLQQVISR and VCNIPQVSVCPF QK). BL exhibited hemagglutinating activity against chicken erythrocytes at 4 µg/mL. BL retained full hemagglutinating activity at pH 7-8 and temperature 30-40°C, and had an optimal activity in Ca(2+) solution. Bioactivity assay revealed that BL exhibited dose-dependent inhibition activity on 5 bacterial species with IC50 values of 143.95-486.33 μg/mL, and on 3 cancer cells with IC50 values of 178.82-350.93 μg/mL. Notably, 5-fold reduction in IC50 values was observed on normal L-O2 vs cancerous HepG-2 cells (924.35 vs. 178.82 μg/mL). This suggests that BL should be promising in food and medicine. © 2015 American Institute of Chemical Engineers.

  19. Antiplasmodial activity of four Kenyan medicinal plants.

    PubMed

    Omulokoli, E; Khan, B; Chhabra, S C

    1997-04-01

    A preliminary antiplasmodial and phytochemical screening of four Kenyan medicinal plants was carried out. The medicinal plants were extracted and tested for in vitro antiplasmodial activity against chloroquine-sensitive (K67) and chloroquine-resistant (ENT36) strains of Plasmodium falciparum. Out of 16 extracts, 12 were active against ENT36 strain while seven were active against K67 strain, that is, IC50 < or = 50 micrograms/ml. The most active extracts on both strains were those of leaves of Phyllanthus reticulatus Poir, and Suregada zanzibariensis Baill. (Euphorbiaceae) with IC50 < or = 10 micrograms/ml. The stembark of Terminalia spinosa Engl. (Combretaceae) and the stems of Dissotis brazzae Cogn. (Melastomataceae) had IC50 < or = 10 micrograms/ml for strains K67 and ENT36, respectively. A preliminary phytochemical analysis of these plants revealed the presence of different classes of primary and secondary metabolites.

  20. Effect of Her-2/neu Signaling on Sensitivity to TRAIL in Prostate Cancer

    DTIC Science & Technology

    2005-06-01

    cytokines (18), and matrix metalloprotease inhibitors (19) are able to render TRAIL-resistant tumor cells sensitive to TRAIL apoptosis. In recent...TRAIL-induced cytotoxicity. As DU-145 cells were treated with acetyl salicylic acid (ASA: aspirin), an inhibitor of IKK , we observed that TRAIL...sulfide (IC50 = 1.02 M for COX-1 and IC50 = 10.43 M for COX-2), NS-398 (a selective COX-2 inhibitor ; IC50 = 4.81 M for COX-1 and IC50 = 0.47 M for COX-2

  1. Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma.

    PubMed

    Nakazawa, Tsutomu; Nakamura, Mitsutoshi; Park, Young Soo; Motoyama, Yasushi; Hironaka, Yasuo; Nishimura, Fumihiko; Nakagawa, Ichiro; Yamada, Shuichi; Matsuda, Ryosuke; Tamura, Kentaro; Sugimoto, Tadashi; Takeshima, Yasuhiro; Marutani, Akiko; Tsujimura, Takahiro; Ouji, Noriko; Ouji, Yukiteru; Yoshikawa, Masahide; Nakase, Hiroyuki

    2014-01-01

    Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

  2. Optimization of cell-based assays to quantify the anti-inflammatory/allergic potential of test substances in 96-well format.

    PubMed

    Chandrasekaran, C V; Edwin Jothie, R; Kapoor, Preeti; Gupta, Anumita; Agarwal, Amit

    2011-06-01

    There is an insistent need for robust, reliable, and optimized assays for screening novel drugs targeting the inflammatory/allergic markers. The present study describes about the optimization of eight cell-based assays utilizing mammalian cell lines in 96-well format for quantifying anti-inflammatory/allergic drug candidates. We estimated the inhibitory response of reference compounds: 1400 W dihydrochloride on LPS-induced NO release, celecoxib on LPS-induced PGE(2) production and dexamethasone on LPS-induced pro-inflammatory cytokines IL-1 beta, IL-6, and TNF-alpha production by J774A.1 murine macrophages. Response of acetylsalicylic acid and celecoxib was studied on A23187-induced TXB(2) production; captopril on A23187-stimulated LTB(4) production by HL-60 cells. Effect of ketotifen fumarate was evaluated on A23187-elicited histamine release by RBL-2H3 cells. Each experiment was repeated twice to assess the reproducibility and suitability of the assays by determining appropriate statistical tools viz. %CV, S/B and Z' factor. 1400 W dihydrochloride was capable of inhibiting LPS-induced NO levels (IC(50) = 10.7 μM). Dexamethasone attenuated LPS-induced IL-1 beta (IC(50) = 70 nM), IL-6 (IC(50) = 58 nM) and TNF-alpha (IC(50) = 44 nM) release, whereas celecoxib, a specific COX-2 inhibitor showed marked reduction in LPS-induced PGE(2) (IC(50) = 23 nM) production. Captopril (IC(50) = 48 μM) and ketotifen fumarate (IC(50) = 36.4 μM) demonstrated potent inhibitory effect against A23187-stimulated LTB(4) and histamine levels, respectively. Both acetylsalicylic acid (IC(50) = 5.5 μM) and celecoxib (IC(50) = 7.9 nM) exhibited concentration-dependent decrease in TXB(2) production. Results for all the cell assays from two experiments showed a Z' factor varying from 0.30 to 0.99; the S/B ratio ranged from 2.39 to 24.92; %CV ranged between 1.52 and 20.14. The results proclaim that these cell-based assays can act as ideal tools for screening new anti-inflammatory/anti-allergic compounds.

  3. The combinatorial PP1-binding consensus Motif (R/K)x( (0,1))V/IxFxx(R/K)x(R/K) is a new apoptotic signature.

    PubMed

    Godet, Angélique N; Guergnon, Julien; Maire, Virginie; Croset, Amélie; Garcia, Alphonse

    2010-04-01

    Previous studies established that PP1 is a target for Bcl-2 proteins and an important regulator of apoptosis. The two distinct functional PP1 consensus docking motifs, R/Kx((0,1))V/IxF and FxxR/KxR/K, involved in PP1 binding and cell death were previously characterized in the BH1 and BH3 domains of some Bcl-2 proteins. In this study, we demonstrate that DPT-AIF(1), a peptide containing the AIF(562-571) sequence located in a c-terminal domain of AIF, is a new PP1 interacting and cell penetrating molecule. We also showed that DPT-AIF(1) provoked apoptosis in several human cell lines. Furthermore, DPT-APAF(1) a bi-partite cell penetrating peptide containing APAF-1(122-131), a non penetrating sequence from APAF-1 protein, linked to our previously described DPT-sh1 peptide shuttle, is also a PP1-interacting death molecule. Both AIF(562-571) and APAF-1(122-131) sequences contain a common R/Kx((0,1))V/IxFxxR/KxR/K motif, shared by several proteins involved in control of cell survival pathways. This motif combines the two distinct PP1c consensus docking motifs initially identified in some Bcl-2 proteins. Interestingly DPT-AIF(2) and DPT-APAF(2) that carry a F to A mutation within this combinatorial motif, no longer exhibited any PP1c binding or apoptotic effects. Moreover the F to A mutation in DPT-AIF(2) also suppressed cell penetration. These results indicate that the combinatorial PP1c docking motif R/Kx((0,1))V/IxFxxR/KxR/K, deduced from AIF(562-571) and APAF-1(122-131) sequences, is a new PP1c-dependent Apoptotic Signature. This motif is also a new tool for drug design that could be used to characterize potential anti-tumour molecules.

  4. Variability in P-Glycoprotein Inhibitory Potency (IC50) Using Various in Vitro Experimental Systems: Implications for Universal Digoxin Drug-Drug Interaction Risk Assessment Decision Criteria

    PubMed Central

    Bentz, Joe; O’Connor, Michael P.; Bednarczyk, Dallas; Coleman, JoAnn; Lee, Caroline; Palm, Johan; Pak, Y. Anne; Perloff, Elke S.; Reyner, Eric; Balimane, Praveen; Brännström, Marie; Chu, Xiaoyan; Funk, Christoph; Guo, Ailan; Hanna, Imad; Herédi-Szabó, Krisztina; Hillgren, Kate; Li, Libin; Hollnack-Pusch, Evelyn; Jamei, Masoud; Lin, Xuena; Mason, Andrew K.; Neuhoff, Sibylle; Patel, Aarti; Podila, Lalitha; Plise, Emile; Rajaraman, Ganesh; Salphati, Laurent; Sands, Eric; Taub, Mitchell E.; Taur, Jan-Shiang; Weitz, Dietmar; Wortelboer, Heleen M.; Xia, Cindy Q.; Xiao, Guangqing; Yabut, Jocelyn; Yamagata, Tetsuo; Zhang, Lei

    2013-01-01

    A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells—Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided. PMID:23620485

  5. Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways.

    PubMed

    Mi, Yashi; Xiao, Chunxia; Du, Qingwei; Wu, Wanqiang; Qi, Guoyuan; Liu, Xuebo

    2016-01-01

    Momordin Ic is a principal saponin constituent of Fructus Kochiae, which acts as an edible and pharmaceutical product more than 2000 years in China. Our previous research found momordin Ic induced apoptosis by PI3K/Akt and MAPK signaling pathways in HepG2 cells. While the role of autophagy in momordin Ic induced cell death has not been discussed, and the connection between the apoptosis and autophagy is not clear yet. In this work, we reported momordin Ic promoted the formation of autophagic vacuole and expression of Beclin 1 and LC-3 in a dose- and time-dependent manner. Compared with momordin Ic treatment alone, the autophagy inhibitor 3-methyladenine (3-MA) also can inhibit apoptosis, while autophagy activator rapamycin (RAP) has the opposite effect, and the apoptosis inhibitor ZVAD-fmk also inhibited autophagy induced by momordin Ic. Momordin Ic simultaneously induces autophagy and apoptosis by suppressing the ROS-mediated PI3K/Akt and activating the ROS-related JNK and P38 pathways. Additionally, momordin Ic induces apoptosis by suppressing PI3K/Akt-dependent NF-κB pathways and promotes autophagy by ROS-mediated Erk signaling pathway. Those results suggest that momordin Ic has great potential as a nutritional preventive strategy in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship.

    PubMed

    Li, Feng; Awale, Suresh; Tezuka, Yasuhiro; Kadota, Shigetoshi

    2008-05-15

    Several classes of flavonoids [flavanoids (1-10), flavonol (11), isoflavones (12-18), isoflavanones (19-22), isoflavans (23-26), chalcones (27-30), auronol (31), pterocarpans (32-37), 2-arylbenzofuran (38), and neoflavonoid (39)] and lignans (40-42) isolated from the MeOH extract of Brazilian red propolis were investigated for their cytotoxic activity against a panel of six different cancer cell lines including murine colon 26-L5 carcinoma, murine B16-BL6 melanoma, murine Lewis lung carcinoma, human lung A549 adenocarcinoma, human cervix HeLa adenocarcinoma, and human HT-1080 fibrosarcoma cell lines. Based on the observed results, structure-activity relationships were discussed. Among the tested compounds, 7-hydroxy-6-methoxyflavanone (3) exhibited the most potent activity against B16-BL6 (IC(50), 6.66microM), LLC (IC(50), 9.29microM), A549 (IC(50), 8.63microM), and HT-1080 (IC(50), 7.94microM) cancer cell lines, and mucronulatol (26) against LLC (IC(50), 8.38microM) and A549 (IC(50), 9.9microM) cancer cell lines. These activity data were comparable to those of the clinically used anticancer drugs, 5-fluorouracil and doxorubicin, against the tested cell lines, suggesting that 3 and 26 are the good candidates for future anticancer drug development.

  7. Expansion of natural killer cell receptor (CD94/NKG2A)-expressing cytolytic CD8 T cells and CD4+CD25+ regulatory T cells from the same cord blood unit.

    PubMed

    Tanaka, Junji; Sugita, Junichi; Kato, Naoko; Toubai, Tomomi; Ibata, Makoto; Shono, Yusuke; Ota, Shuichi; Kondo, Takeshi; Kobayashi, Takahiko; Kobayashi, Masanobu; Asaka, Masahiro; Imamura, Masahiro

    2007-10-01

    Cord blood contains a significant number of precursor cells that differentiate to cytotoxic effector cells and immunoregulatory cells. We tried to expand inhibitory natural killer cell receptor CD94-expressing CD8 T cells with cytolytic activity and CD4(+)CD25(+) regulatory T cells from the same cord cell unit. Cytotoxic CD94-expressing CD8 T cells were expanded from CD4-depleted cord blood using an immobilized anti-CD3 monoclonal antibody and a cytokine and also CD4(+)CD25(+) regulatory T cells were expanded from a CD4-enriched fraction derived from the same cord blood unit using anti-CD3/CD28 monoclonal antibody-coated Dynabeads and cytokines. We were able to obtain a more than 1000-fold expansion of CD94-expressing CD8 T cells and a more than 50-fold expansion of CD4(+)CD25(+) cells from the same cord blood unit. These expanded CD4(+)CD25(+) cells expressed FoxP3 mRNA at a level about 100-fold higher than that in isolated CD25(-) cells and could suppress allogeneic mixed lymphocyte culture by >80% (effector cells: CD4(+)CD25(+) cells = 2:1). Cytolytic activities of purified CD94-expressing cells detected by a 4-hour (51)Cr release assay against K562 were >60%. Coculture of CD94-expressing cells with expanded CD4(+)CD25(+) cells did not have any effect on cytolytic activities of purified CD94-expressing cells against K562 cells. These expanded cytolytic CD94-expressing CD8 cells might be able to induce a graft-vs-leukemia effect without enhancing graft-vs-host disease, and CD4(+)CD25(+) cells might be able to suppress allogeneic responses, including graft-vs-host disease and graft rejection after cord blood transplantation.

  8. Effects of total flavonoids of sea buckthorn ( Hippophae rhamnoides L.) on cytotoxicity of NK92-MI cells.

    PubMed

    Hou, Diandong; Wang, Decheng; Ma, Xiande; Chen, Wenna; Guo, Shengnan; Guan, Hongquan

    2017-12-01

    Sea buckthorn ( Hippophae rhamnoides L.) has multifarious medicinal properties including immunoregulatory effect. The total flavonoids of Hippophae rhamnoides L. (TFH) are the main active components isolated from berries of sea buckthorn. The aim of this study was to evaluate the effects of TFH on the cytotoxicity of NK92-MI cells and its possible mechanisms. NK92-MI cells were treated with TFH (2.5 or 5.0 mg/L) or phosphate-buffered saline (PBS) for 24 h, the cytotoxicity against K562 was detected by measuring the release of lactate dehydrogenase (LDH), expression levels of NCRs (NKp30, NKp44, NKp46) and NKG2D were detected by flow cytometry, and expression levels of perforin and granzyme B were detected by western blot. Cytokine Antibody Arrays with 80 cytokine proteins were used to profile the effect of TFH on cytokines. Western blot was adopted to detect the effects of TFH on STAT1, STAT4, and STAT5 signal pathway. Compared with the normal control group, TFH could significantly enhance NK92-MI cell cytotoxicity against K562 cells, upregulate expressions of NKp44, NKp46, perforin, and granzyme B. TFH could upregulate expressions of IL-1α, IL-2, IL-7, IL-15, CSF-2, CSF-3, MCP-1, MIG, IFN-γ, TNF-α, and TNF-β and downregulate expressions of IL-16, MIP-1β, CX3CL-1, and MIF. TFH could increase expressions of phospho-STAT1 and phospho-STAT5. The results suggest that TFH stimulated NK92-MI cells to activate and enhance cytotoxicity of NK92-MI cells.

  9. Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: role of annexin A1.

    PubMed

    Petrella, Antonello; D'Acunto, Cosimo Walter; Rodriquez, Manuela; Festa, Michela; Tosco, Alessandra; Bruno, Ines; Terracciano, Stefania; Taddei, Maurizio; Paloma, Luigi Gomez; Parente, Luca

    2008-03-01

    FR235222, a novel histone deacetylase inhibitor (HDACi), at 50nM caused accumulation of acetylated histone H4, inhibition of cell proliferation and G1 cycle arrest accompanied by increase of p21 and down-regulation of cyclin E in human promyelocytic leukaemia U937 cells. The compound was also able to increase the protein and mRNA levels of annexin A1 (ANXA1) without effects on apoptosis. Similar effects were observed in human chronic myelogenous leukaemia K562 cells and human T cell leukaemia Jurkat cells. Cycle arrest and ANXA1 expression, without significant effects on apoptosis, were also induced by different HDACi like suberoylanilide hydroxamic acid (SAHA) and trichostatin-A (TSA). FR235222 at 0.5 microM stimulated apoptosis of all leukaemia cell lines associated to an increased expression of the full-length (37kDa) protein and the appearance of a 33kDa N-terminal cleavage product in both cytosol and membrane. These results suggest that ANXA1 expression may mediate cycle arrest induced by low doses FR235222, whereas apoptosis induced by high doses FR235222 is associated to ANXA1 processing.

  10. Chemical composition and in vitro antitrypanosomal activity of fractions of essential oil from Cymbopogon nardus L.

    PubMed

    Muhd Haffiz, J; Norhayati, I; Getha, K; Nor Azah, M A; Mohd Ilham, A; Lili Sahira, H; Roshan Jahn, M S; Muhd Syamil, A

    2013-03-01

    Essential oil from Cymbopogon nardus was evaluated for activity against Trypanosoma brucei brucei BS221 (IC50 = 0.31 ± 0.03 μg/mL) and cytotoxic effect on normal kidney (Vero) cells (IC50 = >100 μg/mL). The crude essential oil was subjected to various chromatography techniques afforded active sub fractions with antitrypanosomal activity; F4 (IC50 = 0.61 ± 0.06 μg/mL), F6 (IC50= 0.73 ± 0.33 μg/mL), F7 (IC50 = 1.15 ± 0 μg/mL) and F8 (IC50 = 1.11 ± 0.01 μg/mL). These active fractions did not exhibit any toxic effects against Vero cell lines and the chemical profiles investigation indicated presence of α-and γ-eudesmol, elemol, α-cadinol and eugenol by GC/MS analysis.

  11. Structural Characteristics of the Novel Polysaccharide FVPA1 from Winter Culinary-Medicinal Mushroom, Flammulina velutipes (Agaricomycetes), Capable of Enhancing Natural Killer Cell Activity against K562 Tumor Cells.

    PubMed

    Jia, Wei; Feng, Jie; Zhang, Jing-Song; Lin, Chi-Chung; Wang, Wen-Han; Chen, Hong-Ge

    2017-01-01

    FVPA1, a novel polysaccharide, has been isolated from fruiting bodies of the culinary-medicinal mushroom Flammulina velutipes, a historically popular, widely cultivated and consumed functional food with an attractive taste, beneficial nutraceutical properties such as antitumor and immunomodulatory effects, and a number of essential biological activities. The average molecular weight was estimated to be ~1.8 × 104 Da based on high-performance size exclusion chromatography. Sugar analyses, methylation analyses, and 1H, 13C, and 2-dimensional nuclear magnetic resonance spectroscopy revealed the following structure of the repeating units of the FVPA1 polysaccharide Identification of this structure would conceivably lead to better understanding of the nutraceutical functions of this very important edible fungus. Bioactivity tests in vitro indicated that FVPA1 could significantly enhance natural killer cell activity against K562 tumor cells.

  12. Erythroid differentiation ability of butyric acid analogues: identification of basal chemical structures of new inducers of foetal haemoglobin.

    PubMed

    Bianchi, Nicoletta; Chiarabelli, Cristiano; Zuccato, Cristina; Lampronti, Ilaria; Borgatti, Monica; Amari, Gabriele; Delcanale, Maurizio; Chiavilli, Francesco; Prus, Eugenia; Fibach, Eitan; Gambari, Roberto

    2015-04-05

    Several investigations have demonstrated a mild clinical status in patients with β-globin disorders and congenital high persistence of foetal haemoglobin. This can be mimicked by a pharmacological increase of foetal γ-globin genes expression and foetal haemoglobin production. Our goal was to apply a multistep assay including few screening methods (benzidine staining, RT-PCR and HPLC analyses) and erythroid cellular model systems (the K562 cell line and erythroid precursors collected from peripheral blood) to select erythroid differentiation agents with foetal haemoglobin inducing potential. With this methodology, we have identified a butyric acid derivative, namely the 4174 cyclopropanecarboxylic acid compound, able to induce erythroid differentiation without antiproliferative effect in K562 cells and increase of γ-globin gene expression in erythroid precursor cells. The results are relevant for pharmacological treatments of haemoglobinopathies, including β-thalassaemia and sickle cell anaemia. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice.

    PubMed

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-05-22

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.

  14. Synthesis and Anticancer Activity of 3-(Substituted Aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiao-Ping; Lan, Lan; Wang, Shuai; Zhao, Kai; Xin, Yu-Xuan; Qi, Qi; Wang, Yao-Lin; Mao, Zhen-Min

    2017-02-01

    A series of 3-(substituted aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT-26, HeLa, MGC80-3, NCI-H460 and SGC-7901 cells (IC 50  = 8.2 - 31.7 μm); 3g, 3n and 3a were the most potent compounds against CHO (IC 50  = 8.2 μm), HCT-15 (IC 50  = 21 μm) and MCF-7 cells (IC 50  = 18.7 μm), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC 50  > 100 μm). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  15. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizutani, Naoki; College of Life and Health Sciences, Chubu University, Kasugai; Omori, Yukari

    2016-02-19

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increasedmore » by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.« less

  16. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.

    PubMed

    Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre

    2010-05-15

    The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  17. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin.

    PubMed

    Rodrigues, Elsa T; Pardal, Miguel Â; Laizé, Vincent; Cancela, M Leonor; Oliveira, Paulo J; Serafim, Teresa L

    2015-11-01

    The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC50) better matches the in vivo short-term Sparus aurata median lethal concentration (LC50). IC50s and LC50 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC50,96h/IC50,48h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC50,96h/IC50,72h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Complete nucleotide sequence of the gene for human heparin cofactor II and mapping to chromosomal band 22q11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, R.; Lutz, S.; Blin, N.

    1991-02-05

    Heparin cofactor II (HCII) is a 66-kDa plasma glycoprotein that inhibits thrombin rapidly in the presence of dermatan sulfate or heparin. Clones comprising the entire HCII gene were isolated from a human leukocyte genomic library in EMBL-3 {lambda} phage. The sequence of the gene was determined on both strands of DNA (15,849 bp) and included 1,749 bp of 5{prime}-flanking sequence, five exons, four introns, and 476 bp of DNA 3{prime} to the polyadenylation site. Ten complete and one partial Alu repeats were identified in the introns and 5{prime}-flanking region. The HCII gene was regionally mapped on chromosome 22 using rodent-humanmore » somatic cell hybrids, carrying only parts of human chromosome 22, and the chronic myelogenous leukemia cell line K562. With the cDNA probe HCII7.2, containing the entire coding region of the gene, the HCII gene was shown to be amplified 10-20-fold in K562 cells by Southern analysis and in situ hybridization. From these data, the authors concluded that the HCII gene is localized on the chromosomal band 22q11 proximal to the breakpoint cluster region (BCR). Analysis by pulsed-field gel electrophoresis indicated that the amplified HCII gene in K562 cells maps at least 2 Mbp proximal to BCR-1. Furthermore, the HCII7.2 cDNA probe detected two frequent restriction fragment length polymorphisms with the restriction enzymes BamHI and Hind III.« less

  19. A composite docking approach for the identification and characterization of ectosteric inhibitors of cathepsin K.

    PubMed

    Law, Simon; Panwar, Preety; Li, Jody; Aguda, Adeleke H; Jamroz, Andrew; Guido, Rafael V C; Brömme, Dieter

    2017-01-01

    Cathepsin K (CatK) is a cysteine protease that plays an important role in mammalian intra- and extracellular protein turnover and is known for its unique and potent collagenase activity. Through studies on the mechanism of its collagenase activity, selective ectosteric sites were identified that are remote from the active site. Inhibitors targeting these ectosteric sites are collagenase selective and do not interfere with other proteolytic activities of the enzyme. Potential ectosteric inhibitors were identified using a computational approach to screen the druggable subset of and the entire 281,987 compounds comprising Chemical Repository library of the National Cancer Institute-Developmental Therapeutics Program (NCI-DTP). Compounds were scored based on their affinity for the ectosteric site. Here we compared the scores of three individual molecular docking methods with that of a composite score of all three methods together. The composite docking method was up to five-fold more effective at identifying potent collagenase inhibitors (IC50 < 20 μM) than the individual methods. Of 160 top compounds tested in enzymatic assays, 28 compounds revealed blocking of the collagenase activity of CatK at 100 μM. Two compounds exhibited IC50 values below 5 μM corresponding to a molar protease:inhibitor concentration of <1:12. Both compounds were subsequently tested in osteoclast bone resorption assays where the most potent inhibitor, 10-[2-[bis(2-hydroxyethyl)amino]ethyl]-7,8-diethylbenzo[g]pteridine-2,4-dione, (NSC-374902), displayed an inhibition of bone resorption with an IC50-value of approximately 300 nM and no cell toxicity effects.

  20. A composite docking approach for the identification and characterization of ectosteric inhibitors of cathepsin K

    PubMed Central

    Law, Simon; Panwar, Preety; Li, Jody; Aguda, Adeleke H.; Jamroz, Andrew; Guido, Rafael V. C.

    2017-01-01

    Cathepsin K (CatK) is a cysteine protease that plays an important role in mammalian intra- and extracellular protein turnover and is known for its unique and potent collagenase activity. Through studies on the mechanism of its collagenase activity, selective ectosteric sites were identified that are remote from the active site. Inhibitors targeting these ectosteric sites are collagenase selective and do not interfere with other proteolytic activities of the enzyme. Potential ectosteric inhibitors were identified using a computational approach to screen the druggable subset of and the entire 281,987 compounds comprising Chemical Repository library of the National Cancer Institute-Developmental Therapeutics Program (NCI-DTP). Compounds were scored based on their affinity for the ectosteric site. Here we compared the scores of three individual molecular docking methods with that of a composite score of all three methods together. The composite docking method was up to five-fold more effective at identifying potent collagenase inhibitors (IC50 < 20 μM) than the individual methods. Of 160 top compounds tested in enzymatic assays, 28 compounds revealed blocking of the collagenase activity of CatK at 100 μM. Two compounds exhibited IC50 values below 5 μM corresponding to a molar protease:inhibitor concentration of <1:12. Both compounds were subsequently tested in osteoclast bone resorption assays where the most potent inhibitor, 10-[2-[bis(2-hydroxyethyl)amino]ethyl]-7,8-diethylbenzo[g]pteridine-2,4-dione, (NSC-374902), displayed an inhibition of bone resorption with an IC50-value of approximately 300 nM and no cell toxicity effects. PMID:29088253

  1. Acetyl analogs of combretastatin A-4: synthesis and biological studies.

    PubMed

    Babu, Balaji; Lee, Megan; Lee, Lauren; Strobel, Raymond; Brockway, Olivia; Nickols, Alexis; Sjoholm, Robert; Tzou, Samuel; Chavda, Sameer; Desta, Dereje; Fraley, Gregory; Siegfried, Adam; Pennington, William; Hartley, Rachel M; Westbrook, Cara; Mooberry, Susan L; Kiakos, Konstantinos; Hartley, John A; Lee, Moses

    2011-04-01

    The combretastatins have received significant attention because of their simple chemical structures, excellent antitumor efficacy and novel antivascular mechanisms of action. Herein, we report the synthesis of 20 novel acetyl analogs of CA-4 (1), synthesized from 3,4,5-trimethoxyphenylacetone that comprises the A ring of CA-4 with different aromatic aldehydes as the B ring. Molecular modeling studies indicate that these new compounds possess a 'twisted' conformation similar to CA-4. The new analogs effectively inhibit the growth of human and murine cancer cells. The most potent compounds 6k, 6s and 6t, have IC(50) values in the sub-μM range. Analog 6t has an IC(50) of 182 nM in MDA-MB-435 cells and has advantages over earlier analogs due to its enhanced water solubility (456 μM). This compound initiates microtubule depolymerization with an EC(50) value of 1.8 μM in A-10 cells. In a murine L1210 syngeneic tumor model 6t had antitumor activity and no apparent toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening.

    PubMed

    Xia, Pu; Zhang, Xiaowei; Xie, Yuwei; Guan, Miao; Villeneuve, Daniel L; Yu, Hongxia

    2016-10-04

    There are thousands of chemicals used by humans and detected in the environment for which limited or no toxicological data are available. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify the potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes at IC50 (the concentration causing a 50% reduction in cell viability) were significantly enriched in the adherens junction pathway, MAPK signaling pathway, and PPAR signaling pathway, suggesting a potential role in the molecular mechanism of TCS-induced cytotoxicity. Evaluation of the top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with transcriptomic profiling of TCS at concentrations of

  3. p21 as a Transcriptional Co-Repressor of S-Phase and Mitotic Control Genes

    PubMed Central

    Ferrándiz, Nuria; Caraballo, Juan M.; García-Gutierrez, Lucía; Devgan, Vikram; Rodriguez-Paredes, Manuel; Lafita, M. Carmen; Bretones, Gabriel; Quintanilla, Andrea; Muñoz-Alonso, M. Jose; Blanco, Rosa; Reyes, Jose C.; Agell, Neus; Delgado, M. Dolores; Dotto, G. Paolo; León, Javier

    2012-01-01

    It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes. PMID:22662213

  4. Phenformin has a direct inhibitory effect on the ATP-sensitive potassium channel.

    PubMed

    Aziz, Qadeer; Thomas, Alison; Khambra, Tapsi; Tinker, Andrew

    2010-05-25

    The biguanides, phenformin and metformin, are used in the treatment of type II diabetes mellitus, as well as being routinely used in studies investigating AMPK activity. We used the patch-clamp technique and rubidium flux assays to determine the role of these drugs in ATP-sensitive K+ channel (K(ATP)) regulation in cell lines expressing the cloned components of K(ATP) and the current natively expressed in vascular smooth muscle cells (VSMCs). Phenformin but not metformin inhibits a number of variants of K(ATP) including the cloned equivalents of currents present in vascular and non-vascular smooth muscle (Kir6.1/SUR2B and Kir6.2/SUR2B) and pancreatic beta-cells (Kir6.2/SUR1). However it does not inhibit the current potentially present in cardiac myocytes (Kir6.2/SUR2A). The highest affinity interaction is seen with Kir6.1/SUR2B (IC50=0.55 mM) and it also inhibits the current in native vascular smooth muscle cells. The extent and rate of inhibition are similar to that seen with the known K(ATP) blocker PNU 37883A. Additionally, phenformin inhibited the current elicited through the Kir6.2DeltaC26 (functional without SUR) channel with an IC50 of 1.78 mM. Phenformin reduced the open probability of Kir6.1/SUR2B channels by approximately 90% in inside-out patches. These findings suggest that phenformin interacts directly with the pore-forming Kir6.0 subunit however the sulphonylurea receptor is able to significantly modulate the affinity. It is likely to block from the intracellular side of the channel in a manner analogous to that of PNU 37883A. Copyright 2010 Elsevier B.V. All rights reserved.

  5. In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria.

    PubMed

    Bero, Joanne; Ganfon, Habib; Jonville, Marie-Caroline; Frédérich, Michel; Gbaguidi, Fernand; DeMol, Patrick; Moudachirou, Mansourou; Quetin-Leclercq, Joëlle

    2009-04-21

    The aim of the study was to evaluate the in vitro antiplasmodial activity of crude extracts of 12 plant species traditionally used in Benin for the treatment of malaria in order to validate their use. For each species, dichloromethane, methanol and total aqueous extracts were tested. The antiplasmodial activity of extracts was evaluated using the measurement of the plasmodial lactate dehydrogenase activity on chloroquine-sensitive (3D7) and resistant (W2) strains of Plasmodium falciparum. The selectivity of the different extracts was evaluated using the MTT test on J774 macrophage-like murine cells and WI38 human normal fibroblasts. The best growth inhibition of both strains of Plasmodium falciparum was observed with the dichloromethane extracts of Acanthospermum hispidum DC. (Asteraceae) (IC(50)=7.5 microg/ml on 3D7 and 4.8 microg/ml on W2), Keetia leucantha (K. Krause) Bridson (syn. Plectronia leucantha Krause) (Rubiaceae) leaves and twigs (IC(50)=13.8 and 11.3 microg/ml on 3D7 and IC(50)=26.5 and 15.8 microg/ml on W2, respectively), Carpolobia lutea G.Don. (Polygalaceae) (IC(50)=19.4 microg/ml on 3D7 and 8.1 microg/ml on W2) and Strychnos spinosa Lam. (Loganiaceae) leaves (IC(50)=15.6 microg/ml on 3D7 and 8.9 microg/ml on W2). All these extracts had a low cytotoxicity. Our study gives some justifications for the traditional uses of some investigated plants.

  6. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells.

    PubMed

    Kim, Eunbi; Na, Sunghun; An, Borim; Yang, Se-Ran; Kim, Woo Jin; Ha, Kwon-Soo; Han, Eun-Taek; Park, Won Sun; Lee, Chang-Min; Lee, Ji Yoon; Lee, Seung-Joon; Hong, Seok-Ho

    2017-03-01

    Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.

  7. Leaf extracts from Moricandia arvensis promote antiproliferation of human cancer cells, induce apoptosis, and enhance antioxidant activity.

    PubMed

    Skandrani, Ines; Boubaker, Jihed; Bhouri, Wissem; Limem, Ilef; Kilani, Soumaya; Ben Sghaier, Mohamed; Neffati, Aicha; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2010-01-01

    The in vitro antiproliferative, apoptotic, and antioxidant activities from leaf extracts of Moricandia arvensis, which are used in traditional cooking and medicines, were investigated. The MTT assay revealed that only TOF (total oligomer flavonoids), ethyl acetate (EA), chloroform (Chl), and petroleum ether (PE) extracts inhibited the proliferation of K562 cells. Apoptosis plays a very important role in the treatment of cancer by promoting the apoptosis of cancer cells and limiting the concurrent death of normal cells. Thus, the possible effects of M. arvensis extracts on the induction of apoptosis in human leukemic cells (K562 cells) were investigated. The electrophoretic analysis of DNA fragmentation confirms that TOF, Chl, PE, and EA extracts provoke DNA fragmentation. Using the lipid peroxidation inhibitory assay, the antioxidant capacity of M. arvensis extracts was evaluated by the ability of each extract to inhibit malondialdehyde formation. It was revealed that EA and TOF extracts are the most active in scavenging the hydroxyl radicals.

  8. 2-((Benzimidazol-2-yl)thio)-1-arylethan-1-ones: Synthesis, crystal study and cancer stem cells CD133 targeting potential.

    PubMed

    Abdel-Aziz, Hatem A; Ghabbour, Hazem A; Eldehna, Wagdy M; Al-Rashood, Sara T A; Al-Rashood, Khalid A; Fun, Hoong-Kun; Al-Tahhan, Mays; Al-Dhfyan, Abdullah

    2015-11-02

    In order to develop a potent anti-tumor agent that can target both cancer stem cells and the bulk of tumor cells, a series of 2-((benzimidazol-2-yl)thio)-1-arylethan-1-ones 5a-o was synthesized. All compounds were evaluated for their anti-proliferative activity towards colon HT-29 cancer cell line. In addition, their inhibitory effect against cell surface expression of CD133, a potent cancer stem cells (CSCs) marker, in the same cells was evaluated by flow cytometry at 10 μM. Compound 5l emerged as the most active anti-proliferative analog against HT-29 (IC50 = 18.83 ± 1.37 μM), that almost equipotent as 5-fluorouracil (IC50 = 15.83 ± 1.63 μM) with 50.11 ± 4.05% inhibition effect on CD133 expression, suggested dual targeted effect. Also, compounds 5h, 5j, 5k and 5m-o inhibited the expression of CD133 with more than 50%. The SAR study pointed out the significance of substitution of the pendent phenyl group with lipophilic electron-donating groups or replacing it by 2-thienyl or 2-furyl groups. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Deferasirox is a powerful NF-κB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging

    PubMed Central

    Messa, Emanuela; Carturan, Sonia; Maffè, Chiara; Pautasso, Marisa; Bracco, Enrico; Roetto, Antonella; Messa, Francesca; Arruga, Francesca; Defilippi, Ilaria; Rosso, Valentina; Zanone, Chiara; Rotolo, Antonia; Greco, Elisabetta; Pellegrino, Rosa M.; Alberti, Daniele; Saglio, Giuseppe; Cilloni, Daniela

    2010-01-01

    Background Usefulness of iron chelation therapy in myelodysplastic patients is still under debate but many authors suggest its possible role in improving survival of low-risk myelodysplastic patients. Several reports have described an unexpected effect of iron chelators, such as an improvement in hemoglobin levels, in patients affected by myelodysplastic syndromes. Furthermore, the novel chelator deferasirox induces a similar improvement more rapidly. Nuclear factor-κB is a key regulator of many cellular processes and its impaired activity has been described in different myeloid malignancies including myelodysplastic syndromes. Design and Methods We evaluated deferasirox activity on nuclear factor-κB in myelodysplastic syndromes as a possible mechanism involved in hemoglobin improvement during in vivo treatment. Forty peripheral blood samples collected from myelodysplastic syndrome patients were incubated with 50 μM deferasirox for 18h. Results Nuclear factor-κB activity dramatically decreased in samples showing high basal activity as well as in cell lines, whereas no similar behavior was observed with other iron chelators despite a similar reduction in reactive oxygen species levels. Additionally, ferric hydroxyquinoline incubation did not decrease deferasirox activity in K562 cells suggesting the mechanism of action of the drug is independent from cell iron deprivation by chelation. Finally, incubation with both etoposide and deferasirox induced an increase in K562 apoptotic rate. Conclusions Nuclear factor-κB inhibition by deferasirox is not seen from other chelators and is iron and reactive oxygen species scavenging independent. This could explain the hemoglobin improvement after in vivo treatment, such that our hypothesis needs to be validated in further prospective studies. PMID:20534700

  10. The use of one-bead one-compound combinatorial library technology to discover high-affinity αvβ3 integrin and cancer targeting RGD ligands with a build-in handle

    PubMed Central

    Xiao, Wenwu; Wang, Yan; Lau, Edmond Y.; Luo, Juntao; Yao, Nianhuan; Shi, Changying; Meza, Leah; Tseng, Harry; Maeda, Yoshiko; Kumaresan, Pappanaicken; Liu, Ruiwu; Lightstone, Felice C.; Takada, Yoshikazu; Lam, Kit S.

    2012-01-01

    The αvβ3 integrin, expressed on the surface of various normal and cancer cells, is involved in numerous physiological processes such as angiogenesis, apoptosis, and bone resorption. Because this integrin plays a key role in angiogenesis and metastasis of human tumors, αvβ3 integrin ligands are of great interest to advances in targeted-therapy and cancer imaging. In this report, one-bead-one-compound (OBOC) combinatorial libraries containing the RGD motif were designed and screened against K562 myeloid leukemia cells that had been transfected with human αvβ3 integrin gene. Cyclic peptide LXW7 was identified as a leading ligand with a build-in handle that binds specifically to αvβ3 and showed comparable binding affinity (IC50 = 0.68±0.08 μM) to some of the well-known RGD “head-to-tail” cyclic pentapeptide ligands reported in the literature. The biotinylated form of LXW7 ligand showed similar binding strength as LXW7 against αvβ3 integrin, whereas biotinylated RGD cyclopentapeptide ligands revealed a 2 to 8 fold weaker binding affinity than their free forms. LXW7 was able to bind to both U-87MG glioblastoma and A375M melanoma cell lines, both of which express high levels of αvβ3 integrin. In vivo and ex vivo optical imaging studies with biotinylated-ligand/streptavidin-Cy5.5 complex in nude mice bearing U-87MG or A375M xenografts revealed preferential uptake of biotinylated LXW7 in tumor. When compared with biotinylated RGD cyclopentapeptide ligands, biotinylated LXW7 showed higher tumor uptake but lower liver uptake. PMID:20858725

  11. Synthesis, β-haematin inhibition, and in vitro antimalarial testing of isocryptolepine analogues: SAR study of indolo[3,2-c]quinolines with various substituents at C2, C6, and N11.

    PubMed

    Wang, Ning; Wicht, Kathryn J; Imai, Kento; Wang, Ming-Qi; Anh Ngoc, Tran; Kiguchi, Ryo; Kaiser, Marcel; Egan, Timothy J; Inokuchi, Tsutomu

    2014-05-01

    A series of indolo[3,2-c]quinolines were synthesized by modifying the side chains of the ω-aminoalkylamines at the C6 position and introducing substituents at the C2 position, such as F, Cl, Br, Me, MeO and NO2, and a methyl group at the N11 position for an SAR study. The in vitro antiplasmodial activities of the derivative agents against two different strains (CQS: NF54 and CQR: K1) and the cytotoxic activity against normal L6 cells were evaluated. The test results showed that compounds 6k and 6l containing the branched methyl groups of 3-aminopropylamino at C6 with a Cl atom at C2 exhibited a very low cytotoxicity with IC50 values above 4000 nM, high antimalarial activities with IC50 values of about 11 nM for CQS (NF54), IC50 values of about 17 nM for CQR (K1), and RI resistance indices of 1.6. Furthermore, the compounds were tested for β-haematic inhibition, and QSAR revealed an interesting linear correlation between the biological activity of CQS (NF54) and three contributing factors, namely solubility, hydrophilic surface area, and β-haematin inhibition for this series. In vivo testing of 6l showed a reduction in parasitaemia on day 4 with an activity of 38%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. First Penicillin-Binding Protein Occupancy Patterns of β-Lactams and β-Lactamase Inhibitors in Klebsiella pneumoniae.

    PubMed

    Sutaria, Dhruvitkumar S; Moya, Bartolome; Green, Kari B; Kim, Tae Hwan; Tao, Xun; Jiao, Yuanyuan; Louie, Arnold; Drusano, George L; Bulitta, Jürgen B

    2018-06-01

    Penicillin-binding proteins (PBPs) are the high-affinity target sites of all β-lactam antibiotics in bacteria. It is well known that each β-lactam covalently binds to and thereby inactivates different PBPs with various affinities. Despite β-lactams serving as the cornerstone of our therapeutic armamentarium against Klebsiella pneumoniae , PBP binding data are missing for this pathogen. We aimed to generate the first PBP binding data on 13 chemically diverse and clinically relevant β-lactams and β-lactamase inhibitors in K. pneumoniae PBP binding was determined using isolated membrane fractions from K. pneumoniae strains ATCC 43816 and ATCC 13883. Binding reactions were conducted using β-lactam concentrations from 0.0075 to 256 mg/liter (or 128 mg/liter). After β-lactam exposure, unbound PBPs were labeled by Bocillin FL. Binding affinities (50% inhibitory concentrations [IC 50 ]) were reported as the β-lactam concentrations that half-maximally inhibited Bocillin FL binding. PBP occupancy patterns by β-lactams were consistent across both strains. Carbapenems bound to all PBPs, with PBP2 and PBP4 as the highest-affinity targets (IC 50 , <0.0075 mg/liter). Preferential PBP2 binding was observed by mecillinam (amdinocillin; IC 50 , <0.0075 mg/liter) and avibactam (IC 50 , 2 mg/liter). Aztreonam showed high affinity for PBP3 (IC 50 , 0.06 to 0.12 mg/liter). Ceftazidime bound PBP3 at low concentrations (IC 50 , 0.06 to 0.25 mg/liter) and PBP1a/b at higher concentrations (4 mg/liter), whereas cefepime bound PBPs 1 to 4 at more even concentrations (IC 50 , 0.015 to 2 mg/liter). These PBP binding data on a comprehensive set of 13 clinically relevant β-lactams and β-lactamase inhibitors in K. pneumoniae enable, for the first time, the rational design and optimization of double β-lactam and β-lactam-β-lactamase inhibitor combinations. Copyright © 2018 American Society for Microbiology.

  13. Application of a haematopoetic progenitor cell-targeted adeno-associated viral (AAV) vector established by selection of an AAV random peptide library on a leukaemia cell line

    PubMed Central

    Stiefelhagen, Marius; Sellner, Leopold; Kleinschmidt, Jürgen A; Jauch, Anna; Laufs, Stephanie; Wenz, Frederik; Zeller, W Jens; Fruehauf, Stefan; Veldwijk, Marlon R

    2008-01-01

    Background For many promising target cells (e.g.: haematopoeitic progenitors), the susceptibility to standard adeno-associated viral (AAV) vectors is low. Advancements in vector development now allows the generation of target cell-selected AAV capsid mutants. Methods To determine its suitability, the method was applied on a chronic myelogenous leukaemia (CML) cell line (K562) to obtain a CML-targeted vector and the resulting vectors tested on leukaemia, non-leukaemia, primary human CML and CD34+ peripheral blood progenitor cells (PBPC); standard AAV2 and a random capsid mutant vector served as controls. Results Transduction of CML (BV173, EM3, K562 and Lama84) and AML (HL60 and KG1a) cell lines with the capsid mutants resulted in an up to 36-fold increase in CML transduction efficiency (K562: 2-fold, 60% ± 2% green fluorescent protein (GFP)+ cells; BV173: 9-fold, 37% ± 2% GFP+ cells; Lama84: 36-fold, 29% ± 2% GFP+ cells) compared to controls. For AML (KG1a, HL60) and one CML cell line (EM3), no significant transduction (<1% GFP+ cells) was observed for any vector. Although the capsid mutant clone was established on a cell line, proof-of-principle experiments using primary human cells were performed. For CML (3.2-fold, mutant: 1.75% ± 0.45% GFP+ cells, p = 0.03) and PBPC (3.5-fold, mutant: 4.21% ± 3.40% GFP+ cells) a moderate increase in gene transfer of the capsid mutant compared to control vectors was observed. Conclusion Using an AAV random peptide library on a CML cell line, we were able to generate a capsid mutant, which transduced CML cell lines and primary human haematopoietic progenitor cells with higher efficiency than standard recombinant AAV vectors. PMID:18789140

  14. Use of Engineered Exosomes Expressing HLA and Costimulatory Molecules to Generate Antigen-specific CD8+ T Cells for Adoptive Cell Therapy.

    PubMed

    Kim, Sueon; Sohn, Hyun-Jung; Lee, Hyun-Joo; Sohn, Dae-Hee; Hyun, Seung-Joo; Cho, Hyun-Il; Kim, Tai-Gyu

    2017-04-01

    Dendritic cell-derived exosomes (DEX) comprise an efficient stimulator of T cells. However, the production of sufficient DEX remains a barrier to their broad applicability in immunotherapeutic approaches. In previous studies, genetically engineered K562 have been used to generate artificial antigen presenting cells (AAPC). Here, we isolated exosomes from K562 cells (referred to as CoEX-A2s) engineered to express human leukocyte antigen (HLA)-A2 and costimulatory molecules such as CD80, CD83, and 41BBL. CoEX-A2s were capable of stimulating antigen-specific CD8 T cells both directly and indirectly via CoEX-A2 cross-dressed cells. Notably, CoEX-A2s also generated similar levels of HCMV pp65-specific and MART1-specific CD8 T cells as DEX in vitro. The results suggest that these novel exosomes may provide a crucial reagent for generating antigen-specific CD8 T cells for adoptive cell therapies against viral infection and tumors.

  15. Ginsenosides, ingredients of the root of Panax ginseng, are not substrates but inhibitors of sodium-glucose transporter 1.

    PubMed

    Gao, Shengli; Kushida, Hirotaka; Makino, Toshiaki

    2017-01-01

    Recent pharmacokinetic studies have revealed that ginsenosides, the major ingredients of ginseng (the roots of Panax ginseng), are present in the plasma collected from subjects receiving ginseng, and speculated that ginsenosides might be actively transported via glucose transporters. We evaluated whether ginsenosides Rb 1 and Rg 1 , and their metabolites from enteric bacteria act as substrates of sodium-glucose cotransporter (SGLT) 1, the major glucose transporter expressed on the apical side of intestinal epithelial cells. First, we evaluated the competing effects of ginseng extract and ginsenosides on the uptake of [ 14 C]methyl-glucose, a substrate of SGLT1, by SGLT1-overexpressing HEK293 cells. A boiling water extract of ginseng inhibited SGLT1 in a concentration-dependent manner with an IC 50 value of 0.85 mg/ml. By activity-guided fractionation, we determined that the fraction containing ginsenosides displayed an inhibitory effect on SGLT1. Of the ginsenosides evaluated, protopanaxatriol-type ginsenosides were not found to inhibit SGLT1, whereas protopanaxadiol-type ginsenosides, including ginsenosides Rd, Rg 3 , Rh 2 , F 2 and compound K, exhibited significant inhibitory effects on SGLT1, with ginsenoside F 2 having the highest activity with an IC 50 value of 23.0 µM. Next, we measured the uptake of ginsenoside F 2 and compound K into Caco-2 cells, a cell line frequently used to evaluate the intestinal absorption of drugs. The uptake of ginsenoside F 2 and compound K into Caco-2 cells was not competitively inhibited by glucose. Furthermore, the uptake of ginsenoside F 2 and compound K into SGLT1-overexpressing HEK293 cells was not significantly higher than into mock cells. Ginsenoside F 2 and compound K did not appear to be substrates of SGLT1, although these compounds could inhibit SGLT1. Ginsenosides might be absorbed by passive diffusion through the intestinal membrane or actively transported via unknown transporters other than SGLT1.

  16. One Pot Selective Arylation of 2-Bromo-5-Chloro Thiophene; Molecular Structure Investigation via Density Functional Theory (DFT), X-ray Analysis, and Their Biological Activities.

    PubMed

    Rasool, Nasir; Kanwal, Aqsa; Rasheed, Tehmina; Ain, Quratulain; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Khan, Khalid Mohammed; Arshad, Muhammad Nadeem; M Asiri, Abdullah; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E

    2016-06-28

    Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity.

  17. CLONING, EXPRESSION, AND HEMOSTATIC ACTIVITIES OF A DISINTEGRIN, r-MOJASTIN 1, FROM THE MOHAVE RATTLESNAKE (Crotalus scutulatus scutulatus)

    PubMed Central

    Sánchez, Elda E.; Lucena, Sara E.; Reyes, Steven; Soto, Julio G.; Cantu, Esteban; Lopez-Johnston, Juan Carlos; Guerrero, Belsy; Salazar, Ana Maria; Rodríguez-Acosta, Alexis; Galán, Jacob A.; Tao, W. Andy; Pérez, John C.

    2012-01-01

    Interactions with exposed subendothelial extracellular proteins and cellular integrins (endothelial cells, platelets and lymphocytes) can cause alterations in the hemostatic system associated with atherothrombotic processes. Many molecules found in snake venoms induce pathophysiological changes in humans, cause edema, hemorrhage, and necrosis. Disintegrins are low molecular weight, non-enzymatic proteins found in snake venom that mediate changes by binding to integrins of platelets or other cells and prevent binding of the natural ligands such as fibrinogen, fibronectin or vitronectin. Disintegrins are of great biomedical importance due to their binding affinities resulting in the inhibition of platelet aggregation, adhesion of cancer cells, and induction of signal transduction pathways. RT-PCR was used to obtain a 216 bp disintegrin cDNA from a C. s. scutulatus snake venom gland. The cloned recombinant disintegrin called r-mojastin 1 codes for 71 amino acids, including 12 cysteines, and an RGD binding motif. r-Mojastin 1 inhibited platelet adhesion to fibronectin with an IC50 of 58.3 nM and ADP-induced platelet aggregation in whole blood with an IC50 of 46 nM. r-Mojastin 1 was also tested for its ability to inhibit platelet ATP release using PRP resulting with an IC50 of 95.6 nM. MALDI-TOF mass spectrum analysis showed that r-mojastin has a mass of 7.9509 kDa. PMID:20598348

  18. Copper (II) and zinc (II) complexes with flavanone derivatives: Identification of potential cholinesterase inhibitors by on-flow assays.

    PubMed

    Sarria, André Lucio Franceschini; Vilela, Adriana Ferreira Lopes; Frugeri, Bárbara Mammana; Fernandes, João Batista; Carlos, Rose Maria; da Silva, Maria Fátima das Graças Fernandes; Cass, Quezia Bezerra; Cardoso, Carmen Lúcia

    2016-11-01

    Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC 50 ) and inhibitory constant (K i ) ranging from 0.02 to 4.5μM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC 50 and K i values of 0.012±0.002 and 0.07±0.01μM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC 50 =206±30.0 and K i =126±18.0μM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC 50 and K i values of 8.0±1.4 and 2.0±0.1μM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC 50 and K i values and the type of mechanism for the best inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Oxyfadichalcone C inhibits melanoma A375 cell proliferation and metastasis via suppressing PI3K/Akt and MAPK/ERK pathways.

    PubMed

    Peng, Xiaolin; Wang, Zhengming; Liu, Yang; Peng, Xin; Liu, Yao; Zhu, Shan; Zhang, Zhe; Qiu, Yuling; Jin, Meihua; Wang, Ran; Zhang, Qingying; Kong, Dexin

    2018-08-01

    Melanoma remains to be one of the most incurable cancers. Discovery of novel antitumor agent for melanoma therapy is expected. We recently isolated Oxyfadichalcone C from Oxytropis falcate and investigated the anti-proliferative and anti-metastatic activity on human melanoma A375 cells in vitro. Cell viability was determined using MTT assay and soft agar cloning formation assay. The effect of Oxyfadichalcone C on cell cycle distribution and apoptosis were analyzed by flow cytometry. Cell metastasis was determined by wound healing assay, Transwell assay and Gelatin zymography assay. The effect of Oxyfadichalcone C on signal proteins of PI3K/Akt and MAPK/ERK pathways was examined by western blot analysis. Synergism assay was employed to determine whether combination of Oxyfadichalcone C with Vemurafenib would enhance the anti-proliferative effect. Oxyfadichalcone C potently inhibited proliferation, induced G1 phase arrest and weak apoptosis in A375 cells. Anti-migration and anti-invasion activities were also indicated. Such effects were associated with upregulation of p27, reduction of cyclin D1, p-pRb, p-Integrin β1, as well as the proteolytic activity of metalloproteinase (MMP)-2/9. Meanwhile, key molecules of PI3K/Akt and MAPK/ERK pathways were downregulated, which might be involved in the inhibition against proliferation and metastasis of A375 cells by Oxyfadichalcone C. In addition, combination of Oxyfadichalcone C with Vemurafenib at a ratio of IC50 Oxyfadichalcone C : 5 × IC 50 Vemurafenib exhibited synergistic anti-proliferative effect on A375 cells. Our findings suggest that Oxyfadichalcone C has the potential to be developed as a promising drug candidate for the treatment of melanoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams.

    PubMed

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-06-06

    In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.

  1. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams

    PubMed Central

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-01-01

    Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328

  2. Synthesis, Crystal Study, and Anti-Proliferative Activity of Some 2-Benzimidazolylthioacetophenones towards Triple-Negative Breast Cancer MDA-MB-468 Cells as Apoptosis-Inducing Agents.

    PubMed

    Abdel-Aziz, Hatem A; Eldehna, Wagdy M; Ghabbour, Hazem; Al-Ansary, Ghada H; Assaf, Areej M; Al-Dhfyan, Abdullah

    2016-07-29

    On account of its poor prognosis and deficiency of therapeutic stratifications, triple negative breast cancer continues to form the causative platform of an incommensurate number of breast cancer deaths. Aiming at the development of potent anticancer agents as a continuum of our previous efforts, a novel series of 2-((benzimidazol-2-yl)thio)-1-arylethan-1-ones 5a-w was synthesized and evaluated for its anti-proliferative activity towards triple negative breast cancer (TNBC) MDA-MB-468 cells. Compound 5k was the most active analog against MDA-MB-468 (IC50 = 19.90 ± 1.37 µM), with 2.1-fold increased activity compared to 5-fluorouracil (IC50 = 41.26 ± 3.77 µM). Compound 5k was able to induce apoptosis in MDA-MB-468, as evidenced by the marked boosting in the percentage of florecsein isothiocyanate annexin V (Annexin V-FITC)-positive apoptotic cells (upper right (UR) + lower right (LR)) by 2.8-fold in comparison to control accompanied by significant increase in the proportion of cells at pre-G1 (the first gap phase) by 8.13-fold in the cell-cycle analysis. Moreover, a quantitative structure activity relationship (QSAR) model was established to investigate the structural requirements orchestrating the anti-proliferative activity. Finally, we established a theoretical kinetic study.

  3. Functional toxicogenomic assessment of triclosan in human ...

    EPA Pesticide Factsheets

    Thousands of chemicals for which limited toxicological data are available are used and then detected in humans and the environment. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes (whose knockout gives potential resistance) at IC50 (50% Inhibition concentration of cell viability) were significantly enriched in adherens junction pathway, MAPK signaling pathway and PPAR signaling pathway, suggesting a potential molecular mechanism in TCS induced cytotoxicity. Evaluation of top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes (whose knockout enhances potential sensitivity) at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with the transcriptomic profiling of TCS at concentrations

  4. Highly potent artemisinin-derived dimers and trimers: Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities.

    PubMed

    Reiter, Christoph; Fröhlich, Tony; Gruber, Lisa; Hutterer, Corina; Marschall, Manfred; Voigtländer, Cornelia; Friedrich, Oliver; Kappes, Barbara; Efferth, Thomas; Tsogoeva, Svetlana B

    2015-09-01

    New pharmaceutically active compounds can be obtained by modification of existing drugs to access more effective agents in the wake of drug resistance amongst others. To achieve this goal the concept of hybridization was established during the last decade. We employed this concept by coupling two artemisinin-derived precursors to obtain dimers or trimers with increased in vitro activity against Plasmodiumfalciparum 3D7 strain, leukemia cells (CCRF-CEM and multidrug-resistant subline CEM/ADR5000) and human cytomegalovirus (HCMV). Dimer 4 (IC50 of 2.6 nM) possess superior antimalarial activity compared with its parent compound artesunic acid(3) (IC50 of 9.0 nM). Dimer5 and trimers6 and 7 display superior potency against both leukemia cell lines (IC50 up to 0.002 μM for CCRF-CEM and IC50 up to 0.20 μM for CEM/ADR5000) and are even more active than clinically used doxorubicin (IC50 1.61 μM for CEM/ADR5000). With respect to anti-HCMV activity, trimer6 is the most efficient hybrid (IC50 0.04 μM) outperforming ganciclovir (IC50 2.6 μM), dihydroartemisinin(IC50 >10 μM) and artesunic acid (IC50 3.8 μM). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of 111In-Labeled Cyclic RGD Peptides: Effects of Peptide and Linker Multiplicity on Their Tumor Uptake, Excretion Kinetics and Metabolic Stability

    PubMed Central

    Shi, Jiyun; Zhou, Yang; Chakraborty, Sudipta; Kim, Young-Seung; Jia, Bing; Wang, Fan; Liu, Shuang

    2011-01-01

    Purpose: The purpose of this study was to demonstrate the valence of cyclic RGD peptides, P-RGD (PEG4-c(RGDfK): PEG4 = 15-amino-4,710,13-tetraoxapentadecanoic acid), P-RGD2 (PEG4-E[c(RGDfK)]2, 2P-RGD4 (E{PEG4-E[c(RGDfK)]2}2, 2P4G-RGD4 (E{PEG4-E[G3-c(RGDfK)]2}2: G3 = Gly-Gly-Gly) and 6P-RGD4 (E{PEG4-E[PEG4-c(RGDfK)]2}2) in binding to integrin αvβ3, and to assess the impact of peptide and linker multiplicity on biodistribution properties, excretion kinetics and metabolic stability of their corresponding 111In radiotracers. Methods: Five new RGD peptide conjugates (DOTA-P-RGD (DOTA =1,4,7,10-tetraazacyclododecane-1,4,7,10-tetracetic acid), DOTA-P-RGD2, DOTA-2P-RGD4, DOTA-2P4G-RGD4, DOTA-6P-RGD4), and their 111In complexes were prepared. The integrin αvβ3 binding affinity of cyclic RGD conjugates were determined by a competitive displacement assay against 125I-c(RGDyK) bound to U87MG human glioma cells. Biodistribution, planar imaging and metabolism studies were performed in athymic nude mice bearing U87MG human glioma xenografts. Results: The integrin αvβ3 binding affinity of RGD conjugates follows the order of: DOTA-6P-RGD4 (IC50 = 0.3 ± 0.1 nM) ~ DOTA-2P4G-RGD4 (IC50 = 0.2 ± 0.1 nM) ~ DOTA-2P-RGD4 (IC50 = 0.5 ± 0.1 nM) > DOTA-3P-RGD2 (DOTA-PEG4-E[PEG4-c(RGDfK)]2: IC50 = 1.5 ± 0.2 nM) > DOTA-P-RGD2 (IC50 = 5.0 ± 1.0 nM) >> DOTA-P-RGD (IC50 = 44.3 ± 3.5 nM) ~ c(RGDfK) (IC50 = 49.9 ± 5.5 nM) >> DOTA-6P-RGK4 (IC50 = 437 ± 35 nM). The fact that DOTA-6P-RGK4 had much lower integrin αvβ3 binding affinity than DOTA-6P-RGD4 suggests that the binding of DOTA-6P-RGD4 to integrin αvβ3 is RGD-specific. This conclusion is consistent with the lower tumor uptake for 111In(DOTA-6P-RGK4) than that for 111In(DOTA-6P-RGD4). It was also found that the G3 and PEG4 linkers between RGD motifs have a significant impact on the integrin αvβ3-targeting capability, biodistribution characteristics, excretion kinetics and metabolic stability of 111In-labeled cyclic RGD peptides. Conclusion: On the basis of their integrin αvβ3 binding affinity and tumor uptake of their corresponding 111In radiotracers, it was conclude that 2P-RGD4, 2P4G-RGD4 and 6P-RGD4 are most likely bivalent in binding to integrin αvβ3, and extra RGD motifs might contribute to the long tumor retention times of 111In(DOTA-2P-RGD4), 111In(DOTA-2P4G-RGD4) and 111In(DOTA-6P-RGD4) than that of 111In(DOTA-3P-RGD3) at 72 h p.i. Among the 111In-labeled cyclic RGD tetramers evaluated in the glioma model, 111In(DOTA-2P4G-RGD4) has very high tumor uptake with the best tumor/kidney and tumor/liver ratios, suggesting that 90Y(DOTA-2P4G-RGD4) and 177Lu(DOTA-2P4G-RGD4) might have the potential for targeted radiotherapy of integrin αvβ3-positive tumors. PMID:21850213

  6. The role of KCNQ1/KCNE1 K(+) channels in intestine and pancreas: lessons from the KCNE1 knockout mouse.

    PubMed

    Warth, R; Garcia Alzamora, M; Kim, J K; Zdebik, A; Nitschke, R; Bleich, M; Gerlach, U; Barhanin, J; Kim, S J

    2002-03-01

    KCNE1 (IsK, minK) co-assembles with KCNQ1 (KvLQT1) to form voltage-dependent K(+) channels. Both KCNQ1 and KCNE1 are expressed in epithelial cells of gut and exocrine pancreas. We examined the role of KCNQ1/KCNE1 in Cl(-) secretion in small and large intestine and exocrine pancreas using the KCNE1 knockout mouse. Immunofluorescence revealed a similar basolateral localization of KCNQ1 in jejunum and colon of KCNE1 wild-type and knockout mice. Electrogenic Cl(-) secretion in the colon was not affected by gene disruption of KCNE1; in jejunum forskolin-induced short-circuit current was some 40% smaller but without being significantly different. Inhibition of KCNQ1 channels by 293B (IC(50) 1 micromol l(-1)) and by IKS224 (IC(50) 14 nmol l(-1)) strongly diminished intestinal Cl(-) secretion. In exocrine pancreas of wild-type mice, KCNQ1 was predominantly located at the basolateral membrane. In KCNE1 knockout mice, however, the basolateral staining was less pronounced and the distribution of secretory granules was irregular. A slowly activating and 293B-sensitive K(+) current was activated via cholinergic stimulation in pancreatic acinar cells of wild-type mice. In KCNE1 knockout mice this K(+) current was strongly reduced. In conclusion intestinal Cl(-) secretion is independent from KCNE1 but requires KCNQ1. In mouse pancreatic acini KCNQ1 probably co-assembled with KCNE1 leads to a voltage-dependent K(+) current that might be of importance for electrolyte and enzyme secretion.

  7. In Vitro Characterization and Evaluation of the Cytotoxicity Effects of Nisin and Nisin-Loaded PLA-PEG-PLA Nanoparticles on Gastrointestinal (AGS and KYSE-30), Hepatic (HepG2) and Blood (K562) Cancer Cell Lines.

    PubMed

    Goudarzi, Fariba; Asadi, Asadollah; Afsharpour, Maryam; Jamadi, Robab Hassanvand

    2018-05-01

    The aim of this study was an in vitro evaluation and comparison of the cytotoxic effects of free nisin and nisin-loaded PLA-PEG-PLA nanoparticles on gastrointestinal (AGS and KYSE-30), hepatic (HepG2), and blood (K562) cancer cell lines. To create this novel anti-cancer drug delivery system, the nanoparticles were synthesized and then loaded with nisin. Subsequently, their biocompatibility, ability to enter cells, and physicochemical properties, including formation, size, and shape, were studied using hemolysis, fluorescein isothiocyanate (FITC), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM), respectively. Then, its loading efficiency and release kinetics were examined to assess the potential impact of this formulation for the nanoparticle carrier candidacy. The cytotoxicities of nisin and nisin-loaded nanoparticles were evaluated by using the MTT and Neutral Red (NR) uptake assays. Detections of the apoptotic cells were done via Ethidium Bromide (EB)/Acridine Orange (AO) staining. The FTIR spectra, SEM images, and DLS graph confirmed the formations of the nanoparticles and nisin-loaded nanoparticles with spherical, distinct, and smooth surfaces and average sizes of 100 and 200 nm, respectively. The loading efficiency of the latter nanoparticles was about 85-90%. The hemolysis test represented their non-cytotoxicities and the FITC images indicated their entrance inside the cells. An increase in the percentage of apoptotic cells was observed through EB/AO staining. These results demonstrated that nisin had a cytotoxic effect on AGS, KYSE-30, HepG2, and K562 cancer cell lines, while the cytotoxicity of nisin-loaded nanoparticles was more than that of the free nisin.

  8. Estrogenic and Progestagenic effects of extracts of Justicia pectoralis Jacq., an herbal medicine from Costa Rica used for the treatment of Menopause and PMS

    PubMed Central

    Locklear, Tracie D.; Huang, Yue; Frasor, Jonna; Doyle, Brian J.; Perez, Alice; Gomez-Laurito, Jorge; Mahady, Gail. B.

    2010-01-01

    Objectives To investigate the biological activities of Justicia pectoralis Jacq. (Acanthaceae), an herbal medicine used in Costa Rica (CR) for the management of menopausal symptoms and dysmenorrhea. Study design The aerial parts of Justicia pectoralis were collected, dried and extracted in methanol. To establish possible mechanisms of action of JP for the treatment of menopausal symptoms, the estrogenic and progesterone agonist, and antiinflammatory activities were investigated. Main outcome measures The methanol extract (JP-M) was tested in ER and PR binding assays, a COX-2 enzyme inhibition assay, the ERβ-CALUX assay in U2-OS cells, as well as reporter and endogenous gene assays in MCF-7 K1 cells. Results The JP-M extract inhibited COX-2 catalytic activity (IC50 4.8µg/ml); bound to both ERα and ERβ (IC50 50 µg/ml and 23.1µg/ml, respectively); induced estrogen-dependent transcription in the ERβ-CALUX; and bound to the progesterone receptor (IC50 22.8 µg/ml). The extract also modulated the expression of endogenous estrogen responsive genes pS2, PR, and PTGES in MCF-7 cells at a concentration of 20 µg/ml. Activation of a 2 ERE-construct in transiently transfected MCF-7 cells by the extract was inhibited by the estrogen receptor antagonist ICI 182,780, indicating that the effects were mediated through the estrogen receptor. Finally, the extract weakly enhanced the proliferation of MCF-7 cells, however this was not statistically significant as compared with DMSO controls. Conclusions Extracts of J. pectoralis have estrogenic, progestagenic and anti-inflammatory effects, and thus have a plausible mechanism of action, explaining its traditional use for menopause and PMS. PMID:20452152

  9. Fe-MIL-101 exhibits selective cytotoxicity and inhibition of angiogenesis in ovarian cancer cells via downregulation of MMP

    PubMed Central

    Wang, Jiaqiang; Chen, Daomei; Li, Bin; He, Jiao; Duan, Deliang; Shao, Dandan; Nie, Minfang

    2016-01-01

    Though metal-organic frameworks (MOFs) have inspired potential applications in biomedicine, cytotoxicity studies of MOFs have been relatively rare. Here we demonstrate for the first time that an easily available MOF, Fe-MIL-101, possesses intrinsic activity against human SKOV3 ovarian cancer cells and suppress the proliferation of SKOV3 cells (IC50 = 23.6 μg mL−1) and normal mouse embryonic fibroblasts (BABL-3T3, IC50 = 78.3 μg mL−1) cells. It was more effective against SKOV3 cells than typical anticancer drugs such as artesunate (ART, IC50 = 96.9 μg mL−1) and oxaliplatin (OXA, IC50 = 64.4 μg mL−1), but had less effect on normal BABL-3T3 cells compared with ART (IC50 = 36.6 μg mL−1) and OXA (IC50 = 13.8 μg mL−1). Fe-MIL-101 induced apoptosis of human umbilical vein endothelial cells (HUVECs) via G0/G1 cell cycle arrest and decreased the mitochondrial membrane potential in HUVECs and induced apoptosis. Furthermore, Fe-MIL-101 exhibited stronger antiangiogenic effects in HUVEC cells than antiangiogenic inhibitor (SU5416) via downregulation the expression of MMP-2/9. Our results reveal a new role of Fe-MIL-101 as a novel, non-toxic anti-angiogenic agent that restricted ovarian tumour growth. These findings could open a new avenue of using MOFs as potential therapeutics in angiogenesis-dependent diseases, including ovarian cancer. PMID:27188337

  10. Expression of receptor protein tyrosine kinase tif is regulated during leukemia cell differentiation.

    PubMed

    Dai, W; Pan, H Q; Ouyang, B; Greenberg, J M; Means, R T; Li, B; Cardie, J

    1996-06-01

    tif is a recently cloned and characterized cDNA predicting a transmembrane protein with a putative tyrosine kinase structure in its cytoplasmic domain. By analysis of the purified tif cytoplasmic domain expressed in Escherichia coli, we have demonstrated that tif is an active protein tyrosine kinase capable of autophosphorylation on tyrosine residues and this phosphorylation is inhibited by a tyrosine-specific inhibitor genistein. Northern blot analyses of various leukemia cell lines have revealed that tif mRNA expression is primarily confined to those bearing erythroid and megakaryocytic phenotypes. Megakaryocytic differentiation of K562 and HEL cells induced by phorbol 12-myristate 13-acetate is accompanied by down-regulation of tif mRNA expression. In addition, treatment of K562 and HEL with hexamethylene bis-acetamide, but not with hemin, decreases the steady-state level of tif mRNA. These combined results suggest that the receptor tyrosine kinase tif is involved in hematopoietic development.

  11. Vitamin K3 disrupts the microtubule networks by binding to tubulin: a novel mechanism of its antiproliferative activity.

    PubMed

    Acharya, Bipul R; Choudhury, Diptiman; Das, Amlan; Chakrabarti, Gopal

    2009-07-28

    Vitamin K3 (2-methyl-1,4-naphthoquinone), also known as menadione, is the synthetic precursor of all the naturally occurring vitamin K in the body. Vitamin K is necessary for the production of prothrombin and five other blood-clotting factors in humans. We have examined the effects of menadione on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro. Cell viability experiments using human cervical epithelial cancer cells (HeLa) and human oral epithelial cancer cells (KB) indicated that the IC(50) values for menadione are 25.6 +/- 0.6 and 64.3 +/- 0.36 microM, respectively, in those cells. Mendione arrests HeLa cells in mitosis. Immunofluorescence studies using an anti-alpha-tubulin antibody showed a significant irreversible depolymeriztion of the interphase microtubule network and spindle microtubule in a dose-dependent manner. In vitro polymerization of purified tubulin into microtubules is inhibited by menadione with an IC(50) value of 47 +/- 0.65 microM. The binding of menadione with tubulin was studied using menadione fluorescence and intrinsic tryptophan fluorescence of tubulin. Binding of menadione to tubulin is slow, taking 35 min for equilibration at 25 degrees C. The association reaction kinetics is biphasic in nature, and the association rate constants for fast and slow phases are 189.12 +/- 17 and 32.44 +/- 21 M(-1) s(-1) at 25 degrees C, respectively. The stoichiometry of menadione binding to tubulin is 1:1 (molar ratio) with a dissociation constant from 2.44 +/- 0.34 to 3.65 +/- 0.25 microM at 25 degrees C. Menadione competes for the colchicine binding site with a K(i) of 2.5 muM as determined from a modified Dixon plot. The obtained data suggested that menadione binds at the colchicine binding site to tubulin. Thus, we can conclude one novel mechanism of inhibition of cancer cell proliferation by menadione is through tubulin binding.

  12. Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells

    PubMed Central

    2012-01-01

    Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines. PMID:23351548

  13. Inhibition of partially purified K+/H+-ATPase from guinea-pig isolated and enriched parietal cells by substituted benzimidazoles.

    PubMed Central

    Beil, W.; Sewing, K. F.

    1984-01-01

    The cellular and subcellular distributions of adenosinetriphosphatases (ATPases) were examined in guinea-pig gastric mucosal cells. All cell types displayed Mg2+-ATPase and bicarbonate (HCO3-)-stimulated ATPase activity. K+-ATPase was located only in fractions derived from parietal cells. Differential and density-gradient centrifugation of material prepared from parietal cells revealed that K+-ATPase activity was located in a tubulo-vesicular membrane fraction. Enzyme activity was ten fold greater in this fraction than in a crude parietal cell homogenate. The substituted benzimidazoles, omeprazole and picoprazole, inhibited K+-ATPase (IC50 1.8 +/- 0.5 mumol l-1 and 3.1 +/- 0.4 mumol l-1, respectively). Detailed kinetic analysis indicated that these compounds were non-competitive and reversible inhibitors of the enzyme. In contrast cimetidine and verapamil were without effect on the enzyme. The relevance of the inhibition of K+-ATPase to the antisecretory activity of the benzimidazoles, in experimental animals and man, is discussed. PMID:6146367

  14. Polyisoprenylated methylated protein methyl esterase is both sensitive to curcumin and overexpressed in colorectal cancer: implications for chemoprevention and treatment.

    PubMed

    Amissah, Felix; Duverna, Randolph; Aguilar, Byron J; Poku, Rosemary A; Lamango, Nazarius S

    2013-01-01

    Inhibition of PMPMEase, a key enzyme in the polyisoprenylation pathway, induces cancer cell death. In this study, purified PMPMEase was inhibited by the chemopreventive agent, curcumin, with a K(i) of 0.3 μM (IC50 = 12.4 μM). Preincubation of PMPMEase with 1 mM curcumin followed by gel-filtration chromatography resulted in recovery of the enzyme activity, indicative of reversible inhibition. Kinetics analysis with N-para-nitrobenzoyl-S-trans,trans-farnesylcysteine methyl ester substrate yielded K M values of 23.6 ± 2.7 and 85.3 ± 15.3 μM in the absence or presence of 20 μM curcumin, respectively. Treatment of colorectal cancer (Caco2) cells with curcumin resulted in concentration-dependent cell death with an EC50 of 22.0 μg/mL. PMPMEase activity in the curcumin-treated cell lysate followed a similar concentration-dependent profile with IC50 of 22.6 μg/mL. In colorectal cancer tissue microarray studies, PMPMEase immunoreactivity was significantly higher in 88.6% of cases compared to normal colon tissues (P < 0.0001). The mean scores ± SEM were 91.7 ± 11.4 (normal), 75.0 ± 14.4 (normal adjacent), 294.8 ± 7.8 (adenocarcinoma), and 310.0 ± 22.6 (mucinous adenocarcinoma), respectively. PMPMEase overexpression in colorectal cancer and cancer cell death stemming from its inhibition is an indication of its possible role in cancer progression and a target for chemopreventive agents.

  15. Polyisoprenylated Methylated Protein Methyl Esterase Is Both Sensitive to Curcumin and Overexpressed in Colorectal Cancer: Implications for Chemoprevention and Treatment

    PubMed Central

    Amissah, Felix; Duverna, Randolph; Aguilar, Byron J.; Poku, Rosemary A.; Lamango, Nazarius S.

    2013-01-01

    Inhibition of PMPMEase, a key enzyme in the polyisoprenylation pathway, induces cancer cell death. In this study, purified PMPMEase was inhibited by the chemopreventive agent, curcumin, with a K i of 0.3 μM (IC50 = 12.4 μM). Preincubation of PMPMEase with 1 mM curcumin followed by gel-filtration chromatography resulted in recovery of the enzyme activity, indicative of reversible inhibition. Kinetics analysis with N-para-nitrobenzoyl-S-trans,trans-farnesylcysteine methyl ester substrate yielded K M values of 23.6 ± 2.7 and 85.3 ± 15.3 μM in the absence or presence of 20 μM curcumin, respectively. Treatment of colorectal cancer (Caco2) cells with curcumin resulted in concentration-dependent cell death with an EC50 of 22.0 μg/mL. PMPMEase activity in the curcumin-treated cell lysate followed a similar concentration-dependent profile with IC50 of 22.6 μg/mL. In colorectal cancer tissue microarray studies, PMPMEase immunoreactivity was significantly higher in 88.6% of cases compared to normal colon tissues (P < 0.0001). The mean scores ± SEM were 91.7 ± 11.4 (normal), 75.0 ± 14.4 (normal adjacent), 294.8 ± 7.8 (adenocarcinoma), and 310.0 ± 22.6 (mucinous adenocarcinoma), respectively. PMPMEase overexpression in colorectal cancer and cancer cell death stemming from its inhibition is an indication of its possible role in cancer progression and a target for chemopreventive agents. PMID:23936796

  16. Anti-Proliferative Effect and Phytochemical Analysis of Cymbopogon citratus Extract

    PubMed Central

    Halabi, Mohammed F.; Sheikh, Bassem Y.

    2014-01-01

    The antiproliferative and antioxidant potential of Cymbopogon citratus (Lemon grass) extracts were investigated. The extracts were isolated by solvent maceration method and thereafter subjected to antiproliferative activity test on five different cancer cells: human colon carcinoma (HCT-116), breast carcinoma (MCF-7 and MDA-MB 231), ovarian carcinoma (SKOV-3 and COAV), and a normal liver cell line (WRL 68). The cell viability was determined using MTT assay. The DPPH radical scavenging assay revealed a concentration dependent trend. A maximum percentage inhibition of 45% and an IC50 of 278 μg/mL were observed when aqueous extract was evaluated. In contrast, 48.3% and IC50 of 258.9 μg/mL were observed when 50% ethanolic extract was evaluated. Both extracts at concentration of 50 to 800 μg/mL showed appreciative metal chelating activity with IC50 value of 172.2 ± 31 μg/mL to 456.5 ± 30 μg/mL. Depending on extraction solvent content, extract obtained from 50% ethanolic solvent proved to be more potent on breast cancer MCF-7 cell line (IC50 = 68 μg/mL). On the other hand, 90% ethanolic extract showed a moderate potency on the ovarian cancer (COAV) and MCF-7 cells having an IC50 of 104.6 μg/mL each. These results suggested antiproliferative efficacy of C. citratus ethanolic extract against human cancer cell lines. PMID:24791006

  17. Properties of the Ca2+ influx reveal the duality of events underlying the activation by vanadate and fluoride of the Gárdos effect in human red blood cells.

    PubMed

    Varecka, L; Peterajová, E; Písová, E

    1998-08-14

    The properties of the 45Ca2+ influx by human red blood cells (RBC) induced by NaVO3 or NaF were compared. The NaVO3-induced 45Ca2+ influx was slower and less extensive than that induced by NaF. Both processes were saturable with Ca2+. Substitution of Na+ by K+ inhibited the 45Ca2+ influx induced by NaVO3 but stimulated that by NaF. The NaVO3-induced Ca2+ influx was sensitive to nifedipine (IC50 = 50 mol/l), Cu2+ (IC50=9 mol/l), DTNB (5,5'-dithiobis-(dinitrobenzoic acid)) (IC50 = 12 mol/l) (maximal inhibition 16%, 18%, and 28%, respectively, if NaF was used as inducer). On the other hand, tetrodotoxin (TTX) and cyclosporin A inhibited only the NaF-induced 45Ca2+ influx (IC50 = 21 mol/l and 28 mol/l, respectively). Pig RBC, known not to display the NaVO3-induced Ca2+ influx, exhibited Ca2+ influx induced by NaF. The results show that NaVO3 activates the Ca2+ influx via a pathway homologous to the L-type Ca2+ channel while the NaF-induced Ca2+ influx is mediated via the TTX-sensitive Na+ channel in the presence of NaF with possible participation of calcineurin or cyclophilin. Thus, the Gardos effect induced by NaVO3 and NaF represents two phenomena activated by different mechanisms present in the cryptic state in the RBC membrane.

  18. The husk fiber of Cocos nucifera L. (Palmae) is a source of anti-neoplastic activity.

    PubMed

    Koschek, P R; Alviano, D S; Alviano, C S; Gattass, C R

    2007-10-01

    In the present study, we investigated the in vitro anti-tumoral activities of fractions from aqueous extracts of the husk fiber of the typical A and common varieties of Cocos nucifera (Palmae). Cytotoxicity against leukemia cells was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cells (2 x 10(4)/well) were incubated with 0, 5, 50 or 500 microg/mL high- or low-molecular weight fractions for 48 h, treated with MTT and absorbance was measured with an ELISA reader. The results showed that both varieties have almost similar antitumoral activity against the leukemia cell line K562 (60.1 +/- 8.5 and 47.5 +/- 11.9% for the typical A and common varieties, respectively). Separation of the crude extracts with Amicon membranes yielded fractions with molecular weights ranging in size from 1-3 kDa (fraction A) to 3-10 kDa (fraction B) and to more than 10 kDa (fraction C). Cells were treated with 500 microg/mL of these fractions and cytotoxicity was evaluated by MTT. Fractions ranging in molecular weight from 1-10 kDa had higher cytotoxicity. Interestingly, C. nucifera extracts were also active against Lucena 1, a multidrug-resistant leukemia cell line. Their cytotoxicity against this cell line was about 50% (51.9 +/- 3.2 and 56.3 +/- 2.9 for varieties typical A and common, respectively). Since the common C. nucifera variety is extensively cultured in Brazil and the husk fiber is its industrial by-product, the results obtained in the present study suggest that it might be a very inexpensive source of new antineoplastic and anti-multidrug resistant drugs that warrants further investigation.

  19. Administration of Menadione, Vitamin K3, Ameliorates Off-Target Effects on Corneal Epithelial Wound Healing Due to Receptor Tyrosine Kinase Inhibition.

    PubMed

    Rush, Jamie S; Bingaman, David P; Chaney, Paul G; Wax, Martin B; Ceresa, Brian P

    2016-11-01

    The antiangiogenic receptor tyrosine kinase inhibitor (RTKi), 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-[[[[4-(1-pyrrolidinyl) butyl] amino] carbonyl]amino]-4-isothiazolecarboxamide hydrochloride, targets VEGFR2 (half maximal inhibitory concentration [IC50] = 11 nM); however, off-target inhibition of epidermal growth factor receptor (EGFR) occurs at higher concentrations. (IC50 = 5.8 μM). This study was designed to determine the effect of topical RTKi treatment on EGF-mediated corneal epithelial wound healing and to develop new strategies to minimize off-target EGFR inhibition. In vitro corneal epithelial wound healing was measured in response to EGF using a transformed human cell line (hTCEpi cells). In vivo corneal wound healing was assessed using a murine model. In these complementary assays, wound healing was measured in the presence of varying RTKi concentrations. Immunoblot analysis was used to examine EGFR and VEGFR2 phosphorylation and the kinetics of EGFR degradation. An Alamar Blue assay measured VEGFR2-mediated cell biology. Receptor tyrosine kinase inhibitor exposure caused dose-dependent inhibition of EGFR-mediated corneal epithelial wound healing in vitro and in vivo. Nanomolar concentrations of menadione, a vitamin K3 analog, when coadministered with the RTKi, slowed EGFR degradation and ameliorated the inhibitory effects on epithelial wound healing both in vitro and in vivo. Menadione did not alter the RTKi's IC50 against VEGFR2 phosphorylation or its inhibition of VEGF-induced retinal endothelial cell proliferation. An antiangiogenic RTKi exhibited off-target effects on the corneal epithelium that can be minimized by menadione without deleteriously affecting its on-target VEGFR2 blockade. These data indicate that menadione has potential as a topical supplement for individuals suffering from perturbations in corneal epithelial homeostasis, especially as an untoward side effect of kinase inhibitors.

  20. The cytotoxic and genotoxic effects of conjugated trans-2-nonenal (T2N), an off-flavor compound in beer and heat processed food arising from lipid oxidation.

    PubMed

    Dey, Estera Szwajcer; Staniszewska, Magdalena; Paściak, Mariola; Konopacka, Maria; Rogoliński, Jacek; Gamian, Andrzej; Danielsson, Bengt

    2005-01-01

    This study investigates the toxic effect of E(2)nonenal (trans-2-nonenal, T2N) and its conjugate with horse muscle myoglobin (Mb) tested on murine cell line L929 and human cell line A549, as well as the genotoxic effect of these compounds assayed by measuring of micronuclei in human cells K562. It is an aldehyde, which is occurring as the substance responsible for an off flavour in aged beers, but originates also from lipid oxidation in heat processed food. T2N is an aldehyde formed from linoleic acid as a secondary oxidation product. The modification of Mb with T2N was analyzed with the use of SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and electrospray ionization mass spectrometry (ESI-MS). Results from SDS-PAGE suggest that T2N substitutes Mb and additionally causes cross-linking with polymerization of Mb resulting in an insoluble fraction. The ESI-MS spectrum of the soluble fraction used in the toxicity tests, demonstrated that conjugation of T2N with Mb yielded Mb adducts with one residue of trans-2-nonenal per myoglobin molecule as the major fraction and adducts with different numbers of T2N molecules as minor fractions. In the cytotoxicity assay the T2N and its Mb conjugate causes 50% destruction of cells at the concentration 95-125 microg/ml and 200 microg/ml respectively, when L929 and A549 cell lines were used, whereas Mb control tested up to 2000 mg/ml was without any cytotoxic effect. In genotoxicity in vitro assay we have observed that the T2N and its Mb conjugate expressed the genotoxicity. The number of micronuclei in human K562 cells reached 26 +/- 2.16 promille (MN/1000 cells), comparing to 62 +/- 8.64 MN/1000 cells for the reference free T2N, whereas a control value was 10.33 +/- 1.25 MN/1000 cells. The studied compounds expressed also the apoptotic effect in K562 cells as the number of apoptotic cells increased to 44.67 +/- 4.92 promille for T2N-Mb, comparing to 168.67 +/- 37.28 promille for free T2N, whereas a control value was 30.33 +/- 1.36 promille for Mb. In these assays the T2N-Mb conjugate is several times more toxic in relation to control protein. Results indicate that T2N adducts with protein are potent to induce various cytotoxic and apoptotic effects when assayed in vitro tests. It suggests that higher level of such aldehyde might create in organism severe potential of toxicity.

  1. Cytotoxic and Antimicrobial Activity of Pseudopterosins and seco-Pseudopterosins Isolated from the Octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea)

    PubMed Central

    Correa, Hebelin; Aristizabal, Fabio; Duque, Carmenza; Kerr, Russell

    2011-01-01

    To expand the potential of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia islands (southwest Caribbean Sea), we report the anti-microbial profile against four pathogenic microorganisms (Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans) and report a more complete cytotoxic profile against five human cells lines (HeLa, PC-3, HCT116, MCF-7 and BJ) for the compounds PsG, PsP, PsQ, PsS, PsT, PsU, 3-O-acetyl-PsU, seco-PsJ, seco-PsK and IMNGD. For the cytotoxic profiles, all compounds evaluated showed moderate and non-selective activity against both tumor and normal cell lines, where PsQ and PsG were the most active compounds (GI50 values between 5.8 μM to 12.0 μM). With respect to their anti-microbial activity the compounds showed good and selective activity against the Gram-positive bacteria, while they did not show activity against the Gram-negative bacterium or yeast. PsU, PsQ, PsS, seco-PsK and PsG were the most active compounds (IC50 2.9–4.5 μM) against S. aureus and PsG, PsU and seco-PsK showed good activity (IC50 3.1–3.8 μM) against E. faecalis, comparable to the reference drug vancomycin (4.2 μM). PMID:21556163

  2. RUNX3 is involved in caspase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines.

    PubMed

    Zhai, Feng-Xian; Liu, Xiang-Fu; Fan, Rui-Fang; Long, Zi-Jie; Fang, Zhi-Gang; Lu, Ying; Zheng, Yong-Jiang; Lin, Dong-Jun

    2012-03-01

    Epigenetic therapy has had a significant impact on the management of haematologic malignancies. The aim of this study was to assess whether 5-aza-CdR and TSA inhibit the growth of leukaemia cells and induce caspase-3-dependent apoptosis by upregulating RUNX3 expression. K562 and Reh cells were treated with 5-aza-CdR, TSA or both compounds. RT-PCR and Western blot analyses were used to examine the expression of RUNX3 at the mRNA and protein levels, respectively. Immunofluorescence microscopy was used to detect the cellular location of RUNX3. Additionally, after K562 cells were transfected with RUNX3, apoptosis and proliferation were studied using Annexin V staining and MTT assays. The expression of RUNX3 in leukaemia cell lines was markedly less than that in the controls. Demethylating drug 5-aza-CdR could induce RUNX3 expression, but the combination of TSA and 5-aza-CdR had a greater effect than did treatment with a single compound. The combination of 5-aza-CdR and TSA induced the translocation of RUNX3 from the cytoplasm into the nucleus. TSA enhanced apoptosis induced by 5-aza-CdR, and Annexin V and Hoechst 33258 staining showed that the combination induced apoptosis but not necrosis. Furthermore, apoptosis was dependent on the caspase-3 pathway. RUNX3 overexpression in K562 cells led to growth inhibition and apoptosis and potentiated the effects of 5-aza-CdR induction. RUNX3 plays an important role in leukaemia cellular functions, and the induction of RUNX3-mediated effects may contribute to the therapeutic value of combination TSA and 5-aza-CdR treatment.

  3. Focused library design and synthesis of 2-mercapto benzothiazole linked 1,2,4-oxadiazoles as COX-2/5-LOX inhibitors

    NASA Astrophysics Data System (ADS)

    Yatam, Satayanarayana; Gundla, Rambabu; Jadav, Surender Singh; Pedavenkatagari, Narayana reddy; Chimakurthy, Jithendra; Rani B, Namratha; Kedam, Thyagaraju

    2018-05-01

    Mercapto benzothiazole linked 1,2,4-oxadiazole derivatives were designed (4a-u) as new anti-inflammatory agents using bioisosteric approach and docking studies. The docking results clearly indicated that the compounds 4a-u shown good docking interaction towards COX-2 enzyme. In silico drug-like properties were also calculated for compounds (4a-u) and exhibited significant H-bond acceptor ratio. All compounds were synthesized and biologically evaluated using in vitro COX-1, COX-2 and 5-LOX assays. Compound 4k and 4q (IC50 = 6.8 μM and IC50 = 5.0 μM) found to be potent, selective COX-2 inhibitors and display better anti-inflammatory activity than standard Ibuprofen. Compound 4l and 4e found to be potent inhibitors against 5-LOX (IC50 = 5.1 μM and IC50 = 5.5 μM). The in vivo anti-inflammatory activity studies shown that the compounds 4q and 4k effectively reducing the paw edema volume at 3h and 5h than standard drug Ibuprofen. The DPPH radical scavenging activity provided anti-oxidant activity of compound 4e (IC50 = 25.6 μM) than reference standard Ascorbic acid.

  4. In vitro evaluation of novel antiviral activities of 60 medicinal plants extracts against hepatitis B virus.

    PubMed

    Arbab, Ahmed Hassan; Parvez, Mohammad Khalid; Al-Dosari, Mohammed Salem; Al-Rehaily, Adnan Jathlan

    2017-07-01

    Currently, >35 Saudi Arabian medicinal plants are traditionally used for various liver disorders without a scientific rationale. This is the first experimental evaluation of the anti-hepatitis B virus (HBV) potential of the total ethanolic and sequential organic extracts of 60 candidate medicinal plants. The extracts were tested for toxicity on HepG2.2.15 cells and cytotoxicity concentration (CC 50 ) values were determined. The extracts were further investigated on HepG2.2.15 cells for anti-HBV activities by analyzing the inhibition of HBsAg and HBeAg production in the culture supernatants, and their half maximal inhibitory concentration (IC 50 ) and therapeutic index (TI) values were determined. Of the screened plants, Guiera senegalensis (dichloromethane extract, IC 50 =10.65), Pulicaria crispa (ethyl acetate extract, IC 50 =14.45), Coccinea grandis (total ethanol extract, IC 50 =31.57), Fumaria parviflora (hexane extract, IC 50 =35.44), Capparis decidua (aqueous extract, IC 50 =66.82), Corallocarpus epigeus (total ethanol extract, IC 50 =71.9), Indigofera caerulea (methanol extract, IC 50 =73.21), Abutilon figarianum (dichloromethane extract, IC 50 =99.76) and Acacia oerfota (total ethanol extract, IC 50 =101.46) demonstrated novel anti-HBV activities in a time- and dose-dependent manner. Further qualitative phytochemical analysis of the active extracts revealed the presence of alkaloids, tannins, flavonoids and saponins, which are attributed to antiviral efficacies. In conclusion, P. crispa, G. senegalensis and F. parviflora had the most promising anti-HBV potentials, including those of C. decidua , C. epigeus, A. figarianum , A. oerfota and I. caerulea with marked activities. However, a detailed phytochemical study of these extracts is essential to isolate the active principle(s) responsible for their novel anti-HBV potential.

  5. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    PubMed

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  6. Identification of apoptosis-related PLZF target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes

    2007-07-27

    The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localizationmore » is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression.« less

  7. Antitumor efficacy of PKI-587, a highly potent dual PI3K/mTOR kinase inhibitor.

    PubMed

    Mallon, Robert; Feldberg, Larry R; Lucas, Judy; Chaudhary, Inder; Dehnhardt, Christoph; Santos, Efren Delos; Chen, Zecheng; dos Santos, Osvaldo; Ayral-Kaloustian, Semiramis; Venkatesan, Aranapakam; Hollander, Irwin

    2011-05-15

    The aim of this study was to show preclinical efficacy and clinical development potential of PKI-587, a dual phosphoinositide 3-kinase (PI3K)/mTOR inhibitor. In vitro class 1 PI3K enzyme and human tumor cell growth inhibition assays and in vivo five tumor xenograft models were used to show efficacy. In vitro, PKI-587 potently inhibited class I PI3Ks (IC(50) vs. PI3K-α = 0.4 nmol/L), PI3K-α mutants, and mTOR. PKI-587 inhibited growth of 50 diverse human tumor cell lines at IC(50) values of less than 100 nmol/L. PKI-587 suppressed phosphorylation of PI3K/mTOR effectors (e.g., Akt), and induced apoptosis in human tumor cell lines with elevated PI3K/mTOR signaling. MDA-MB-361 [breast; HER2(+), PIK3CA mutant (E545K)] was particularly sensitive to this effect, with cleaved PARP, an apoptosis marker, induced by 30 nmol/L PKI-587 at 4 hours. In vivo, PKI-587 inhibited tumor growth in breast (MDA-MB-361, BT474), colon (HCT116), lung (H1975), and glioma (U87MG) xenograft models. In MDA-MB-361 tumors, PKI-587 (25 mg/kg, single dose i.v.) suppressed Akt phosphorylation [at threonine(T)308 and serine(S)473] for up to 36 hours, with cleaved PARP (cPARP) evident up to 18 hours. PKI-587 at 25 mg/kg (once weekly) shrank large (∼1,000 mm(3)) MDA-MB-361 tumors and suppressed tumor regrowth. Tumor regression correlated with suppression of phosphorylated Akt in the MDA-MB-361 model. PKI-587 also caused regression in other tumor models, and efficacy was enhanced when given in combination with PD0325901 (MEK 1/2 inhibitor), irinotecan (topoisomerase I inhibitor), or HKI-272 (neratinib, HER2 inhibitor). Significant antitumor efficacy and a favorable pharmacokinetic/safety profile justified phase 1 clinical evaluation of PKI-587. ©2011 AACR.

  8. Btk Inhibitor RN983 Delivered by Dry Powder Nose-only Aerosol Inhalation Inhibits Bronchoconstriction and Pulmonary Inflammation in the Ovalbumin Allergic Mouse Model of Asthma.

    PubMed

    Phillips, Jonathan E; Renteria, Lorena; Burns, Lisa; Harris, Paul; Peng, Ruoqi; Bauer, Carla M T; Laine, Dramane; Stevenson, Christopher S

    2016-06-01

    In allergen-induced asthma, activated mast cells start the lung inflammatory process with degranulation, cytokine synthesis, and mediator release. Bruton's tyrosine kinase (Btk) activity is required for the mast cell activation during IgE-mediated secretion. This study characterized a novel inhaled Btk inhibitor RN983 in vitro and in ovalbumin allergic mouse models of the early (EAR) and late (LAR) asthmatic response. RN983 potently, selectively, and reversibly inhibited the Btk enzyme. RN983 displayed functional activities in human cell-based assays in multiple cell types, inhibiting IgG production in B-cells with an IC50 of 2.5 ± 0.7 nM and PGD2 production from mast cells with an IC50 of 8.3 ± 1.1 nM. RN983 displayed similar functional activities in the allergic mouse model of asthma when delivered as a dry powder aerosol by nose-only inhalation. RN983 was less potent at inhibiting bronchoconstriction (IC50(RN983) = 59 μg/kg) than the β-agonist salbutamol (IC50(salbutamol) = 15 μg/kg) in the mouse model of the EAR. RN983 was more potent at inhibiting the antigen induced increase in pulmonary inflammation (IC50(RN983) = <3 μg/kg) than the inhaled corticosteroid budesonide (IC50(budesonide) = 27 μg/kg) in the mouse model of the LAR. Inhalation of aerosolized RN983 may be effective as a stand-alone asthma therapy or used in combination with inhaled steroids and β-agonists in severe asthmatics due to its potent inhibition of mast cell activation.

  9. Btk Inhibitor RN983 Delivered by Dry Powder Nose-only Aerosol Inhalation Inhibits Bronchoconstriction and Pulmonary Inflammation in the Ovalbumin Allergic Mouse Model of Asthma

    PubMed Central

    Renteria, Lorena; Burns, Lisa; Harris, Paul; Peng, Ruoqi; Bauer, Carla M.T.; Laine, Dramane; Stevenson, Christopher S.

    2016-01-01

    Abstract Background: In allergen-induced asthma, activated mast cells start the lung inflammatory process with degranulation, cytokine synthesis, and mediator release. Bruton's tyrosine kinase (Btk) activity is required for the mast cell activation during IgE-mediated secretion. Methods: This study characterized a novel inhaled Btk inhibitor RN983 in vitro and in ovalbumin allergic mouse models of the early (EAR) and late (LAR) asthmatic response. Results: RN983 potently, selectively, and reversibly inhibited the Btk enzyme. RN983 displayed functional activities in human cell-based assays in multiple cell types, inhibiting IgG production in B-cells with an IC50 of 2.5 ± 0.7 nM and PGD2 production from mast cells with an IC50 of 8.3 ± 1.1 nM. RN983 displayed similar functional activities in the allergic mouse model of asthma when delivered as a dry powder aerosol by nose-only inhalation. RN983 was less potent at inhibiting bronchoconstriction (IC50(RN983) = 59 μg/kg) than the β-agonist salbutamol (IC50(salbutamol) = 15 μg/kg) in the mouse model of the EAR. RN983 was more potent at inhibiting the antigen induced increase in pulmonary inflammation (IC50(RN983) = <3 μg/kg) than the inhaled corticosteroid budesonide (IC50(budesonide) = 27 μg/kg) in the mouse model of the LAR. Conclusions: Inhalation of aerosolized RN983 may be effective as a stand-alone asthma therapy or used in combination with inhaled steroids and β-agonists in severe asthmatics due to its potent inhibition of mast cell activation. PMID:27111445

  10. Design, synthesis, and biological evaluation of 2-substituted-2,3,4,9-tetrahydrospiro-β-carboline-3-carboxylic acid derivatives as first-in-class mast cell stabilizers.

    PubMed

    Singh, Jatinder; Shah, Ramanpreet; Singh, Dhandeep; Jaggi, Amteshwar S; Singh, Nirmal

    2018-05-01

    Mast cell degranulation plays a momentous role in myriad diseases like asthma, eczema, allergic rhinitis, and conjunctivitis as well as anaphylactic shock; hence, there is an unmet need for developing new mast cells stabilizers. The reported mast cell stabilizers have a heterocyclic moiety and an acidic group. Furthermore, the role of tryptophan in suppression of mast cell activation is established. Hence, we prepared constrained analogs of tryptophan, which are derivatives of 2,3,4,9-tetrahydrospiro-β-carboline-3-carboxylic acid, and evaluated them for ex vivo inhibition of compound 48/80-induced mast degranulation activity. By comparing IC 50 (μM) values with that of the standard drug sodium cromoglycate (IC 50  = 0.489 ± 0.003 μM), compounds with bulky groups like heptyl (compound 9; IC 50  = 0.389 ± 0.015 μM) and octyl (compound 10; IC 50  = 0.354 ± 0.023 μM) were found to be of similar potency as sodium cromoglycate. Furthermore, the polar group-containing compounds like the chloropropyl (compound 16; IC 50  = 0.382 ± 0.083 μM) and benzoyl derivative (compound 14; IC 50  = 00.469 ± 0.032 μM) were also found to be of similar potency as sodium cromoglycate. This is a seminal study of spiro-β-carboline mast cell stabilization having a wider scope in mast cell research; yet, the mechanism of action remains elusive. © 2018 Deutsche Pharmazeutische Gesellschaft.

  11. Molecular identification and functional characterization of rabbit MATE1 and MATE2-K.

    PubMed

    Zhang, Xiaohong; Cherrington, Nathan J; Wright, Stephen H

    2007-07-01

    An electroneutral organic cation (OC)/proton exchanger in the apical membrane of proximal tubules mediates the final step of renal OC excretion. Two members of the multidrug and toxin extrusion family, MATE1 and MATE2-K, were recently identified in human and rodent kidney and proposed to be the molecular basis of renal OC/H(+) exchange. To take advantage of the comparative value of the large database on the kinetic and selectivity characteristics of OC/H(+) exchange that exists for rabbit kidney, we cloned rbMATE1 and rbMATE2-K. The rabbit homologs have 75% (MATE1) and 74% (MATE2-K) amino acid identity to their human counterparts (and 51% identity with each other). rbMATE1 and rbMATE2-K exhibited H(+) gradient-dependent uptake and efflux of tetraethylammonium (TEA) when expressed in Chinese hamster ovary cells. Both transporters displayed similar affinities for selected compounds [IC(50) values within 2-fold for TEA, 1-methyl-4-phenylpyridinium, and quinidine] and very different affinities for others (IC(50) values differing by 8- to 80-fold for choline and cimetidine, respectively). These results indicate that rbMATE1 and rbMATE2-K are multispecific OC/H(+) exchangers with similar, but distinct, functional characteristics. Overall, the selectivity of MATE1 and MATE2-K correlated closely with that observed in rabbit renal brush-border membrane vesicles.

  12. The mammalian iris-ciliary complex affects organization and synthesis of cytoskeletal proteins of organ and tissue cultured lens epithelial cells.

    PubMed

    Banerjee, A; Emanuel, K; Parafina, J; Bagchi, M

    1992-10-01

    A water soluble growth inhibitor was isolated from the mammalian ocular iris-ciliary complex. The molecular weight of this protein is 10 kD or lower as determined by ultrafiltration fractionation. The iris-ciliary (IC) complex water soluble protein(s) significantly inhibits synthesis of lower molecular weight proteins of the epithelial cells of the organ cultured mammalian ocular lens. It was also found that this inhibitory effect of IC is mediated via the structural organization of the lens. Monolayer cultures of the lens epithelial cells exposed to IC did not manifest any inhibition of their protein synthesis. Moreover, these tissue cultured lens epithelial (TCLE) cells showed a significant increase in their protein synthetic activities in response to the presence of IC factors in the culture medium. It is postulated that the IC activity is modulated via either the lens capsule, an extracellular matrix, or due to the specific organization of the intact lens. The specific effects of IC on the cytoskeletal organization and synthesis in the organ cultured lens epithelial (OCLE) and TCLE cells were also examined. Both groups, treated with IC factors, manifested significant alterations in their protein synthetic activities and cytoskeletal architecture. The 3H-leucine incorporation experiments showed that alpha-actin and alpha-tubulin synthesis is partially inhibited by IC factors in OCLE cells but vimentin synthesis is not, whereas in TCLE cells all of them showed increased synthesis in response to IC factors. Turnover rates of these proteins in both OCLE and TCLE cells were also computed. The immunofluorescence and microscopic evaluation of OCLE and TCLE cells exposed to IC factors illustrated significant alteration in the cytoarchitecture of the filaments. We demonstrate that an inhibitor(s) molecule of 10 kD or lower size isolated from IC inhibited protein synthesis of OCLE cells and stimulated protein synthesis in TCLE cells. The IC factor also affects the synthesis and organization of cytoskeletal filaments of both the OCLE and TCLE cells.

  13. Eos Negatively Regulates Human γ-globin Gene Transcription during Erythroid Differentiation

    PubMed Central

    Yu, Hai-Chuan; Zhao, Hua-Lu; Wu, Zhi-Kui; Zhang, Jun-Wu

    2011-01-01

    Background Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4), a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. Methodology/Principal Findings Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs). DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3) of the β-globin locus control region (LCR), the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C) assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. Conclusions/Significance Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation. PMID:21829552

  14. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya

    Amino-acid mutations of Gly{sup 12} (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH{sub 2}) as a consensus sequence. KRpep-2 showedmore » more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. K{sub D} and IC{sub 50} values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH{sub 2}) that inhibited enzyme activity of K-Ras(G12D) with IC{sub 50} = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. - Highlights: • The first K-Ras(G12D)-selective inhibitory peptides were generated. • These peptides showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D) in compared to wild type K-Ras. • The peptide KRpep-2d suppressed downstream signal of K-Ras(G12D) and cell proliferations of cancer cell line A427.« less

  15. Assessment of anti-cancerous potential of 6-gingerol (Tongling White Ginger) and its synergy with drugs on human cervical adenocarcinoma cells.

    PubMed

    Zhang, Fang; Zhang, Jian-Guo; Qu, Jie; Zhang, Qi; Prasad, Chandan; Wei, Zhao-Jun

    2017-11-01

    The anti-cancerous activity of 6-gingerol extracted from Tongling White Ginger was investigated. 6-Gingerol inhibited the growth of HeLa cells with IC50 (96.32 μM) and IC80 (133.01 μM) and led to morphological changes, induced the cell cycle arrest in G0/G1-phase and ultimately resulted into apoptosis. Among cell cycle-related genes and proteins, the expression of cyclin (A, D1, E1) reduced, while of CDK-1, p21 and p27 showed slight decrease, except cyclin B1 and E1 (protein). Western blotting reported the induction of apoptosis with an increased Bax/Bcl-2 ratio, release of cytochrome c, cleavage of caspase-3, -8, -9 and PRPP in treated cells. 6-Gingerol activated AMPK, but inhibited PI3K/AKT phosphorylation with reduced P70S6K expression and also suppressed the mTOR phosphorylation. 6-Gingerol with 5-FU and Ptx resulted in 83.2% and 52% inhibition respectively, this synergy have stimulated apoptosis proteins more efficiently as compared to 6-Gingerol alone (10.75%) under in vitro conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Block of high-threshold calcium channels by the synthetic polyamines sFTX-3.3 and FTX-3.3.

    PubMed

    Norris, T M; Moya, E; Blagbrough, I S; Adams, M E

    1996-10-01

    A polyamine component of Agelenopsis aperta spider venom designated FTX is reported to be a selective antagonist of P-type calcium channels in the mammalian brain. Consequently, this component has frequently been used as a pharmacological tool to determine the presence, distribution, and function of P-type channels in physiological systems. We describe antagonism of calcium channels by the synthesized polyamine FTX-3.3, which has the proposed structure of natural FTX. We also examined a corresponding polyamine amide, sFTX-3.3. These polyamines are critically evaluated for antagonism of three high-threshold calcium channel subtypes in rat neurons through the use of the whole-cell patch-clamp technique. FTX-3.3 (IC50 = approximately 0.13 mM) is approximately twice as potent as sFTX-3.3 (IC50 = approximately 0.24 mM) against P-type channels and approximately 3-fold more potent against N-type channels (FTX-3.3, IC50 = approximately 0.24 mM; sFTX-3.3, IC50 = approximately 0.70 mM). Both polyamines also block L-type calcium channels with similar potencies. sFTX-3.3 (1 mM) and FTX-3.3 (0.5 mM) typically block 50% and 65% of Bay K8644-enhanced L-type current, respectively. Antagonism of each calcium channel subtype is voltage dependent, with less inhibition of Ba2+ currents at more-positive potentials. These data show that both sFTX-3.3 and FTX-3.3 antagonize P-, N-, and L-type calcium channels in mammalian Purkinje and superior cervical ganglia neurons with similar IC50 values.

  17. An open-pattern droplet-in-oil planar array for single cell analysis based on sequential inkjet printing technology.

    PubMed

    Wang, Chenyu; Liu, Wenwen; Tan, Manqing; Sun, Hongbo; Yu, Yude

    2017-07-01

    Cellular heterogeneity represents a fundamental principle of cell biology for which a readily available single-cell research tool is urgently required. Here, we present a novel method combining cell-sized well arrays with sequential inkjet printing. Briefly, K562 cells with phosphate buffer saline buffer were captured at high efficiency (74.5%) in a cell-sized well as a "primary droplet" and sealed using fluorinated oil. Then, piezoelectric inkjet printing technology was adapted to precisely inject the cell lysis buffer and the fluorogenic substrate, fluorescein-di-β-D-galactopyranoside, as a "secondary droplet" to penetrate the sealing oil and fuse with the "primary droplet." We thereby successfully measured the intracellular β-galactosidase activity of K562 cells at the single-cell level. Our method allows, for the first time, the ability to simultaneously accommodate the high occupancy rate of single cells and sequential addition of reagents while retaining an open structure. We believe that the feasibility and flexibility of our method will enhance its use as a universal single-cell research tool as well as accelerate the adoption of inkjet printing in the study of cellular heterogeneity.

  18. Propolis from the Stingless Bee Trigona incisa from East Kalimantan, Indonesia, Induces In Vitro Cytotoxicity and Apoptosis in Cancer Cell lines.

    PubMed

    Kustiawan, Paula M; Phuwapraisirisan, Preecha; Puthong, Songchan; Palaga, Tanapat; Arung, Enos T; Chanchao, Chanpen

    2015-01-01

    Previously, stingless bee (Trigona spp.) products from East Kalimantan, Indonesia, were successfully screened for in vitro antiproliferative activity against human cancer derived cell lines. It was established that propolis from T. incisa presented the highest in vitro cytotoxicity against the SW620 colon cancer cell line (6% cell survival in 20 μg/mL). Propolis from T. incisa was extracted with methanol and further partitioned with n-hexane, ethyl acetate and methanol. The in vitro cytotoxicity of the extracts was assessed by the MTT assay against human colon (SW620), liver (Hep-G2), gastric (KATO-III), lung (Chago) and breast (BT474) cancer derived cell lines. The active fractions were further enriched by silica gel quick column, absorption and size exclusion chromatography. The purity of each fraction was checked by thin layer chromatography. Cytotoxicity in BT-474 cells induced by cardanol compared to doxorubicin were evaluated by MTT assay, induction of cell cycle arrest and cell death by flow cytometric analysis of propidium iodide and annexin-V stained cells. A cardol isomer was found to be the major compound in one active fraction (F45) of T. incisa propolis, with a cytotoxicity against the SW620 (IC50 of 4.51±0.76 μg/mL), KATO-III (IC50 of 6.06±0.39 μg/mL), Hep-G2 (IC50 of 0.71±0.22 μg/mL), Chago I (IC50 of 0.81±0.18 μg/mL) and BT474 (IC50 of 4.28±0.14 μg/mL) cell lines. Early apoptosis (programmed cell death) of SW620 cells was induced by the cardol containing F45 fraction at the IC50 and IC80 concentrations, respectively, within 2-6 h of incubation. In addition, the F45 fraction induced cell cycle arrest at the G1 subphase. Indonesian stingless bee (T. incisa) propolis had moderately potent in vitro anticancer activity on human cancer derived cell lines. Cardol or 5-pentadecyl resorcinol was identified as a major active compound and induced apoptosis in SW620 cells in an early period (≤6 h) and cell cycle arrest at the G1 subphase. Thus, cardol is a potential candidate for cancer chemotherapy.

  19. Contribution of Kv2.1 channels to the delayed rectifier current in freshly dispersed smooth muscle cells from rabbit urethra.

    PubMed

    Kyle, B; Bradley, E; Ohya, S; Sergeant, G P; McHale, N G; Thornbury, K D; Hollywood, M A

    2011-11-01

    We have characterized the native voltage-dependent K(+) (K(v)) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with K(v)2.1 and K(v)2.2 channels cloned from the rabbit urethra and stably expressed in human embryonic kidney (HEK)-293 cells (HEK(Kv2.1) and HEK(Kv2.2)). RUSMC were perfused with Hanks' solution at 37°C and studied using the patch-clamp technique with K(+)-rich pipette solutions. Cells were bathed in 100 nM Penitrem A (Pen A) to block large-conductance Ca(2+)-activated K(+) (BK) currents and depolarized to +40 mV for 500 ms to evoke K(v) currents. These were unaffected by margatoxin, κ-dendrotoxin, or α-dendrotoxin (100 nM, n = 3-5) but were blocked by stromatoxin-1 (ScTx, IC(50) ∼130 nM), consistent with the idea that the currents were carried through K(v)2 channels. RNA was detected for K(v)2.1, K(v)2.2, and the silent subunit K(v)9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both K(v)2 subtypes and K(v)9.3 in isolated RUSMC. HEK(Kv2.1) and HEK(Kv2.2) currents were blocked in a concentration-dependent manner by ScTx, with estimated IC(50) values of ∼150 nM (K(v)2.1, n = 5) and 70 nM (K(v)2.2, n = 6). The mean half-maximal voltage (V(1/2)) of inactivation of the USMC K(v) current was -56 ± 3 mV (n = 9). This was similar to the HEK(Kv2.1) current (-55 ± 3 mV, n = 13) but significantly different from the HEK(Kv2.2) currents (-30 ± 3 mV, n = 11). Action potentials (AP) evoked from RUSMC studied under current-clamp mode were unaffected by ScTx. However, when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that K(v)2.1 channels contribute significantly to the K(v) current in RUSMC.

  20. Synthesis and biological evaluation of tricyclic guanidine analogues of batzelladine K for antimalarial, antileishmanial, antibacterial, antifungal, and anti-HIV activities.

    PubMed

    Ahmed, Nafees; Brahmbhatt, Keyur G; Khan, Shabana I; Jacob, Melissa; Tekwani, Babu L; Sabde, Sudeep; Mitra, Debashis; Singh, Inder P; Khan, Ikhlas A; Bhutani, Kamlesh K

    2013-04-01

    Fifty analogues of batzelladine K were synthesized and evaluated for in vitro antimalarial (Plasmodium falciparum), antileishmanial (Leishmania donovani), antimicrobial (panel of bacteria and fungi), antiviral (HIV-1) activities. Analogues 14h and 20l exhibited potential antimalarial activity against chloroquine-sensitive D6 strain with IC(50) 1.25 and 0.88 μM and chloroquine-resistant W2 strain with IC(50) 1.64 and 1.07 μM, respectively. Analogues 12c and 14c having nonyl substitution showed the most potent antileishmanial activity with IC(50) 2.39 and 2.78 μM and IC(90) 11.27 and 12.76 μM, respectively. Three analogues 12c, 14c, and 14i were the most active against various pathogenic bacteria and fungi with IC(50) < 3.02 μM and MIC/MBC/MFC <6 μM. Analogue 20l having pentyl and methyl substituents on tricycle showed promising activities against all pathogens. However, none was found active against HIV-1. Our study demonstrated that the tricyclic guanidine compounds provide new structural class for broad spectrum activity. © 2012 John Wiley & Sons A/S.

  1. Synthesis and biological evaluation of tricyclic guanidine analogues of batzelladine K for antimalarial, antileishmanial, antibacterial, antifungal and anti-HIV activities.

    PubMed

    Ahmed, Nafees; Brahmbhatt, Keyur G; Khan, Shabana I; Jacob, Melissa; Tekwani, Babu L; Sabde, Sudeep; Mitra, Debashis; Singh, Inder Pal; Khan, Ikhlas A; Bhutani, Kamlesh K

    2012-06-15

    Fifty analogues of batzelladine K were synthesized and evaluated for in vitro antimalarial (Plasmodium falciparum), antileishmanial (Leishmania donovani), antimicrobial (panel of bacteria and fungi), antiviral (HIV-1) activities. Analogues 14h and 20l exhibited potential antimalarial activity against chloroquine-sensitive D6 strain with IC 50 1.25 and 0.88 μM and chloroquine-resistant W2 strain with IC 50 1.64 and 1.07 μM, respectively. Analogues 12c and 14c having nonyl substitution showed the most potent antileishmanial activity with IC 50 2.39 and 2.78 μM and IC 90 11.27 and 12.76 μM respectively. Three analogues 12c, 14c and 14i were the most active against various pathogenic bacteria and fungi with IC 50 <3.02 μM and MIC/MBC/MFC <6 μM. Analogue 20l having pentyl and methyl substituents on tricycle showed promising activities against all pathogens. However, none was found active against HIV-1. Our study demonstrated that the tricyclic guanidine compounds provide new structral class for broad spectrum activity. © 2012 John Wiley & Sons A/S. © 2012 John Wiley & Sons A/S.

  2. Anti-LRP/LR Specific Antibody IgG1-iS18 Impedes Adhesion and Invasion of Liver Cancer Cells

    PubMed Central

    Chetty, Carryn; Khumalo, Thandokuhle; Da Costa Dias, Bianca; Reusch, Uwe; Knackmuss, Stefan; Little, Melvyn; Weiss, Stefan F. T.

    2014-01-01

    Two key events, namely adhesion and invasion, are pivotal to the occurrence of metastasis. Importantly, the 37 kDa/67 kDa laminin receptor (LRP/LR) has been implicated in enhancing these two events thus facilitating cancer progression. In the current study, the role of LRP/LR in the adhesion and invasion of liver cancer (HUH-7) and leukaemia (K562) cells was investigated. Flow cytometry revealed that the HUH-7 cells displayed significantly higher cell surface LRP/LR levels compared to the poorly-invasive breast cancer (MCF-7) control cells, whilst the K562 cells displayed significantly lower cell surface LRP/LR levels in comparison to the MCF-7 control cells. However, Western blotting and densitometric analysis revealed that all three tumorigenic cell lines did not differ significantly with regards to total LRP/LR levels. Furthermore, treatment of liver cancer cells with anti-LRP/LR specific antibody IgG1-iS18 (0.2 mg/ml) significantly reduced the adhesive potential of cells to laminin-1 and the invasive potential of cells through the ECM-like Matrigel, whilst leukaemia cells showed no significant differences in both instances. Additionally, Pearson's correlation coefficients suggested direct proportionality between cell surface LRP/LR levels and the adhesive and invasive potential of liver cancer and leukaemia cells. These findings suggest the potential use of anti-LRP/LR specific antibody IgG1-iS18 as an alternative therapeutic tool for metastatic liver cancer through impediment of the LRP/LR- laminin-1 interaction. PMID:24798101

  3. AMR-Me inhibits PI3K/Akt signaling in hormone-dependent MCF-7 breast cancer cells and inactivates NF-κB in hormone-independent MDA-MB-231 cells.

    PubMed

    Rabi, Thangaiyan; Huwiler, Andrea; Zangemeister-Wittke, Uwe

    2014-07-01

    AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy. © 2013 Wiley Periodicals, Inc.

  4. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites.

    PubMed

    Siddiqui, Mahwish; Ahmad, Malik Shoaib; Wahab, Atia-Tul-; Yousuf, Sammer; Fatima, Narjis; Naveed Shaikh, Nimra; Rahman, Atta-Ur-; Choudhary, M Iqbal

    2017-01-01

    Seven metabolites were obtained from the microbial transformation of anabolic-androgenic steroid mibolerone (1) with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina. Their structures were determined as 10β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (2), 6β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (3), 6β,10β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (4), 11β,17β-dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en-3-one (5), 1α,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (6), 1α,11β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (7), and 11β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (8), on the basis of spectroscopic studies. All metabolites, except 8, were identified as new compounds. This study indicates that C. blakesleeana, and C. echinulata are able to catalyze hydroxylation at allylic positions, while M. phaseolina can catalyze hydroxylation of CH2 and CH3 groups of substrate 1. Mibolerone (1) was found to be a moderate inhibitor of β-glucuronidase enzyme (IC50 = 42.98 ± 1.24 μM) during random biological screening, while its metabolites 2-4, and 8 were found to be inactive. Mibolerone (1) was also found to be significantly active against Leishmania major promastigotes (IC50 = 29.64 ± 0.88 μM). Its transformed products 3 (IC50 = 79.09 ± 0.06 μM), and 8 (IC50 = 70.09 ± 0.05 μM) showed a weak leishmanicidal activity, while 2 and 4 were found to be inactive. In addition, substrate 1 (IC50 = 35.7 ± 4.46 μM), and its metabolite 8 (IC50 = 34.16 ± 5.3 μM) exhibited potent cytotoxicity against HeLa cancer cell line (human cervical carcinoma). Metabolite 2 (IC50 = 46.5 ± 5.4 μM) also showed a significant cytotoxicity, while 3 (IC50 = 107.8 ± 4.0 μM) and 4 (IC50 = 152.5 ± 2.15 μM) showed weak cytotoxicity against HeLa cancer cell line. Compound 1 (IC50 = 46.3 ± 11.7 μM), and its transformed products 2 (IC50 = 43.3 ± 7.7 μM), 3 (IC50 = 65.6 ± 2.5 μM), and 4 (IC50 = 89.4 ± 2.7 μM) were also found to be moderately toxic to 3T3 cell line (mouse fibroblast). Interestingly, metabolite 8 showed no cytotoxicity against 3T3 cell line. Compounds 1-4, and 8 were also evaluated for inhibition of tyrosinase, carbonic anhydrase, and α-glucosidase enzymes, and all were found to be inactive.

  5. The antitumoral effect of the American mistletoe Phoradendron serotinum (Raf.) M.C. Johnst. (Viscaceae) is associated with the release of immunity-related cytokines.

    PubMed

    Alonso-Castro, Angel Josabad; Juárez-Vázquez, Maria Del Carmen; Domínguez, Fabiola; González-Sánchez, Ignacio; Estrada-Castillón, Eduardo; López-Toledo, Gabriela; Chávez, Marco; Cerbón, Marco A; García-Carranca, Alejandro

    2012-08-01

    Phoradendron serotinum is commonly used in Mexican traditional medicine for the empirical treatment of cancer. However, there are no studies regarding the antitumoral or immunomodulatory activities of Phoradendron serotinum. The in vivo toxicity of ethanolic extracts of Phoradendron serotinum (PSE) was evaluated in mice according to the Lorke procedure. The in vitro immunomodulatory effects of PSE were evaluated estimating the effects of PSE on the pinocytosis, NO production and lysosomal enzyme activity in murine macrophages RAW 264.7. The effects of PSE on the proliferation of murine splenocytes and NK cell activity were also assayed. The cytotoxic effects on TC-1 (lung murine cancer cells) were evaluated using the MTT assay, whereas the apoptotic effect of PSE on TC-1 cells was evaluated using TUNEL assay. Also, different doses of PSE were injected intraperitoneally daily into C57BL/6 mice bearing tumors of TC-1 cells during 25 days. The growth and weight of tumors was measured. In addition, the levels of IL-2, IL-6, IL-12, IL-23 and IFN-γ in murine serum and supernatants of K562 cell-murine splenocyte cocultures were measured. PSE stimulated the proliferation, pinocytosis and lysosomal enzyme activity in murine macrophages with a similar potency than lypopolisaccharides 1 μg/ml. In addition, PSE stimulated the proliferation of murine splenocytes and induced the NK cell activity. PSE showed cytotoxic (IC(50)=1.9 μg/ml) and apoptotic effects against TC-1 cells. The LD(50) was 125 mg/kg by intraperitoneal route (i.p.) and 375 mg/kg by oral route. PSE administrated at 1, 5 and 10 mg/kg i.p. inhibited the tumor growth by 18%, 40% and 69%, respectively, in mice bearing TC-1 tumor. PSE increased the in vitro and in vivo release of IL-2, IL-6 and IFN-γ but lacked effect on IL-12 and IL-23 release. Phoradendron serotinum shows moderate toxic effects in vivo, exerts cytotoxic and apoptotic effects on TC-1 cells. Phoradendron serotinum also has antitumor effects in mice bearing TC-1 tumor and induces immunomodulatory activities in vivo. The results suggest that antitumoral effects of PSE are related with the production of immunity-related cytokines. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Large-scale expansion of Vγ9Vδ2 T cells with engineered K562 feeder cells in G-Rex vessels and their use as chimeric antigen receptor-modified effector cells.

    PubMed

    Xiao, Lin; Chen, Can; Li, Zhendong; Zhu, Sumin; Tay, Johan Ck; Zhang, Xi; Zha, Shijun; Zeng, Jieming; Tan, Wee Kiat; Liu, Xin; Chng, Wee Joo; Wang, Shu

    2018-03-01

    Vγ9Vδ2 T cells are a minor subset of lymphocytes in the peripheral blood that has been extensively investigated for their tolerability, safety and anticancer efficacy. A hindrance to the broad application of these cells for adoptive cellular immunotherapy has been attaining clinically appropriate numbers of Vγ9Vδ2 T cells. Furthermore, Vγ9Vδ2 T cells exist at low frequencies among cancer patients. We, therefore, sought to conceive an economical method that allows for a quick and robust large-scale expansion of Vγ9Vδ2 T cells. A two-step protocol was developed, in which peripheral blood mononuclear cells (PBMCs) from healthy donors or cancer patients were activated with Zometa and interleukin (IL)-2, followed by co-culturing with gamma-irradiated, CD64-, CD86- and CD137L-expressing K562 artificial antigen-presenting cells (aAPCs) in the presence of the anti-CD3 antibody OKT3. We optimized the co-culture ratio of K562 aAPCs to immune cells, and migrated this method to a G-Rex cell growth platform to derive clinically relevant cell numbers in a Good Manufacturing Practice (GMP)-compliant manner. We further include a depletion step to selectively remove αβ T lymphocytes. The method exhibited high expansion folds and a specific enrichment of Vγ9Vδ2 T cells. Expanded Vγ9Vδ2 T cells displayed an effector memory phenotype with a concomitant down-regulated expression of inhibitory immune checkpoint receptors. Finally, we ascertained the cytotoxic activity of these expanded cells by using nonmodified and chimeric antigen receptor (CAR)-engrafted Vγ9Vδ2 T cells against a panel of solid tumor cells. Overall, we report an efficient approach to generate highly functional Vγ9Vδ2 T cells in massive numbers suitable for clinical application in an allogeneic setting. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. 2-(3′-Indolyl)-N-arylthiazole-4-carboxamides: Synthesis and evaluation of antibacterial and anticancer activities

    PubMed Central

    Tantak, Mukund P.; Wang, Jing; Singh, Rajnish Prakash; Kumar, Anil; Shah, Kavita; Kumar, Dalip

    2015-01-01

    A new series of 2-(3′-indolyl)-N-arylthiazole-4-carboxamides 17a-p has been designed and synthesized. Initial reaction of readily available thioamides 15 with bromopyruvic acid under refluxing conditions produced different thiazole carboxylic acids 16 which upon coupling with arylamines by using EDCI.HCl and HOBt afforded diverse arylthiazole-4-carboxamides 17a-p in 78-87% yields. Antibacterial activity evaluation against Gram-positive and Gram-negative bacterial strains led to compounds 17i-k and 17o as potent and selectively (Gram-negative) antibacterial agents. The cytotoxicity of thiazole carboxamides 17a-p was also evaluated on a panel of human cancer cell lines. Among the tested derivatives, compounds 17i (IC50 = 8.64 μM; HEK293T) and 17l (IC50 = 3.41 μM; HeLa) were identified as the most potent analogues of the series. Preliminary mechanism of action studies of thiazole carboxamide 17i suggested that its cytotoxicity against HeLa cells involves the induction of cell death by apoptosis. PMID:26298501

  8. Synergistic effect of sevoflurane and isoflurane on inhibition of the adult-type muscle nicotinic acetylcholine receptor by rocuronium.

    PubMed

    Liu, Li; Li, Wei; Wei, Ke; Cao, Jun; Luo, Jie; Wang, Bin; Min, Su

    2013-06-01

    Inhaled anesthetics increase the incidence of postoperative residual neuromuscular blockade, and the mechanism is still unclear. We have investigated the synergistic effect of low-concentration inhaled anesthetics and rocuronium on inhibition of the inward current of the adult-type muscle nicotinic acetylcholine receptor (ε-nAChR). Adult-type mouse muscle ε-nAChR was expressed in HEK293 cells by liposome transfection. The inward current of the ε-nAChR was activated by use of 10 μmol/L acetylcholine alone or in combination with different concentrations of sevoflurane, isoflurane, or rocuronium. The concentration-response curves of five cells were constructed, and the data yielded the 5, 25, and 50 % inhibitory concentrations (IC5, IC25, and IC50, respectively) for single-drug application. Subsequently, the functional channels were perfused by adding 0.5 IC5 of either sevoflurane or isoflurane (aqueous concentrations 140 and 100 μmol/L, respectively) to the solution, followed by addition of IC5, IC25, or IC50 rocuronium. The amount of inhibition was calculated to quantify their synergistic effect. The inhibitory effect of rocuronium was enhanced by sevoflurane or isoflurane in a concentration-dependent manner. Sevoflurane or isoflurane (0.5 IC5) with rocuronium at IC5, IC25, and IC50 synergistically inhibited the current amplitude of adult-type muscle ε-nAChR. When the IC5 of rocuronium was used, isoflurane had a stronger synergistic effect than sevoflurane (p < 0.05). When rocuronium was applied at higher concentrations (IC25 and IC50), sevoflurane had an effect similar to that of isoflurane. For both inhaled anesthetics, the synergistic effect was more intense for rocuronium at IC5 than for rocuronium at IC25 or IC50. Residual-concentration sevoflurane or isoflurane has a strong synergistic effect with rocuronium at clinically relevant residual concentrations. A lower rocuronium concentration resulted in a stronger synergistic effect.

  9. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice

    PubMed Central

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-01-01

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR–Ras–Raf–MEK–ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [3H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras–MAPK activity could be important in its anticancer activity. PMID:24853419

  10. MagIC, a genetically encoded fluorescent indicator for monitoring cellular Mg2+ using a non-Förster resonance energy transfer ratiometric imaging approach

    NASA Astrophysics Data System (ADS)

    Koldenkova, Vadim Pérez; Matsuda, Tomoki; Nagai, Takeharu

    2015-10-01

    Intracellular Mg roles are commensurate with its abundance in the cell cytoplasm. However, little is known about Mg subcellular dynamics, primarily due to the lack of suitable Mg-selective tools to monitor this ion in intracellular compartments. To cope with this lack, we developed a Mg-sensitive indicator-MagIC (indicator for Magnesium Imaging in Cell) -composed of a functionalized yellow fluorescent protein (FP) variant fused to a red-emitting FP serving as a reference, thus allowing ratiometric imaging of Mg. MagIC expressed in mammalian cells is homogeneously distributed between the cytosol and nucleus but its fusion with appropriate targeting sequences redirects it to mitochondria or the endoplasmic reticulum. MagIC shows little interference by intracellular Ca [Kd(Mg2+)=5.1 mM Kd(Ca2+)=4.8 mM] and its kinetic properties (k=84 s-1) approach those of indicator dyes. With MagIC, as reported previously, we also observed a cytosolic Mg increase provoked by application of 50 mM MgCl2 in the medium. This effect is, however, mimicked by 75 mM KCl or 150 mM D-sorbitol addition, indicating that it is a response to the associated hyperosmotic shock and not to Mg itself. Our results confirm the functionality of MagIC as a useful tool for the long-awaited possibility of prolonged and organelle-specific monitoring of cellular Mg.

  11. Chitosan-functionalised single-walled carbon nanotube-mediated drug delivery of SNX-2112 in cancer cells.

    PubMed

    Zheng, Lixia; Wu, Shao; Tan, Li; Tan, Huo; Yu, Baodan

    2016-09-01

    Delivery of amphiphobic drugs (insoluble in both water and oil) has been a great challenge in drug delivery. SNX-2112, a novel inhibitor of Hsp90, is a promising drug candidate for treating various types of cancers; however, the insolubility greatly limits its clinical application. This study aimed to build a new type of drug delivery system using single-walled carbon nanotubes (SWNTs) for controllable release of SNX-2112; chitosan (CHI) was non-covalently added to SWNTs to improve their biocompatibility. SWNTs-CHI demonstrated high drug-loading capability; the release of SNX-2112 was pH triggered and time related. The intracellular reactive oxygen species of SWNTs-CHI increased, compared with that of SWNTs, leading to higher mitogen-activated protein kinase and cell apoptosis. The results of western-blotting, lactate dehydrogenase (LDH) release assay, and cell viability assay analyses indicated that apoptosis-related proteins were abundantly expressed in K562 cells and that the drug delivery system significantly inhibited K562 cells. Thus, SWNT-CHI/SNX-2112 shows great potential as a drug delivery system for cancer therapy. © The Author(s) 2016.

  12. Bioactive components from the heartwood of Pterocarpus santalinus.

    PubMed

    Wu, Shou-Fang; Hwang, Tsong-Long; Chen, Shu-Li; Wu, Chin-Chung; Ohkoshi, Emika; Lee, Kuo-Hsiung; Chang, Fang-Rong; Wu, Yang-Chang

    2011-09-15

    One new phenanthrenedione, pterolinus K (1), and one new chalcone, pterolinus L (2) were isolated from the heartwood extract of Pterocarpus santalinus. The structures were elucidated by spectroscopic methods. Both 1 and 2 showed inhibitory effect on elastase release by human neutrophils in response to fMLP with an IC(50) value of 4.24 and 0.95 μM, and compound 1 also inhibited superoxide anion generation with IC(50) value of 0.99 μM. In addition, compound 1 showed selective cytotoxicity against HepG2 with IC(50) value of 10.86 μM, while compound 2 showed a moderate cytotoxicity against KB with IC(50) values of 17.18 μM. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng.

    PubMed

    Baek, Seung-Hoon; Lee, Jin Gyun; Park, Seo Young; Bae, Ok Nam; Kim, Dong-Hyun; Park, Jeong Hill

    2010-08-09

    To evaluate the antidiarrheal effect of ginseng, the active principals of ginseng were studied in vitro model of rotavirus infection, the leading cause of severe diarrhea. Two pectic polysaccharides, named as GP50-dHR (56.0 kDa) and GP50-eHR (77.0 kDa), were purified from hot water extract of ginseng by bioassay-linked fractionation. Both polysaccharides rescued cell viability from rotavirus infection dose-dependently (IC50 are 15 and 10 microg/mL, respectively). Both polysaccharides had common structural features of homogalacturonan backbone with hairy regions of rhamnogalacturonan type I. Arabinose-rich side chains with abundant branch points were unique in GP50-eHR and may contribute to a greater antirotavirus effect of GP50-eHR than GP50-dHR. Because homogalacturonan itself did not show an antirotavirus effect, hairy regions might be functional sites. Of note, the antirotavirus effect of both polysaccharides resulted from inhibiting rotavirus attachment to cells. Together with a wide range of noncytotoxicity, these findings suggest that ginseng polysaccharides are viable therapeutic options for rotavirus diarrhea.

  14. Induced apoptosis by mild hyperthermia occurs via telomerase inhibition on the three human myeloid leukemia cell lines: TF-1, K562, and HL-60.

    PubMed

    Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila

    2009-09-01

    The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.

  15. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C

    PubMed Central

    Villamizar, Luz Helena; Cardoso, Maria das Graças; de Andrade, Juliana; Teixeira, Maria Luisa; Soares, Maurilio José

    2017-01-01

    BACKGROUND Recent studies showed that essential oils from different pepper species (Piper spp.) have promising leishmanicidal and trypanocidal activities. OBJECTIVES In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO) or its main constituents linalool and nerolidol. METHODS PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. FINDINGS PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL) and metacyclic (IC50/24 h: 12.1 μg/mL) trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL). At 4ºC - the temperature of red blood cells (RBCs) storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL) than to gentian violet (IC50/24 h = 24.7 mg/mL). Cytotoxicity assays using Vero cells (37ºC) and RBCs (4ºC) showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL) at 4ºC. MAIN CONCLUSION The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature. PMID:28177047

  16. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C.

    PubMed

    Villamizar, Luz Helena; Cardoso, Maria das Graças; Andrade, Juliana de; Teixeira, Maria Luisa; Soares, Maurilio José

    2017-02-01

    Recent studies showed that essential oils from different pepper species (Piper spp.) have promising leishmanicidal and trypanocidal activities. In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO) or its main constituents linalool and nerolidol. PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL) and metacyclic (IC50/24 h: 12.1 μg/mL) trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL). At 4ºC - the temperature of red blood cells (RBCs) storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL) than to gentian violet (IC50/24 h = 24.7 mg/mL). Cytotoxicity assays using Vero cells (37ºC) and RBCs (4ºC) showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL) at 4ºC. The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature.

  17. Expression of bovine non-classical major histocompatibility complex class 1 proteins in mouse P815 and human K562 cells

    USDA-ARS?s Scientific Manuscript database

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-class...

  18. Cytotoxic constituents of propolis from Myanmar and their structure-activity relationship.

    PubMed

    Li, Feng; Awale, Suresh; Tezuka, Yasuhiro; Kadota, Shigetoshi

    2009-12-01

    Thirteen cycloartane-type tritepenes (1-13) and four prenylated flavanones (14-17) isolated from propolis collected in Myanmar, were evaluated for their cytotoxic activity against a panel of six different cancer cell lines; three murine cancer cell lines (colon 26-L5 carcinoma, B16-BL6 melanoma, and Lewis lung carcinoma) and three human cancer cell lines (lung A549 adenocarcinoma, cervix HeLa adenocarcinoma and HT-1080 fibrosarcoma). Among them, a cycloartane-type triterpene, 3alpha,27-dihydroxycycloart-24E-en-26-oic acid (3), showed the most potent cytotoxicity against B16-BL6 cells with an IC(50) value of 5.91 microM, comparable to those of positive controls, doxorubicin (IC(50), 5.66 microM) and 5-fluorouracil (IC(50), 4.88 microM). In addition, (2S)-5,7-dihydroxy-4'-methoxy-8,3'-diprenylflavanone (14) exhibited strong cytotoxicity against all the tested cancer cell lines with the IC(50) values ranging from 14.0 to 26.4 microM. Based on the observed results, the structure-activity relationships are discussed.

  19. Inhibitory effects of magnolol on voltage-gated Na+ and K+ channels of NG108-15 cells.

    PubMed

    Gong, Chi-Li; Wong, Kar-Lok; Cheng, Ka-Shun; Kuo, Chang-Shin; Chao, Chia-Chia; Tsai, Min-Fan; Leung, Yuk-Man

    2012-05-05

    Magnolol, a polyphenolic compound isolated from Houpu, a Chinese herb from the bark of Magnolia officinalis, has been reported to have in vitro and in vivo neuroprotective effects. In spite of these reported beneficial effects, studies on the direct impact of magnolol on neuronal ion channels have been scarce. Whether magnolol affects voltage-gated Na(+) channels (VGSC) and voltage-gated K(+) (Kv) channels is unknown. Using the whole-cell voltage-clamp method, we studied the effects of magnolol on voltage-gated ion channels in neuronal NG108-15 cells. Magnolol inhibited VGSC channels with mild state-dependence (IC(50) of 15 and 30 μM, at holding potentials of -70 and -100 mV, respectively). No frequency-dependence was observed in magnolol block. Magnolol caused a left-shift of 18 mV in the steady-state inactivation curve but did not affect the voltage-dependence of activation. Magnolol inhibited Kv channels with an IC(50) of 21 μM, and it caused a 20-mV left-shift in the steady-state inactivation curve without affecting the voltage-dependence of activation. In conclusion, magnolol is an inhibitor of both VGSC and Kv channels and these inhibitory effects may in part contribute to some of the reported neuroprotective effects of magnolol. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Synthesis and in vitro antiproliferative activity of 2-methyl-3-(2-piperazin-1-yl-ethyl)-pyrido[1,2-a]pyrimidin-4-one derivatives against human cancer cell lines.

    PubMed

    Mallesha, Lingappa; Mohana, Kikkeri N; Veeresh, Bantal; Alvala, Ravi; Mallika, Alvala

    2012-01-01

    A series of new 2-methyl-3-(2-piperazin-1-yl-ethyl)-pyrido[1,2-a]pyrimidin-4-one derivatives 6a-j were synthesized by a nucleophilic substitution reaction of 2-methyl-3-(2-piperazin-1-ylethyl)-pyrido[1,2-a]pyrimidin-4-one with various sulfonyl chlorides. The compounds were characterized by different spectral studies. All the compounds were evaluated for their antiproliferative effect using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method against four human cancer cell lines (K562, Colo-205, MDA-MB 231, IMR-32) for the time period of 24 h. Among the series, compounds 6d, 6e and 6i showed good activity on all cell lines except K562, whereas the other compounds in the series exhibited moderate activity. Compound 6d could be a potential anticancer agent and therefore deserves further research.

  1. Kinetics of ultraweak light emission from human erythroleukemia K562 cells upon electroporation.

    PubMed

    Maccarrone, M; Fantini, C; Agrò, A F; Rosato, N

    1998-11-11

    Electroporation involves the application of an electric pulse that creates transient aqueous channels (electropores) across the lipid bilayer membranes. Here, we describe an instrument set up suitable to record ultraweak light emission from human erythroleukemia K562 cells during and immediately after delivery of electric pulses. Most of light was emitted in the first seconds after each pulse, following a complex decay which can be fitted by a double exponential equation characterized by two different time constants (T1 and T2), both in the order of seconds. T1 was approximately 10-fold shorter than T2 and both time constants were dependent on field strength of the electric pulse. The effect of various antioxidants on the amount of emitted photons and on T1 and T2 values was investigated, in order to shed some light on the chemical species responsible for cellular luminescence.

  2. Synthesis and discovery of novel piperidone-grafted mono- and bis-spirooxindole-hexahydropyrrolizines as potent cholinesterase inhibitors.

    PubMed

    Kia, Yalda; Osman, Hasnah; Kumar, Raju Suresh; Murugaiyah, Vikneswaran; Basiri, Alireza; Perumal, Subbu; Wahab, Habibah A; Bing, Choi Sy

    2013-04-01

    Three-component reaction of a series of 1-acryloyl-3,5-bisbenzylidenepiperidin-4-ones with isatin and L-proline in 1:1:1 and 1:2:2 molar ratios in methanol afforded, respectively the piperidone-grafted novel mono- and bisspiro heterocyclic hybrids comprising functionalized piperidine, pyrrolizine and oxindole ring systems in good yields. The in vitro evaluation of cholinesterase enzymes inhibitory activity of these cycloadducts disclosed that monospiripyrrolizines (8a-k), are more active with IC50 ranging from 3.36 to 20.07 μM than either the dipolarophiles (5a-k) or bisspiropyrrolizines (9a-k). The compounds, 8i and 8e with IC50 values of 3.36 and 3.50 μM, respectively showed the maximum inhibition of acethylcholinesterase (AChE) and butrylylcholinestrase (BuChE). Molecular modeling simulation, disclosed the binding interactions of the most active compounds to the active site residues of their respective enzymes. The docking results were in accordance with the IC50 values obtained from in vitro cholinesterase assay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. In Vitro Sensitivity of Cutaneous Leishmania Promastigote Isolates Circulating in French Guiana to a Set of Drugs

    PubMed Central

    Ginouvès, Marine; Simon, Stéphane; Nacher, Mathieu; Demar, Magalie; Carme, Bernard; Couppié, Pierre; Prévot, Ghislaine

    2017-01-01

    Anti-leishmaniasis drug resistance is a common problem worldwide. The aim of this study was to inventory the general in vitro level of sensitivity of Leishmania isolates circulating in French Guiana and to highlight potential in vitro pentamidine-resistant isolates. This sensitivity study was conducted on 36 patient-promastigote isolates for seven drugs (amphotericin B, azithromycin, fluconazole, meglumine antimoniate, miltefosine, paromomycin, and pentamidine) using the Cell Counting Kit-8 viability test. The IC50 values obtained were heterogeneous. One isolate exhibited high IC50 values for almost all drugs tested. Pentamidine, which is the first-line treatment in French Guiana, showed efficacy at very low doses (mean of 0.0038 μg/mL). The concordance of the in vitro pentamidine results with the patients' clinical outcomes was 94% (K = 0.82). PMID:28167598

  4. A role for FOXO1 in BCR–ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia

    PubMed Central

    Wagle, M; Eiring, A M; Wongchenko, M; Lu, S; Guan, Y; Wang, Y; Lackner, M; Amler, L; Hampton, G; Deininger, M W; O'Hare, T; Yan, Y

    2016-01-01

    Chronic myeloid leukemia (CML) patients who relapse on imatinib due to acquired ABL1 kinase domain mutations are successfully treated with second-generation ABL1-tyrosine kinase inhibitors (ABL-TKIs) such as dasatinib, nilotinib or ponatinib. However, ~40% of relapsed patients have uncharacterized BCR–ABL1 kinase-independent mechanisms of resistance. To identify these mechanisms of resistance and potential treatment options, we generated ABL-TKI-resistant K562 cells through prolonged sequential exposure to imatinib and dasatinib. Dual-resistant K562 cells lacked BCR–ABL1 kinase domain mutations, but acquired other genomic aberrations that were characterized by next-generation sequencing and copy number analyses. Proteomics showed that dual-resistant cells had elevated levels of FOXO1, phospho-ERK and BCL-2, and that dasatinib no longer inhibited substrates of the PI3K/AKT pathway. In contrast to parental cells, resistant cells were sensitive to growth inhibition and apoptosis induced by the class I PI3K inhibitor, GDC-0941 (pictilisib), which also induced FOXO1 nuclear translocation. FOXO1 was elevated in a subset of primary specimens from relapsed CML patients lacking BCR–ABL1 kinase domain mutations, and these samples were responsive to GDC-0941 treatment ex vivo. We conclude that elevated FOXO1 contributes to BCR–ABL1 kinase-independent resistance experienced by these CML patients and that PI3K inhibition coupled with BCR–ABL1 inhibition may represent a novel therapeutic approach. PMID:27044711

  5. A role for FOXO1 in BCR-ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia.

    PubMed

    Wagle, M; Eiring, A M; Wongchenko, M; Lu, S; Guan, Y; Wang, Y; Lackner, M; Amler, L; Hampton, G; Deininger, M W; O'Hare, T; Yan, Y

    2016-07-01

    Chronic myeloid leukemia (CML) patients who relapse on imatinib due to acquired ABL1 kinase domain mutations are successfully treated with second-generation ABL1-tyrosine kinase inhibitors (ABL-TKIs) such as dasatinib, nilotinib or ponatinib. However, ~40% of relapsed patients have uncharacterized BCR-ABL1 kinase-independent mechanisms of resistance. To identify these mechanisms of resistance and potential treatment options, we generated ABL-TKI-resistant K562 cells through prolonged sequential exposure to imatinib and dasatinib. Dual-resistant K562 cells lacked BCR-ABL1 kinase domain mutations, but acquired other genomic aberrations that were characterized by next-generation sequencing and copy number analyses. Proteomics showed that dual-resistant cells had elevated levels of FOXO1, phospho-ERK and BCL-2, and that dasatinib no longer inhibited substrates of the PI3K/AKT pathway. In contrast to parental cells, resistant cells were sensitive to growth inhibition and apoptosis induced by the class I PI3K inhibitor, GDC-0941 (pictilisib), which also induced FOXO1 nuclear translocation. FOXO1 was elevated in a subset of primary specimens from relapsed CML patients lacking BCR-ABL1 kinase domain mutations, and these samples were responsive to GDC-0941 treatment ex vivo. We conclude that elevated FOXO1 contributes to BCR-ABL1 kinase-independent resistance experienced by these CML patients and that PI3K inhibition coupled with BCR-ABL1 inhibition may represent a novel therapeutic approach.

  6. Biological activity of neosergeolide and isobrucein B (and two semi-synthetic derivatives) isolated from the Amazonian medicinal plant Picrolemma sprucei (Simaroubaceae).

    PubMed

    Silva, Ellen C C; Cavalcanti, Bruno C; Amorim, Rodrigo C N; Lucena, Jorcilene F; Quadros, Dulcimar S; Tadei, Wanderli P; Montenegro, Raquel C; Costa-Lotufo, Letícia V; Pessoa, Cláudia; Moraes, Manoel O; Nunomura, Rita C S; Nunomura, Sergio M; Melo, Marcia R S; Andrade-Neto, Valter F de; Silva, Luiz Francisco R; Vieira, Pedro Paulo R; Pohlit, Adrian M

    2009-02-01

    In the present study, in vitro techniques were used to investigate a range of biological activities of known natural quassinoids isobrucein B (1) and neosergeolide (2), known semi-synthetic derivative 1,12-diacetylisobrucein B (3), and a new semi-synthetic derivative, 12-acetylneosergeolide (4). These compounds were evaluated for general toxicity toward the brine shrimp species Artemia franciscana, cytotoxicity toward human tumour cells, larvicidal activity toward the dengue fever mosquito vector Aedes aegypti, haemolytic activity in mouse erythrocytes and antimalarial activity against the human malaria parasite Plasmodium falciparum. Compounds 1 and 2 exhibited the greatest cytotoxicity against all the tumor cells tested (IC50 = 5-27 microg/L) and against multidrug-resistant P. falciparum K1 strain (IC50 = 1.0-4.0 g/L) and 3 was only cytotoxic toward the leukaemia HL-60 strain (IC50 = 11.8 microg/L). Quassinoids 1 and 2 (LC50 = 3.2-4.4 mg/L) displayed greater lethality than derivative 4 (LC50 = 75.0 mg/L) toward A. aegypti larvae, while derivative 3 was inactive. These results suggest a novel application for these natural quassinoids as larvicides. The toxicity toward A. franciscana could be correlated with the activity in several biological models, a finding that is in agreement with the literature. Importantly, none of the studied compounds exhibited in vitro haemolytic activity, suggesting specificity of the observed cytotoxic effects. This study reveals the biological potential of quassinoids 1 and 2 and to a lesser extent their semi-synthetic derivatives for their in vitro antimalarial and cytotoxic activities.

  7. Regulated expression of the rat recombinant P2X(3) receptor in stably transfected CHO-K1 tTA cells.

    PubMed

    Lachnit, W G; Oglesby, I B; Gever, J R; Gever, M; Huang, C; Li, X C; Jin, H; McGivern, J G; Ford, A P

    2000-07-03

    In this report, the regulatable expression by tetracycline of the rat recombinant P2X(3) receptor in stably transfected Chinese hamster ovary (CHO-K1) expressing the tetracycline-controlled transactivator (tTA) is described. cDNA encoding the rat P2X(3)-receptor was subcloned into pTRE (a tetracycline-repressible expression vector) which was used to transfect stably CHO-K1 tTA cells. Using whole cell patch clamp techniques, 100 microM ATP evoked inward currents of 2.9+/-1.6 nA in transfected cells grown in the absence of tetracycline (tet-). The P2X(3) receptor protein was detectable by immunoblot as early as 24 h and protein expression levels continued to increase as much as 192 h following activation of tTA by the removal of the antibiotic. Saturation binding isotherms using [35S]ATP gamma S yielded a pK(d) of 8.2+/-0.1 and a B(max) of 31.9+/-3.5 pmol/mg protein in tet- cell membranes and a pK(d) of 8.1+/-0.1 and a B(max) of 5.8+/-0.8 pmol/mg protein in tet+ cell membranes. The agonist ligands 2MeSATP and alpha beta MeATP displaced the binding of [35S]ATP gamma S in tet- cell membranes with very high affinity, yielding pIC(50) values of 9.4+/-0.2 and 7.5+/-0. 2, respectively. In tet+ cell membrane, displacement of [35S]ATP gamma S by 2MeSATP and alpha beta MeATP was of much lower affinity (pIC(50) values of 7.8 and 6.2, respectively). ATP, ADP and UTP showed similar displacement of [35S]ATP gamma S binding in tet- and tet+ cell membranes. In other experiments, cytosolic Ca(2+) was monitored using the fluorescent indicator, fluo-3. Increases in cytosolic Ca(2+) were elicited by 100 nM alpha beta MeATP in tet- cells while no increases in cytosolic Ca(2+) were detected below 100 microM alpha beta MeATP in either tet+ cells or untransfected cells. These calcium responses to alpha beta MeATP had a pEC(50) of 6.7 and were transient, returning to baseline within 120 s. Suramin produced concentration-dependent, parallel, dextral shifts of E/[A] curves to alpha beta MeATP yielding a pK(B) of 5.6. PPADS produced non-parallel, dextral shifts of E/[A] curves to alpha beta MeATP which were insurmountable. These results show for the first time, expression of a functional, homomeric recombinant rat P2X(3) receptor which is under regulated expression in a stably transfected mammalian cell line.

  8. Discovery and Evaluation of Thiazinoquinones as Anti-Protozoal Agents

    PubMed Central

    Lam, Cary F. C.; Pearce, A. Norrie; Tan, Shen H.; Kaiser, Marcel; Copp, Brent R.

    2013-01-01

    Pure compound screening has identified the dioxothiazino-quinoline-quinone ascidian metabolite ascidiathiazone A (2) to be a moderate growth inhibitor of Trypanosoma brucei rhodesiense (IC50 3.1 μM) and Plasmodium falciparum (K1 dual drug resistant strain) (IC50 3.3 μM) while exhibiting low levels of cytotoxicity (L6, IC50 167 μM). A series of C-7 amide and Δ2(3) analogues were prepared that explored the influence of lipophilicity and oxidation state on observed anti-protozoal activity and selectivity. Little variation in anti-malarial potency was observed (IC50 0.62–6.5 μM), and no correlation was apparent between anti-malarial and anti-T. brucei activity. Phenethylamide 7e and Δ2(3)-glycine analogue 8k exhibited similar anti-Pf activity to 2 but with slightly enhanced selectivity (SI 72 and 93, respectively), while Δ2(3)-phenethylamide 8e (IC50 0.67 μM, SI 78) exhibited improved potency and selectivity towards T. brucei rhodesiense compared to the natural product hit. A second series of analogues were prepared that replaced the quinoline ring of 2 with benzofuran or benzothiophene moieties. While esters 10a/10b and 15 were once again found to exhibit cytotoxicity, carboxylic acid analogues exhibited potent anti-Pf activity (IC50 0.34–0.035 μM) combined with excellent selectivity (SI 560–4000). In vivo evaluation of a furan carboxylic acid analogue against P. berghei was undertaken, demonstrating 85.7% and 47% reductions in parasitaemia with ip or oral dosing respectively. PMID:24022732

  9. Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells.

    PubMed

    Tahir, Analhuda Abdullah; Sani, Nur Fathiah Abdul; Murad, Noor Azian; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd

    2015-04-01

    The interconnected Ras/ERK and PI3K/AKT pathways play a central role in colorectal tumorigenesis, and they are targets for elucidating mechanisms involved in attempts to induce colon cancer cell death. Both ginger (Zingiber officinale) and honey have been shown to exhibit anti-tumor and anti-inflammation properties against many types of cancer, including colorectal cancer. However, there are currently no reports showing the combined effect of these two dietary compounds in cancer growth inhibition. The aim of this study was to evaluate the synergistic effect of crude ginger extract and Gelam honey in combination as potential cancer chemopreventive agents against the colorectal cancer cell line HT29. The cells were divided into 4 groups: the first group represents HT29 cells without treatment, the second and third groups were cells treated singly with either ginger or Gelam honey, respectively, and the last group represents cells treated with ginger and Gelam honey combined. The results of MTS assay showed that the IC50 of ginger and Gelam honey alone were 5.2 mg/ml and 80 mg/ml, respectively, whereas the IC50 of the combination treatment was 3 mg/ml of ginger plus 27 mg/ml of Gelam honey with a combination index of < 1, suggesting synergism. Cell death in response to the combined ginger and Gelam honey treatment was associated with the stimulation of early apoptosis (upregulation of caspase 9 and IκB genes) accompanied by downregulation of the KRAS, ERK, AKT, Bcl-xL, NFkB (p65) genes in a synergistic manner. In conclusion, the combination of ginger and Gelam honey may be an effective chemopreventive and therapeutic strategy for inducing the death of colon cancer cells.

  10. By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, Stichoposide D inhibits growth of leukemia xenografts

    PubMed Central

    Yun, Seong-Hoon; Park, Eun-Seon; Shin, Sung-Won; Ju, Mi-Ha; Han, Jin-Yeong; Jeong, Jin-Sook; Kim, Sung-Hyun; Stonik, Valentin A.; Kwak, Jong-Young; Park, Joo-In

    2015-01-01

    Stichoposide D (STD) is a marine triterpene glycoside isolated from sea cucumbers. We examined the molecular mechanisms underlying the antitumor activity of STD in human leukemia cells. The role of Fas (CD95), ceramide synthase 6 (CerS6) and p38 kinase during STD-induced apoptosis was examined in human leukemia cells. In addition, the antitumor effects of STD in K562 and HL-60 leukemia xenograft models were investigated. We found that STD induces Fas translocation to lipid rafts, and thus mediates cell apoptosis. We also observed the activation of CerS6 and p38 kinase during STD-induced apoptosis. The use of methyl-β-cyclodextrin and nystatin to disrupt lipid rafts prevents the clustering of Fas and the activation of CerS6 and p38 kinase, and also inhibits STD-induced apoptosis. Specific inhibition by Fas, CerS6, and p38 kinase siRNA transfection partially blocked STD-induced apoptosis. In addition, STD has antitumor activity through the activation of CerS6 and p38 kinase without displaying any toxicity in HL-60 and K562 xenograft models. We observed that the anti-tumor effect of STD is partially prevented in CerS6 shRNA-silenced xenograft models. We first report that Fas/CerS6/p38 kinase activation in lipid rafts by STD is involved in its anti-leukemic activity. We also established that STD is able to enhance the chemosensitivity of K562 cells to etoposide or Ara-C. These data suggest that STD may be used alone or in combination with other chemotherapeutic agents to treat leukemia. PMID:26318294

  11. A derivative of epigallocatechin-3-gallate induces apoptosis via SHP-1-mediated suppression of BCR-ABL and STAT3 signalling in chronic myelogenous leukaemia

    PubMed Central

    Jung, Ji Hoon; Yun, Miyong; Choo, Eun-Jeong; Kim, Sun-Hee; Jeong, Myoung-Seok; Jung, Deok-Beom; Lee, Hyemin; Kim, Eun-Ok; Kato, Nobuo; Kim, Bonglee; Srivastava, Sanjay K; Kaihatsu, Kunihiro; Kim, Sung-Hoon

    2015-01-01

    Background and Purpose Epigallocatechin-3-gallate (EGCG) is a component of green tea known to have chemo-preventative effects on several cancers. However, EGCG has limited clinical application, which necessitates the development of a more effective EGCG prodrug as an anticancer agent. Experimental Approach Derivatives of EGCG were evaluated for their stability and anti-tumour activity in human chronic myeloid leukaemia (CML) K562 and KBM5 cells. Key Results EGCG-mono-palmitate (EGCG-MP) showed most prolonged stability compared with other EGCG derivatives. EGCG-MP exerted greater cytotoxicity and apoptosis in K562 and KBM5 cells than the other EGCG derivatives. EGCG-MP induced Src-homology 2 domain-containing tyrosine phosphatase 1 (SHP-1) leading decreased oncogenic protein BCR-ABL and STAT3 phosphorylation in CML cells, compared with treatment with EGCG. Furthermore, EGCG-MP reduced phosphorylation of STAT3 and survival genes in K562 cells, compared with EGCG. Conversely, depletion of SHP-1 or application of the tyrosine phosphatase inhibitor pervanadate blocked the ability of EGCG-MP to suppress phosphorylation of BCR-ABL and STAT3, and the expression of survival genes downstream of STAT3. In addition, EGCG-MP treatment more effectively suppressed tumour growth in BALB/c athymic nude mice compared with untreated controls or EGCG treatment. Immunohistochemistry revealed increased caspase 3 and SHP-1 activity and decreased phosphorylation of BCR-ABL in the EGCG-MP-treated group relative to that in the EGCG-treated group. Conclusions and Implications EGCG-MP induced SHP-1-mediated inhibition of BCR-ABL and STAT3 signalling in vitro and in vivo more effectively than EGCG. This derivative may be a potent chemotherapeutic agent for CML treatment. PMID:25825203

  12. Establishment of nude mice with complete loss of lymphocytes and NK cells and application for in vivo bio-imaging.

    PubMed

    Kariya, Ryusho; Matsuda, Kouki; Gotoh, Kumiko; Vaeteewoottacharn, Kulthida; Hattori, Shinichiro; Okada, Seiji

    2014-01-01

    Nude mice are used in human xenograft research; however, only 25-35% of human tumors have been successfully transplanted into nude mice and their application is limited due to high natural killer (NK) cell activity. More severely immunodeficient mice with loss of NK activity are needed to overcome this limitation. Balb/c nude Rag-2(-/-)Jak3(-/-) (Nude-RJ) mice were established by crossing Rag-2(-/-)Jak3(-/-) mice and nude mice. The K562 cell line was implanted subcutaneously to compare tumorigenicity between Nude-RJ mice and Nude mice. The cholangiocarcinoma mCherry expressing cell line (KKU-M213) was implanted subcutaneously, and fluorescence intensity and tumor weight were measured. Nude R/J mice showed complete loss of lymphocytes and NK cells. Xeno-transplantation of K562 cells showed higher proliferation in Nude R/J mice than nude mice. Subcutaneously-transplanted mCherry-transduced KKU-M213 cells were successfully detected with a fluorescence imager. Nude-R/J mice are valuable tools for in vivo imaging studies in biomedical research. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells.

    PubMed

    Zou, Xiaohan; He, Yuwei; Qiao, Jinping; Zhang, Chunlei; Cao, Zhengyu

    2016-01-01

    The scorpion Buthus martensii Karsch has been used in Traditional Chinese Medicine to treat neuronal diseases such as neuropathic pain, paralysis and epilepsy for thousands of years. Studies have demonstrated that scorpion venom is the primary active component. Although scorpion venom can effectively attenuate pain in the clinic, it also produces neurotoxic response. In this study, toxicity guided purification led to identify a mammalian toxin termed BmK NT1 comprising of 65 amino acid residues and an amidated C-terminus, a mature peptide encoded by the nucleotide sequence (GenBank No. AF464898). In contract to the recombinant product of the same nucleotide sequence, BmK AGAP, which displayed analgesic and anti-tumor effect, intravenous injection (i.v.) of BmK NT1 produced acute toxicity in mice with an LD50 value of 1.36 mg/kg. In primary cultured cerebellar granule cells, BmK NT1 produced a concentration-dependent cell death with an IC50 value of 0.65 μM (0.41-1.03 μM, 95% Confidence Intervals, 95% CI) which was abolished by TTX, a voltage-gated sodium channel (VGSC) blocker. We also demonstrated that BmK NT1 produced modest sodium influx in cerebellar granule cell cultures with an EC50 value of 2.19 μM (0.76-6.40 μM, 95% CI), an effect similar to VGSC agonist, veratridine. The sodium influx response was abolished by TTX suggesting that BmK NT1-induced sodium influx is solely through activation of VGSC. Considered these data together, we demonstrated that BmK NT1 activated VGSC and produced neurotoxicity in cerebellar granule cell cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Synthesis, stereochemistry determination, pharmacological studies and quantum chemical analyses of bisthiazolidinone derivative

    NASA Astrophysics Data System (ADS)

    Mushtaque, Md.; Avecilla, Fernando; Hafeez, Zubair Bin; Jahan, Meriyam; Khan, Md. Shahzad; Rizvi, M. Moshahid A.; Khan, Mohd. Shahid; Srivastava, Anurag; Mallik, Anwesha; Verma, Saurabh

    2017-01-01

    A new compound (3) bisthaizolidinone derivative was synthesized by Knoevenagel condensation reaction. The structure of synthesized compound was elucidated by different spectral techniques and X-ray diffraction studies. The stereochemistry of the compound (3) was determined by 1Hsbnd 1H NOESY, 1Hsbnd 1H NMR COSY and single crystal X-ray diffraction studies as (Z, Z)-configuration. The computational quantum chemical studies of compound(3) like, IR, UV, NBO analysis were performed by DFT with Becke-3-Lee-Yang-Parr (B3LYP) exchange-correlation functional in combination with 6-311++G(d,p) basis sets. The DNA-binding of compound (3) exhibited a moderate binding constant (Kb = 1 × 105 Lmol-1) with hypochromic shift. The molecular docking displayed good binding affinity -7.18 kcal/mol. The MTT assay of compound (3) was screened against different cancerous cell lines, HepG2, Siha, Hela and MCF-7. Studies against these cell lines depicted that the screened compound (3) showed potent inhibitory activity against HepG2 cell (IC50 = 7.5 μM) followed by MCF-7 (IC50 = 52.0 μM), Siha (IC50 = 66.98 μM), Hela (IC50 = 74.83 μM) cell lines, and non-toxic effect against non-cancerous HEK-293 cells (IC50 = 287.89 μM) at the concentration range (0-300) μM. Furthermore, cell cycle perturbation was performed on HepG2 & Siha cell lines and observed that cells were arrested in G2/M in HepG2, and G0/G1 in Siha cell lines with respect to untreated control. Hence, compound (3) possesses potent anti-cancerous activity against HepG2 cell line.

  15. Inhibition of PI3K-AKT-mTOR pathway sensitizes endometrial cancer cell lines to PARP inhibitors.

    PubMed

    Philip, Charles-André; Laskov, Ido; Beauchamp, Marie-Claude; Marques, Maud; Amin, Oreekha; Bitharas, Joanna; Kessous, Roy; Kogan, Liron; Baloch, Tahira; Gotlieb, Walter H; Yasmeen, Amber

    2017-09-08

    Phosphatase and Tensin homolog (PTEN) is a tumor suppressor gene. Loss of its function is the most frequent genetic alteration in endometrioid endometrial cancers (70-80%) and high grade tumors (90%). We assessed the sensitivity of endometrial cancer cell lines to PARP inhibitors (olaparib and BMN-673) and a PI3K inhibitor (BKM-120), alone or in combination, in the context of their PTEN mutation status. We also highlighted a direct pathway linking PTEN to DNA repair. Using endometrial cancer cellular models with known PTEN status, we evaluated their homologous recombination (HR) functionality by RAD51 foci formation assay. The 50% Inhibitory concentration (IC50) of PI3K and PARP inhibitors in these cells was assessed, and western blotting was performed to determine the expression of proteins involved in the PI3K/mTOR pathway. Moreover, we explored the interaction between RAD51 and PI3K/mTOR by immunofluorescence. Next, the combination effect of PI3K and PARP inhibitors on cell proliferation was evaluated by a clonogenic assay. Cells with mutated PTEN showed over-activation of the PI3K/mTOR pathway. These cells were more sensitive to PARP inhibition compared to PTEN wild-type cells. In addition, PI3K inhibitor treatment reduced RAD51 foci formation in PTEN mutated cells, and sensitized these cells to PARP inhibitor. Targeting both PARP and PI3K might lead to improved personalized therapeutic approaches in endometrial cancer patients with PTEN mutations. Understanding the complex interaction of PTEN mutations with DNA repair in endometrial cancer will help to better select patients that are likely to respond to some of the new and costly targeted therapies.

  16. Studies on Pharmacokinetic Drug Interaction Potential of Vinpocetine.

    PubMed

    Manda, Vamshi K; Avula, Bharathi; Dale, Olivia R; Chittiboyina, Amar G; Khan, Ikhlas A; Walker, Larry A; Khan, Shabana I

    2015-06-05

    Background: Vinpocetine, a semi-synthetic derivative of vincamine, is a popular dietary supplement used for the treatment of several central nervous system related disorders. Despite its wide use, no pharmacokinetic drug interaction studies are reported in the literature. Due to increasing use of dietary supplements in combination with conventional drugs, the risk of adverse effects is on the rise. As a preliminary step to predict a possibility of drug interaction during concomitant use of vinpocetine and conventional drugs, this study was carried out to evaluate the effects of vinpocetine on three main regulators of pharmacokinetic drug interactions namely, cytochromes P450 (CYPs), P-glycoprotein (P-gp), and Pregnane X receptor (PXR). Methods: Inhibition of CYPs was evaluated by employing recombinant enzymes. The inhibition of P-gp was determined by calcein-AM uptake method in transfected and wild type MDCKII cells. Modulation of PXR activity was monitored through a reporter gene assay in HepG2 cells. Results: Vinpocetine showed a strong inhibition of P-gp (EC 50 8 µM) and a moderate inhibition of recombinant CYP3A4 and CYP2D6 (IC 50 2.8 and 6.5 µM) with no activity towards CYP2C9, CYP2C19 and CYP1A2 enzymes. In HLM, competitive inhibition of CYP3A4 (IC 50 54 and K i 19 µM) and non-competitive inhibition of CYP2D6 (IC 50 19 and K i 26 µM) was observed. Activation of PXR was observed only at the highest tested concentration of vinpocetine (30 µM) while lower doses were ineffective. Conclusion: Strong inhibition of P-gp by vinpocetine is indicative of a possibility of drug interactions by altering the pharmacokinetics of drugs, which are the substrates of P-gp. However, the effects on CYPs and PXR indicate that vinpocetine may not affect CYP-mediated metabolism of drugs, as the inhibitory concentrations are much greater than the expected plasma concentrations in humans.

  17. Calcium channel currents in bovine adrenal chromaffin cells and their modulation by anaesthetic agents.

    PubMed Central

    Charlesworth, P; Pocock, G; Richards, C D

    1994-01-01

    1. The calcium channel currents of bovine adrenal chromaffin cells were characterized using a variety of voltage pulse protocols and selective channel blockers before examination of their modulation by anaesthetic agents. 2. All the anaesthetics studied (halothane, methoxyflurane, etomidate and methohexitone) inhibited the calcium channel currents in a concentration-dependent manner and increased the rate of current decay. 3. The anaesthetics did not shift the current-voltage relation nor did they change the voltage for half-maximal channel activation derived from analysis of the voltage dependence of the tail currents. None of the anaesthetics appeared to alter the time constant of tail current decay. 4. To complement earlier studies of the inhibitory actions of anaesthetics on K(+)-evoked catecholamine secretion and the associated Ca2+ uptake, the IC50 values for etomidate and methohexitone were determined using a biochemical assay. The IC50 values for anaesthetic inhibition of calcium channel currents corresponded closely with those for inhibition of K(+)-evoked calcium uptake and catecholamine secretion. 5. The inhibitory effect of the volatile anaesthetics and etomidate is best explained by dual action: a reduction in the probability of channel opening coupled with an increase in the rate of channel inactivation. Methohexitone appeared to inhibit the currents by a use-dependent slow block. PMID:7707224

  18. Experimental model for ELF-EMF exposure: Concern for human health

    PubMed Central

    D’Angelo, C.; Costantini, E.; Kamal, M.A.; Reale, M.

    2014-01-01

    Low frequency (LF) electromagnetic fields (EMFs) are abundantly present in modern society and in the last 20 years the interest about the possible effect of extremely low frequency (ELF) EMFs on human health has increased progressively. Epidemiological studies, designed to verify whether EMF exposure may be a potential risk factor for health, have led to controversial results. The possible association between EMFs and an increased incidence of childhood leukemia, brain tumors or neurodegenerative diseases was not fully elucidated. On the other hand, EMFs are widely used, in neurology, psychiatry, rheumatology, orthopedics and dermatology, both in diagnosis and in therapy. In vitro studies may help to evaluate the mechanism by which LF-EMFs affect biological systems. Invitro model of wound healing used keratinocytes (HaCaT), neuroblastoma cell line (SH-SY5Y) as a model for analysis of differentiation, metabolism and functions related to neurodegenerative processes, and monocytic cell line (THP-1) was used as a model for inflammation and cytokines production, while leukemic cell line (K562) was used as a model for hematopoietic differentiation. MCP-1, a chemokine that regulates the migration and infiltration of memory T cells, natural killer (NK), monocytes and epithelial cells, has been demonstrated to be induced and involved in various diseases. Since, varying the parameters of EMFs different effects may be observed, we have studied MCP-1 expression in HaCaT, SH-SY5Y, THP-1 and K562 exposed to a sinusoidal EMF at 50 Hz frequency with a flux density of 1 mT (rms). Our preliminary results showed that EMF-exposure differently modifies the expression of MCP-1 in different cell types. Thus, the MCP-1 expression needs to be better determined, with additional studies, with different parameters and times of exposure to ELF-EMF. PMID:25561888

  19. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells.

    PubMed

    Mendes, Anderson Nogueira; Filgueiras, Lívia Alves; Siqueira, Monica Regina Pimentel; Barbosa, Gleyce Moreno; Holandino, Carla; de Lima Moreira, Davyson; Pinto, José Carlos; Nele, Marcio

    2017-01-01

    This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n -hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia.

  20. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells

    PubMed Central

    Mendes, Anderson Nogueira; Filgueiras, Lívia Alves; Siqueira, Monica Regina Pimentel; Barbosa, Gleyce Moreno; Holandino, Carla; de Lima Moreira, Davyson; Pinto, José Carlos; Nele, Marcio

    2017-01-01

    This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n-hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia. PMID:29200848

  1. KINETIC CHARACTERIZATION AND MOLECULAR DOCKING OF A NOVEL, POTENT, AND SELECTIVE SLOW-BINDING INHIBITOR OF HUMAN CATHEPSIN L

    PubMed Central

    Shah, Parag P.; Myers, Michael C.; Beavers, Mary Pat; Purvis, Jeremy E.; Jing, Huiyan; Grieser, Heather J.; Sharlow, Elizabeth R.; Napper, Andrew D.; Huryn, Donna M.; Cooperman, Barry S.; Smith, Amos B.; Diamond, Scott L.

    2008-01-01

    A novel small molecule thiocarbazate (PubChem SID 26681509), a potent inhibitor of human cathepsin L (EC 3.4.22.15) with an IC50 of 56 nM, was developed following a 57,821 compound screen of the NIH Molecular Libraries Small Molecule Repository. After a 4 hr preincubation with cathepsin L, this compound became even more potent, demonstrating an IC50 of 1.0 nM. The thiocarbazate was determined to be a slow-binding and slowly reversible competitive inhibitor. Through a transient kinetic analysis for single-step reversibility, inhibition rate constants were kon = 24,000 M-1s-1 and koff = 2.2 × 10-5 s-1 (Ki = 0.89 nM). Molecular docking studies were undertaken using the experimentally-derived X-ray crystal structure of papain/CLIK-148 (1cvz.pdb). These studies revealed critical hydrogen bonding patterns of the thiocarbazate with key active site residues in papain. The thiocarbazate displayed 7- to 151-fold greater selectivity toward cathepsin L than papain and cathepsins B, K, V, and S with no activity against cathepsin G. The inhibitor demonstrated a lack of toxicity in human aortic endothelial cells and zebrafish. Additionally, the thiocarbazate inhibited in vitro propagation of malaria parasite Plasmodium falciparum with an IC50 of 15.4 μM and inhibited Leishmania major with an IC50 of 12.5 μM. PMID:18403718

  2. Cytotoxic garcimultiflorones K-Q, lavandulyl benzophenones from Garcinia multiflora branches.

    PubMed

    Wang, Zhao-Quan; Li, Xing-Yu; Hu, Dong-Bao; Long, Chun-Lin

    2018-08-01

    Seven undescribed lavandulyl benzophenones garcimultiflorones K-Q, and fourteen known compounds were isolated from the CHCl 3 soluble fraction of 95% EtOH extract of Garcinia multiflora branches. Their structures and absolute configurations were determined by spectroscopic techniques including NMR spectroscopy, MS analysis, and ECD calculations. Seven isolated compounds expect for garcimultiflorone L and garcimultiflorone O exhibited cytotoxic activities in vitro against five cancer cell lines (HL-60, A549, SMMC-7721, MCF-7, and SW480). It is worth mentioning that garcimultiflorone Q exhibited most significant cytotoxicities against five cancer cell lines with IC 50 values ranging from 3.07-12.56 μM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Antimicrobial and anticancer activity of AgNPs coated with Alphonsea sclerocarpa extract.

    PubMed

    Doddapaneni, Suman Joshi D S; Amgoth, Chander; Kalle, Arunasree M; Suryadevara, Surya Narayana; Alapati, Krishna Satya

    2018-03-01

    The synthesis and characterization of an aggregate of AgNPs coated with plant extract (PE) from Alphonsea sclerocarpa and its significant antimicrobial activity and inhibition on K562 (blood cancer) cells have been appended in the article. Synthesis of aggregate [(AgNPs)-(PE)] has been followed by a facile eco-friendly approach without using any harmful chemicals. The morphology of an aggregate [(AgNPs)-(PE)] was confirmed by TEM and SEM microscopic characterizations. Properties like solid state, the presence of functional groups, and elemental composition have been characterized through the XRD, FTIR, and EDAX. The biocompatibility of synthesized aggregate of [(AgNPs)-(PE)] was confirmed by the MTT assay. An in vitro cell (HEK293)-based studies were performed for the biocompatibility tests and it is found that the aggregate [(AgNPs)-(PE)] is not harmful to normal/healthy cells. Even though A. sclerocarpa show the antimicrobial (antibacterial and antifungal) activity, it has been further enhanced with the developed aggregate of [(AgNPs)-(PE)]. Furthermore, it has been extended to examine the cellular inhibition on K562 cells and obtained > 75% cell inhibition for 24 h treated cells.

  4. Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney.

    PubMed

    Li, Yue; Hu, Hongxiang; Butterworth, Michael B; Tian, Jin-Bin; Zhu, Michael X; O'Neil, Roger G

    2016-01-01

    The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PCIC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which will support activation of the low Ca2+-binding affinity BK channel to promote BK-mediated K+ secretion.

  5. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site.

    PubMed

    Raghav, Darpan; Ashraf, Shabeeba M; Mohan, Lakshmi; Rathinasamy, Krishnan

    2017-05-23

    Berberine has been used traditionally for its diverse pharmacological actions. It exhibits remarkable anticancer activities and is currently under clinical trials. In this study, we report that the anticancer activity of berberine could be partly due to its inhibitory actions on tubulin and microtubule assembly. Berberine inhibited the proliferation of HeLa cells with an IC 50 of 18 μM and induced significant depolymerization of interphase and mitotic microtubules. At its IC 50 , berberine exerted a moderate G2/M arrest and mitotic block as detected by fluorescence-activated cell sorting analysis and fluorescence microscopy, respectively. In a wound closure assay, berberine inhibited the migration of HeLa cells at concentrations lower than its IC 50 , indicating its excellent potential as an anticancer agent. In vitro studies with tubulin isolated from goat brain indicated that berberine binds to tubulin at a single site with a K d of 11 μM. Berberine inhibited the assembly of tubulin into microtubules and also disrupted the preformed microtubules polymerized in the presence of glutamate and paclitaxel. Competition experiments indicated that berberine could partially displace colchicine from its binding site. Results from fluorescence resonance energy transfer, computational docking, and molecular dynamics simulations suggest that berberine forms a stable complex with tubulin and binds at a novel site 24 Å from the colchicine site on the β-tubulin. Data obtained from synchronous fluorescence analysis of the tryptophan residues of tubulin and from the Fourier transform infrared spectroscopy studies revealed that binding of berberine alters the conformation of the tubulin heterodimer, which could be the molecular mechanism behind the depolymerizing effects on tubulin assembly.

  6. Purification and partial characterization ofa 67-kD cross-react ive allergen from Imperata cylindrica pollen extract.

    PubMed

    Verma, J; Singh, B P; Gangal, S V; Arora, N; Sridhara, S

    2000-08-01

    Grass pollens are known to induce type I allergic reactions in a large number of genetically predisposed individuals. Earlier studies have recognized Imperata cylindrica (Ic) pollen as an important source of aeroallergen which contained 7 IgE binding proteins in the MW range of 85-16 kD. To isolate, purify and characterize a cross-reactive allergenic protein from Ic pollen extract for diagnosis and therapy of grass pollen allergy. Ic pollen extract was fractionated using DEAE Sephadex A-50, Sephadex G-200 and Mono Q column. Allergenic activity of the fractions was checked by ELISA, skin tests, ELISA inhibition and immunoblot using sera of Ic-sensitive patients. A 67-kD protein was purified to homogeneity from Ic-VIII. The allergenic determinants of this protein were identified by SDS-PAGE and immunoblot after CNBr treatment. Among Ic fractions, Ic-VIII was highly potent by ELISA, skin tests and showed cross-reactivity with 4 other tropical grasses by immunoblot and ELISA inhibition. The subfraction Ic-VIIIe1 of Ic-VIII showed a band at 67 kD on SDS-PAGE. On CNBr treatment, it gave 7 peptides, 3 of which were found to be allergenic. A 67-kD protein (Ic-VIIIe1) was isolated, purified to homogeneity and partially characterized. It showed cross-reactivity with tropical grasses tested and contained at least three allergenic determinants. Copyright 2000 S. Karger AG, Basel.

  7. Synthesis of novel fluorinated chalcones derived from 4‧-morpholinoacetophenone and their antiproliferative effects

    NASA Astrophysics Data System (ADS)

    Kurşun Aktar, Bedriye Seda; Oruç-Emre, Emine Elçin; Demirtaş, Ibrahim; Yaglioglu, Ayse Sahin; Guler, Caglar; Adem, Sevki; Karaküçük Iyidoğan, Ayşegül

    2017-12-01

    The fluorinated chalcones were synthesized by Claisen-Schmidt condensation between 4‧-morpholineacetophenone and various fluorinated benzaldehydes in the presence of NaOH in methanol. The synthesized compounds [1-7] were evaluated their antiproliferative activity against HeLa and C6 cell lines. Among them, compounds 4 and 5 were determined to have anticancer activity against HeLa cells line (IC50 values of 7.74 and 6.10 μg/mL, respectively). The anticancer activity results were shown that compounds 3, and 6 had inhibitory against C6 cells (IC50 values of 12.80 and 4.16 μg/mL, respectively). The compounds 1 and 2 had high antiproliferative activity with non-cytotoxicity. All of the new compounds, except for compound 4 showed inhibition against the human isozyme hCA I with IC50 in the range of 0.5-1,16 mM. Pyruvate kinase M2 (PKM2) was effectively inhibited by compound 4 with IC50 = 26 μM.

  8. Mechanisms of zolpidem-induced long QT syndrome: acute inhibition of recombinant hERG K+ channels and action potential prolongation in human cardiomyocytes derived from induced pluripotent stem cells

    PubMed Central

    Jehle, J; Ficker, E; Wan, X; Deschenes, I; Kisselbach, J; Wiedmann, F; Staudacher, I; Schmidt, C; Schweizer, PA; Becker, R; Katus, HA; Thomas, D

    2013-01-01

    Background and Purpose Zolpidem, a short-acting hypnotic drug prescribed to treat insomnia, has been clinically associated with acquired long QT syndrome (LQTS) and torsade de pointes (TdP) tachyarrhythmia. LQTS is primarily attributed to reduction of cardiac human ether-a-go-go-related gene (hERG)/IKr currents. We hypothesized that zolpidem prolongs the cardiac action potential through inhibition of hERG K+ channels. Experimental Approach Two-electrode voltage clamp and whole-cell patch clamp electrophysiology was used to record hERG currents from Xenopus oocytes and from HEK 293 cells. In addition, hERG protein trafficking was evaluated in HEK 293 cells by Western blot analysis, and action potential duration (APD) was assessed in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. Key Results Zolpidem caused acute hERG channel blockade in oocytes (IC50 = 61.5 μM) and in HEK 293 cells (IC50 = 65.5 μM). Mutation of residues Y652 and F656 attenuated hERG inhibition, suggesting drug binding to a receptor site inside the channel pore. Channels were blocked in open and inactivated states in a voltage- and frequency-independent manner. Zolpidem accelerated hERG channel inactivation but did not affect I–V relationships of steady-state activation and inactivation. In contrast to the majority of hERG inhibitors, hERG cell surface trafficking was not impaired by zolpidem. Finally, acute zolpidem exposure resulted in APD prolongation in hiPSC-derived cardiomyocytes. Conclusions and Implications Zolpidem inhibits cardiac hERG K+ channels. Despite a relatively low affinity of zolpidem to hERG channels, APD prolongation may lead to acquired LQTS and TdP in cases of reduced repolarization reserve or zolpidem overdose. PMID:23061993

  9. Calpain 10 homology modeling with CYGAK and increased lipophilicity leads to greater potency and efficacy in cells.

    PubMed

    Smith, Matthew A; McInnes, Campbell; Whitaker, Ryan M; Lindsey, Christopher C; Comer, Richard F; Beeson, Craig C; Schnellmann, Rick G

    2012-08-17

    Calpain 10 is a ubiquitously expressed mitochondrial and cytosolic Ca(2+)-regulated cysteine protease in which overexpression or knockdown leads to mitochondrial dysfunction and cell death. We previously identified a potent and specific calpain 10 peptide inhibitor (CYGAK), but it was not efficacious in cells. Therefore, we created a homology model using the calpain 10 amino acid sequence and calpain 1 3-D structure and docked CYGAK in the active site. Using this model we modified the inhibitor to improve potency 2-fold (CYGAbuK). To increase cellular efficacy, we created CYGAK-S-phenyl-oleic acid heterodimers. Using renal mitochondrial matrix CYGAK, CYGAK-OC, and CYGAK-ON had IC(50)'s of 70, 90, and 875 nM, respectively. Using isolated whole renal mitochondria CYGAK, CYGAK-OC, and CYGAK-ON had IC(50)'s of 95, 196, and >10,000 nM, respectively. Using renal proximal tubular cells (RPTC) in primary culture, 30 min exposures to CYGAK-OC and CYGAbuK-OC decreased cellular calpain activity approximately 20% at 1 μM, and concentrations up to 100 μM had no additional effect. RPTC treated with 10 μM CYGAK-OC for 24 h induced accumulation of ATP synthase β and NDUFB8, two calpain 10 substrates. In summary, we used molecular modeling to improve the potency of CYGAK, while creating CYGAK-oleic acid heterodimers to improve efficacy in cells. Since calpain 10 has been implicated in type 2 diabetes and renal aging, the use of this inhibitor may contribute to elucidating the role of calpain 10 in these and other diseases.

  10. Inhibition of protein tyrosine phosphatase (PTP1B) and α-glucosidase by geranylated flavonoids from Paulownia tomentosa.

    PubMed

    Song, Yeong Hun; Uddin, Zia; Jin, Young Min; Li, Zuopeng; Curtis-Long, Marcus John; Kim, Kwang Dong; Cho, Jung Keun; Park, Ki Hun

    2017-12-01

    Protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase are important targets to treat obesity and diabetes, due to their deep correlation with insulin and leptin signalling, and glucose regulation. The methanol extract of Paulownia tomentosa fruits showed potent inhibition against both enzymes. Purification of this extract led to eight geranylated flavonoids (1-8) displaying dual inhibition of PTP1B and α-glucosidase. The isolated compounds were identified as flavanones (1-5) and dihydroflavonols (6-8). Inhibitory potencies of these compounds varied accordingly, but most of the compounds were highly effective against PTP1B (IC 50  = 1.9-8.2 μM) than α-glucosidase (IC 50  = 2.2-78.9 μM). Mimulone (1) was the most effective against PTP1B with IC 50  = 1.9 μM, whereas 6-geranyl-3,3',5,5',7-pentahydroxy-4'-methoxyflavane (8) displayed potent inhibition against α-glucosidase (IC 50  = 2.2 μM). All inhibitors showed mixed type Ι inhibition toward PTP1B, and were noncompetitive inhibitors of α-glucosidase. This mixed type behavior against PTP1B was fully demonstrated by showing a decrease in V max , an increase of K m , and K ik /K iv ratio ranging between 2.66 and 3.69.

  11. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3-nitrobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Arafath, Md. Azharul; Adam, Farook; Razali, Mohd. R.; Ahmed Hassan, Loiy E.; Ahamed, Mohamed B. Khadeer; Majid, Amin Malik S. A.

    2017-02-01

    A carbothioamide NSO tridentate Schiff base ligand (HL) and its square planar complexes Na[NiLOAc], Na[PdLOAc] and [PtLdmso] have been synthesized and characterized on the basis of melting point, elemental analysis, FT-IR, 1H NMR, 13C NMR, UV-Vis spectra. The structure of HL was elucidated with X-ray diffraction analysis. In the present study, the synthesized compounds were evaluated for their anticancer properties against three human cancer cell lines breast cancer (MCF-7), cervical (Hela), and colon (HCT-116). In addition, the cytotoxicity of the synthesized compounds was tested on a normal human cell line (human endothelial cell line EA.hy926). Among the tested compounds, the complex [NiLOAc] excelled in halting proliferation of the cervical and colon cancer cells with median inhibitory concentration (IC50) values of 28.33 and 34.4 μM, respectively. The complex, [PdLOAc] demonstrated selective cytotoxicity against breast cancer line MCF-7 with IC50 = 47.5 μM, while HL showed inhibitory effect against colon cancer cell line (HCT-116) with IC50 = 55.66 μM. The complex, [PtLdmso] showed mild activity against breast cancer (MCF-7) and cervical cancer (Hela) cells with IC50 = 64.44 and 68.3 μM, respectively, whereas, it displayed insignificant cytotoxicity against human endothelial cells (EA.hy926) with IC50 > 200 μM. Cancer cells treated with [NiLOAc] showed apoptotic features such as membrane blebbing and DNA condensation. Thus, the findings of the present study demonstrated that the series of metal complexes of HL could form the new lead for development of cancer chemotherapies to treat human cervical, breast and colon malignancies.

  12. Antioxidant activity and oxidative stress protection of duck proteins hydrolysates in SK-N-SH cells.

    PubMed

    Guo, Yuxing; Pan, Daodong; Wu, Zhen; Zhao, Chuanchuan; Cao, Jinxuan

    2013-02-26

    Studies have found that natural antioxidants, which are free-radical scavengers, can reduce the risk of diseases caused by free radicals. This work investigated the antioxidant properties of duck proteins hydrolysates. The free-radical scavenging function of CP-1 (M(r) > 10 kDa), CP-2 (5 kDa < M(r) < 10 kDa) and CP-3 (M(r) < 5 kDa), obtained through ultrafiltration and gel filtration were evaluated. The results showed that the lower molecular weight fraction exhibited a stronger free-radical scavenging ability. The highest free-radical scavenging activity was detected in the fraction of p4 purified from CP-3 using Sephadex G-15 column chromatography. The 50% inhibitory value (IC(50)) of p4 for scavenging radicals of superoxide, hydroxyl and 1,1-diphenyl-2-pycrylhydrazyl (DPPH) were, respectively, 0.97 mg mL(-1), 0.84 mg mL(-1) and 1.84 mg mL(-1). Furthermore, the p4 fraction at a concentration of 10 μg mL(-1) increased cell viability from 84.8% to 94% under antioxidative stress in neuroblastoma SK-N-SH cells.

  13. The effect of desferrioxamine on transferrin receptors, the cell cycle and growth rates of human leukaemic cells.

    PubMed Central

    Bomford, A; Isaac, J; Roberts, S; Edwards, A; Young, S; Williams, R

    1986-01-01

    The effect of the iron chelator, desferrioxamine, on transferrin binding, growth rates and the cell cycle was investigated in the human leukaemic cell line, K562. At all concentrations of the chelator (2-50 microM) binding of 125I-transferrin was increased by 24 h and reached a maximum at 72-96 h. Maximum binding (6-8-fold increased) occurred in cells treated with 20 microM-desferrioxamine, in contrast with control cells which, at 96 h, showed a 50% decrease over initial binding. Scatchard analysis at 4 degrees C showed that this increased binding was due to an increase in the number of receptors, as the Kd was similar in induced (1.8 nM) and control (1.5 nM) cells. After 96 h cells, cultured with 20 and 50 microM-desferrioxamine accumulated 59Fe from bovine transferrin at over twice the rate found with control cells, reflecting the increase in transferrin receptors. Although iron uptake was unimpaired by the chelator there was a dose-dependent inhibition of cell growth, with control cells completing three divisions in 96 h and those in 10 microM-desferrioxamine only two divisions. At the highest concentration (50 microM), cell division was abrogated although cell viability was maintained (85%). In contrast, DNA synthesis was not markedly affected, except at 50 microM-desferrioxamine when incorporation of [3H]thymidine was 52% of that in control cells. Flow cytometry revealed that there was a progressive accumulation of the cells in the active phases of their cycle (S, G2 + M). Desferrioxamine may increase transferrin receptors in two ways: by chelating a regulatory pool of iron within the cell, and by arresting cells in S phase when receptors are maximally expressed. PMID:3790074

  14. Dillapiole as antileishmanial agent: discovery, cytotoxic activity and preliminary SAR studies of dillapiole analogues.

    PubMed

    Parise-Filho, Roberto; Pasqualoto, Kerly Fernanda Mesquita; Magri, Fátima Maria Motter; Ferreira, Adilson Kleber; da Silva, Bárbara Athayde Vaz Galvão; Damião, Mariana Celestina Frojuello Costa Bernstorff; Tavares, Maurício Temotheo; Azevedo, Ricardo Alexandre; Auada, Aline Vivian Vatti; Polli, Michelle Carneiro; Brandt, Carlos Alberto

    2012-12-01

    In this paper, the isolation of dillapiole (1) from Piper aduncum was reported as well as the semi-synthesis of two phenylpropanoid derivatives [di-hydrodillapiole (2), isodillapiole (3)], via reduction and isomerization reactions. Also, the compounds' molecular properties (structural, electronic, hydrophobic, and steric) were calculated and investigated to establish some preliminary structure-activity relationships (SAR). Compounds were evaluated for in vitro antileishmanial activity and cytotoxic effects on fibroblast cells. Compound 1 presented inhibitory activity against Leishmania amazonensis (IC(50)  = 69.3 µM) and Leishmania brasiliensis (IC(50)  = 59.4 µM) and induced cytotoxic effects on fibroblast cells mainly in high concentrations. Compounds 2 (IC(50)  = 99.9 µM for L. amazonensis and IC(50)  = 90.5 µM for L. braziliensis) and 3 (IC(50)  = 122.9 µM for L. amazonensis and IC(50)  = 109.8 µM for L. brasiliensis) were less active than dillapiole (1). Regarding the molecular properties, the conformational arrangement of the side chain, electronic features, and the hydrophilic/hydrophobic balance seem to be relevant for explaining the antileishmanial activity of dillapiole and its analogues. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action.

    PubMed

    Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa

    2016-02-01

    Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.

  16. Hsp70 as an indicator of stress in the cells after contact with nanoparticles

    NASA Astrophysics Data System (ADS)

    Hardilová, Šárka; Havrdová, Markéta; Panáček, Aleš; Kvítek, Libor; Zbořil, Radek

    2015-05-01

    In recent years, production of nanoparticles is increased and thus grows our contact with them too. Question of safety is closely related to the issue of use nanoparticles. There are a number of tests that monitor the viability, ROS production, the effect on the DNA and cell cycle, however, rarely encountered studies on stress in the cells after contact with nanoparticles. Heat shock proteins (HSP) are among the substances that can be used for monitoring stress in cells. HSP are structures with a chaperone activity. They are evolutionarily very old, conservative and they are found with a high degree of homology in prokaryotes and eukaryotes including humans. They exist at low concentrations under physiological conditions, while in the denaturing conditions e.g. high or low temperature, radiation, exposure to chemicals, heavy metals, or nanoparticles their expression is changed. HSPs are involved in maintaining homeostasis in the cell that the denatured protein conformations allow recovery to the original stage. One of the most common proteins from HSP family is Hsp70 - protein with a molecular weight of 70 kDa. The level of Hsp70 in a cell after exposure to the stress changes depending on the stress level to which the cell is exposed to and a time period during which lasted stressful conditions. Our research monitors stress levels of cells manifesting by Hsp70 production after contact with silver nanoparticles. Nanoparticles show different toxicity towards different types of target cells, which is reflected in the values of IC50 - concentration that kills 50% tested cells. Concentration of test substance toxic to one cell type may be innocuous to cells of another type. IC50 obtained from the MTT assay provides a suitable default data and if multiples of IC50 values are used, we can compare and generalize. Studies can be used to compare stress levels in cells that show different sensitivity to the tested nanoparticles compared with cells under optimal growth conditions. The study was done on two types of mouse fibroblasts NIH-3T3 and L929. While NIH-3T3 cells exhibit stress response proportional to the concentration of silver nanoparticles, for L929 cells this was not observed.

  17. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology.

    PubMed

    Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya; Yaguchi, Masahiro; Niida, Ayumu; Sasaki, Shigekazu; Miwa, Masanori; Ohkubo, Shoichi; Sakamoto, Jun-Ichi; Kamaura, Masahiro; Cho, Nobuo; Tani, Akiyoshi

    2017-03-11

    Amino-acid mutations of Gly 12 (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH 2 ) as a consensus sequence. KRpep-2 showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. K D and IC 50 values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH 2 ) that inhibited enzyme activity of K-Ras(G12D) with IC 50  = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Structure-Based Design and Synthesis of a Small Molecule that Exhibits Anti-inflammatory Activity by Inhibition of MyD88-mediated Signaling to Bacterial Toxin Exposure.

    PubMed

    Alam, Shahabuddin; Javor, Sacha; Degardin, Melissa; Ajami, Dariush; Rebek, Mitra; Kissner, Teri L; Waag, David M; Rebek, Julius; Saikh, Kamal U

    2015-08-01

    Both Gram-positive and Gram-negative pathogens or pathogen-derived components, such as staphylococcal enterotoxins (SEs) and endotoxin (LPS) exposure, activate MyD88-mediated pro-inflammatory cellular immunity for host defense. However, dysregulated MyD88-mediated signaling triggers exaggerated immune response that often leads to toxic shock and death. Previously, we reported a small molecule compound 1 mimicking BB-loop structure of MyD88 was capable of inhibiting pro-inflammatory response to SEB exposure in mice. In this study, we designed a dimeric structure compound 4210 covalently linked with compound 1 by a non-polar cyclohexane linker which strongly inhibited the production of pro-inflammatory cytokines in human primary cells to SEB (IC50 1-50 μm) or LPS extracted from Francisella tularensis, Escherichia coli, or Burkholderia mallei (IC50 10-200 μm). Consistent with cytokine inhibition, in a ligand-induced cell-based reporter assay, compound 4210 inhibited Burkholderia mallei or LPS-induced MyD88-mediated NF-kB-dependent expression of reporter activity (IC50 10-30 μm). Furthermore, results from a newly expressed MyD88 revealed that 4210 inhibited MyD88 dimer formation which is critical for pro-inflammatory signaling. Importantly, a single administration of compound 4210 in mice showed complete protection from lethal toxin challenge. Collectively, these results demonstrated that compound 4210 inhibits toxin-induced inflated pro-inflammatory immune signaling, thus displays a potential bacterial toxin therapeutic. © 2014 John Wiley & Sons A/S.

  19. Bufadienolides from parotoid gland secretions of Cuban toad Peltophryne fustiger (Bufonidae): Inhibition of human kidney Na(+)/K(+)-ATPase activity.

    PubMed

    Perera Córdova, Wilmer H; Leitão, Suzana Guimarães; Cunha-Filho, Geraldino; Bosch, Roberto Alonso; Alonso, Isel Pascual; Pereda-Miranda, Rogelio; Gervou, Rodrigo; Touza, Natália Araújo; Quintas, Luis Eduardo M; Noël, François

    2016-02-01

    Parotoid gland secretions of toad species are a vast reservoir of bioactive molecules with a wide range of biological properties. Herein, for the first time, it is described the isolation by preparative reversed-phase HPLC and the structure elucidation by NMR spectroscopy and/or mass spectrometry of nine major bufadienolides from parotoid gland secretions of the Cuban endemic toad Peltophryne fustiger: ψ-bufarenogin, gamabufotalin, bufarenogin, arenobufagin, 3-(N-suberoylargininyl) marinobufagin, bufotalinin, telocinobufagin, marinobufagin and bufalin. In addition, the secretion was analyzed by UPLC-MS/MS which also allowed the identification of azelayl arginine. The effect of arenobufagin, bufalin and ψ-bufarenogin on Na(+)/K(+)-ATPase activity in a human kidney preparation was evaluated. These bufadienolides fully inhibited the Na(+)/K(+)-ATPase in a concentration-dependent manner, although arenobufagin (IC50 = 28.3 nM) and bufalin (IC50 = 28.7 nM) were 100 times more potent than ψ-bufarenogin (IC50 = 3020 nM). These results provided evidence about the importance of the hydroxylation at position C-14 in the bufadienolide skeleton for the inhibitory activity on the Na(+)/K(+)-ATPase. Published by Elsevier Ltd.

  20. Expansion of NK cells by engineered K562 cells co-expressing 4-1BBL and mMICA, combined with soluble IL-21.

    PubMed

    Jiang, Bo; Wu, Xuan; Li, Xi-Ning; Yang, Xi; Zhou, Yulai; Yan, Haowei; Wei, An-Hui; Yan, Weiqun

    2014-07-01

    NK cells hold promise for protecting hosts from cancer and pathogen infection through direct killing and expressing immune-regulatory cytokines. In our study, a genetically modified K562 cell line with surface expression of 4-1BBL and MICA was constructed to expand functional NK cells in vitro for further adoptive immunotherapy against cancer. After a long-term up to 21 day co-culture with newly isolated peripheral blood mononuclear cells (PBMCs) in the presence of soluble IL-21 (sIL-21), notable increase in proportion of expanded NK cells was observed, especially the CD56(bright)CD16(+) subset. Apparent up-regulation of activating receptors CD38, CD69 and NKG2D was detected on expanded NK cells, so did inhibitory receptor CD94; the cytotoxicity of expanded NK cells against target tumor cells exceeded that of NK cells within fresh PBMCs. The intracellular staining showed expanded NK cells produced immune-regulatory IFN-γ. Taken together, we expanded NK cells with significant up-regulation of activating NKG2D and moderate enhancement of cytotoxicity, with IFN-γ producing ability and a more heterogeneous population of NK cells. These findings provide a novel perspective on expanding NK cells in vitro for further biology study and adoptive immunotherapy of NK cells against cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Molecular modeling and cytotoxicity of diffractaic acid: HP-β-CD inclusion complex encapsulated in microspheres.

    PubMed

    Silva, Camilla V N S; Barbosa, Jéssica A P; Ferraz, Milena S; Silva, Nicácio H; Honda, Neli K; Rabello, Marcelo M; Hernandes, Marcelo Z; Bezerra, Beatriz P; Cavalcanti, Isabella M F; Ayala, Alejandro P; Santos, Noemia P S; Santos-Magalhães, Nereide S

    2016-11-01

    In this pioneer study, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was used to improve the solubility of the diffractaic acid (DA) via inclusion complex (DA:HP-β-CD). Subsequently, DA:HP-β-CD was incorporated into poly-ε-caprolactone (PCL) microspheres (DA:HP-β-CD-MS). Microspheres containing DA (DA-MS) or DA:HP-β-CD (DA:HP-β-CD-MS) were prepared using the multiple W/O/W emulsion-solvent evaporation technique. The phase-solubility diagram of DA in HP-β-CD (10-50mM) showed an A L type curve with a stability constant K 1:1 =821M -1 . 1 H NMR, FTIR, X-ray diffraction and thermal analysis showed changes in the molecular environment of DA in DA:HP-β-CD. The molecular modeling approach suggests a guest-host complex formation between the carboxylic moiety of both DA and the host (HP-β-CD). The mean particle size of the microspheres were ∅ DA-MS =5.23±1.65μm and ∅ DA:HP-β-CD-MS =4.11±1.39μm, respectively. The zeta potential values of the microspheres were ζ DA-MS =-7.85±0.32mV and ζ DA:HP-β-CD-MS =-6.93±0.46mV. Moreover, the encapsulation of DA:HP-β-CD into microspheres resulted in a more slower release (k 2 =0.042±0.001; r 2 =0.996) when compared with DA-MS (k 2 =0.183±0.005; r 2 =0.996). The encapsulation of DA or DA:HP-β-CD into microspheres reduced the cytotoxicity of DA (IC 50 =43.29μM) against Vero cells (IC 50 of DA-MS=108.48μM and IC 50 of DA:HP-β-CD-MS=142.63μM). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pyrrole Derivatives and Diterpene Alkaloids from the South China Sea Sponge Agelas nakamurai.

    PubMed

    Chu, Mei-Jun; Tang, Xu-Li; Qin, Guo-Fei; Sun, Yan-Ting; Li, Lei; de Voogd, Nicole J; Li, Ping-Lin; Li, Guo-Qiang

    2017-07-01

    Two pairs of new non-brominated racematic pyrrole derivatives, (±)-nakamurine D (1) and (±)-nakamurine E (2), two new diterpene alkaloids, isoagelasine C (16) and isoagelasidine B (21), together with 13 known pyrrole derivatives ((±)-3 - 15), five known diterpene alkaloids (17 - 20, 22) were isolated from the South China Sea sponge Agelas nakamurai. The racemic mixtures, compounds 1 - 4, were resolved into four pairs of enantiomers, (+)-1 and (-)-1, (+)-2 and (-)-2, (+)-3 and (-)-3, and (+)-4 and (-)-4, by chiral HPLC. The structures and absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses, quantum chemical calculations, quantitative measurements of molar rotations, application of van't Hoff's principle of optical superposition, and comparison with the literature data. The NMR and MS data of compound 3 are reported for the first time, as the structure was listed in SciFinder Scholar with no associated reference. These non-brominated pyrrole derivatives were found in this species for the first time. Compound 18 showed valuable cytotoxicities against HL-60, K562, and HCT-116 cell lines with IC 50 values of 12.4, 16.0, and 19.8 μm, respectively. Compounds 16 - 19, 21, and 22 showed potent antifungal activities against Candida albicans with MIC values ranging from 0.59 to 4.69 μg/ml. Compounds 16 - 19 exhibited moderate antibacterial activities against Proteusbacillus vulgaris (MIC values ranging from 9.38 to 18.75 μg/ml). © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  3. Investigation of imatinib loaded surface decorated biodegradable nanocarriers against glioblastoma cell lines: Intracellular uptake and cytotoxicity studies.

    PubMed

    Khan, Abrar M; Ahmad, Farhan Jalees; Panda, Amulya K; Talegaonkar, Sushama

    2016-06-30

    Overexpression of P-glycoprotein (P-gp) efflux transporter in glioma cells thwarts the build-up of therapeutic concentration of drugs usually resulting into poor therapeutic outcome. To surmount aforesaid challenge, Imatinib (IMM) loaded Poly-lactide-co-glycolic acid nanoparticles (IMM-PLGA-NPs) were developed and optimized by Box Behnken Design as a new treatment stratagem in malignant glioma. Optimized NPs were functionalized with Pluronic(®) P84, P-gp inhibitor (IMM-PLGA-P84-NPs) which showed size, PDI, zeta potential, drug loading, 182.63±13.56nm, 0.196±0.021, -15.2±1.49mV, 40.63±2.04μg/mg, respectively. Intracellular uptake study conducted on A172, U251MG and C6 glioma cells demonstrated significantly high uptake of IMM through NPs when compared with IMM solution (IMM-S), p<0.001. IMM-PLGA-P84-NPs showed better uptake in P-gp expressing cell line (U251MG and C6) while uncoated NPs showed higher uptake in non-P-gp expressing cell line (A-172). Cytotoxicity studies demonstrated significantly low IC50 for both IMM-PLGA-NPs and IMM-PLGA-P84-NPs when compared with IC50 of IMM-S. IMM-PLGA-P84-NPs showed a significantly low IC50 against P-gp overexpressing cell lines when compared with IC50 of IMM-PLGA-NPs. In contrary, IMM-PLGA-NPs showed lower IC50 against non P-gp expressing cell line. This study demonstrated the feasibility of targeting surface decorated NPs to multidrug resistant gliomas. However, to address its clinical utility extensive in vivo studies are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Hematopoietic Stem Cell and Its Growth Factor

    DTIC Science & Technology

    1988-02-16

    Bamberger and AS Felin . 1981. A multipotential leukemia cell line (K562) of human origin. Proc Soc Exp Biol Med 166:546. 40. Marie JP, CA Izaquirre, CI...at day 12 due to the degeneration of cells in the colonies. Monoclonal antibodies against human nonlymphoid leukemia cell lines which have...granulocyte mAb with acute myclocytic and myelomonocytic and lymphocytic leukemia ................................... 18 A-4 Antigen ML143 is expressed on

  5. Rational Design, Synthesis, and Biological Evaluation of Third Generation α-Noscapine Analogues as Potent Tubulin Binding Anti-Cancer Agents

    PubMed Central

    Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas

    2013-01-01

    Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents. PMID:24205049

  6. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease.

    PubMed

    Abdel-Sattar, Essam; Maes, Louis; Salama, Maha Mahmoud

    2010-09-01

    The in vitro activity of the methanol extracts of 51 plants randomly collected from the Kingdom of Saudi Arabia and some of their fractions (petroleum ether, chloroform, ethyl acetate and aqueous) were evaluated against Plasmodium falciparum, Trypanosoma brucei brucei, T. cruzi and Leishmania infantum, as well as toxicity against MRC-5 fibroblast cells. Ten crude methanolic extracts that demonstrated potent and adequately selective antiprotozoal activity were subjected to solvent fractionation using petroleum ether, ethyl acetate and chloroform. Only three samples showed promising antiprotozoal activity. Argemone ochroleuca (CHCl(3) fraction) showed pronounced activity against P. falciparum(GHA) (IC(50) 0.32 microg/mL) and T. cruzi (IC(50) 0.30 microg/mL) with low cytotoxicity against MRC-5 cells (CC(50) 11.6 microg/mL). Capparis spinosa (EtOAc fraction) showed pronounced activity against P. falciparum(GHA) with an IC(50) 0.50 microg/mL in the absence of toxicity against MRC-5 cell line (CC(50) > 30 microg/mL). Heliotropium curassavicum (CHCl(3) fraction) showed similar activity against P. falciparum (IC(50) 0.65 microg/mL; MRC-5 CC(50) > 30 microg /mL). These three extracts will be subjected for further extensive studies to isolate and identify their active constituents. Copyright 2010 John Wiley & Sons, Ltd.

  7. Study of the sensitivity of neonates to digoxin: contribution of erythrocyte /sup 86/Rb uptake test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zannad, F.; Marchal, F.; Royer, R.J.

    1981-01-01

    In general, there is little agreement how digoxin should be used in newborn, and the results of studies in this field seem contradictory. This study attempts a quantitative assessment of the number and the sensitivity of cellular receptors for digoxin in the organism, by the in vitro measurement of erythrocyte /sup 86/Rb neonates compared with adults and old people. Red blood cells are first incubated with differing concentrations of digoxin, and then incubated with /sup 86/Rb. The initial level of /sup 86/Rb uptake (Rbi) is that observed in the absence of digoxin. The 50% index of captation (IC50) is themore » digoxin concentration in nanograms per ml at which /sup 86/Rb uptake is half Rbi. Three grups of patients were studied: Group I: 12 neonates, less that 5 days old; Group II: 11 adults (26 to 57 years old); Group III: 9 elderly people (71 to 82 years old). Rbi was significantly lower in neonates (Mean +/- SD: 25.8% +/- 3.5, P less than 0.001) and in the elderly (29.9% +/- 3.1) than in adults (36.8% +/- 4.6). IC50 was significantly lower in the elderly (12.1 mg/ml +/- 2.4) than in the adult patients (20.5 ng/ml +/- 5.5, P less than 0.001). In the newborns, values of IC50 were widely scattered (16.2 ng/ml +/- 7.2). The authors suggest that since Rbi reflects Na+, K+-ATPase activity, this activity is diminished in newborn and old people, and indicates that they have fewer cellular recaptors for digoxin than adults. In the elderly, the low IC50 would imply increased sensitivity to digoxin. In neonates, the wide range of values for IC50 suggests considerable individual variation in sensitivity to digoxin. The results aer consistent with the recently recomnended lower dosages of digoxin i neonates.« less

  8. Enzyme Hydrolysates from Stichopus horrens as a New Source for Angiotensin-Converting Enzyme Inhibitory Peptides

    PubMed Central

    Forghani, Bita; Ebrahimpour, Afshin; Bakar, Jamilah; Abdul Hamid, Azizah; Hassan, Zaiton; Saari, Nazamid

    2012-01-01

    Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC50 value of 0.41 mg/mL) followed by flavourzyme hydrolysate (IC50 value of 2.24 mg/mL), trypsin hydrolysate (IC50 value of 2.28 mg/mL), papain hydrolysate (IC50 value of 2.48 mg/mL), bromelain hydrolysate (IC50 value of 4.21 mg/mL), and protamex hydrolysate (IC50 value of 6.38 mg/mL). The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC50 values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits. PMID:22927875

  9. Enzyme Hydrolysates from Stichopus horrens as a New Source for Angiotensin-Converting Enzyme Inhibitory Peptides.

    PubMed

    Forghani, Bita; Ebrahimpour, Afshin; Bakar, Jamilah; Abdul Hamid, Azizah; Hassan, Zaiton; Saari, Nazamid

    2012-01-01

    Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC(50) value of 0.41 mg/mL) followed by flavourzyme hydrolysate (IC(50) value of 2.24 mg/mL), trypsin hydrolysate (IC(50) value of 2.28 mg/mL), papain hydrolysate (IC(50) value of 2.48 mg/mL), bromelain hydrolysate (IC(50) value of 4.21 mg/mL), and protamex hydrolysate (IC(50) value of 6.38 mg/mL). The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC(50) values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits.

  10. Ganoboninketals A-C, Antiplasmodial 3,4-seco-27-Norlanostane Triterpenes from Ganoderma boninense Pat.

    PubMed

    Ma, Ke; Ren, Jinwei; Han, Junjie; Bao, Li; Li, Li; Yao, Yijian; Sun, Chen; Zhou, Bing; Liu, Hongwei

    2014-08-22

    Three new nortriterpenes, ganoboninketals A-C (1-3), featuring rearranged 3,4-seco-27-norlanostane skeletons and highly complex polycyclic systems were isolated from the medicinal mushroom Ganoderma boninense. The structures of the new metabolites were established by spectroscopic methods. The absolute configurations in 1-3 were assigned by electronic circular dichroism (ECD) calculations. Compounds 1-3 showed antiplasmodial activity against Plasmodium falciparum with IC50 values of 4.0, 7.9, and 1.7 μM, respectively. Compounds 1 and 3 also displayed weak cytotoxicity against A549 cell line with IC50 values of 47.6 and 35.8 μM, respectively. Compound 2 showed weak cytotoxicity toward HeLa cell line with an IC50 value of 65.5 μM. Compounds 1-3 also presented NO inhibitory activity in the LPS-induced macrophages with IC50 values of 98.3, 24.3, and 60.9 μM, respectively.

  11. Activation of human T-helper/inducer cell, T-cytotoxic/suppressor cell, B-cell, and natural killer (NK)-cells and induction of NK cell activity against K562 chronic myeloid leukemia cells with modified citrus pectin

    USDA-ARS?s Scientific Manuscript database

    Background Modified citrus pectin (MCP) is known for its anti-cancer effects and its ability to be absorbed and circulated in the human body. In this report we tested the ability of MCP to induce the activation of human blood lymphocyte subsets including T-helper/inducer cell, Tcytotoxic/suppres...

  12. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line

    NASA Astrophysics Data System (ADS)

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-01

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro transfection results from BCPV-siRNA, a newly developed biodegradable transfection agent, BCPV, is being probed for transfection performance in an animal model.

  13. Discovery of a Highly Potent, Cell-Permeable Macrocyclic Peptidomimetic (MM-589) Targeting the WD Repeat Domain 5 Protein (WDR5)–Mixed Lineage Leukemia (MLL) Protein–Protein Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatas, Hacer; Li, Yangbing; Liu, Liu

    We report herein the design, synthesis, and evaluation of macrocyclic peptidomimetics that bind to WD repeat domain 5 (WDR5) and block the WDR5–mixed lineage leukemia (MLL) protein–protein interaction. Compound 18 (MM-589) binds to WDR5 with an IC50 value of 0.90 nM (Ki value <1 nM) and inhibits the MLL H3K4 methyltransferase (HMT) activity with an IC50 value of 12.7 nM. Compound 18 potently and selectively inhibits cell growth in human leukemia cell lines harboring MLL translocations and is >40 times better than the previously reported compound MM-401. Cocrystal structures of 16 and 18 complexed with WDR5 provide structural basis formore » their high affinity binding to WDR5. Additionally, we have developed and optimized a new AlphaLISA-based MLL HMT functional assay to facilitate the functional evaluation of these designed compounds. Compound 18 represents the most potent inhibitor of the WDR5–MLL interaction reported to date, and further optimization of 18 may yield a new therapy for acute leukemia.« less

  14. The use of one-bead one-compound combinatorial library technology to discover high-affinity αvβ3 integrin and cancer targeting arginine-glycine-aspartic acid ligands with a built-in handle.

    PubMed

    Xiao, Wenwu; Wang, Yan; Lau, Edmond Y; Luo, Juntao; Yao, Nianhuan; Shi, Changying; Meza, Leah; Tseng, Harry; Maeda, Yoshiko; Kumaresan, Pappanaicken; Liu, Ruiwu; Lightstone, Felice C; Takada, Yoshikazu; Lam, Kit S

    2010-10-01

    The αvβ3 integrin, expressed on the surface of various normal and cancer cells, is involved in numerous physiologic processes such as angiogenesis, apoptosis, and bone resorption. Because this integrin plays a key role in angiogenesis and metastasis of human tumors, αvβ3 integrin ligands are of great interest to advances in targeted therapy and cancer imaging. In this report, one-bead one-compound (OBOC) combinatorial libraries containing the arginine-glycine-aspartic acid (RGD) motif were designed and screened against K562 myeloid leukemia cells that had been transfected with the human αvβ3 integrin gene. Cyclic peptide LXW7 was identified as a leading ligand with a built-in handle that binds specifically to αvβ3 and showed comparable binding affinity (IC(50) = 0.68 ± 0.08 μmol/L) to some of the well-known RGD "head-to-tail" cyclic pentapeptide ligands reported in the literature. The biotinylated form of LXW7 ligand showed similar binding strength as LXW7 against αvβ3 integrin, whereas biotinylated RGD cyclopentapeptide ligands revealed a 2- to 8-fold weaker binding affinity than their free forms. LXW7 was able to bind to both U-87MG glioblastoma and A375M melanoma cell lines, both of which express high levels of αvβ3 integrin. In vivo and ex vivo optical imaging studies with the biotinylated ligand/streptavidin-Cy5.5 complex in nude mice bearing U-87MG or A375M xenografts revealed preferential uptake of biotinylated LXW7 in tumor. When compared with biotinylated RGD cyclopentapeptide ligands, biotinylated LXW7 showed higher tumor uptake but lower liver uptake.

  15. Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.

    PubMed

    Madempudi, Ratna Sudha; Kalle, Arunasree M

    2017-10-01

    In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.

  16. Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide - polyaniline composite.

    PubMed

    Wang, Jidong; Wang, Xiaoyu; Tang, Hengshan; Gao, Zehua; He, Shengquan; Li, Jian; Han, Shumin

    2018-02-15

    In this work, a novel ultrasensitive electrochemical biosensor was developed for the detection of K562 cell by a signal amplification strategy based on multiple layer CdS QDs functionalized polystyrene microspheres(PS) as bioprobe and graphene oxide(GO) -polyaniline(PANI) composite as modified materials of capture electrode. Due to electrostatic force of different charge, CdS QDs were decorated on the surface of PS by PDDA (poly(diallyldimethyl-ammonium chloride)) through a layer-by-layer(LBL) assemble technology, in which the structure of multiple layer CdS QDs increased the detection signal intensity. Moreover, GO-PANI composite not only enhanced the electron transfer rate, but also increased tumor cells load ratio. The resulting electrochemical biosensor was used to detect K562 cells with a lower detection limit of 3 cellsmL -1 (S/N = 3) and a wider linear range from 10 to 1.0 × 10 7 cellsmL -1 . This sensor was also used for mannosyl groups on HeLa cells and Hct116 cells, which showed high specificity and sensitivity. This signal amplification strategy would provide a novel approach for detection, diagnosis and treatment for tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Impact of DIDS-Induced Inhibition of Voltage-Dependent Anion Channels (VDAC) on Cellular Response of Lymphoblastoid Cells to Ionizing Radiation.

    PubMed

    Skonieczna, Magdalena; Cieslar-Pobuda, Artur; Saenko, Yuriy; Foksinski, Marek; Olinski, Ryszard; Rzeszowska-Wolny, Joanna; Wiechec, Emilia

    2017-01-01

    The voltage-dependent anion channels (VDAC) play an essential role in the cross talk between mitochondria and the rest of the cell. Their implication in cell life and cell death has been studied extensively in recent years. In this work we studied the impact of mitochondrial membrane (VDACs) on cell survival and response to X-ionizing radiation (IR) of human lymphoblastoid K562 cells. The inhibition of VDACs was achieved by 4,4`-diisothiocyanostilbene-2,2`-disulfonic acid (DIDS) inhibitor and in vitro experiments including clonogenity assay, UV-visible spectrophotometry, comet assay and FACS analysis were implemented. Inhibition of VDAC led to augmentation of IR-induced apoptosis and ROS production. Additionally, DIDS affected repair of IR-induced DNA strand breaks and was in line with both induction of apoptosis and caspase activity. The IR-induced NO production was potently reduced by inhibition of VDAC. Our results suggest that VDAC control cellular response to ionizing radiation through modulation of the ROS- and NO-dependent signaling pathways. Inhibition of VDAC with DIDS induced apoptosis in irradiated K562 lymphoblastoid cells points at DIDS, as a promising agent to enhance the effectiveness of radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Effect of a streptococcal preparation (OK432) on natural killer activity of tumour-associated lymphoid cells in human ovarian carcinoma and on lysis of fresh ovarian tumour cells.

    PubMed Central

    Colotta, F.; Rambaldi, A.; Colombo, N.; Tabacchi, L.; Introna, M.; Mantovani, A.

    1983-01-01

    The streptococcal preparation OK432 was studied for its effects on natural killer (NK) activity of peripheral blood lymphocytes (PBL) from normal donors and from ovarian cancer patients, and of tumour-associated lymphocytes (TAL) from peritoneal effusions. OK432 augmented NK activity against the susceptible K562 line and induced killing of the relatively resistant Raji line. Freshly isolated ovarian carcinoma cells were relatively resistant to killing by unstimulated PBL and TAL. OK432 induced significant, though low, levels of cytotoxicity against 51Cr-labelled ovarian carcinoma cells. Augmentation of killing of fresh tumour cells by OK432 was best observed in a 20 h assay and both autologous and allogeneic targets were lysed. PBL were separated on discontinuous Percoll gradients. Unstimulated and OK432-boosted activity were enriched in the lower density fractions where large granular lymphocytes (LGL) and activity against K562 were found. Thus, OK432 augments NK activity of PBL and TAL in human ovarian carcinomas and induces low, but significant, levels of killing of fresh tumour cells. Effector cells involved in killing of fresh ovarian tumours copurify with LGL on discontinuous gradients of Percoll. PMID:6626452

  19. Dimerization of P-Selectin Glycoprotein Ligand-1 (PSGL-1) Required for Optimal Recognition of P-Selectin

    PubMed Central

    Snapp, Karen R.; Craig, Ron; Herron, Michael; Nelson, Robert D.; Stoolman, Lloyd M.; Kansas, Geoffrey S.

    1998-01-01

    Interactions between P-selectin, expressed on endothelial cells and activated platelets, and its leukocyte ligand, a homodimer termed P-selectin glycoprotein ligand-1 (PSGL-1), mediate the earliest adhesive events during an inflammatory response. To investigate whether dimerization of PSGL-1 is essential for functional interactions with P-selectin, a mutant form of PSGL-1 was generated in which the conserved membrane proximal cysteine was mutated to alanine (designated C320A). Western blotting under both denaturing and native conditions of the C320A PSGL-1 mutant isolated from stably transfected cells revealed expression of only a monomeric form of PSGL-1. In contrast to cells cotransfected with α1-3 fucosyltransferase-VII (FucT-VII) plus PSGL-1, K562 cells expressing FucT-VII plus C320A failed to bind COS cells transfected with P-selectin in a low shear adhesion assay, or to roll on CHO cells transfected with P-selectin under conditions of physiologic flow. In addition, C320A transfectants failed to bind chimeric P-selectin fusion proteins. Both PSGL-1 and C320A were uniformly distributed on the surface of transfected K562 cells. Thus, dimerization of PSGL-1 through the single, conserved, extracellular cysteine is essential for functional recognition of P-selectin. PMID:9660879

  20. Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells.

    PubMed

    Dale, T J; Cryan, J E; Chen, M X; Trezise, D J

    2002-11-01

    The bee venom toxin apamin is an important drug tool for characterising small conductance Ca(2+)-activated K(+) channels (SK channels). In recombinant expression systems both rSK2 and rSK3 channels are potently blocked by apamin, whilst the sensitivity of SK1 channels is somewhat less clear. In the present study we have conducted a detailed analysis by patch clamp electrophysiology of the effects of apamin on human SK channels (SK1, SK2 and SK3) stably expressed in Chinese hamster ovary (CHO-K1) cells. CHO-K1 cell lines expressing either hSK1, 2 or 3 channels were first validated using specific antibodies and Western blotting. Specific protein bands of a size corresponding to the predicted channel tetramer (approximately 250-290 kDa) were detected. In each cell line, but not wild-type untransfected cells, large, time-independent inwardly rectifying Ca(2+)-dependent K(+) currents were observed under voltage-clamp. In CHO-hSK1, this current was markedly reduced by apamin (IC(50) value 8 nM), however, a significant fraction of the current remained unblocked (39+/-5%), even at saturating concentrations (1 microM apamin). The apamin-sensitive and -insensitive currents possess very similar biophysical and pharmacological properties. Each are Ca(2+)-dependent, inwardly rectify and have relative ionic permeabilities of K(+)>Cs(+)>Li(+)=Na(+). Both components were resistant to block by charybdotoxin and iberiotoxin, known IK and BK channel blockers, but were attenuated by the tricyclic antidepressant cyproheptadine (>95% block at 1 mM). The SK channel opener 1-EBIO could still produce channel activation in the presence of apamin. Importantly, hSK2 and hSK3 channels also exhibit partial apamin sensitivity in our experimental paradigm (IC(50) values of 0.14 nM and 1.1 nM, respectively, and maximal percentage inhibition values of 47+/-7% and 58+/-9%, respectively). Our data indicate that, at least in a recombinant expression system, all three SK channels can be partially apamin-sensitive. The explanation for this finding is presently unclear but may be due to regulatory subunits, phosphorylation or other types of post translational modification. Ascribing particular SK channels to physiological roles using apamin as a drug tool needs to be done cautiously in light of these findings.

  1. A sea urchin Na(+)K(+)2Cl(-) cotransporter is involved in the maintenance of calcification-relevant cytoplasmic cords in Strongylocentrotus droebachiensis larvae.

    PubMed

    Basse, Wiebke C; Gutowska, Magdalena A; Findeisen, Ulrike; Stumpp, Meike; Dupont, Sam; Jackson, Daniel J; Himmerkus, Nina; Melzner, Frank; Bleich, Markus

    2015-09-01

    The cellular mechanisms of calcification in sea urchin larvae are still not well understood. Primary mesenchyme cells within the larval body cavity form a syncytium to secrete CaCO3 spicules from intracellular amorphous CaCO3 (ACC) stores. We studied the role of Na(+)K(+)2Cl(-) cotransporter (NKCC) in intracellular ACC accumulation and larval spicule formation of Strongylocentrotus droebachiensis. First, we incubated growing larvae with three different loop diuretics (azosemide, bumetanide, and furosemide) and established concentration-response curves. All loop diuretics were able to inhibit calcification already at concentrations that specifically inhibit NKCC. Calcification was most effectively inhibited by azosemide (IC50=6.5 μM), while larval mortality and swimming ability were not negatively impacted by the treatment. The inhibition by bumetanide (IC50=26.4 μM) and furosemide (IC50=315.4 μM) resembled the pharmacological fingerprint of the mammalian NKCC1 isoform. We further examined the effect of azosemide on the maintenance of cytoplasmic cords and on the occurrence of calcification vesicles using fluorescent dyes (calcein, FM1-43). Fifty micromolars of azosemide inhibited the maintenance of cytoplasmic cords and resulted in increased calcein fluorescence within calcification vesicles. The expression of NKCC in S. droebachiensis was verified by PCR and Western blot with a specific NKCC antibody. In summary, the pharmacological profile of loop diuretics and their specific effects on calcification in sea urchin larvae suggest that they act by inhibition of NKCC via repression of cytoplasmic cord formation and maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Polypharmacological profile of 1,2-dihydro-2-oxo-pyridine-3-carboxamides in the endocannabinoid system.

    PubMed

    Chicca, Andrea; Arena, Chiara; Bertini, Simone; Gado, Francesca; Ciaglia, Elena; Abate, Mario; Digiacomo, Maria; Lapillo, Margherita; Poli, Giulio; Bifulco, Maurizio; Macchia, Marco; Tuccinardi, Tiziano; Gertsch, Jürg; Manera, Clementina

    2018-05-14

    The endocannabinoid system (ECS) represents one of the major neuromodulatory systems involved in different physiological and pathological processes. Multi-target compounds exert their activities by acting via multiple mechanisms of action and represent a promising pharmacological modulation of the ECS. In this work we report 4-substituted and 4,5-disubstituted 1,2-dihydro-2-oxo-pyridine-3-carboxamide derivatives with a broad spectrum of affinity and functional activity towards both cannabinoid receptors and additional effects on the main components of the ECS. In particular compound B3 showed high affinity for CB1R (K i  = 23.1 nM, partial agonist) and CB2R (K i  = 6.9 nM, inverse agonist) and also significant inhibitory activity (IC 50  = 70 nM) on FAAH with moderate inhibition of ABHD12 (IC 50  = 2.5 μΜ). Compounds B4, B5 and B6 that act as full agonists at CB1R and as partial agonists (B5 and B6) or antagonist (B4) at CB2R, exhibited an additional multi-target property by inhibiting anandamide uptake with sub-micromolar IC 50 values (0.28-0.62 μΜ). The best derivatives showed cytotoxic activity on U937 lymphoblastoid cells. Finally, molecular docking analysis carried out on the three-dimensional structures of CB1R and CB2R and of FAAH allowed to rationalize the structure-activity relationships of this series of compounds. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase.

    PubMed Central

    Whalen, A M; Galasinski, S C; Shapiro, P S; Nahreini, T S; Ahn, N G

    1997-01-01

    The K562 erythroleukemia cell line was used to study the molecular mechanisms regulating lineage commitment of hematopoietic stem cells. Phorbol esters, which initiate megakaryocyte differentiation in this cell line, caused a rapid increase in extracellular-signal-regulated kinase (ERK), which remained elevated for 2 h and returned to near-basal levels by 24 h. In the absence of extracellular stimuli, ERK could be activated by expression of constitutively active mutants of mitogen-activated protein (MAP) kinase kinase (MKK), resulting in cell adhesion and spreading, increased cell size, inhibition of cell growth, and induction of the platelet-specific integrin alphaIIb beta3, all hallmarks of megakaryocytic differentiation. In contrast, expression of wild-type MKK had little effect. In addition, constitutively active MKK suppressed the expression of an erythroid marker, alpha-globin, indicating the ability to suppress cellular responses necessary for alternative cell lineages. The MKK inhibitor PD98059 blocked MKK/ERK activation and cellular responses to phorbol ester, demonstrating that activation of MKK is necessary and sufficient to induce a differentiation program along the megakaryocyte lineage. Thus, the MAP kinase cascade, which promotes cell growth and proliferation in many cell types, instead inhibits cell proliferation and initiates lineage-specific differentiation in K562 cells, establishing a model system to investigate the mechanisms by which this signal transduction pathway specifies cell fate and developmental processes. PMID:9121442

  4. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase.

    PubMed

    Whalen, A M; Galasinski, S C; Shapiro, P S; Nahreini, T S; Ahn, N G

    1997-04-01

    The K562 erythroleukemia cell line was used to study the molecular mechanisms regulating lineage commitment of hematopoietic stem cells. Phorbol esters, which initiate megakaryocyte differentiation in this cell line, caused a rapid increase in extracellular-signal-regulated kinase (ERK), which remained elevated for 2 h and returned to near-basal levels by 24 h. In the absence of extracellular stimuli, ERK could be activated by expression of constitutively active mutants of mitogen-activated protein (MAP) kinase kinase (MKK), resulting in cell adhesion and spreading, increased cell size, inhibition of cell growth, and induction of the platelet-specific integrin alphaIIb beta3, all hallmarks of megakaryocytic differentiation. In contrast, expression of wild-type MKK had little effect. In addition, constitutively active MKK suppressed the expression of an erythroid marker, alpha-globin, indicating the ability to suppress cellular responses necessary for alternative cell lineages. The MKK inhibitor PD98059 blocked MKK/ERK activation and cellular responses to phorbol ester, demonstrating that activation of MKK is necessary and sufficient to induce a differentiation program along the megakaryocyte lineage. Thus, the MAP kinase cascade, which promotes cell growth and proliferation in many cell types, instead inhibits cell proliferation and initiates lineage-specific differentiation in K562 cells, establishing a model system to investigate the mechanisms by which this signal transduction pathway specifies cell fate and developmental processes.

  5. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    PubMed

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  6. Sirc-cvs cytotoxicity test: an alternative for predicting rodent acute systemic toxicity.

    PubMed

    Kitagaki, Masato; Wakuri, Shinobu; Hirota, Morihiko; Tanaka, Noriho; Itagaki, Hiroshi

    2006-10-01

    An in vitro crystal violet staining method using the rabbit cornea-derived cell line (SIRC-CVS) has been developed as an alternative to predict acute systemic toxicity in rodents. Seventy-nine chemicals, the in vitro cytotoxicity of which was already reported by the Multicenter Evaluation of In vitro Toxicity (MEIC) and ICCVAM/ECVAM, were selected as test compounds. The cells were incubated with the chemicals for 72 hrs and the IC(50) and IC(35) values (microg/mL) were obtained. The results were compared to the in vivo (rat or mouse) "most toxic" oral, intraperitoneal, subcutaneous and intravenous LD(50) values (mg/kg) taken from the RTECS database for each of the chemicals by using Pearson's correlation statistics. The following parameters were calculated: accuracy, sensitivity, specificity, prevalence, positive predictability, and negative predictability. Good linear correlations (Pearson's coefficient; r>0.6) were observed between either the IC(50) or the IC(35) values and all the LD(50) values. Among them, a statistically significant high correlation (r=0.8102, p<0.001) required for acute systemic toxicity prediction was obtained between the IC(50) values and the oral LD(50) values. By using the cut-off concentrations of 2,000 mg/kg (LD(50)) and 4,225 microg/mL (IC(50)), no false negatives were observed, and the accuracy was 84.8%. From this, it is concluded that this method could be used to predict the acute systemic toxicity potential of chemicals in rodents.

  7. Application of Receiver Operating Characteristic Analysis to Refine the Prediction of Potential Digoxin Drug Interactions

    PubMed Central

    Ellens, Harma; Deng, Shibing; Coleman, JoAnn; Bentz, Joe; Taub, Mitchell E.; Ragueneau-Majlessi, Isabelle; Chung, Sophie P.; Herédi-Szabó, Krisztina; Neuhoff, Sibylle; Palm, Johan; Balimane, Praveen; Zhang, Lei; Jamei, Masoud; Hanna, Imad; O’Connor, Michael; Bednarczyk, Dallas; Forsgard, Malin; Chu, Xiaoyan; Funk, Christoph; Guo, Ailan; Hillgren, Kathleen M.; Li, LiBin; Pak, Anne Y.; Perloff, Elke S.; Rajaraman, Ganesh; Salphati, Laurent; Taur, Jan-Shiang; Weitz, Dietmar; Wortelboer, Heleen M.; Xia, Cindy Q.; Xiao, Guangqing; Yamagata, Tetsuo

    2013-01-01

    In the 2012 Food and Drug Administration (FDA) draft guidance on drug-drug interactions (DDIs), a new molecular entity that inhibits P-glycoprotein (P-gp) may need a clinical DDI study with a P-gp substrate such as digoxin when the maximum concentration of inhibitor at steady state divided by IC50 ([I1]/IC50) is ≥0.1 or concentration of inhibitor based on highest approved dose dissolved in 250 ml divide by IC50 ([I2]/IC50) is ≥10. In this article, refined criteria are presented, determined by receiver operating characteristic analysis, using IC50 values generated by 23 laboratories. P-gp probe substrates were digoxin for polarized cell-lines and N-methyl quinidine or vinblastine for P-gp overexpressed vesicles. Inhibition of probe substrate transport was evaluated using 15 known P-gp inhibitors. Importantly, the criteria derived in this article take into account variability in IC50 values. Moreover, they are statistically derived based on the highest degree of accuracy in predicting true positive and true negative digoxin DDI results. The refined criteria of [I1]/IC50 ≥ 0.03 and [I2]/IC50 ≥ 45 and FDA criteria were applied to a test set of 101 in vitro-in vivo digoxin DDI pairs collated from the literature. The number of false negatives (none predicted but DDI observed) were similar, 10 and 12%, whereas the number of false positives (DDI predicted but not observed) substantially decreased from 51 to 40%, relative to the FDA criteria. On the basis of estimated overall variability in IC50 values, a theoretical 95% confidence interval calculation was developed for single laboratory IC50 values, translating into a range of [I1]/IC50 and [I2]/IC50 values. The extent by which this range falls above the criteria is a measure of risk associated with the decision, attributable to variability in IC50 values. PMID:23620486

  8. Solid-phase total synthesis of cherimolacyclopeptide E and discovery of more potent analogues by alanine screening.

    PubMed

    Shaheen, Farzana; Rizvi, Tania S; Musharraf, Syed G; Ganesan, A; Xiao, Kai; Townsend, Jared B; Lam, Kit S; Choudhary, M Iqbal

    2012-11-26

    Cherimolacyclopeptide E (1) is a cyclic hexapeptide obtained from Annona cherimola, reported to be cytotoxic against the KB (human nasopharyngeal carcinoma) cell line. The solid-phase total syntheses of this cyclic peptide and its analogues were accomplished by employing FMOC/tert-butyl-protected amino acids and the Kenner sulfonamide safety-catch linker. The synthetic peptide 1 was found to be weakly cytotoxic against four cell lines (MOLT-4, Jurkat T lymphoma, MDA-MB-231, and KB). Analogues 3 and 7, where glycine at positions 2 and 6 of the parent compound was replaced by Ala, exhibited enhanced cytotoxicity against KB (3, IC50 6.3 μM; 7, IC50 7.8 μM) and MDA-MB-231 breast cancer cells (3, IC50 10.2 μM; 7, IC50 7.7 μM), thereby suggesting possible selective targeting of these cancer cells by these peptides. The spectral data of synthetic peptide 1 was found to be similar to that reported for the natural product. However, a striking difference in biological activity was noted, which warrants the re-evaluation of the original natural product for purity and the existence of conformational differences.

  9. Publications - IC 50 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ic050.pdf (999.0 K) Keywords Aeromagnetic; Aeromagnetic Map; Aeromagnetic Survey; Alaska Peninsula ; Coal; Conductivity Survey; Construction Materials; Copper; Cretaceous; Delta River; Diamonds; Drilling

  10. Design, Synthesis and Evaluation of a Novel Series of Inhibitors Reversing P-Glycoprotein-Mediated Multidrug Resistance.

    PubMed

    Ghaleb, Hesham; Li, Huilan; Kairuki, Mutta; Qiu, Qianqian; Bi, Xinzhou; Liu, Chunxia; Liao, Chen; Li, Jieming; Hezam, Kamal; Huang, Wenlong; Qian, Hai

    2018-05-22

    Multidrug resistance (MDR) is still the main barrier to attaining effective results with chemotherapy. Discovery of new chemo-reversal agents is needed to overcome MDR. Our study focused on a better way to obtain novel drugs with triazole rings that have an MDR-reversal ability through click chemistry. Among 20 developed compounds, compound 19 had a minimal cytotoxic effect compared to tariquidar and verapamil (VRP) and showed a higher reversal activity than VRP through increased accumulation in K562/A02 cells. Compound 19 also played an important role in the P-gp efflux function of intracellular Rh123 and doxorubicin (DOX) accumulation in K562/A02 cells. Moreover, compound 19 exhibited a long lifetime of approximately 24 h. These results indicated that compound 19 is a potential lead compound for the design of new drugs to overcome cancer MDR. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Streptococcus pyogenes CAMP factor promotes bacterial adhesion and invasion in pharyngeal epithelial cells without serum via PI3K/Akt signaling pathway.

    PubMed

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Isono, Toshihito; Nakamura, Yuki; Saitoh, Issei; Hayasaki, Haruaki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2018-01-01

    Streptococcus pyogenes is a bacterium that causes systemic diseases, such as pharyngitis and toxic shock syndrome, via oral- or nasal-cavity infection. S. pyogenes produces various molecules known to function with serum components that lead to bacterial adhesion and invasion in human tissues. In this study, we identified a novel S. pyogenes adhesin/invasin. Our results revealed that CAMP factor promoted streptococcal adhesion and invasion in pharyngeal epithelial Detroit562 cells without serum. Recombinant CAMP factor initially localized on the membranes of cells and then became internalized in the cytosol following S. pyogenes infection. Additionally, CAMP factor phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in the cells. ELISA results demonstrate that CAMP factor affected the amount of phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in Detroit562 cells. Furthermore, CAMP factor did not reverse the effect of phosphoinositide 3-kinase knockdown by small interfering RNA in reducing the level of adhesion and invasion of S. pyogenes isogenic cfa-deficient mutant. These results suggested that S. pyogenes CAMP factor activated the phosphoinositide 3-kinase/serine-threonine kinase signaling pathway, promoting S. pyogenes invasion of Detroit562 cells without serum. Our findings suggested that CAMP factor played an important role on adhesion and invasion in pharyngeal epithelial cells. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Effects of 1,3,5-triphenyl-4,5-dihydro-1H-pyrazole derivatives on cell-cycle and apoptosis in human acute leukemia cell lines.

    PubMed

    Santos Bubniak, Lorena Dos; Gaspar, Pâmela Cristina; de Moraes, Ana Carolina Rabello; Bigolin, Alisson; de Souza, Rubia Karine; Buzzi, Fátima Campos; Corrêa, Rogério; Filho, Valdir Cechinel; Bretanha, Lizandra Czermainski; Micke, Gustavo Amadeu; Nunes, Ricardo José; Santos-Silva, Maria Cláudia

    2017-05-01

    Pyrazoline is an important 5-membered nitrogen heterocycle that has been extensively researched. Ten derivatives were synthesized and tested for antileukemic effects on 2 human acute leukemia cell lines, K562 and Jurkat. The most cytotoxic of these derivatives, compound 21, was chosen for investigation of cytotoxicity mechanisms. The results obtained with selectivity calculations revealed that compound 21 is more selective for acute leukemia (K562 and Jurkat cell lines) than for other tumor cell lines. Moreover, compound 21 was not cytotoxic to normal cell lines, indicating a potential use in clinical tests. Compound 21 caused a significant cell cycle arrest in the S-phase in Jurkat cells and increased the proportion of cells in the sub G0/G1 phase in both cell lines. Cells treated with compound 21 demonstrated morphological changes characteristic of apoptosis in the EB/AO assay, confirmed by externalization of phosphatidylserine by the annexin V - fluorescein isothiocyanate method and by DNA fragmentation. An investigation of cytotoxicity mechanisms suggests the involvement of an intrinsic apoptosis pathway due to mitochondrial damage and an increase in the ratio of mitochondrial Bax/Bcl2. Pyrazoline 21 obeyed Lipinski's "rule of five" for drug-likeness. Based on these preliminary results, the antileukemic activity of compound 21 makes it a potential anticancer agent.

  13. Synthesis and biological evaluation of novel thiadiazole amides as potent Cdc25B and PTP1B inhibitors.

    PubMed

    Li, Yingjun; Yu, Yang; Jin, Kun; Gao, Lixin; Luo, Tongchuan; Sheng, Li; Shao, Xin; Li, Jia

    2014-09-01

    A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50=1.18-8.01 μg/mL) and PTP1B (IC50=0.85-8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50=0.93 μg/mL) and oleanolic acid (IC50=0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Brazilian Cerrado Qualea grandiflora Mart. Leaves Exhibit Antiplasmodial and Trypanocidal Activities In vitro

    PubMed Central

    Cordeiro, Thuany de Moura; Borghetti, Fabian; Caldas Oliveira, Sarah C.; Bastos, Izabela Marques Dourado; de Santana, Jaime Martins; Grellier, Philippe; Charneau, Sébastien

    2017-01-01

    Background: The rapid spread of drug-resistant strains of protozoan parasites required the urgent need for new effective drugs. Natural products offer a variety of chemical structures, which make them a valuable source of lead compounds for the development of such new drugs. Cerrado is the second largest biome in Brazil and has the richest flora of all the world savannahs. We selected Qualea grandiflora, a plant species known for its proprieties in folk medicine and its antibacterial activity. Objective: However, its antiprotozoal activity was not yet explored. Materials and Methods: We investigated the activities of fractions from the ethyl acetate extract of Q. grandiflora leaves against human life forms of Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma brucei gambiense, and for its cytotoxicity upon the rat L6-myoblast cell line. Ten fractions were produced by ethyl acetate:hexane chromatography. Results and Conclusion: The fractions showed no cytotoxicity against L-6 cells (IC50 > 100 μg/mL) and no hemolysis propriety. Three fractions had a moderate activity against P. falciparum, anyone was active against T. cruzi but four fractions demonstrated a high activity against bloodstream forms of T. brucei gambiense (8.0< IC50 <15 μg/mL). Identification and characterization of the active compounds are currently under investigation. SUMMARY Qualea grandiflora is an endemic tree of the Brazilian Cerrado, which presents medicinal propertiesTen fractions of the ethyl acetate extract of Q. grandiflora leaves were assessed against Plasmodium falciparum, Trypanosoma Cruzi, and Trypanosoma brucei gambienseNo fraction showed relevant cytotoxicity and hemolysis activityAll the fractions presented antiplasmodial and trypanocidal activitiesThree fractions with moderate antiplasmodial activity (49< IC50 <56 μg/mL)Four fractions with high activity against bloodstream forms of T. brucei gambiense (8.0< IC50 <15 μg/mL). Abbreviations used: CQ: Chloroquine, DMSO: Dimethyl sulfoxide, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, HMI: Modified Iscove's medium, IC50: Concentration inhibiting 50% of parasite growth, IC90: Concentration inhibiting 90% of parasite growth, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, RPMI: Roswell Park Memorial Institute, SD: Standard deviation, SI: Ratio of cytotoxicity to biological activity − TC50/IC50, TC50: Concentration causing 50% of cell growth inhibition, TC90: Concentration causing 90% of cell growth inhibition, TLC: Thin-layer chromatography PMID:29200731

  15. Brazilian Cerrado Qualea grandiflora Mart. Leaves Exhibit Antiplasmodial and Trypanocidal Activities In vitro.

    PubMed

    Cordeiro, Thuany de Moura; Borghetti, Fabian; Caldas Oliveira, Sarah C; Bastos, Izabela Marques Dourado; de Santana, Jaime Martins; Grellier, Philippe; Charneau, Sébastien

    2017-01-01

    The rapid spread of drug-resistant strains of protozoan parasites required the urgent need for new effective drugs. Natural products offer a variety of chemical structures, which make them a valuable source of lead compounds for the development of such new drugs. Cerrado is the second largest biome in Brazil and has the richest flora of all the world savannahs. We selected Qualea grandiflora , a plant species known for its proprieties in folk medicine and its antibacterial activity. However, its antiprotozoal activity was not yet explored. We investigated the activities of fractions from the ethyl acetate extract of Q. grandiflora leaves against human life forms of Plasmodium falciparum , Trypanosoma cruzi , and Trypanosoma brucei gambiense , and for its cytotoxicity upon the rat L6-myoblast cell line. Ten fractions were produced by ethyl acetate:hexane chromatography. The fractions showed no cytotoxicity against L-6 cells (IC 50 > 100 μg/mL) and no hemolysis propriety. Three fractions had a moderate activity against P. falciparum , anyone was active against T. cruzi but four fractions demonstrated a high activity against bloodstream forms of T. brucei gambiense (8.0< IC 50 <15 μg/mL). Identification and characterization of the active compounds are currently under investigation. Qualea grandiflora is an endemic tree of the Brazilian Cerrado, which presents medicinal propertiesTen fractions of the ethyl acetate extract of Q. grandiflora leaves were assessed against Plasmodium falciparum , Trypanosoma Cruzi , and Trypanosoma brucei gambiense No fraction showed relevant cytotoxicity and hemolysis activityAll the fractions presented antiplasmodial and trypanocidal activitiesThree fractions with moderate antiplasmodial activity (49< IC 50 <56 μg/mL)Four fractions with high activity against bloodstream forms of T. brucei gambiense (8.0< IC 50 <15 μg/mL). Abbreviations used: CQ: Chloroquine, DMSO: Dimethyl sulfoxide, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, HMI: Modified Iscove's medium, IC 50 : Concentration inhibiting 50% of parasite growth, IC 90 : Concentration inhibiting 90% of parasite growth, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, RPMI: Roswell Park Memorial Institute, SD: Standard deviation, SI: Ratio of cytotoxicity to biological activity - TC 50 /IC 50 , TC 50 : Concentration causing 50% of cell growth inhibition, TC 90 : Concentration causing 90% of cell growth inhibition, TLC: Thin-layer chromatography.

  16. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization.

    PubMed

    Li, Zuo Peng; Song, Yeong Hun; Uddin, Zia; Wang, Yan; Park, Ki Hun

    2018-02-01

    Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (1-12) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC 50 s of (2.4-52.5 µM), and α-glucosidase with IC 50 values of (1.7-72.7 µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC 50  = 2.4 µM for 3, 2.8 µM for 7) and α-glucosidase (IC 50  = 4.8 µM for 3, 1.7 µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: K i app  = 2.4 µM; k 5  = 0.05001 µM -1  S -1 and k 6  = 0.02076 µM -1  S -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Naphthoquinones from the leaves of Rhinacanthus nasutus having acetylcholinesterase inhibitory and cytotoxic activities.

    PubMed

    Boonyaketgoson, Sirada; Rukachaisirikul, Vatcharin; Phongpaichit, Souwalak; Trisuwan, Kongkiat

    2018-01-01

    Four new naphthoquinones (1-4), named rhinacanthins S (1), T (2), U (3) and V (4), together with 13 known naphthoquinones were isolated from the leaf extract of Rhinacanthus nasutus. The structures of isolated compounds were elucidated by spectroscopic methods, especially 1D and 2D NMR spectroscopy and mass spectrometry. Rhinacanthin S (1) exhibited acetylcholinesterase inhibition activity with a % inhibition value of 48.04±3.25. The known rhinacanthin A (5) showed cytotoxicity against a MCF-7 cell line with an IC 50 value of 8.79μM, while rhinacanthin N (15) was active against the NCI-H187 cell line with an IC 50 =2.24μM and Vero cells (IC 50 =3.00μM). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan.

    PubMed

    Zhang, Nenling; Shen, Xiangchun; Jiang, Xiaofei; Cai, Jiazhong; Shen, Xiaoling; Hu, Yingjie; Qiu, Samuel X

    2018-01-01

    Two new stilbenoid dimers, cajanstilbenoids A (1) and B (2), were isolated from the leaves of Cajanus cajan. Planar structures of these compounds were verified by NMR (1D and 2D) and high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS). Absolute configurations were assigned by comparing experimental and calculated electronic CD values. The cytotoxicity of 1 and 2 against human hepatoma (HepG2), human breast adenocarcinoma (MCF-7), and human lung cancer (A549) cells were evaluated in vitro. Compound 1 showed strong cytotoxicity against all the tested cell lines (IC 50 values: 2.14-2.56 µM), whereas compound 2 showed strong toxicity only against HepG2 (IC 50 value: 5.99 µM) and A549 cells (IC 50 value: 6.18 µM).

  19. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line.

    PubMed

    Azizi, Susan; Mahdavi Shahri, Mahnaz; Rahman, Heshu Sulaiman; Rahim, Raha Abdul; Rasedee, Abdullah; Mohamad, Rosfarizan

    2017-01-01

    Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs) are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis ) extract to produce the Pd@W.tea NPs. The Pd@W.tea NPs were characterized by UV-vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The Pd@W.tea NPs were spherical (size 6-18 nm) and contained phenols and flavonoids acquired from the W.tea extract. Pd@W.tea NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH), OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli . MTT assay showed that Pd@W.tea NPs (IC 50 =0.006 μM) were more antiproliferative toward the human leukemia (MOLT-4) cells than the W.tea extract (IC 50 =0.894 μM), doxorubicin (IC 50 =2.133 μM), or cisplatin (IC 50 =0.013 μM), whereas they were relatively innocuous for normal human fibroblast (HDF-a) cells. The anticancer cell effects of Pd@W.tea NPs are mediated through the induction of apoptosis and G2/M cell-cycle arrest.

  20. Engineered Knottin Peptides: A New Class of Agents for Imaging Integrin Expression in Living Subjects

    PubMed Central

    Kimura, Richard H; Cheng, Zhen; Gambhir, Sanjiv Sam; Cochran, Jennifer R

    2009-01-01

    There is a critical need for molecular imaging agents to detect cell surface integrin receptors that are present in human cancers. Previously, we used directed evolution to engineer knottin peptides that bind with low nM affinity to integrin receptors that are overexpressed on the surface of tumor cells and the tumor neovasculature. To evaluate these peptides as molecular imaging agents, we site-specifically conjugated Cy5.5 or 64Cu-DOTA to their N-termini, and used optical and positron emission tomography (PET) imaging to measure their uptake and biodistribution in U87MG glioblastoma murine xenograft models. Near-infrared fluorescence and microPET imaging both demonstrated that integrin binding affinity plays a strong role in the tumor uptake of knottin peptides. Tumor uptake at 1 h post injection for two high affinity (IC50 ∼20 nM) 64Cu-DOTA-conjugated knottin peptides was 4.47 ± 1.21 and 4.56 ± 0.64 % injected dose/gram (%ID/g), compared to a low affinity knottin peptide (IC50 ∼0.4 μM; 1.48 ± 0.53 %ID/g) and c(RGDyK) (IC50 ∼1 μM; 2.32 ± 0.55 %ID/g), a low affinity cyclic pentapeptide under clinical development. Furthermore, 64Cu-DOTA-conjugated knottin peptides generated lower levels of non-specific liver uptake (∼2 %ID/g) compared to c(RGDyK) (∼4 %ID/g) 1 h post injection. MicroPET imaging results were confirmed by in vivo biodistribution studies. 64Cu-DOTA-conjugated knottin peptides were stable in mouse serum, and in vivo metabolite analysis showed minimal degradation in the blood or tumor upon injection. Thus, engineered integrin-binding knottin peptides show great potential as clinical diagnostics for a variety of cancers. PMID:19276378

Top