Sample records for k562 target cells

  1. Spontaneous cytotoxic earthworm leukocytes kill K562 tumor cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-08-01

    Earthworm coelomocytes may act as effector cells which destroy targets in vitro. In a 51Cr release assay, Lumbricus coelomocyte effectors showed lytic activities of 3-14% against K562 human tumor cells when incubated 1-4 hr at 23 degrees C or 37 degrees C. Cytotoxicity was correlated with effector: target ratio. However, targets were not killed by incubating them in cell-free, 0.2 micron filtered coelomic fluid. The supernatant from coelomocytes cultured alone failed to kill K562 targets but coelomocyte lysates were toxic to target cells in a concentration-dependent manner. Coelomocytes were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When effectors and targets were examined under TEM, we found close apposition of effector granulocytic coelomocytes and target cell membranes but not with coelomocytes nor eleocytes at up to 15 min incubation. By SEM, effector cells appeared not only to be in close contact with targets, but instances of target lysis were observed. These results suggest that effector cell/target cell contact is essential for cytotoxicity to occur.

  2. VEGFR2-targeted fusion antibody improved NK cell-mediated immunosurveillance against K562 cells.

    PubMed

    Ren, Xueyan; Xie, Wei; Wang, Youfu; Xu, Menghuai; Liu, Fang; Tang, Mingying; Li, Chenchen; Wang, Min; Zhang, Juan

    2016-08-01

    MHC class I polypeptide-related sequence A (MICA), which is normally expressed on cancer cells, activates NK cells via NK group 2-member D pathway. However, some cancer cells escape NK-mediated immune surveillance by shedding membrane MICA causing immune suppression. To address this issue, we designed an antibody-MICA fusion targeting tumor-specific antigen (vascular endothelial growth factor receptor 2, VEGFR2) based on our patented antibody (mAb04) against VEGFR2. In vitro results demonstrate that the fusion antibody retains both the antineoplastic and the immunomodulatory activity of mAb04. Further, we revealed that it enhanced NK-mediated immunosurveillance against K562 cells through increasing degranulation and cytokine production of NK cells. The overall data suggest our new fusion protein provides a promising approach for cancer-targeted immunotherapy and has prospects for potential application of chronic myeloid leukemia.

  3. Targeted Blockage of Signal Transducer and Activator of Transcription 5 Signaling Pathway with Decoy Oligodeoxynucleotides Suppresses Leukemic K562 Cell Growth

    PubMed Central

    Wang, Xiaozhong; Zeng, Jianming; Shi, Mei; Zhao, Shiqiao; Bai, Weijun; Cao, Weixi; Tu, Zhiguang; Huang, Zonggan

    2011-01-01

    The protein signal transducer and activator of transcription 5 (STAT5) of the JAK/STAT pathway is constitutively activated because of its phosphorylation by tyrosine kinase activity of fusion protein BCR-ABL in chronic myelogenous leukemia (CML) cells. This study investigated the potential therapeutic effect of STAT5 decoy oligodeoxynucleotides (ODN) using leukemia K562 cells as a model. Our results showed that transfection of 21-mer-long STAT5 decoy ODN into K562 cells effectively inhibited cell proliferation and induced cell apoptosis. Further, STAT5 decoy ODN downregulated STAT5 targets bcl-xL, cyclinD1, and c-myc at both mRNA and protein levels in a sequence-specific manner. Collectively, these data demonstrate the therapeutic effect of blocking the STAT5 signal pathway by cis-element decoy for cancer characterized by constitutive STAT5 activation. Thus, our study provides support for STAT5 as a potential target downstream of BCR-ABL for CML treatment and helps establish the concept of targeting STAT5 by decoy ODN as a novel therapy approach for imatinib-resistant CML. PMID:21091189

  4. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    PubMed

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.

  5. The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation.

    PubMed

    Yu, Chun Hong; Suriguga; Li, Yang; Li, Yi Ran; Tang, Ke Ya; Jiang, Liang; Yi, Zong Chun

    2014-03-01

    The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation was investigated. After K562 cells were treated with hydroquinone for 24 h, and hemin was later added to induce erythroid differentiation for 48 h, hydroquinone inhibited hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells in a concentration-dependent manner. The 24-h exposure to hydroquinone also caused a concentration-dependent increase at an intracellular ROS level, while the presence of N- acetyl-L-cysteine prevented hydroquinone- induced ROS production in K562 cells. The presence of N-acetyl-L-cysteine also prevented hydroquinone inhibiting hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells. These evidences indicated that ROS production played a role in hydroquinone-induced inhibition of erythroid differentiation. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriguga,; Li, Xiao-Fei; Li, Yang

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependentmore » increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.« less

  7. Polyamine analog TBP inhibits proliferation of human K562 chronic myelogenous leukemia cells by induced apoptosis

    PubMed Central

    WANG, QING; WANG, YAN-LIN; WANG, KAI; YANG, JIAN-LIN; CAO, CHUN-YU

    2015-01-01

    The aim of the present study was to investigate the effects of the novel polyamine analog tetrabutyl propanediamine (TBP) on the growth of K562 chronic myelogenous leukemia (CML) cells and the underlying mechanism of these effects. MTT was used for the analysis of cell proliferation and flow cytometry was performed to analyze cell cycle distribution. DNA fragmentation analysis and Annexin V/propidium iodide double staining were used to identify apoptotic cells. The activity of the key enzymes in polyamine catabolism was detected using chemiluminescence. TBP can induce apoptosis and significantly inhibit K562 cell proliferation in a time- and dose-dependent manner. TBP treatment significantly induced the enzyme activity of spermine oxidase and acetylpolyamine oxidase in K562 cells, and also enhanced the inhibitory effect of the antitumor drug doxorubicin on K562 cell proliferation. As a novel polyamine analog, TBP significantly inhibited proliferation and induced apoptosis in K562 cells by upregulating the activity of the key enzymes in the polyamine catabolic pathways. TBP also increased the sensitivity of the K562 cells to the antitumor drug doxorubicin. These data indicate an important potential value of TBP for clinical therapy of human CML. PMID:25435975

  8. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catecholmore » enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.« less

  9. Electrochemical K-562 cells sensor based on origami paper device for point-of-care testing.

    PubMed

    Ge, Shenguang; Zhang, Lina; Zhang, Yan; Liu, Haiyun; Huang, Jiadong; Yan, Mei; Yu, Jinghua

    2015-12-01

    A low-cost, simple, portable and sensitive paper-based electrochemical sensor was established for the detection of K-562 cell in point-of-care testing. The hybrid material of 3D Au nanoparticles/graphene (3D Au NPs/GN) with high specific surface area and ionic liquid (IL) with widened electrochemical windows improved the good biocompatibility and high conductivity was modified on paper working electrode (PWE) by the classic assembly method and then employed as the sensing surface. IL could not only enhance the electron transfer ability but also provide sensing recognition interface for the conjugation of Con A with cells, with the cell capture efficiency and the sensitivity of biosensor strengthened simultaneously. Concanavalin A (Con A) immobilization matrix was used to capture cells. As proof-of-concept, the paper-based electrochemical sensor for the detection of K-562 cells was developed. With such sandwich-type assay format, K-562 cells as model cells were captured on the surface of Con A/IL/3D AuNPs@GN/PWE. Con A-labeled dendritic PdAg NPs were captured on the surface of K-562 cells. Such dendritic PdAg NPs worked as catalysts promoting the oxidation of thionine (TH) by H2O2 which was released from K-562 cells via the stimulation of phorbol 12-myristate-13-acetate (PMA). Therefore, the current signal response was dependent on the amount of PdAg NPs and the concentration of H2O2, the latter of which corresponded with the releasing amount from cells. So, the detection method of K-562 cell was also developed. Under optimized experimental conditions, 1.5×10(-14) mol of H2O2 releasing from each cell was calculated. The linear range and the detection limit for K-562 cells were determined to be 1.0×10(3)-5.0×10(6) cells/mL and 200 cells/mL, respectively. Such as-prepared sensor showed excellent analytical performance with good fabrication reproducibility, acceptable precision and satisfied accuracy, providing a novel protocol in point-of-care testing of cells

  10. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562more » cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.« less

  11. [Effects of Aptamer-siRNA Nucleic Acid Compound on Growth and Apoptosis in Myeloid Leukemia Cell Line K562].

    PubMed

    Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo

    2015-04-01

    To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (P<0.05). The MTT assay showed that the IC50 value of aptamer-siRNA compound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.

  12. Research on the effect of formononetin on photodynamic therapy in K562 cells.

    PubMed

    Sun, Dan; Lu, Yao; Zhang, Su-Juan; Wang, Kai-Ge; Sun, Zhe

    2017-10-01

    At the present time, many cancer patients combine some forms of complementary and alternative medicine therapies with their conventional therapies. The most common choice of these therapies is the use of antioxidants. Formononetin is presented in different foods. It has a variety of biological activities including antioxidant and anti-cancer properties. On account of its antioxidant activity, formononetin might protect cancer cells from free radical damage in photodynamic therapy (PDT) during which reactive oxygen species (ROS) production was stimulated leading to irreversible tumor cell injury. In this study, the influence of formononetin on K562 cells in PDT was demonstrated. The results showed that formononetin supplementation alone did not affect the lipid peroxidation, DNA damage and apoptosis in K562 cells. It increases the lipid peroxidation, DNA damage and apoptosis in K562 cells induced by PDT. The singlet oxygen quencher sodium azide suppresses the apoptosis induced by PDT with formononetin. In conclusion, formononetin consumption during PDT increases the effectiveness of cancer therapy on malignant cells. The effect of antioxidants on PDT maybe was determined by its sensitization ability to singlet oxygen.

  13. Genetically re-engineered K562 cells significantly expand and functionally activate cord blood natural killer cells: Potential for adoptive cellular immunotherapy.

    PubMed

    Ayello, Janet; Hochberg, Jessica; Flower, Allyson; Chu, Yaya; Baxi, Laxmi V; Quish, William; van de Ven, Carmella; Cairo, Mitchell S

    2017-02-01

    Natural killer (NK) cells play a significant role in reducing relapse in patients with hematological malignancies after allogeneic stem cell transplantation, but NK cell number and naturally occurring inhibitory signals limit their capability. Interleukin-15 (IL-15) and 4-1BBL are important modulators of NK expansion and functional activation. To overcome these limitations, cord blood mononuclear cells (CB MNCs) were ex vivo expanded for 7 days with genetically modified K562-mbIL15-41BBL (MODK562) or wild-type K562 (WTK562). NK cell expansion; expression of lysosome-associated membrane protein-1 (LAMP-1), granzyme B, and perforin; and in vitro and in vivo cytotoxicity against B-cell non-Hodgkin lymphoma (B-NHL) were evaluated. In vivo tumor growth in B-NHL-xenografted nonobese diabetic severe combined immune deficient (NOD-scid) gamma (NSG) mice was monitored by tumor volume, cell number, and survival. CB MNCs cultured with MODK562 compared with WTK562 demonstrated significantly increased NK expansion (thirty-fivefold, p < 0.05); LAMP-1 (p < 0.05), granzyme B, and perforin expression (p < 0.001); and in vitro cytotoxicity against B-NHL (p < 0.01). Xenografted mice treated with MODK562 CB experienced significantly decreased B-NHL tumor volume (p = 0.0086) and B-NHL cell numbers (p < 0.01) at 5 weeks and significantly increased survival (p < 0.001) at 10 weeks compared with WTK562. In summary, MODK562 significantly enhanced CB NK expansion and cytotoxicity, enhanced survival in a human Burkitt's lymphoma xenograft NSG model, and could be used in the future as adoptive cellular immunotherapy after umbilical CB transplantation. Future directions include expanding anti-CD20 chimeric receptor-modified CB NK cells to enhance B-NHL targeting in vitro and in vivo. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  14. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Lin; Song, Quansheng; Zhang, Yingmei

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosismore » rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.« less

  15. Undifferentiated HL-60 cells internalize an antitumor alkyl ether phospholipid more rapidly than resistant K562 cells.

    PubMed

    Tsutsumi, T; Tokumura, A; Kitazawa, S

    1998-02-05

    In this study, we confirmed a previous finding that 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (methyl-PAF) expresses higher antineoplastic activity against the promyelocytic leukemia cell line HL-60, than against the erythroleukemic cell line K562, and intended to clarify the reason for this. Using an albumin back-exchange method, we measured the rates of binding and internalization of [3H]methyl-PAF by HL-60 and K562 cells. We found that methyl-PAF associated very rapidly and to similar extents with the two types of cells at low concentrations of extracellular bovine serum albumin, but that when bound to the cell surface, it was internalized into HL-60 cells faster than into K562 cells. The internalization of methyl-PAF by HL-60 cells was concentration-independent, intracellular ATP-independent and susceptible to thiol group-modifying reagents and cytochalasin B. Thus the inward transbilayer movement of methyl-PAF seems to occur by cytochalasin B-sensitive protein-mediated mechanism based on passive diffusion not requiring energy, in which SH-groups of protein play a critical role. We also found that the internalization of 1-hexadecanoyl-2-(4,4-difluoro-5,7- dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphocholine (Bodipy-C5-PC), whose structure resembles that of methyl-PAF, into HL-60 cells was faster than that into K562 cells. Using a combination of an albumin back-exchange method and observation by confocal laser scanning microscopy, we next examined the intracellular distribution of this fluorescent phospholipid probe after its internalization. Intracellular membranes, especially those peripheral to nuclei, were fluorescence-labeled in both HL-60 and K562 cells, but fluorescence of the nuclear membranes was weak, suggesting that this probe seems mainly to accumulate in intracellular granules, and may interact directly with several key enzymes for phospholipid metabolism, leading to cell injury. Because the difference between

  16. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jingyun; Wei, Xing; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressedmore » MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.« less

  17. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    PubMed

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    exhibited no notable effect on the inhibition of the ERK1/2 pathway. HtrA2 and its regulatory effect on WT1 may affect the sensitivity of BCR/ABL(+) cell lines to target therapy drugs through different mechanisms. Regulation of WT1 by HtrA2 occurs in K562 cells, and the regulation may affect the apoptosis of K562 cells under the stress caused by chemotherapeutic treatment. The p38 MAPK signaling pathway, which serves an important role in cell apoptosis, is a downstream pathway of this regulation.

  18. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines

    PubMed Central

    Fernández-Araujo, Andrea; Sánchez, Jon A.; Alfonso, Amparo; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed. PMID:26136685

  19. 3'-Geranyl-mono-substituted chalcone Xanthoangelovl induces apoptosis in human leukemia K562 cells via activation of mitochondrial pathway.

    PubMed

    Teng, Yuou; Wang, Lixin; Liu, Huan; Yuan, Yuan; Zhang, Qian; Wu, Meng; Wang, Luyao; Wang, Haomeng; Liu, Zhen; Yu, Peng

    2017-01-05

    3'-Geranyl-mono-substituted chalcone Xanthoangelol (1b), a chalcone derivative, was previously reported to show selective cytotoxicity against human chronic myelogenous leukemia K562 cells with a half-maximal inhibitory concentration (IC 50 ) of 3.98 μM. In the present study, we investigated the molecular mechanism underlying the cytotoxicity of 1b in K562 cells. Treatment with compound 1b caused K562 cells to adopt a typical apoptotic morphology. Flow cytometric analysis also confirmed the presence of an apoptotic cell population following treatment of Annexin-V-FITC and propidium iodide (PI) double-labeled K562 cells with 1b. Furthermore, we observed dissipation of the mitochondrial membrane potential, caspase-3 activation, and a reduction of the Bcl-2/Bax ratio in these cells, which suggest that the mitochondrial apoptotic pathway is induced by 1b in K562 cells. Collectively, our findings demonstrate that compound 1b notably induces mitochondrial-mediated apoptosis in K562 cells, which might have a potential anticancer activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Decursin and PDBu: two PKC activators distinctively acting in the megakaryocytic differentiation of K562 human erythroleukemia cells.

    PubMed

    Kim, Hyeon Ho; Ahn, Kyung Seop; Han, Hogyu; Choung, Se Young; Choi, Sang-Yun; Kim, Ik-Hwan

    2005-12-01

    Protein kinase C (PKC) plays an important role in the proliferation and differentiation of various cell types including normal and leukemic hematopoietic cells. Phorbol 12,13-dibutyrate (PDBu) induces the megakaryocytic differentiation of K562 human erythroleukemia cells through PKC activation. Decursin, a pyranocoumarin from Angelica gigas, exhibits the cytotoxic effects on various human cancer cell lines and in vitro PKC activation. We report here the differences between two PKC activators, tumor-suppressing decursin and tumor-promoting PDBu, in their actions on the megakaryocytic differentiation of K562 cells. First of all, decursin inhibited PDBu-induced bleb formation in K562 cells. Decursin also inhibited the PDBu-induced megakaryocytic differentiation of K562 cells that is characterized by an increase in substrate adhesion, the secretion of granulocyte/macrophage colony stimulating factor (GM-CSF) and interleukin-6 (IL-6), and the surface expression of integrin beta3. The binding of PDBu to PKC was competitively inhibited by decursin. Decursin induced the more rapid down-regulation of PKC alpha and betaII isozymes than that induced by PDBu in K562 cells. Unlike PDBu, decursin promoted the translocation of PKC alpha and betaII to the nuclear membrane. Decursin-induced faster down-regulation and nuclear translocation of PKC alpha and betaII were not affected by the presence of PDBu. All these results indicate that decursin and phorbol ester are PKC activators distinctively acting in megakaryocytic differentiation and PKC modulation in K562 leukemia cells.

  1. Expression of transcription factors during sodium phenylacetate induced erythroid differentiation in K562 cells.

    PubMed

    Rath, A V; Schmahl, G E; Niemeyer, C M

    1997-01-01

    During 15 days of treatment of K562 cells with sodium phenylacetate, we observed an increase in the cellular hemoglobin concentration with a similar increase in the expression of gamma-globin mRNA. Morphological studies demonstrated characteristic features of erythroid differentiation and maturation. At the same time there was no change in the level of expression of the cell surface antigenes CD33, CD34, CD45, CD71 and glycophorin A. Likewise, the level of expression of the erythroid transcription factors GATA-1, GATA-2, NF-E2, SCL and RBTN2, all expressed in untreated K562 cells, did not increase during sodium phenylacetate induced erythroid differentiation. The expression of the nuclear factors Evi-1 and c-myb, known to inhibit erythroid differentiation, did not decrease. We conclude that sodium phenylacetate treatment of K562 cells increases gamma-globin mRNA and induces cell maturation as judged by morphology without affecting the expression of the erythroid transcription factors, some of which are known to be involved in the regulation of beta-like globin genes.

  2. Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols

    PubMed Central

    2010-01-01

    Background Multidrug resistance (MDR) is a major obstacle in cancer treatment and is often the result of overexpression of the drug efflux protein, P-glycoprotein (P-gp), as a consequence of hyperactivation of NFκB, AP1 and Nrf2 transcription factors. In addition to effluxing chemotherapeutic drugs, P-gp also plays a specific role in blocking caspase-dependent apoptotic pathways. One feature that cytotoxic treatments of cancer have in common is activation of the transcription factor NFκB, which regulates inflammation, cell survival and P-gp expression and suppresses the apoptotic potential of chemotherapeutic agents. As such, NFκB inhibitors may promote apoptosis in cancer cells and could be used to overcome resistance to chemotherapeutic agents. Results Although the natural withanolide withaferin A and polyphenol quercetin, show comparable inhibition of NFκB target genes (involved in inflammation, angiogenesis, cell cycle, metastasis, anti-apoptosis and multidrug resistance) in doxorubicin-sensitive K562 and -resistant K562/Adr cells, only withaferin A can overcome attenuated caspase activation and apoptosis in K562/Adr cells, whereas quercetin-dependent caspase activation and apoptosis is delayed only. Interestingly, although withaferin A and quercetin treatments both decrease intracellular protein levels of Bcl2, Bim and P-Bad, only withaferin A decreases protein levels of cytoskeletal tubulin, concomitantly with potent PARP cleavage, caspase 3 activation and apoptosis, at least in part via a direct thiol oxidation mechanism. Conclusions This demonstrates that different classes of natural NFκB inhibitors can show different chemosensitizing effects in P-gp overexpressing cancer cells with impaired caspase activation and attenuated apoptosis. PMID:20438634

  3. Bardoxolone methyl (CDDO-Me or RTA402) induces cell cycle arrest, apoptosis and autophagy via PI3K/Akt/mTOR and p38 MAPK/Erk1/2 signaling pathways in K562 cells.

    PubMed

    Wang, Xin-Yu; Zhang, Xue-Hong; Peng, Li; Liu, Zheng; Yang, Yin-Xue; He, Zhi-Xu; Dang, Hong-Wan; Zhou, Shu-Feng

    2017-01-01

    Chronic myeloid leukemia (CML) treatment remains a challenge due to drug resistance and severe side effect, rendering the need on the development of novel therapeutics. CDDO-Me (Bardoxolone methyl), a potent Nrf2 activator and NF-κB inhibitor, is a promising candidate for cancer treatment including leukemia. However, the underlying mechanism for CDDO-Me in CML treatment is unclear. This study aimed to evaluate the molecular interactome of CDDO-Me in K562 cells using the quantitative proteomics approach stable-isotope labeling by amino acids in cell culture (SILAC) and explore the underlying mechanisms using cell-based functional assays. A total of 1,555 proteins responded to CDDO-Me exposure, including FANCI, SRPK2, XPO5, HP1BP3, NELFCD, Na + ,K + -ATPase 1, etc. in K562 cells. A total of 246 signaling pathways and 25 networks regulating cell survival and death, cellular function and maintenance, energy production, protein synthesis, response to oxidative stress, and nucleic acid metabolism were involved. Our verification experiments confirmed that CDDO-Me down-regulated Na + ,K + -ATPase α1 in K562 cells, and significantly arrested cells in G 2 /M and S phases, accompanied by remarkable alterations in the expression of key cell cycle regulators. CDDO-Me caused mitochondria-, death receptor-dependent and ER stress-mediated apoptosis in K562 cells, also induced autophagy with the suppression of PI3K/Akt/mTOR signaling pathway. p38 MAPK/Erk1/2 signaling pathways contributed to both apoptosis- and autophagy-inducing effects of CDDO-Me in K562 cells. Taken together, these data demonstrate that CDDO-Me is a potential anti-cancer agent that targets cell cycle, apoptosis, and autophagy in the treatment of CML.

  4. Bardoxolone methyl (CDDO-Me or RTA402) induces cell cycle arrest, apoptosis and autophagy via PI3K/Akt/mTOR and p38 MAPK/Erk1/2 signaling pathways in K562 cells

    PubMed Central

    Wang, Xin-Yu; Zhang, Xue-Hong; Peng, Li; Liu, Zheng; Yang, Yin-Xue; He, Zhi-Xu; Dang, Hong-Wan; Zhou, Shu-Feng

    2017-01-01

    Chronic myeloid leukemia (CML) treatment remains a challenge due to drug resistance and severe side effect, rendering the need on the development of novel therapeutics. CDDO-Me (Bardoxolone methyl), a potent Nrf2 activator and NF-κB inhibitor, is a promising candidate for cancer treatment including leukemia. However, the underlying mechanism for CDDO-Me in CML treatment is unclear. This study aimed to evaluate the molecular interactome of CDDO-Me in K562 cells using the quantitative proteomics approach stable-isotope labeling by amino acids in cell culture (SILAC) and explore the underlying mechanisms using cell-based functional assays. A total of 1,555 proteins responded to CDDO-Me exposure, including FANCI, SRPK2, XPO5, HP1BP3, NELFCD, Na+,K+-ATPase 1, etc. in K562 cells. A total of 246 signaling pathways and 25 networks regulating cell survival and death, cellular function and maintenance, energy production, protein synthesis, response to oxidative stress, and nucleic acid metabolism were involved. Our verification experiments confirmed that CDDO-Me down-regulated Na+,K+-ATPase α1 in K562 cells, and significantly arrested cells in G2/M and S phases, accompanied by remarkable alterations in the expression of key cell cycle regulators. CDDO-Me caused mitochondria-, death receptor-dependent and ER stress-mediated apoptosis in K562 cells, also induced autophagy with the suppression of PI3K/Akt/mTOR signaling pathway. p38 MAPK/Erk1/2 signaling pathways contributed to both apoptosis- and autophagy-inducing effects of CDDO-Me in K562 cells. Taken together, these data demonstrate that CDDO-Me is a potential anti-cancer agent that targets cell cycle, apoptosis, and autophagy in the treatment of CML. PMID:29118925

  5. Glycometabolic adaptation mediates the insensitivity of drug-resistant K562/ADM leukaemia cells to adriamycin via the AKT-mTOR/c-Myc signalling pathway.

    PubMed

    Zhang, Xueyan; Ai, Ziying; Chen, Jing; Yi, Juan; Liu, Zhuan; Zhao, Huaishun; Wei, Hulai

    2017-04-01

    In human leukaemia, resistance to chemotherapy leads to treatment ineffectiveness or failure. Previous studies have indicated that cancers with increased levels of aerobic glycolysis are insensitive to numerous forms of chemotherapy and respond poorly to radiotherapy. Whether glycolysis serves a key role in drug resistance of leukaemia cells remains unclear. The present study systematically investigated aerobic glycolytic alterations and regulation in K562/adriamycin (ADM) multidrug‑resistant (MDR) and ADM‑sensitive K562 leukaemia cells in normoxia, and the association between drug resistance and improper glycometabolism. The cell proliferating activity was assessed with an MTT colorimetric assay, glycolysis, including glucose consumption, lactate export and key‑enzyme activity was determined by corresponding commercial testing kits. The expression levels of hexokinase‑II (HK‑II), lactate dehydrogenase A (LDHA), glucose transporter‑4 (GLUT‑4), AKT, p‑AKT473/308, mammalian target of rapamycin (mTOR), p‑mTOR, c‑Myc and hypoxia‑inducible factor‑1α (HIF‑1α) were analyzed by western blot or reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). K562/ADM cells exhibited increased glucose consumption and lactate accumulation, increased lactate dehydrogenase, hexokinase and pyruvate kinase activities, and reduced phosphofructokinase activity. In addition, K562/ADM cells expressed significantly more HK‑II and GLUT‑4. Notably, inhibition of glycolysis effectively killed sensitive and resistant leukaemia cells and potently restored the sensitivity of MDR cells to the anticancer agent ADM. The AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway, a crucial regulator of glycometabolic homeostasis, mediated over‑activation and upregulation of c‑Myc expression levels in K562/ADM cells, which directly stimulated glucose consumption and enhanced glycolysis. In conclusion, the present

  6. Reversal effect of a macrocyclic bisbibenzyl plagiochin E on multidrug resistance in adriamycin-resistant K562/A02 cells.

    PubMed

    Shi, Yan-Qiu; Qu, Xian-Jun; Liao, Yong-Xiang; Xie, Chun-Feng; Cheng, Yan-Na; Li, Song; Lou, Hong-Xiang

    2008-04-14

    Plagiochin E is a new macrocyclic bisbibenzyl compound isolated from Marchantia polymorpha. In the previous studies, we reported that when combined with fluconazole, plagiochin E had synergetic effects against the resistant strain of Candida albicans. Herein, we examined the reversal effect of plagiochin E on multidrug resistance in adriamycin-induced resistant K562/A02 cells and the parental K562 cells. Its cytotoxicity and reversal effects on multidrug resistance were assessed by MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide) assay. Apoptosis percentage of cells was obtained from Annexin V/fluorescein isothiocyanate (FITC) and propridium iodide (PI) double-staining. The effects of plagiochin E on P-glycoprotein activity were evaluated by measuring rhodamine 123 (Rh123)-associated mean fluorescence intensity and P-glycoprotein expression on the basis of the flow cytometric technology, respectively. The results showed that plagiochin E ranging from 2 to 12 mug/ml had little cytotoxicity against K562/A02 cells. When combined with adriamycin, it significantly promoted the sensitivity of K562/A02 cells toward adriamycin through increasing intracellular accumulation of adriamycin in a dose-dependent manner. Further study demonstrated that the inhibitory effect of plagiochin E on P-glycoprotein activity was the major cause of increased stagnation of adriamycin inside K562/A02 cells, indicating that plagiochin E, as a new class of mutidrug resistance inhibitor, may effectively reverse the multidrug resistance in K562/A02 cells via inhibiting expression and drug-transport function of P-glycoprotein.

  7. Small Molecule TH-39 Potentially Targets Hec1/Nek2 Interaction and Exhibits Antitumor Efficacy in K562 Cells via G0/G1 Cell Cycle Arrest and Apoptosis Induction.

    PubMed

    Zhu, Yongxia; Wei, Wei; Ye, Tinghong; Liu, Zhihao; Liu, Li; Luo, Yong; Zhang, Lidan; Gao, Chao; Wang, Ningyu; Yu, Luoting

    2016-01-01

    Cancer is still a major public health issue worldwide, and new therapeutics with anti-tumor activity are still urgently needed. The anti-tumor activity of TH-39, which shows potent anti-proliferative activity against K562 cells with an IC50 of 0.78 µM, was investigated using immunoblot, co-immunoprecipitation, the MTT assay, and flow cytometry. Mechanistically, TH-39 may disrupt the interaction between Hec1 and Nek2 in K562 cells. Moreover, TH-39 inhibited cell proliferation in a concentration- and time-dependent manner by influencing the morphology of K562 cells and inducing G0/G1 phase arrest. G0/G1 phase arrest was associated with down-regulation of CDK2-cyclin E complex and CDK4/6-cyclin D complex activities. Furthermore, TH-39 also induced cell apoptosis, which was associated with activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax. TH-39 could also decrease mitochondrial membrane potential (Δψm) and increase reactive oxygen species (ROS) accumulation in K562 cells. The results indicated that TH-39 might induce apoptosis via the ROS-mitochondrial apoptotic pathway. This study highlights the potential therapeutic efficacy of the anti-cancer compound TH-39 in treatment-resistant chronic myeloid leukemia. © 2016 The Author(s) Published by S. Karger AG, Basel.

  8. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells

    PubMed Central

    Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Park, Nam Gyu; Chang, Young-Chae; Lee, Young-Choon; Chung, Tae-Wook; Ha, Ki-Tae; Son, Jong-Keun

    2017-01-01

    Jellyfish species are widely distributed in the world’s oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura’s jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells. PMID:28133573

  9. Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification.

    PubMed

    Wu, Xunxun; Chen, Xiaofei; Dan, Jia; Cao, Yan; Gao, Shouhong; Guo, Zhiying; Zerbe, Philipp; Chai, Yifeng; Diao, Yong; Zhang, Lei

    2016-05-06

    Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines.

  10. Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification

    PubMed Central

    Wu, Xunxun; Chen, Xiaofei; Dan, Jia; Cao, Yan; Gao, Shouhong; Guo, Zhiying; Zerbe, Philipp; Chai, Yifeng; Diao, Yong; Zhang, Lei

    2016-01-01

    Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines. PMID:27150638

  11. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.

    PubMed

    Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava

    2012-12-05

    Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.

  12. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.

    PubMed

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-11-07

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  13. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-01-01

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein. PMID:27827994

  14. Overexpression of Hiwi Inhibits the Cell Growth of Chronic Myeloid Leukemia K562 Cells and Enhances Their Chemosensitivity to Daunomycin.

    PubMed

    Wang, Yalin; Jiang, Yan; Bian, Cuicui; Dong, Yi; Ma, Chao; Hu, Xiaolin; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a clonal disorder characterized by excessive accumulation of myeloid cells in the peripheral blood. In the present study, to investigate the role of Hiwi in leukemogenesis, lentivirus-mediated Hiwi overexpression was performed in a CML cell line, K562 cells. Our data revealed that Hiwi protein expression was undetectable in K562 cells, and its overexpression suppressed cell proliferation, induced cell cycle arrest at G0/G1 and G2/M phases, and promoted apoptosis in K562 cells in vitro. Expression of anti-apoptotic protein, Bcl-2, was decreased in cells expressing Hiwi, whereas that of pro-apoptotic proteins, Bax, activated caspase-3, -9, and cleaved poly (ADP-ribose) polymerase were increased. Additionally, Hiwi upregulation enhanced the chemosensitivity of CML cells to daunomycin. Our study illustrates that expression deletion of Hiwi may be involved in the pathogenesis of human CML and suggests a possible role of Hiwi in regulating the cell growth, cell cycle, and apoptosis of CML cells in vitro.

  15. [Effect of Recombinant Adenovirus AdE-SH2-Caspase 8 on the Apoptosis of Imatinib-resistant K562/G01 Cell Line].

    PubMed

    Wang, Lin; Fei, Chang; Huang, Zheng-Lan; Li, Hui; Liu, Zhang-Lin; Feng, Wen-Li

    2015-08-01

    To investigate the effect of SH2-Caspase 8 fusion protein expressed by recombinant adenovirus AdE-SH2-Caspase8-HA-GFP (SC) on the apoptosis of K562/G01 cell line, which is a BCR/ABL positive chronic myeloid leukemia cell line and resistant to imatinib. The K562/G01 cell line was infected with AdE-SH2-Caspase 8-HA-GFP adenovirus (SC), then the cells were divided into 3 groups: AdE-SH2m-Caspase 8-HA-GFP (SmC) group, AdE-GFP (CMV) group and PBS group as control. The infection efficiency was observed under fluorescent microscopy and by flow cytometry. The expression of fusion protein SH2-Caspase 8-HA was measured by Western blot. The morphology of the cells detected by Wright's staining. The apoptosis of the cells were detected by flow cytometry and DNA ladder. The expression of Caspase 3 and PARP were detected by Western blot. The infection efficiency of SC on K562/G01 cells was high which was confirmed by fluorescent microscopy and FCM. SH2-Caspase 8-HA fusion protein were expressed correctly in K562/G01 cells. After treatment with SC the apoptosis of K562/G01 cells could be observed by microscopy. The result of FCM showed that early apoptosis of K562/G01 cells increased significantly as compared with control groups (P < 0.05). DNA ladder showed that the classic DNA ladders appeared in K562/G01 cells after treatment with SC. The wester blot detection showed that the expression level of apoptosis-related protein Caspase 3 and PARP increased. The recombinant adenovirus SC expressing SH2-Caspase 8 fusion protein can induces the apoptosis of K562/G01 cells.

  16. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity

    PubMed Central

    Wang, Zeng; Hu, Wei; Zhang, Jia-Li; Wu, Xiu-Hua; Zhou, Hui-Jun

    2012-01-01

    Dihydroartemisinin (DHA), an active metabolite of artemisinin derivatives, is the most remarkable anti-malarial drug and has little toxicity to humans. Recent studies have shown that DHA effectively inhibits the growth of cancer cells. In the present study, we intended to elucidate the mechanisms underlying the inhibition of growth of iron-loaded human myeloid leukemia K562 cells by DHA. Mitochondria are important regulators of both autophagy and apoptosis, and one of the triggers for mitochondrial dysfunction is the generation of reactive oxygen species (ROS). We found that the DHA-induced autophagy of leukemia K562 cells, whose intracellular organelles are primarily mitochondria, was ROS dependent. The autophagy of these cells was followed by LC3-II protein expression and caspase-3 activation. In addition, we demonstrated that inhibition of the proliferation of leukemia K562 cells by DHA is also dependent upon iron. This inhibition includes the down-regulation of TfR expression and the induction of K562 cell growth arrest in the G2/M phase. PMID:23650588

  17. Proliferation-Attenuating and Apoptosis-Inducing Effects of Tryptanthrin on Human Chronic Myeloid Leukemia K562 Cell Line in Vitro

    PubMed Central

    Miao, Shan; Shi, Xiaopeng; Zhang, Hai; Wang, Siwang; Sun, Jiyuan; Hua, Wei; Miao, Qing; Zhao, Yong; Zhang, Caiqin

    2011-01-01

    Tryptanthrin, a kind of indole quinazoline alkaloid, has been shown to exhibit anti-microbial, anti-inflammation and anti-tumor effects both in vivo and in vitro. However, its biological activity on human chronic myeloid leukemia cell line K562 is not fully understood. In the present study, we investigated the proliferation-attenuating and apoptosis-inducing effects of tryptanthrin on leukemia K562 cells in vitro and explored the underlying mechanisms. The results showed that tryptanthrin could significantly inhibit K562 cells proliferation in a time- and dose-dependent manner as evidenced by MTT assay and flow cytometry analysis. We also observed pyknosis, chromatin margination and the formation of apoptotic bodies in the presence of tryptanthrin under the electron microscope. Nuclei fragmentation and condensation by Hoechst 33258 staining were detected as well. The amount of apoptotic cells significantly increased whereas the mitochondrial membrane potential decreased dramatically after tryptanthrin exposure. K562 cells in the tryptanthrin treated group exhibited an increase in cytosol cyt-c, Bax and activated caspase-3 expression while a decrease in Bcl-2, mito cyt-c and pro-caspase-3 contents. However, the changes of pro-caspase-3 and activated caspase-3 could be abolished by a pan-caspase inhibitor ZVAD-FMK. These results suggest that tryptanthrin has proliferation-attenuating and apoptosis-inducing effects on K562 cells. The underlying mechanism is probably attributed to the reduction in mitochondria membrane potential, the release of mito cyt-c and pro-caspase-3 activation. PMID:21747710

  18. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines.

    PubMed

    Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J

    2015-12-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.

  19. Low‑dose radiation‑induced apoptosis in human leukemia K562 cells through mitochondrial pathways.

    PubMed

    Xin, Yong; Zhang, Hai-Bin; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Jiang, Guan; Zhang, Long-Zhen

    2014-09-01

    High‑dose total body irradiation (TBI) has an established role as preparative regimen for bone‑marrow transplantation in the treatment of chronic myelogenous leukemia (CML), but this regimen still has a relatively high rate of acute and late toxicity. Low‑dose radiation (LDR) induces apoptosis of tumor cells and has numerous beneficial effects on normal tissues, including radiation homeostasis and adaptive response. Based on the previous evidence, in the present study, K562 cells were exposed to LDR, high‑dose radiation (HDR), and LDR in combination with HDR to investigate the possible mechanism of the apoptotic effect and hypersensitivity induced by LDR. The apoptotic rate increased in all radiation groups in a time‑dependent manner. An upregulation of Bax protein expression and a downregulation of Bcl‑xl in a dose‑dependent manner in human leukemia K562 cells was observed. However, the expression of p53 protein did not change in all of the radiation cell groups. The mitochondrial membrane potential (ΔΨm) in K562 cells decreased in all of the radiation cell groups in a dose‑dependent manner. Furthermore, the decrease of ΔΨm was enhanced in the LDR/HDR group compared with that in the LDR or HDR groups. The activity of caspase‑3 was enhanced in all of the radiation groups. In the LDR/HDR group, the activity of caspase‑3 was higher than that in the HDR or LDR groups. The present study provided preliminary experimental evidence of LDR being beneficial in combination with TBI in the treatment of CML.

  20. Differentiation of K562 cells under ELF-EMF applied at different time courses.

    PubMed

    Ayşe, Inhan-Garip; Zafer, Akan; Sule, Oncul; Işil, Işal-Turgut; Kalkan, Tunaya

    2010-08-01

    The time-course of ELF-EMF application to biological systems is thought to be an important parameter determining the physiological outcome. This study investigated the effect of ELF-EMF on the differentiation of K562 cells at different time courses. ELF-EMF (50 Hz, 5 mT, 1 h) was applied at two different time-courses; first at the onset of hemin induction for 1 h, and second, daily 1 h for four days. While single exposure to ELF-EMF resulted in a decrease in differentiation, ELF-EMF applied everyday for 1 h caused an increase in differentiation. The effect of co-stressors, magnesium, and heat-shock was also determined and similar results were obtained. ELF-EMF increased ROS levels in K562 cells not treated with hemin, however did not change ROS levels of hemin treated cells indicating that ROS was not the cause. Overall, these results imply that the time-course of application is an important parameter determining the physiological response of cells to ELF-EMF.

  1. Aqueous extract of Crataegus azarolus protects against DNA damage in human lymphoblast Cell K562 and enhances antioxidant activity.

    PubMed

    Mustapha, Nadia; Bouhlel, Inès; Chaabane, Fadwa; Bzéouich, Imèn Mokdad; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2014-02-01

    The present study was carried out to characterize the cellular antioxidant effect of the aqueous extract of Crataegus azarolus and its antigenotoxic potential using human myelogenous cells, K562. The antioxidant capacity of this extract was evaluated by determining its cellular antioxidant activity (CAA) in K562 cells. Also, preceding antigenotoxicity assessment, its eventual genotoxicity property was investigated by evaluating its capacity to induce the DNA degradation of treated cell nuclei. As no genotoxicity was detected at different exposure times, its ability to protect cell DNA against H2O2 oxidative effect was investigated, using the "comet assay." It appears that 800 μg/mL of extract inhibited the genotoxicity induced by H2O2 with a rate of 41.30 %, after 4 h of incubation. In addition, this extract revealed a significant cellular antioxidant capacity against the reactive oxygen species in K562 cells.

  2. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    PubMed

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  3. 20(S)-Ginsenoside Rh2 Induce the Apoptosis and Autophagy in U937 and K562 Cells.

    PubMed

    Zhuang, Jianjian; Yin, Juxin; Xu, Chaojian; Mu, Ying; Lv, Shaowu

    2018-03-08

    Acute myeloid leukemia (AML) and Chronic myelogenous leukemia (CML) are common leukemia in adults. 20(S)-GRh2 is an important bioactive substance that is present in Panax ginseng. However, there are no investigations that deal with the comparison of apoptosis, the occurrence of autophagy, and the relationship between apoptosis and autophagy after being treated with 20(S)-GRh2 in AML and CML. In this study, we explored the effect of 20(S)-GRh2 on the AML and CML (U937 and K562). Fluorescence microscopy, CCK-8, Quantitative realtime PCR, Western blot, transmission electron microscopy (TEM), and flow cytometric analysis were used to detect the occurrence of cell proliferation inhibition, apoptosis, and autophagy. By using the above methods, it was determined that apoptosis induced by 20(S)-GRh2 was more obvious in K562 than U937 cells and 20(S)-GRh2 could generate autophagy in K562 and U937 cells. When pretreated by a specific inhibitor of autophagy, (3-methyladenine), the 20(S)-GRh2-induced apoptosis was enhanced, which indicated that 20(S)-GRh2-induced autophagy may protect U937 and K562 cells from undergoing apoptotic cell death. On the other hand, pretreated by an apoptosis suppressor (Z-VAD-FMK), it greatly induced the autophagy and partially prevented 20(S)-GRh2 induced apoptosis. This phenomenon indicated that 20(S)-GRh2-induced autophagy may serve as a survival mechanism and apoptosis and autophagy could act as partners to induce cell death in a cooperative manner. These findings may provide a rationale for future clinical application by using 20(S)-GRh2 combined autophagy inhibitors for AML and CML.

  4. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA

    PubMed Central

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-01-01

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. PMID:23770036

  5. The fusarin analogue NG-391 impairs nucleic acid formation in K-562 leukemia cells

    USDA-ARS?s Scientific Manuscript database

    The clavicipitaceous fungus Metarhizium robertsii produces the fusarin-like mycotoxin NG-391. We report on the biological effects of NG-391 on K-562 human cancer cells, obtained with radionuclide incorporation assays, along with nucleosome release and caspase assays, respectively. Our data suggests ...

  6. Apoptosis of leukemia K562 and Molt-4 cells induced by emamectin benzoate involving mitochondrial membrane potential loss and intracellular Ca2+ modulation.

    PubMed

    Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Huang, Qingchun

    2017-06-01

    Leukemia threatens millions of people's health and lives, and the pesticide-induced leukemia has been increasingly concerned because of the etiologic exposure. In this paper, cytotoxic effect of emamectin benzoate (EMB), an excellent natural-product insecticide, was evaluated through monitoring cell viability, cell apoptosis, mitochondrial membrane potential and intracellular Ca 2+ concentration ([Ca 2+ ] i ) in leukemia K562 and Molt-4 cells. Following the exposure to EMB, cell viability was decreased and positive apoptosis of K562 and Molt-4 cells was increased in a concentration- and time- dependent fashion. In the treatment of 10μM EMB, apoptotic cells accounted for 93.0% to K562 cells and 98.9% to Molt-4 cells based on the control, meanwhile, 63.47% of K562 cells and 81.15% of Molt-4 cells exhibited late apoptotic and necrotic features with damaged cytoplasmic membrane. 48h exposure to 10μM EMB increased significantly the great number of cells with mitochondrial membrane potential (MMP) loss, and the elevation of [Ca 2+ ] i level was peaked and persisted within 70s in K562 cells whilst 50s in Molt-4 cells. Moreover, a stronger cytotoxicity of EMB was further observed than that of imatinib. The results authenticate the efficacious effect of EMB as a potential anti-leukemia agent and an inconsistency with regard to insecticide-induced leukemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A new disposable electrode for electrochemical study of leukemia K562 cells and anticancer drug sensitivity test.

    PubMed

    Yu, Chunmei; Zhu, Zhenkun; Wang, Li; Wang, Qiuhong; Bao, Ning; Gu, Haiying

    2014-03-15

    Developing cost-effective and simple analysis tools is of vital importance for practical applications in bioanalysis. In this work, a new disposable electrochemical cell sensor with low cost and simple fabrication was proposed to study the electrochemical behavior of leukemia K562 cells and the effect of anticancer drugs on cell viability. The analytical device was integrated by using ITO glass as the substrate of working electrodes and paper as the electrolytic cell. The cyclic voltammetry of the K562 cells at the disposable electrode exhibited an irreversible anodic peak and the peak current is proportional to the cell number. This anodic peak is attributed to the oxidation of guanine in cells involving two protons per transfer of two electrons. For the drug sensitivity tests, arsenic trioxide and cyclophosphamide were added to cell culture media. As a result, the electrochemical responses of the K562 cells decreased significantly. The cytotoxicity curves and results obtained corresponded well with the results of CCK-8 assays. In comparison to conventional methods, the proposed method is simple, rapid and inexpensive. More importantly, the developed sensor is supposed to be a single-use disposable device and electrodes were prepared "as new" for each experiment. We think that such disposable electrodes with these characteristics are suitable for experimental study with cancer cells or other types of pathogens for disease diagnosis, drug selection and on-site monitoring. © 2013 Elsevier B.V. All rights reserved.

  8. The multidrug resistance pumps are inhibited by silibinin and apoptosis induced in K562 and KCL22 leukemia cell lines.

    PubMed

    Noori-Daloii, Mohammad Reza; Saffari, Mojtaba; Raoofian, Reza; Yekaninejad, Mirsaeed; Dinehkabodi, Orkideh Saydi; Noori-Daloii, Ali Reza

    2014-05-01

    Silibinin have been introduced for several years as a potent antioxidant in the field of nutraceuticals. Based on wide persuasive effects of this drug, we have decided to investigate the effects of silibinin on chronic myelogenous leukemia (CML) in vitro models, K562 and KCL22 cell lines. Lactate dehydrogenase (LDH) release, microculture tetrazolium test (MTT assay) and real-time PCR were employed to evaluate the effects of silibinin on cell cytotoxicity, cell proliferation and expression of various multidrug resistance genes in these cell lines, respectively. Our results have shown that presence of silibinin has inhibitory effects on cell proliferation of K562 and KCL22 cell lines. Also, our data indicated that silibinin, in a dose-dependent manner with applying no cytotoxic effects, inhibited cell proliferation and reduced mRNA expression levels of some transporter genes e.g. MDR1, MRP3, MRP2, MRP1, MRP5, MRP4, ABCG2, ABCB11, MRP6 and MRP7. The multifarious in vitro inhibitory effects of silibinin are in agreement with growing body of evidence that silibinin would be an efficient anticancer agent in order to be used in multi-target therapy to prevail the therapeutic hold backs against CML. Copyright © 2014. Published by Elsevier Ltd.

  9. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, andmore » IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.« less

  10. Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics.

    PubMed

    Lu, Yang; Li, Hui; Geng, Yue

    2018-01-31

    δ-Tocopherol (δ-TOH) is a form of vitamin E with higher bioactivity. In this study, we studied the bioactivity of δ-TOH using the IC 50 of δ-TOH on RAW264.7 (80 μM) and K562 (110 μM) cells. We compared the differential metabolites from the cell lines with and without δ-TOH treatment by 1 H NMR metabonomics analysis. It was found that δ-TOH affected the protein biosynthesis, betaine metabolism, and urea cycle in various ways in both cell lines. Metabolic levels of the cell lines were changed after treatment with δ-TOH as differential metabolites were produced. The betaine level in RAW264.7 cells was reduced significantly, while the l-lactic acid level in K562 cells was significantly enhanced. The metabolic changes might contribute to the switch of the respiration pattern from aerobic respiration to anaerobic respiration in K562 cells. These results are helpful in further understanding the subtoxicity of δ-TOH.

  11. Voltage-Gated K+ Channel, Kv3.3 Is Involved in Hemin-Induced K562 Differentiation

    PubMed Central

    Song, Min Seok; Choi, Seon Young; Ryu, Pan Dong; Lee, So Yeong

    2016-01-01

    Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes. PMID:26849432

  12. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA.

    PubMed

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-08-15

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Aclacinomycin A Sensitizes K562 Chronic Myeloid Leukemia Cells to Imatinib through p38MAPK-Mediated Erythroid Differentiation

    PubMed Central

    Liu, Fu-Hwa; Huang, Yu-Wen; Huang, Huei-Mei

    2013-01-01

    Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and

  14. Aclacinomycin A sensitizes K562 chronic myeloid leukemia cells to imatinib through p38MAPK-mediated erythroid differentiation.

    PubMed

    Lee, Yueh-Lun; Chen, Chih-Wei; Liu, Fu-Hwa; Huang, Yu-Wen; Huang, Huei-Mei

    2013-01-01

    Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and

  15. Distinct Hypericum perforatum L. total extracts exert different antitumour activity on erythroleukemic K562 cells.

    PubMed

    Valletta, Elena; Rinaldi, Annamaria; Marini, Mario; Franzese, Ornella; Roscetti, Gianna

    2018-05-22

    Total flower extracts of Hypericum perforatum L. obtained with 3 different solvent systems were tested on tumour cell line cultures by comparing two groups of plants harvested in different times and places. The extracts, characterized according to the spectroscopic profile and the hypericin content, were tested on the growth and apoptotic death of K562 cells, a human erythroleukemic cell line. Growth and apoptosis were analysed by viable cell count, flow cytometry, and fluorescence microscopy at 6, 24, and 48 hr of culture following 1 hr exposure to the extracts under investigation. Here, we show that Hypericum extracts are able to reduce the growth of K562 cells and induce different degrees and kinetics of apoptosis according to the group of plants of origin. Also, we highlighted interesting differences in terms of efficacy among the extracts, with some samples losing their effectiveness along the culture time and others able to maintain or even increase their efficacy. Furthermore, the data herein obtained confirm the role of non hypericin compounds that are present in different proportions in the two plant groups and in the extracts analysed. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Olive (Olea europaea) Leaf Extract Induces Apoptosis and Monocyte/Macrophage Differentiation in Human Chronic Myelogenous Leukemia K562 Cells: Insight into the Underlying Mechanism

    PubMed Central

    Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells. PMID:24803988

  17. Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism.

    PubMed

    Samet, Imen; Han, Junkyu; Jlaiel, Lobna; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.

  18. Mastic oil from Pistacia lentiscus var. chia inhibits growth and survival of human K562 leukemia cells and attenuates angiogenesis.

    PubMed

    Loutrari, Heleni; Magkouta, Sophia; Pyriochou, Anastasia; Koika, Vasiliki; Kolisis, Fragiskos N; Papapetropoulos, Andreas; Roussos, Charis

    2006-01-01

    Mastic oil from Pistacia lentiscus var. chia, a natural plant extract traditionally used as a food additive, has been extensively studied for its antimicrobial activity attributed to the combination of its bioactive components. One of them, perillyl alcohol (POH), displays tumor chemopreventive, chemotherapeutic, and antiangiogenic properties. We investigated whether mastic oil would also suppress tumor cell growth and angiogenesis. We observed that mastic oil concentration and time dependently exerted an antiproliferative and proapoptotic effect on K562 human leukemia cells and inhibited the release of vascular endothelial growth factor (VEGF) from K562 and B16 mouse melanoma cells. Moreover, mastic oil caused a concentration-dependent inhibition of endothelial cell (EC) proliferation without affecting cell survival and a significant decrease of microvessel formation both in vitro and in vivo. Investigation of underlying mechanism(s) demonstrated that mastic oil reduced 1) in K562 cells the activation of extracellular signal-regulated kinases 1/2 (Erk1/2) known to control leukemia cell proliferation, survival, and VEGF secretion and 2) in EC the activation of RhoA, an essential regulator of neovessel organization. Overall, our results underscore that mastic oil, through its multiple effects on malignant cells and ECs, may be a useful natural dietary supplement for cancer prevention.

  19. Induction of apoptosis in K562 cells by dicyclohexylammonium salt of hyperforin through a mitochondrial-related pathway.

    PubMed

    Liu, Jin-Yun; Liu, Zhong; Wang, Dong-Mei; Li, Man-Mei; Wang, Shao-Xiang; Wang, Rui; Chen, Jian-Ping; Wang, Yi-Fei; Yang, De-Po

    2011-04-25

    Hyperforin is an abundant phloroglucinol-type constituent isolated from the extract of the flowering upper portion of the plant Hypericum perforatum L. The dicyclohexylammonium salt of hyperforin (DCHA-HF) has exhibited antitumor and antiangiogenic activities in various cancer cells. Here, the antitumor effects of DCHA-HF on the chronic myeloid leukemia K562 cell line were investigated for the first time. DCHA-HF exhibited dose- and time-dependent inhibitory activities against K562 cells, with IC(50) values of 8.6 and 3.2 μM for 48 h and 72 h of treatment, respectively, which was more effective than that of the hyperforin. In contrast, little cytotoxic activity was observed with DCHA-HF on HUVECs. DCHA-HF treatment resulted in induction of apoptosis as evidenced from DNA fragmentation, nuclear condensation and increase of early apoptotic cells by DAPI staining analysis, TUNEL assay and Annexin V-FITC/PI double-labeled staining analysis, respectively. Moreover, DCHA-HF elicited dissipation of mitochondrial transmembrane potential that commenced with the release of cytochrome c through down-regulation of expression of anti-apoptotic proteins and up-regulation of expression of pro-apoptotic proteins. DCHA-HF treatment induced activation of the caspase 3, 8, and 9 cascade and subsequent PARP cleavage, and DCHA-HF-induced apoptosis was significantly inhibited by caspase inhibitors. Treated cells were arrested at the G1 phase of the cell cycle and the expression of p53 and p27(Kip1), two key regulators related to cell cycle and apoptosis, was up-regulated. These results suggest that DCHA-HF inhibits K562 cell growth by inducing caspase-dependent apoptosis mediated by a mitochondrial pathway and arresting the cell cycle at the G1 phase. Therefore, DCHA-HF is a potential chemotherapeutic antitumor drug for chronic myeloid leukemia therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Thiosemicarbazone p-Substituted Acetophenone Derivatives Promote the Loss of Mitochondrial Δψ, GSH Depletion, and Death in K562 Cells

    PubMed Central

    Pessoto, Felipe S.; Yokomizo, Cesar H.; Prieto, Tatiana; Fernandes, Cleverton S.; Silva, Alan P.; Kaiser, Carlos R.; Basso, Ernani A.; Nantes, Iseli L.

    2015-01-01

    A series of thiosemicarbazone (TSC) p-substituted acetophenone derivatives were synthesized and chemically characterized. The p-substituents appended to the phenyl group of the TSC structures were hydrogen, fluor, chlorine, methyl, and nitro, producing compounds named TSC-H, TSC-F, TSC-Cl, TSC-Me, and TSC-NO2, respectively. The TSC compounds were evaluated for their capacity to induce mitochondrial permeability, to deplete mitochondrial thiol content, and to promote cell death in the K562 cell lineage using flow cytometry and fluorescence microscopy. TSC-H, TSC-F, and TSC-Cl exhibited a bell-shaped dose-response curve for the induction of apoptosis in K562 cells due to the change from apoptosis to necrosis as the principal mechanism of cell death at the highest tested doses. TSC-Me and TSC-NO2 exhibited a typical dose-response profile, with a half maximal effective concentration of approximately 10 µM for cell death. Cell death was also evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which revealed lower toxicity of these compounds for peripheral blood mononuclear cells than for K562 cells. The possible mechanisms leading to cell death are discussed based on the observed effects of the new TSC compounds on the cellular thiol content and on mitochondrial bioenergetics. PMID:26075034

  1. Cytotoxic and apoptotic effects of different extracts of Artemisia biennis Willd. on K562 and HL-60 cell lines

    PubMed Central

    Tayarani-Najaran, Zahra; Makki, Farideh-Sadat; Alamolhodaei, Nafiseh-Sadat; Mojarrab, Mahdi; Emami, Seyed Ahmad

    2017-01-01

    Objective(s): Artemisia is a genus of herbs and small shrubs forms an important part of natural vegetation in Iran. It has been reported that several Artemisia species possess anti-proliferative effects. Considering the value of this genus in anti-cancer researches we have chosen Artemisia biennis for cytotoxic and mechanistic studies. Materials and Methods: In this study we have investigated the cytotoxic and apoptotic effects of petroleum ether, dichloromethane, ethyl acetate, ethanol, and ethanol: water (1:1 v/v) extracts of A. biennis Willd. on two cancer human cell lines (K562 and HL-60) and J774 as normal cells. Results: CH2Cl2 extract was found to have the highest anti-proliferative effect on cancer cells. IC50 values obtained in AlamarBlue® assay for CH2Cl2 extract were 64.86 and 54.31 µg/ml on K562 and HL-60 cells respectively. In flow cytometry histogram of the cells treated with CH2Cl2 extract, sub-G1 peak was induced. DNA fragmentation, increased in the level of Bax and cleavage of PARP protein all showed the induction of apoptosis with CH2Cl2 extract after 48 hr contact with cells. Conclusion: The results can corroborate the cytotoxic and apoptotic effects of the CH2Cl2 extract of A. biennis on the K562 and HL-60 cancer cell lines. PMID:28293393

  2. Allium Roseum L. Extract Exerts Potent Suppressive Activities on Chronic Myeloid Leukemia K562 Cell Viability Through the Inhibition of BCR-ABL, PI3K/Akt, and ERK1/2 Pathways and the Abrogation of VEGF Secretion.

    PubMed

    Souid, Soumaya; Najjaa, Hanen; Riahi-Chebbi, Ichrak; Haoues, Meriam; Neffati, Mohamed; Arnault, Ingrid; Auger, Jacques; Karoui, Habib; Essafi, Makram; Essafi-Benkhadir, Khadija

    2017-01-01

    Use of plant extracts, alone or combined to the current chemotherapy as chemosensitizers, has emerged as a promising strategy to overcome tumor drug resistance. Here, we investigated the anticancer activity of Allium roseum L. extracts, a wild edible species in North Africa, on human Chronic Myeloid Leukemia (CML) K562 cells. The dehydrated aqueous extract (DAE) disturbed the cell cycle progression and induced the apoptosis of K562 cells. Chemical analysis of DAE showed a diversity of organosulfur compounds S-alk(en)yl-cysteine sulfoxides (RCSO) and high amount of allicin, suggesting that such molecule may be behind its antitumor effect. DAE was efficient in inhibiting K562 cell viability. DAE inhibitory effect was associated with the dephosphorylation of the BCR-ABL kinase and interfered with ERK 1/2 , Akt, and STAT5 pathways. Furthermore, we found that DAE-induced inactivation of Akt kinase led to the activation of its target FOXO3 transcription factor, enhancing the expression of FOXO3-regulated proapoptotic effectors, Bim and Bax, and cell cycle inhibitor p27. Finally, we found that DAE reduced the secretion of vascular endothelial growth factor. Overall, our data suggest that A. roseum extract has great potential as a nontoxic cheap and effective alternative to conventional chemotherapy.

  3. The cytotoxic action of the CD56+ fraction of cytokine-induced killer cells against a K562 cell line is mainly restricted to the natural killer cell subset.

    PubMed

    Chieregato, Katia; Zanon, Cristina; Castegnaro, Silvia; Bernardi, Martina; Amati, Eliana; Sella, Sabrina; Rodeghiero, Francesco; Astori, Giuseppe

    2017-01-01

    Cytokine-induced killer cells are polyclonal T cells generated ex vivo and comprise two main subsets: the CD56- fraction, possessing an alloreactive potential caused by T cells (CD3+CD56-), and the CD56+ fraction, characterised by a strong antitumour capacity induced by natural killer-like T cells (NK-like T, CD3+CD56+) and natural killer cells (NK, CD3-CD56+ bright). We investigated the cytotoxic action of selected CD56+ cell subpopulations against a human chronic myeloid leukaemia (K562) cell line. After immunomagnetic selection of the CD56+ cell fraction, NK bright cells (CD3-CD56+ bright) and two subsets of NK-like T cells (CD3+CD56+), called NK-like T CD56 dim and NK-like T CD56 bright, could be identified. The cytotoxic effect against K562 cells was mainly exerted by the NK bright subpopulation and resulted to be inversely correlated with the percentage of NK-like T CD56 dim cells in the culture. The lytic action appeared to be independent of cell degranulation as suggested by the lack of change in the expression of CD107a. We conclude that the cytotoxic action of CD56+ cells against a K562 cell line is mainly due to the NK cells.

  4. Bcr-Abl-independent mechanism of resistance to imatinib in K562 cells: Induction of cyclooxygenase-2 (COX-2) by histone deacetylases (HDACs).

    PubMed

    Kalle, Arunasree M; Sachchidanand, Sachchidanand; Pallu, Reddanna

    2010-09-01

    Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis.

    PubMed

    Flores-Alvarez, Luis José; Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2018-06-01

    Plant defensins, a group of antimicrobial peptides, show selective cytotoxicity toward cancer cells. However, their mechanisms of action remain poorly understood. Here, we evaluated the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on K562 chronic myeloid leukemia cells and analyzed the pathway involved in the induction of cell death. The defensin PaDef was not cytotoxic against human PBMCs; however, it was cytotoxic for K562 cell line (IC 50  = 97.3 μg/ml) activating apoptosis at 12 h. PaDef did not affect the mitochondrial membrane potential (ΔΨm), neither the transmembranal potential or the release of intracellular calcium. Also, PaDef induced gene expression of caspase 8 (∼2 fold), TNF-α (∼4 fold) and TNFR1 (∼10 fold). In addition, the activation of caspase 8 was detected at 24 h, whereas caspase 9 activity was not modified, suggesting that the extrinsic apoptosis pathway could be activated. In conclusion, PaDef induces apoptosis on K562 cells, which is related to the activation of caspase 8 and involves the participation of TNF-α, which is a novel property for a plant defensin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Diverse Effects of Glutathione and UPF Peptides on Antioxidant Defense System in Human Erythroleukemia Cells K562.

    PubMed

    Kairane, Ceslava; Mahlapuu, Riina; Ehrlich, Kersti; Kilk, Kalle; Zilmer, Mihkel; Soomets, Ursel

    2012-01-01

    The main goal of the present paper was to examine the influence of the replacement of γ-Glu moiety to α-Glu in glutathione and in its antioxidative tetrapeptidic analogue UPF1 (Tyr(Me)-γ-Glu-Cys-Gly), resulting in α-GSH and UPF17 (Tyr(Me)-Glu-Cys-Gly), on the antioxidative defense system in K562 cells. UPF1 and GSH increased while UPF17 and α-GSH decreased the activity of CuZnSOD in K562 cells, at peptide concentration of 10 μM by 42% and 38% or 35% and 24%, respectively. After three-hour incubation, UPF1 increased and UPF17 decreased the intracellular level of total GSH. Additionally, it was shown that UPF1 is not degraded by γ-glutamyltranspeptidase, which performs glutathione breakdown. These results indicate that effective antioxidative character of peptides does not depend only on the reactivity of the thiol group, but also of the other functional groups, and on the spatial structure of peptides.

  7. Mechanistic Evaluation for Mixed-field Agglutination in the K562 Cell Study Model with Exon 3 Deletion of A1 Gene.

    PubMed

    Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng

    2015-01-01

    In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. © 2015 by the Association of Clinical Scientists, Inc.

  8. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressedmore » c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.« less

  9. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice.

    PubMed

    Verrax, Julien; Stockis, Julie; Tison, Aurélie; Taper, Henryk S; Calderon, Pedro Buc

    2006-09-14

    The effect of oxidative stress induced by the ascorbate/menadione-redox association was examined in K562 cells, a human erythromyeloid leukaemia cell line. Our results show that ascorbate enhances menadione redox cycling, leading to the formation of intracellular reactive oxygen species (as shown by dihydrorhodamine 123 oxidation). The incubation of cells in the presence of both ascorbate/menadione and aminotriazole, a catalase inhibitor, resulted in a strong decrease of cell survival, reinforcing the role of H(2)O(2) as the main oxidizing agent killing K562 cells. This cell death was not caspase-3-dependent. Indeed, neither procaspase-3 and PARP were processed and only a weak cytochrome c release was observed. Moreover, we observed only 23% of cells with depolarized mitochondria. In ascorbate/menadione-treated cells, DNA fragmentation was observed without any sign of chromatin condensation (DAPI and TUNEL tests). The cell demise by ascorbate/menadione is consistent with a necrosis-like cell death confirmed by both cytometric profile of annexin-V/propidium iodide labeled cells and by light microscopy examination. Finally, we showed that a single i.p. administration of the association of ascorbate and menadione is able to inhibit the growth of K562 cells by about 60% (in both tumour size and volume) in an immune-deficient mice model. Taken together, these results reinforced our previous claims about a potential application of the ascorbate/menadione association in cancer therapy.

  10. Apoptosis induction in MV4-11 and K562 human leukemic cells by Pereskia sacharosa (Cactaceae) leaf crude extract.

    PubMed

    Asmaa, Mat Jusoh Siti; Al-Jamal, Hamid Ali Nagi; Ang, Cheng Yong; Asan, Jamaruddin Mat; Seeni, Azman; Johan, Muhammad Farid

    2014-01-01

    Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

  11. The flavonoid tangeretin activates the unfolded protein response and synergizes with imatinib in the erythroleukemia cell line K562.

    PubMed

    Lust, Sofie; Vanhoecke, Barbara; Van Gele, Mireille; Philippé, Jan; Bracke, Marc; Offner, Fritz

    2010-06-01

    We explored the mechanism of cell death of the polymethoxyflavone tangeretin (TAN) in K562 breakpoint cluster region-abelson murine leukemia (Bcr-Abl+) cells. Flow cytometric analysis showed that TAN arrested the cells in the G(2)/M phase and stimulated an accumulation of the cells in the sub-G(0) phase. TAN-induced cell death was evidenced by poly(ADP)-ribose polymerase cleavage, DNA laddering fragmentation, activation of the caspase cascade and downregulation of the antiapoptotic proteins Mcl-1 and Bcl-x(L). Pretreatment with the pancaspase inhibitor Z-VAD-FMK_blocked caspase activation and cell cycle arrest but did not inhibit apoptosis which suggest that other cell killing mechanisms like endoplasmic reticulum (ER)-associated cell death pathways could be involved. We demonstrated that TAN-induced apoptosis was preceded by a rapid activation of the proapoptotic arm of the unfolded protein response, namely PKR-like ER kinase. This was accompanied by enhanced levels of glucose-regulated protein of 78 kDa and of spliced X-box binding protein 1. Furthermore, TAN sensitized K562 cells to the cell killing effects of imatinib via an apoptotic mechanism. In conclusion, our results suggest that TAN is able to induce apoptosis in Bcr-Abl+ cells via cell cycle arrest and the induction of the unfolded protein response, and has synergistic cytotoxicity with imatinib.

  12. Anti-Tumor Activity of Eurycoma longifolia Root Extracts against K-562 Cell Line: In Vitro and In Vivo Study

    PubMed Central

    Majid, Amin Malik Shah Abdul; Kit-Lam, Chan; Abdullah, Wan Zaidah; Zaki, Abdelhamid; Jamal Din, Shah Kamal Khan; Yusoff, Narazah Mohd

    2014-01-01

    Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 107 K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management. PMID:24409284

  13. Comparison of different methods for erythroid differentiation in the K562 cell line.

    PubMed

    Shariati, Laleh; Modaress, Mehran; Khanahmad, Hossein; Hejazi, Zahra; Tabatabaiefar, Mohammad Amin; Salehi, Mansoor; Modarressi, Mohammad Hossein

    2016-08-01

    To compare methods for erythroid differentiation of K562 cells that will be promising in the treatment of beta-thalassemia by inducing γ-globin synthesis. Cells were treated separately with: RPMI 1640 medium without glutamine, RPMI 1640 medium without glutamine supplemented with 1 mM sodium butyrate, RPMI 1640 medium supplemented with 1 mM sodium butyrate, 25 µg cisplatin/ml, 0.1 µg cytosine arabinoside/ml. The highest differentiation (84 %) with minimum toxicity was obtained with cisplatin at 15 µg /ml. Real-time RT-PCR showed that expression of the γ-globin gene was significantly higher in the cells differentiated with cisplatin compared to undifferentiated cells (P < 0.001). Cisplatin is useful in the experimental therapy of ß-globin gene defects and can be considered for examining the basic mechanism of γ-reactivation.

  14. Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells.

    PubMed

    Dash, Tapan K; Konkimalla, V Badireenath

    2017-02-01

    Curcumin is very well established as a chemo-therapeutic, chemo-preventive and chemo-sensitizing agent in diverse disease conditions. As the isolated pure form has poor solubility and pharmacokinetic problems, therefore it is encapsulated in to several nano-formulations to improve its bioavailability. Here in the current study, we aim to compare different nano-formulations of curcumin for their chemo-sensitizing activity in doxorubicin (DOX) resistant K562 cells. Four different curcumin formulations were prepared namely DMSO assisted curcumin nano-dispersion (CurD, 260 nm), liposomal curcumin (CurL, 165 nm), MPEG-PCL micellar curcumin (CurM, 18 nm) and cyclodextrin encapsulated curcumin (CurN, 37 nm). The formulations were subjected to particle characterizations (size, zeta potential, release studies), followed by biological assays such as cellular uptake, P-gp inhibitory activity and reversal of DOX resistance by co-treatment with DOX. Curcumin uptake in K562N and K562R cells was mildly reduced when treated with CurL and CurM, while for CurD and CurN the uptake remained equivalent. However, CurL retained P-gp inhibitory activity of curcumin and with a considerable chemo-sensitizing effect but CurM showed no P-gp inhibitory activity. CurN retained above biological activities, but requires a secondary carrier under in vivo conditions. From the results, CurM was found to be most suitable for solubilization of curcumin where as CurL can be considered as most suitable nano-formulation for reversal of DOX resistance.

  15. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    PubMed

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Rotenone isolated from Pachyrhizus erosus displays cytotoxicity and genotoxicity in K562 cells.

    PubMed

    Estrella-Parra, Edgar A; Gomez-Verjan, Juan C; González-Sánchez, Ignacio; Vázquez-Martínez, Edgar Ricardo; Vergara-Castañeda, Edgar; Cerbón, Marco A; Alavez-Solano, Dagoberto; Reyes-Chilpa, Ricardo

    2014-01-01

    Pachyrhizus erosus (Fabaceae) is a herb commonly known as 'yam bean', which has been cultivated in México since pre-Columbian times for its edible tubers. The seeds are also known for their acaricidal and insecticidal properties due to rotenone and other isoflavonoid contents. Rotenone has exhibited cytotoxic activity against several human tumour cell lines; however, its mechanism of action is still not fully understood. In this study, we determined the cytotoxicity of rotenone isolated from P. erosus seeds on K562 human leukaemia cells. Rotenone exhibited significant cytotoxic activity (IC50 = 13.05 μM), as determined by the MTT assay. Three other isolated isoflavonoids were not cytotoxic. Rotenone genotoxicity was detected using the comet assay. Rotenone induced cell death, and caspase-3 activation as indicated by TUNEL assay, and immunocytofluorescence. Plasmid nicking assay indicated that rotenone does not interact directly with DNA.

  17. Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells.

    PubMed

    Chen, Ying-Jung; Liu, Wen-Hsin; Kao, Pei-Hsiu; Wang, Jeh-Jeng; Chang, Long-Sen

    2010-06-15

    CMS-9, a phospholipase A(2) (PLA(2)) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA(2) activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation. 2010 Elsevier Ltd. All rights reserved.

  18. 4-Nerolidylcatechol: apoptosis by mitochondrial mechanisms with reduction in cyclin D1 at G0/G1 stage of the chronic myelogenous K562 cell line.

    PubMed

    Benfica, Polyana Lopes; Ávila, Renato Ivan de; Rodrigues, Bruna Dos Santos; Cortez, Alane Pereira; Batista, Aline Carvalho; Gaeti, Marilisa Pedroso Nogueira; Lima, Eliana Martins; Rezende, Kênnia Rocha; Valadares, Marize Campos

    2017-12-01

    4-Nerolidylcatechol (4-NRC) has showed antitumor potential through apoptosis. However, its apoptotic mechanisms are still unclear, especially in leukemic cells. To evaluate the cytotoxic potential of 4-NRC and its cell death pathways in p53-null K562 leukemic cells. Cytotoxicity of 4-NRC (4.17-534.5 μM) over 24 h of exposure was evaluated by MTT assay. 4-NRC-induced apoptosis in K562 cells was investigated by phosphatidylserine (PS) externalization, cell cycle, sub-G1, mitochondrial evaluation, cytochrome c, cyclin D1 and intracellular reactive oxygen species (ROS) levels, and caspase activity analysis. IC 50 values obtained were 11.40, 27.31, 15.93 and 15.70 μM for lymphocytes, K562, HL-60 and Jurkat cells, respectively. In K562 cells, 4-NRC (27 μM) promoted apoptosis as verified by cellular morphological changes, a significant increase in PS externalization and sub-G1 cells. Moreover, it significantly arrested the cells at the G0/G1 phase due to a reduction in cyclin D1 expression. These effects of 4-NRC also significantly promoted a reduction in mitochondrial activity and membrane depolarization, accumulation of cytosolic cytochrome c and ROS overproduction. Additionally, it triggered an increase in caspases -3/7, -8 and -9 activities. When the cells were pretreated with N-acetyl-l-cysteine ROS scavenger, 4-NRC-induced apoptosis was partially blocked, which suggests that it exerts cytotoxicity though not exclusively through ROS-mediated mechanisms. 4-NRC has antileukemic properties, inducing apoptosis mediated by mitochondrial-dependent mechanisms with cyclin D1 inhibition. Given that emerging treatment concepts include novel combinations of well-known agents, 4-NRC could offer a promising alternative for chemotherapeutic combinations to maximize tumour suppression.

  19. Cytotoxic and Apoptotic Effects of Different Extracts of Artemisia turanica Krasch. on K562 and HL-60 Cell Lines

    PubMed Central

    Tayarani-Najaran, Zahra; Sareban, Mahla; Gholami, Atefeh; Emami, Seyed Ahmad; Mojarrab, Mahdi

    2013-01-01

    Artemisia is an important genus of Iranian flora. Cytotoxic activities for some species of the genus have already been reported. In this study, we have investigated the cytotoxic effects of n-hexane, CH2Cl2, EtOAc, EtOH, and EtOH/H2O (1 : 1) extracts of A. turanica Krasch. on two human leukemic cancer cell lines (K562 and HL-60) and J774 as normal cells using alamarBlue (resazurin) assay. PI staining of the fragmented DNA and western blot analysis were used to evaluate the possible apoptotic effect of the extract. The CH2Cl2 extract of A. turanica showed the most antiproliferative effect on cancer cells among all tested extracts with IC50 values of 69 and 104 μg/mL on K562 and HL-60 cells, respectively, whereas the normal cells were not affected significantly by this extract. Sub-G1 peak in the flow cytometry histogram of the cells treated with CH2Cl2 extract of A. turanica and cleavage of PARP protein confirmed the induction of apoptosis with CH2Cl2 extract. Taken together, the findings of the present work suggest the anticancer potential of CH2Cl2 extract of A. turanica on human leukemic cancer cell lines. PMID:24288497

  20. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    PubMed

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  1. DNA damage, lysosomal degradation and Bcl-xL deamidation in doxycycline- and minocycline-induced cell death in the K562 leukemic cell line.

    PubMed

    Fares, Mona; Abedi-Valugerdi, Manuchehr; Hassan, Moustapha; Potácová, Zuzana

    2015-07-31

    We investigated mechanisms of cytotoxicity induced by doxycycline (doxy) and minocycline (mino) in the chronic myeloid leukemia K562 cell line. Doxy and mino induced cell death in exposure-dependent manner. While annexin V/propidium iodide staining was consistent with apoptosis, the morphological changes in Giemsa staining were more equivocal. A pancaspase inhibitor Z-VAD-FMK partially reverted cell death morphology, but concurrently completely prevented PARP cleavage. Mitochondrial involvement was detected as dissipation of mitochondrial membrane potential and cytochrome C release. DNA double strand breaks detected with γH2AX antibody and caspase-2 activation were found early after the treatment start, but caspase-3 activation was a late event. Decrement of Bcl-xL protein levels and electrophoretic shift of Bcl-xL molecule were induced by both drugs. Phosphorylation of Bcl-xL at serine 62 was ruled out. Similarly, Bcr/Abl tyrosine kinase levels were decreased. Lysosomal inhibitor chloroquine restored Bcl-xL and Bcr/Abl protein levels and inhibited caspase-3 activation. Thus, the cytotoxicity of doxy and mino in K562 cells is mediated by DNA damage, Bcl-xL deamidation and lysosomal degradation with activation of mitochondrial pathway of apoptosis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Synergistic inhibitory effects of deferasirox in combination with decitabine on leukemia cell lines SKM-1, THP-1, and K-562.

    PubMed

    Li, Nianyi; Chen, Qinfen; Gu, Jingwen; Li, Shuang; Zhao, Guangjie; Wang, Wei; Wang, Zhicheng; Wang, Xiaoqin

    2017-05-30

    A multi-center study from the French Myelodysplastic Syndrome (MDS) Group confirmed that iron chelation therapy is an independent prognostic factor that can increase the survival rate of patients who are suffering from transfusion-dependent low-risk MDS. In this study, we aimed to explore this clinical phenomena in vitro, by exploring the synergistic effect of the iron chelator Deferasirox (DFX) and the DNA methyl transferase inhibitor Decitabine (DAC) in the leukemia cell lines SKM-1, THP-1, and K-562. Treatment with both DFX or DAC promoted apoptosis, induced cell cycle arrest, and inhibited proliferation in all three of these cell lines. The combination of DFX and DAC was much greater than the effect of using either drug alone. DFX showed a synergistic effect with DAC on cell apoptosis in all three cell lines and on cell cycle arrest at the G0/G1 phase in K-562 cells. DFX decreased the ROS levels to varying degrees. In contrast, DAC increased ROS levels and an increase in ROS was also noted when the two drugs were used in combination. Treatment of cells with DAC induced re-expression of ABAT, APAF-1, FADD, HJV, and SMPD3, presumably through demethylation. However the combination of DAC and DFX just had strong synergistic effect on the re-expression of HJV.

  3. Synergistic inhibitory effects of deferasirox in combination with decitabine on leukemia cell lines SKM-1, THP-1, and K-562

    PubMed Central

    Li, Nianyi; Chen, Qinfen; Gu, Jingwen; Li, Shuang; Zhao, Guangjie; Wang, Wei; Wang, Zhicheng; Wang, Xiaoqin

    2017-01-01

    A multi-center study from the French Myelodysplastic Syndrome (MDS) Group confirmed that iron chelation therapy is an independent prognostic factor that can increase the survival rate of patients who are suffering from transfusion-dependent low-risk MDS. In this study, we aimed to explore this clinical phenomena in vitro, by exploring the synergistic effect of the iron chelator Deferasirox (DFX) and the DNA methyl transferase inhibitor Decitabine (DAC) in the leukemia cell lines SKM-1, THP-1, and K-562. Treatment with both DFX or DAC promoted apoptosis, induced cell cycle arrest, and inhibited proliferation in all three of these cell lines. The combination of DFX and DAC was much greater than the effect of using either drug alone. DFX showed a synergistic effect with DAC on cell apoptosis in all three cell lines and on cell cycle arrest at the G0/G1 phase in K-562 cells. DFX decreased the ROS levels to varying degrees. In contrast, DAC increased ROS levels and an increase in ROS was also noted when the two drugs were used in combination. Treatment of cells with DAC induced re-expression of ABAT, APAF-1, FADD, HJV, and SMPD3, presumably through demethylation. However the combination of DAC and DFX just had strong synergistic effect on the re-expression of HJV. PMID:28388554

  4. Vaccination with autologous myeloblasts admixed with GM-K562 cells in patients with advanced MDS or AML after allogeneic HSCT

    PubMed Central

    Kim, Haesook T.; Bavli, Natalie; Mihm, Martin; Pozdnyakova, Olga; Piesche, Matthias; Daley, Heather; Reynolds, Carol; Souders, Nicholas C.; Cutler, Corey; Koreth, John; Alyea, Edwin P.; Antin, Joseph H.; Ritz, Jerome; Dranoff, Glenn; Soiffer, Robert J.

    2017-01-01

    We report a clinical trial testing vaccination of autologous myeloblasts admixed with granulocyte-macrophage colony-stimulating factor secreting K562 cells after allogeneic hematopoietic stem cell transplantation (HSCT). Patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) with ≥5% marrow blasts underwent myeloblast collection before HSCT. At approximately day +30, 6 vaccines composed of irradiated autologous myeloblasts mixed with GM-K562 were administered. Tacrolimus-based graft-versus-host disease (GVHD) prophylaxis was not tapered until vaccine completion (∼day 100). Thirty-three patients with AML (25) and MDS (8) enrolled, 16 (48%) had ≥5% marrow blasts at transplantation. The most common vaccine toxicity was injection site reactions. One patient developed severe eosinophilia and died of eosinophilic myocarditis. With a median follow-up of 67 months, cumulative incidence of grade 2-4 acute and chronic GVHD were 24% and 33%, respectively. Relapse and nonrelapse mortality were 48% and 9%, respectively. Progression-free survival (PFS) and overall survival (OS) at 5 years were 39% and 39%. Vaccinated patients who were transplanted with active disease (≥5% marrow blasts) had similar OS and PFS at 5 years compared with vaccinated patients transplanted with <5% marrow blasts (OS, 44% vs 35%, respectively, P = .81; PFS, 44% vs 35%, respectively, P = .34). Postvaccination antibody responses to angiopoietin-2 was associated with superior OS (hazard ratio [HR], 0.43; P = .031) and PFS (HR, 0.5; P = .036). Patients transplanted with active disease had more frequent angiopoeitin-2 antibody responses (62.5% vs 20%, P = .029) than those transplanted in remission. GM-K562/leukemia cell vaccination induces biologic activity, even in patients transplanted with active MDS/AML. This study is registered at www.clinicaltrials.gov as #NCT 00809250. PMID:29296875

  5. Expansion of NK cells by engineered K562 cells co-expressing 4-1BBL and mMICA, combined with soluble IL-21.

    PubMed

    Jiang, Bo; Wu, Xuan; Li, Xi-Ning; Yang, Xi; Zhou, Yulai; Yan, Haowei; Wei, An-Hui; Yan, Weiqun

    2014-07-01

    NK cells hold promise for protecting hosts from cancer and pathogen infection through direct killing and expressing immune-regulatory cytokines. In our study, a genetically modified K562 cell line with surface expression of 4-1BBL and MICA was constructed to expand functional NK cells in vitro for further adoptive immunotherapy against cancer. After a long-term up to 21 day co-culture with newly isolated peripheral blood mononuclear cells (PBMCs) in the presence of soluble IL-21 (sIL-21), notable increase in proportion of expanded NK cells was observed, especially the CD56(bright)CD16(+) subset. Apparent up-regulation of activating receptors CD38, CD69 and NKG2D was detected on expanded NK cells, so did inhibitory receptor CD94; the cytotoxicity of expanded NK cells against target tumor cells exceeded that of NK cells within fresh PBMCs. The intracellular staining showed expanded NK cells produced immune-regulatory IFN-γ. Taken together, we expanded NK cells with significant up-regulation of activating NKG2D and moderate enhancement of cytotoxicity, with IFN-γ producing ability and a more heterogeneous population of NK cells. These findings provide a novel perspective on expanding NK cells in vitro for further biology study and adoptive immunotherapy of NK cells against cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Osthole shows the potential to overcome P-glycoprotein‑mediated multidrug resistance in human myelogenous leukemia K562/ADM cells by inhibiting the PI3K/Akt signaling pathway.

    PubMed

    Wang, Hong; Jia, Xiu-Hong; Chen, Jie-Ru; Wang, Jian-Yong; Li, You-Jie

    2016-06-01

    P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) has been reported to play a pivotal role in tumor chemotherapy failure. Study after study has illustrated that the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with P-gp expression in many human malignancies. In the present study, osthole, an O-methylated coumarin, exhibited potent reversal capability of MDR in myelogenous leukemia K562/ADM cells. Simultaneously, the uptake and efflux of Rhodamine-123 (Rh-123) and the accumulation of doxorubicin assays combined with flow cytometric analysis suggested that osthole could increase intracellular drug accumulation. Furthermore, osthole decreased the expression of multidrug resistance gene 1 (MDR1) at both the mRNA and protein levels. Further experiments elucidated that osthole could suppress P-gp expression by inhibiting the PI3K/Akt signaling pathway which might be the main mechanism accounting for the reversal potential of osthole in the MDR in K562/ADM cells. In conclusion, osthole combats MDR and could be a promising candidate for the development of novel MDR reversal modulators.

  7. Development and characterization of K562 cell clones expressing BCL11A-XL: Decreased hemoglobin production with fetal hemoglobin inducers and its rescue with mithramycin

    PubMed Central

    Finotti, Alessia; Gasparello, Jessica; Breveglieri, Giulia; Cosenza, Lucia Carmela; Montagner, Giulia; Bresciani, Alberto; Altamura, Sergio; Bianchi, Nicoletta; Martini, Elisa; Gallerani, Eleonora; Borgatti, Monica; Gambari, Roberto

    2015-01-01

    Induction of fetal hemoglobin (HbF) is considered a promising strategy in the treatment of β-thalassemia, in which production of adult hemoglobin (HbA) is impaired by mutations affecting the β-globin gene. Recent results indicate that B-cell lymphoma/leukemia 11A (BCL11A) is a major repressor of γ-globin gene expression. Therefore, disrupting the binding of the BCL11A transcriptional repressor complex to the γ-globin gene promoter provides a novel approach for inducing expression of the γ-globin genes. To develop a cellular screening system for the identification of BCL11A inhibitors, we produced K562 cell clones with integrated copies of a BCL11A-XL expressing vector. We characterized 12 K562 clones expressing different levels of BCL11A-XL and found that a clear inverse relationship does exist between the levels of BCL11A-XL and the extent of hemoglobinization induced by a panel of HbF inducers. Using mithramycin as an inducer, we found that this molecule was the only HbF inducer efficient in rescuing the ability to differentiate along the erythroid program, even in K562 cell clones expressing high levels of BCL11A-XL, suggesting that BCL11A-XL activity is counteracted by mithramycin. PMID:26342260

  8. Development and characterization of K562 cell clones expressing BCL11A-XL: Decreased hemoglobin production with fetal hemoglobin inducers and its rescue with mithramycin.

    PubMed

    Finotti, Alessia; Gasparello, Jessica; Breveglieri, Giulia; Cosenza, Lucia Carmela; Montagner, Giulia; Bresciani, Alberto; Altamura, Sergio; Bianchi, Nicoletta; Martini, Elisa; Gallerani, Eleonora; Borgatti, Monica; Gambari, Roberto

    2015-12-01

    Induction of fetal hemoglobin (HbF) is considered a promising strategy in the treatment of β-thalassemia, in which production of adult hemoglobin (HbA) is impaired by mutations affecting the β-globin gene. Recent results indicate that B-cell lymphoma/leukemia 11A (BCL11A) is a major repressor of γ-globin gene expression. Therefore, disrupting the binding of the BCL11A transcriptional repressor complex to the γ-globin gene promoter provides a novel approach for inducing expression of the γ-globin genes. To develop a cellular screening system for the identification of BCL11A inhibitors, we produced K562 cell clones with integrated copies of a BCL11A-XL expressing vector. We characterized 12 K562 clones expressing different levels of BCL11A-XL and found that a clear inverse relationship does exist between the levels of BCL11A-XL and the extent of hemoglobinization induced by a panel of HbF inducers. Using mithramycin as an inducer, we found that this molecule was the only HbF inducer efficient in rescuing the ability to differentiate along the erythroid program, even in K562 cell clones expressing high levels of BCL11A-XL, suggesting that BCL11A-XL activity is counteracted by mithramycin. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  9. Kinetics of ultraweak light emission from human erythroleukemia K562 cells upon electroporation.

    PubMed

    Maccarrone, M; Fantini, C; Agrò, A F; Rosato, N

    1998-11-11

    Electroporation involves the application of an electric pulse that creates transient aqueous channels (electropores) across the lipid bilayer membranes. Here, we describe an instrument set up suitable to record ultraweak light emission from human erythroleukemia K562 cells during and immediately after delivery of electric pulses. Most of light was emitted in the first seconds after each pulse, following a complex decay which can be fitted by a double exponential equation characterized by two different time constants (T1 and T2), both in the order of seconds. T1 was approximately 10-fold shorter than T2 and both time constants were dependent on field strength of the electric pulse. The effect of various antioxidants on the amount of emitted photons and on T1 and T2 values was investigated, in order to shed some light on the chemical species responsible for cellular luminescence.

  10. Synthesis of a Novel Series of 2-Methylsulfanyl Fatty Acids and their Toxicity on the Human K-562 and U-937 Leukemia Cell Lines

    PubMed Central

    Carballeira, Néstor M.; Miranda, Carlos; Orellano, Elsie A.; González, Fernando A.

    2006-01-01

    The hitherto unknown 2-methylsulfanyldecanoic acid and 2-methylsulfanyldodecanoic acid were synthesized from methyl decanoate and methyl dodecanoate, respectively, through the reaction of lithium diisopropylamide and dimethyldisulfide in THF followed by saponification with potassium hydroxide in ethanol. Both α-methylsulfanylated FA were cytotoxic to the human chronic myelogenous leukemia K-562 and the human histiocytic lymphoma U-937 cell lines with EC50 values in the 200-300 μM range, which makes them more cytotoxic to these cell lines than either decanoic acid or dodecanoic acid. The cytotoxicity of the studied FA towards K-562 followed the order: 2-SCH3-12:0 > 2-SCH3-10:0 > 10:0 > 12:0 > 2-OCH3-12:0, while towards U-937 the cytotoxicity was found to be: 2-SCH3-10:0 > 2-SCH3-12:0 > 12:0 > 10:0 > 2-OCH3-12:0. These results indicate that the α-methylsulfanyl substitution increases the cytotoxicity of the C10 and C12 fatty acids towards the studied leukemia cell lines. PMID:16382579

  11. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    PubMed Central

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-01-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  12. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    PubMed

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-03-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  13. Ester of Quinoxaline-7-carboxylate 1,4-di-N-oxide as Apoptosis Inductors in K-562 Cell Line: An in vitro, QSAR and DFT Study.

    PubMed

    Rivera, Gildardo; Andrade-Ochoa, Sergio; Romero, Manolo S Ortega; Palos, Isidro; Monge, Antonio; Sanchez-Torres, Luvia Enid

    2017-01-01

    Quinoxalines have shown a wide variety of biological activities including as antitumor agents. The aims of this study were to evaluate the activity of quinoxaline 1,4-di-N-oxide derivatives on K562 cells, the establishment of the mechanism of induced cell death, and the construction of predictive QSAR models. Sixteen esters of quinoxaline-7-carboxylate 1,4-di-N-oxide were evaluated for antitumor activity on K562 chronic myelogenous leukemia cells and their IC50 values were determined. The mechanism of induced cell death by the most active molecule was assessed by flow cytometry and an in silico study was conducted to optimize and calculate theoretical descriptors of all quinoxaline 1,4-di-N-oxide derivatives. QSAR and QPAR models were created using genetic algorithms. Our results show that compounds C5, C7, C10, C12 and C15 had the lowest IC50 of the series. C15 was the most active compound (IC50= 3.02 μg/mL), inducing caspase-dependent apoptotic cell death via the intrinsic pathway. QSAR and QPAR studies are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways.

    PubMed

    Dharmapuri, Gangappa; Doneti, Ravinder; Philip, Gundala Harold; Kalle, Arunasree M

    2015-07-01

    Imatinib mesylate, a tyrosine kinase inhibitor, is very effective in the treatment of chronic myeloid leukemia (CML). However, development of resistance to imatinib therapy is also a very common mechanism observed with long-term administration of the drug. Our previous studies have highlighted the role of cyclooxygenase-2 (COX-2) in regulating the expression of multidrug resistant protein-1 (MDR1), P-gp, in imatinib-resistant K562 cells (IR-K562) via PGE2-cAMP-PKC-NF-κB pathway and inhibition of COX-2 by celecoxib, a COX-2 specific inhibitor, inhibits this pathway and reverses the drug resistance. Studies have identified that not only MDR1 but other ATP-binding cassette transport proteins (ABC transporters) are involved in the development of imatinib resistance. Here, we tried to study the role of COX-2 in the regulation of other ABC transporters such as MRP1, MRP2, MRP3, ABCA2 and ABCG2 that have been already implicated in imatinib resistance development. The results of the study clearly indicated that overexpression of COX-2 lead to upregulation of MRP family proteins in IR-K562 cells and celecoxib down-regulated the ABC transporters through Wnt and MEK signaling pathways. The study signifies that celecoxib in combination with the imatinib can be a good alternate treatment strategy for the reversal of imatinib resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten.

    PubMed

    Feriotto, G; Calza, R; Bergamini, C M; Griffin, M; Wang, Z; Beninati, S; Ferretti, V; Marzola, E; Guerrini, R; Pagnoni, A; Cavazzini, A; Casciano, F; Mischiati, C

    2017-03-01

    Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.

  16. Preparation of isolated nuclei from K 562 haemopoietic cell line for high resolution scanning electron microscopy.

    PubMed

    Reipert, S; Reipert, B M; Allen, T D

    1994-09-01

    The aim of the work is to visualise nuclear pore complexes (NPCs) in mammalian cells by high resolution scanning electron microscopy. A detergent-free isolation protocol was employed to obtain clean nuclei from the haemopoietic cell line K 562. Nuclear isolation was performed by mechanical homogenisation under hypotonic conditions followed by purification of the nuclear fraction. The isolated nuclei were attached to silicon chips, fixed, critical point dried, and sputter coated with a thin film (3-4 nm) of tantalum. Analysis of the nuclear surface by scanning electron microscopy (SEM) revealed a strong sensitivity of the outer nuclear membrane (ONM) to disruption during the isolation procedure. A significant reduction of the characteristic pattern of damage to the ONM was achieved by means of an isopicnic centrifugation on an isoosmolar balanced Percoll gradient. Analysis of the population of isolated nuclei by flow cytometry showed no signs of cell cycle specific losses of nuclei during isolation. The SEM investigations of the morphology of the nuclear envelope (NE) and of substructural details of NPCs and polyribosomes were performed using an in-lens field emission scanning electron microscope.

  17. Large-scale expansion of Vγ9Vδ2 T cells with engineered K562 feeder cells in G-Rex vessels and their use as chimeric antigen receptor-modified effector cells.

    PubMed

    Xiao, Lin; Chen, Can; Li, Zhendong; Zhu, Sumin; Tay, Johan Ck; Zhang, Xi; Zha, Shijun; Zeng, Jieming; Tan, Wee Kiat; Liu, Xin; Chng, Wee Joo; Wang, Shu

    2018-03-01

    Vγ9Vδ2 T cells are a minor subset of lymphocytes in the peripheral blood that has been extensively investigated for their tolerability, safety and anticancer efficacy. A hindrance to the broad application of these cells for adoptive cellular immunotherapy has been attaining clinically appropriate numbers of Vγ9Vδ2 T cells. Furthermore, Vγ9Vδ2 T cells exist at low frequencies among cancer patients. We, therefore, sought to conceive an economical method that allows for a quick and robust large-scale expansion of Vγ9Vδ2 T cells. A two-step protocol was developed, in which peripheral blood mononuclear cells (PBMCs) from healthy donors or cancer patients were activated with Zometa and interleukin (IL)-2, followed by co-culturing with gamma-irradiated, CD64-, CD86- and CD137L-expressing K562 artificial antigen-presenting cells (aAPCs) in the presence of the anti-CD3 antibody OKT3. We optimized the co-culture ratio of K562 aAPCs to immune cells, and migrated this method to a G-Rex cell growth platform to derive clinically relevant cell numbers in a Good Manufacturing Practice (GMP)-compliant manner. We further include a depletion step to selectively remove αβ T lymphocytes. The method exhibited high expansion folds and a specific enrichment of Vγ9Vδ2 T cells. Expanded Vγ9Vδ2 T cells displayed an effector memory phenotype with a concomitant down-regulated expression of inhibitory immune checkpoint receptors. Finally, we ascertained the cytotoxic activity of these expanded cells by using nonmodified and chimeric antigen receptor (CAR)-engrafted Vγ9Vδ2 T cells against a panel of solid tumor cells. Overall, we report an efficient approach to generate highly functional Vγ9Vδ2 T cells in massive numbers suitable for clinical application in an allogeneic setting. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Application of a haematopoetic progenitor cell-targeted adeno-associated viral (AAV) vector established by selection of an AAV random peptide library on a leukaemia cell line

    PubMed Central

    Stiefelhagen, Marius; Sellner, Leopold; Kleinschmidt, Jürgen A; Jauch, Anna; Laufs, Stephanie; Wenz, Frederik; Zeller, W Jens; Fruehauf, Stefan; Veldwijk, Marlon R

    2008-01-01

    Background For many promising target cells (e.g.: haematopoeitic progenitors), the susceptibility to standard adeno-associated viral (AAV) vectors is low. Advancements in vector development now allows the generation of target cell-selected AAV capsid mutants. Methods To determine its suitability, the method was applied on a chronic myelogenous leukaemia (CML) cell line (K562) to obtain a CML-targeted vector and the resulting vectors tested on leukaemia, non-leukaemia, primary human CML and CD34+ peripheral blood progenitor cells (PBPC); standard AAV2 and a random capsid mutant vector served as controls. Results Transduction of CML (BV173, EM3, K562 and Lama84) and AML (HL60 and KG1a) cell lines with the capsid mutants resulted in an up to 36-fold increase in CML transduction efficiency (K562: 2-fold, 60% ± 2% green fluorescent protein (GFP)+ cells; BV173: 9-fold, 37% ± 2% GFP+ cells; Lama84: 36-fold, 29% ± 2% GFP+ cells) compared to controls. For AML (KG1a, HL60) and one CML cell line (EM3), no significant transduction (<1% GFP+ cells) was observed for any vector. Although the capsid mutant clone was established on a cell line, proof-of-principle experiments using primary human cells were performed. For CML (3.2-fold, mutant: 1.75% ± 0.45% GFP+ cells, p = 0.03) and PBPC (3.5-fold, mutant: 4.21% ± 3.40% GFP+ cells) a moderate increase in gene transfer of the capsid mutant compared to control vectors was observed. Conclusion Using an AAV random peptide library on a CML cell line, we were able to generate a capsid mutant, which transduced CML cell lines and primary human haematopoietic progenitor cells with higher efficiency than standard recombinant AAV vectors. PMID:18789140

  19. Influence of different metal ions on the ultrastructure, biochemical properties, and protein localization of the K562 cell nuclear matrix.

    PubMed

    Neri, L M; Bortul, R; Zweyer, M; Tabellini, G; Borgatti, P; Marchisio, M; Bareggi, R; Capitani, S; Martelli, A M

    1999-06-01

    The higher order of chromatin organization is thought to be determined by the nuclear matrix, a mainly proteinaceous structure that would act as a nucleoskeleton. The matrix is obtained from isolated nuclei by a series of extraction steps involving the use of high salt and nonspecific nucleases, which remove chromatin and other loosely bound components. It is currently under debate whether these structures, isolated in vitro by unphysiological extraction buffers, correspond to a nucleoskeleton existing in vivo. In most cell types investigated, the nuclear matrix does not spontaneously resist these extractions steps; rather, it must be stabilized before the application of extracting agents. In this study nuclei, isolated from K562 human erythroleukemia cells, were stabilized by incubation with different metal ions (Ca2+, Cu2+, Zn2+, Cd2+), and the matrix was obtained by extraction with 2 M NaCl. By means of ultrastructural analysis of the resulting structures, we determined that, except for Ca2+, all the other metals induced a stabilization of the matrix, which retained the inner fibrogranular network and residual nucleoli. The biochemical composition, analyzed by two-dimensional gel electrophoresis separation, exhibited a distinct matrix polypeptide pattern, characteristic of each type of stabilizing ion employed. We also investigated to what extent metal ions could maintain in the final structures the original distribution of three inner matrix components, i.e. NuMA, topoisomerase IIalpha, and RNP. Confocal microscopy analysis showed that only NuMa, and, to a lesser extent, topoisomerase IIalpha, were unaffected by stabilization with divalent ions. On the contrary, the fluorescent RNP patterns detected in the resulting matrices were always disarranged, irrespective of the stabilization procedure. These results indicate that several metal ions are powerful stabilizing agents of the nuclear matrix prepared from K562 erythroleukemia cells and also strengthen the

  20. A nanocomplex of Cu(II) with theophylline drug; synthesis, characterization, and anticancer activity against K562 cell line

    NASA Astrophysics Data System (ADS)

    Sahlabadi, Maryam; Daryanavard, Marzieh; Hadadzadeh, Hassan; Amirghofran, Zahra

    2018-03-01

    A new mononuclear of copper (II), [Cu(theophylline)2(H2O)3]·2H2O, has been synthesized by reaction of theophylline (1,3-dimethyl-7H-purine-2,6-dione) with copper (II) nitrate in water. Further, its nanocomplex has been prepared through the three different methods including sonication, grinding, and a combination thereof, sonication-grinding. The prepared nanocomplex was characterized using different techniques including FT-IR, UV-Vis, X-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy (FE-SEM). Moreover, the anticancer activity of the precursor complex, nanocomplex, free theophylline ligand, and the starting copper salt (Cu(NO3)2·3H2O) was investigated against the K562 cell line. The results show that the nanocomplex is an effective nano metal-based anticancer agent with IC50 = 11.7 μM.

  1. Effect of spaceflight on natural killer cell activity

    NASA Technical Reports Server (NTRS)

    Rykova, Marina P.; Sonnenfeld, Gerald; Lesniak, A. T.; Taylor, Gerald R.; Meshkov, Dimitrii O.; Mandel, Adrian D.; Medvedev, Andrei E.; Berry, Wallace D.; Fuchs, Boris B.; Konstantinova, Irina V.

    1992-01-01

    The effects of spaceflight on immune cell function were determined in rats flown on Cosmos 2044. Control groups included vivarium, synchronous, and antiorthostatically suspended rats. The ability of natural killer cells to lyse two different target cell lines was determined. Spleen and bone marrow cells obtained from flight rats showed significantly inhibited cytotoxicity for YAC-1 target cells compared with cells from synchronous control rats. This could have been due to exposure of the rats to microgravity. Antiorthostatic suspension did not affect the level of cytotoxicity from spleen cells of suspended rats for YAC-1 cells. On the other hand, cells from rats flown in space showed no significant differences from vivarium and synchronous control rats in cytotoxicity for K-562 target cells. Binding of natural killer cells to K-562 target cells was unaffected by spaceflight. Antiorthostatic suspension resulted in higher levels of cytotoxicity from spleen cells for Cr-51-labeled K-562 cells. The results indicate differential effects of spaceflight on function of natural killer cells. This shows that spaceflight has selective effects on the immune response.

  2. CIP-36, a novel topoisomerase II-targeting agent, induces the apoptosis of multidrug-resistant cancer cells in vitro.

    PubMed

    Cao, Bo; Chen, Hong; Gao, Ying; Niu, Cong; Zhang, Yuan; Li, Ling

    2015-03-01

    The need to overcome cancer multidrug resistance (MDR) has fueled considerable interest in the development of novel synthetic antitumor agents with cytotoxicity against cancer cell lines with MDR. In this study, we aimed to investigate CIP-36, a novel podophyllotoxin derivative, for its inhibitory effects on human cancer cells from multiple sources, particularly cells with MDR in vitro. The human leukemia cell line, K562, and the adriamycin-resistant subline, K562/A02, were exposed to CIP-36 or anticancer agents, and various morphological and biochemical properties were assessed by Hoechst 33342 staining under a fluorescence microscope. Subsequently, cytotoxicity, cell growth curves and the cell cycle were analyzed. Finally, the effects of CIP-36 on topoisomerase IIα (Topo IIα) activity were determined. Treatment with CIP-36 significantly inhibited the growth of the K562 and MDR K562/A02 cells. Our data demonstrated that CIP-36 induced apoptosis, inhibited cell cycle progression and inhibited Topo IIα activity. These findings suggest that CIP-36 has the potential to overcome the multidrug resistance of K562/A02 cells by mediating Topo IIα activity.

  3. Involvement of PKC and ROS in the cytotoxic mechanism of anti-leukemic decursin and its derivatives and their structure-activity relationship in human K562 erythroleukemia and U937 myeloleukemia cells.

    PubMed

    Kim, Hyeon Ho; Sik Bang, Sung; Seok Choi, Jin; Han, Hogyu; Kim, Ik-Hwan

    2005-06-08

    Protein kinase C (PKC) plays an important role in the proliferation and differentiation of various cell types including normal and leukemic hematopoietic cells. Recently, various PKC modulators were used as a chemotherapeutic agent of leukemia. Decursin (1), a pyranocoumarin from Angelica gigas, exhibits the cytotoxic effects on various human cancer cell lines and in vitro PKC activation. For the development of more effective anticancer agents with PKC modulation activity, 11 decursin derivatives 2-12 were chemically synthesized and evaluated for their ability to act as a tumor-suppressing PKC activator and as an antagonist to phorbol 12-myristate 13-acetate (PMA), a tumor-promoting PKC activator. In the presence of phosphatidylserine (PS), all of 12 compounds 1-12 activated PKC (mainly alpha, beta, and gamma isozymes) but only three compounds 1-3 activated PKC even in the absence of PS. Six compounds 1-6 containing the coumarin structure were cytotoxic to human K562 erythroleukemia and U937 myeloleukemia cells. A cytotoxic mechanism of decursin and its derivatives was investigated using TUR cells, a PKC betaII-deficient variant of U937 cells. Among six compounds 1-6 with cytotoxicity to K562 and U937 leukemia cells, only three compounds 1-3 were cytotoxic to TUR cells. Therefore, compounds 1-3 and 4-6 inhibit the proliferation of leukemia cells in a PKC betaII-independent and dependent manner, respectively, indicating that the side chain of compounds determines the dependency of their cytotoxicity on PKC betaII. To further elucidate the cytotoxic mechanism of compounds 1 and 2, levels of PKC isozymes and generation of reactive oxygen species (ROS) were investigated. Compounds 1-2 induced the down-regulation of PKC alpha and betaII in K562 cells and the production of ROS in U937 cells. Thus, PKC and ROS are probably important factors in the cytotoxic mechanism of compounds 1-2. From these results, the structure-activity relationship of decursin and its derivatives

  4. The effect of redox-related species of nitrogen monoxide on transferrin and iron uptake and cellular proliferation of erythroleukemia (K562) cells.

    PubMed

    Richardson, D R; Neumannova, V; Nagy, E; Ponka, P

    1995-10-15

    The iron-responsive element-binding protein (IRE-BP) modulates both ferritin mRNA translation and transferrin receptor (TfR) mRNA stability by binding to specific mRNA sequences called iron-responsive elements (IREs). The regulation of IRE-BP in situ could possibly occur either through its Fe-S cluster and/or via free cysteine sulphydryl groups such as cysteine 437 (Philpott et al, J Biol Chem 268:17655, 1993; and Hirling et al, EMBO J 13:453, 1994). Recently, nitrogen monoxide (NO) has been shown to have markedly different biologic effects depending on its redox state (Lipton et al, Nature 364:626, 1993). Considering this fact, it is conceivable that the NO group, as either the nitrosonium ion (NO+) or nitric oxide (NO+), may regulate IRE-BP activity by S-nitrosylation of key sulphydryl groups or via ligation of NO. to the Fe-S cluster, respectively. This hypothesis has been examined using the NO+ generator, sodium nitroprusside (SNP); the NO. generator, S-nitroso-N-acetylpenicillamine (SNAP); and the NO./peroxynitrite (ONOO-) generator, 3-morpholinosydnonimine hydrochloride (SIN-1). Treatment of K562 cells for 18 hours with SNP (1 mmol/L) resulted in a pronounced decrease in both the RNA-binding activity of IRE-BP and the level of TfR mRNA. In addition, Scatchard analysis showed a marked decrease in the number of specific Tf-binding sites, from 590,000/cell (control) to 170,000/cell (test), and there was also a distinct decrease in Fe uptake. Furthermore, SNP did not decrease cellular viability or proliferation. In contrast, the NO. generator, SNAP (1 mmol/L), increased RNA-binding activity of IRE-BP, the level of TfR mRNA, and the number of TfRs in K562 cells. Moreover, both SNAP (1 mmol/L) and SIN-1 (0.5 mmol/L) reduced cellular proliferation. The results are discussed in context of the possible physiologic role of redox-related species of NO in regulating iron metabolism.

  5. Time-series analysis in imatinib-resistant chronic myeloid leukemia K562-cells under different drug treatments.

    PubMed

    Zhao, Yan-Hong; Zhang, Xue-Fang; Zhao, Yan-Qiu; Bai, Fan; Qin, Fan; Sun, Jing; Dong, Ying

    2017-08-01

    Chronic myeloid leukemia (CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with (n=12) or without drug administration (n=5). Three drug treatment groups were considered for this study: arsenic trioxide (ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point (3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average (coefficient of variation) >0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner (STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group (e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group (e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.

  6. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Houcai; Yu, Jing; Zhang, Lixia

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL)more » patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.« less

  7. Microselection – affinity selecting antibodies against a single rare cell in a heterogeneous population

    PubMed Central

    Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta; Kølvraa, Steen; Kristensen, Peter

    2010-01-01

    Abstract Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non-invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific. PMID:20726925

  8. Induced apoptosis by mild hyperthermia occurs via telomerase inhibition on the three human myeloid leukemia cell lines: TF-1, K562, and HL-60.

    PubMed

    Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila

    2009-09-01

    The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.

  9. Structural Characteristics of the Novel Polysaccharide FVPA1 from Winter Culinary-Medicinal Mushroom, Flammulina velutipes (Agaricomycetes), Capable of Enhancing Natural Killer Cell Activity against K562 Tumor Cells.

    PubMed

    Jia, Wei; Feng, Jie; Zhang, Jing-Song; Lin, Chi-Chung; Wang, Wen-Han; Chen, Hong-Ge

    2017-01-01

    FVPA1, a novel polysaccharide, has been isolated from fruiting bodies of the culinary-medicinal mushroom Flammulina velutipes, a historically popular, widely cultivated and consumed functional food with an attractive taste, beneficial nutraceutical properties such as antitumor and immunomodulatory effects, and a number of essential biological activities. The average molecular weight was estimated to be ~1.8 × 104 Da based on high-performance size exclusion chromatography. Sugar analyses, methylation analyses, and 1H, 13C, and 2-dimensional nuclear magnetic resonance spectroscopy revealed the following structure of the repeating units of the FVPA1 polysaccharide Identification of this structure would conceivably lead to better understanding of the nutraceutical functions of this very important edible fungus. Bioactivity tests in vitro indicated that FVPA1 could significantly enhance natural killer cell activity against K562 tumor cells.

  10. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell

  11. ChIP-seq and ChIP-exo profiling of Pol II, H2A.Z, and H3K4me3 in human K562 cells.

    PubMed

    Mchaourab, Zenab F; Perreault, Andrea A; Venters, Bryan J

    2018-03-06

    The human K562 chronic myeloid leukemia cell line has long served as an experimental paradigm for functional genomic studies. To systematically and functionally annotate the human genome, the ENCODE consortium generated hundreds of functional genomic data sets, such as chromatin immunoprecipitation coupled to sequencing (ChIP-seq). While ChIP-seq analyses have provided tremendous insights into gene regulation, spatiotemporal insights were limited by a resolution of several hundred base pairs. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq that overcomes this limitation by providing higher precision mapping of protein-DNA interactions. To study the interplay of transcription initiation and chromatin, we profiled the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, and the histone modification H3K4me3 using ChIP-seq and ChIP-exo. In this Data Descriptor, we present detailed information on parallel experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the occupancy of Pol II and nucleosome positions at near base pair resolution.

  12. Selected terpenes from leaves of Ocimum basilicum L. induce hemoglobin accumulation in human K562 cells.

    PubMed

    Feriotto, Giordana; Marchetti, Nicola; Costa, Valentina; Torricelli, Piera; Beninati, Simone; Tagliati, Federico; Mischiati, Carlo

    2018-06-01

    Re-expression of fetal hemoglobin (HbF) was proposed as a possible therapeutic strategy for β-haemoglobinopathies. Although several inducers of HbF were tested in clinical trials, only hydroxyurea (HU) received FDA approval. Despite it produced adequate HbF levels only in half of HU-treated SCD patients, and was ineffective at all in β-thalassemia patients, beneficial effects of this approach suggested to continue in this direction identifying further molecules capable of inducing HbF. We tested the potential of essential oil isolated from Ocimum basilicum L. leaves (ObEO) in inducing hemoglobin biosynthesis. Initially, dose-dependent effect and kinetics of hemoglobin accumulation in K562 cells after treatment with ObEO were evaluated. ObEO induced dose-dependent hemoglobin accumulation superior to hydroxyurea and rapamycin and a strongest γ-globin mRNA expression. Terpenes composition of ObEO was studied by GC-MS. Three main constituents, linalool, eugenol and eucalyptol, represented about 75% of total. A blend of these three terpenes fully replicated the ObEO's biological effect, thus indicating that one of them or all together could be the active ingredients. When terpenes were tested individually, eugenol was the only one inducing stable hemoglobin accumulation, while eucalyptol and linalool produced only a small transient response. However, eugenol potential was strongly enhanced in the presence of eucalyptol and linalool, suggesting a synergistic effect on hemoglobin accumulation. By these results, the discovery of a new inducer and the interesting activity of a blend of major terpenes from ObOE on Hb accumulation could have positive fallouts on β-thalassemia and sickle cells anemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effectiveness of imatinib mesylate over etoposide in the treatment of sensitive and resistant chronic myeloid leukaemia cells in vitro.

    PubMed

    Husaini, Roslina; Ahmad, Munirah; Zakaria, Zubaidah

    2017-06-01

    Chronic myeloid leukaemia (CML) is a form of leukaemia derived from the myeloid cell lineage. Imatinib mesylate, the breakpoint cluster region-abelson murine leukeamia kinase inhibitor, is a specific reagent used in the clinical treatment of CML. The DNA topoisomerase II inhibitor, etoposide, is also employed as a therapeutic, though it is used to a lesser extent. The present study aims to evaluate the effects of CML-targeted therapy, utilising imatinib mesylate and etoposide in the in vitro treatment of parental sensitive and adriamycin-resistant CML in the K562 and K562/ADM cell lines, respectively. Preliminary work involved the screening of multidrug resistant (MDR) gene expression, including MDR1, MRP1 and B-cell lymphoma 2 (BCL-2) at the mRNA levels. The sensitive and resistant CML cell lines expressed the MRP1 gene, though the sensitive K562 cells expressed low, almost undetectable levels of MDR1 and BCL-2 genes relative to the K562/ADM cells. Following treatment with imatinib mesylate or etoposide, the IC50 for imatinib mesylate did not differ between the sensitive and resistant cell lines (0.492±0.024 and 0.378±0.029, respectively), indicating that imatinib mesylate is effective in the treatment of CML regardless of cell chemosensitivity. However, the IC50 for etoposide in sensitive K562 cells was markedly lower than that of K562/ADM cells (50.6±16.5 and 194±8.46 µM, respectively), suggesting that the higher expression levels of MDR1 and/or BCL-2 mRNA in resistant cells may be partially responsible for this effect. This is supported by terminal deoxynucleotidyl transferase dUTP nick-end labeling data, whereby a higher percentage of apoptotic cells were found in the sensitive and resistant K562 cells treated with imatinib mesylate (29.3±0.2 and 31.9±16.7%, respectively), whereas etoposide caused significant apoptosis of sensitive K562 cells (18.3±8.35%) relative to K562/ADM cells (5.17±3.3%). In addition, the MDR genes in K562/ADM cells were knocked

  14. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.

    PubMed

    Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N

    2015-07-15

    The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.

  15. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis and immunotherapy

    PubMed Central

    Okkenhaug, Klaus; Graupera, Mariona; Vanhaesebroeck, Bart

    2017-01-01

    The PI3K pathway is hyperactivated in most cancers, yet the capacity of PI3K inhibitors to induce tumor cell death is limited. The efficacy of PI3K inhibition can also derive from interference with the cancer cells’ ability to respond to stromal signals, as illustrated by the approved PI3Kδ inhibitor Idelalisib in B-cell malignancies. Inhibition of the leukocyte-enriched PI3Kδ or PI3Kγ may unleash more potent anti-tumor T-cell responses, by inhibiting regulatory T-cells and immune-suppressive myeloid cells. Moreover, tumor angiogenesis may be targeted by PI3K inhibitors to enhance cancer therapy. Future work should therefore focus on the effects of PI3K inhibitors on the stroma, in addition to their direct effects on tumors. Significance The PI3K pathway extends beyond the direct regulation of cancer cell proliferation and survival. In B-cell malignancies, targeting PI3K purges the tumor cells from their protective microenvironment. Moreover, we propose that PI3K isoform-selective inhibitors may be exploited in the context of cancer immunotherapy and by targeting angiogenesis to improve drug and immune cell delivery. PMID:27655435

  16. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells.

    PubMed

    Verrax, Julien; Vanbever, Stéphanie; Stockis, Julie; Taper, Henryk; Calderon, Pedro Buc

    2007-03-15

    Among different features of cancer cells, two of them have retained our interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress. Therefore, we took advantage of these features to develop an experimental approach by selectively exposing cancer cells to an oxidant insult induced by the combination of menadione (vitamin K(3)) and ascorbate (vitamin C). Ascorbate enhances the menadione redox cycling, increases the formation of reactive oxygen species and kills K562 cells as shown by more than 65% of LDH leakage after 24 hr of incubation. Since both lactate formation and ATP content are depressed by about 80% following ascorbate/menadione exposure, we suggest that the major intracellular event involved in such a cytotoxicity is related to the impairment of glycolysis. Indeed, NAD(+) is rapidly and severely depleted, a fact most probably related to a strong Poly(ADP-ribose) polymerase (PARP) activation, as shown by the high amount of poly-ADP-ribosylated proteins. The addition of N-acetylcysteine (NAC) restores most of the ATP content and the production of lactate as well. The PARP inhibitor dihydroxyisoquinoline (DiQ) was able to partially restore both parameters as well as cell death induced by ascorbate/menadione. These results suggest that the PARP activation induced by the oxidative stress is a major but not the only intracellular event involved in cell death by ascorbate/menadione. Due to the high energetic dependence of cancer cells on glycolysis, the impairment of such an essential pathway may explain the effectiveness of this combination to kill cancer cells. (c) 2006 Wiley-Liss, Inc.

  17. Detecting T-cell reactivity to whole cell vaccines

    PubMed Central

    Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M.; DeAngelo, Daniel J.; Stone, Richard M.; Lee, Jeng-Shin; Mulligan, Richard C.; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J.

    2012-01-01

    BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown. PMID:23170257

  18. In Vitro Characterization and Evaluation of the Cytotoxicity Effects of Nisin and Nisin-Loaded PLA-PEG-PLA Nanoparticles on Gastrointestinal (AGS and KYSE-30), Hepatic (HepG2) and Blood (K562) Cancer Cell Lines.

    PubMed

    Goudarzi, Fariba; Asadi, Asadollah; Afsharpour, Maryam; Jamadi, Robab Hassanvand

    2018-05-01

    The aim of this study was an in vitro evaluation and comparison of the cytotoxic effects of free nisin and nisin-loaded PLA-PEG-PLA nanoparticles on gastrointestinal (AGS and KYSE-30), hepatic (HepG2), and blood (K562) cancer cell lines. To create this novel anti-cancer drug delivery system, the nanoparticles were synthesized and then loaded with nisin. Subsequently, their biocompatibility, ability to enter cells, and physicochemical properties, including formation, size, and shape, were studied using hemolysis, fluorescein isothiocyanate (FITC), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM), respectively. Then, its loading efficiency and release kinetics were examined to assess the potential impact of this formulation for the nanoparticle carrier candidacy. The cytotoxicities of nisin and nisin-loaded nanoparticles were evaluated by using the MTT and Neutral Red (NR) uptake assays. Detections of the apoptotic cells were done via Ethidium Bromide (EB)/Acridine Orange (AO) staining. The FTIR spectra, SEM images, and DLS graph confirmed the formations of the nanoparticles and nisin-loaded nanoparticles with spherical, distinct, and smooth surfaces and average sizes of 100 and 200 nm, respectively. The loading efficiency of the latter nanoparticles was about 85-90%. The hemolysis test represented their non-cytotoxicities and the FITC images indicated their entrance inside the cells. An increase in the percentage of apoptotic cells was observed through EB/AO staining. These results demonstrated that nisin had a cytotoxic effect on AGS, KYSE-30, HepG2, and K562 cancer cell lines, while the cytotoxicity of nisin-loaded nanoparticles was more than that of the free nisin.

  19. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    PubMed

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Five novel naphthylisoquinoline alkaloids with growth inhibitory activities against human leukemia cells HL-60, K562 and U937 from stems and leaves of Ancistrocladus tectorius.

    PubMed

    Jiang, Chao; Li, Zhan-Lin; Gong, Ping; Kang, Sheng-Li; Liu, Ming-Sheng; Pei, Yue-Hu; Jing, Yong-Kui; Hua, Hui-Ming

    2013-12-01

    Two new 7,6'-coupled naphthylisoquinolines, namely ancistrotectorines A (1) and B (2), two new 5,3'-coupled naphthylisoquinolines, namely ancistrotectorines C (3) and D (4), and one new 7,8-coupled naphthylisoquinoline, namely ancistrotectorine E (5), together with 9 known naphthylisoquinoline alkaloids, hamatine (6), ancistrobertsonine B (7), ancistrocladinine (8), hamatinine (9), ancistrotanzanine A (10), ancistrotanzanine B (11), ancistrotectoriline B (12), 7-epi-ancistrobrevine D (13), and ancistrotectorine (14), were isolated from the 70% EtOH extract of Ancistrocladus tectorius. Their structures were elucidated based on the extensive analysis of spectroscopic data (1D, 2D NMR and MS). Compound 5 exhibited inhibitory activities against HL-60, K562 and U937 cell lines with IC50 values of 1.70, 4.18 and 2.56 μM respectively. © 2013.

  1. Cancer stem cell drugs target K-ras signaling in a stemness context

    PubMed Central

    Najumudeen, A K; Jaiswal, A; Lectez, B; Oetken-Lindholm, C; Guzmán, C; Siljamäki, E; Posada, I M D; Lacey, E; Aittokallio, T; Abankwa, D

    2016-01-01

    Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC. PMID:26973241

  2. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells.

    PubMed

    Mendes, Anderson Nogueira; Filgueiras, Lívia Alves; Siqueira, Monica Regina Pimentel; Barbosa, Gleyce Moreno; Holandino, Carla; de Lima Moreira, Davyson; Pinto, José Carlos; Nele, Marcio

    2017-01-01

    This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n -hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia.

  3. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells

    PubMed Central

    Mendes, Anderson Nogueira; Filgueiras, Lívia Alves; Siqueira, Monica Regina Pimentel; Barbosa, Gleyce Moreno; Holandino, Carla; de Lima Moreira, Davyson; Pinto, José Carlos; Nele, Marcio

    2017-01-01

    This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n-hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia. PMID:29200848

  4. Identification of apoptosis-related PLZF target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes

    2007-07-27

    The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localizationmore » is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression.« less

  5. Silencing of BCR/ABL Chimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates.

    PubMed

    Shinkai, Yasuhiro; Kashihara, Shinichi; Minematsu, Go; Fujii, Hirofumi; Naemura, Madoka; Kotake, Yojiro; Morita, Yasutaka; Ohnuki, Koichiro; Fokina, Alesya A; Stetsenko, Dmitry A; Filichev, Vyacheslav V; Fujii, Masayuki

    2017-06-01

    Herein we described the synthesis of siRNA-NES (nuclear export signal) peptide conjugates by solid phase fragment coupling and the application of them to silencing of bcr/abl chimeric gene in human chronic myelogenous leukemia cell line K562. Two types of siRNA-NES conjugates were prepared, and both sense strands at 5' ends were covalently linked to a NES peptide derived from TFIIIA and HIV-1 REV, respectively. Significant enhancement of silencing efficiency was observed for both of them. siRNA-TFIIIA NES conjugate suppressed the expression of BCR/ABL gene to 8.3% at 200 nM and 11.6% at 50 nM, and siRNA-HIV-1REV NES conjugate suppressed to 4.0% at 200 nM and 6.3% at 50 nM, whereas native siRNA suppressed to 36.3% at 200 nM and 30.2% at 50 nM. We could also show complex of siRNA-NES conjugate and designed amphiphilic peptide peptideβ7 could be taken up into cells with no cytotoxicity and showed excellent silencing efficiency. We believe that the complex siRNA-NES conjugate and peptideβ7 is a promising candidate for in vivo use and therapeutic applications.

  6. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells.

    PubMed

    Sanchez-Antequera, Yolanda; Mykhaylyk, Olga; van Til, Niek P; Cengizeroglu, Arzu; de Jong, J Henk; Huston, Marshall W; Anton, Martina; Johnston, Ian C D; Pojda, Zygmunt; Wagemaker, Gerard; Plank, Christian

    2011-04-21

    Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.

  7. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells.

    PubMed

    Kim, Eunbi; Na, Sunghun; An, Borim; Yang, Se-Ran; Kim, Woo Jin; Ha, Kwon-Soo; Han, Eun-Taek; Park, Won Sun; Lee, Chang-Min; Lee, Ji Yoon; Lee, Seung-Joon; Hong, Seok-Ho

    2017-03-01

    Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.

  8. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    PubMed

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  9. The T-Cell Oncogene Tal2 Is a Target of PU.1 and Upregulated during Osteoclastogenesis

    PubMed Central

    Courtial, Nadine; Mücke, Christian; Herkt, Stefanie; Kolodziej, Stephan; Hussong, Helge; Lausen, Jörn

    2013-01-01

    Transcription factors play a crucial role in regulating differentiation processes during human life and are important in disease. The basic helix-loop-helix transcription factors Tal1 and Lyl1 play a major role in the regulation of gene expression in the hematopoietic system and are involved in human leukemia. Tal2, which belongs to the same family of transcription factors as Tal1 and Lyl1, is also involved in human leukaemia. However, little is known regarding the expression and regulation of Tal2 in hematopoietic cells. Here we show that Tal2 is expressed in hematopoietic cells of the myeloid lineage. Interestingly, we found that usage of the Tal2 promoter is different in human and mouse cells. Two promoters, hP1 and hP2 drive Tal2 expression in human erythroleukemia K562 cells, however in mouse RAW cells only the mP1 promoter is used. Furthermore, we found that Tal2 expression is upregulated during oesteoclastogenesis. We show that Tal2 is a direct target gene of the myeloid transcription factor PU.1, which is a key transcription factor for osteoclast gene expression. Strikingly, PU.1 binding to the P1 promoter is conserved between mouse and human, but PU.1 binding to P2 was only detected in human K562 cells. Additionally, we provide evidence that Tal2 influences the expression of the osteoclastic differentiation gene TRACP. These findings provide novel insight into the expression control of Tal2 in hematopoietic cells and reveal a function of Tal2 as a regulator of gene expression during osteoclast differentiation. PMID:24086757

  10. The combinatorial PP1-binding consensus Motif (R/K)x( (0,1))V/IxFxx(R/K)x(R/K) is a new apoptotic signature.

    PubMed

    Godet, Angélique N; Guergnon, Julien; Maire, Virginie; Croset, Amélie; Garcia, Alphonse

    2010-04-01

    Previous studies established that PP1 is a target for Bcl-2 proteins and an important regulator of apoptosis. The two distinct functional PP1 consensus docking motifs, R/Kx((0,1))V/IxF and FxxR/KxR/K, involved in PP1 binding and cell death were previously characterized in the BH1 and BH3 domains of some Bcl-2 proteins. In this study, we demonstrate that DPT-AIF(1), a peptide containing the AIF(562-571) sequence located in a c-terminal domain of AIF, is a new PP1 interacting and cell penetrating molecule. We also showed that DPT-AIF(1) provoked apoptosis in several human cell lines. Furthermore, DPT-APAF(1) a bi-partite cell penetrating peptide containing APAF-1(122-131), a non penetrating sequence from APAF-1 protein, linked to our previously described DPT-sh1 peptide shuttle, is also a PP1-interacting death molecule. Both AIF(562-571) and APAF-1(122-131) sequences contain a common R/Kx((0,1))V/IxFxxR/KxR/K motif, shared by several proteins involved in control of cell survival pathways. This motif combines the two distinct PP1c consensus docking motifs initially identified in some Bcl-2 proteins. Interestingly DPT-AIF(2) and DPT-APAF(2) that carry a F to A mutation within this combinatorial motif, no longer exhibited any PP1c binding or apoptotic effects. Moreover the F to A mutation in DPT-AIF(2) also suppressed cell penetration. These results indicate that the combinatorial PP1c docking motif R/Kx((0,1))V/IxFxxR/KxR/K, deduced from AIF(562-571) and APAF-1(122-131) sequences, is a new PP1c-dependent Apoptotic Signature. This motif is also a new tool for drug design that could be used to characterize potential anti-tumour molecules.

  11. Inhibition of Siah2 Ubiquitin Ligase by Vitamin K3 Attenuates Chronic Myeloid Leukemia Chemo-Resistance in Hypoxic Microenvironment.

    PubMed

    Huang, Jixian; Lu, Ziyuan; Xiao, Yajuan; He, Bolin; Pan, Chengyun; Zhou, Xuan; Xu, Na; Liu, Xiaoli

    2018-02-05

    BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.

  12. A systems biology approach identified different regulatory networks targeted by KSHV miR-K12-11 in B cells and endothelial cells.

    PubMed

    Yang, Yajie; Boss, Isaac W; McIntyre, Lauren M; Renne, Rolf

    2014-08-08

    Kaposi's sarcoma associated herpes virus (KSHV) is associated with tumors of endothelial and lymphoid origin. During latent infection, KSHV expresses miR-K12-11, an ortholog of the human tumor gene hsa-miR-155. Both gene products are microRNAs (miRNAs), which are important post-transcriptional regulators that contribute to tissue specific gene expression. Advances in target identification technologies and molecular interaction databases have allowed a systems biology approach to unravel the gene regulatory networks (GRNs) triggered by miR-K12-11 in endothelial and lymphoid cells. Understanding the tissue specific function of miR-K12-11 will help to elucidate underlying mechanisms of KSHV pathogenesis. Ectopic expression of miR-K12-11 differentially affected gene expression in BJAB cells of lymphoid origin and TIVE cells of endothelial origin. Direct miRNA targeting accounted for a small fraction of the observed transcriptome changes: only 29 genes were identified as putative direct targets of miR-K12-11 in both cell types. However, a number of commonly affected biological pathways, such as carbohydrate metabolism and interferon response related signaling, were revealed by gene ontology analysis. Integration of transcriptome profiling, bioinformatic algorithms, and databases of protein-protein interactome from the ENCODE project identified different nodes of GRNs utilized by miR-K12-11 in a tissue-specific fashion. These effector genes, including cancer associated transcription factors and signaling proteins, amplified the regulatory potential of a single miRNA, from a small set of putative direct targets to a larger set of genes. This is the first comparative analysis of miRNA-K12-11's effects in endothelial and B cells, from tissues infected with KSHV in vivo. MiR-K12-11 was able to broadly modulate gene expression in both cell types. Using a systems biology approach, we inferred that miR-K12-11 establishes its GRN by both repressing master TFs and influencing

  13. MiroRNA-188 Acts as Tumor Suppressor in Non-Small-Cell Lung Cancer by Targeting MAP3K3.

    PubMed

    Zhao, Lili; Ni, Xin; Zhao, Linlin; Zhang, Yao; Jin, Dan; Yin, Wei; Wang, Dandan; Zhang, Wei

    2018-04-02

    Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer. MicroRNAs have been increasingly implicated in NSCLC and may serve as novel therapeutic targets to combat cancer. Here we investigated the functional implication of miR-188 in NSCLC. We first analyzed miR-188 expression in both NSCLC clinical samples and cancer cell lines. Next we investigated its role in A549 and H2126 cells with cell proliferation, migration, and apoptosis assays. To extend the in vitro study, we employed both xenograft model and LSL- K-ras G12D lung cancer model to examine the role of miR-188 in tumorigenesis. Last we tested MAP3K3 as miR-188 target in NSCLC model. MiR-188 expression was significantly downregulated at the NSCLC tumor sites and lung cancer cells. In vitro transfection of miR-188 reduced cell proliferation and migration potential and promoted cell apoptosis. In xenograft model, miR-188 inhibited tumor growth derived from cancer cells. Intranasal miR-188 administration reduced tumor formation in NSCLC animal model. MAP3K3 was validated as direct target of miR-188. Knocking down MAP3K3 in mice also inhibited tumorigenesis in LSL- K-ras G12D model. Our results demonstrate that miR-188 and its downstream target MAP3K3 could be a potential therapeutic target for NSCLC.

  14. Nanoassemblies from amphiphilic cytarabine prodrug for leukemia targeted therapy.

    PubMed

    Liu, Jing; Zhao, Dujuan; He, Wenxiu; Zhang, Huiyuan; Li, Zhonghao; Luan, Yuxia

    2017-02-01

    The anti-leukemia effect of cytarabine (Ara-C) is severely restricted by its high hydrophilic properties and rapid plasma degradation. Herein, a novel amphiphilic small molecular prodrug of Ara-C was developed by coupling a short aliphatic chain, hexanoic acid (HA) to 4-NH 2 of the parent drug. Based on the amphiphilic nature, the resulting bioconjugate (HA-Ara) could spontaneously self-assemble into stable spherical nanoassemblies (NAs) with an extremely high drug loading (∼71wt%). Moreover, folate receptor (FR)-targeting NAs with high grafting efficient folic acid - bovine serum albumin (FA-BSA) conjugate immobilized on the surface (NAs/FA-BSA) was prepared. The results of MTT assays on FR-positive K562 cells and FR-negative A549 cells demonstrated higher cytotoxicity of HA-Ara NAs than the native drug. Especially, the IC 50 values revealed that NAs/FA-BSA was 3 and 2-fold effective than non-targeted NAs after 24 and 48h treatment with K562 cells, respectively indicating FR-mediated enhanced anti-tumor efficacy. In vitro cellular uptake, larger accumulation of HA-Ara NAs were observed in comparative with the free FITC and the results further confirmed the selective uptake of NAs/FA-BSA in folate receptor enriched cancer cells. Above all, self-assembled HA-Ara NAs exhibited potential superiority for Ara-C delivery and FA-modified NAs would be an excellent candidate for targeting leukemia therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma.

    PubMed

    Beck, Joseph Thaddeus; Ismail, Amen; Tolomeo, Christina

    2014-09-01

    Squamous cell lung carcinoma accounts for approximately 30% of all non-small cell lung cancers (NSCLCs). Despite progress in the understanding of the biology of cancer, cytotoxic chemotherapy remains the standard of care for patients with squamous cell lung carcinoma, but the prognosis is generally poor. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is one of the most commonly activated signaling pathways in cancer, leading to cell proliferation, survival, and differentiation. It has therefore become a major focus of clinical research. Various alterations in the PI3K/AKT/mTOR pathway have been identified in squamous cell lung carcinoma and a number of agents targeting these alterations are in clinical development for use as single agents and in combination with other targeted and conventional treatments. These include pan-PI3K inhibitors, isoform-specific PI3K inhibitors, AKT inhibitors, mTOR inhibitors, and dual PI3K/mTOR inhibitors. These agents have demonstrated antitumor activity in preclinical models of NSCLC and preliminary clinical evidence is also available for some agents. This review will discuss the role of the PI3K/AKT/mTOR pathway in cancer and how the discovery of genetic alterations in this pathway in patients with squamous cell lung carcinoma can inform the development of targeted therapies for this disease. An overview of ongoing clinical trials investigating PI3K/AKT/mTOR pathway inhibitors in squamous cell lung carcinoma will also be included. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    NASA Astrophysics Data System (ADS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  17. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL

    PubMed Central

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-01-01

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML. PMID:27329306

  18. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL.

    PubMed

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-06-22

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.

  19. Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism.

    PubMed

    Bonilla-Porras, Angelica R; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2011-06-10

    Secondary therapy-related acute lymphoblastic leukemia might emerge following chemotherapy and/or radiotherapy for primary malignancies. Therefore, other alternatives should be pursued to treat leukemia. It is shown that vitamin K3- or vitamin C- induced apoptosis in leukemia cells by oxidative stress mechanism involving superoxide anion radical and hydrogen peroxide generation, activation of NF-κB, p53, c-Jun, protease caspase-3 activation and mitochondria depolarization leading to nuclei fragmentation. Cell death was more prominent when Jurkat and K562 cells are exposed to VC and VK3 in a ratio 1000:1 (10 mM: 10 μM) or 100:1 (300 μM: 3 μM), respectively. We provide for the first time in vitro evidence supporting a causative role for oxidative stress in VK3- and VC-induced apoptosis in Jurkat and K562 cells in a domino-like mechanism. Altogether these data suggest that VK3 and VC should be useful in the treatment of leukemia.

  20. [miR-143 inhibits cell proliferation through targeted regulating the expression of K-ras gene in HeLa cells].

    PubMed

    Qin, H X; Cui, H K; Pan, Y; Hu, R L; Zhu, L H; Wang, S J

    2016-12-23

    Objective: To explore the effect of microRNA miR-143 on the proliferation of cervical cancer HeLa cells through targeted regulating the expression of K-ras gene. Methods: The luciferase report carrier containing wild type 3'-UTR of K-ras gene (K-ras-wt) or mutated 3'-UTR of the K-ras (K-ras-mut) were co-transfected with iR-143 mimic into the HeLa cells respectively, and the targeting effect of miR-143 in the transfectants was verified by the dual luciferase report system. HeLa cells were also transfected with miR-143 mimic (miR-143 mimic group), mimic control (negative control group), and miR-143 mimic plus K-ras gene (miR-143 mimic+ K-ras group), respectively. The expression of miR-143 in the transfected HeLa cells was detected by real-time PCR (RT-PCR), and the expression of K-ras protein was detected by Western blot. The cell proliferation activity of each group was examined by MTT assay. In addition, human cervical cancer tissue samples ( n =5) and cervical intraepithelial neoplasia tissue samples ( n =5) were also examined for the expression of miR-143 and K-ras protein by RT-PCR and Western blot, respectively. Results: The luciferase report assay showed that co-transfection with miR-143 mimic decreased the luciferase activity of the K-ras-wt significantly, but did not inhibit the luciferase activity of the K-ras-mut. The expression of miR-143 in the HeLa cells transfected with miR-143 mimic was significantly higher than that in the HeLa cells transfected with the mimic control (3.31±0.45 vs 0.97±0.22, P <0.05). The MTT assay revealed that the cell proliferative activity of the miR-143 mimic group was significantly lower than that of the negative control group ( P <0.05), and the cell proliferative activity of the miR-143 mimic+ K-ras group was also significantly lower than the control group ( P <0.05) but higher than the miR-143 mimic group significantly ( P <0.05). The expression levels of K-ras protein in the miR-143 mimic group, the negative control

  1. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells

    PubMed Central

    Peng, Xing-Xiang; Tiwari, Amit K.; Wu, Hsiang-Chun; Chen, Zhe-Sheng

    2012-01-01

    Imatinib, a breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) tyrosine kinase inhibitor (TKI), has revolutionized the treatment of chronic myelogenous leukemia (CML). However, development of multidrug resistance (MDR) limits the use of imatinib. In the present study, we aimed to investigate the mechanisms of cellular resistance to imatinib in CML. Therefore, we established an imatinib-resistant human CML cell line (K562-imatinib) through a stepwise selection process. While characterizing the phenotype of these cells, we found that K562-imatinib cells were 124.6-fold more resistant to imatinib than parental K562 cells. In addition, these cells were cross-resistant to second- and third-generation BCR-ABL TKIs. Western blot analysis and reverse transcription-polymerase chain reaction(RT-PCR) demonstrated that P-glycoprotein (P-gp) and MDR1 mRNA levels were increased in K562-imatinib cells. In addition, accumulation of [14C]6-mercaptopurine (6-MP) was decreased, whereas the ATP-dependent efflux of [14C] 6-MP and [3H]methotrexate transport were increased in K562-imatinib cells. These data suggest that the overexpression of P-gp may play a crucial role in acquired resistance to imatinib in CML K562-imatinib cells. PMID:22098951

  2. Targeting the cell cycle and the PI3K pathway: a possible universal strategy to reactivate innate tumor suppressor programmes in cancer cells.

    PubMed

    David-Pfeuty, Thérèse; Legraverend, Michel; Ludwig, Odile; Grierson, David S

    2010-04-01

    Corruption of the Rb and p53 pathways occurs in virtually all human cancers. This could be because it lends oncogene-bearing cells a surfeit of Cdk activity and growth, enabling them to elaborate strategies to evade tumor-suppressive mechanisms and divide inappropriately. Targeting both Cdk activities and the PI3K pathway might be therefore a potentially universal means to palliate their deficiency in cancer cells. We showed that the killing efficacy of roscovitine and 16 other purines and potentiation of roscovitine-induced apoptosis by the PI3K inhibitor, LY294002, decreased with increasing corruption of the Rb and p53 pathways. Further, we showed that purines differing by a single substitution, which exerted little lethal effect on distant cell types in rich medium, could display widely-differing cytotoxicity profiles toward the same cell types in poor medium. Thus, closely-related compounds targeting similar Cdks may interact with different targets that could compete for their interaction with therapeutically-relevant Cdk targets. In the perspective of clinical development in association with the PI3K pathway inhibitors, it might thus be advisable to select tumor cell type-specific Cdk inhibitors on the basis of their toxicity in cell-culture-based assays performed at a limiting serum concentration sufficient to suppress their interaction with undesirable crossreacting targets whose range and concentration would depend on the cell genotype.

  3. The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.

    PubMed

    Sengupta, P K; Lavelle, D E; DeSimone, J

    1994-03-01

    Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.

  4. EFFECT OF THAI SARAPHI FLOWER EXTRACTS ON WT1 AND BCR/ABL PROTEIN EXPRESSION IN LEUKEMIC CELL LINES.

    PubMed

    Sangkaruk, Rungkarn; Rungrojsakul, Methee; Tima, Singkome; Anuchapreeda, Songyot

    2017-01-01

    Saraphi (Mammea siamensis) is a Thai traditional herb. In this study, the cytotoxic effects of crude ethanolic and fractional extracts including hexane, ethyl acetate, and methanol fractions from M. siamensis flowers were investigated in order to determine their effect on WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. The flowers of M. siamensis were extracted using ethanol. The ethanol flower extract was further fractionated with hexane, ethyl acetate, and methanol. Cytotoxic effects were measured by the MTT assay. Bcr/Abl and WT1 protein levels after treatments were determined by Western blotting. The total cell number was determined via the typan blue exclusion method. The hexane fraction showed the strongest cytotoxic activity on Molt4 and K562 cells, with IC 50 values of 2.6 and 77.6 μg/ml, respectively. The hexane extract decreased Bcr/Abl protein expression in K562 cells by 74.6% and WT1 protein expressions in Molt4 and K562 cells by 68.4 and 72.1%, respectively. Total cell numbers were decreased by 66.2 and 48.7% in Molt4 and K562 cells, respectively. Mammea E/BB (main active compound) significantly decreased both Bcr/Abl and WTlprotein expressions by 75 and 49.5%, respectively when compared to vehicle control. The hexane fraction from M. siamensis flowers inhibited cell proliferation via the suppression of WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. The active compound may be mammea E/BB. Extracts from M. siamensis flowers show promise as naturally occurring anti-cancer drugs.

  5. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Alexander M.; Brundage, Kathleen M.; Center for Immunopathology and Microbial Pathogenesis, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506

    2007-06-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesizedmore » that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.« less

  6. Inhibition of DNA-dependent protein kinase catalytic subunit by small molecule inhibitor NU7026 sensitizes human leukemic K562 cells to benzene metabolite-induced apoptosis.

    PubMed

    You, Hao; Kong, Meng-meng; Wang, Li-ping; Xiao, Xiao; Liao, Han-lin; Bi, Zhuo-yue; Yan, Hong; Wang, Hong; Wang, Chun-hong; Ma, Qiang; Liu, Yan-qun; Bi, Yong-yi

    2013-02-01

    Benzene is an established leukotoxin and leukemogen in humans. We have previously reported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phosphorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apoptosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.

  7. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells.

    PubMed

    Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua

    2017-06-01

    Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.

  8. 32 CFR 562.6 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Responsibilities. 562.6 Section 562.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS' TRAINING CORPS § 562.6 Responsibilities. (a) The Commanding General, US Army Military Personnel Center, 200...

  9. 32 CFR 562.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Applicability. 562.2 Section 562.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS' TRAINING CORPS § 562.2 Applicability. This regulation applies to the program given at college level...

  10. 31 CFR 562.303 - Entity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Entity. 562.303 Section 562.303 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS... § 562.303 Entity. The term entity means a partnership, association, trust, joint venture, corporation...

  11. 32 CFR 562.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Purpose. 562.1 Section 562.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS' TRAINING CORPS § 562.1 Purpose. This regulation gives policies for conducting the Army's Senior Reserve Officers...

  12. The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells.

    PubMed

    Brenner, Annette K; Andersson Tvedt, Tor Henrik; Bruserud, Øystein

    2016-11-11

    Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.

  13. 32 CFR 562.4 - Objectives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Objectives. 562.4 Section 562.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS' TRAINING CORPS § 562.4 Objectives. The objectives of the ROTC program are to: (a) Attract, motivate, and prepare...

  14. Evaluation of NK Cell Function by Flowcytometric Measurement and Impedance Based Assay Using Real-Time Cell Electronic Sensing System

    PubMed Central

    Park, Ki-Hyun; Park, Hyesun; Kim, Myungshin; Kim, Yonggoo; Han, Kyungja; Oh, Eun-Jee

    2013-01-01

    Although real-time cell electronic sensing (RT-CES) system-based natural killer (NK) cytotoxicity has been introduced, it has not been evaluated using human blood samples. In present study, we measured flowcytometry based assay (FCA) and RT-CES based NK cytotoxicity and analyzed degranulation activity (CD107a) and cytokine production. In 98 healthy individuals, FCA with peripheral blood mononuclear cells (PBMCs) at effector to target (E/T) ratio of 32 revealed 46.5 ± 2.6% cytolysis of K562 cells, and 23.5 ± 1.1% of NK cells showed increased degranulation. In RT-CES system, adherent NIH3T3 target cells were resistant to basal killing by PBMC or NK cells. NK cell activation by adding IL-2 demonstrated real-time dynamic killing activity, and lymphokine-activated PBMC (E/T ratio of 32) from 15 individuals showed 59.1 ± 6.2% cytotoxicity results after 4 hours incubation in RT-CES system. However, there was no significant correlation between FCA and RT-CES cytotoxicity. After K562 target cell stimulation, PBMC produced profound proinflammatory and immunoregulatory cytokines/chemokines including IL-2, IL-8, IL-10, MIP-1α β, IFN-γ, and TNF-α, and cytokine/chemokine secretion was related to flowcytometry-based NK cytotoxicity. These data suggest that RT-CES and FCA differ in sensitivity, applicability and providing information, and further investigations are necessary in variable clinical conditions. PMID:24236291

  15. Evaluation of NK cell function by flowcytometric measurement and impedance based assay using real-time cell electronic sensing system.

    PubMed

    Park, Ki-Hyun; Park, Hyesun; Kim, Myungshin; Kim, Yonggoo; Han, Kyungja; Oh, Eun-Jee

    2013-01-01

    Although real-time cell electronic sensing (RT-CES) system-based natural killer (NK) cytotoxicity has been introduced, it has not been evaluated using human blood samples. In present study, we measured flowcytometry based assay (FCA) and RT-CES based NK cytotoxicity and analyzed degranulation activity (CD107a) and cytokine production. In 98 healthy individuals, FCA with peripheral blood mononuclear cells (PBMCs) at effector to target (E/T) ratio of 32 revealed 46.5 ± 2.6% cytolysis of K562 cells, and 23.5 ± 1.1% of NK cells showed increased degranulation. In RT-CES system, adherent NIH3T3 target cells were resistant to basal killing by PBMC or NK cells. NK cell activation by adding IL-2 demonstrated real-time dynamic killing activity, and lymphokine-activated PBMC (E/T ratio of 32) from 15 individuals showed 59.1 ± 6.2% cytotoxicity results after 4 hours incubation in RT-CES system. However, there was no significant correlation between FCA and RT-CES cytotoxicity. After K562 target cell stimulation, PBMC produced profound proinflammatory and immunoregulatory cytokines/chemokines including IL-2, IL-8, IL-10, MIP-1 α β , IFN- γ , and TNF- α , and cytokine/chemokine secretion was related to flowcytometry-based NK cytotoxicity. These data suggest that RT-CES and FCA differ in sensitivity, applicability and providing information, and further investigations are necessary in variable clinical conditions.

  16. 32 CFR 562.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Definitions. 562.3 Section 562.3 National Defense... § 562.3 Definitions. The following terms apply to the Army's Senior Reserve Officers' Training Corps... installation. This is part of the advanced course and normally attended between Military Science (MS)-III and...

  17. Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2

    PubMed Central

    Everett, Peter; Clish, Clary B.; Sukhatme, Vikas P.

    2010-01-01

    Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for

  18. 31 CFR 562.304 - Interest.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Interest. 562.304 Section 562.304... Definitions § 562.304 Interest. Except as otherwise provided in this part, the term interest, when used with respect to property (e.g., “an interest in property”), means an interest of any nature whatsoever, direct...

  19. 31 CFR 562.304 - Interest.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Interest. 562.304 Section 562.304... Definitions § 562.304 Interest. Except as otherwise provided in this part, the term interest, when used with respect to property (e.g., “an interest in property”), means an interest of any nature whatsoever, direct...

  20. 31 CFR 562.304 - Interest.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Interest. 562.304 Section 562.304... Definitions § 562.304 Interest. Except as otherwise provided in this part, the term interest, when used with respect to property (e.g., “an interest in property”), means an interest of any nature whatsoever, direct...

  1. 31 CFR 562.304 - Interest.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Interest. 562.304 Section 562.304... Definitions § 562.304 Interest. Except as otherwise provided in this part, the term interest, when used with respect to property (e.g., “an interest in property”), means an interest of any nature whatsoever, direct...

  2. Selective Blockade of Human Natural Killer Cells by a Monoclonal Antibody

    NASA Astrophysics Data System (ADS)

    Newman, Walter

    1982-06-01

    A murine monoclonal antibody, 13.1, which blocks human natural killer (NK) cell-mediated lysis, has been developed. Hybridoma 13.1 was derived by fusion of NS-1 cells with spleen cells from mice immunized with an enriched population of NK cells. Supernatants of growing hybridomas were screened for their ability to block NK cell-mediated lysis of K562 targets. Antibody 13.1 is an IgG1 with a single light chain type and it does not fix complement. The 13.1 antigen is expressed on all peripheral blood mononuclear cells, with an antigen density approximately 1/30th that of HLA antigen heavy chain. Pretreatment and washing experiments revealed that inhibition of cytotoxicity occurred at the effector cell level only. Significant blocking was achieved with nanogram quantities of antibody and was not due to toxic effects on NK cells. Likewise, controls with other antibodies of the same subclass demonstrated that blocking was not a consequence of mere binding to NK cells. When a panel of 17 NK cell-susceptible targets was tested, the lysis of only 5 of these was blocked, namely K562, HL-60, KG-1, Daudi, and HEL, a human erythroleukemic cell line. The lysis of 12 human B cell and T cell line targets was not inhibited. In addition to the demonstration that the 13.1 antigen is a crucial cell surface structure involved in NK lysis, a heterogeneity of target cell recognition has been revealed that argues for the proposition that individual NK cells have multiple recognitive capabilities.

  3. Naproxen induces cell cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3-K

    PubMed Central

    Kim, Mi-Sung; Kim, Jong-Eun; Lim, Do Young; Huang, Zunnan; Chen, Hanyong; Langfald, Alyssa; Lubet, Ronald A.; Grubbs, Clinton J.; Dong, Zigang; Bode, Ann M.

    2014-01-01

    Naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid) is a potent nonsteroidal anti-inflammatory drug that inhibits both COX-1 and COX-2 and is widely used as an over-the-counter medication. Naproxen exhibits analgesic, anti-pyretic, and anti-inflammatory activities. Naproxen, as well as other NSAIDS, has been reported to be effective in the prevention of urinary bladder cancer in rodents. However, potential targets other than the COX isozymes have not been reported. We examined potential additional targets in urinary bladder cancer cells and in rat bladder cancers. Computer kinase profiling results suggested that phosphatidylinositol 3-kinase (PI3-K) is a potential target for naproxen. In vitro kinase assay data revealed that naproxen interacts with PI3-K and inhibits its kinase activity. Pull-down binding assay data confirmed that PI3-K directly binds with naproxen in vitro and ex vivo. Western blot data showed that naproxen decreased phosphorylation of Akt, and subsequently decreased Akt signaling in UM-UC-5 and UMUC-14 urinary bladder cancer cells. Furthermore, naproxen suppressed anchorage-independent cell growth and decreased cell viability by targeting PI3-K in both cell lines. Naproxen caused an accumulation of cells at the G1 phase mediated through CDK4, cyclin D1 and p21. Moreover, naproxen induced significant apoptosis, accompanied with increased levels of cleaved caspase 3, caspase 7, and poly (ADP-ribose) polymerase (PARP) in both cell types. Naproxen-induced cell death was mainly due to apoptosis in which a prominent down-regulation of Bcl-2 and up-regulation of Bax were involved. Naproxen also caused apoptosis and inhibited Akt phosphorylation in rat urinary bladder cancers induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine (OH-BBN). PMID:24327721

  4. Effect of Spaceflight on the Functions of NK and LAK Cells

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Grimm, Elizabeth A.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Spaceflight-associated stress alters some aspects of the human immune response. In this study, we determined the effects of 10 days aboard the Space Shuttle on the cytotoxic activity of NK and LAK cells. The subjects of this study were crewmembers of two 10-day shuttle flights. Ten-ml blood specimens were obtained from ten astronauts 10 days before launch, immediately after landing, and 3 days after landing. PBMCs were separated from the blood specimens and stored at -800 C. All PBMCs were thawed simultaneously, and the cytotoxic activities of NK and LAK cells were measured by a 4-hour Cr-51 release assay. K562 cells were used to assess NK-cell cytotoxicity. After 4 days of IL-2 activation, the LAK cell cytotoxic activity was determined using K562 and Daudi cells as the target cells. NK-cell cytotoxicity was decreased at landing (p less than 0.0005) in 9/10 astronauts, and in most cases recovered to preflight levels by 3 days after landing; NK-cell cytotoxicity was increased in one astronaut at landing. LAK cytotoxic activity against K562 cells was decreased at landing in 6/10 astronauts (p=0.018), and activity against Daudi cells was decreased in 7/10 astronauts (p=0.01). Phenotyping of PBMCs and LAK cells showed alterations in some surface markers and adhesion molecules (CD1 1 b, CD1 1 c, CD1 1 a, CD1 6, L-Selectin and CD3). Thus spaceflight leads to a decrease in the functions of NK and LAK cells in most astronauts.

  5. miR-188 promotes senescence of lineage-negative bone marrow cells by targeting MAP3K3 expression.

    PubMed

    Zheng, Yue; Liu, Hua; Kong, Ye

    2017-08-01

    Lineage-negative bone marrow cells (lin-BMCs) have reparative potential for overcoming endothelial dysfunction and reducing cardiovascular risk. Here, we found that miR-188 is upregulated and mitogen-activated protein kinase kinase kinase 3 (MAP3K3) is downregulated in aged lin-BMCs, whereas their expression is reversed in young lin-BMCs. We identified and confirmed MAP3K3 as a direct target of miR-188. MiR-188 overexpression or MAP3K3 silencing in young lin-BMCs increases p16 and p21 expression, enhances cell senescence, and decreases the ability for cell proliferation, migration, and tube formation. Conversely, miR-188 suppression in aged lin-BMCs yields the opposite results. We further found that MAP3K3 is involved in miR-188-induced promotion of lin-BMC senescence. All data reveal that miR-188 induces lin-BMC senescence by targeting MAP3K3 expression, thus, providing new theoretical basis for the prevention and treatment of cardiovascular diseases. © 2017 Federation of European Biochemical Societies.

  6. 32 CFR 562.7 - Program information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Program information. 562.7 Section 562.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS' TRAINING CORPS § 562.7 Program information. (a) The Senior ROTC is conducted at military colleges...

  7. 32 CFR 562.7 - Program information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Program information. 562.7 Section 562.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS' TRAINING CORPS § 562.7 Program information. (a) The Senior ROTC is conducted at military colleges, civilian...

  8. 31 CFR 562.309 - United States.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false United States. 562.309 Section 562.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... Definitions § 562.309 United States. The term United States means the United States, its territories and...

  9. 31 CFR 562.309 - United States.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false United States. 562.309 Section 562.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... Definitions § 562.309 United States. The term United States means the United States, its territories and...

  10. 31 CFR 562.309 - United States.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false United States. 562.309 Section 562.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... Definitions § 562.309 United States. The term United States means the United States, its territories and...

  11. 31 CFR 562.309 - United States.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false United States. 562.309 Section 562.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN... Definitions § 562.309 United States. The term United States means the United States, its territories and...

  12. Phloridzin docosahexaenoate, a novel flavonoid derivative, suppresses growth and induces apoptosis in T-cell acute lymphoblastic leukemia cells.

    PubMed

    Arumuggam, Niroshaathevi; Melong, Nicole; Too, Catherine Kl; Berman, Jason N; Rupasinghe, Hp Vasantha

    2017-01-01

    The overall clinical outcome in T-cell acute lymphoblastic leukemia (T-ALL) can be improved by minimizing risk for treatment failure using effective pharmacological adjuvants. Phloridzin (PZ), a flavonoid precursor found in apple peels, was acylated with docosahexaenoic acid (DHA) yielding a novel ester known as phloridzin docosahexaenoate (PZ-DHA). Here, we have studied the cytotoxic effects of PZ-DHA on human leukemia cells using in vitro and in vivo models. The inhibitory effects of PZ-DHA were tested on human Jurkat T-ALL cells in comparison to K562 chronic myeloid leukemia (CML) cells and non-malignant murine T-cells. PZ-DHA, not PZ or DHA alone, reduced cell viability and ATP levels, increased intracellular LDH release, and caused extensive morphological alterations in both Jurkat and K562 cells. PZ-DHA also inhibited cell proliferation, and selectively induced apoptosis in Jurkat and K562 cells while sparing normal murine T-cells. The cytotoxic effects of PZ-DHA on Jurkat cells were associated with caspase activation, DNA fragmentation, and selective down-regulation of STAT3 phosphorylation. PZ-DHA significantly inhibited Jurkat cell proliferation in zebrafish larvae; however, the proliferation of K562 cells was not affected in vivo . We propose that PZ-DHA-induced cytotoxic response is selective towards T-ALL in the presence of a tumor-stromal microenvironment. Prospective studies evaluating the combinatorial effects of PZ-DHA with conventional chemotherapy for T-ALL are underway.

  13. Phloridzin docosahexaenoate, a novel flavonoid derivative, suppresses growth and induces apoptosis in T-cell acute lymphoblastic leukemia cells

    PubMed Central

    Arumuggam, Niroshaathevi; Melong, Nicole; Too, Catherine KL; Berman, Jason N; Rupasinghe, HP Vasantha

    2017-01-01

    The overall clinical outcome in T-cell acute lymphoblastic leukemia (T-ALL) can be improved by minimizing risk for treatment failure using effective pharmacological adjuvants. Phloridzin (PZ), a flavonoid precursor found in apple peels, was acylated with docosahexaenoic acid (DHA) yielding a novel ester known as phloridzin docosahexaenoate (PZ-DHA). Here, we have studied the cytotoxic effects of PZ-DHA on human leukemia cells using in vitro and in vivo models. The inhibitory effects of PZ-DHA were tested on human Jurkat T-ALL cells in comparison to K562 chronic myeloid leukemia (CML) cells and non-malignant murine T-cells. PZ-DHA, not PZ or DHA alone, reduced cell viability and ATP levels, increased intracellular LDH release, and caused extensive morphological alterations in both Jurkat and K562 cells. PZ-DHA also inhibited cell proliferation, and selectively induced apoptosis in Jurkat and K562 cells while sparing normal murine T-cells. The cytotoxic effects of PZ-DHA on Jurkat cells were associated with caspase activation, DNA fragmentation, and selective down-regulation of STAT3 phosphorylation. PZ-DHA significantly inhibited Jurkat cell proliferation in zebrafish larvae; however, the proliferation of K562 cells was not affected in vivo. We propose that PZ-DHA-induced cytotoxic response is selective towards T-ALL in the presence of a tumor-stromal microenvironment. Prospective studies evaluating the combinatorial effects of PZ-DHA with conventional chemotherapy for T-ALL are underway. PMID:29312799

  14. Chronic myeloid leukemia progenitor cells require autophagy when leaving hypoxia-induced quiescence

    PubMed Central

    Ianniciello, Angela; Dumas, Pierre-Yves; Drullion, Claire; Guitart, Amélie; Villacreces, Arnaud; Peytour, Yan; Chevaleyre, Jean; Brunet de la Grange, Philippe; Vigon, Isabelle; Desplat, Vanessa; Priault, Muriel; Sbarba, Persio Dello; Ivanovic, Zoran; Mahon, François-Xavier; Pasquet, Jean-Max

    2017-01-01

    Albeit tyrosine kinase inhibitors anti-Abl used in Chronic Myeloid Leukemia (CML) block the deregulated activity of the Bcr-Abl tyrosine kinase and induce remission in 90% of patients, they do not eradicate immature hematopoietic compartments of leukemic stem cells. To elucidate if autophagy is important for stem cell survival and/or proliferation, we used culture in low oxygen concentration (0.1% O2 for 7 days) followed back by non-restricted O2 supply (normoxic culture) to mimic stem cell proliferation and commitment. Knockdown of Atg7 expression, a key player in autophagy, in K562 cell line inhibited autophagy compared to control cells. Upon 7 days at 0.1% O2 both K562 and K562 shATG7 cells stopped to proliferate and a similar amount of viable cells remained. Back to non-restricted O2 supply K562 cells proliferate whereas K562 shATG7 cells exhibited strong apoptosis. Using immunomagnetic sorted normal and CML CD34+ cells, we inhibited the autophagic process by lentiviral infection expressing shATG7 or using a Vps34 inhibitor. Both, normal and CML CD34+ cells either competent or deficient for autophagy stopped to proliferate in hypoxia. Surprisingly, while normal CD34+ cells proliferate back to non restricted O2 supply, the CML CD34+ cells deficient for autophagy failed to proliferate. All together, these results suggest that autophagy is required for CML CD34+ commitment while it is dispensable for normal CD34 cells. PMID:29228587

  15. Diterpenes from Xylopia langsdorffiana inhibit cell growth and induce differentiation in human leukemia cells.

    PubMed

    Castello Branco, Marianna V S; Anazetti, Maristella C; Silva, Marcelo S; Tavares, Josean F; Diniz, Margareth F F Melo; Frungillo, Lucas; Haun, Marcela; Melo, Patrícia S

    2009-01-01

    Two new diterpenes were isolated from stems and leaves of Xylopia langsdorffiana, ent-atisane-7alpha,16alpha-diol (xylodiol) and ent-7alpha-acetoxytrachyloban-18-oic acid (trachylobane), along with the known 8(17),12E,14-labdatrien-18-oic acid (labdane). We investigated their antitumour effects on HL60, U937 and K562 human leukemia cell lines. We found that xylodiol was the most potent diterpene in inhibiting cell proliferation of HL60, U937 and K562 cells, with mean IC50 values of 90, 80 and 50 microM, respectively. Based on the nitroblue tetrazolium (NBT) reduction assay, all the diterpenes were found to induce terminal differentiation in HL60 and K562 cells, with xylodiol being the most effective. NBT reduction was increased by almost 120% after 12 h exposure of HL60 cells to xylodiol at a concentration lower than the IC50 (50 microM). Thus, xylodiol inhibited human leukemia cell growth in vitro partly by inducing cell differentiation, and merits further studies to examine its mechanism of action as a potential antitumoural agent.

  16. The clinical implications of mixed lymphocyte reaction with leukemic cells.

    PubMed

    Kim, Hee-Je; Kim, Tai-Gyu; Cho, Hyun Il; Han, Hoon; Min, Woo-Sung; Kim, Chun-Choo

    2002-11-01

    To evaluate the clinical implications of a mixed lymphocyte reaction between leukemic cells and lymphocytes from HLA-matched sibling donors, we attempted to generate donor-derived, graft-versus-leukemia-effective cells and to define their characteristics. We studied 8 patients with chronic myelogenous leukemia (CML), including 5 patients in the chronic phase (CP), 3 patients in the accelerated phase (AP), and 2 patients with acute myelogenous leukemia (AML) in their first complete remission. Cells from these patients were used as stimulators in a mixed lymphocyte reaction.The effects of natural killer (NK) cells and cytotoxic T-lymphocytes (CTLs) were separated by observing tests for cytotoxicity to target cells, including K562 cells, the patient's leukemic cells, and phytohemagglutinin (PHA) blasts. Donor-derived antileukemic CTLs againstthe patient's own leukemic cells are productive in vitro. The efficacy of generating CTLs against leukemic target cells was (in decreasing order) AML, CML-CP, and CML-AP. Cytotoxic activity against leukemic targets was prominent in 4 cases--2 CML-CP and the 2 AML cases. On the contrary, the 3 cases of CML-AP showed low CTL activity. In cases showing 1 positive result among 3 targets (K562 cells, the patient's leukemic cells, and PHA blasts), the relapse rate was significantly lower (P = .022) on follow-up (median, 33 months; 7-40 months) after hematopoietic stem cell transplantation. By a combined analysis of the cytotoxicity effects for all 3 target cells, we were able to demonstrate a correlation between leukemic relapse and the variable degree of the cytotoxicity test results. Although the total sample numbers for this study were low, we speculate that these results may come from differences in the individual characteristics of the leukemic cells that are in line with their clinical disease status.

  17. 31 CFR 56.2 - Sales price.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Sales price. 56.2 Section 56.2 Money and Finance: Treasury Regulations Relating to Money and Finance DOMESTIC GOLD AND SILVER OPERATIONS SALE OF SILVER § 56.2 Sales price. Sales of silver will be at prices offered through the competitive...

  18. 31 CFR 56.2 - Sales price.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Sales price. 56.2 Section 56.2 Money and Finance: Treasury Regulations Relating to Money and Finance MONETARY OFFICES, DEPARTMENT OF THE TREASURY DOMESTIC GOLD AND SILVER OPERATIONS SALE OF SILVER § 56.2 Sales price. Sales of silver will be at...

  19. 31 CFR 56.2 - Sales price.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Sales price. 56.2 Section 56.2 Money and Finance: Treasury Regulations Relating to Money and Finance MONETARY OFFICES, DEPARTMENT OF THE TREASURY DOMESTIC GOLD AND SILVER OPERATIONS SALE OF SILVER § 56.2 Sales price. Sales of silver will be at...

  20. 31 CFR 56.2 - Sales price.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Sales price. 56.2 Section 56.2 Money and Finance: Treasury Regulations Relating to Money and Finance MONETARY OFFICES, DEPARTMENT OF THE TREASURY DOMESTIC GOLD AND SILVER OPERATIONS SALE OF SILVER § 56.2 Sales price. Sales of silver will be at...

  1. 31 CFR 56.2 - Sales price.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Sales price. 56.2 Section 56.2 Money and Finance: Treasury Regulations Relating to Money and Finance MONETARY OFFICES, DEPARTMENT OF THE TREASURY DOMESTIC GOLD AND SILVER OPERATIONS SALE OF SILVER § 56.2 Sales price. Sales of silver will be at...

  2. The anti-cancer peptide, PNC-27, induces tumor cell necrosis of a poorly differentiated non-solid tissue human leukemia cell line that depends on expression of HDM-2 in the plasma membrane of these cells.

    PubMed

    Davitt, Katlin; Babcock, Blake D; Fenelus, Maly; Poon, Chi Kong; Sarkar, Abhishek; Trivigno, Vincent; Zolkind, Paul A; Matthew, Sheena M; Grin'kina, Natalia; Orynbayeva, Zulfiya; Shaikh, Mohammad F; Adler, Victor; Michl, Josef; Sarafraz-Yazdi, Ehsan; Pincus, Matthew R; Bowne, Wilbur B

    2014-01-01

    We have developed the anti-cancer peptide, PNC-27, which is a membrane-active peptide that binds to the HDM-2 protein expressed in the cancer cell membranes of solid tissue tumor cells and induces transmembrane pore formation in cancer, but not in normal cells, resulting in tumor cell necrosis that is independent of p53 activity in these cells. We now extend our study to non-solid tissue tumor cells, in this case, a primitive, possible stem cell human leukemia cell line (K562) that is also p53-homozygously deleted. Our purpose was twofold: to investigate if these cells likewise express HDM-2 in their plasma membranes and to determine if our anti-cancer peptide induces tumor cell necrosis in these non-solid tissue tumor cells in a manner that depends on the interaction between the peptide and membrane-bound HDM-2. The anti-cancer activity and mechanism of PNC-27, which carries a p53 aa12-26-leader sequence connected on its carboxyl terminal end to a trans-membrane-penetrating sequence or membrane residency peptide (MRP), was studied against p53-null K562 leukemia cells. Murine leukocytes were used as a non-cancer cell control. Necrosis was determined by measuring the lactate dehydrogenase (LDH) release and apoptosis was determined by the detection of Caspases 3 and 7. Membrane colocalization of PNC-27 with HDM-2 was analyzed microscopically using fluorescently labeled antibodies against HDM-2 and PNC-27 peptides. We found that K562 cells strongly express HDM-2 protein in their membranes and that PNC-27 co-localizes with this protein in the membranes of these cells. PNC-27, but not the negative control peptide PNC-29, is selectively cytotoxic to K562 cells, inducing nearly 100 percent cell killing with LDH release. In contrast, this peptide had no effect on the lymphocyte control cells. The results suggest that HDM-2 is expressed in the membranes of non-solid tissue tumor cells in addition to the membranes of solid tissue tumor cells. Since K-562 cells appear to be

  3. Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma.

    PubMed

    Nakazawa, Tsutomu; Nakamura, Mitsutoshi; Park, Young Soo; Motoyama, Yasushi; Hironaka, Yasuo; Nishimura, Fumihiko; Nakagawa, Ichiro; Yamada, Shuichi; Matsuda, Ryosuke; Tamura, Kentaro; Sugimoto, Tadashi; Takeshima, Yasuhiro; Marutani, Akiko; Tsujimura, Takahiro; Ouji, Noriko; Ouji, Yukiteru; Yoshikawa, Masahide; Nakase, Hiroyuki

    2014-01-01

    Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

  4. Ionophore-A23187-induced cellular cytotoxicity: a cell fragment mediated process.

    PubMed Central

    Nash, G S; Niedt, G W; MacDermott, R P

    1980-01-01

    Calcium ionophore A23187 was found to induce human white blood cells to kill human red blood cells. Optimal conditions for ionophore-induced cellular cytotoxicity (IICC) included an 18 h time period, an incubation temperature of 25 degrees, a 25:1 or 50:1 killer:target cell ratio,and a final ionophore concentration of 2 . 5 microgram/ml. WBC or granulocytes which were either frozen and thawed three times or sonicated were capable of mediating IICC. As intact cells, granulocytes (67 . 2% cytotoxicity), monocytes (34 . 8%), B cells (22 . 0%) and Null cells (19 . 3%) were effector cells but T cells (7 . 4%) were not. After fragmenting these cells, all cell types including T cells were able to mediate IICC. When cell lines (K562, Chang, and NCTC) were used as effectors, none would mediate IICC when intact. After freezing and thawing, Chang and NCTC would not mediate IICC, whereas K562 cells did. These studies may be indicative of a calcium-dependent, membrane-localized mechanism in cellular cytotoxic processes, and may provide a useful indicator system for isolation of the enzyme systems involved in cellular cytotoxicity. PMID:6773881

  5. Deficient natural killer cell function in preeclampsia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alanen, A.; Lassila, O.

    1982-11-01

    Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.

  6. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells.

    PubMed

    Chen, Bao-an; Mao, Pei-pei; Cheng, Jian; Gao, Feng; Xia, Guo-hua; Xu, Wen-lin; Shen, Hui-lin; Ding, Jia-hua; Gao, Chong; Sun, Qian; Chen, Wen-ji; Chen, Ning-na; Liu, Li-jie; Li, Xiao-mao; Wang, Xue-mei

    2010-08-09

    In many instances, multidrug resistance (MDR) is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp), a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe(3)O(4) nanoparticle [MNP (Fe(3)O(4))] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of "classical" MDR by short hairpin RNA (shRNA) aiming directly at the target sequence (3491-3509, 1539-1557, and 3103-3121 nucleotide) of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1-1, PGY1-2, and PGY1-3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe(3)O(4)) for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM). PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1-2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR) and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe(3)O(4)) or PGY1-2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe(3)O(4)) and PGY1-2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe(3)O(4)) and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia.

  7. Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin.

    PubMed

    Elf, S; Lin, R; Xia, S; Pan, Y; Shan, C; Wu, S; Lonial, S; Gaddh, M; Arellano, M L; Khoury, H J; Khuri, F R; Lee, B H; Boggon, T J; Fan, J; Chen, J

    2017-01-12

    The oxidative pentose phosphate pathway (PPP) is crucial for cancer cell metabolism and tumor growth. We recently reported that targeting a key oxidative PPP enzyme, 6-phosphogluconate dehydrogenase (6PGD), using our novel small-molecule 6PGD inhibitors Physcion and its derivative S3, shows anticancer effects. Notably, humans with genetic deficiency of either 6PGD or another oxidative PPP enzyme, glucose-6-phosphate dehydrogenase, exhibit non-immune hemolytic anemia upon exposure to aspirin and various antimalarial drugs. Inspired by these clinical observations, we examined the anticancer potential of combined treatment with 6PGD inhibitors and antimalarial drugs. We found that stable knockdown of 6PGD sensitizes leukemia cells to antimalarial agent dihydroartemisinin (DHA). Combined treatment with DHA and Physcion activates AMP-activated protein kinase, leading to synergistic inhibition of human leukemia cell viability. Moreover, our combined therapy synergistically attenuates tumor growth in xenograft nude mice injected with human K562 leukemia cells and cell viability of primary leukemia cells from human patients, but shows minimal toxicity to normal hematopoietic cells in mice as well as red blood cells and mononucleocytes from healthy human donors. Our findings reveal the potential for combined therapy using optimized doses of Physcion and DHA as a novel antileukemia treatment without inducing hemolysis.

  8. Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1

    PubMed Central

    van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2015-01-01

    Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312

  9. 32 CFR 562.6 - Responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Responsibilities. 562.6 Section 562.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS... Stovall Street, Alexandria, VA 22332, is the adminstrator of the Department of the Army for ROTC. (b) The...

  10. 40 CFR 721.562 - Substituted alkylamine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkylamine salt. 721.562 Section 721.562 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.562 Substituted alkylamine salt...

  11. 32 CFR 562.4 - Objectives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Objectives. 562.4 Section 562.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS' TRAINING CORPS... students with potential to serve as commissioned officers in the Regular Army or the US Army Reserve. (b...

  12. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    PubMed

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  13. A gallotannin-rich fraction from Caesalpinia spinosa (Molina) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line

    PubMed Central

    2012-01-01

    Background Enhancement of tumor cell sensitivity may help facilitate a reduction in drug dosage using conventional chemotherapies. Consequently, it is worthwhile to search for adjuvants with the potential of increasing chemotherapeutic drug effectiveness and improving patient quality of life. Natural products are a very good source of such adjuvants. Methods The biological activity of a fraction enriched in hydrolysable polyphenols (P2Et) obtained from Caesalpinia spinosa was evaluated using the hematopoietic cell line K562. This fraction was tested alone or in combination with the conventional chemotherapeutic drugs doxorubicin, vincristine, etoposide, camptothecin and taxol. The parameters evaluated were mitochondrial depolarization, caspase 3 activation, chromatin condensation and clonogenic activity. Results We found that the P2Et fraction induced mitochondrial depolarization, activated caspase 3, induced chromatin condensation and decreased the clonogenic capacity of the K562 cell line. When the P2Et fraction was used in combination with chemotherapeutic drugs at sub-lethal concentrations, a fourfold reduction in doxorubicin inhibitory concentration 50 (IC50) was seen in the K562 cell line. This finding suggested that P2Et fraction activity is specific for the molecular target of doxorubicin. Conclusions Our results suggest that a natural fraction extracted from Caesalpinia spinosa in combination with conventional chemotherapy in combination with natural products on leukemia cells may increase therapeutic effectiveness in relation to leukemia. PMID:22490328

  14. Cardiotonic steroids-mediated Na+/K+-ATPase targeting could circumvent various chemoresistance pathways.

    PubMed

    Mijatovic, Tatjana; Kiss, Robert

    2013-03-01

    Many cancer patients fail to respond to chemotherapy because of the intrinsic resistance of their cancer to pro-apoptotic stimuli or the acquisition of the multidrug resistant phenotype during chronic treatment. Previous data from our groups and from others point to the sodium/potassium pump (the Na+/K+-ATPase, i.e., NaK) with its highly specific ligands (i.e., cardiotonic steroids) as a new target for combating cancers associated with dismal prognoses, including gliomas, melanomas, non-small cell lung cancers, renal cell carcinomas, and colon cancers. Cardiotonic steroid-mediated Na+/K+-ATPase targeting could circumvent various resistance pathways. The most probable pathways include the involvement of Na+/K+-ATPase β subunits in invasion features and Na+/K+-ATPase α subunits in chemosensitisation by specific cardiotonic steroid-mediated apoptosis and anoïkis-sensitisation; the regulation of the expression of multidrug resistant-related genes; post-translational regulation, including glycosylation and ubiquitinylation of multidrug resistant-related proteins; c-Myc downregulation; hypoxia-inducible factor downregulation; NF-κB downregulation and deactivation; the inhibition of the glycolytic pathway with a reduction of intra-cellular ATP levels and an induction of non-apoptotic cell death. The aims of this review are to examine the various molecular pathways by which the NaK targeting can be more deleterious to biologically aggressive cancer cells than to normal cells. Georg Thieme Verlag KG Stuttgart · New York.

  15. miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yajuan; Wang, Haixia; Tao, Kun

    MicroRNAs (miRNAs) are small RNAs that regulate gene expression posttranscriptionally and are critical for many cellular pathways. Recent evidence has shown that aberrant miRNA expression profiles and unique miRNA signaling pathways are present in many cancers. Here, we demonstrate that miR-29b is markedly lower expressed in CML patient samples. Bioinformatics analysis reveals a conserved target site for miR-29b in the 3′-untranslated region (UTR) of ABL1. miR-29b significantly suppresses the activity of a luciferase reporter containing ABL1-3′UTR and this activity is not observed in cells transfected with mutated ABL1-3′UTR. Enforced expression of miR-29b in K562 cells inhibits cell growth and colonymore » formation ability thereby inducing apoptosis through cleavage of procaspase 3 and PARP. Furthermore, K562 cells transfected with a siRNA targeting ABL1 show similar growth and apoptosis phenotypes as cells overexpression of miR-29b. Collectively, our results suggest that miR-29b may function as a tumor suppressor by targeting ABL1 and BCR/ABL1. - Highlights: ► miR-29b expression was downregulated in CML patients. ► ABL1 was identified as a direct target gene of miR-29b. ► Enforced expression of miR-29b inhibits cell proliferation and induces apoptosis. ► miR-29b might be a therapeutic target to CML.« less

  16. 16 CFR 5.62 - Hearing rights of respondent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Hearing rights of respondent. 5.62 Section 5.62 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE STANDARDS OF CONDUCT Disciplinary Actions Concerning Postemployment Conflict of Interest § 5.62 Hearing...

  17. Effect of a streptococcal preparation (OK432) on natural killer activity of tumour-associated lymphoid cells in human ovarian carcinoma and on lysis of fresh ovarian tumour cells.

    PubMed Central

    Colotta, F.; Rambaldi, A.; Colombo, N.; Tabacchi, L.; Introna, M.; Mantovani, A.

    1983-01-01

    The streptococcal preparation OK432 was studied for its effects on natural killer (NK) activity of peripheral blood lymphocytes (PBL) from normal donors and from ovarian cancer patients, and of tumour-associated lymphocytes (TAL) from peritoneal effusions. OK432 augmented NK activity against the susceptible K562 line and induced killing of the relatively resistant Raji line. Freshly isolated ovarian carcinoma cells were relatively resistant to killing by unstimulated PBL and TAL. OK432 induced significant, though low, levels of cytotoxicity against 51Cr-labelled ovarian carcinoma cells. Augmentation of killing of fresh tumour cells by OK432 was best observed in a 20 h assay and both autologous and allogeneic targets were lysed. PBL were separated on discontinuous Percoll gradients. Unstimulated and OK432-boosted activity were enriched in the lower density fractions where large granular lymphocytes (LGL) and activity against K562 were found. Thus, OK432 augments NK activity of PBL and TAL in human ovarian carcinomas and induces low, but significant, levels of killing of fresh tumour cells. Effector cells involved in killing of fresh ovarian tumours copurify with LGL on discontinuous gradients of Percoll. PMID:6626452

  18. Demonstration of NK cell-mediated lysis of varicella-zoster virus (VZV)-infected cells: characterization of the effector cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilden, A.B.; Cauda, R.; Grossi, C.E.

    1986-06-01

    Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar tomore » those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.« less

  19. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at ambient temperature of at least one and a half times its specified maximum working pressure but not more... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562...

  20. Somatostatin Analogues for Receptor Targeted Photodynamic Therapy

    PubMed Central

    Kaščáková, Slávka; Hofland, Leo J.; De Bruijn, Henriette S.; Ye, Yunpeng; Achilefu, Samuel; van der Wansem, Katy; van der Ploeg-van den Heuvel, Angelique; van Koetsveld, Peter M.; Brugts, Michael P.; van der Lelij, Aart-Jan; Sterenborg, Henricus J. C. M.; ten Hagen, Timo L. M.; Robinson, Dominic J.; van Hagen, Martin P.

    2014-01-01

    Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2 + AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate. PMID:25111655

  1. Ultrasonic Scattering Measurements of a Live Single Cell at 86 MHz

    PubMed Central

    Lee, Changyang; Jung, Hayong; Lam, Kwok Ho; Yoon, Changhan; Shung, K. Kirk

    2016-01-01

    Cell separation and sorting techniques have been employed biomedical applications such as cancer diagnosis and cell gene expression analysis. The capability to accurately measure ultrasonic scattering properties from cells is crucial in making an ultrasonic cell sorter a reality if ultrasound scattering is to be used as the sensing mechanism as well. To assess the performance of sensing and identifying live single cells with high-frequency ultrasound, an 86-MHz lithium niobate press-focused single-element acoustic transducer was used in a high-frequency ultrasound scattering measurement system that was custom designed and developed for minimizing noise and allowing better mobility. Peak-to-peak echo amplitude, integrated backscatter (IB) coefficient, spectral parameters including spectral slope and intercept, and midband fit from spectral analysis of the backscattered echoes were measured and calculated from a live single cell of two different types on an agar surface: leukemia cells (K562 cells) and red blood cells (RBCs). The amplitudes of echo signals from K562 cells and RBCs were 48.25 ± 11.98 mVpp and 56.97 ± 7.53 mVpp, respectively. The IB coefficient was −89.39 ± 2.44 dB for K562 cells and −89.00 ± 1.19 dB for RBCs. The spectral slope and intercept were 0.30 ± 0.19 dB/MHz and −56.07 ± 17.17 dB, respectively, for K562 cells and 0.78 ± 0.092 dB/MHz and −98.18 ± 8.80 dB, respectively, for RBCs. Midband fits of K562 cells and RBCs were −31.02 ± 3.04 dB and −33.51 ± 1.55 dB, respectively. Acoustic cellular discrimination via these parameters was tested by Student’s t-test. Their values, except for the IB value, showed statistically significant difference (p < 0.001). This paper reports for the first time that ultrasonic scattering measurements can be made on a live single cell with a highly focused high-frequency ultrasound microbeam at 86 MHz. These results also suggest the feasibility of ultrasonic scattering as a sensing mechanism in

  2. 31 CFR 562.307 - Property; property interest.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Property; property interest. 562.307 Section 562.307 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE..., or interest or interests therein, present, future, or contingent. ...

  3. 31 CFR 562.307 - Property; property interest.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Property; property interest. 562.307 Section 562.307 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE..., or interest or interests therein, present, future, or contingent. ...

  4. 31 CFR 562.307 - Property; property interest.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Property; property interest. 562.307 Section 562.307 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE..., or interest or interests therein, present, future, or contingent. ...

  5. 31 CFR 562.307 - Property; property interest.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Property; property interest. 562.307 Section 562.307 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE..., or interest or interests therein, present, future, or contingent. ...

  6. Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells

    PubMed Central

    Prabhu, Kirti S.; Siveen, Kodappully S.; Kuttikrishnan, Shilpa; Iskandarani, Ahmad; Tsakou, Magdalini; Achkar, Iman W.; Therachiyil, Lubna; Krishnankutty, Roopesh; Parray, Aijaz; Kulinski, Michal; Merhi, Maysaloun; Dermime, Said; Mohammad, Ramzi M.

    2017-01-01

    The X-linked inhibitor of apoptosis (XIAP) is a viable molecular target for anticancer drugs that overcome apoptosis-resistance of malignant cells. XIAP is an inhibitor of apoptosis, mediating through its association with BIR3 domain of caspase 9. Embelin, a quinone derivative isolated from the Embelia ribes plant, has been shown to exhibit chemopreventive, anti-inflammatory, and apoptotic activities via inhibiting XIAP activity. In this study, we found that embelin causes a dose-dependent suppression of proliferation in leukemic cell lines K562 and U937. Embelin mediated inhibition of proliferation correlates with induction of apoptosis. Furthermore, embelin treatment causes loss of mitochondrial membrane potential and release of cytochrome c, resulting in subsequent activation of caspase-3 followed by polyadenosin-5’-diphosphate-ribose polymerase (PARP) cleavage. In addition, embelin treatment of leukemic cells results in a decrease of constitutive phosphorylations/activation level of AKT and downregulation of XIAP. Gene silencing of XIAP and AKT expression showed a link between XIAP expression and activated AKT in leukemic cells. Interestingly, targeting of XIAP and PI3-kinase/AKT signaling augmented inhibition of proliferation and induction of apoptosis in leukemic cells. Altogether these findings raise the possibility that embelin alone or in combination with inhibitors of PI3-kinase/AKT pathway may have therapeutic usage in leukemia and possibly other malignancies with up-regulated XIAP pathway. PMID:28704451

  7. Sonoporation of endothelial cells by vibrating targeted microbubbles.

    PubMed

    Kooiman, Klazina; Foppen-Harteveld, Miranda; van der Steen, Antonius F W; de Jong, Nico

    2011-08-25

    Molecular imaging using ultrasound makes use of targeted microbubbles. In this study we investigated whether these microbubbles could also be used to induce sonoporation in endothelial cells. Lipid-coated microbubbles were targeted to CD31 and insonified at 1 MHz at low peak negative acoustic pressures at six sequences of 10 cycle sine-wave bursts. Vibration of the targeted microbubbles was recorded with the Brandaris-128 high-speed camera (~13 million frames per second). In total, 31 cells were studied that all had one microbubble (1.2-4.2 micron in diameter) attached per cell. After insonification at 80 kPa, 30% of the cells (n=6) had taken up propidium iodide, while this was 20% (n=1) at 120 kPa and 83% (n=5) at 200 kPa. Irrespective of the peak negative acoustic pressure, uptake of propidium iodide was observed when the relative vibration amplitude of targeted microbubbles was greater than 0.5. No relationship was found between the position of the microbubble on the cell and induction of sonoporation. This study shows that targeted microbubbles can also be used to induce sonoporation, thus making it possible to combine molecular imaging and drug delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    PubMed

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Guggulsterone targets smokeless tobacco induced PI3K/Akt pathway in head and neck cancer cells.

    PubMed

    Macha, Muzafar A; Matta, Ajay; Chauhan, Shyam Singh; Siu, K W Michael; Ralhan, Ranju

    2011-02-24

    Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad. Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins--Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad. In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST/nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST/nicotine associated head and neck cancer.

  10. The effect of microgravity on the in vitro NK cell function during six International Space Station Missions

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Grigorieva, V.; Rykova, M. P.

    2007-09-01

    The level of natural killer (NK) cytotoxic activity was measured during co-cultivation of human lymphocytes and target cells (K-562) in microgravity. Flight experiments were carried out using special instrumentation, the "Fibroblast-1 " cassettes, in the frame of Russian scientific program during six ISS missions. Lymphocyte suspensions from human venous blood were used in experiments during short-term flights on six ISS missions (7-12). Russian space crew members performed the experiments after Soyuz docking. The first step was mixing lymphocytes and3H-labeled K-562 cells and their incubation at 37°C during 24 hs; the second step was filtration of the cell suspension. The frozen medium and filters were analyzed for the cytokine level and cytotoxic activity after landing. It was found that lymphocytes with different basal levels of cytotoxic activity kept the ability of recognizing and lysing malignant cells. In microgravity, cytotoxity increased to 160% of the basal levels. Donor individual features modulated the magnitude of the increase. The measurement of interleukin levels (TNF-α, IL-1, IL-2) in medium showed that synthesis of TNF-α increased during cell co-cultivation in microgravity. The level of IL-2 was very low inflight and ground control samples. The production of IL-1 by lymphocytes decreased after in-flight incubation. The results indicate that microgravity did not disturb the cytotoxic function of immune cells in vitro during 24 h incubation with specific target cells.

  11. 33 CFR 183.562 - Metallic fuel lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Metallic fuel lines. 183.562...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.562 Metallic fuel lines. (a) Each metallic fuel line that is mounted to the boat structure must be connected to the...

  12. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yanwei; Chen, Sen; Xue, Rui

    Deregulation of PI3K/Akt/mTOR pathway has been recently identified to play a crucial role in the progress of human gastric cancer. In this study, we show that mefloquine, a FDA-approved anti-malarial drug, effectively targets human gastric cancer cells. Mefloquine potently inhibits proliferation and induces apoptosis of a panel of human gastric cancer cell lines, with EC{sub 50} ∼0.5–0.7 μM. In two independent gastric cancer xenograft mouse models, mefloquine significantly inhibits growth of both tumors. The combination of mefloquine with paclitaxel enhances the activity of either drug alone in in vitro and in vivo. In addition, mefloquine potently decreased phosphorylation of PI3K, Akt, mTOR andmore » rS6. Overexpression of constitutively active Akt significantly restored mefloquine-mediated inhibition of mTOR phosphorylation and growth, and induction of apoptosis, suggesting that mefloquine acts on gastric cancer cells via suppressing PI3K/Akt/mTOR pathway. We further show that mefloquine-mediated inhibition of Akt/mTOR singaling is phosphatase-dependent as pretreatment with calyculin A does-dependently reversed mefloquine-mediated inhibition of Akt/mTOR phosphorylation. Since mefloquine is already available for clinic use, these results suggest that it is a useful addition to the treatment armamentarium for gastric cancer. - Highlights: • Mefloquine targets a panel of gastric cancer cell lines in vitro and in vivo. • Combination of mefloquine and paclitaxel is synergistic. • Mefloquine acts on gastric cancer via inhibition of PI3K/Akt/mTOR pathway. • Mefloquine can be repurposed for gastric cancer treatment.« less

  13. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM.

    PubMed

    Liu, Xiaodan; Liao, Wang; Peng, Hongxia; Luo, Xuequn; Luo, Ziyan; Jiang, Hua; Xu, Ling

    2016-01-01

    Abnormal expression of miRNAs is intimately related to a variety of human cancers. The purpose of this study is to confirm the expression of miR-181a and elucidate its physiological function and mechanism in pediatric acute myeloid leukemia (AML). Pediatric AML patients and healthy controls were enrolled, and the expression of miR-181a and ataxia telangiectasia mutated (ATM) in tissues were examined using quantitative PCR. Moreover, cell proliferation and cell cycle were evaluated in several cell lines (HL60, NB4 and K562) by using flow cytometry after transfected with miR-181a mimics and inhibitors, or ATM siRNA and control siRNA. Finally, ATM as the potential target protein of miR-181a was examined. We found that miR-181a was significantly increased in pediatric AML, which showed an inverse association with ATM expression. Overexpressed miR-181a in cell lines significantly enhanced cell proliferation, as well as increased the ratio of S-phase cells by miR-181a mimics transfection in vitro. Luciferase activity of the reporter construct identified ATM as the direct molecular target of miR-181a. ATM siRNA transfection significantly enhanced cell proliferation and increased the ratio of S-phase cells in vitro. The results revealed novel mechanism through which miR-181a regulates G1/S transition and cell proliferation in pediatric AML by regulating the tumor suppressor ATM, providing insights into the molecular mechanism in pediatric AML.

  14. Guggulsterone Targets Smokeless Tobacco Induced PI3K/Akt Pathway in Head and Neck Cancer Cells

    PubMed Central

    Macha, Muzafar A.; Matta, Ajay; Chauhan, Shyam Singh; Siu, K. W. Michael; Ralhan, Ranju

    2011-01-01

    Background Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad. Methods and Results Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins - Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad. Conclusions In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST / nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST / nicotine associated head and neck cancer. PMID:21383988

  15. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin

    PubMed Central

    Zhen, Chao Yu; Tatavosian, Roubina; Huynh, Thao Ngoc; Duc, Huy Nguyen; Das, Raibatak; Kokotovic, Marko; Grimm, Jonathan B; Lavis, Luke D; Lee, Jun; Mejia, Frances J; Li, Yang; Yao, Tingting; Ren, Xiaojun

    2016-01-01

    The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes. DOI: http://dx.doi.org/10.7554/eLife.17667.001 PMID:27723458

  16. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzedmore » the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.« less

  17. Down-regulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth

    PubMed Central

    Li, Ming; Radvanyi, Laszlo; Yin, Bingnan; Li, Jia; Chivukula, Raghavender; Lin, Kevin; Lu, Yue; Shen, JianJun; Chang, David Z.; Li, Donghui; Johanning, Gary L.; Wang-Johanning, Feng

    2017-01-01

    Purpose We investigated the role of the human endogenous retrovirus type K (HERV-K) envelope (env) gene in pancreatic cancer (PC). Experimental Design shRNA was employed to knockdown (KD) the expression of HERV-K in PC cells. Results HERV-K env expression was detected in seven PC cell lines and in 80% of PC patient biopsies, but not in two normal pancreatic cell lines or uninvolved normal tissues. A new HERV-K splice variant was discovered in several PC cell lines. RT activity and virus-like particles were observed in culture media supernatant obtained from Panc-1 and Panc-2 cells. HERV-K viral RNA levels and anti-HERV-K antibody titers were significantly higher in PC patient sera (N=106) than in normal donor sera (N=40). Importantly, the in vitro and in vivo growth rates of three PC cell lines were significantly reduced after HERV-K KD by shRNA targeting HERV-K env, and there was reduced metastasis to lung after treatment. RNA-seq results revealed changes in gene expression after HERV-K env KD, including RAS and TP53. Furthermore, downregulation of HERV-K Env protein expression by shRNA also resulted in decreased expression of RAS, p-ERK, p-RSK, and p-AKT in several PC cells or tumors. Conclusion These results demonstrate that HERV-K influences signal transduction via the RAS-ERK-RSK pathway in PC. Our data highlight the potentially important role of HERV-K in tumorigenesis and progression of PC, and indicate that HERV-K viral proteins may be attractive biomarkers and/or tumor-associated antigens, as well as potentially useful targets for detection, diagnosis and immunotherapy of PC. PMID:28679769

  18. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma

    PubMed Central

    Tong, Alexander A.; Hashem, Hasan; Eid, Saada; Allen, Frederick; Kingsley, Daniel

    2017-01-01

    ABSTRACT The survival of patients with metastatic or relapsed Ewing sarcoma (ES) remains dismal despite intensification of combination chemotherapy and radiotherapy, precipitating the need for novel alternative therapies with minimal side effects. Natural killer (NK) cells are promising additions to the field of cellular immunotherapy. Adoptive NK cell therapy has shown encouraging results in hematological malignancies. Despite these initial promising successes, however, NK cell therapy for solid tumors remains to be investigated using in vivo tumor models. The purpose of this study is to evaluate the efficacy of ex vivo expanded human NK cells in controlling primary and metastatic ES tumor growth in vitro and in vivo. Using membrane-bound IL-21 containing K562 (K562-mbIL-21) expansion platform, we were able to obtain sufficient numbers of expanded NK (eNK) cells that display favorable activation phenotypes and inflammatory cytokine secretion, along with a strong in vitro cytotoxic effect against ES. Furthermore, eNK therapy significantly decreased lung metastasis without any significant therapeutic effect in limiting primary tumor growth in an in vivo xenograft model. Our data demonstrate that eNK may be effective against pulmonary metastatic ES, but challenges remain to direct proper trafficking and augmenting the cytotoxic function of eNK to target primary tumor sites. PMID:28507811

  19. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines.

    PubMed

    Zandi, K; Ahmadzadeh, S; Tajbakhsh, S; Rastian, Z; Yousefi, F; Farshadpour, F; Sartavi, K

    2010-08-01

    Antitumor drug resistance and side effects of antitumor compounds are the most common problems in medicine. Therefore, finding new antitumor agents with low side effects could be interesting. This study was designed to assay antitumor activity of the extract from brown alga Sargassum oligocystum, gathered from Persian Gulf seashore, against K562 and Daudi human cancer cell lines. The research was performed as an in vitro study. The effect of the alga extract on proliferation of cell lines were measured by two methods: MTT assay and trypan blue exclusion test. The most effective antitumor activity has been shown at concentrations 500 microg/ml and 400 microg/ml of the alga extract against Daudi and K562 cell lines, respectively. The results showed that the extracts of brown alga Sargassum oligocystum have remarkable antitumor activity against K562 and Daudi cell lines. It is justified to be suggested for further research such as algal extract fractionation and purification and in vivo studies in order to formulate natural compounds with antitumor activities.

  20. Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.

    PubMed

    Kline, Crystal F; Kurata, Harley T; Hund, Thomas J; Cunha, Shane R; Koval, Olha M; Wright, Patrick J; Christensen, Matthew; Anderson, Mark E; Nichols, Colin G; Mohler, Peter J

    2009-09-29

    The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.

  1. Effect of carbamate pesticides on perforin, granzymes A-B-3/K, and granulysin in human natural killer cells.

    PubMed

    Li, Qing; Kobayashi, Maiko; Kawada, Tomoyuki

    2015-09-01

    We previously found that ziram, a carbamate pesticide, significantly reduced perforin, granzyme A (GrA), granzyme B (GrB), granzyme 3/K (Gr3/K), and granulysin (GRN) levels in NK-92MI cells, a human natural killer (NK) cell line. To investigate whether other carbamate pesticides also show similar toxicity on human NK cells, we conducted further experiments with NK-92CI cells, a human NK cell line, using a more sensitive assay. We previously confirmed that NK-92CI cells express CD56, perforin, GrA, GrB, Gr3/K, and GRN and are highly cytotoxic to K562 cells in a chromium release assay, which are more sensitive to organophosphorus pesticides and ziram than the NK-92MI cell line. NK-92CI cells were treated with ziram, thiram, maneb, or carbaryl at various concentrations for 4-24 h at 37°C in vitro. Thereafter, intracellular levels of perforin, GrA, GrB, Gr3/K, and GRN were determined by flow cytometry. It was found that all carbamate pesticides significantly reduced the intracellular levels of perforin, GrA, GrB, Gr3/K, and GRN in NK-92CI cells in a dose-dependent manner. However, the strength of the effect differed among the pesticides, and the order was thiram > ziram > maneb > carbaryl. In addition, it was also found that the degree of the reductions differed among the five proteins, with perforin more sensitive to pesticides than GRN, GrA, GrB, and Gr3/K, and the order was perforin > GRN > Gr3/K ≒ GrA ≒ GrB. © The Author(s) 2015.

  2. 31 CFR 562.310 - U.S. financial institution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false U.S. financial institution. 562.310 Section 562.310 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... foreign exchange, securities, commodity futures or options, or procuring purchasers and sellers thereof...

  3. 31 CFR 562.310 - U.S. financial institution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false U.S. financial institution. 562.310 Section 562.310 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... foreign exchange, securities, commodity futures or options, or procuring purchasers and sellers thereof...

  4. 31 CFR 562.310 - U.S. financial institution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false U.S. financial institution. 562.310 Section 562.310 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... foreign exchange, securities, commodity futures or options, or procuring purchasers and sellers thereof...

  5. 31 CFR 562.310 - U.S. financial institution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false U.S. financial institution. 562.310 Section 562.310 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... foreign exchange, securities, commodity futures or options, or procuring purchasers and sellers thereof...

  6. The Recognition of N-Glycans by the Lectin ArtinM Mediates Cell Death of a Human Myeloid Leukemia Cell Line

    PubMed Central

    Carvalho, Fernanda Caroline; Soares, Sandro Gomes; Tamarozzi, Mirela Barros; Rego, Eduardo Magalhães; Roque-Barreira, Maria-Cristina

    2011-01-01

    ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment. PMID:22132163

  7. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34⁺ haematopoietic stem cells.

    PubMed

    Limb, Jin-Kyung; Song, Doona; Jeon, Mijeong; Han, So-Yeop; Han, Gyoonhee; Jhon, Gil-Ja; Bae, Yun Soo; Kim, Jaesang

    2015-04-01

    In this study we showed that 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient differentiation of megakaryocytes. Specifically, (R)-TEMOSPho induces cell cycle arrest, cell size increase and polyploidization from K562 and HEL cells, which are used extensively to model megakaryocytic differentiation. In addition, megakaryocyte-specific cell surface markers showed a dramatic increase in expression in response to (R)-TEMOSPho treatment. Importantly, we demonstrated that such megakaryocytic differentiation can also be induced from primary human CD34(+) haematopoietic stem cells. Activation of the PI3K-AKT pathway and, to a lesser extent, the MEK-ERK pathway appears to be required for this process, as blocking with specific inhibitors interferes with the differentiation of K562 cells. A subset of (R)-TEMOSPho-treated K562 cells undergoes spontaneous apoptosis and produces platelets that are apparently functional, as they bind to fibrinogen, express P-selectin and aggregate in response to SFLLRN and AYPGFK, the activating peptides for the PAR1 and PAR4 receptors, respectively. Taken together, these results indicate that (R)-TEMOSPho will be useful for dissecting the molecular mechanisms of megakaryocytic differentiation, and that this class of compounds represents potential therapeutic reagents for thrombocytopenia. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Nonviral transfection of suspension cells in ultrasound standing wave fields.

    PubMed

    Lee, Yu-Hsiang; Peng, Ching-An

    2007-05-01

    Ultrasound-induced cavitation has been widely used for delivering DNA vectors into cells. However, this approach may seriously disrupt cell membranes and cause lethal damage when cells are exposed to the inertial cavitation field. In this study, instead of using sonoporation, ultrasound standing wave fields (USWF) were explored for nonviral transfection of suspension cells. Acoustic resonance in a tubular chamber was generated from the interference of waves emitted from a piezoelectric transducer and consequently reflected from a borosilicate glass coverslip. The suspended K562 erythroleukemia cells were transfected by polyethyleneimine (PEI)/DNA complexes with and without exposure to 1-MHz USWF for 5 min. During USWF exposure, K562 cells moved to the pressure nodal planes first and formed cell bands by the primary radiation force. Nanometer-sized PEI/DNA complexes, circulated between nodal planes by acoustic microstreaming, then used the cell agglomerates as the nucleating sites on which to attach. After incubation at 37 degrees C for 48 h, the efficiency of nonviral transfection based on EGFP transgene expression was determined by fluorescent microscopy and fluorometry. Both studies showed that USWF brought suspended K562 cells and PEI/DNA complexes into close contact at the pressure nodal planes, yielding an approximately 10-fold increment of EGFP transgene expression compared with the group without ultrasonic treatment.

  9. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    PubMed Central

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  10. Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

    PubMed

    Wang, Hongfei; Wang, Yongqiang; Gao, Hongmei; Wang, Bing; Dou, Lin; Li, Yin

    2018-02-01

    Piperlongumine is an alkaloid compound extracted from Piper longum L. It is a chemical substance with various pharmacological effects and medicinal value, including anti-tumor, lipid metabolism regulatory, antiplatelet aggregation and analgesic properties. The present study aimed to understand whether piperlongumine induces the apoptosis and autophagy of leukemic cells, and to identify the mechanism involved. Cell viability and autophagy were detected using MTT, phenazine methyl sulfate and trypan blue exclusion assays. The apoptosis rate was calculated using flow cytometry. The protein expression levels of microtubule-associated protein 1A/1B-light chain 3, Akt and mechanistic target of rapamycin (mTOR) were measured using western blotting. The cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced. Dead cells as a result of autophagy were stained using immunofluorescence and observed under a light microscope. Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine. It was concluded that piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

  11. Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells.

    PubMed

    Chen, Jing; Hu, Xun; Cui, Jingjie

    2018-05-01

    Glycolysis is the most important source of energy for the production of anabolic building blocks in cancer cells. Therefore, glycolytic enzymes are regarded as potential targets for cancer treatment. Previously, naphthaquinones, including shikonin, vitamin K 3 and vitamin K 5 , have been proven to decrease the rate of glycolysis in cancer cells, which is partly due to suppressed pyruvate kinase activity. In the present study, enzymatic assays were performed using MCF-7 cell lysate in order to screen the profile of glycolytic enzymes in cancer cells inhibited by shikonin, vitamin K 3 and vitamin K 5 , in addition to pyruvate kinase. Results revealed that hexokinase, phosphofructokinase-1, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase produced in the process of glycolysis were inhibited by shikonin, vitamin K 3 and vitamin K 5 . The results indicated that shikonin, vitamin K 3 and vitamin K 5 are chemical inhibitors of glycolytic enzymes in cancer cells and have potential uses in translational medical applications.

  12. Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells

    PubMed Central

    Chen, Jing; Hu, Xun; Cui, Jingjie

    2018-01-01

    Glycolysis is the most important source of energy for the production of anabolic building blocks in cancer cells. Therefore, glycolytic enzymes are regarded as potential targets for cancer treatment. Previously, naphthaquinones, including shikonin, vitamin K3 and vitamin K5, have been proven to decrease the rate of glycolysis in cancer cells, which is partly due to suppressed pyruvate kinase activity. In the present study, enzymatic assays were performed using MCF-7 cell lysate in order to screen the profile of glycolytic enzymes in cancer cells inhibited by shikonin, vitamin K3 and vitamin K5, in addition to pyruvate kinase. Results revealed that hexokinase, phosphofructokinase-1, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase produced in the process of glycolysis were inhibited by shikonin, vitamin K3 and vitamin K5. The results indicated that shikonin, vitamin K3 and vitamin K5 are chemical inhibitors of glycolytic enzymes in cancer cells and have potential uses in translational medical applications. PMID:29725454

  13. Blocking the PI3K pathway enhances the efficacy of ALK-targeted therapy in EML4-ALK-positive nonsmall-cell lung cancer.

    PubMed

    Yang, Lin; Li, Guangchao; Zhao, Likun; Pan, Fei; Qiang, Jiankun; Han, Siqi

    2014-10-01

    Targeted therapy based on ALK tyrosine kinase inhibitors (ALK-TKIs) has made significant achievements in individuals with EML4-ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene) fusion positive nonsmall-cell lung cancer (NSCLC). However, a high fraction of patients receive inferior clinical response to such treatment in the initial therapy, and the exact mechanisms underlying this process need to be further investigated. In this study, we revealed a persistently activated PI3K/AKT signaling that mediates the drug ineffectiveness. We found that genetic or pharmacological inhibition of ALK markedly abrogated phosphorylated STAT3 and ERK, but it failed to suppress AKT activity or induce apoptosis, in EML4-ALK-positive H2228 cells. Furthermore, targeted RNA interference of PI3K pathway components restored sensitivity to TAE684 treatment at least partially due to increased apoptosis. Combined TAE684 with PI3K inhibitor synergistically inhibited the proliferation of EML4-ALK-positive cells in vitro and significantly suppressed the growth of H2228 xenografts in vivo, suggesting the potential clinical application of such combinatorial therapy regimens in patients with EML4-ALK positive lung cancer.

  14. Class IA PI3K inhibition inhibits cell growth and proliferation in mantle cell lymphoma.

    PubMed

    Tabe, Yoko; Jin, Linhua; Konopleva, Marina; Shikami, Masato; Kimura, Shinya; Andreeff, Michael; Raffeld, Mark; Miida, Takashi

    2014-01-01

    Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling pathway preferentially occurs in aggressive blastoid variants of mantle cell lymphoma (MCL) and is implicated in the pathogenesis of this disease. In this study, we investigated the role of PI3K isoforms on proliferation of aggressive MCL cells. The changes in cell viability, cell cycle distribution and apoptosis induction by the PI3K isoform-selective inhibitors were evaluated. The molecular basis underlying the effects of the specific inhibition of PI3K isoforms was investigated by Western blot analysis. Our results demonstrated that a class IA PI3K isoform is most commonly involved in the constitutive activation of Akt in aggressive MCL. Treatment with a p110α isoform-specific inhibitor induced prominent cell cycle arrest followed by apoptosis through complete abolishment of phosphorylated (p)-Akt and its downstream targets. An inhibitor of isoform p110δ induced moderate cell cycle arrest with downregulation of p-Akt and p-S6K. A dual inhibitor of p110α and p110δ GDC-0941 caused more prominent cell growth inhibition compared to selective p110α or p110δ inhibitors. Inhibition of the class IB PI3K isoform p110γ did not cause cell cycle arrest or induce apoptosis in MCL cells. These findings suggest that the therapeutic ablation of class IA PI3K may be a promising strategy for the treatment of refractory, aggressive MCL. Copyright © 2013 S. Karger AG, Basel.

  15. Aberrant expression of interleukin-22 and its targeting microRNAs in oral lichen planus: a preliminary study.

    PubMed

    Shen, Zhengyu; Du, Guanhuan; Zhou, Zengtong; Liu, Wei; Shi, Linjun; Xu, Hui

    2016-08-01

    Oral lichen planus (OLP) is a T cell-mediated autoimmune disease involving oral mucosa. Interleukin-22 (IL-22) as the signature cytokine of T helper 22 cells is increasingly recognized as a key regulator in various autoimmune diseases. Our previous study reported that IL-22 immunoexpression in OLP was significantly increased compared with the normal controls. The objective of this preliminary study was to compare the IL-22 expression levels in oral biopsies from patients with OLP (n = 50) against normal oral mucosa (n = 19) using RT-qPCR and Western blot, identify the potential targeting miRNAs of IL-22, and examine the miRNA expression levels in OLP. Interleukin-22 expression level in OLP was significantly increased compared with the normal controls. The Dual-Luciferase reporter assay system in human embryonic kidney 293 (HEK293) cells demonstrated that miR-562 and miR-203 were the target miRNAs of IL-22, which was consistent with predictions from bioinformatics software analyses. Interestingly, miR-562 expression in OLP was significantly decreased, but miR-203 expression in OLP was significantly increased compared with the normal controls. This preliminary study for the first time reported that aberrant expression levels of miR-562 and miR-203 were associated with high expression of IL-22 and demonstrated the target relationship between miRNAs and IL-22 in HEK293 cells. Our data indicated that IL-22 and its targeting miRNAs contribute to the pathogenesis of OLP. Further studies are required to investigate the regulatory pathways of IL-22 and miR-562 and miR-203 in OLP. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Overexpression of miR-202 resensitizes imatinib resistant chronic myeloid leukemia cells through targetting Hexokinase 2

    PubMed Central

    Deng, Yingjun; Li, Xin; Feng, Jinxin; Zhang, Xiangliang

    2018-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disease which uniquely expresses a constitutively active tyrosine kinase, BCR/ABL. As a specific inhibitor of the BCR-ABL tyrosine kinase, imatinib becomes the first choice for the treatment of CML due to its high efficacy and low toxicity. However, the development of imatinib resistance limits the long-term treatment benefits of it in CML patients. In the present study, we aimed to investigate the roles of miR-202 in the regulation of imatinib sensitivity in CML cell lines and the possible mechanisms involved in this process. We found miR-202 was down-regulated in seven CML cell lines by quantitative reverse-transcription PCR (qRT-PCR) analysis. Overexpression of miR-202 significantly suppressed proliferation rates of CML cells. By establishing imatinib resistant cell lines originating from K562 and KU812 cells, we observed expressions of miR-202 were down-regulated by imatinib treatments and imatinib resistant CML cell lines exhibited lower level of miR-202. On the contrary, imatinib resistant CML cell lines displayed up-regulated glycolysis rate than sensitive cells with the evidence that glucose uptake, lactate production, and key glycolysis enzymes were elevated in imatinib resistant cells. Importantly, the imatinib resistant CML cell lines were more sensitive to glucose starvation and glycolysis inhibitors. In addition, we identified Hexokinase 2 (HK2) as a direct target of miR-202 in CML cell lines. Overexpression of miR-202 sensitized imatinib resistant CML through the miR-202-mediated glycolysis inhibition by targetting HK2. Finally, we provided the clinical relevance that miR-202 was down-regulated in CML patients and patients with lower miR-202 expression displayed higher HK2 expression. The present study will provide new aspects on the miRNA-modulated tyrosine kinase inhibitor (TKI) sensitivity in CML, contributing to the development of new therapeutic anticancer drugs. PMID:29559564

  17. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  18. Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: Eliminating activity by targeting at different levels

    PubMed Central

    Ricci, Francesca; Tabellini, Giovanna; Chiarini, Francesca; Tazzari, Pier Luigi; Melchionda, Fraia; Buontempo, Francesca; Pagliaro, Pasqualepaolo; Pession, Andrea; McCubrey, James A.; Martelli, Alberto M.

    2012-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant hematological disorder arising in the thymus from T-cell progenitors. T-ALL mainly affects children and young adults, and remains fatal in 20% of adolescents and 50% of adults, despite progress in polychemotherapy protocols. Therefore, innovative targeted therapies are desperately needed for patients with a dismal prognosis. Aberrant activation of PI3K/Akt/mTOR signaling is a common event in T-ALL patients and portends a poor prognosis. Preclinical studies have highlighted that modulators of PI3K/Akt/mTOR signaling could have a therapeutic relevance in T-ALL. However, the best strategy for inhibiting this highly complex signal transduction pathway is still unclear, as the pharmaceutical companies have disclosed an impressive array of small molecules targeting this signaling network at different levels. Here, we demonstrate that a dual PI3K/PDK1 inhibitor, NVP-BAG956, displayed the most powerful cytotoxic effects against T-ALL cell lines and primary patients samples, when compared with a pan class I PI3K inhibitor (GDC-0941), an allosteric Akt inhibitor (MK-2206), an mTORC1 allosteric inhibitor (RAD-001), or an ATP-competitive mTORC1/mTORC2 inhibitor (KU-63794). Moreover, we also document that combinations of some of the aforementioned drugs strongly synergized against T-ALL cells at concentrations well below their respective IC50. This observation indicates that vertical inhibition at different levels of the PI3K/Akt/mTOR network could be considered as a future innovative strategy for treating T-ALL patients. PMID:22885370

  19. Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels.

    PubMed

    Bressanin, Daniela; Evangelisti, Camilla; Ricci, Francesca; Tabellini, Giovanna; Chiarini, Francesca; Tazzari, Pier Luigi; Melchionda, Fraia; Buontempo, Francesca; Pagliaro, Pasqualepaolo; Pession, Andrea; McCubrey, James A; Martelli, Alberto M

    2012-08-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant hematological disorder arising in the thymus from T-cell progenitors. T-ALL mainly affects children and young adults, and remains fatal in 20% of adolescents and 50% of adults, despite progress in polychemotherapy protocols. Therefore, innovative targeted therapies are desperately needed for patients with a dismal prognosis. Aberrant activation of PI3K/Akt/mTOR signaling is a common event in T-ALL patients and portends a poor prognosis. Preclinical studies have highlighted that modulators of PI3K/Akt/mTOR signaling could have a therapeutic relevance in T-ALL. However, the best strategy for inhibiting this highly complex signal transduction pathway is still unclear, as the pharmaceutical companies have disclosed an impressive array of small molecules targeting this signaling network at different levels. Here, we demonstrate that a dual PI3K/PDK1 inhibitor, NVP-BAG956, displayed the most powerful cytotoxic affects against T-ALL cell lines and primary patients samples, when compared with a pan class I PI3K inhibitor (GDC-0941), an allosteric Akt inhibitor (MK-2206), an mTORC1 allosteric inhibitor (RAD-001), or an ATP-competitive mTORC1/mTORC2 inhibitor (KU63794). Moreover, we also document that combinations of some of the aforementioned drugs strongly synergized against T-ALL cells at concentrations well below their respective IC50. This observation indicates that vertical inhibition at different levels of the PI3K/Akt/mTOR network could be considered as a future innovative strategy for treating T-ALL patients.

  20. Targeted silver nanoparticles for ratiometric cell phenotyping

    NASA Astrophysics Data System (ADS)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  1. Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells

    PubMed Central

    Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.

    2006-01-01

    NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739

  2. Use of Engineered Exosomes Expressing HLA and Costimulatory Molecules to Generate Antigen-specific CD8+ T Cells for Adoptive Cell Therapy.

    PubMed

    Kim, Sueon; Sohn, Hyun-Jung; Lee, Hyun-Joo; Sohn, Dae-Hee; Hyun, Seung-Joo; Cho, Hyun-Il; Kim, Tai-Gyu

    2017-04-01

    Dendritic cell-derived exosomes (DEX) comprise an efficient stimulator of T cells. However, the production of sufficient DEX remains a barrier to their broad applicability in immunotherapeutic approaches. In previous studies, genetically engineered K562 have been used to generate artificial antigen presenting cells (AAPC). Here, we isolated exosomes from K562 cells (referred to as CoEX-A2s) engineered to express human leukocyte antigen (HLA)-A2 and costimulatory molecules such as CD80, CD83, and 41BBL. CoEX-A2s were capable of stimulating antigen-specific CD8 T cells both directly and indirectly via CoEX-A2 cross-dressed cells. Notably, CoEX-A2s also generated similar levels of HCMV pp65-specific and MART1-specific CD8 T cells as DEX in vitro. The results suggest that these novel exosomes may provide a crucial reagent for generating antigen-specific CD8 T cells for adoptive cell therapies against viral infection and tumors.

  3. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays

    PubMed Central

    Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph

    2015-01-01

    Objectives: To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Materials and methods: Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. Results: 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Conclusion: Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs. PMID:26069372

  4. Dimethyl sulfoxide inactivates the anticancer effect of cisplatin against human myelogenous leukemia cell lines in in vitro assays.

    PubMed

    Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph

    2015-01-01

    To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs.

  5. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    PubMed

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  6. Downregulation of an Aim-1 Kinase Couples with Megakaryocytic Polyploidization of Human Hematopoietic Cells

    PubMed Central

    Kawasaki, Akira; Matsumura, Itaru; Miyagawa, Jun-ichiro; Ezoe, Sachiko; Tanaka, Hirokazu; Terada, Yasuhiko; Tatsuka, Masaaki; Machii, Takashi; Miyazaki, Hiroshi; Furukawa, Yusuke; Kanakura, Yuzuru

    2001-01-01

    During the late phase of megakaryopoiesis, megakaryocytes undergo polyploidization, which is characterized by DNA duplication without concomitant cell division. However, it remains unknown by which mechanisms this process occurs. AIM-1 and STK15 belong to the Aurora/increase-in-ploidy (Ipl)1 serine/threonine kinase family and play key roles in mitosis. In a human interleukin-3–dependent cell line, F-36P, the expressions of AIM-1 and STK15 mRNA were specifically observed at G2/M phase of the cell cycle during proliferation. In contrast, the expressions of AIM-1 and STK15 were continuously repressed during megakaryocytic polyploidization of human erythro/megakaryocytic cell lines (F-36P, K562, and CMK) treated with thrombopoietin, activated ras (H-rasG12V), or phorbol ester. Furthermore, their expressions were suppressed during thrombopoietin-induced polyploidization of normal human megakaryocytes. Activation of AIM-1 by the induced expression of AIM-1(wild-type) canceled TPA-induced polyploidization of K562 cells significantly, whereas that of STK15 did not. Moreover, suppression of AIM-1 by the induced expression of AIM-1 (K/R, dominant-negative type) led to polyploidization in 25% of K562 cells, whereas STK15(K/R) showed no effect. Also, the induced expression of AIM-1(K/R) in CMK cells provoked polyploidization up to 32N. These results suggested that downregulation of AIM-1 at M phase may be involved in abortive mitosis and polyploid formation of megakaryocytes. PMID:11266445

  7. Vaccination directed against the human endogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell growth in a murine model system.

    PubMed

    Kraus, Benjamin; Fischer, Katrin; Sliva, Katja; Schnierle, Barbara S

    2014-03-26

    Human endogenous retroviruses (HERVs) are remnants of ancestral infections and chromosomally integrated in all cells of an individual, are transmitted only vertically and are defective in viral replication. However enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed inter-alia in HIV-infected individuals and tumor patients. Therefore HERV-K might serve as a tumor-specific antigen or even as a constant target for the development of an HIV vaccine. To verify our hypothesis, we tested the immunogenicity of HERV-K Gag by using a recombinant vaccinia virus (MVA-HKcon) expressing the HERV-K Gag protein and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) and the HERV-K Gag protein (RLZ-HKGag cells). Subcutaneous application of RLZ-HKGag cells into syngenic BALB/c mice resulted in the formation of local tumors in MVA vaccinated mice. MVA-HKcon vaccination reduced the tumor growth. Furthermore, intravenous injection of RLZ-HKGag cells led to the formation of pulmonary metastases. Vaccination of tumor-bearing mice with MVA-HKcon drastically reduced the number of pulmonary RLZ-HKGag tumor nodules compared to vaccination with wild-type MVA. The data demonstrate that HERV-K Gag is a useful target for vaccine development and might offer new treatment opportunities for cancer patients.

  8. Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow

    PubMed Central

    Yago, Tadayuki; Leppänen, Anne; Qiu, Haiying; Marcus, Warren D.; Nollert, Matthias U.; Zhu, Cheng; Cummings, Richard D.; McEver, Rodger P.

    2002-01-01

    Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin–binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-β-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin–ligand interactions. PMID:12177042

  9. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines.

    PubMed

    Porciani, David; Cardwell, Leah N; Tawiah, Kwaku D; Alam, Khalid K; Lange, Margaret J; Daniels, Mark A; Burke, Donald H

    2018-06-11

    Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs.

  10. miR-489 inhibits proliferation, cell cycle progression and induces apoptosis of glioma cells via targeting SPIN1-mediated PI3K/AKT pathway.

    PubMed

    Li, Yan; Ma, Xiaolin; Wang, Yanpeng; Li, Guohua

    2017-09-01

    microRNA-489 (miR-489), a newly identified tumor-related miRNA, functions as an oncogene or tumor suppressor via regulating growth and metastasis of human cancers. But, the clinical significance, biological function and underlying mechanisms of miR-489 in glioma remain rarely known. Here, we showed that the levels of miR-489 in glioma tissues were notably underexpressed compared to corresponding non-tumor tissues. In accordance, the relative levels of miR-489 were decreased in glioma cell lines compared with NHA cells. Kaplan-Meier plots indicated that miR-489 low expressing glioma patients showed a prominent shorter overall survival. In addition, miR-489 overexpression prohibited proliferation and cell cycle progression, and promoted apoptosis in U251 cells. While, miR-489 knockdown showed opposite effects on these cellular processes of U87 cells. In vivo experiments demonstrated that miR-489 restoration reduced the tumor volume and weight of subcutaneous glioma xenografts in nude mice. Notably, Spindlin 1 (SPIN1) was inversely and directly regulated by miR-489 in glioma cells. A negative correlation between the expression of miR-489 and SPIN1 mRNA was confirmed in glioma tissues. Interestingly, miR-489 inversely modulated activation of PI3K/AKT pathway and expression of downstream targets including p-mTOR, Cyclin D1 and BCL-XL. SPIN1 re-expression abolished the effects of miR-489 on U251 cells with enhanced activation of PI3K/AKT pathway and malignant phenotype. Meanwhile, AKT inhibitor MK-2206 blocked activation of PI3K/AKT pathway and resulted in reduced proliferation, cell cycle arrest and increased apoptosis in miR-489 down-regulating U87 cells. Altogether, our data support that miR-489 loss facilitates malignant phenotype of glioma cells probably via SPIN1-mediated PI3K/AKT pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Response of head and neck squamous cell carcinoma cells carrying PIK3CA mutations to selected targeted therapies.

    PubMed

    Wirtz, Eric D; Hoshino, Daisuke; Maldonado, Anthony T; Tyson, Darren R; Weaver, Alissa M

    2015-06-01

    The PIK3CA mutation is one of the most common mutations in head and neck squamous cell carcinoma (HNSCC). Through this research we attempt to elicit the role of oncogene dependence and effects of targeted therapy on this PIK3CA mutation. (1) To determine the role of oncogene dependence on PIK3CA-one of the more common and targetable oncogenes in HNSCC, and (2) to evaluate the consequence of this oncogene on the effectiveness of newly developed targeted therapies. This was a cell culture-based, in vitro study performed at an academic research laboratory assessing the viability of PIK3CA-mutated head and neck cell lines when treated with targeted therapy. PIK3CA-mutated head and neck cell lines were treated with 17-AAG, GDC-0941, trametinib, and BEZ-235. Assessment of cell viability of HNSCC cell lines characterized for PIK3CA mutations or SCC25 cells engineered to express the PIK3CA hotspot mutations E545K or H1047R. Surprisingly, in engineered cell lines, the hotspot E545K and H1047R mutations conferred increased, rather than reduced, IC50 assay measurements when treated with the respective HSP90, PI3K, and MEK inhibitors, 17-AAG, GDC-0941, and trametinib, compared with the SCC25 control cell lines. When treated with BEZ-235, H1047R-expressing cell lines showed increased sensitivity to inhibition compared with control, whereas those expressing E545K showed slightly increased sensitivity of unclear significance. (1) The PIK3CA mutations within our engineered cell model did not lead to enhanced oncogene-dependent cell death when treated with direct inhibition of the PI3K enzyme yet did show increased sensitivity compared with control with dual PI3K/mTOR inhibition. (2) Oncogene addiction to PIK3CA hotspot mutations, if it occurs, is likely to evolve in vivo in the context of additional molecular changes that remain to be identified. Additional study is required to develop new model systems and approaches to determine the role of targeted therapy in the treatment of

  12. Response of Head and Neck Squamous Cell Carcinoma Cells Carrying PIK3CA Mutations to Select Targeted Therapies

    PubMed Central

    Wirtz, Eric D; Hoshino, Daisuke; Maldonado, Anthony T; Tyson, Darren R; Weaver, Alissa M

    2015-01-01

    Importance The PIK3CA mutation is one of the most common mutations in Head and Neck Squamous Cell Carcinoma (HNSCC). Through this research we attempt to elicit the role of oncogene dependence and effects of targeted therapy on this PIK3CA mutation. Objectives 1) To determine the role of oncogene dependence on one of the more common and targetable oncogenes in HNSCC – PIK3CA; 2) To evaluate the consequence of this oncogene on the effectiveness of newly developed targeted therapies. Study Design In vitro study. Setting Academic research laboratory. Participants Cell culture based study assessing the viability of PIK3CA mutated head and neck cell lines when treated with targeted therapy. Exposures PIK3CA mutated head and neck cell lines were treated with 17-AAG, GDC-0941, trametinib, and BEZ-235. Main Outcome and Measures Assessment of cell viability of HNSCC cell lines characterized for PIK3CA mutations or SCC25 cells engineered to express the PIK3CA hotspot mutations E545K or H1047R Results Surprisingly, in engineered cell lines, the hotspot E545K and H1047R mutations conferred decreased, rather than increased, sensitivity as measured by IC50 when treated with the respective HSP90, PI3K, and MEK inhibitors, 17-AAG, GDC-0941, and trametinib, compared to the SCC25 control cell lines. When treated with BEZ-235, H1047R-expressing cell lines showed increased sensitivity to inhibition compared to control while those expressing E545K showed slightly increased sensitivity of unclear significance. Conclusions and Relevance 1) The PIK3CA mutations within our engineered cell model did not lead to enhanced oncogene-dependent cell death when treated with direct inhibition of the PI3K enzyme yet did show increased sensitivity compared to control with dual PI3K/mTOR inhibition. 2) Oncogene addiction to PIK3CA hot spot mutations, if it occurs, is likely to evolve in vivo molecular changes that remain to be identified. Additional study is required to develop new model systems and

  13. A hypothesis of target cell formation in sickle cell disease.

    PubMed

    Wong, P

    2016-08-01

    A fraction of erythrocytes appear as target cells in stained blood smears in sickle cell disease, due to a inheritance of the hemoglobin variant Hb S, polymerizing upon deoxygenation. These cells appear in a three dimension as thin cups. A process of their formation in this disease is proposed based on a band 3-based mechanism of the erythrocyte shape control, able to explain the erythrocyte echinocytosis by glucose depletion. It indicates that their formation is due to a stomatocytogenic slow outward transport of the dibasic form of endogenous Pi with an H(+) by band 3, promoted by the decrease of the Donnan ratio, which decreases cell pH and volume, attributed by a decrease of cell KCl concentration by the higher efflux of K(+)Cl(-) cotransport and Ca(2+) activation of the Gardos channel. Its implications are briefly discussed with respect to target cells per se, target cell formation in other hemoglobinopathies, acquired and inherited disorders of the lipid metabolism and dehydrated hereditary stomatocytosis as well as a stomatocyte presence in a double heterozygote of Hb S and Hb C and of an involvement of the process of target cell formation in acanthocytosis in acquired and inherited disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Curcumin induces apoptosis in human leukemic cell lines through an IFIT2-dependent pathway

    PubMed Central

    Zhang, Yonglu; Kong, Yunyuan; Liu, Shuyuan; Zeng, Lingbing; Wan, Lagen; Zhang, Zhanglin

    2017-01-01

    ABSTRACT Curcumin, the primary bioactive component isolated from turmeric, has been shown to possess variety of biologic functions including anti-cancer activity. However, molecular mechanisms in different cancer cells are various. In the present study, we demonstrated that curcumin induced G2/M cell cycle arrest and apoptosis by increasing the expression levels of cleaved caspase-3, cleaved PARP and decreasing the expression of BCL−2 in U937 human leukemic cells but not in K562 cells. We found some interferon induced genes, especially interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were significantly upregulated when treated with curcumin in U937 cells by gene expression chip array, and further confirmed that the expression of IFIT2 was obviously higher in U937 than that in K562 cells by Western blot assay. In addition, inhibiting the expression of IFIT2 by shRNA in U937 rescued curcumin-induced apoptosis and exogenous overexpression of IFIT2 by lentiviral transduction or treating with IFNγ in K562 cells enhanced anti-cancer activity of curcumin. These results indicated for the first time that curcumin induced leukemic cell apoptosis via an IFIT2-dependent signaling pathways. The present study identified a novel mechanism underlying the antitumor effects of curcumin, and may provide a theoretical basis for curcumin combined with interferon in the cancer therapeutics. PMID:28071969

  15. Yeast β-1,6-Glucan Is a Primary Target for the Saccharomyces cerevisiae K2 Toxin

    PubMed Central

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius

    2015-01-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. PMID:25710965

  16. 40 CFR 56.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... procedures to be employed or policies to be followed by Regional Offices in implementing and enforcing the... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGIONAL CONSISTENCY § 56.2 Scope. This part covers actions taken by: (a) Employees in EPA Regional Offices, including Regional...

  17. 40 CFR 56.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedures to be employed or policies to be followed by Regional Offices in implementing and enforcing the... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGIONAL CONSISTENCY § 56.2 Scope. This part covers actions taken by: (a) Employees in EPA Regional Offices, including Regional...

  18. PI3K pathway dependencies in endometrioid endometrial cancer cell lines

    PubMed Central

    Weigelt, Britta; Warne, Patricia H; Lambros, Maryou B; Reis-Filho, Jorge S; Downward, Julian

    2013-01-01

    Purpose Endometrioid endometrial cancers (EECs) frequently harbor coexisting mutations in PI3K pathway genes, including PTEN, PIK3CA, PIK3R1, and KRAS. We sought to define the genetic determinants of PI3K pathway inhibitor response in EEC cells, and whether PTEN-mutant EEC cell lines rely on p110β signaling for survival. Experimental Design Twenty-four human EEC cell lines were characterized for their mutation profile and activation state of PI3K and MAPK signaling pathway proteins. Cells were treated with pan-class I PI3K, p110α and p110β isoform-specific, allosteric mTOR, mTOR kinase, dual PI3K/mTOR, MEK and RAF inhibitors. RNA interference (RNAi) was employed to assess effects of KRAS silencing in EEC cells. Results EEC cell lines harboring PIK3CA and PTEN mutations were selectively sensitive to the pan-class I PI3K inhibitor GDC-0941 and allosteric mTOR inhibitor Temsirolimus, respectively. Subsets of EEC cells with concurrent PIK3CA and/or PTEN and KRAS mutations were sensitive to PI3K pathway inhibition, and only 2/6 KRAS-mutant cell lines showed response to MEK inhibition. KRAS RNAi silencing did not induce apoptosis in KRAS-mutant EEC cells. PTEN-mutant EEC cell lines were resistant to the p110β inhibitors GSK2636771 and AZD6482, and only in combination with the p110α selective inhibitor A66, a decrease in cell viability was observed. Conclusions Targeted pan-PI3K and mTOR inhibition in EEC cells may be most effective in PIK3CA-mutant and PTEN-mutant tumors, respectively, even in a subset of EECs concurrently harboring KRAS mutations. Inhibition of p110β alone may not be sufficient to sensitize PTEN-mutant EEC cells and combination with other targeted agents may be required. PMID:23674493

  19. PI3K pathway dependencies in endometrioid endometrial cancer cell lines.

    PubMed

    Weigelt, Britta; Warne, Patricia H; Lambros, Maryou B; Reis-Filho, Jorge S; Downward, Julian

    2013-07-01

    Endometrioid endometrial cancers (EEC) frequently harbor coexisting mutations in phosphoinositide 3-kinase (PI3K) pathway genes, including PTEN, PIK3CA, PIK3R1, and KRAS. We sought to define the genetic determinants of PI3K pathway inhibitor response in EEC cells, and whether PTEN-mutant EEC cell lines rely on p110β signaling for survival. Twenty-four human EEC cell lines were characterized for their mutation profile and activation state of PI3K and mitogen-activated protein kinase (MAPK) signaling pathway proteins. Cells were treated with pan-class I PI3K, p110α, and p110β isoform-specific, allosteric mTOR, mTOR kinase, dual PI3K/mTOR, mitogen-activated protein/extracellular signal-regulated kinase (MEK), and RAF inhibitors. RNA interference (RNAi) was used to assess effects of KRAS silencing in EEC cells. EEC cell lines harboring PIK3CA and PTEN mutations were selectively sensitive to the pan-class I PI3K inhibitor GDC-0941 and allosteric mTOR inhibitor temsirolimus, respectively. Subsets of EEC cells with concurrent PIK3CA and/or PTEN and KRAS mutations were sensitive to PI3K pathway inhibition, and only 2 of 6 KRAS-mutant cell lines showed response to MEK inhibition. KRAS RNAi silencing did not induce apoptosis in KRAS-mutant EEC cells. PTEN-mutant EEC cell lines were resistant to the p110β inhibitors GSK2636771 and AZD6482, and only in combination with the p110α selective inhibitor A66 was a decrease in cell viability observed. Targeted pan-PI3K and mTOR inhibition in EEC cells may be most effective in PIK3CA- and PTEN-mutant tumors, respectively, even in a subset of EECs concurrently harboring KRAS mutations. Inhibition of p110β alone may not be sufficient to sensitize PTEN-mutant EEC cells and combination with other targeted agents may be required. ©2013 AACR.

  20. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications

    PubMed Central

    LAPTEVA, NATALIA; DURETT, APRIL G.; SUN, JIALI; ROLLINS, LISA A.; HUYE, LESLIE L.; FANG, JIAN; DANDEKAR, VARADA; MEI, ZHUYONG; JACKSON, KIMBERLEY; VERA, JUAN; ANDO, JUN; NGO, MINHTRAN C.; COUSTAN-SMITH, ELAINE; CAMPANA, DARIO; SZMANIA, SUSANN; GARG, TARUN; MORENO-BOST, AMBERLY; VANRHEE, FRITS; GEE, ADRIAN P.; ROONEY, CLIONA M.

    2016-01-01

    Background aims Interest in natural killer (NK) cell-based immunotherapy has resurged since new protocols for the purification and expansion of large numbers of clinical-grade cells have become available. Methods We have successfully adapted a previously described NK expansion method that uses K562 cells expressing interleukin (IL)-15 and 4-1 BB Ligand (BBL) (K562-mb15-41BBL) to grow NK cells in novel gas-permeable static cell culture flasks (G-Rex). Results Using this system we produced up to 19 × 109 functional NK cells from unseparated apheresis products, starting with 15 × 107 CD3− CD56+ NK cells, within 8–10 days of culture. The G-Rex yielded a higher fold expansion of NK cells than conventional gas-permeable bags and required no cell manipulation or feeding during the culture period. We also showed that K562-mb15-41BBL cells up-regulated surface HLA class I antigen expression upon stimulation with the supernatants from NK cultures and stimulated alloreactive CD8+ T cells within the NK cultures. However, these CD3+ T cells could be removed successfully using the CliniMACS system. We describe our optimized NK cell cryopreservation method and show that the NK cells are viable and functional even after 12 months of cryopreservation. Conclusions We have successfully developed a static culture protocol for large-scale expansion of NK cells in the gas permeable G-Rex system under good manufacturing practice (GMP) conditions. This strategy is currently being used to produce NK cells for cancer immunotherapy. PMID:22900959

  1. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.

    PubMed

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius; Servienė, Elena

    2015-04-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. 31 CFR 562.311 - United States person; U.S. person.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false United States person; U.S. person. 562.311 Section 562.311 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... laws of the United States or any jurisdiction within the United States (including foreign branches), or...

  3. 31 CFR 562.311 - United States person; U.S. person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false United States person; U.S. person. 562.311 Section 562.311 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... laws of the United States or any jurisdiction within the United States (including foreign branches), or...

  4. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines.

    PubMed

    Collins, Denis M; Gately, Kathy; Hughes, Clare; Edwards, Connla; Davies, Anthony; Madden, Stephen F; O'Byrne, Kenneth J; O'Donovan, Norma; Crown, John

    2017-09-01

    Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. In the presence of effector cells with high

  5. Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer (NK) cells.

    PubMed

    Stangl, Stefan; Gross, Catharina; Pockley, Alan G; Asea, Alexzander A; Multhoff, Gabriele

    2008-01-01

    This study compared the effects of the human 70-kDa stress protein (Hsp70) peptide, TKDNNLLGRFELSG (TKD), proinflammatory cytokines, or a combination of both on the repertoire of receptors expressed by human natural killer (NK) cells and their capacity to kill human CX colon carcinoma cells, K562 erythroleukemic cells, and leukemic blasts from two patients with acute myelogenous leukemia. Low-dose interleukin (IL) 2/IL-15 and TKD increase the expression density of activatory (NKG2D, NKp30, NKp44, NKp46, CD94/NKG2C) and inhibitory (CD94/NKG2A) receptors on NK cells. Concomitantly, IL-2/TKD treatment enhances the cytotoxicity of NK cells (as reflected by their secretion of granzyme B) against Hsp70 membrane-positive and human leukocyte antigen (HLA)-E membrane-negative (Hsp70(+)/HLA-E(-)) CX(+) and K562 cells. However, it had no effect on the responsiveness to Hsp70(-)/HLA-E(-) CX(-) cells over that induced by IL-2 alone. The cytotoxicity of IL-2/TKD-activated, purified NK cells and peripheral blood mononuclear cells against Hsp70(+)/HLA-E(+) leukemic blasts was weaker than that against Hsp70(+)/HLA-E(-) K562 cells. Hsp70-blocking and HLA-E transfection experiments confirmed membrane-bound Hsp70 as being a recognition/activatory ligand for NK cells, as cytotoxicity was reduced by the presence of the anti-Hsp70 monoclonal antibody cmHsp70.2 and by inhibiting Hsp70 synthesis using short interference ribonucleic acid. HLA-E was confirmed as an inhibitory ligand, as the extent of NK cell-mediated lysis of K562 cell populations that had been transfected with HLA-E(R) or HLA-E(G) alleles was dependent on the proportion of HLA-E-expressing cells. These findings indicate that Hsp70 (as an activatory molecule) and HLA-E (as an inhibitory ligand) expression influence the susceptibility of leukemic cells to the cytolytic activities of cytokine/TKD-activated NK cells.

  6. Immunotherapeutic Potential of Anti-Human Endogenous Retrovirus-K Envelope Protein Antibodies in Targeting Breast Tumors

    PubMed Central

    Rycaj, Kiera; Plummer, Joshua B.; Li, Ming; Yin, Bingnan; Frerich, Katherine; Garza, Jeremy G.; Shen, Jianjun; Lin, Kevin; Yan, Peisha; Glynn, Sharon A.; Dorsey, Tiffany H.; Hunt, Kelly K.; Ambs, Stefan; Johanning, Gary L.

    2012-01-01

    Background The envelope (env) protein of the human endogenous retrovirus type K (HERV-K) family is commonly expressed on the surface of breast cancer cells. We assessed whether HERV-K env is a potential target for antibody-based immunotherapy of breast cancer. Methods We examined the expression of HERV-K env protein in various malignant (MDA-MB-231, MCF-7, SKBR3, MDA-MB-453, T47D, and ZR-75-1) and nonmalignant (MCF-10A and MCF-10AT) human breast cell lines by immunoblot, enzyme-linked immunosorbent assay, immunofluorescence staining, and flow cytometry. Anti-HERV-K env monoclonal antibodies (mAbs; 6H5, 4D1, 4E11, 6E11, and 4E6) were used to target expression of HERV-K, and antitumor effects were assessed by quantifying growth and apoptosis of breast cancer cells in vitro, and tumor growth in vivo in mice (n = 5 per group) bearing xenograft tumors. The mechanisms responsible for 6H5 mAb–mediated effects were investigated by microarray assays, flow cytometry, immunoblot, and immunofluorescence staining. The expression of HERV-K env protein was assessed in primary breast tumors (n = 223) by immunohistochemistry. All statistical tests were two-sided. Results The expression of HERV-K env protein in malignant breast cancer cell lines was substantially higher than nonmalignant breast cells. Anti–HERV-K-specific mAbs inhibited growth and induced apoptosis of breast cancer cells in vitro. Mice treated with 6H5 mAb showed statistically significantly reduced growth of xenograft tumors compared with mice treated with control immunoglobulin (control [mIgG] vs 6H5 mAb, for tumors originating from MDA-MB-231 cells, mean size = 1448.33 vs 475.44 mm3; difference = 972.89 mm3, 95% CI = 470.17 to 1475.61 mm3; P < .001). Several proteins involved in the apoptotic signaling pathways were overexpressed in vitro in 6H5 mAb–treated malignant breast cells compared with mIgG-treated control. HERV-K expression was detected in 148 (66%) of 223 primary breast tumors, and a higher rate of

  7. Synergistic Effects of Targeted PI3K Signaling Inhibition and Chemotherapy in Liposarcoma

    PubMed Central

    Guo, Shang; Lopez-Marquez, Hector; Fan, Kenneth C.; Choy, Edwin; Cote, Gregory; Harmon, David; Nielsen, G. Petur; Yang, Cao; Zhang, Changqing; Mankin, Henry; Hornicek, Francis J.; Borger, Darrell R.; Duan, Zhenfeng

    2014-01-01

    While liposarcoma is the second most common soft tissue malignant tumor, the molecular pathogenesis in this malignancy is poorly understood. Our goal was therefore to expand the understanding of molecular mechanisms that drive liposarcoma and identify therapeutically-susceptible genetic alterations. We studied a cohort of high-grade liposarcomas and benign lipomas across multiple disease sites, as well as two liposarcoma cell lines, using multiplexed mutational analysis. Nucleic acids extracted from diagnostic patient tissue were simultaneously interrogated for 150 common mutations across 15 essential cancer genes using a clinically-validated platform for cancer genotyping. Western blot analysis was implemented to detect activation of downstream pathways. Liposarcoma cell lines were used to determine the effects of PI3K targeted drug treatment with or without chemotherapy. We identified mutations in the PIK3CA gene in 4 of 18 human liposarcoma patients (22%). No PIK3CA mutations were identified in benign lipomas. Western blot analysis confirmed downstream activation of AKT in both PIK3CA mutant and non-mutant liposarcoma samples. PI-103, a dual PI3K/mTOR inhibitor, effectively inhibited the activation of the PI3K/AKT in liposarcoma cell lines and induced apoptosis. Importantly, combination with PI-103 treatment strongly synergized the growth-inhibitory effects of the chemotherapy drugs doxorubicin and cisplatin in liposarcoma cells. Taken together, these findings suggest that activation of the PI3K/AKT pathway is an important cancer mechanism in liposarcoma. Targeting the PI3K/AKT/pathway with small molecule inhibitors in combination with chemotherapy could be exploited as a novel strategy in the treatment of liposarcoma. PMID:24695632

  8. Burkholderia cenocepacia K56-2 trimeric autotransporter adhesin BcaA binds TNFR1 and contributes to induce airway inflammation.

    PubMed

    Mil-Homens, Dalila; Pinto, Sandra N; Matos, Rute G; Arraiano, Cecília; Fialho, Arsenio M

    2017-04-01

    Chronic lung disease caused by persistent bacterial infections is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). CF pathogens acquire antibiotic resistance, overcome host defenses, and impose uncontrolled inflammation that ultimately may cause permanent damage of lungs' airways. Among the multiple CF-associated pathogens, Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria have become prominent contributors of disease progression. Here, we demonstrate that BcaA, a trimeric autotransporter adhesin (TAA) from the epidemic strain B. cenocepacia K56-2, is a tumor necrosis factor receptor 1-interacting protein able to regulate components of the tumor necrosis factor signaling pathway and ultimately leading to a significant production of the proinflammatory cytokine IL-8. Notably, this study is the first to demonstrate that a protein belonging to the TAA family is involved in the induction of the inflammatory response during B. cenocepacia infections, contributing to the success of the pathogen. Moreover, our results reinforce the relevance of the TAA BcaA as a multifunctional protein with a major role in B. cenocepacia virulence. © 2016 John Wiley & Sons Ltd.

  9. The novel piperazine-containing compound LQFM018: Necroptosis cell death mechanisms, dopamine D4 receptor binding and toxicological assessment.

    PubMed

    Costa, Fabiana Bettanin; Cortez, Alane P; de Ávila, Renato Ivan; de Carvalho, Flávio S; Andrade, Wanessa M; da Cruz, Andrezza F; Reis, Karinna B; Menegatti, Ricardo; Lião, Luciano M; Romeiro, Luiz Antônio S; Noël, François; Fraga, Carlos Alberto M; Barreiro, Eliezer J; Sanz, Germán; Rodrigues, Marcella F; Vaz, Boniek G; Valadares, Marize Campos

    2018-06-01

    Piperazine is a promising scaffold for drug development due to its broad spectrum of biological activities. Based on this, the new piperazine-containing compound LQFM018 (2) [ethyl 4-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)piperazine-1-carboxylate] was synthetized and some biological activities investigated. In this work, we described its ability to bind aminergic receptors, antiproliferative effects as well as the LQFM018 (2)-triggered cell death mechanisms, in K562 leukemic cells, by flow cytometric analyses. Furthermore, acute oral systemic toxicity and potential myelotoxicity assessments of LQFM018 (2) were carried out. LQFM018 (2) was originally obtained by molecular simplification from LASSBio579 (1), an analogue compound of clozapine, with 33% of global yield. Binding profile assay to aminergic receptors showed that LQFM018 (2) has affinity for the dopamine D 4 receptor (K i  = 0.26 μM). Moreover, it showed cytotoxicity in K562 cells, in a concentration and time-dependent manner; IC 50 values obtained were 399, 242 and 119 μM for trypan blue assay and 427, 259 and 50 μM for MTT method at 24, 48 or 72 h, respectively. This compound (427 μM) also promoted increase in LDH release and cell cycle arrest in G2/M phase. Furthermore, it triggered necrotic morphologies in K562 cells associated with intense cell membrane rupture as confirmed by Annexin V/propidium iodide double-staining. LQFM018 (2) also triggered mitochondrial disturb through loss of ΔΨm associated with increase of ROS production. No significant accumulation of cytosolic cytochrome c was verified in treated cells. Furthermore, it was verified an increase of expression of TNF-R1 and mRNA levels of CYLD with no involviment in caspase-3 and -8 activation and NF-κB in K562 cells. LQFM018 (2) showed in vitro myelotoxicity potential, but it was orally well tolerated and classified as UN GHS category 5 (LD 50  > 2000-5000 mg/Kg). Thus, LQFM018 (2) seems to have a non

  10. Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Pelegrino, Milena T.; Silva, Letícia C.; Watashi, Carolina M.; Haddad, Paula S.; Rodrigues, Tiago; Seabra, Amedea B.

    2017-02-01

    Nitric oxide (NO) is involved in several biological processes, including toxicity against tumor cells. The aim of this study was to synthesize, characterize, and evaluate the cytotoxicity of NO-releasing chitosan nanoparticles. A thiol-containing molecule, mercaptosuccinic acid (MSA), was encapsulated (encapsulation efficiency of 99%) in chitosan/sodium tripolyphosphate nanoparticles (CS NPs). The obtained nanoparticles showed an average hydrodynamic size of 108.40 ± 0.96 nm and polydispersity index of 0.26 ± 0.01. MSA-CS NPs were nitrosated leading to S-nitroso-MSA-CS NPs, which act as NO donor. The cytotoxicity of CS NPs, MSA-CS NPs, and S-nitroso-MSA-CS NPs were evaluated in several tumor cells, including human hepatocellular carcinoma (HepG2), mouse melanoma (B16F10), and human chronic myeloid leukemia (K562) cell lines and Lucena-1, a vincristine-resistant K562 cell line. Both CS NPs and MSA-CS NPs did not cause toxic effects in these cells, whereas S-nitroso-MSA-CS NPs caused potent cytotoxic effects in all the tested tumor cell lines. The half-maximal inhibitory concentration values of S-nitroso-MSA-CS NPs were 19.7, 10.5, 22.8, and 27.8 μg·mL-1 for HepG2, B16F10, K562, and Lucena-1 cells, respectively. In contrast, S-nitroso-MSA-CS NPs exhibited lower cytotoxic to non-tumorigenic melanocytes (Melan-A) when compared with melanoma B16F10. Therefore, the results highlight the potential use of NO-releasing CS NPs in antitumor chemotherapy.

  11. On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks.

    PubMed

    Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen

    2016-01-15

    Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k) and a distributed connected target k-coverage algorithm (DCTC k) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs.

  12. 25 CFR 162.562 - Must a lessee provide insurance for a WSR lease?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Must a lessee provide insurance for a WSR lease? 162.562 Section 162.562 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Wsr Lease Bonding and Insurance § 162.562 Must a lessee provide...

  13. 25 CFR 162.562 - Must a lessee provide insurance for a WSR lease?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Must a lessee provide insurance for a WSR lease? 162.562 Section 162.562 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Wsr Lease Bonding and Insurance § 162.562 Must a lessee provide...

  14. Cytotoxic activity of natural killer cells in vitro under microgravity

    NASA Astrophysics Data System (ADS)

    Grigorieva, O. V.; Buravkova, L. B.; Rykova, M. P.

    2005-08-01

    Changes in the immune response during space flight are close relation to functions of NK lymphocytes and their ability to interact with target cells. The aim of this research was to study NK cells cytotoxic activity and their ability to produce cytokines under microgravity in vitro. The modification of the method to study NK cells cytotoxic activity with the use of human peripheral blood mononuclear cells and myeloblasts K-562 (as target cells) proved highly effective (Buravkova et al., 2004). The flight experiment "Cell-to-cell interaction" with the use of the special device "Fibroblast-1" was carried out by Russian cosmonauts within the first two days after the docking when a new crew was taking over on International Space Station (ISS 8 - 10). The data collected on board ISS revealed that NK lymphocytes cytotoxic activity in vitro can increase under microgravity. The ground-based simulation experiments showed that long-term changes in gravity vector direction clinorotation resulted in a smaller increase of NK cells cytotoxic activity than it did in microgravity. As lymphocytes produce cytokines while interacting with target cells, the levels of TNF-α, IL-1α, IL- 2, IL-6 in cell-conditioned medium were assessed. The data showed that microgravity has varied effects on cytokines production level.

  15. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression andmore » radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.« less

  16. Dietary flavonoid tangeretin induces reprogramming of epithelial to mesenchymal transition in prostate cancer cells by targeting the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Zhu, Wen-Bin; Xiao, Ning; Liu, Xing-Jie

    2018-01-01

    Tangeretin, a natural polymethoxyflavone present in the peel of citrus fruits is known to exhibit anticancer properties against a variety of carcinomas. Previous experimental evidence suggests that lifestyle and dietary habits affect the risk of prostate cancer to a certain extent. As the effect of tangeretin on prostate cancer is unexplored, the present study investigated the effect of tangeretin on androgen-insensitive PC-3 cells and androgen-sensitive LNCaP cells. Tangeretin reduced the cell viability of PC-3 cells in a dose- and time-dependent manner, with the half-maximal inhibitory concentration (IC 50 ) observed at 75 µM dose following 72 h of incubation, while in LNCaP cells, the IC 50 was identified to be ~65 µM. Expression levels of the mesenchymal proteins including vimentin, cluster of differentiation 44 and Neural cadherin in PC-3 cells were reduced by tangeretin treatment, whereas those of the epithelial proteins, including Epithelial cadherin and cytokeratin-19 were upregulated. Treatment of PC-3 cells also resulted in the downregulation of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. Therefore, it may be concluded that tangeretin induces reprogramming of epithelial-mesenchymal transition in PC-3 cells by targeting the PI3K/Akt/mTOR signaling pathway.

  17. The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy.

    PubMed

    Ehrhardt, Michael; Craveiro, Rogerio B; Holst, Martin I; Pietsch, Torsten; Dilloo, Dagmar

    2015-01-20

    Deregulation of the Phosphoinositide 3-kinase (PI3K)/AKT signalling network is a hallmark of oncogenesis. Also medulloblastoma, the most common malignant brain tumor in children, is characterized by high levels of AKT phosphorylation and activated PI3K signalling in medulloblastoma is associated with enhanced cellular motility, survival and chemoresistency underscoring its role of as a potential therapeutic target. Here we demonstrate that GDC-0941, a highly specific PI3K inhibitor with good clinical tolerability and promising anti-neoplastic activity in adult cancer, also displays anti-proliferative and pro-apoptotic effects in pediatric human medulloblastoma cell lines. Loss in cell viability is accompanied by reduced phosphorylation of AKT, a downstream target of PI3K. Furthermore, we show that GDC-0941 attenuates the migratory capacity of medulloblastoma cells and targets subpopulations expressing the stem cell marker CD133. GDC-0941 also synergizes with the standard medulloblastoma chemotherapeutic etoposide. In an orthotopic xenograft model of the most aggressive human medulloblastoma variant we document that oral adminstration of GDC-0941 impairs tumor growth and significantly prolongs survival. These findings provide a rational to further investigate GDC-0941 alone and in combination with standard chemotherapeutics for medulloblastoma treatment.

  18. 31 CFR 562.203 - Holding of funds in interest-bearing accounts; investment and reinvestment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... IRANIAN HUMAN RIGHTS ABUSES SANCTIONS REGULATIONS Prohibitions § 562.203 Holding of funds in interest... accounts; investment and reinvestment. 562.203 Section 562.203 Money and Finance: Treasury Regulations... the funds are invested in a money market fund or in U.S. Treasury bills. (2) For purposes of this...

  19. 31 CFR 562.203 - Holding of funds in interest-bearing accounts; investment and reinvestment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... IRANIAN HUMAN RIGHTS ABUSES SANCTIONS REGULATIONS Prohibitions § 562.203 Holding of funds in interest... accounts; investment and reinvestment. 562.203 Section 562.203 Money and Finance: Treasury Regulations... the funds are invested in a money market fund or in U.S. Treasury bills. (2) For purposes of this...

  20. 31 CFR 562.203 - Holding of funds in interest-bearing accounts; investment and reinvestment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... IRANIAN HUMAN RIGHTS ABUSES SANCTIONS REGULATIONS Prohibitions § 562.203 Holding of funds in interest... accounts; investment and reinvestment. 562.203 Section 562.203 Money and Finance: Treasury Regulations... the funds are invested in a money market fund or in U.S. Treasury bills. (2) For purposes of this...

  1. 31 CFR 562.203 - Holding of funds in interest-bearing accounts; investment and reinvestment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... IRANIAN HUMAN RIGHTS ABUSES SANCTIONS REGULATIONS Prohibitions § 562.203 Holding of funds in interest... accounts; investment and reinvestment. 562.203 Section 562.203 Money and Finance: Treasury Regulations... the funds are invested in a money market fund or in U.S. Treasury bills. (2) For purposes of this...

  2. 12 CFR 562.2 - Regulatory reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 562.2 Regulatory reports. (a) Definition and scope. This section applies to all regulatory reports, as... (TFR) are examples of regulatory reports. Regulatory reports are regulatory documents, not accounting... limited to, the accounting instructions provided in the TFR, guidance contained in OTS regulations...

  3. Decreased natural killer cell activity in atopic eczema.

    PubMed Central

    Hall, T J; Rycroft, R; Brostoff, J

    1985-01-01

    We have studied NK cell activity in atopic and non-atopic subjects using a standard 51Cr-release assay and K562 target cells. In atopics (AT) with allergic rhinitis and/or asthma, NK cell activity was similar to that in non-atopic (N) subjects, whilst patients with severe atopic eczema (AE) had depressed NK cell activity compared to AT or N subjects. In addition, circulating T-cell numbers and Con A responsiveness was decreased in AE, although neither parameter was correlated with decreased NK cell activity. However, decreased NK cell activity in atopic eczema was positively correlated with decreased numbers of Fc gamma + lymphocytes (P = 0.01) and decreased effector: target cell binding (P = 0.05), and negatively correlated with increased monocytes in AE (P = 0.09). AE NK cell activity was equally or more sensitive to the inhibitory effects of drugs such as dibutyryl cyclic AMP, prostaglandins (PG) D2,E2 and histamine. The relative percentage increase in NK cell activity by the interferon inducer poly I:C was similar in AE patients and controls. The results suggest that reduced numbers of circulating NK cells and pre-NK cells account for the depressed level of NK cell activity in subjects with severe atopic eczema. PMID:3876984

  4. Label-free image-based detection of drug resistance with optofluidic time-stretch microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hirofumi; Lei, Cheng; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    Acquired drug resistance is a fundamental predicament in cancer therapy. Early detection of drug-resistant cancer cells during or after treatment is expected to benefit patients from unnecessary drug administration and thus play a significant role in the development of a therapeutic strategy. However, the development of an effective method of detecting drug-resistant cancer cells is still in its infancy due to their complex mechanism in drug resistance. To address this problem, we propose and experimentally demonstrate label-free image-based drug resistance detection with optofluidic time-stretch microscopy using leukemia cells (K562 and K562/ADM). By adding adriamycin (ADM) to both K562 and K562/ADM (ADM-resistant K562 cells) cells, both types of cells express unique morphological changes, which are subsequently captured by an optofluidic time-stretch microscope. These unique morphological changes are extracted as image features and are subjected to supervised machine learning for cell classification. We hereby have successfully differentiated K562 and K562/ADM solely with label-free images, which suggests that our technique is capable of detecting drug-resistant cancer cells. Our optofluidic time-stretch microscope consists of a time-stretch microscope with a high spatial resolution of 780 nm at a 1D frame rate of 75 MHz and a microfluidic device that focuses and orders cells. We compare various machine learning algorithms as well as various concentrations of ADM for cell classification. Owing to its unprecedented versatility of using label-free image and its independency from specific molecules, our technique holds great promise for detecting drug resistance of cancer cells for which its underlying mechanism is still unknown or chemical probes are still unavailable.

  5. Inhibitory Effects of Bangladeshi Medicinal Plant Extracts on Interactions between Transcription Factors and Target DNA Sequences

    PubMed Central

    Lampronti, Ilaria; Khan, Mahmud T.H.; Borgatti, Monica; Bianchi, Nicoletta

    2008-01-01

    Several transcription factors (TFs) play crucial roles in governing the expression of different genes involved in the immune response, embryo or cell lineage development, cell apoptosis, cell cycle progression, oncogenesis, repair and fibrosis processes and inflammation. As far as inflammation, TFs playing pivotal roles are nuclear factor kappa B (NF-kB), activator protein (AP-1), signal transducer and activator of transcription (STATs), cAMP response element binding protein (CREB) and GATA-1 factors. All these TFs regulate the expression of pro-inflammatory cytokines and are involved in the pathogenesis of a number of human disorders, particularly those with an inflammatory component. Since several medicinal plants can be employed to produce extracts exhibiting biological effects and because alteration of gene transcription represents a very interesting approach to control the expression of selected genes, this study sought to verify the ability of several extracts derived from Bangladeshi medicinal plants in interfering with molecular interactions between different TFs and specific DNA sequences. We first analyzed the antiproliferative activity of 19 medicinal plants on different human cell lines, including erythroleukemia K562, B lymphoid Raji and T lymphoid Jurkat cell lines. Secondly, we employed the electrophoretic mobility shift assay as a suitable technique for a fast screening of plant extracts altering the binding between NF-kB, AP-1, GATA-1, STAT-3, CREB and the relative target DNA elements. PMID:18830455

  6. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention.

    PubMed

    Wang, Xiao; Yao, Jun; Wang, Jinyang; Zhang, Qingling; Brady, Samuel W; Arun, Banu; Seewaldt, Victoria L; Yu, Dihua

    2017-11-01

    The prevention of estrogen receptor-negative (ER-) breast cancer remains a major challenge in the cancer prevention field, although antiestrogen and aromatase inhibitors have shown adequate efficacy in preventing estrogen receptor-positive (ER + ) breast cancer. Lack of commonly expressed, druggable targets is a major obstacle for meeting this challenge. Previously, we detected the activation of Akt signaling pathway in atypical hyperplasic early-stage lesions of patients. In the current study, we found that Akt and the downstream 70 kDa ribosomal protein S6 kinase (p70S6K) signaling pathway was highly activated in ER - premalignant breast lesions and ER - breast cancer. In addition, p70S6K activation induced transformation of ER - human mammary epithelial cells (hMEC). Therefore, we explored the potential of targeting Akt/p70S6K in the p70S6K activated, ER - hMEC models and mouse mammary tumor models for the prevention of ER - breast cancer. We found that a clinically applicable Akt/p70S6K dual inhibitor, LY2780301, drastically decreased proliferation of hMECs with ErbB2-induced p70S6K activation via Cyclin B1 inhibition and cell-cycle blockade at G 0 -G 1 phase, while it did not significantly reverse the abnormal acinar morphology of these hMECs. In addition, a brief treatment of LY2780301 in MMTV- neu mice that developed atypical hyperplasia (ADH) and mammary intraepithelial neoplasia (MIN) lesions with activated p70S6K was sufficient to suppress S6 phosphorylation and decrease cell proliferation in hyperplasic MECs. In summary, targeting the aberrant Akt/p70S6K activation in ER - hMEC models in vitro and in the MMTV- neu transgenic mouse model in vivo effectively inhibited Akt/S6K signaling and reduced proliferation of hMECs in vitro and ADH/MIN lesions in vivo , indicating its potential in prevention of p70S6K activated ER - breast cancer. Cancer Prev Res; 10(11); 641-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Dendritic Cells Pulsed with Leukemia Cell-Derived Exosomes More Efficiently Induce Antileukemic Immunities

    PubMed Central

    Wei, Wei; Shen, Chang; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Hao, Siguo

    2014-01-01

    Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. However, the biological properties and antileukemic effects of leukemia cell-derived exosomes (LEXs) are not well described. In this study, the biological properties and induction of antileukemic immunity of LEXs were investigated using transmission electron microscopy, western blot analysis, cytotoxicity assays, and animal studies. Similar to other tumor cells, leukemia cells release exosomes. Exosomes derived from K562 leukemia cells (LEXK562) are membrane-bound vesicles with diameters of approximately 50–100 μm and harbor adhesion molecules (e.g., intercellular adhesion molecule-1) and immunologically associated molecules (e.g., heat shock protein 70). In cytotoxicity assays and animal studies, LEXs-pulsed DCs induced an antileukemic cytotoxic T-lymphocyte immune response and antileukemic immunity more effectively than did LEXs and non-pulsed DCs (P<0.05). Therefore, LEXs may harbor antigens and immunological molecules associated with leukemia cells. As such, LEX-based vaccines may be a promising strategy for prolonging disease-free survival in patients with leukemia after chemotherapy or hematopoietic stem cell transplantation. PMID:24622345

  8. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.

    PubMed

    Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan

    2018-04-06

    Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549 cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549 cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549 cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549 cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549 cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The hERG K+ channel: target and antitarget strategies in drug development.

    PubMed

    Raschi, Emanuel; Vasina, Valentina; Poluzzi, Elisabetta; De Ponti, Fabrizio

    2008-03-01

    The human ether-à-go-go related gene (hERG) K+ channel is of great interest for both basic researchers and clinicians because its blockade by drugs can lead to QT prolongation, which is a risk factor for torsades de pointes, a potentially life-threatening arrhythmia. A growing list of agents with "QT liability" have been withdrawn from the market or restricted in their use, whereas others did not even receive regulatory approval for this reason. Thus, hERG K+ channels have become a primary antitarget (i.e. an unwanted target) in drug development because their blockade causes potentially serious side effects. On the other hand, the recent identification and functional characterization of hERG K+ channels not only in the heart, but also in several other tissues (e.g. neurons, smooth muscle and cancer cells) may have far reaching implications for drug development for a possible exploitation of hERG as a target, especially in oncology and cardiology.

  10. Polychromatic Light (480-3400 nm) Upregulates Sensitivity of Tumor Cells to Lysis by Natural Killers.

    PubMed

    Knyazev, Nickolay A; Samoilova, Kira A; Abrahamse, Heidi; Filatova, Natalia A

    2016-09-01

    This study evaluates the participation of immunological mechanisms of downregulation of murine hepatoma cells MH22a after direct exposure to polychromatic polarized light. Previous studies have shown that exposure to a combination of visible (VIS) and infrared (IR) light leads to decreased tumorigenicity of the murine hepatoma cells MH22a, which correlated with an increase in the amount of cells with reorganized cytoskeleton in the submembrane region. The mechanism of tumor inhibition and elimination has not been determined. Polychromatic light (480-3400 nm) has been used at doses of 4.8 and 9.6 J/cm(2) to determine the sensitivity of murine MH22a cells and human erythroleukemia cells K562 exposed to this light, to lysis by effector cells of innate immunity (NK cells), and enhancement of the glycocalyx of the studied tumor cells. This was determined using flow cytometry, the H(3)-uridine cytotoxic test followed by spectrophotometry. VIS-IR light increases the sensitivity of MH-22a cells at a dose 4.8 J/cm(2) and K562 cells at 9.6 J/cm(2). The enhancement of sensitivity of tumor cells to NK lysis changed their ability to absorb alcian blue, reflecting a change in the expression of the glycocalyx. Increasing the sensitivity of the murine tumor cells MH22a and human K562 irradiated VIS-IR light correlated with a change in the expression of their glycocalyx. The results of the present study demonstrate that the reduction of tumorigenicity of irradiated tumor cells is due to their sensitivity to lysis by NK cells of the immune system.

  11. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    PubMed

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  12. The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy

    PubMed Central

    Holst, Martin I.; Pietsch, Torsten; Dilloo, Dagmar

    2015-01-01

    Deregulation of the Phosphoinositide 3-kinase (PI3K)/AKT signalling network is a hallmark of oncogenesis. Also medulloblastoma, the most common malignant brain tumor in children, is characterized by high levels of AKT phosphorylation and activated PI3K signalling in medulloblastoma is associated with enhanced cellular motility, survival and chemoresistency underscoring its role of as a potential therapeutic target. Here we demonstrate that GDC-0941, a highly specific PI3K inhibitor with good clinical tolerability and promising anti-neoplastic activity in adult cancer, also displays anti-proliferative and pro-apoptotic effects in pediatric human medulloblastoma cell lines. Loss in cell viability is accompanied by reduced phosphorylation of AKT, a downstream target of PI3K. Furthermore, we show that GDC-0941 attenuates the migratory capacity of medulloblastoma cells and targets subpopulations expressing the stem cell marker CD133. GDC-0941 also synergizes with the standard medulloblastoma chemotherapeutic etoposide. In an orthotopic xenograft model of the most aggressive human medulloblastoma variant we document that oral adminstration of GDC-0941 impairs tumor growth and significantly prolongs survival. These findings provide a rational to further investigate GDC-0941 alone and in combination with standard chemotherapeutics for medulloblastoma treatment. PMID:25596739

  13. Metformin directly targets the H3K27me3 demethylase KDM6A/UTX.

    PubMed

    Cuyàs, Elisabet; Verdura, Sara; Llorach-Pares, Laura; Fernández-Arroyo, Salvador; Luciano-Mateo, Fedra; Cabré, Noemí; Stursa, Jan; Werner, Lukas; Martin-Castillo, Begoña; Viollet, Benoit; Neuzil, Jiri; Joven, Jorge; Nonell-Canals, Alfons; Sanchez-Martinez, Melchor; Menendez, Javier A

    2018-05-08

    Metformin, the first drug chosen to be tested in a clinical trial aimed to target the biology of aging per se, has been clinically exploited for decades in the absence of a complete understanding of its therapeutic targets or chemical determinants. We here outline a systematic chemoinformatics approach to computationally predict biomolecular targets of metformin. Using several structure- and ligand-based software tools and reference databases containing 1,300,000 chemical compounds and more than 9,000 binding sites protein cavities, we identified 41 putative metformin targets including several epigenetic modifiers such as the member of the H3K27me3-specific demethylase subfamily, KDM6A/UTX. AlphaScreen and AlphaLISA assays confirmed the ability of metformin to inhibit the demethylation activity of purified KDM6A/UTX enzyme. Structural studies revealed that metformin might occupy the same set of residues involved in H3K27me3 binding and demethylation within the catalytic pocket of KDM6A/UTX. Millimolar metformin augmented global levels of H3K27me3 in cultured cells, including reversion of global loss of H3K27me3 occurring in premature aging syndromes, irrespective of mitochondrial complex I or AMPK. Pharmacological doses of metformin in drinking water or intraperitoneal injection significantly elevated the global levels of H3K27me3 in the hepatic tissue of low-density lipoprotein receptor-deficient mice and in the tumor tissues of highly aggressive breast cancer xenograft-bearing mice. Moreover, nondiabetic breast cancer patients receiving oral metformin in addition to standard therapy presented an elevated level of circulating H3K27me3. Our biocomputational approach coupled to experimental validation reveals that metformin might directly regulate the biological machinery of aging by targeting core chromatin modifiers of the epigenome. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma.

    PubMed

    Lochmann, Timothy L; Powell, Krista M; Ham, Jungoh; Floros, Konstantinos V; Heisey, Daniel A R; Kurupi, Richard I J; Calbert, Marissa L; Ghotra, Maninderjit S; Greninger, Patricia; Dozmorov, Mikhail; Gowda, Madhu; Souers, Andrew J; Reynolds, C Patrick; Benes, Cyril H; Faber, Anthony C

    2018-05-16

    High-risk neuroblastoma is often distinguished by amplification of MYCN and loss of differentiation potential. We performed high-throughput drug screening of epigenetic-targeted therapies across a large and diverse tumor cell line panel and uncovered the hypersensitivity of neuroblastoma cells to GSK-J4, a small-molecule dual inhibitor of lysine 27 of histone 3 (H3K27) demethylases ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and histone demethylase Jumonji D3 (JMJD3). Mechanistically, GSK-J4 induced neuroblastoma differentiation and endoplasmic reticulum (ER) stress, with accompanying up-regulation of p53 up-regulated modulator of apoptosis (PUMA) and induction of cell death. Retinoic acid (RA)-resistant neuroblastoma cells were sensitive to GSK-J4. In addition, GSK-J4 was effective at blocking the growth of chemorefractory and patient-derived xenograft models of high-risk neuroblastoma in vivo. Furthermore, GSK-J4 and RA combination increased differentiation and ER stress over GSK-J4 effects and limited the growth of neuroblastomas resistant to either drug alone. In MYCN -amplified neuroblastoma, PUMA induction by GSK-J4 sensitized tumors to the B cell lymphoma 2 (BCL-2) inhibitor venetoclax, demonstrating that epigenetic-targeted therapies and BCL-2 homology domain 3 mimetics can be rationally combined to treat this high-risk subset of neuroblastoma. Therefore, H3K27 demethylation inhibition is a promising therapeutic target to treat high-risk neuroblastoma, and H3K27 demethylation can be part of rational combination therapies to induce robust antineuroblastoma activity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. PI3K Activation in Neural Stem Cells Drives Tumorigenesis which can be Ameliorated by Targeting the cAMP Response Element Binding (CREB) Protein.

    PubMed

    Daniel, Paul M; Filiz, Gulay; Brown, Daniel V; Christie, Michael; Waring, Paul M; Zhang, Yi; Haynes, John M; Pouton, Colin; Flanagan, Dustin; Vincan, Elizabeth; Johns, Terrance G; Montgomery, Karen; Phillips, Wayne A; Mantamadiotis, Theo

    2018-04-30

    Hyperactivation of PI3K signaling is common in cancers but the precise role of the pathway in glioma biology remains to be determined. Some understanding of PI3K signaling mechanisms in brain cancer comes from studies on neural stem/progenitor cells, where signals transmitted via the PI3K pathway cooperate with other intracellular pathways and downstream transcription factors to regulate critical cell functions. To investigate the role for the PI3K pathway in glioma initiation and development, we generated a mouse model targeting the inducible expression of a PIK3CAH1047A oncogenic mutant and deletion of the PI3K negative regulator, PTEN, to neural stem/progenitor cells (NSPCs). Expression of a Pik3caH1047A was sufficient to generate tumors with oligodendroglial features but simultaneous loss of PTEN was required for the development of invasive, high-grade glioma. Pik3caH1047A-PTEN mutant NSPCs exhibited enhanced neurosphere formation which correlated with increased WNT signaling, while loss of CREB in Pik3caH1047A-Pten mutant tumors led to longer symptom-free survival in mice. Taken together, our findings present a novel mouse model for glioma demonstrating that the PI3K pathway is important for initiation of tumorigenesis and that disruption of downstream CREB signaling attenuates tumor expansion.

  16. Nucleoli in human early erythroblasts (K2, K1, K1/2 cells).

    PubMed

    Smetana, K; Jirásková, I; Klamová, H

    2005-01-01

    Human early erythroid precursors classified according to the nuclear size were studied to provide information on nucleoli in these cells using simple cytochemical procedures for demonstration of RNA and proteins of silver-stained nucleolar organizers. K2 cells with nuclear diameter larger than 13 microm and K1 cells with nuclear diameter larger than 9 microm corresponding to proerythroblasts and macroblasts (large basophilic erythroblasts) mostly possessed large irregularly shaped nucleoli with multiple fibrillar centres representing "active nucleoli". K1/2 cells with nuclear diameter smaller than 9 microm corresponding to small basophilic erythroblasts were usually characterized by the presence of micronucleoli representing "inactive nucleolar types". On the other hand, a few K1/2 cells contained large nucleoli with multiple fibrillar centres similar to those present in K2 cells and thus appeared as "microproerythroblasts". The nucleolar asynchrony expressed by the presence of large irregularly shaped nucleoli with multiple nucleoli (active nucleoli) and ring-shaped nucleoli (resting nucleoli) in one and the same nucleus of K2 or K1 cells was not exceptional and might reflect a larger resistance of these cells to negative factors influencing the erythropoiesis. The intranucleolar translocation of silver-stained nucleolus organized regions was noted in K2 cells and might indicate the premature aging of these cells without further differentiation. More studies, however, are required in this direction.

  17. 5'-Triphosphate siRNA targeting MDR1 reverses multi-drug resistance and activates RIG-I-induced immune-stimulatory and apoptotic effects against human myeloid leukaemia cells.

    PubMed

    Li, Dengzhe; Gale, Robert Peter; Liu, Yanfeng; Lei, Baoxia; Wang, Yuan; Diao, Dongmei; Zhang, Mei

    2017-07-01

    Multi-drug resistance (MDR), immune suppression and decreased apoptosis are important causes of therapy-failure in leukaemia. Short interfering RNAs (siRNAs) down-regulate gene transcription, have sequence-independent immune-stimulatory effects and synergize with other anti-cancer therapies in some experimental models. We designed a siRNA targeting MDR1 with 5'-triphosphate ends (3p-siRNA-MDR1). Treatment of leukaemia cells with 3p-siRNA-MDR1 down-regulated MDR1 expression, reduced-drug resistance and induced immune and pro-apoptotic effects in drug-resistant HL-60/Adr and K562/Adr human leukaemia cell lines. We show mechanisms-of-action of these effects involve alterations in the anti-viral cytosolic retinoic acid-inducible protein-I (RIG-I; encoded by RIG-I or DDX58) mediated type-I interferon signal induction, interferon-gamma-inducible protein 10 (IP-10; encoded by IP10 or CXCL10) secretion, major histocompatibility complex-I expression (MHC-I) and caspase-mediated cell apoptosis. 3p-siRNA-MDR1 transfection also enhanced the anti-leukaemia efficacy of doxorubicin. These data suggest a possible synergistic role for 3p-siRNA-MDR1 in anti-leukaemia therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effects of PI3K-mediated signalling on glioblastoma cell behaviour.

    PubMed

    Langhans, Julia; Schneele, Lukas; Trenkler, Nancy; von Bandemer, Hélène; Nonnenmacher, Lisa; Karpel-Massler, Georg; Siegelin, Markus D; Zhou, Shaoxia; Halatsch, Marc-Eric; Debatin, Klaus-Michael; Westhoff, Mike-Andrew

    2017-11-29

    The PI3K/Akt/mTOR signalling network is activated in almost 90% of all glioblastoma, the most common primary brain tumour, which is almost invariably lethal within 15 months of diagnosis. Despite intensive research, modulation of this signalling cascade has so far yielded little therapeutic benefit, suggesting that the role of the PI3K network as a pro-survival factor in glioblastoma and therefore a potential target in combination therapy should be re-evaluated. Therefore, we used two distinct pharmacological inhibitors that block signalling at different points of the cascade, namely, GDC-0941 (Pictilisib), a direct inhibitor of the near apical PI3K, and Rapamycin which blocks the side arm of the network that is regulated by mTOR complex 1. While both substances, at concentrations where they inhibit their primary target, have similar effects on proliferation and sensitisation for temozolomide-induced apoptosis, GDC-0941 appears to have a stronger effect on cellular motility than Rapamycin. In vivo GDC-0941 effectively retards growth of orthotopic transplanted human tumours in murine brains and significantly prolongs mouse survival. However, when looking at genetically identical cell populations that are in alternative states of differentiation, i.e. stem cell-like cells and their differentiated progeny, a more complex picture regarding the PI3K/Akt/mTOR pathway emerges. The pathway is differently regulated in the alternative cell populations and, while it contributes to the increased chemo-resistance of stem cell-like cells compared to differentiated cells, it only contributes to the motility of the latter. Our findings are the first to suggest that within a glioblastoma tumour the PI3K network can have distinct, cell-specific functions. These have to be carefully considered when incorporating inhibition of PI3K-mediated signals into complex combination therapies.

  19. MiR-141-3p is upregulated in esophageal squamous cell carcinoma and targets pleckstrin homology domain leucine-rich repeat protein phosphatase-2, a negative regulator of the PI3K/AKT pathway.

    PubMed

    Ishibashi, Osamu; Akagi, Ichiro; Ogawa, Yota; Inui, Takashi

    2018-05-11

    The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is frequently activated in various human cancers and plays essential roles in their development and progression. Accumulating evidence suggests that dysregulated expression of microRNAs (miRNAs) is closely associated with cancer progression and metastasis. Here, we focused on miRNAs that could regulate genes related to the PI3K/AKT pathway in esophageal squamous cell carcinoma (ESCC). To identify upregulated miRNAs and their possible target genes in ESCC, we performed microarray-based integrative analyses of miRNA and mRNA expression levels in three human ESCC cell lines and a normal esophageal epithelial cell line. The miRNA microarray analysis revealed that miR-31-5p, miR-141-3p, miR-200b-3p, miR-200c-3p, and miR-205-5p were expressed at higher levels in the ESCC cell lines than the normal esophageal epithelial cell line. Bioinformatical analyses of mRNA microarray data identified several AKT/PI3K pathway-related genes as candidate targets of these miRNAs, which include tumor suppressors such as DNA-damage-inducible transcript 4 and pleckstrin homology domain leucine-rich repeat protein phosphatase-2 (PHLPP2). To validate the targets of relevant miRNAs experimentally, synthetic mimics of the miRNAs were transfected into the esophageal epithelial cell line. Here, we report that miR-141-3p suppress the expression of PHLPP2, a negative regulators of the AKT/PI3K pathway, as a target in ESCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Effects of dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], on cell viability and gene expression of common human cancer drug targets in a melanoma cell line.

    PubMed

    Pojskic, Lejla; Haveric, Sanin; Lojo-Kadric, Naida; Hadzic, Maida; Haveric, Anja; Galic, Zoran; Galic, Borivoj; Vullo, Daniela; Supuran, Claudiu T; Milos, Mladen

    2016-12-01

    Recently it was found that dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), is a potent and highly specific inhibitor of precancerous cell processes. We conducted gene expression profiling of human melanoma cells before and after treatment with two concentrations (0.1 and 1 mM) of this boron inorganic derivative in order to assess its effects on deregulation of genes associated with tumor pathways. Parallel trypan blue exclusion assay was performed to assess the cytotoxicity effects of this chemical. Treatment with K2(B3O3F4OH) induced a significant decrease of cell viability in melanoma cellline at both tested concentrations. Furthermore, these treatments caused deregulation of more than 30 genes known as common anti-tumor drug targets. IGF-1 and hTERT were found to be significantly downregulated and this result may imply potential use of K2(B3O3F4OH) as an inhibitor or human telomerase and insulin-like growth factor 1, both of which are associated with various tumor pathways.

  1. Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC.

    PubMed

    Ciuffreda, Ludovica; Incani, Ursula Cesta; Steelman, Linda S; Abrams, Stephen L; Falcone, Italia; Curatolo, Anais Del; Chappell, William H; Franklin, Richard A; Vari, Sabrina; Cognetti, Francesco; McCubrey, James A; Milella, Michele

    2014-01-01

    The RAS/RAF/MEK/ ERK and the PI3K/AKT/mTOR pathways govern fundamental physiological processes, such as cell proliferation, differentiation, metabolism, cytoskeleton reorganization and cell death and survival. Constitutive activation of these signal transduction pathways is a required hallmark of cancer and dysregulation, on either genetic or epigenetic grounds, of these pathways has been implicated in the initiation, progression and metastastic spread of lung cances. Targeting components of the MAPK and PI3K cascades is thus an attractive strategy in the development of novel therapeutic approaches to treat lung cancer, although the use of single pathway inhibitors has met with limited clinical success so far. Indeed, the presence of intra- and inter-pathway compensatory loops that re-activate the very same cascade, either upstream or downstream the point of pharmacological blockade, or activate the alternate pathway following the blockade of one signaling cascade has been demonstrated, potentially driving preclinical (and possibly clinical) resistance. Therefore, the blockade of both pathways with combinations of signaling inhibitors might result in a more efficient anti-tumor effect, and thus potentially overcome and/or delay clinical resistance, as compared with single agent. The current review aims at summarizing the current status of preclinical and clinical research with regard to pathway crosstalks between the MAPK and PI3K cascades in NSCLC and the rationale for combined therapeutic pathway targeting.

  2. Epidermal growth factor receptor and K-Ras in non-small cell lung cancer-molecular pathways involved and targeted therapies

    PubMed Central

    de Mello, Ramon Andrade; Marques, Dânia Sofia; Medeiros, Rui; Araújo, António MF

    2011-01-01

    Lung cancer is currently the leading cause of cancer death in Western nations. Non-small cell lung cancer (NSCLC) represents 80% of all lung cancers, and adenocarcinoma is the predominant histological type. Despite the intensive research carried out on this field and therapeutic advances, the overall prognosis of these patients remains unsatisfactory, with a 5-year overall survival rate of less than 15%. Nowadays, pharmacogenetics and pharmacogenomics represent the key to successful treatment. Recent studies suggest the existence of two distinct molecular pathways in the carcinogenesis of lung adenocarcinoma: one associated with smoking and activation of the K-Ras oncogene and the other not associated with smoking and activation of the epidermal growth factor receptor (EGFR). The K-ras mutation is mainly responsible for primary resistance to new molecules which inhibit tyrosine kinase EGFR (erlotinib and gefitinib) and most of the EGFR mutations are responsible for increased tumor sensitivity to these drugs. This article aims to conduct a systematic review of the literature regarding the molecular pathways involving the EGFR, K-Ras and EGFR targeted therapies in NSCLC tumor behavior. PMID:22087435

  3. Hematopoietic Stem Cell and Its Growth Factor

    DTIC Science & Technology

    1988-02-16

    Bamberger and AS Felin . 1981. A multipotential leukemia cell line (K562) of human origin. Proc Soc Exp Biol Med 166:546. 40. Marie JP, CA Izaquirre, CI...at day 12 due to the degeneration of cells in the colonies. Monoclonal antibodies against human nonlymphoid leukemia cell lines which have...granulocyte mAb with acute myclocytic and myelomonocytic and lymphocytic leukemia ................................... 18 A-4 Antigen ML143 is expressed on

  4. Automated profiling of individual cell-cell interactions from high-throughput time-lapse imaging microscopy in nanowell grids (TIMING).

    PubMed

    Merouane, Amine; Rey-Villamizar, Nicolas; Lu, Yanbin; Liadi, Ivan; Romain, Gabrielle; Lu, Jennifer; Singh, Harjeet; Cooper, Laurence J N; Varadarajan, Navin; Roysam, Badrinath

    2015-10-01

    There is a need for effective automated methods for profiling dynamic cell-cell interactions with single-cell resolution from high-throughput time-lapse imaging data, especially, the interactions between immune effector cells and tumor cells in adoptive immunotherapy. Fluorescently labeled human T cells, natural killer cells (NK), and various target cells (NALM6, K562, EL4) were co-incubated on polydimethylsiloxane arrays of sub-nanoliter wells (nanowells), and imaged using multi-channel time-lapse microscopy. The proposed cell segmentation and tracking algorithms account for cell variability and exploit the nanowell confinement property to increase the yield of correctly analyzed nanowells from 45% (existing algorithms) to 98% for wells containing one effector and a single target, enabling automated quantification of cell locations, morphologies, movements, interactions, and deaths without the need for manual proofreading. Automated analysis of recordings from 12 different experiments demonstrated automated nanowell delineation accuracy >99%, automated cell segmentation accuracy >95%, and automated cell tracking accuracy of 90%, with default parameters, despite variations in illumination, staining, imaging noise, cell morphology, and cell clustering. An example analysis revealed that NK cells efficiently discriminate between live and dead targets by altering the duration of conjugation. The data also demonstrated that cytotoxic cells display higher motility than non-killers, both before and during contact. broysam@central.uh.edu or nvaradar@central.uh.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway.

    PubMed

    Li, Guang-Yong; Jung, Kyung Hee; Lee, Hyunseung; Son, Mi Kwon; Seo, JuHyeon; Hong, Sang-Won; Jeong, Yujeong; Hong, Sungwoo; Hong, Soon-Sun

    2013-02-01

    Abnormal activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is an essential step for the formation and growth of tumors in humans. HS-106 is an imidazopyridine derivative that inhibits the kinase activity of PI3K by binding to the ATP-binding cleft. We found that this compound suppressed breast cancer cell proliferation and induced apoptosis by specifically inhibiting the activity of target proteins in the PI3K/Akt/mTOR signaling pathway. Cell cycle analysis revealed that treatment with HS-106 resulted in cell cycle arrest at the G(2)/M phase due to up-regulation of p-cdc25 and down-regulation of cyclin B1. Also, HS-106 induced apoptosis by increasing the levels of cleaved caspase-3 and cleaved PARP. In addition, chromatin condensation and apoptotic bodies were detected in HS-106-treated breast cancer cells. Furthermore, HS-106 decreased the expression of hypoxia-inducible factor 1α (HIF-1α), and inhibited tube formation and migration of human umbilical vein endothelial cells (HUVECs) in vitro and blood vessel formation in an in vivo Matrigel plug assay. These results show that HS-106 may be an effective novel therapeutic candidate in clinical trials as a potential treatment for human breast cancers or other advanced malignancies with aberrant PI3K/Akt/mTOR signaling. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  6. In-vitro singlet oxygen threshold dose at PDT with Radachlorin photosensitizer

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Shmakov, S. V.; Kaydanov, N. E.; Knyazev, N. A.; Kazakov, N. V.; Rusanov, A. A.; Bogdanov, A. A.; Dubina, M. V.

    2017-07-01

    In this present study we investigate the Radachlorin photosensitizer accumulation in K562 cells and Hela cells and determined the cell viability after PDT. Using the macroscopic singlet oxygen modeling and cellular photosensitizer concentration the singlet oxygen threshold doses for K562 cells and Hela cells were calculated.

  7. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells

    PubMed Central

    Pezic, Dubravka; Manakov, Sergei A.; Sachidanandam, Ravi; Aravin, Alexei A.

    2014-01-01

    Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments. PMID:24939875

  8. Ran is a potential therapeutic target for cancer cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways

    PubMed Central

    Yuen, Hiu-Fung; Chan, Ka-Kui; Grills, Claire; Murray, James T.; Platt-Higgins, Angela; Eldin, Osama Sharaf; O’Byrne, Ken; Janne, Pasi; Fennell, Dean A.; Johnston, Patrick G.; Rudland, Philip S.; El-Tanani, Mohamed

    2011-01-01

    Purpose Cancer cells have been shown to be more susceptible to Ran knockdown compared to normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK and PI3K/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry (PI and Annexin V staining) and MTT assay in cancer cells grown under different conditions after knockdown of Ran.. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. KRas mutated, c-Met amplified and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of KRas or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. PMID:22090358

  9. Aurora kinase A revives dormant laryngeal squamous cell carcinoma cells via FAK/PI3K/Akt pathway activation

    PubMed Central

    Yang, Li-yun; He, Chang-yu; Chen, Xue-hua; Su, Li-ping; Liu, Bing-ya; Zhang, Hao

    2016-01-01

    Revival of dormant tumor cells may be an important tumor metastasis mechanism. We hypothesized that aurora kinase A (AURKA), a cell cycle control kinase, promotes the transition of laryngeal squamous cell carcinoma (LSCC) cells from G0 phase to active division. We therefore investigated whether AURKA could revive dormant tumor cells to promote metastasis. Western blotting revealed that AURKA expression was persistently low in dormant laryngeal cancer Hep2 (D-Hep2) cells and high in non-dormant (T-Hep2) cells. Decreasing AURKA expression in T-Hep2 cells induced dormancy and reduced FAK/PI3K/Akt pathway activity. Increasing AURKA expression in D-Hep2 cells increased FAK/PI3K/Akt pathway activity and enhanced cellular proliferation, migration, invasion and metastasis. In addition, FAK/PI3K/Akt pathway inhibition caused dormancy-like behavior and reduced cellular mobility, migration and invasion. We conclude that AURKA may revive dormant tumor cells via FAK/PI3K/Akt pathway activation, thereby promoting migration and invasion in laryngeal cancer. AURKA/FAK/PI3K/Akt inhibitors may thus represent potential targets for clinical LSCC treatment. PMID:27356739

  10. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizutani, Naoki; College of Life and Health Sciences, Chubu University, Kasugai; Omori, Yukari

    2016-02-19

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increasedmore » by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.« less

  11. Targeting filamin A reduces K-RAS–induced lung adenocarcinomas and endothelial response to tumor growth in mice

    PubMed Central

    2012-01-01

    Background Many human cancer cells express filamin A (FLNA), an actin-binding structural protein that interacts with a diverse set of cell signaling proteins, but little is known about the biological importance of FLNA in tumor development. FLNA is also expressed in endothelial cells, which may be important for tumor angiogenesis. In this study, we defined the impact of targeting Flna in cancer and endothelial cells on the development of tumors in vivo and on the proliferation of fibroblasts in vitro. Methods First, we used a Cre-adenovirus to simultaneously activate the expression of oncogenic K-RAS and inactivate the expression of Flna in the lung and in fibroblasts. Second, we subcutaneously injected mouse fibrosarcoma cells into mice lacking Flna in endothelial cells. Results Knockout of Flna significantly reduced K-RAS–induced lung tumor formation and the proliferation of oncogenic K-RAS–expressing fibroblasts, and attenuated the activation of the downstream signaling molecules ERK and AKT. Genetic deletion of endothelial FLNA in mice did not impact cardiovascular development; however, knockout of Flna in endothelial cells reduced subcutaneous fibrosarcoma growth and vascularity within tumors. Conclusions We conclude that FLNA is important for lung tumor growth and that endothelial Flna impacts local tumor growth. The data shed new light on the biological importance of FLNA and suggest that targeting this protein might be useful in cancer therapeutics. PMID:22857000

  12. microRNA-188 is downregulated in oral squamous cell carcinoma and inhibits proliferation and invasion by targeting SIX1.

    PubMed

    Wang, Lili; Liu, Hongchen

    2016-03-01

    microRNA-188 expression is downregulated in several tumors. However, its function and mechanism in human oral squamous cell carcinoma (OSCC) remains obscure. The present study aims to identify the expression pattern, biological roles, and potential mechanism by which miR-188 dysregulation is associated with oral squamous cell carcinoma. Significant downregulation of miR-188 was observed in OSCC tissues compared with paired normal tissues. In vitro, gain-of-function, loss-of-function experiments were performed to examine the impact of miR-188 on cancer cell proliferation, invasion, and cell cycle progression. Transfection of miR-188 mimics suppressed Detroit 562 cell proliferation, cell cycle progression and invasion, with downregulation of cyclin D1, MMP9, and p-ERK. Transfection of miR-188 inhibitor in FaDu cell line with high endogenous expression exhibited the opposite effects. Using fluorescence reporter assays, we confirmed that SIX1 was a direct target of miR-188 in OSCC cells. Transfection of miR-188 mimics downregulated SIX1 expression. SIX1 siRNA treatment abrogated miR-188 inhibitor-induced cyclin D1 and MMP9 upregulation. In addition, we found that SIX1 was overexpressed in 32 of 80 OSCC tissues. In conclusion, this study indicates that miR-188 downregulation might be associated with oral squamous cell carcinoma progression. miR-188 suppresses proliferation and invasion by targeting SIX1 in oral squamous cell carcinoma cells.

  13. Effects of 1,3,5-triphenyl-4,5-dihydro-1H-pyrazole derivatives on cell-cycle and apoptosis in human acute leukemia cell lines.

    PubMed

    Santos Bubniak, Lorena Dos; Gaspar, Pâmela Cristina; de Moraes, Ana Carolina Rabello; Bigolin, Alisson; de Souza, Rubia Karine; Buzzi, Fátima Campos; Corrêa, Rogério; Filho, Valdir Cechinel; Bretanha, Lizandra Czermainski; Micke, Gustavo Amadeu; Nunes, Ricardo José; Santos-Silva, Maria Cláudia

    2017-05-01

    Pyrazoline is an important 5-membered nitrogen heterocycle that has been extensively researched. Ten derivatives were synthesized and tested for antileukemic effects on 2 human acute leukemia cell lines, K562 and Jurkat. The most cytotoxic of these derivatives, compound 21, was chosen for investigation of cytotoxicity mechanisms. The results obtained with selectivity calculations revealed that compound 21 is more selective for acute leukemia (K562 and Jurkat cell lines) than for other tumor cell lines. Moreover, compound 21 was not cytotoxic to normal cell lines, indicating a potential use in clinical tests. Compound 21 caused a significant cell cycle arrest in the S-phase in Jurkat cells and increased the proportion of cells in the sub G0/G1 phase in both cell lines. Cells treated with compound 21 demonstrated morphological changes characteristic of apoptosis in the EB/AO assay, confirmed by externalization of phosphatidylserine by the annexin V - fluorescein isothiocyanate method and by DNA fragmentation. An investigation of cytotoxicity mechanisms suggests the involvement of an intrinsic apoptosis pathway due to mitochondrial damage and an increase in the ratio of mitochondrial Bax/Bcl2. Pyrazoline 21 obeyed Lipinski's "rule of five" for drug-likeness. Based on these preliminary results, the antileukemic activity of compound 21 makes it a potential anticancer agent.

  14. Leaf extracts from Moricandia arvensis promote antiproliferation of human cancer cells, induce apoptosis, and enhance antioxidant activity.

    PubMed

    Skandrani, Ines; Boubaker, Jihed; Bhouri, Wissem; Limem, Ilef; Kilani, Soumaya; Ben Sghaier, Mohamed; Neffati, Aicha; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2010-01-01

    The in vitro antiproliferative, apoptotic, and antioxidant activities from leaf extracts of Moricandia arvensis, which are used in traditional cooking and medicines, were investigated. The MTT assay revealed that only TOF (total oligomer flavonoids), ethyl acetate (EA), chloroform (Chl), and petroleum ether (PE) extracts inhibited the proliferation of K562 cells. Apoptosis plays a very important role in the treatment of cancer by promoting the apoptosis of cancer cells and limiting the concurrent death of normal cells. Thus, the possible effects of M. arvensis extracts on the induction of apoptosis in human leukemic cells (K562 cells) were investigated. The electrophoretic analysis of DNA fragmentation confirms that TOF, Chl, PE, and EA extracts provoke DNA fragmentation. Using the lipid peroxidation inhibitory assay, the antioxidant capacity of M. arvensis extracts was evaluated by the ability of each extract to inhibit malondialdehyde formation. It was revealed that EA and TOF extracts are the most active in scavenging the hydroxyl radicals.

  15. A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells.

    PubMed

    Lee, Hyunseung; Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Yan, Hong Hua; Hong, Sungwoo; Hong, Soon-Sun

    2013-08-01

    Lung cancer is the leading cause of cancer-related mortality in the world, and non-small cell lung cancer (NSCLC) accounts for approximately 85% of all cases. Since more than 60% of NSCLC cases express the epidermal growth factor receptor (EGFR), EGFR tyrosine kinase inhibitors are used to treat NSCLC. However, due to the acquired resistance associated with EGFR-targeted therapy, other strategies for the treatment of NSCLC are urgently needed. Therefore, we investigated the anticancer effects of a novel phosphatidylinositol 3-kinase α (PI3Kα) inhibitor, HS-173, in human NSCLC cell lines. HS-173 demonstrated anti-proliferative effects in NSCLC cells and effectively inhibited the PI3K signaling pathway in a dose‑dependent manner. In addition, it induced cell cycle arrest at G2/M phase as well as apoptosis. Taken together, our results demonstrate that HS-173 exhibits anticancer activities, including the induction of apoptosis, by blocking the PI3K/Akt/mTOR pathway in human NSCLC cell lines. We, therefore, suggest that this novel drug could potentially be used for targeted NSCLC therapy.

  16. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    PubMed

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  17. [Cytotoxic effect of physalis peruviana in cell culture of colorectal and prostate cancer and chronic myeloid leukemia].

    PubMed

    Quispe-Mauricio, Angel; Callacondo, David; Rojas, José; Zavala, David; Posso, Margarita; Vaisberg, Abraham

    2009-01-01

    The plants have been used as drugs for centuries. However, limited research has been done on its great potential as sources of new therapeutic agents. The purpose of this study was to evaluate Physalis peruviana cytotoxic activity on cell lines HT-29, PC-3, K-562 and VERO. The HT-29 cell lines, PC-3, K-562 and VERO, were exposed to four concentrations of P. peruviana ethanolic leave and stem extracts, also at different concentrations of cisplatin and 5-fluorouracil (5-FU), which were used as positive controls. We found rates of growth within 48 hours, then we determined the inhibitory concentration 50 (IC50) using linear regression analysis and the index of selectivity of each sample. The P. peruviana ethanolic leave and stem extracts showed cytotoxic activity. The IC50 in g/mL in leaves and stems were, 0.35 (r =-0.95 p <0.025) and 0.37 (r =- 0.90 p <0.05 ) for HT-29; 0.87 (r =-0.98 p <0.01) and 1.01 (r =-0.95 p <0.025) for PC-3; 0.02 (r =-0.98 p <0.01) and 0.03 (r =-0.98 p <0.01) for K-562; 4.9 (r =-0.95 p <0.025) and 6.2 (r =-0.98 p <0.01) for VERO. The IC50 for antineoplastic were: for cisplatin: 4.2 (r =-0.96 p <0.025), 10.3 (r =-0.97 p <0.025), 0.15 (r =-0.98 p = 0.01) and 1.1 (r =- 0.98 p = 0.01); for 5-FU: 2.3 (r =-0.97 p <0.025), 17.9 (r =-0.95 p <0.025), 0.15 (r =-0.98 p = 0.01) and 1.1 (r =-0.94 p = 0.05) for HT-29, PC-3, K562 and VERO respectively. The leaves and stems extracts selectivity index were between 5.6 and 245 for tumor cell lines evaluated, by contrast, cisplatin and 5-FU, only showed values between 0.11 and 7.3. The P. peruviana leaves and steams ethanolic extracts were more cytotoxic than cisplatin and 5 FU, on the lines HT-29, PC-3 and K562. Furthermore the P. peruviana cytotoxic effects were less than cisplatin and 5-FU for VERO control cells lines.

  18. Targeting the Nonmevalonate Pathway in Burkholderia cenocepacia Increases Susceptibility to Certain β-Lactam Antibiotics.

    PubMed

    Sass, Andrea; Everaert, Annelien; Van Acker, Heleen; Van den Driessche, Freija; Coenye, Tom

    2018-05-01

    The nonmevalonate pathway is the sole pathway for isoprenoid biosynthesis in Burkholderia cenocepacia and is possibly a novel target for the development of antibacterial chemotherapy. The goals of the present study were to evaluate the essentiality of dxr , the second gene of the nonmevalonate pathway, in B. cenocepacia and to determine whether interfering with the nonmevalonate pathway increases susceptibility toward antibiotics. To this end, a rhamnose-inducible conditional dxr knockdown mutant of B. cenocepacia strain K56-2 ( B. cenocepacia K56-2 dxr ) was constructed, using a plasmid which enables the delivery of a rhamnose-inducible promoter in the chromosome. Expression of dxr is essential for bacterial growth; the growth defect observed in the dxr mutant could be complemented by expressing dxr in trans under the control of a constitutive promoter, but not by providing 2- C -methyl-d-erythritol-4-phosphate, the reaction product of DXR (1-deoxy-d-xylulose 5-phosphate reductoisomerase). B. cenocepacia K56-2 dxr showed markedly increased susceptibility to the β-lactam antibiotics aztreonam, ceftazidime, and cefotaxime, while susceptibility to other antibiotics was not (or was much less) affected; this increased susceptibility could also be complemented by in trans expression of dxr A similarly increased susceptibility was observed when antibiotics were combined with FR900098, a known DXR inhibitor. Our data confirm that the nonmevalonate pathway is essential in B. cenocepacia and suggest that combining potent DXR inhibitors with selected β-lactam antibiotics is a useful strategy to combat B. cenocepacia infections. Copyright © 2018 American Society for Microbiology.

  19. Streptococcus pyogenes CAMP factor promotes bacterial adhesion and invasion in pharyngeal epithelial cells without serum via PI3K/Akt signaling pathway.

    PubMed

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Isono, Toshihito; Nakamura, Yuki; Saitoh, Issei; Hayasaki, Haruaki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2018-01-01

    Streptococcus pyogenes is a bacterium that causes systemic diseases, such as pharyngitis and toxic shock syndrome, via oral- or nasal-cavity infection. S. pyogenes produces various molecules known to function with serum components that lead to bacterial adhesion and invasion in human tissues. In this study, we identified a novel S. pyogenes adhesin/invasin. Our results revealed that CAMP factor promoted streptococcal adhesion and invasion in pharyngeal epithelial Detroit562 cells without serum. Recombinant CAMP factor initially localized on the membranes of cells and then became internalized in the cytosol following S. pyogenes infection. Additionally, CAMP factor phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in the cells. ELISA results demonstrate that CAMP factor affected the amount of phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in Detroit562 cells. Furthermore, CAMP factor did not reverse the effect of phosphoinositide 3-kinase knockdown by small interfering RNA in reducing the level of adhesion and invasion of S. pyogenes isogenic cfa-deficient mutant. These results suggested that S. pyogenes CAMP factor activated the phosphoinositide 3-kinase/serine-threonine kinase signaling pathway, promoting S. pyogenes invasion of Detroit562 cells without serum. Our findings suggested that CAMP factor played an important role on adhesion and invasion in pharyngeal epithelial cells. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase

    PubMed Central

    WANG, CHUNHUAI; XIANG, RU; ZHANG, XIANGZHONG; CHEN, YUNXIAN

    2015-01-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix-coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti-β1-integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, incubation with blocking anti-β1-integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia. PMID:26004127

  1. Electron Impact K-shell Ionization of Atomic Targets

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.; Patoary, A. A. R.

    2008-05-01

    In spite of considerable progress -both theoretically and experimentally- recently in evaluating accurate K-shell ionization cross sections that play a decisive role for quantitative analyses using (i) electron probe microanalysis, (ii) Auger electron spectroscopy and (iii) electron energy loss spectra, attempts are still continuing to search for a model that can easily generate reliable cross sections for a wide range of energies and for various targets needed for plasma modeling code We report few modifications of the widely used binary encounter approximation (BEA) [1,2] and have tested by evaluating the electron impact K-shell ionization of few neutral targets at various projectile energies. Details will be presented at the meeting. [1] M. Gryziniski, Phys. Rev. A 138, 336 (1965); [2] L. Vriens, Proc. Phys. Soc. (London) 89, 13, (1966). [3M. A. Uddin , A. K. F. Haque, M. M. Billah, A. K. Basak, K, R, Karim and B. C. Saha, ,Phys. Rev. A 71,032715 (2005); [4] M. A. Uddin, A. K. Basak, and B. C. Saha, Int. J. Quan. Chem 100, 184 (2004).

  2. Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin.

    PubMed

    Thibodeau, Asa; Márquez, Eladio J; Shin, Dong-Guk; Vera-Licona, Paola; Ucar, Duygu

    2017-10-31

    Broad domain promoters and super enhancers are regulatory elements that govern cell-specific functions and harbor disease-associated sequence variants. These elements are characterized by distinct epigenomic profiles, such as expanded deposition of histone marks H3K27ac for super enhancers and H3K4me3 for broad domains, however little is known about how they interact with each other and the rest of the genome in three-dimensional chromatin space. Using network theory methods, we studied chromatin interactions between broad domains and super enhancers in three ENCODE cell lines (K562, MCF7, GM12878) obtained via ChIA-PET, Hi-C, and Hi-CHIP assays. In these networks, broad domains and super enhancers interact more frequently with each other compared to their typical counterparts. Network measures and graphlets revealed distinct connectivity patterns associated with these regulatory elements that are robust across cell types and alternative assays. Machine learning models showed that these connectivity patterns could effectively discriminate broad domains from typical promoters and super enhancers from typical enhancers. Finally, targets of broad domains in these networks were enriched in disease-causing SNPs of cognate cell types. Taken together these results suggest a robust and unique organization of the chromatin around broad domains and super enhancers: loci critical for pathologies and cell-specific functions.

  3. Specific repression of mutant K-RAS by 10-23 DNAzyme: Sensitizing cancer cell to anti-cancer therapies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S.-H.; Wang, T.-H.; Department of Medical Research and Education, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei 11227, Taiwan

    2009-01-09

    Point mutations of the Ras family are frequently found in human cancers at a prevalence rate of 30%. The most common mutation K-Ras(G12V), required for tumor proliferation, survival, and metastasis due to its constitutively active GTPase activity, has provided an ideal target for cancer therapy. 10-23 DNAzyme, an oligodeoxyribonucleotide-based ribonuclease consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, has been shown to effectively cleave the target mRNA at purine-pyrimidine dinucleotide. Taking advantage of this specific property, 10-23 DNAzyme was designed to cleave mRNA of K-Ras(G12V)(GGU {yields} GUU) at the GU dinucleotide while left the wild-type (WT)more » K-Ras mRNA intact. The K-Ras(G12V)-specific 10-23 DNAzyme was able to reduce K-Ras(G12V) at both mRNA and protein levels in SW480 cell carrying homozygous K-Ras(G12V). No effect was observed on the WT K-Ras in HEK cells. Although K-Ras(G12V)-specific DNAzymes alone did not inhibit proliferation of SW480 or HEK cells, pre-treatment of this DNAzyme sensitized the K-Ras(G12V) mutant cells to anti-cancer agents such as doxorubicin and radiation. These results offer a potential of using allele-specific 10-23 DNAzyme in combination with other cancer therapies to achieve better effectiveness on cancer treatment.« less

  4. Targeting Plasmodium PI(4)K to eliminate malaria.

    PubMed

    McNamara, Case W; Lee, Marcus Cs; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Simon, Oliver; Yeung, Bryan Ks; Chatterjee, Arnab K; McCormack, Susan L; Manary, Micah J; Zeeman, Anne-Marie; Dechering, Koen J; Kumar, Tr Santha; Henrich, Philipp P; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L; Fischli, Christoph; Nagle, Advait; Rottmann, Matthias; Plouffe, David M; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C; Kocken, Clemens Hm; Glynne, Richard J; Bodenreider, Christophe; Fidock, David A; Diagana, Thierry T; Winzeler, Elizabeth A

    2013-12-12

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  5. Targeting Plasmodium PI(4)K to eliminate malaria

    NASA Astrophysics Data System (ADS)

    McNamara, Case W.; Lee, Marcus C. S.; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K. S.; Chatterjee, Arnab K.; McCormack, Susan L.; Manary, Micah J.; Zeeman, Anne-Marie; Dechering, Koen J.; Kumar, T. R. Santha; Henrich, Philipp P.; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L.; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M.; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W.; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C.; Kocken, Clemens H. M.; Glynne, Richard J.; Bodenreider, Christophe; Fidock, David A.; Diagana, Thierry T.; Winzeler, Elizabeth A.

    2013-12-01

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  6. p70S6K1 (S6K1)-mediated Phosphorylation Regulates Phosphatidylinositol 4-Phosphate 5-Kinase Type I γ Degradation and Cell Invasion.

    PubMed

    Jafari, Naser; Zheng, Qiaodan; Li, Liqing; Li, Wei; Qi, Lei; Xiao, Jianyong; Gao, Tianyan; Huang, Cai

    2016-12-02

    Phosphatidylinositol 4-phosphate 5-kinase type I γ (PIPKIγ90) ubiquitination and subsequent degradation regulate focal adhesion assembly, cell migration, and invasion. However, it is unknown how upstream signals control PIPKIγ90 ubiquitination or degradation. Here we show that p70S6K1 (S6K1), a downstream target of mechanistic target of rapamycin (mTOR), phosphorylates PIPKIγ90 at Thr-553 and Ser-555 and that S6K1-mediated PIPKIγ90 phosphorylation is essential for cell migration and invasion. Moreover, PIPKIγ90 phosphorylation is required for the development of focal adhesions and invadopodia, key machineries for cell migration and invasion. Surprisingly, substitution of Thr-553 and Ser-555 with Ala promoted PIPKIγ90 ubiquitination but enhanced the stability of PIPKIγ90, and depletion of S6K1 also enhanced the stability of PIPKIγ90, indicating that PIPKIγ90 ubiquitination alone is insufficient for its degradation. These data suggest that S6K1-mediated PIPKIγ90 phosphorylation regulates cell migration and invasion by controlling PIPKIγ90 degradation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Dixdc1 targets CyclinD1 and p21 via PI3K pathway activation to promote Schwann cell proliferation after sciatic nerve crush

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weijie; Liu, Qingqing; Liu, Yuxi

    Dixdc1 (DIX domain containing-1), the mammalian homolog of Ccd1 (Coiled-coil-Dishevelled-Axin1), is a protein containing a coiled-coil domain and a Dishevelled-Axin (DIX) domain. As a novel component of the Wnt pathway, Dixdc1 has been reported to be able to promote neural progenitor proliferation and neuronal differentiation via Wnt/β-catenin signaling. But there still remains something unknown about Dixdc1 distribution and functions in the lesion and regeneration of the peripheral nervous system (PNS), so we tried to investigate dynamic changes of Dixdc1 expression in a rat sciatic nerve crush (SNC) model in this study. First of all, we detected SNC-induced increased levels ofmore » Dixdc1 in Schwann cells and interestingly identified parallel expression of PCNA (proliferation cell nuclear antigen) with Dixdc1. Besides, we observed up-regulated Dixdc1 during the process of TNF-α-induced Schwann cell proliferation. Also, we discovered that Dixdc1 could promote G1-S phase transition accompanied with the up-regulation of CyclinD1 and down-regulation of p21. More importantly, enhanced effects of Dixdc1 on cell proliferation were confirmed to be associated with PI3K activation. Not only blocking of the PI3K but Dixdc1 knockdown led to significantly decreased ability for proliferation, as well as down-regulation of CyclinD1 and up-regulation of p21. In summary, these data demonstrated that Dixdc1 might participate in Schwann cell proliferation by targeting CyclinD1 and p21 at least partially through the PI3K/AKT activation. - Highlights: • The dynamic changes and location of Dixdc1 after sciatic nerve crush. • Dixdc1 was associated with Schwann cell proliferation. • Dixdc1 promoted Schwann cell proliferation partly via PI3K/AKT pathway.« less

  8. The c-Myb target gene neuromedin U functions as a novel cofactor during the early stages of erythropoiesis

    PubMed Central

    Gambone, Julia E.; Dusaban, Stephanie S.; Loperena, Roxana; Nakata, Yuji

    2011-01-01

    The requirement of c-Myb during erythropoiesis spurred an interest in identifying c-Myb target genes that are important for erythroid development. Here, we determined that the neuropeptide neuromedin U (NmU) is a c-Myb target gene. Silencing NmU, c-myb, or NmU's cognate receptor NMUR1 expression in human CD34+ cells impaired burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) formation compared with control. Exogenous addition of NmU peptide to NmU or c-myb siRNA-treated CD34+ cells rescued BFU-E and yielded a greater number of CFU-E than observed with control. No rescue of BFU-E and CFU-E growth was observed when NmU peptide was exogenously added to NMUR1 siRNA-treated cells compared with NMUR1 siRNA-treated cells cultured without NmU peptide. In K562 and CD34+ cells, NmU activated protein kinase C-βII, a factor associated with hematopoietic differentiation-proliferation. CD34+ cells cultured under erythroid-inducing conditions, with NmU peptide and erythropoietin added at day 6, revealed an increase in endogenous NmU and c-myb gene expression at day 8 and a 16% expansion of early erythroblasts at day 10 compared to cultures without NmU peptide. Combined, these data strongly support that the c-Myb target gene NmU functions as a novel cofactor for erythropoiesis and expands early erythroblasts. PMID:21378276

  9. Menin determines K-RAS proliferative outputs in endocrine cells

    PubMed Central

    Chamberlain, Chester E.; Scheel, David W.; McGlynn, Kathleen; Kim, Hail; Miyatsuka, Takeshi; Wang, Juehu; Nguyen, Vinh; Zhao, Shuhong; Mavropoulos, Anastasia; Abraham, Aswin G.; O’Neill, Eric; Ku, Gregory M.; Cobb, Melanie H.; Martin, Gail R.; German, Michael S.

    2014-01-01

    Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic β cells for people with diabetes and for targeting menin-sensitive endocrine tumors. PMID:25133424

  10. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1)

    NASA Astrophysics Data System (ADS)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Marchenko, Yaroslav Y.; Parr, Marina A.; Rolich, Valerij I.; Mikhrina, Anastasiya L.; Dobrodumov, Anatolii V.; Pitkin, Emil; Multhoff, Gabriele

    2015-12-01

    The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T2-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M2 measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors.The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy

  11. 31 CFR 562.101 - Relation of this part to other laws and regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Relation of this part to other laws and regulations. 562.101 Section 562.101 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRANIAN HUMAN RIGHTS...

  12. 31 CFR 562.101 - Relation of this part to other laws and regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Relation of this part to other laws and regulations. 562.101 Section 562.101 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRANIAN HUMAN RIGHTS...

  13. 31 CFR 562.101 - Relation of this part to other laws and regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Relation of this part to other laws and regulations. 562.101 Section 562.101 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRANIAN HUMAN RIGHTS...

  14. 31 CFR 562.101 - Relation of this part to other laws and regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Relation of this part to other laws and regulations. 562.101 Section 562.101 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY IRANIAN HUMAN RIGHTS...

  15. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).

    PubMed

    Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki; Ewis, Ashraf; Ishikawa, Mitsuru; Shinohara, Yasuo; Baba, Yoshinobu

    2004-07-16

    Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs. The cells were treated with mix of three siRNA sequences (3 x 60 nM) during 6 days with three repetitive transfections. The siRNA-treatment was accompanied with significant reduction of bcr-abl mRNA, p210, protein tyrosine kinase activity and cell proliferation index. Treatment of cells with Glivec (during 8 days with four repetitive doses, 180 nM single dose) resulted in analogous reduction of cell proliferation activity, stronger suppression of protein tyrosine kinase activity, and very low reduction of p210. siRNA-mix and Glivec did not affect significantly the viability of normal lymphocytes. Microarray analysis of siRNA- and Glivec-treated K-562 cells demonstrated that both pathways of bcr-abl suppression were accompanied with overexpression and suppression of many different oncogenes, apoptotic/antiapoptotic and cell proliferation factors. The following genes of interest were found to decrease in relatively equal degree in both siRNA- and Glivec-treated cells: Bcd orf1 and orf2 proto-oncogene, chromatin-specific transcription elongation factor FACT 140-kDa subunit mRNA, gene encoding splicing factor SF1, and mRNA for Tec protein tyrosine kinase. siRNA-mix and Glivec provoked overexpression of the following common genes: c-jun proto-oncogene, protein kinase C-alpha, pvt-1 oncogene homologue (myc activator), interleukin-6, 1-8D gene from interferon-inducible gene family, tumor necrosis factor receptor superfamily (10b), and STAT-induced STAT inhibitor.

  16. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair

    PubMed Central

    Girault, Alban

    2013-01-01

    Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K+ channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K+ channels in the regulation of these key repair processes. We also describe the mechanisms whereby K+ channels may control epithelial repair processes. In particular, changes in membrane potential, K+ concentration, cell volume, intracellular Ca2+, and signaling pathways following modulation of K+ channel activity, as well as physical interaction of K+ channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K+ channels for therapeutic applications to improve epithelial repair in vivo. PMID:24196531

  17. KHYG-1 and NK-92 represent different subtypes of LFA-1-mediated NK cell adhesiveness.

    PubMed

    Suck, Garnet; Tan, Suet-Mien; Chu, Sixian; Niam, Madelaine; Vararattanavech, Ardcharaporn; Lim, Tsyr Jong; Koh, Mickey B C

    2011-01-01

    Novel cancer cellular therapy approaches involving long-term ex vivo IL-2 stimulated highly cytotoxic natural killer (NK) cells are emerging. However, adhesion properties of such NK cells are not very well understood. Herein, we describe the novel observation of permanently activated alphaLbeta2 integrin leukocyte function-associated antigen (LFA)-1 adhesion receptor in long-term IL-2 activated NK cells and the permanent NK cell lines KHYG-1 and NK-92. We show that such cytokine activated NK effectors constitutively adhered to the LFA-1-ligand ICAM-1, whereas binding to the lower affinity ligand ICAM-3 required additional exogenous activating conditions. The results demonstrate an extended conformation and an intermediate affinity state for the LFA-1 population expressed by the NK cells. Interestingly, adhesion to ICAM-1 or K562 induced pronounced cell spreading in KHYG-1, but not in NK-92, and partially in long-term IL-2 stimulated primary NK cells. It is conceivable that such differential adhesion characteristics may impact motility potential of such NK effectors with relevance to clinical tumor targeting. KHYG-1 could be a useful model in planning future targeted therapeutic approaches involving NK effectors with augmented functions.

  18. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells.

    PubMed

    Kalle, Arunasree M; Mallika, A; Badiger, Jayasree; Alinakhi; Talukdar, Pinaki; Sachchidanand

    2010-10-08

    Overexpression of SIRT1, a NAD+-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC₅₀ of 1, 10 and 0.5 μM, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. [Enhanced growth inhibition by combined two pathway inhibitors on K-ras mutated non-small cell lung cancer cells].

    PubMed

    Yang, Zhenli; Li, Zhanwen; Feng, Hailiang; Bian, Xiaocui; Liu, Yanyan; Liu, Yuqin

    2014-09-01

    To evaluate the effect of combined targeting of MEK and PI3K signaling pathways on K-ras mutated non-small cell lung cancer cell line A549 cells and the relevant mechanisms. A549 cells were treated with different concentrations of two inhibitors. Growth inhibition was determined by MTT assay. According to the results of MTT test, the cells were divided into four groups: the control group, PI3K inhibitor group (GDC-0941,0.5 and 5.0 µmol/L), combination group I (0.5 µmol/L AZD6244+0.5 µmol/L GDC-0941) and combination group II (5.0 µmol/L AZD6244+5.0 µmol/L GDC-0941). The cell cycle and apoptosis were analyzed by flow cytometry. The expression of proteins related to apoptosis was tested with Western blot. Both GDC-0941 and AZD6244 inhibited the cell proliferation. The combination group II led to a stronger growth inhibition. The combination group I showed an antagonistic effect and combination group II showed an additive or synergistic effect. Compared with the control group, the combination group I led to reduced apoptotic rate [(20.70 ± 0.99)% vs. (18.65 ± 0.92 )%, P > 0.05]; Combination group II exhibited enhanced apoptotic rate [(37.85 ± 3.18)% vs. (52.27 ± 4.36)%, P < 0.01]. In addition, in the combination group II, more A549 cells were arrested in G0/G1 phase and decreased S phase (P < 0.01), due to the reduced expressions of CyclinD1 and Cyclin B1, the increased cleaved PARP and the diminished ratio of Bcl-2/Bax. For single K-ras mutated NSCLC cell line A549 cells, combination of RAS/MEK/ERK and PI3K/AKT/mTOR inhibition showed synergistic effects depending on the drug doses. Double pathways targeted therapy may be beneficial for these patients.

  20. Vitamin K2, a menaquinone present in dairy products targets castration-resistant prostate cancer cell-line by activating apoptosis signaling.

    PubMed

    Dasari, Subramanyam; Samy, Angela Lincy Prem Antony; Kajdacsy-Balla, Andre; Bosland, Maarten C; Munirathinam, Gnanasekar

    2018-05-01

    The aim of this study was to evaluate the therapeutic effects of vitamin K2 (VK2) on castration-resistant prostate cancer (CRPC) and its anti-cancer mechanisms in a pre-clinical study using a VCaP cell line (ATCC ® CRL-2876™) which was established from a vertebral bone metastasis from a patient with hormone refractory prostate cancer. Our data showed that VK2 significantly inhibited CRPC VCaP cell proliferation in a dose-dependent manner at 48 h treatment in vitro. In addition, VK2 reduced the migration potential of VCaP cells and inhibited anchorage-independent growth of these cells. Our results also showed that VK2 induces apoptosis in VCaP cells. Furthermore, VK2 enforced growth arrest in VCaP cells by activating cellular senescence. Notably, VK2 treatment elevated the levels of reactive oxygen species in VCaP cells. Western blot analysis revealed that VK2 downregulated the expression of androgen receptor, BiP, survivin, while activating caspase-3 and -7, PARP-1 cleavage, p21 and DNA damage response marker, phospho-H2AX in VCaP cells. In conclusion, our study suggests that VK2 might be a potential anti-cancer agent for CRPC by specifically targeting key anti-apoptotic, cell cycle progression and metastasis-promoting signaling molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Immune function in arctic mammals: Natural killer (NK) cell-like activity in polar bear, muskox and reindeer.

    PubMed

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer; Grøndahl, Carsten; Bertelsen, Mads F; Guise, Sylvain De; Sonne, Christian; Dietz, Rune; Levin, Milton

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus maritimus), muskox (Ovibos moschatus) and reindeer (Rangifer tarandus). NK cell-like activity for all three species was most effective against the mouse lymphoma cell line YAC-1, compared to the human leukemia cell line K562; NK cell response displayed the characteristic increase in cytotoxic activity when the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Implication of Highly Cytotoxic Natural Killer Cells for Esophageal Squamous Cell Carcinoma Treatment.

    PubMed

    Lim, Kee Siang; Mimura, Kosaku; Kua, Ley-Fang; Shiraishi, Kensuke; Kono, Koji

    2018-04-20

    Esophageal squamous cell carcinoma (ESCC) is an aggressive upper gastrointestinal cancer and effective treatments are limited. Previous studies reported that natural killer (NK) cells expanded by coculturing with K562-mb15-41BBL feeder cells, a genetically modified K562 leukemia cell line that expresses membrane-bound interleukin (IL)-15 and 41BBL ligand, were highly proliferative and highly cytotoxic. Here, we investigated the potential of expanded NK cells for ESCC treatment. We analyzed both genetic and surface expression levels of NKG2D ligands (NKG2DLs) in ESCC using publicly available microarray data sets and ESCC cell lines. The cytotoxicity of resting and of IL-2-activated NK cells against ESCC cell lines was compared with that of expanded NK cells. We then also investigated the effect of epithelial mesenchymal transition (EMT) inducers, GSK3β inhibitor and epidermal growth factor, on NKG2DLs expressions. As a result, MICA and MICB were significantly overexpressed in ESCC compared with adjacent normal tissues and surface NKG2DLs were expressed in ESCC cell lines. Expanded NK cells were much potent than IL-2-activated and resting NK cells against ESCC cell lines. Blocking of NKG2D with anti-NKG2D monoclonal antibody dampened expanded NK cell cytotoxicity, suggesting that the NKG2DLs-NKG2D interaction is crucial for NK cells to eliminate ESCC cells. EMT inducers concurrently induced EMT and NKG2DLs expression in ESCC cell lines rendering transitioned cells more sensitive to expanded NK cells. In conclusion, expanded NK cells were highly cytotoxic against NKG2DLs-expressing ESCC cells, particularly the EMT phenotype. These results provide a strong rationale for clinical use of these NK cells in ESCC patients.

  3. D120 and K152 within the PH Domain of T Cell Adapter SKAP55 Regulate Plasma Membrane Targeting of SKAP55 and LFA-1 Affinity Modulation in Human T Lymphocytes

    PubMed Central

    Witte, Amelie; Meineke, Bernhard; Sticht, Jana; Philipsen, Lars; Kuropka, Benno; Müller, Andreas J.; Freund, Christian

    2017-01-01

    ABSTRACT The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) is needed for the T cell receptor (TCR)-induced activation of LFA-1 to promote T cell adhesion and interaction with antigen-presenting cells (APCs). LFA-1-mediated cell-cell interactions are critical for proper T cell differentiation and proliferation. The Src kinase-associated phosphoprotein of 55 kDa (SKAP55) is a key regulator of TCR-mediated LFA-1 signaling (inside-out/outside-in signaling). To gain an understanding of how SKAP55 controls TCR-mediated LFA-1 activation, we assessed the functional role of its pleckstrin homology (PH) domain. We identified two critical amino acid residues within the PH domain of SKAP55, aspartic acid 120 (D120) and lysine 152 (K152). D120 facilitates the retention of SKAP55 in the cytoplasm of nonstimulated T cells, while K152 promotes SKAP55 membrane recruitment via actin binding upon TCR triggering. Importantly, the K152-dependent interaction of the PH domain with actin promotes the binding of talin to LFA-1, thus facilitating LFA-1 activation. These data suggest that K152 and D120 within the PH domain of SKAP55 regulate plasma membrane targeting and TCR-mediated activation of LFA-1. PMID:28052935

  4. Erythroleukemia cells acquire an alternative mitophagy capability.

    PubMed

    Wang, Jian; Fang, Yixuan; Yan, Lili; Yuan, Na; Zhang, Suping; Xu, Li; Nie, Meilan; Zhang, Xiaoying; Wang, Jianrong

    2016-04-19

    Leukemia cells are superior to hematopoietic cells with a normal differentiation potential in buffering cellular stresses, but the underlying mechanisms for this leukemic advantage are not fully understood. Using CRISPR/Cas9 deletion of the canonical autophagy-essential gene Atg7, we found that erythroleukemia K562 cells are armed with two sets of autophagic machinery. Alternative mitophagy is functional regardless of whether the canonical autophagic mechanism is intact or disrupted. Although canonical autophagy defects attenuated cell cycling, proliferation and differentiation potential, the leukemia cells retained their abilities for mitochondrial clearance and for maintaining low levels of reactive oxygen species (ROS) and apoptosis. Treatment with a specific inducer of mitophagy revealed that the canonical autophagy-defective erythroleukemia cells preserved a mitophagic response. Selective induction of mitophagy was associated with the upregulation and localization of RAB9A on the mitochondrial membrane in both wild-type and Atg7(-/-) leukemia cells. When the leukemia cells were treated with the alternative autophagy inhibitor brefeldin A or when the RAB9A was knocked down, this mitophagy was prohibited. This was accompanied by elevated ROS levels and apoptosis as well as reduced DNA damage repair. Therefore, the results suggest that erythroleukemia K562 cells possess an ATG7-independent alternative mitophagic mechanism that functions even when the canonical autophagic process is impaired, thereby maintaining the ability to respond to stresses such as excessive ROS and DNA damage.

  5. Leptin reverts pro-apoptotic and antiproliferative effects of α-linolenic acids in BCR-ABL positive leukemic cells: involvement of PI3K pathway.

    PubMed

    Beaulieu, Aurore; Poncin, Géraldine; Belaid-Choucair, Zakia; Humblet, Chantal; Bogdanovic, Gordana; Lognay, Georges; Boniver, Jacques; Defresne, Marie-Paule

    2011-01-01

    It is suspected that bone marrow (BM) microenvironmental factors may influence the evolution of chronic myeloid leukaemia (CML). In this study, we postulated that adipocytes and lipids could be involved in the progression of CML. To test this hypothesis, adipocytes were co-cultured with two BCR-ABL positive cell lines (PCMDS and K562). T cell (Jurkat) and stroma cell (HS-5) lines were used as controls. In the second set of experiments, leukemic cell lines were treated with stearic, oleic, linoleic or α-linolenic acids in presence or absence of leptin. Survival, proliferation, leptin production, OB-R isoforms (OB-Ra and OB-Rb), phosphoinositide 3-kinase (PI3k) and BCL-2 expression have been tested after 24h, 48h and 72h of treatment. Our results showed that adipocytes induced a decrease of CML proliferation and an increase in lipid accumulation in leukemic cells. In addition, CML cell lines induced adipocytes cell death. Chromatography analysis showed that BM microenvironment cells were full of saturated (SFA) and monounsaturated (MUFA) fatty acids, fatty acids that protect tumor cells against external agents. Stearic acid increased Bcl-2 expression in PCMDS, whereas oleic and linoleic acids had no effects. In contrast, α-linolenic acid decreased the proliferation and the survival of CML cell lines as well as BCL-2 and OB-R expression. The effect of α-linolenic acids seemed to be due to PI3K pathway and Bcl-2 inhibition. Leptin production was detected in the co-culture medium. In the presence of leptin, the effect of α-linolenic acid on proliferation, survival, OB-R and BCl-2 expression was reduced.

  6. Targeted suppression of AR-V7 using PIP5K1α inhibitor overcomes enzalutamide resistance in prostate cancer cells.

    PubMed

    Sarwar, Martuza; Semenas, Julius; Miftakhova, Regina; Simoulis, Athanasios; Robinson, Brian; Gjörloff Wingren, Anette; Mongan, Nigel P; Heery, David M; Johnsson, Heather; Abrahamsson, Per-Anders; Dizeyi, Nishtman; Luo, Jun; Persson, Jenny L

    2016-09-27

    One mechanism of resistance of prostate cancer (PCa) to enzalutamide (MDV3100) treatment is the increased expression of AR variants lacking the ligand binding-domain, the best characterized of which is AR-V7. We have previously reported that Phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), is a lipid kinase that links to CDK1 and AR pathways. The discovery of PIP5Kα inhibitor highlight the potential of PIP5K1α as a drug target in PCa. In this study, we show that AR-V7 expression positively correlates with PIP5K1α in tumor specimens from PCa patients. Overexpression of AR-V7 increases PIP5K1α, promotes rapid growth of PCa in xenograft mice, whereas inhibition of PIP5K1α by its inhibitor ISA-2011B suppresses the growth and invasiveness of xenograft tumors overexpressing AR-V7. PIP5K1α is a key co-factor for both AR-V7 and AR, which are present as protein-protein complexes predominantly in the nucleus of PCa cells. In addition, PIP5K1α and CDK1 influence AR-V7 expression also through AKT-associated mechanism dependent on PTEN-status. ISA-2011B disrupts protein stabilization of AR-V7 which is dependent on PIP5K1α, leading to suppression of invasive growth of AR-V7-high tumors in xenograft mice. Our study suggests that combination of enzalutamide and PIP5K1α may have a significant impact on refining therapeutic strategies to circumvent resistance to antiandrogen therapies.

  7. Targeted suppression of AR-V7 using PIP5K1α inhibitor overcomes enzalutamide resistance in prostate cancer cells

    PubMed Central

    Sarwar, Martuza; Semenas, Julius; Miftakhova, Regina; Simoulis, Athanasios; Robinson, Brian; Wingren, Anette Gjörloff; Mongan, Nigel P.; Heery, David M.; Johnsson, Heather; Abrahamsson, Per-Anders; Dizeyi, Nishtman; Luo, Jun; Persson, Jenny L.

    2016-01-01

    One mechanism of resistance of prostate cancer (PCa) to enzalutamide (MDV3100) treatment is the increased expression of AR variants lacking the ligand binding-domain, the best characterized of which is AR-V7. We have previously reported that Phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), is a lipid kinase that links to CDK1 and AR pathways. The discovery of PIP5Kα inhibitor highlight the potential of PIP5K1α as a drug target in PCa. In this study, we show that AR-V7 expression positively correlates with PIP5K1α in tumor specimens from PCa patients. Overexpression of AR-V7 increases PIP5K1α, promotes rapid growth of PCa in xenograft mice, whereas inhibition of PIP5K1α by its inhibitor ISA-2011B suppresses the growth and invasiveness of xenograft tumors overexpressing AR-V7. PIP5K1α is a key co-factor for both AR-V7 and AR, which are present as protein-protein complexes predominantly in the nucleus of PCa cells. In addition, PIP5K1α and CDK1 influence AR-V7 expression also through AKT-associated mechanism dependent on PTEN-status. ISA-2011B disrupts protein stabilization of AR-V7 which is dependent on PIP5K1α, leading to suppression of invasive growth of AR-V7-high tumors in xenograft mice. Our study suggests that combination of enzalutamide and PIP5K1α may have a significant impact on refining therapeutic strategies to circumvent resistance to antiandrogen therapies. PMID:27588408

  8. Targeting survival pathways in chronic myeloid leukaemia stem cells

    PubMed Central

    Sinclair, A; Latif, A L; Holyoake, T L

    2013-01-01

    Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder characterized by the presence of a fusion oncogene BCR-ABL, which encodes a protein with constitutive TK activity. The implementation of tyrosine kinase inhibitors (TKIs) marked a major advance in CML therapy; however, there are problems with current treatment. For example, relapse occurs when these drugs are discontinued in the majority of patients who have achieved a complete molecular response on TKI and these agents are less effective in patients with mutations in the BCR-ABL kinase domain. Importantly, TKI can effectively target proliferating mature cells, but do not eradicate quiescent leukaemic stem cells (LSCs), therefore allowing disease persistence despite treatment. It is essential that alternative strategies are used to target the LSC population. BCR-ABL activation is responsible for the modulation of different signalling pathways, which allows the LSC fraction to evade cell death. Several pathways have been shown to be modulated by BCR-ABL, including PI3K/AKT/mTOR, JAK-STAT and autophagy signalling pathways. Targeting components of these survival pathways, alone or in combination with TKI, therefore represents an attractive potential therapeutic approach for targeting the LSC. However, many pathways are also active in normal stem cells. Therefore, potential targets must be validated to effectively eradicate CML stem cells while sparing normal counterparts. This review summarizes the main pathways modulated in CML stem cells, the recent developments and the use of novel drugs to target components in these pathways which may be used to target the LSC population. Linked Articles This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8 PMID:23517124

  9. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFRmore » (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.« less

  10. In pursuit of synergy: An investigation of the PI3K/mTOR/MEK co-targeted inhibition strategy in NSCLC

    PubMed Central

    Heavey, Susan; Cuffe, Sinead; Finn, Stephen; Young, Vincent; Ryan, Ronan; Nicholson, Siobhan; Leonard, Niamh; McVeigh, Niall; Barr, Martin; O'Byrne, Kenneth; Gately, Kathy

    2016-01-01

    Clinical PI3K inhibition has been somewhat disappointing, due to both inadequate patient stratification and compensatory cell signalling through bypass mechanisms. As such, investigation of PI3K-MEK co-targeted inhibition has been recommended. With high mortality rates and a clear need for new therapeutic intervention strategies, non-small cell lung cancer (NSCLC) is an important setting to investigate the effectiveness of this approach. Here, 174 NSCLC tumours were screened for 150 mutations by Fluidigm technology, with 15 patients being profiled for phosphoprotein expression. The effects of GDC-0941 (a pan PI3K inhibitor), GDC-0980 (a dual PI3K/mTOR inhibitor) and GDC-0973 (a MEK inhibitor) alone and in combination were assessed in 3 NSCLC cell lines. PIK3CA was mutated in 5.17% of NSCLC patients. GDC-0941 and GDC-0980 treatment induced anti-proliferative and pro-apoptotic responses across all NSCLC cell lines, while GDC-0973 treatment induced only anti-proliferative responses. GDC-0980 and GDC-0973 combined treatment led to significant increases in apoptosis and synergistic reductions in proliferation across the panel of cell lines. This study found that the PI3K/MEK co-targeted inhibition strategy is synergistic in all 3 molecular subtypes of NSCLC investigated. Consequently, we would advocate clinical trials for NSCLC patients combining GDC-0980 and GDC-0973, each of which are separately under clinical investigation currently. PMID:27765909

  11. In pursuit of synergy: An investigation of the PI3K/mTOR/MEK co-targeted inhibition strategy in NSCLC.

    PubMed

    Heavey, Susan; Cuffe, Sinead; Finn, Stephen; Young, Vincent; Ryan, Ronan; Nicholson, Siobhan; Leonard, Niamh; McVeigh, Niall; Barr, Martin; O'Byrne, Kenneth; Gately, Kathy

    2016-11-29

    Clinical PI3K inhibition has been somewhat disappointing, due to both inadequate patient stratification and compensatory cell signalling through bypass mechanisms. As such, investigation of PI3K-MEK co-targeted inhibition has been recommended. With high mortality rates and a clear need for new therapeutic intervention strategies, non-small cell lung cancer (NSCLC) is an important setting to investigate the effectiveness of this approach.Here, 174 NSCLC tumours were screened for 150 mutations by Fluidigm technology, with 15 patients being profiled for phosphoprotein expression. The effects of GDC-0941 (a pan PI3K inhibitor), GDC-0980 (a dual PI3K/mTOR inhibitor) and GDC-0973 (a MEK inhibitor) alone and in combination were assessed in 3 NSCLC cell lines.PIK3CA was mutated in 5.17% of NSCLC patients. GDC-0941 and GDC-0980 treatment induced anti-proliferative and pro-apoptotic responses across all NSCLC cell lines, while GDC-0973 treatment induced only anti-proliferative responses. GDC-0980 and GDC-0973 combined treatment led to significant increases in apoptosis and synergistic reductions in proliferation across the panel of cell lines.This study found that the PI3K/MEK co-targeted inhibition strategy is synergistic in all 3 molecular subtypes of NSCLC investigated. Consequently, we would advocate clinical trials for NSCLC patients combining GDC-0980 and GDC-0973, each of which are separately under clinical investigation currently.

  12. Use of target-date funds in 401(k) plans, 2007.

    PubMed

    Copeland, Craig

    2009-03-01

    WHAT THEY ARE: Target-date funds (also called "life-cycle" funds) are a type of mutual fund that automatically rebalances its asset allocation following a predetermined pattern over time. They typically rebalance to more conservative and income-producing assets as the participant's target date of retirement approaches. WHY THEY'RE IMPORTANT AND GROWING: Of the 401(k) plan participants in the EBRI/ICI 401(k) database who were found to be in plans that offeredtarget-date funds, 37 percent had at least some fraction of their account in target-date funds in 2007. Target-date funds held about 7 percent of total assets in 401(k) plans and the use of these funds is expected to increase in the future. The Pension Protection Act of 2006 made it easier for plan sponsors to automatically enroll new workers in a 401(k) plan, and target-date funds were one of the types of approved funds specified for a "default" investment if the participant does not elect a choice. BRI/ICI 401(K) DATABASE: This study uses the unique richness of the data in the EBRI/ICI Participant-Directed Retirement Plan Data Collection Project, which has almost 22 million participants, to examine the choices and characteristics of participants whose plans offer target-date funds. EFFECT OF AGE, SALARY, JOB TENURE, AND ACCOUNT BALANCE: Younger workers are significantly more likely to invest in target-date funds than are older workers: Almost 44 percent of participants under age 30 had assets in a target-date fund, compared with 27 percent of those 60 or older. Target-date funds appeal to those with lower incomes, little time on the job, and with few assets. On average, target-date fund investors are about 2.5 years younger than those who do not invest in target-date funds, have about 3.5 years less tenure, make about $11,000 less in salary, have $25,000 less in their account, and are in smaller plans. EFFECT OF AUTOMATIC ENROLLMENT: While the EBRI/ICI database does not contain specific information on whether

  13. Synthesis of Nanodiamond-Daunorubicin Conjugates to Overcome Multidrug Chemoresistance in Leukemia

    PubMed Central

    Man, Han B.; Kim, Hansung; Kim, Ho-Joong; Robinson, Erik; Liu, Wing Kam; Chow, Edward Kai-Hua; Ho, Dean

    2013-01-01

    Nanodiamonds (NDs) are promising candidates in nanomedicine, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. We have synthesized ND vectors capable of chemotherapeutic loading and delivery with applications towards chemoresistant leukemia. The loading of Daunorubicin (DNR) onto NDs was optimized by adjusting reaction parameters such as acidity and concentration. The resulting conjugate, a novel therapeutic payload for NDs, was characterized extensively for size, surface charge, and loading efficiency. A K562 human myelogenous leukemia cell line, with multidrug resistance conferred by incremental DNR exposure, was used to demonstrate the efficacy enhancement resulting from ND-based delivery. While resistant K562 cells were able to overcome treatment from DNR alone, as compared with non-resistant K562 cells, NDs were able to improve DNR delivery into resistant K562 cells. By overcoming efflux mechanisms present in this resistant leukemia line, ND-enabled therapeutics have demonstrated the potential to improve cancer treatment efficacy, especially towards resistant strains. PMID:23916889

  14. 49 CFR 236.562 - Minimum rail current required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Locomotives § 236.562 Minimum... continuous inductive automatic train stop or train control device to normal condition or to obtain a proceed...

  15. 49 CFR 236.562 - Minimum rail current required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Locomotives § 236.562 Minimum... continuous inductive automatic train stop or train control device to normal condition or to obtain a proceed...

  16. Chitosan-functionalised single-walled carbon nanotube-mediated drug delivery of SNX-2112 in cancer cells.

    PubMed

    Zheng, Lixia; Wu, Shao; Tan, Li; Tan, Huo; Yu, Baodan

    2016-09-01

    Delivery of amphiphobic drugs (insoluble in both water and oil) has been a great challenge in drug delivery. SNX-2112, a novel inhibitor of Hsp90, is a promising drug candidate for treating various types of cancers; however, the insolubility greatly limits its clinical application. This study aimed to build a new type of drug delivery system using single-walled carbon nanotubes (SWNTs) for controllable release of SNX-2112; chitosan (CHI) was non-covalently added to SWNTs to improve their biocompatibility. SWNTs-CHI demonstrated high drug-loading capability; the release of SNX-2112 was pH triggered and time related. The intracellular reactive oxygen species of SWNTs-CHI increased, compared with that of SWNTs, leading to higher mitogen-activated protein kinase and cell apoptosis. The results of western-blotting, lactate dehydrogenase (LDH) release assay, and cell viability assay analyses indicated that apoptosis-related proteins were abundantly expressed in K562 cells and that the drug delivery system significantly inhibited K562 cells. Thus, SWNT-CHI/SNX-2112 shows great potential as a drug delivery system for cancer therapy. © The Author(s) 2016.

  17. BVR photometric investigation of galaxy pair KPG 562

    NASA Astrophysics Data System (ADS)

    Hendy, Y. H. M.

    2018-06-01

    This work presents BVR photometric observations and analyses for galaxy pair KPG 562 selected from the Karachentsev Catalog of Isolated Pairs of Galaxies. The observations were obtained using the 1.88-m Telescope of the Kottamia Astronomical Observatory (KAO), Egypt. There is no interaction signs assigned for this pair as reported by Karachentsev Catalog. We used the surface photometry technique to obtain photometric parameters for each galaxy of the pair. The isophotal contours, the luminosity profiles, color profiles (B-V, V-R), ellipticity profiles, position angle (PA) profiles and isophotal center-shift (xc, yc) profiles have been presented. The total and absolute magnitude, ellipticity and position angle (PA) were also obtained from the studied galaxy pair. The studied galaxy pair is clearly showing signs of interaction opposed to that found by Karachentsev. We found that the galaxy KPG 562b contains one tidal tail. The length and thickness of tidal tail were obtained and presented in this study.

  18. An open-pattern droplet-in-oil planar array for single cell analysis based on sequential inkjet printing technology.

    PubMed

    Wang, Chenyu; Liu, Wenwen; Tan, Manqing; Sun, Hongbo; Yu, Yude

    2017-07-01

    Cellular heterogeneity represents a fundamental principle of cell biology for which a readily available single-cell research tool is urgently required. Here, we present a novel method combining cell-sized well arrays with sequential inkjet printing. Briefly, K562 cells with phosphate buffer saline buffer were captured at high efficiency (74.5%) in a cell-sized well as a "primary droplet" and sealed using fluorinated oil. Then, piezoelectric inkjet printing technology was adapted to precisely inject the cell lysis buffer and the fluorogenic substrate, fluorescein-di-β-D-galactopyranoside, as a "secondary droplet" to penetrate the sealing oil and fuse with the "primary droplet." We thereby successfully measured the intracellular β-galactosidase activity of K562 cells at the single-cell level. Our method allows, for the first time, the ability to simultaneously accommodate the high occupancy rate of single cells and sequential addition of reagents while retaining an open structure. We believe that the feasibility and flexibility of our method will enhance its use as a universal single-cell research tool as well as accelerate the adoption of inkjet printing in the study of cellular heterogeneity.

  19. Novel drug targets in cell wall biosynthesis exploited by gene disruption in Pseudomonas aeruginosa.

    PubMed

    Elamin, Ayssar A; Steinicke, Susanne; Oehlmann, Wulf; Braun, Yvonne; Wanas, Hanaa; Shuralev, Eduard A; Huck, Carmen; Maringer, Marko; Rohde, Manfred; Singh, Mahavir

    2017-01-01

    For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top three causes of opportunistic human infections. Therapy of P. aeruginosa infections is complicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased uptake of drugs due to cell wall/membrane permeability appear to be important issues in the acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role of these targets in virulence has not been identified in P. aeruginosa. Here, we report knockout (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF, PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and characterized these in order to find out whether these genes and their products contribute to pathogenicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis targets significantly reduced growth rate in minimal medium compared to the parent strain. The k.o mutants showed exciting changes in cell morphology and colonial architectures. Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also attenuated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored in a plant model by unknown mechanism. This study demonstrates that cell wall targets contribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aeruginosa. In conclusion, these findings establish a link between cell wall targets and virulence of P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeruginosa infection.

  20. Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.

    PubMed

    Madempudi, Ratna Sudha; Kalle, Arunasree M

    2017-10-01

    In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.

  1. 14 CFR 27.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Emergency landing dynamic conditions. 27... Conditions § 27.562 Emergency landing dynamic conditions. (a) The rotorcraft, although it may be damaged in... must successfully complete dynamic tests or be demonstrated by rational analysis based on dynamic tests...

  2. 14 CFR 23.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Emergency Landing Conditions § 23.562 Emergency landing dynamic conditions. (a) Each seat/restraint system... dynamic tests conducted in accordance with paragraph (b) of this section: (1) The seat/restraint system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Emergency landing dynamic conditions. 23...

  3. MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yanfei; Qin, Huadong; Cui, Yunfu, E-mail: yfma77@126.com

    Highlights: •MiR-34a is up- and GAS1 is down-regulated in papillary thyroid carcinoma. •GAS1 is a direct target for miR-34a. •MiR-34a promotes PTC cells proliferation and inhibits apoptosis through PI3K/Akt/Bad pathway. -- Abstract: MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors.more » However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.« less

  4. Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors.

    PubMed

    Klaeger, Susan; Gohlke, Bjoern; Perrin, Jessica; Gupta, Vipul; Heinzlmeir, Stephanie; Helm, Dominic; Qiao, Huichao; Bergamini, Giovanna; Handa, Hiroshi; Savitski, Mikhail M; Bantscheff, Marcus; Médard, Guillaume; Preissner, Robert; Kuster, Bernhard

    2016-05-20

    Many protein kinases are valid drug targets in oncology because they are key components of signal transduction pathways. The number of clinical kinase inhibitors is on the rise, but these molecules often exhibit polypharmacology, potentially eliciting desired and toxic effects. Therefore, a comprehensive assessment of a compound's target space is desirable for a better understanding of its biological effects. The enzyme ferrochelatase (FECH) catalyzes the conversion of protoporphyrin IX into heme and was recently found to be an off-target of the BRAF inhibitor Vemurafenib, likely explaining the phototoxicity associated with this drug in melanoma patients. This raises the question of whether FECH binding is a more general feature of kinase inhibitors. To address this, we applied a chemical proteomics approach using kinobeads to evaluate 226 clinical kinase inhibitors for their ability to bind FECH. Surprisingly, low or submicromolar FECH binding was detected for 29 of all compounds tested and isothermal dose response measurements confirmed target engagement in cells. We also show that Vemurafenib, Linsitinib, Neratinib, and MK-2461 reduce heme levels in K562 cells, verifying that drug binding leads to a loss of FECH activity. Further biochemical and docking experiments identified the protoporphyrin pocket in FECH as one major drug binding site. Since the genetic loss of FECH activity leads to photosensitivity in humans, our data strongly suggest that FECH inhibition by kinase inhibitors is the molecular mechanism triggering photosensitivity in patients. We therefore suggest that a FECH assay should generally be part of the preclinical molecular toxicology package for the development of kinase inhibitors.

  5. Suppression of c-Myc induces apoptosis via an AMPK/mTOR-dependent pathway by 4-O-methyl-ascochlorin in leukemia cells.

    PubMed

    Shin, Jae-Moon; Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Bae, Young-Seuk; Chang, Young-Chae

    2016-05-01

    4-O-Methyl-ascochlorin (MAC) is a methylated derivative of the prenyl-phenol antibiotic ascochlorin, which was isolated from an incomplete fungus, Ascochyta viciae. Although the effects of MAC on apoptosis have been reported, the underlying mechanisms remain unknown. Here, we show that MAC promoted apoptotic cell death and downregulated c-Myc expression in K562 human leukemia cells. The effect of MAC on apoptosis was similar to that of 10058-F4 (a c-Myc inhibitor) or c-Myc siRNA, suggesting that the downregulation of c-Myc expression plays a role in the apoptotic effect of MAC. Further investigation showed that MAC downregulated c-Myc by inhibiting protein synthesis. MAC promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its target proteins, including p70S6 K and 4E-BP-1. Treatment of cells with AICAR (an AMPK activator), rapamycin (an mTOR inhibitor), or mTOR siRNA downregulated c-Myc expression and induced apoptosis to a similar extent to that of MAC. These results suggest that the effect of MAC on apoptosis induction in human leukemia cells is mediated by the suppression of c-Myc protein synthesis via an AMPK/mTOR-dependent mechanism.

  6. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  7. Expression of receptor protein tyrosine kinase tif is regulated during leukemia cell differentiation.

    PubMed

    Dai, W; Pan, H Q; Ouyang, B; Greenberg, J M; Means, R T; Li, B; Cardie, J

    1996-06-01

    tif is a recently cloned and characterized cDNA predicting a transmembrane protein with a putative tyrosine kinase structure in its cytoplasmic domain. By analysis of the purified tif cytoplasmic domain expressed in Escherichia coli, we have demonstrated that tif is an active protein tyrosine kinase capable of autophosphorylation on tyrosine residues and this phosphorylation is inhibited by a tyrosine-specific inhibitor genistein. Northern blot analyses of various leukemia cell lines have revealed that tif mRNA expression is primarily confined to those bearing erythroid and megakaryocytic phenotypes. Megakaryocytic differentiation of K562 and HEL cells induced by phorbol 12-myristate 13-acetate is accompanied by down-regulation of tif mRNA expression. In addition, treatment of K562 and HEL with hexamethylene bis-acetamide, but not with hemin, decreases the steady-state level of tif mRNA. These combined results suggest that the receptor tyrosine kinase tif is involved in hematopoietic development.

  8. Targeting Bcl-2 stability to sensitize cells harboring oncogenic ras.

    PubMed

    Peng, Bo; Ganapathy, Suthakar; Shen, Ling; Huang, Junchi; Yi, Bo; Zhou, Xiaodong; Dai, Wei; Chen, Changyan

    2015-09-08

    The pro-survival factor Bcl-2 and its family members are critical determinants of the threshold of the susceptibility of cells to apoptosis. Studies are shown that cells harboring an oncogenic ras were extremely sensitive to the inhibition of protein kinase C (PKC) and Bcl-2 could antagonize this apoptotic process. However, it remains unrevealed how Bcl-2 is being regulated in this apoptotic process. In this study, we investigate the role of Bcl-2 stability in sensitizing the cells harboring oncogenic K-ras to apoptosis triggered by PKC inhibitor GO6976. We demonstrated that Bcl-2 in Swiss3T3 cells ectopically expressing or murine lung cancer LKR cells harboring K-ras rapidly underwent ubiquitin-dependent proteasome pathway after the treatment of GO6976, accompanied with induction of apoptosis. In this process, Bcl-2 formed the complex with Keap-1 and Cul3. The mutation of serine-17 and deletion of BH-2 or 4 was required for Bcl-2 ubiquitination and degradation, which elevate the signal threshold for the induction of apoptosis in the cells following PKC inhibition. Thus, Bcl-2 appears an attractive target for the induction of apoptosis by PKC inhibition in cancer cells expressing oncogenic K-ras.

  9. 14 CFR 25.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....562 Emergency landing dynamic conditions. (a) The seat and restraint system in the airplane must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Emergency landing dynamic conditions. 25... successfully complete dynamic tests or be demonstrated by rational analysis based on dynamic tests of a similar...

  10. 14 CFR 29.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Emergency landing dynamic conditions. 29... Conditions § 29.562 Emergency landing dynamic conditions. (a) The rotorcraft, although it may be damaged in a... landing must successfully complete dynamic tests or be demonstrated by rational analysis based on dynamic...

  11. 7 CFR 56.2 - Designation of official certificates, memoranda, marks, other identifications, and devices for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Designation of official certificates, memoranda, marks, other identifications, and devices for purposes of the Agricultural Marketing Act. 56.2 Section 56.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices),...

  12. Effective targeting of STAT5-mediated survival in myeloproliferative neoplasms using ABT-737 combined with rapamycin

    PubMed Central

    Li, Geqiang; Miskimen, Kristy L.; Wang, Zhengqi; Xie, Xiu Yan; Tse, William; Gouilleux, Fabrice; Moriggl, Richard; Bunting, Kevin D.

    2010-01-01

    Signal transducer and activator of transcription-5 (STAT5) is a critical transcription factor for normal hematopoiesis and its sustained activation is associated with hematologic malignancy. A persistently active mutant of STAT5 (STAT5aS711F) associates with Grb2 associated binding protein 2 (Gab2) in myeloid leukemias and promotes growth in vitro through AKT activation. Here we have retrovirally transduced wild-type or Gab2−/− mouse bone marrow cells expressing STAT5aS711F and transplanted into irradiated recipient mice to test an in vivo myeloproliferative disease (MPD) model. To target Gab2-independent AKT/mTOR activation, wild-type mice were treated separately with rapamycin. In either case, mice lacking Gab2 or treated with rapamycin displayed attenuated myeloid hyperplasia and modestly improved survival, but the effects were not cytotoxic and were reversible. To improve upon this approach, in vitro targeting of STAT5-mediated AKT/mTOR using rapamycin was combined with inhibition of the STAT5 direct target genes bcl-2 and bcl-XL using ABT-737. Striking synergy with both drugs was observed in mouse BaF3 cells expressing STAT5aS711F, TEL-JAK2, or BCR-ABL and in the relatively single agent-resistant human BCR-ABL positive K562 cell line. Therefore, targeting distinct STAT5 mediated survival signals, e.g. bcl-2/bcl-XL and AKT/mTOR may be an effective therapeutic approach for human myeloproliferative neoplasms. PMID:20535152

  13. Functionalized Single-Walled Carbon Nanotube-Based Fuel Cell Benchmarked Against US DOE 2017 Technical Targets

    PubMed Central

    Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E.; Haddon, Robert C.

    2013-01-01

    Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mgPt/cm2 - well below the value of 0.125 mgPt/cm2 set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 gPGM/kW) at cell potential 0.65 V: a value of 0.15 gPt/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 gPt/kW at 35 psig back pressure. PMID:23877112

  14. Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets.

    PubMed

    Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E; Haddon, Robert C

    2013-01-01

    Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mg(Pt)/cm²--well below the value of 0.125 mg(Pt)/cm² set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 g(PGM)/kW) at cell potential 0.65 V: a value of 0.15 g(Pt)/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 g(Pt)/kW at 35 psig back pressure.

  15. K+ Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria.

    PubMed

    Groß, Christina J; Mishra, Ritu; Schneider, Katharina S; Médard, Guillaume; Wettmarshausen, Jennifer; Dittlein, Daniela C; Shi, Hexin; Gorka, Oliver; Koenig, Paul-Albert; Fromm, Stephan; Magnani, Giovanni; Ćiković, Tamara; Hartjes, Lara; Smollich, Joachim; Robertson, Avril A B; Cooper, Matthew A; Schmidt-Supprian, Marc; Schuster, Michael; Schroder, Kate; Broz, Petr; Traidl-Hoffmann, Claudia; Beutler, Bruce; Kuster, Bernhard; Ruland, Jürgen; Schneider, Sabine; Perocchi, Fabiana; Groß, Olaf

    2016-10-18

    Imiquimod is a small-molecule ligand of Toll-like receptor-7 (TLR7) that is licensed for the treatment of viral infections and cancers of the skin. Imiquimod has TLR7-independent activities that are mechanistically unexplained, including NLRP3 inflammasome activation in myeloid cells and apoptosis induction in cancer cells. We investigated the mechanism of inflammasome activation by imiquimod and the related molecule CL097 and determined that K + efflux was dispensable for NLRP3 activation by these compounds. Imiquimod and CL097 inhibited the quinone oxidoreductases NQO2 and mitochondrial Complex I. This induced a burst of reactive oxygen species (ROS) and thiol oxidation, and led to NLRP3 activation via NEK7, a recently identified component of this inflammasome. Metabolic consequences of Complex I inhibition and endolysosomal effects of imiquimod might also contribute to NLRP3 activation. Our results reveal a K + efflux-independent mechanism for NLRP3 activation and identify targets of imiquimod that might be clinically relevant. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. 40 CFR 60.562-1 - Standards: Process emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Compound (VOC) Emissions from the Polymer Manufacturing Industry § 60.562-1 Standards: Process emissions... vent stream from a control device shall have car-sealed opened all valves in the vent system from the emission source to the control device and car-sealed closed all valves in vent system that would lead the...

  17. Natural Killer Cell Immunotherapy Targeting Cancer Stem Cells

    PubMed Central

    Luna, Jesus I; Grossenbacher, Steven K.; Murphy, William J; Canter, Robert J

    2017-01-01

    Introduction Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with “stem-cell” like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. In this report, we review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert Opinion Unlike cytotoxic cancer treatments, NK cells are able to target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells. PMID:27960589

  18. Inhibition of PI3K-AKT-mTOR pathway sensitizes endometrial cancer cell lines to PARP inhibitors.

    PubMed

    Philip, Charles-André; Laskov, Ido; Beauchamp, Marie-Claude; Marques, Maud; Amin, Oreekha; Bitharas, Joanna; Kessous, Roy; Kogan, Liron; Baloch, Tahira; Gotlieb, Walter H; Yasmeen, Amber

    2017-09-08

    Phosphatase and Tensin homolog (PTEN) is a tumor suppressor gene. Loss of its function is the most frequent genetic alteration in endometrioid endometrial cancers (70-80%) and high grade tumors (90%). We assessed the sensitivity of endometrial cancer cell lines to PARP inhibitors (olaparib and BMN-673) and a PI3K inhibitor (BKM-120), alone or in combination, in the context of their PTEN mutation status. We also highlighted a direct pathway linking PTEN to DNA repair. Using endometrial cancer cellular models with known PTEN status, we evaluated their homologous recombination (HR) functionality by RAD51 foci formation assay. The 50% Inhibitory concentration (IC50) of PI3K and PARP inhibitors in these cells was assessed, and western blotting was performed to determine the expression of proteins involved in the PI3K/mTOR pathway. Moreover, we explored the interaction between RAD51 and PI3K/mTOR by immunofluorescence. Next, the combination effect of PI3K and PARP inhibitors on cell proliferation was evaluated by a clonogenic assay. Cells with mutated PTEN showed over-activation of the PI3K/mTOR pathway. These cells were more sensitive to PARP inhibition compared to PTEN wild-type cells. In addition, PI3K inhibitor treatment reduced RAD51 foci formation in PTEN mutated cells, and sensitized these cells to PARP inhibitor. Targeting both PARP and PI3K might lead to improved personalized therapeutic approaches in endometrial cancer patients with PTEN mutations. Understanding the complex interaction of PTEN mutations with DNA repair in endometrial cancer will help to better select patients that are likely to respond to some of the new and costly targeted therapies.

  19. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    PubMed Central

    2011-01-01

    An investigation of the electrochemical activity of human white blood cells (WBC) for biofuel cell (BFC) applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM) fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc) between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient), a B lymphoblastoid cell line (BLCL), and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester) activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT) from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents. PMID:21569243

  20. Anti-LRP/LR Specific Antibody IgG1-iS18 Impedes Adhesion and Invasion of Liver Cancer Cells

    PubMed Central

    Chetty, Carryn; Khumalo, Thandokuhle; Da Costa Dias, Bianca; Reusch, Uwe; Knackmuss, Stefan; Little, Melvyn; Weiss, Stefan F. T.

    2014-01-01

    Two key events, namely adhesion and invasion, are pivotal to the occurrence of metastasis. Importantly, the 37 kDa/67 kDa laminin receptor (LRP/LR) has been implicated in enhancing these two events thus facilitating cancer progression. In the current study, the role of LRP/LR in the adhesion and invasion of liver cancer (HUH-7) and leukaemia (K562) cells was investigated. Flow cytometry revealed that the HUH-7 cells displayed significantly higher cell surface LRP/LR levels compared to the poorly-invasive breast cancer (MCF-7) control cells, whilst the K562 cells displayed significantly lower cell surface LRP/LR levels in comparison to the MCF-7 control cells. However, Western blotting and densitometric analysis revealed that all three tumorigenic cell lines did not differ significantly with regards to total LRP/LR levels. Furthermore, treatment of liver cancer cells with anti-LRP/LR specific antibody IgG1-iS18 (0.2 mg/ml) significantly reduced the adhesive potential of cells to laminin-1 and the invasive potential of cells through the ECM-like Matrigel, whilst leukaemia cells showed no significant differences in both instances. Additionally, Pearson's correlation coefficients suggested direct proportionality between cell surface LRP/LR levels and the adhesive and invasive potential of liver cancer and leukaemia cells. These findings suggest the potential use of anti-LRP/LR specific antibody IgG1-iS18 as an alternative therapeutic tool for metastatic liver cancer through impediment of the LRP/LR- laminin-1 interaction. PMID:24798101

  1. Gamma reactivation using the spongy effect of KLF1-binding site sequence: an approach in gene therapy for beta-thalassemia

    PubMed Central

    Heydari, Nasrin; Shariati, Laleh; Khanahmad, Hossein; Hejazi, Zahra; Shahbazi, Mansoureh; Salehi, Mansoor

    2016-01-01

    Objective(s): β-thalassemia is one of the most common genetic disorders in the world. As one of the promising treatment strategies, fetal hemoglobin (Hb F) can be induced. The present study was an attempt to reactivate the γ-globin gene by introducing a gene construct containing KLF1 binding sites to the K562 cell line. Materials and Methods: A plasmid containing a 192 bp sequence with two repeats of KLF1 binding sites on β-globin and BCL11A promoters was constructed and used to transfect the K562 cell line. Positive selection was performed under treatment with 150 μg/ml hygromycin B. The remaining cells were expanded and harvested on day 28, and genomic DNA was extracted. The PCR was carried out to verify insertion of DNA fragment to the genome of K562 cells. The cells were differentiated with 15 μg/ml cisplatin. Flowcytometry was performed to identify erythroid differentiation by detection of CD235a+ cells. Real-time RT-PCR was performed to evaluate γ-globin expression in the transfected cells. Results: A 1700 bp fragment was observed on agarose gel as expected and insertion of DNA fragment to the genome of K562 cells was verified. Totally, 84% of cells were differentiated. The transfected cells significantly increased γ-globin expression after differentiation compared to untransfected ones. Conclusion: The findings demonstrate that the spongy effect of KLF1-binding site on BCL11A and β-globin promoters can induce γ-globin expression in K562 cells. This novel strategy can be promising for the treatment of β-thalassemia and sickle cell disease. PMID:27872702

  2. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    PubMed

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon

  3. Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines.

    PubMed

    Okayasu, H; Ishihara, M; Satoh, K; Sakagami, H

    2001-01-01

    Vitamin K1, K2 and K3 were compared for their cytotoxic activity, radical generation and O2- scavenging activity. Among these compounds, vitamin K3 showed the highest cytotoxic activity against human oral tumor cell lines (HSC-2, HSG), human promyelocytic leukemic cell line (HL-60) and human gingival fibroblast (HGF). Vitamin K3 induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 or HSG cells. The cytotoxic activity of vitamins K2 and K1 was one and two orders lower, respectively, than K3. Vitamin K2, but not vitamin K3, showed tumor-specific cytotoxic action. ESR spectroscopy showed that only vitamin K3 produced radical(s) under alkaline condition and most potently enhanced the radical intensity of sodium ascorbate and scavenged O2- (generated by hypoxanthine-xanthine oxidase reaction system); vitamin K2 was much less active whereas vitamin K1 was inactive. These data suggest that the cytotoxic activity of vitamin K3 is generated by radical-mediated oxidation mechanism and that this vitamin has two opposing actions (that is, antioxidant and prooxidant), depending on the experimental conditions.

  4. Strategic Therapeutic Targeting to Overcome Venetoclax Resistance in Aggressive B-cell Lymphomas.

    PubMed

    Pham, Lan V; Huang, Shengjian; Zhang, Hui; Zhang, Jun; Bell, Taylor; Zhou, Shouhao; Pogue, Elizabeth; Ding, Zhiyong; Lam, Laura; Westin, Jason; Davis, R Eric; Young, Ken H; Medeiros, L Jeffrey; Ford, Richard J; Nomie, Krystle; Zhang, Leo; Wang, Michael

    2018-04-17

    Purpose: B-cell lymphoma-2 (BCL-2), an antiapoptotic protein often dysregulated in B-cell lymphomas, promotes cell survival and provides protection from stress. A recent phase I first-in-human study of the BCL-2 inhibitor venetoclax in non-Hodgkin lymphoma showed an overall response rate of 44%. These promising clinical results prompted our examination of the biological effects and mechanism of action underlying venetoclax activity in aggressive B-cell lymphoma, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Experimental Design: MCL and DLBCL cell lines, primary patient samples, and in vivo patient-derived xenograft (PDX) models were utilized to examine venetoclax efficacy. Furthermore, the mechanisms underlying venetoclax response and the development of venetoclax resistance were evaluated using proteomics analysis and Western blotting. Results: Potential biomarkers linked to venetoclax activity and targeted combination therapies that can augment venetoclax response were identified. We demonstrate that DLBCL and MCL cell lines, primary patient samples, and PDX mouse models expressing high BCL-2 levels are extremely sensitive to venetoclax treatment. Proteomics studies showed that venetoclax substantially alters the expression levels and phosphorylation status of key proteins involved in cellular processes, including the DNA damage response, cell metabolism, cell growth/survival, and apoptosis. Short- and long-term exposure to venetoclax inhibited PTEN expression, leading to enhanced AKT pathway activation and concomitant susceptibility to PI3K/AKT inhibition. Intrinsic venetoclax-resistant cells possess high AKT activation and are highly sensitive to PI3K/AKT inhibition. Conclusions: These findings demonstrate the on-target effect of venetoclax and offer potential mechanisms to overcome acquired and intrinsic venetoclax resistance through PI3K/AKT inhibition. Clin Cancer Res; 1-14. ©2018 AACR. ©2018 American Association for

  5. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevadamore » National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO« less

  6. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements

    PubMed Central

    Mumbach, Maxwell R; Satpathy, Ansuman T; Boyle, Evan A; Dai, Chao; Gowen, Benjamin G; Cho, Seung Woo; Nguyen, Michelle L; Rubin, Adam J; Granja, Jeffrey M; Kazane, Katelynn R; Wei, Yuning; Nguyen, Trieu; Greenside, Peyton G; Corces, M Ryan; Tycko, Josh; Simeonov, Dimitre R; Suliman, Nabeela; Li, Rui; Xu, Jin; Flynn, Ryan A; Kundaje, Anshul; Khavari, Paul A; Marson, Alexander; Corn, Jacob E; Quertermous, Thomas; Greenleaf, William J; Chang, Howard Y

    2018-01-01

    The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer–promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases. PMID:28945252

  7. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction.

    PubMed

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-05-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent.

  8. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction

    PubMed Central

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-01-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent. PMID:24464222

  9. Expansion of natural killer cell receptor (CD94/NKG2A)-expressing cytolytic CD8 T cells and CD4+CD25+ regulatory T cells from the same cord blood unit.

    PubMed

    Tanaka, Junji; Sugita, Junichi; Kato, Naoko; Toubai, Tomomi; Ibata, Makoto; Shono, Yusuke; Ota, Shuichi; Kondo, Takeshi; Kobayashi, Takahiko; Kobayashi, Masanobu; Asaka, Masahiro; Imamura, Masahiro

    2007-10-01

    Cord blood contains a significant number of precursor cells that differentiate to cytotoxic effector cells and immunoregulatory cells. We tried to expand inhibitory natural killer cell receptor CD94-expressing CD8 T cells with cytolytic activity and CD4(+)CD25(+) regulatory T cells from the same cord cell unit. Cytotoxic CD94-expressing CD8 T cells were expanded from CD4-depleted cord blood using an immobilized anti-CD3 monoclonal antibody and a cytokine and also CD4(+)CD25(+) regulatory T cells were expanded from a CD4-enriched fraction derived from the same cord blood unit using anti-CD3/CD28 monoclonal antibody-coated Dynabeads and cytokines. We were able to obtain a more than 1000-fold expansion of CD94-expressing CD8 T cells and a more than 50-fold expansion of CD4(+)CD25(+) cells from the same cord blood unit. These expanded CD4(+)CD25(+) cells expressed FoxP3 mRNA at a level about 100-fold higher than that in isolated CD25(-) cells and could suppress allogeneic mixed lymphocyte culture by >80% (effector cells: CD4(+)CD25(+) cells = 2:1). Cytolytic activities of purified CD94-expressing cells detected by a 4-hour (51)Cr release assay against K562 were >60%. Coculture of CD94-expressing cells with expanded CD4(+)CD25(+) cells did not have any effect on cytolytic activities of purified CD94-expressing cells against K562 cells. These expanded cytolytic CD94-expressing CD8 cells might be able to induce a graft-vs-leukemia effect without enhancing graft-vs-host disease, and CD4(+)CD25(+) cells might be able to suppress allogeneic responses, including graft-vs-host disease and graft rejection after cord blood transplantation.

  10. Super-Enhancers and Broad H3K4me3 Domains Form Complex Gene Regulatory Circuits Involving Chromatin Interactions.

    PubMed

    Cao, Fan; Fang, Yiwen; Tan, Hong Kee; Goh, Yufen; Choy, Jocelyn Yeen Hui; Koh, Bryan Thean Howe; Hao Tan, Jiong; Bertin, Nicolas; Ramadass, Aroul; Hunter, Ewan; Green, Jayne; Salter, Matthew; Akoulitchev, Alexandre; Wang, Wilson; Chng, Wee Joo; Tenen, Daniel G; Fullwood, Melissa J

    2017-05-19

    Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.

  11. Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo

    PubMed Central

    2014-01-01

    Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633

  12. Visualization of proteolytic activity associated with the apoptotic response in cancer cells

    NASA Astrophysics Data System (ADS)

    Tice, Brian George

    Caspases execute programmed cell death, where low levels of caspase activity are linked to cancer. Chemotherapies utilize induction of apoptosis as a key mechanism for cancer treatment, where caspase-3 is a major player involved in dismantling these aberrant cells. The ability to sensitively measure the initial caspase-3 cleavage events during apoptosis is important for understanding the initiation of this complex cellular process, however, current ensemble methods are not sensitive enough to measure single cleavage events in cells. By utilizing the optical properties of plasmon coupling, peptide-linked gold nanoparticles were developed to enable single molecule imaging of caspase-3 activity in two different cancer systems. Au crown nanoparticles were assembled in a multimeric fashion to overcome the high and heterogeneous background scattering of live cells. In a colon cancer (SW620) cell line challenged with tumor necrosis factor-alpha (TNF-alpha), single molecule trajectories show early stage caspase-3 activation within minutes, which was not detectable by ensemble assays until 23 hours. Variability in caspase-3 activation among the population of cells was identified and likely a result of each cell's specific resistance to death receptor-induced apoptosis. Following these studies, improvements by way of sensitivity and selectivity were tailored into an improved nanosensor construct. Au nanoshell dimers were prepared as a comparably bright construct with 1) reduced heterogeneity compared to the synthesis of the crown nanoparticles and 2) a peptide sequence highly selective for caspase-3. Chronic myeloid leukemia (CML) K562 cells were assessed for their early apoptotic response upon treatment with dasatinib, a clinically approved tyrosine kinase inhibitor that specifically targets BCR-ABL. It has been demonstrated that inhibition of BCR-ABL by dasatinib commits K562 cells to apoptosis. Single molecule experiments with Au nanoshell dimers show caspase-3 activation

  13. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid

    PubMed Central

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-01-01

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions. PMID:28165036

  14. Transcription factor GATA-1 regulates human HOXB2 gene expression in erythroid cells.

    PubMed

    Vieille-Grosjean, I; Huber, P

    1995-03-03

    The human HOXB2 gene is a member of the vertebrate Hox gene family that contains genes coding for specific developmental stage DNA-binding proteins. Remarkably, within the hematopoietic compartment, genes of the HOXB complex are expressed specifically in erythromegakaryocytic cell lines and, for some of them, in hematopoietic progenitors. Here, we report the study of HOXB2 gene transcriptional regulation in hematopoietic cells, an initial step in understanding the lineage-specific expression of the whole HOXB complex in these cells. We have isolated the HOXB2 5'-flanking sequence and have characterized a promoter fragment extending 323 base pairs upstream from the transcriptional start site, which, in transfection experiments, was sufficient to direct the tissue-specific expression of HOXB2 in the erythroid cell line K562. In this fragment, we have identified a potential GATA-binding site that is essential to the promoter activity as demonstrated by point mutation experiments. Gel shift analysis revealed the formation of a specific complex in both erythroleukemic lines K562 and HEL that could be prevented by the addition of a specific antiserum raised against GATA-1 protein. These findings suggest a regulatory hierarchy in which GATA-1 is upstream of the HOXB2 gene in erythroid cells.

  15. Targeting Gas6/TAM in cancer cells and tumor microenvironment.

    PubMed

    Wu, Guiling; Ma, Zhiqiang; Cheng, Yicheng; Hu, Wei; Deng, Chao; Jiang, Shuai; Li, Tian; Chen, Fulin; Yang, Yang

    2018-01-31

    Growth arrest-specific 6, also known as Gas6, is a human gene encoding the Gas6 protein, which was originally found to be upregulated in growth-arrested fibroblasts. Gas6 is a member of the vitamin K-dependent family of proteins expressed in many human tissues and regulates several biological processes in cells, including proliferation, survival and migration, by binding to its receptors Tyro3, Axl and Mer (TAM). In recent years, the roles of Gas6/TAM signalling in cancer cells and the tumour microenvironment have been studied, and some progress has made in targeted therapy, providing new potential directions for future investigations of cancer treatment. In this review, we introduce the Gas6 and TAM receptors and describe their involvement in different cancers and discuss the roles of Gas6 in cancer cells, the tumour microenvironment and metastasis. Finally, we introduce recent studies on Gas6/TAM targeting in cancer therapy, which will assist in the experimental design of future analyses and increase the potential use of Gas6 as a therapeutic target for cancer.

  16. A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: Comparisons to a 4 h 51Cr-release assay

    PubMed Central

    Kim, GG; Donnenberg, VS; Donnenberg, AD; Gooding, W; Whiteside, TL

    2007-01-01

    Natural killer (NK) cell- or T cell-mediated cytotoxicity traditionally is measured in 4-16h 51Cr-release assays (CRA). A new four-color flow cytometry-based cytotoxicity assay (FCC) was developed to simultaneously measure NK cell cytotoxicity and NK cell phenotype (CD3−CD16+CD56+). Target cells, K562 or Daudi, were labeled with Cell Tracker Orange (CTO) prior to the addition of effector cells. Following co-incubation, 7 amino-actinomycin D (7-AAD) was added to measure death of target cells. The phenotype of effectors, viability of targets, the formation of tumor-effector cell conjugates and absolute numbers of all cells were measured based on light scatter (FSC/SSC), double discrimination of the fluorescence peak integral and height, and fluorescence intensity. Kinetic studies (0.5 and 1 to 4h) at different effector to target (E:T) cell ratios (50, 25, 12, and 6) confirmed that the 3h incubation was optimal. The FCC assay is more sensitive than the CRA, has a coefficient of variation (CV) 8–13% and reliably measures NK cell- or lymphokine-activated killer (LAK) cell-mediated killing of target cells in normal controls and subjects with cancer. The FCC assay can be used to study a range of phenotypic attributes, in addition to lytic activity of various subsets of effector cells, without radioactive tracers and thus, it is relatively inexpensive. The FCC assay has a potential for providing information about molecular interactions underlying target cell lysis and thus becoming a major tool for studies of disease pathogenesis as well as development of novel immune therapies. PMID:17617419

  17. A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons to a 4 h 51Cr-release assay.

    PubMed

    Kim, G G; Donnenberg, V S; Donnenberg, A D; Gooding, W; Whiteside, T L

    2007-08-31

    Natural killer (NK) cell-or T cell-mediated cytotoxicity traditionally is measured in 4-16 h (51)Cr-release assays (CRA). A new four-color flow cytometry-based cytotoxicity assay (FCC) was developed to simultaneously measure NK cell cytotoxicity and NK cell phenotype (CD3(-)CD16(+)CD56(+)). Target cells, K562 or Daudi, were labeled with Cell Tracker Orange (CTO) prior to the addition of effector cells. Following co-incubation, 7 amino-actinomycin D (7-AAD) was added to measure death of target cells. The phenotype of effectors, viability of targets, the formation of tumor-effector cell conjugates and absolute numbers of all cells were measured based on light scatter (FSC/SSC), double discrimination of the fluorescence peak integral and height, and fluorescence intensity. Kinetic studies (0.5 and 1 to 4 h) at different effector to target (E:T) cell ratios (50, 25, 12, and 6) confirmed that the 3 h incubation was optimal. The FCC assay is more sensitive than the CRA, has a coefficient of variation (CV) 8-13% and reliably measures NK cell-or lymphokine-activated killer (LAK) cell-mediated killing of target cells in normal controls and subjects with cancer. The FCC assay can be used to study a range of phenotypic attributes, in addition to lytic activity of various subsets of effector cells, without radioactive tracers and thus, it is relatively inexpensive. The FCC assay has a potential for providing information about molecular interactions underlying target cell lysis and thus becoming a major tool for studies of disease pathogenesis as well as development of novel immune therapies.

  18. Establishment of nude mice with complete loss of lymphocytes and NK cells and application for in vivo bio-imaging.

    PubMed

    Kariya, Ryusho; Matsuda, Kouki; Gotoh, Kumiko; Vaeteewoottacharn, Kulthida; Hattori, Shinichiro; Okada, Seiji

    2014-01-01

    Nude mice are used in human xenograft research; however, only 25-35% of human tumors have been successfully transplanted into nude mice and their application is limited due to high natural killer (NK) cell activity. More severely immunodeficient mice with loss of NK activity are needed to overcome this limitation. Balb/c nude Rag-2(-/-)Jak3(-/-) (Nude-RJ) mice were established by crossing Rag-2(-/-)Jak3(-/-) mice and nude mice. The K562 cell line was implanted subcutaneously to compare tumorigenicity between Nude-RJ mice and Nude mice. The cholangiocarcinoma mCherry expressing cell line (KKU-M213) was implanted subcutaneously, and fluorescence intensity and tumor weight were measured. Nude R/J mice showed complete loss of lymphocytes and NK cells. Xeno-transplantation of K562 cells showed higher proliferation in Nude R/J mice than nude mice. Subcutaneously-transplanted mCherry-transduced KKU-M213 cells were successfully detected with a fluorescence imager. Nude-R/J mice are valuable tools for in vivo imaging studies in biomedical research. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Selective killing of Kaposi's sarcoma-associated herpesvirus lytically infected cells with a recombinant immunotoxin targeting the viral gpK8.1A envelope glycoprotein

    PubMed Central

    Chatterjee, Deboeeta; Chandran, Bala

    2012-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) is etiologically associated with three neoplastic syndromes: Kaposi sarcoma and the uncommon HIV-associated B-cell lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. The incidence of the latter B-cell pathology has been increasing in spite of antiretroviral therapy; its association with lytic virus replication has prompted interest in therapeutic strategies aimed at this phase of the virus life cycle. We designed and expressed a recombinant immunotoxin (2014-PE38) targeting the gpK8.1A viral glycoprotein expressed on the surface of the virion and infected cells. We show that this immunotoxin selectively kills KSHV-infected cells in dose-dependent fashion, resulting in major reductions of infectious virus release. The immunotoxin and ganciclovir, an inhibitor of viral DNA replication, showed marked reciprocal potentiation of antiviral activities. These results suggest that the immunotoxin, alone or in combination, may represent a new approach to treat diseases associated with KSHV lytic replication. PMID:22377676

  20. Decreased NK-Cell Cytotoxicity after Short Flights on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Grimm, Elizabeth A.; Smid, Christine; Kaur, Indreshpal; Feeback, Daniel L.; Pierson, Duane L.

    2000-01-01

    Cytotoxic activity of natural killer (NK) cells and cell surface marker expression of peripheral blood mononuclear cells (PBMCs) isolated from 11 U.S. astronauts on two different missions were determined before and after 9 or 10 days of spaceflight aboard the space shuttle. Blood samples were collected 10 and 3 days before launch, within 3 hours after landing, and 3 days after landing. All PBMC preparations were cryopreserved and analyzed simultaneously in a 4-hour cytotoxicity "Cr-release assay using NK-sensitive K-562 target cells. Compared to preflight values, NK-cell cytotoxicity (corrected for lymphopenia observed on landing day) was significantly decreased at landing (P < 0.0125). It then apparently began to recover and approached preflight values by 3 days after landing. Consistent with decreased NK-cell cytotoxicity, significant increases from preflight values were found in plasma adrenocorticotropic hormone at landing. Plasma and urinary cortisol levels did not change significantly from preflight values. Expression of major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), determined by flow cytometric analysis, revealed no consistent phenotypic changes in relative percent of NK or other lymphoid cells after 10 days of spaceflight.

  1. Cooperative tumour cell membrane targeted phototherapy

    NASA Astrophysics Data System (ADS)

    Kim, Heegon; Lee, Junsung; Oh, Chanhee; Park, Ji-Ho

    2017-06-01

    The targeted delivery of therapeutics using antibodies or nanomaterials has improved the precision and safety of cancer therapy. However, the paucity and heterogeneity of identified molecular targets within tumours have resulted in poor and uneven distribution of targeted agents, thus compromising treatment outcomes. Here, we construct a cooperative targeting system in which synthetic and biological nanocomponents participate together in the tumour cell membrane-selective localization of synthetic receptor-lipid conjugates (SR-lipids) to amplify the subsequent targeting of therapeutics. The SR-lipids are first delivered selectively to tumour cell membranes in the perivascular region using fusogenic liposomes. By hitchhiking with extracellular vesicles secreted by the cells, the SR-lipids are transferred to neighbouring cells and further spread throughout the tumour tissues where the molecular targets are limited. We show that this tumour cell membrane-targeted delivery of SR-lipids leads to uniform distribution and enhanced phototherapeutic efficacy of the targeted photosensitizer.

  2. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy

    PubMed Central

    Chen, Can; Tan, Wee-Kiat; Chi, Zhixia; Xu, Xue-Hu; Wang, Shu

    2016-01-01

    Gamma delta (γδ) T cells and cytokine-induced killer (CIK) cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT) cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs) using Zometa, interferon-gamma (IFN-γ), interleukin 2 (IL-2), anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR), anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer. PMID:27598655

  3. 40 CFR 180.562 - Flucarbazone-sodium; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Flucarbazone-sodium; tolerances for... § 180.562 Flucarbazone-sodium; tolerances for residues. (a) General. Tolerances are established for combined residues of the herbicide flucarbazone-sodium, 4,5-dihydro-3-methoxy-4-methyl-5-oxo-N-[[2...

  4. Cryopreservation has no effect on function of natural killer cells differentiated in vitro from umbilical cord blood CD34(+) cells.

    PubMed

    Domogala, Anna; Madrigal, J Alejandro; Saudemont, Aurore

    2016-06-01

    Natural killer (NK) cells offer the potential for a powerful cellular immunotherapy because they can target malignant cells without being direct effectors of graft-versus-host disease. We have previously shown that high numbers of functional NK cells can be differentiated in vitro from umbilical cord blood (CB) CD34(+) cells. To develop a readily available, off-the-shelf cellular product, it is essential that NK cells differentiated in vitro can be frozen and thawed while maintaining the same phenotype and functions. We evaluated the phenotype and function of fresh and frozen NK cells differentiated in vitro. We also assessed whether the concentration of NK cells at the time of freezing had an impact on cell viability. We found that cell concentration of NK cells at the time of freezing did not have an impact on their viability and on cell recovery post-thaw. Moreover, freezing of differentiated NK cells in vitro did not affect their phenotype, cytotoxicity and degranulation capacity toward K562 cells, cytokine production and proliferation. We are therefore able to generate large numbers of functional NK cells from CB CD34(+) cells that maintain the same phenotype and function post-cryopreservation, which will allow for multiple infusions of a highly cytotoxic NK cell product. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Foxo-dependent Par-4 Upregulation Prevents Long-term Survival of Residual Cells Following PI3K-Akt Inhibition.

    PubMed

    Damrauer, Jeffrey S; Phelps, Stephanie N; Amuchastegui, Katie; Lupo, Ryan; Mabe, Nathaniel W; Walens, Andrea; Kroger, Benjamin R; Alvarez, James V

    2018-04-01

    Tumor recurrence is a leading cause of death and is thought to arise from a population of residual cells that survive treatment. These residual cancer cells can persist, locally or at distant sites, for years or decades. Therefore, understanding the pathways that regulate residual cancer cell survival may suggest opportunities for targeting these cells to prevent recurrence. Previously, it was observed that the proapoptotic protein (PAWR/Par-4) negatively regulates residual cell survival and recurrence in mice and humans. However, the mechanistic underpinnings on how Par-4 expression is regulated are unclear. Here, it is demonstrated that Par-4 is transcriptionally upregulated following treatment with multiple drugs targeting the PI3K-Akt-mTOR signaling pathway, and identify the Forkhead family of transcription factors as mediators of this upregulation. Mechanistically, Foxo3a directly binds to the Par-4 promoter and activates its transcription following inhibition of the PI3K-Akt pathway. This Foxo-dependent Par-4 upregulation limits the long-term survival of residual cells following treatment with therapeutics that target the PI3K-Akt pathway. Taken together, these results indicate that residual breast cancer tumor cell survival and recurrence requires circumventing Foxo-driven Par-4 upregulation and suggest that approaches to enforce Par-4 expression may prevent residual cell survival and recurrence. Mol Cancer Res; 16(4); 599-609. ©2018 AACR . ©2018 American Association for Cancer Research.

  6. Inhibition of hyaluronic acid formation sensitizes chronic myelogenous leukemia to treatment with doxorubicin.

    PubMed

    Uchakina, Olga N; Ban, Hao; Hostetler, Bryan J; McKallip, Robert J

    2016-11-01

    In the current study we examined the ability of 4-methylumbelliferone (4-MU), which can inhibit hyaluronic acid synthesis, to sensitize K562 chronic myelogenous leukemia (CML) cells to doxorubicin therapy. Exposure of K562 cells to doxorubicin led to increased hyaluronic acid synthase (HAS) gene expression and increased levels of cell surface hyaluronic acid. Furthermore, exposure of K562 cells to exogenous HA caused resistance to doxorubicin-induced cell death. The combination of low dose 4-MU and doxorubicin led to increased apoptosis when compared to higher doses of any agent alone. Additionally, treatment with 4-MU led to a significant reduction in doxorubicin-induced increase in HA cell surface expression. Mechanistically, 4-MU treatment led to an increase in p38 activation and PARP cleavage. The role of p38 in 4-MU/doxorubicin-treated K562 cells was confirmed when p38 inhibitors led to protection from 4-MU/doxorubicin-induced apoptosis. Together, results from this study suggest that treatment with 4-MU increases the sensitivity of CML to chemotherapeutics by decreasing their HA-mediated resistance to apoptosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Ki-Hyuk, E-mail: kshin@dentistry.ucla.edu; Dental Research Institute, University of California, Los Angeles, CA 90095; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095

    2011-01-28

    Research highlights: {yields} MicroRNA-181a (miR-181a) was frequently downregulated in oral squamous cell carcinoma (OSCC). {yields} Overexpression of miR-181a suppressed OSCC growth. {yields} K-ras is a novel target of miR-181a. {yields} Decreased miR-181a expression is attributed to its lower promoter activity in OSCC. -- Abstract: MicroRNAs (miRNAs) are epigenetic regulators of gene expression, and their deregulation plays an important role in human cancer, including oral squamous cell carcinoma (OSCC). Recently, we found that miRNA-181a (miR-181a) was upregulated during replicative senescence of normal human oral keratinocytes. Since senescence is considered as a tumor suppressive mechanism, we thus investigated the expression and biologicalmore » role of miR-181a in OSCC. We found that miR-181a was frequently downregulated in OSCC. Ectopic expression of miR-181a suppressed proliferation and anchorage independent growth ability of OSCC. Moreover, miR-181a dramatically reduces the growth of OSCC on three dimensional organotypic raft culture. We also identified K-ras as a novel target of miR-181a. miR-181a decreased K-ras protein level as well as the luciferase activity of reporter vectors containing the 3'-untranslated region of K-ras gene. Finally, we defined a minimal regulatory region of miR-181a and found a positive correlation between its promoter activity and the level of miR-181a expression. In conclusion, miR-181a may function as an OSCC suppressor by targeting on K-ras oncogene. Thus, miR-181a should be considered for therapeutic application for OSCC.« less

  8. MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2.

    PubMed

    Bai, Xiaoxue; Meng, Lin; Sun, Huijie; Li, Zhuo; Zhang, Xiufang; Hua, Shucheng

    2017-01-01

    Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer. The Author(s). Published by S. Karger AG, Basel.

  9. Mpl traffics to the cell surface through conventional and unconventional routes

    PubMed Central

    Cleyrat, Cédric; Darehshouri, Anza; Steinkamp, Mara P.; Vilaine, Mathias; Boassa, Daniela; Ellisman, Mark H.; Hermouet, Sylvie; Wilson, Bridget S.

    2014-01-01

    Myeloproliferative neoplasms (MPNs) are often characterized by JAK2 or calreticulin mutations, indicating aberrant trafficking in pathogenesis. This study focuses on Mpl trafficking and Jak2 association using two model systems: Human Erythroleukemia cells (HEL; JAK2V617F) and K562 myeloid leukemia cells (JAK2WT). Consistent with a putative chaperone role for Jak2, Mpl and Jak2 associate on both intracellular and plasma membranes (shown by proximity ligation assay) and siRNA-mediated knockdown of Jak2 led to Mpl trapping in the ER. Even in Jak2 sufficient cells, Mpl accumulates in punctate structures that partially co-localize with ER-Tracker, the ER exit site marker (ERES) Sec31a, the autophagy marker LC3 and LAMP1. Mpl was fused to miniSOG, a genetically-encoded tag for correlated light and electron microscopy. Results suggest that a fraction of Mpl is taken up into autophagic structures from the ER and routed to autolyososomes. Surface biotinylation shows that both immature and mature Mpl reach the cell surface; in K562 cells Mpl is also released in exosomes. Both forms rapidly internalize upon ligand addition, while recovery is primarily attributed to immature Mpl. Mpl appears to reach the plasma membrane via both conventional ER-Golgi and autolysosome secretory pathways, as well as recycling. PMID:24931576

  10. Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy.

    PubMed

    Zhou, Aiguo; Wei, Yanchun; Wu, Baoyan; Chen, Qun; Xing, Da

    2012-06-04

    Near-infrared (NIR)-to-visible upconversion nanoparticle (UCNP) has shown promising prospects in photodynamic therapy (PDT) as a drug carrier or energy donor. In this work, a photosensitizer pyropheophorbide a (Ppa) and RGD peptide c(RGDyK) comodified chitosan-wrapped NaYF(4):Yb/Er upconversion nanoparticle UCNP-Ppa-RGD was developed for targeted near-infrared photodynamic therapy. The properties of UCNP-Ppa-RGD, such as morphology, stability, optical spectroscopy and singlet oxygen generation efficiency, were investigated. The results show that covalently linked pyropheophorbide a molecule not only is stable but also retains its spectroscopic and functional properties. In vitro studies confirm a stronger targeting specificity of UCNP-Ppa-RGD to integrin α(v)β(3)-positive U87-MG cells compared with that in the corresponding negative group. The photosensitizer-attached nanostructure exhibited low dark toxicity and high phototoxicity against cancer cells upon 980 nm laser irradiation at an appropriate dosage. These results represent the first demonstration of a highly stable and efficient photosensitizer modified upconversion nanostructure for targeted near-infrared photodynamic therapy of cancer cells. The novel UCNP-Ppa-RGD nanoparticle may provide a powerful alternative for near-infrared photodynamic therapy with an improved tumor targeting specificity.

  11. RUNX3 is involved in caspase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines.

    PubMed

    Zhai, Feng-Xian; Liu, Xiang-Fu; Fan, Rui-Fang; Long, Zi-Jie; Fang, Zhi-Gang; Lu, Ying; Zheng, Yong-Jiang; Lin, Dong-Jun

    2012-03-01

    Epigenetic therapy has had a significant impact on the management of haematologic malignancies. The aim of this study was to assess whether 5-aza-CdR and TSA inhibit the growth of leukaemia cells and induce caspase-3-dependent apoptosis by upregulating RUNX3 expression. K562 and Reh cells were treated with 5-aza-CdR, TSA or both compounds. RT-PCR and Western blot analyses were used to examine the expression of RUNX3 at the mRNA and protein levels, respectively. Immunofluorescence microscopy was used to detect the cellular location of RUNX3. Additionally, after K562 cells were transfected with RUNX3, apoptosis and proliferation were studied using Annexin V staining and MTT assays. The expression of RUNX3 in leukaemia cell lines was markedly less than that in the controls. Demethylating drug 5-aza-CdR could induce RUNX3 expression, but the combination of TSA and 5-aza-CdR had a greater effect than did treatment with a single compound. The combination of 5-aza-CdR and TSA induced the translocation of RUNX3 from the cytoplasm into the nucleus. TSA enhanced apoptosis induced by 5-aza-CdR, and Annexin V and Hoechst 33258 staining showed that the combination induced apoptosis but not necrosis. Furthermore, apoptosis was dependent on the caspase-3 pathway. RUNX3 overexpression in K562 cells led to growth inhibition and apoptosis and potentiated the effects of 5-aza-CdR induction. RUNX3 plays an important role in leukaemia cellular functions, and the induction of RUNX3-mediated effects may contribute to the therapeutic value of combination TSA and 5-aza-CdR treatment.

  12. Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova-Hleb, Ekaterina; Zhdanok, Sergei; Rostro, Betty; Simonette, Rebecca; Hafner, Jason; Konopleva, Marina; Andreeff, Michael; Conjusteau, Andre; Oraevsky, Alexander

    2008-02-01

    In an effort of developing clinical LANTCET (laser-activated nano-thermolysis as cell elimination technology) we achieved selective destruction of individual tumor cells through laser generation of vapor microbubbles around clusters of light absorbing gold nanorods (GNR) selectively formed in target tumor cells. Among all gold nanoparticles, nanorods offer the highest optical absorption in the near-infrared. We applied covalent conjugates of gold nanorods with targeting vectors such as monoclonal antibodies CD33 (specific for Acute Myeloid Leukemia), while GNR conjugates with polyethylene-glycol (PEG) were used as nonspecific targeting control. GNR clusters were formed inside the tumor cells at 37 °C due to endocytosis of large concentration of nanorods accumulated on the surface of tumor cells targeted at 4 °C. Formation of GNR clusters significantly reduces the threshold of tumor cell damage making LANTCET safe for normal cells. Appearance of GNR clusters was verified directly with optical resonance scattering microscopy. LANTCET was performed in vitro with living cells of (1) model myeloid K562 cells (CD33 positive), (2) primary human bone marrow CD33-positive blast cells from patients diagnosed with acute myeloid leukemia. Laser-induced microbubbles were generated and detected with a photothermal microscope equipped with a tunable Ti-Sa pulsed laser. GNT cluster formation caused a 100-fold decrease in the threshold optical fluence for laser microbubble generation in tumor cells compared with that in normal cells under the same targeting and irradiation conditions. Combining imaging based on resonance optical scattering with photothermal imaging of microbubbles, we developed a method for detection, image-guided treatment and monitoring of LANTCET. Pilot experiments were performed in flow mode bringing LANTCET closer to reality of clinical procedure of purging tumor cells from bone marrow grafts.

  13. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors.

    PubMed

    Andersen, Jannik N; Sathyanarayanan, Sriram; Di Bacco, Alessandra; Chi, An; Zhang, Theresa; Chen, Albert H; Dolinski, Brian; Kraus, Manfred; Roberts, Brian; Arthur, William; Klinghoffer, Rich A; Gargano, Diana; Li, Lixia; Feldman, Igor; Lynch, Bethany; Rush, John; Hendrickson, Ronald C; Blume-Jensen, Peter; Paweletz, Cloud P

    2010-08-04

    Although we have made great progress in understanding the complex genetic alterations that underlie human cancer, it has proven difficult to identify which molecularly targeted therapeutics will benefit which patients. Drug-specific modulation of oncogenic signaling pathways in specific patient subpopulations can predict responsiveness to targeted therapy. Here, we report a pathway-based phosphoprofiling approach to identify and quantify clinically relevant, drug-specific biomarkers for phosphatidylinositol 3-kinase (PI3K) pathway inhibitors that target AKT, phosphoinositide-dependent kinase 1 (PDK1), and PI3K-mammalian target of rapamycin (mTOR). We quantified 375 nonredundant PI3K pathway-relevant phosphopeptides, all containing AKT, PDK1, or mitogen-activated protein kinase substrate recognition motifs. Of these phosphopeptides, 71 were drug-regulated, 11 of them by all three inhibitors. Drug-modulated phosphoproteins were enriched for involvement in cytoskeletal reorganization (filamin, stathmin, dynamin, PAK4, and PTPN14), vesicle transport (LARP1, VPS13D, and SLC20A1), and protein translation (S6RP and PRAS40). We then generated phosphospecific antibodies against selected, drug-regulated phosphorylation sites that would be suitable as biomarker tools for PI3K pathway inhibitors. As proof of concept, we show clinical translation feasibility for an antibody against phospho-PRAS40(Thr246). Evaluation of binding of this antibody in human cancer cell lines, a PTEN (phosphatase and tensin homolog deleted from chromosome 10)-deficient mouse prostate tumor model, and triple-negative breast tumor tissues showed that phospho-PRAS40(Thr246) positively correlates with PI3K pathway activation and predicts AKT inhibitor sensitivity. In contrast to phosphorylation of AKT(Thr308), the phospho-PRAS40(Thr246) epitope is highly stable in tissue samples and thus is ideal for immunohistochemistry. In summary, our study illustrates a rational approach for discovery of drug

  14. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  15. Cell module and fuel conditioner development

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described.

  16. Inhibition of the K+ channel K(Ca)3.1 reduces TGF-β1-induced premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells.

    PubMed

    Fu, Rong-Guo; Zhang, Tao; Wang, Li; Du, Yan; Jia, Li-Ning; Hou, Jing-Jing; Yao, Gang-Lian; Liu, Xiao-Dan; Zhang, Lei; Chen, Ling; Gui, Bao-Song; Xue, Rong-Liang

    2014-01-01

    K(Ca)3.1 channel participates in many important cellular functions. This study planned to investigate the potential involvement of K(Ca)3.1 channel in premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells. Rat mesangial cells were cultured together with TGF-β1 (2 ng/ml) and TGF-β1 (2 ng/ml) + TRAM-34 (16 nM) separately for specified times from 0 min to 60 min. The cells without treatment served as controls. The location of K(Ca)3.1 channels in mesangial cells was determined with Confocal laser microscope, the cell cycle of mesangial cells was assessed with flow cytometry, the protein and mRNA expression of K(Ca)3.1, α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) were detected with Western blot and RT-PCR. One-way analysis of variance (ANOVA) and Student-Newman-Keuls-q test (SNK-q) were used to do statistical analysis. Statistical significance was considered at P<0.05. Kca3.1 channels were located in the cell membranes and/or in the cytoplasm of mesangial cells. The percentage of cells in G0-G1 phase and the expression of K(ca)3.1, α-SMA and FSP-1 were elevated under the induction of TGF-β1 when compared to the control and decreased under the induction of TGF-β1+TRAM-34 when compared to the TGF-β1 induced (P<0.05 or P<0.01). Targeted disruption of K(Ca)3.1 inhibits TGF-β1-induced premature aging, myofibroblast-like phenotype transdifferentiation and proliferation of mesangial cells.

  17. Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification.

    PubMed

    Dongre, Arundhati; Clements, Debbie; Fisher, Andrew J; Johnson, Simon R

    2017-08-01

    Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001). Immunohistochemistry confirmed cathepsin K protein was expressed in LAM but not control lungs. Cathepsin K gene expression and protein and protease activity were detected in LAM-associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immunoreactivity predominantly co-localized with LAM-associated fibroblasts. In vitro, fibroblast extracellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced at pH 7 and 6. 621-101 cells reduced extracellular pH with acidification dependent on 621-101 mechanistic target of rapamycin activity and net hydrogen ion exporters, particularly sodium bicarbonate co-transporters and carbonic anhydrases, which were also expressed in LAM lung tissue. In LAM cell-fibroblast co-cultures, acidification paralleled cathepsin K activity, and both were reduced by sodium bicarbonate co-transporter (P ≤ 0.0001) and carbonic anhydrase inhibitors (P = 0.0021). Our findings suggest that cathepsin K activity is dependent on LAM cell-fibroblast interactions, and inhibitors of extracellular acidification may be potential therapies for LAM. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. 100-K Target Analyte List Development for Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovink, R.

    2012-09-18

    This report documents the process used to identify source area target analytes in support of the 100-K Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

  19. miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2.

    PubMed

    Gao, Ming; Liu, Yun; Chen, Yue; Yin, Chunyang; Chen, Jane-Jane; Liu, Sijin

    2016-03-01

    Nuclear factor (erythroid-derived 2) like 2 (Nrf2) is a key regulator in protecting cells against stress by targeting many anti-stress response genes. Recent evidence also reveals that Nrf2 functions partially by targeting mircroRNAs (miRNAs). However, the understanding of Nrf2-mediated cytoprotection through miRNA-dependent mechanisms is largely unknown. In the current study, we identified a direct Nrf2 targeting miRNA, miR-214, and demonstrated a protective role of miR-214 in erythroid cells against oxidative stresses generated by radiation, excess iron and arsenic (As) exposure. miR-214 expression was transcriptionally repressed by Nrf2 through a canonical antioxidant response element (ARE) within its promoter region, and this repression is ROS-dependence. The suppression of miR-214 by Nrf2 could antagonize oxidative stress-induced cell death in erythroid cells by two ways. First, miR-214 directly targeted ATF4, a crucial transcriptional factor involved in anti-stress responses, down regulation of miR-214 releases the repression of ATF4 translation and leads to increased ATF4 protein content. Second, miR-214 was able to prevent cell death by targeting EZH2, the catalytic core component of PRC2 complex that is responsible for tri-methylation reaction at lysine 27 (K27) of histone 3 (H3) (H3K27me3), by which As-induced miR-214 reduction resulted in an increased global H3K27me3 level and a compromised overexpression of a pro-apoptotic gene Bim. These two pathways downstream of miR-214 synergistically cooperated to antagonize erythroid cell death upon oxidative stress. Our combined data revealed a protective role of miR-214 signaling in erythroid cells against oxidative stress, and also shed new light on Nrf2-mediated cytoprotective machinery. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Robust Inference of Cell-to-Cell Expression Variations from Single- and K-Cell Profiling

    PubMed Central

    Narayanan, Manikandan; Martins, Andrew J.; Tsang, John S.

    2016-01-01

    Quantifying heterogeneity in gene expression among single cells can reveal information inaccessible to cell-population averaged measurements. However, the expression level of many genes in single cells fall below the detection limit of even the most sensitive technologies currently available. One proposed approach to overcome this challenge is to measure random pools of k cells (e.g., 10) to increase sensitivity, followed by computational “deconvolution” of cellular heterogeneity parameters (CHPs), such as the biological variance of single-cell expression levels. Existing approaches infer CHPs using either single-cell or k-cell data alone, and typically within a single population of cells. However, integrating both single- and k-cell data may reap additional benefits, and quantifying differences in CHPs across cell populations or conditions could reveal novel biological information. Here we present a Bayesian approach that can utilize single-cell, k-cell, or both simultaneously to infer CHPs within a single condition or their differences across two conditions. Using simulated as well as experimentally generated single- and k-cell data, we found situations where each data type would offer advantages, but using both together can improve precision and better reconcile CHP information contained in single- and k-cell data. We illustrate the utility of our approach by applying it to jointly generated single- and k-cell data to reveal CHP differences in several key inflammatory genes between resting and inflammatory cytokine-activated human macrophages, delineating differences in the distribution of ‘ON’ versus ‘OFF’ cells and in continuous variation of expression level among cells. Our approach thus offers a practical and robust framework to assess and compare cellular heterogeneity within and across biological conditions using modern multiplexed technologies. PMID:27438699

  1. Photothermal and photoacoustic processes of laser activated nano-thermolysis of cells

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Mitskevich, Pavel; Smolnikova, Victoria; Potapnev, Michail; Konopleva, Marina; Andreeff, Michael; Oraevsky, Alexander

    2007-02-01

    Laser Activated Nano-Thermolysis was recently proposed for selective damage of individual target (cancer) cells by pulsed laser induced microbubbles around superheated clusters of optically absorbing nanoparticles (NP). One of the clinical applications of this technology is the elimination of residual tumor cells from human blood and bone marrow. Clinical standards for the safety and efficacy of such procedure require the development and verification of highly selective and controllable mechanisms of cell killing. Our previous experiments showed that laser-induced microbubble is the main damaging factor in the case cell irradiation by short laser pulses above the threshold. Our current aim was to study the cell damage mechanisms and analyze selectivity and efficacy of cell damage as a function of NP parameters, NP-cell interaction conditions, and conditions of bubble generation around NP and NP clusters in cells. Generation of laser-induced bubbles around gold NP with diameters 10-250 nm was studied in Acute Myeloblast Leukemia (AML) cultures, normal stem and model K562 human cells. Short laser pulses (10 ns, 532 nm) were applied to those cells in vitro and the processes in cells were investigated with photothermal, fluorescent and atomic force microscopies and also with fluorescence flow cytometry. We have found that the best selectivity of cell damage is achieved by (1) forming large clusters of optically absorbing NP in target cells and (2) irradiating the cells with single laser pulses with the lowest fluence that can generate microbubble only around large clusters but not around single NP. Laser microbubbles with the lifetime from 20 ns to 2000 ns generated in individual cells caused damage and lysis of the cellular membrane and consequently cell death. Laser microbubbles did not damage normal cells around the damaged target (tumor) cell. Laser irradiation with equal fluence did not cause any damage of cells without accumulated NP clusters.

  2. Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells.

    PubMed

    Starost, Laura Julia; Karassek, Sascha; Sano, Yasuteru; Kanda, Takashi; Kim, Kwang Sik; Dobrindt, Ulrich; Rüter, Christian; Schmidt, Marcus Alexander

    2016-10-13

    Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis , permeabilizes the blood-brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218's effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB.

  3. Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells

    PubMed Central

    Starost, Laura Julia; Karassek, Sascha; Sano, Yasuteru; Kanda, Takashi; Kim, Kwang Sik; Dobrindt, Ulrich; Rüter, Christian; Schmidt, Marcus Alexander

    2016-01-01

    Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis, permeabilizes the blood–brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218’s effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB. PMID:27754355

  4. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    PubMed

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  5. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2.

    PubMed

    Shetty, Aditya; Dasari, Subramanyam; Banerjee, Souresh; Gheewala, Taher; Zheng, Guoxing; Chen, Aoshuang; Kajdacsy-Balla, Andre; Bosland, Maarten C; Munirathinam, Gnanasekar

    2016-11-01

    Hepatoma-derived growth factor (HDGF) is a heparin-binding growth factor, which has previously been shown to be expressed in a variety of cancers. HDGF overexpression has also previously been correlated with a poor prognosis in several cancers. The significance of HDGF in prostate cancer, however, has not been investigated. Here, we show that HDGF is overexpressed in both androgen-sensitive LNCaP cells and androgen-insensitive DU145, 22RV1, and PC-3 cells. Forced overexpression enhanced cell viability of RWPE-1 cells, whereas HDGF knockdown reduced cell proliferation in human prostate cancer cells. We also show that HDGF may serve as a survival-related protein as ectopic overexpression of HDGF in RWPE cells up-regulated the expression of antiapoptosis proteins cyclin E and BCL-2, whereas simultaneously down-regulating proapoptotic protein BAX. Western blot analysis also showed that HDGF overexpression modulated the activity of phospho-AKT as well as NF-kB, and these results correlated with in vitro migration and invasion assays. We next assessed the therapeutic potential of HDGF inhibition with a HDGF monoclonal antibody and vitamin k 2 , showing reduced cell proliferation as well as inhibition of NF-kB expression in HDGF overexpressed RWPE cells treated with a HDGF monoclonal antibody and vitamin K 2 . Collectively, our results suggest that HDGF is a relevant protein in prostate oncogenesis and may serve as a potential therapeutic target in prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39.

    PubMed

    Kong, Dexin; Dan, Shingo; Yamazaki, Kanami; Yamori, Takao

    2010-04-01

    As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in various diseases particularly cancer, considerable competition occurs in development of PI3K inhibitors. Consequently, novel PI3K inhibitors such as ZSTK474, GDC-0941 and NVP-BEZ235 have been developed. Even though all these inhibitors were reported to inhibit class I PI3K but not dozens of protein kinases, whether they have different molecular targets remained unknown. To investigate such molecular target specificity, we have determined the inhibitory effects of these novel inhibitors together with classical PI3K inhibitor LY294002 on PI3K superfamily (including classes I, II, and III PI3Ks, PI4K and PI3K-related kinases) by using several novel non-radioactive biochemical assays. As a result, ZSTK474 and GDC-0941 indicated highly similar inhibition profiles for PI3K superfamily, with class I PI3K specificity much higher than NVP-BEZ235 and LY294002. We further investigated their growth inhibition effects on JFCR39, a human cancer cell line panel which we established for molecular target identification, and analysed their cell growth inhibition profiles (fingerprints) by using COMPARE analysis programme. Interestingly, we found ZSTK474 exhibited a highly similar fingerprint with GDC-0941 (r=0.863), more similar than with that of either NVP-BEZ235 or LY294002, suggesting that ZSTK474 shares more in molecular targets with GDC-0941 than with either of the other two PI3K inhibitors, consistent with the biochemical assay result. The biological implication of the difference in molecular target specificity of these PI3K inhibitors is under investigation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Effects of Vitamin K3 and K5 on Daunorubicin-resistant Human T Lymphoblastoid Leukemia Cells.

    PubMed

    Nakaoka, Eri; Tanaka, Sachiko; Onda, Kenji; Sugiyama, Kentaro; Hirano, Toshihiko

    2015-11-01

    Anticancer efficacy of vitamin K derivatives on multidrug-resistant cancer cells has been scarcely investigated. The effects of vitamins K3 and K5 on proliferation of human leukemia MOLT-4 cells and on daunorubicin-resistant MOLT-4/DNR cells were estimated by a WST assay. Apoptotic cells were detected by Annexin V and propidium iodide staining, followed by flow cytometry. Vitamins K3 and K5 significantly inhibited proliferation of leukemic cells at 10 and 100 μM (p<0.05), and these effects were almost equally observed in both MOLT-4 and MOLT/DNR drug-resistant cells. Vitamin K3 induced cell apoptosis at 10 and 100 μM in both MOLT-4 and MOLT-4/DNR cells (p<0.05). Vitamin K5 also increased apoptotic cells, while rather inducing necrotic cell death. Vitamins K3 and K5 suppress MOLT-4 and MOLT-4/DNR cell-proliferation partially through induction of apoptosis, and these vitamin derivatives can overcome drug resistance due to P-glycoprotein expression. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor.

    PubMed

    Caruso, Hillary G; Torikai, Hiroki; Zhang, Ling; Maiti, Sourindra; Dai, Jianliang; Do, Kim-Anh; Singh, Harjeet; Huls, Helen; Lee, Dean A; Champlin, Richard E; Heimberger, Amy B; Cooper, Laurence J N

    2016-06-01

    Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.

  9. Inhibition of class IA PI3K enzymes in non-small cell lung cancer cells uncovers functional compensation among isoforms.

    PubMed

    Stamatkin, Christopher; Ratermann, Kelley L; Overley, Colleen W; Black, Esther P

    2015-01-01

    Deregulation of the phosphatidylinositol 3-kinase (PI3K) pathway is central to many human malignancies while normal cell proliferation requires pathway functionality. Although inhibitors of the PI3K pathway are in clinical trials or approved for therapy, an understanding of the functional activities of pathway members in specific malignancies is needed. In lung cancers, the PI3K pathway is often aberrantly activated by mutation of genes encoding EGFR, KRAS, and PIK3CA proteins. We sought to understand whether class IA PI3K enzymes represent rational therapeutic targets in cells of non-squamous lung cancers by exploring pharmacological and genetic inhibitors of PI3K enzymes in a non-small cell lung cancer (NSCLC) cell line system. We found that class IA PI3K enzymes were expressed in all cell lines tested, but treatment of NSCLC lines with isoform-selective inhibitors (A66, TGX-221, CAL-101 and IC488743) had little effect on cell proliferation or prolonged inhibition of AKT activity. Inhibitory pharmacokinetic and pharmacodynamic responses were observed using these agents at non-isoform selective concentrations and with the pan-class I (ZSTK474) agent. Response to pharmacological inhibition suggested that PI3K isoforms may functionally compensate for one another thus limiting efficacy of single agent treatment. However, combination of ZSTK474 and an EGFR inhibitor (erlotinib) in NSCLC resistant to each single agent reduced cellular proliferation. These studies uncovered unanticipated cellular responses to PI3K isoform inhibition in NSCLC that does not correlate with PI3K mutations, suggesting that patients bearing tumors with wildtype EGFR and KRAS are unlikely to benefit from inhibitors of single isoforms but may respond to pan-isoform inhibition.

  10. CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia.

    PubMed

    Russo, Maria; Milito, Alfonsina; Spagnuolo, Carmela; Carbone, Virginia; Rosén, Anders; Minasi, Paola; Lauria, Fabio; Russo, Gian Luigi

    2017-06-27

    Despite the encouraging results of the innovative therapeutic treatments, complete remission is uncommon in patients affected by chronic lymphocytic leukaemia, which remains an essentially incurable disease. Recently, clinical trials based on BH3-mimetic drugs showed positive outcomes in subjects with poor prognostic features. However, resistance to treatments occurs in a significant number of patients. We previously reported that the multi-kinase inhibitor quercetin, a natural flavonol, restores sensitivity to ABT-737, a BH3-mimetic compound, in both leukemic cell lines and B-cells isolated from patients. To identify the molecular target of quercetin, we employed a new cell line, HG3, obtained by immortalization of B-cells from a chronic lymphocytic leukaemia patient at the later stage of disease. We confirmed that quercetin in association with ABT-737 synergistically enhances apoptosis in HG3 (combination index < 1 for all fractions affected). We also reported that the cellular uptake of quercetin is extremely rapid, with an intracellular concentration of about 38.5 ng/106 cells, after treatment with 25 μM for 5 min. We demonstrated that the activity of protein kinase CK2, which positively triggers PI3K/Akt pathway by inactivating PTEN phosphatase, is inhibited by quercetin immediately after its addition to HG3 cells (0-2 min). PI3K activity was also inhibited by quercetin within 60 min from the treatment. The combined inhibition of CK2 and PI3K kinase activities by quercetin restored ABT-737 sensitivity and increased lethality in human leukemia cells.

  11. CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia

    PubMed Central

    Russo, Maria; Milito, Alfonsina; Spagnuolo, Carmela; Carbone, Virginia; Rosén, Anders; Minasi, Paola; Lauria, Fabio; Russo, Gian Luigi

    2017-01-01

    Despite the encouraging results of the innovative therapeutic treatments, complete remission is uncommon in patients affected by chronic lymphocytic leukaemia, which remains an essentially incurable disease. Recently, clinical trials based on BH3-mimetic drugs showed positive outcomes in subjects with poor prognostic features. However, resistance to treatments occurs in a significant number of patients. We previously reported that the multi-kinase inhibitor quercetin, a natural flavonol, restores sensitivity to ABT-737, a BH3-mimetic compound, in both leukemic cell lines and B-cells isolated from patients. To identify the molecular target of quercetin, we employed a new cell line, HG3, obtained by immortalization of B-cells from a chronic lymphocytic leukaemia patient at the later stage of disease. We confirmed that quercetin in association with ABT-737 synergistically enhances apoptosis in HG3 (combination index < 1 for all fractions affected). We also reported that the cellular uptake of quercetin is extremely rapid, with an intracellular concentration of about 38.5 ng/106 cells, after treatment with 25 μM for 5 min. We demonstrated that the activity of protein kinase CK2, which positively triggers PI3K/Akt pathway by inactivating PTEN phosphatase, is inhibited by quercetin immediately after its addition to HG3 cells (0–2 min). PI3K activity was also inhibited by quercetin within 60 min from the treatment. The combined inhibition of CK2 and PI3K kinase activities by quercetin restored ABT-737 sensitivity and increased lethality in human leukemia cells. PMID:28489572

  12. Antibody targeting of HER2/HER3 signaling overcomes heregulin-induced resistance to PI3K inhibition in prostate cancer.

    PubMed

    Poovassery, Jayakumar S; Kang, Jeffrey C; Kim, Dongyoung; Ober, Raimund J; Ward, E Sally

    2015-07-15

    Dysregulated expression and/or mutations of the various components of the phosphoinositide 3-kinase (PI3K)/Akt pathway occur with high frequency in prostate cancer and are associated with the development and progression of castration resistant tumors. However, small molecule kinase inhibitors that target this signaling pathway have limited efficacy in inhibiting tumor growth, primarily due to compensatory survival signals through receptor tyrosine kinases (RTKs). Although members of the epidermal growth factor receptor (EGFR), or HER, family of RTKs are strongly implicated in the development and progression of prostate cancer, targeting individual members of this family such as EGFR or HER2 has resulted in limited success in clinical trials. Multiple studies indicate a critical role for HER3 in the development of resistance against both HER-targeted therapies and PI3K/Akt pathway inhibitors. In this study, we found that the growth inhibitory effect of GDC-0941, a class I PI3K inhibitor, is markedly reduced in the presence of heregulin. Interestingly, this effect is more pronounced in cells lacking phosphatase and tensin homolog function. Heregulin-mediated resistance to GDC-0941 is associated with reactivation of Akt downstream of HER3 phosphorylation. Importantly, combined blockade of HER2 and HER3 signaling by an anti-HER2/HER3 bispecific antibody or a mixture of anti-HER2 and anti-HER3 antibodies restores sensitivity to GDC-0941 in heregulin-treated androgen-dependent and -independent prostate cancer cells. These studies indicate that the combination of PI3K inhibitors with HER2/HER3 targeting antibodies may constitute a promising therapeutic strategy for prostate cancer. © 2014 UICC.

  13. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    PubMed

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  14. Genome Editing of Erythroid Cell Culture Model Systems.

    PubMed

    Yik, Jinfen J; Crossley, Merlin; Quinlan, Kate G R

    2018-01-01

    Genome editing to introduce specific mutations or to knock out genes in model cell systems has become an efficient platform for research in the fields of molecular biology, genetics, and cell biology. With recent rapid improvements in genome editing techniques, bench-top manipulation of the genome in cell culture has become progressively easier. The application of this knowledge to erythroid cell culture systems now allows the rapid analysis of the downstream effects of virtually any engineered gene disruption or modification in cell systems. Here, we describe a CRISPR/Cas9-based approach to making genomic modifications in erythroid lineage cells which we have successfully used in both murine (MEL) and human (K562) erythroleukaemia immortalized cell lines.

  15. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Volatile Organic Compound (VOC) Emissions from the Polymer Manufacturing Industry § 60.562-2 Standards... feature of the pump whereby polymer fluid used to provide lubrication and/or cooling of the pump shaft...

  16. Combining targeted drugs to overcome and prevent resistance of solid cancers with some stem-like cell features

    PubMed Central

    Koivunen, Peppi; Koivunen, Jussi P.

    2014-01-01

    Treatment resistance significantly inhibits the efficiency of targeted cancer therapies in drug-sensitive genotypes. In the current work, we studied mechanisms for rapidly occurring, adaptive resistance in targeted therapy-sensitive lung, breast, and melanoma cancer cell lines. The results show that in ALK translocated lung cancer lines H3122 and H2228, cells with cancer stem-like cell features characterized by high expression of cancer stem cell markers and/or in vivo tumorigenesis can mediate adaptive resistance to oncogene ablative therapy. When pharmacological ablation of ALK oncogene was accompanied with PI3K inhibitor or salinomycin therapy, cancer stem-like cell features were reversed which was accompanied with decreased colony formation. Furthermore, co-targeting was able to block the formation of acquired resistance in H3122 line. The results suggest that cells with cancer stem-like cell features can mediate adaptive resistance to targeted therapies. Since these cells follow the stochastic model, concurrent therapy with an oncogene ablating agent and a stem-like cell-targeting drug is needed for maximal therapeutic efficiency. PMID:25238228

  17. Gamma-Retrovirus Integration Marks Cell Type-Specific Cancer Genes: A Novel Profiling Tool in Cancer Genomics.

    PubMed

    Gilroy, Kathryn L; Terry, Anne; Naseer, Asif; de Ridder, Jeroen; Allahyar, Amin; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S; Cameron, Ewan R; Kilbey, Anna; Neil, James C

    2016-01-01

    Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types.

  18. Targeting B Cells and Plasma Cells in Autoimmune Diseases

    PubMed Central

    Hofmann, Katharina; Clauder, Ann-Katrin; Manz, Rudolf Armin

    2018-01-01

    Success with B cell depletion using rituximab has proven the concept that B lineage cells represent a valid target for the treatment of autoimmune diseases, and has promoted the development of other B cell targeting agents. Present data confirm that B cell depletion is beneficial in various autoimmune disorders and also show that it can worsen the disease course in some patients. These findings suggest that B lineage cells not only produce pathogenic autoantibodies, but also significantly contribute to the regulation of inflammation. In this review, we will discuss the multiple pro- and anti-inflammatory roles of B lineage cells play in autoimmune diseases, in the context of recent findings using B lineage targeting therapies. PMID:29740441

  19. 64Cu-p-NH2-Bn-DOTA-hu14.18K322A, a PET radiotracer targeting neuroblastoma and melanoma.

    PubMed

    Vavere, Amy L; Butch, Elizabeth R; Dearling, Jason L J; Packard, Alan B; Navid, Fariba; Shulkin, Barry L; Barfield, Raymond C; Snyder, Scott E

    2012-11-01

    The hu14.18K322A variant of the GD2-targeting antibody hu14.18 has been shown to elicit a level of antibody-dependent cell-mediated cytotoxicity toward human neuroblastoma cells similar to that of the parent antibody. However, hu14.18K322A exhibited a decreased complement activation and associated pain, the dose-limiting toxicity in neuroblastoma immunotherapy. PET with a radiolabeled analog of the same antibody used in treatment will provide insight into the ability of hu14.18K322A to reach its target, as well as nontarget uptake that may cause side effects. Such antibody radiotracers might also provide a method for measuring GD2 expression in tumors, thus enabling the prediction of response to anti-GD2 therapy for individual patients. The conjugation of hu14.18K322A with p-NH(2)-Bn-DOTA was accomplished using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide with subsequent (64)Cu radiolabeling at 37°C for 30 min. Immunoreactivity of the conjugate was assessed by a dose-escalation blocking experiment measuring binding to purified GD2 versus GD1b as a negative control. Cell uptake and biodistribution studies in M21 (GD2-positive) and PC-3 (GD2-negative) tumor models were performed, as was small-animal PET/CT of M21 and PC-3 tumor-bearing mice. The labeling of (64)Cu-p-NH(2)-Bn-DOTA-hu14.18K322A was achieved at more than 95% radiochemical purity and a specific activity of 127-370 MBq/mg (3.4-10 mCi/mg) after chromatographic purification. Preliminary in vitro data demonstrated a greater than 6-fold selectivity of binding to GD2 versus GD1b and dose-dependent inhibition of binding by unmodified hu14.8K322A. In vivo data, including small-animal PET/CT, showed significant GD2-positive tumor-targeting ability, with a persistent 2-fold-higher uptake of radiotracer than in GD2-negative tumors. (64)Cu-p-NH(2)-Bn-DOTA-hu14.18K322A represents a novel PET radiotracer to facilitate clinical investigations of anti-GD2 immunotherapies and to complement other imaging modalities in

  20. Development of highly sensitive cell-based AKT kinase ELISA for monitoring PI3K beta activity and compound efficacy.

    PubMed

    Yanamandra, Mahesh; Kole, Labanyamoy; Giri, Archana; Mitra, Sayan

    2017-01-01

    Phosphatidylinositol-3 kinase (PI3K) pathway regulates multiple cellular functions involving cell survival, growth, motility proliferation, apoptosis, and adhesion. These are deregulated in various diseases such as cancer, atherosclerosis, and inflammation. PI3Ks phosphorylate phosphatidylinositol 4,5-biphosphate (PIP2) yielding phosphatidylinositol 3, 4, 5 triphosphate (PIP3) which in turn activate AKT kinase (serine/threonine kinase), the central enzyme in regulation of metabolic functions. Due to their implications in disease pathophysiology, PI3K/AKT inhibitors became attractive targets for pharmaceutical industries. In order to assess the functional response generated by PI3K inhibitors, an appropriate cell-based screening system is essential in any screening cascade. Here we report the development of highly sensitive in-vitro cell-based kinase ELISA which quantifies the phosphorylated AKT kinase (serine 473) and total AKT kinase directly within the cells upon compound treatment. PI3Kβ overexpressing NIH3T3 cells stimulated by lysophosphatidic acid was used for PI3K/Akt pathway activation. Assay performance reliability and robustness were determined by percentage coefficient of variation (%CV) and Z factor which demonstrated an excellent agreement with assay guidelines. This 96-well plate medium throughput assay methodology was used to screen novel molecules and proved a commendable tool to study the mechanism of action property and target engagement of novel PI3K inhibitors in drug discovery.

  1. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line.

    PubMed

    Zhou, Zhongping; Tang, Miaomiao; Liu, Yi; Zhang, Zhuyi; Lu, Rongzhu; Lu, Jian

    2017-04-01

    Apigenin (APG), a widely distributed flavonoid in vegetables and fruits, with low toxicity, and a nonmutagenic characteristic, has been reported to have many targets. Evidence indicates that APG can inhibit the proliferation, migration, invasion, and metastasis of some tumor cells, but the mechanism, specifically in lung cancer, is unclear. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway regulates a diverse set of cellular functions relevant to the growth and progression of lung cancer, including proliferation, survival, migration, and invasion. Our results showed that APG exerted anti-proliferation, anti-migration, and anti-invasion effects in A549 human lung cancer cells by targeting the PI3K/Akt signaling pathway. 3-(4, 5-dimethylthiszol-2-yl)-2, 5-diphenytetrazolium bromide assay and colony formation assay showed that APG suppressed cell proliferation in a dose-dependent and time-dependent manner. Cell motility and invasiveness were assayed using a wound healing and Transwell assay, suggesting that APG inhibited the migration and invasion of A549 cells. Western blot analyses were carried out to examine the Akt signaling pathways. The results confirmed that APG decreased Akt expression and its activation. Then, cells were transfected with Akt-active and Akt-DN plasmids separately. The migration and invasion of A549 cells were significantly changed, constitutively activating Akt or knocking down Akt, indicating that APG can suppress the migration and invasion of lung cancer cells by modulating the PI3K/Akt signaling pathway. Furthermore, the results indicated that APG not only suppressed phosphorylation of Akt, thereby preventing its activation, but also inhibited its downstream gene expression of matrix metalloproteinases-9, glycogen synthase kinase-3β, and HEF1. Together, APG is a new inhibitor of Akt in lung cancer and a potential natural compound for cancer chemoprevention.

  2. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells.

    PubMed

    Mizutani, Naoki; Omori, Yukari; Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi; Suzuki, Motoshi; Kyogashima, Mamoru; Nakamura, Mitsuhiro; Tamiya-Koizumi, Keiko; Nozawa, Yoshinori; Murate, Takashi

    2016-02-19

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5'-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Reengineering cyt b562 for hydrogen production: A facile route to artificial hydrogenases.

    PubMed

    Sommer, Dayn Joseph; Vaughn, Michael David; Clark, Brett Colby; Tomlin, John; Roy, Anindya; Ghirlanda, Giovanna

    2016-05-01

    Bioinspired, protein-based molecular catalysts utilizing base metals at the active are emerging as a promising avenue to sustainable hydrogen production. The protein matrix modulates the intrinsic reactivity of organometallic active sites by tuning second-sphere and long-range interactions. Here, we show that swapping Co-Protoporphyrin IX for Fe-Protoporphyrin IX in cytochrome b562 results in an efficient catalyst for photoinduced proton reduction to molecular hydrogen. Further, the activity of wild type Co-cyt b562 can be modulated by a factor of 2.5 by exchanging the coordinating methionine with alanine or aspartic acid. The observed turnover numbers (TON) range between 125 and 305, and correlate well with the redox potential of the Co-cyt b562 mutants. The photosensitized system catalyzes proton reduction with high efficiency even under an aerobic atmosphere, implicating its use for biotechnological applications. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isotype-selective inhibition

    PubMed Central

    Torbett, Neil E; Luna, Antonio; Knight, Zachary A.; Houk, Andrew; Moasser, Mark; Weiss, William; Shokat, Kevan M.; Stokoe, David

    2011-01-01

    Synopsis The Phosphoinositide-3-kinase (PI3K) pathway regulates cell proliferation, survival and migration and is consequently of great interest for targeted cancer therapy. Using a panel of small molecule PI3K isoform-selective inhibitors in a diverse set of breast cancer cell lines, we demonstrate that the biochemical and biological responses were highly variable and dependent on the genetic alterations present. p110α inhibitors were generally effective in inhibiting the phosphorylation of Akt and S6, two downstream components of PI3K signaling, in most cell lines examined. In contrast, 110β selective inhibitors only reduced Akt phosphorylation in PTEN mutant cell lines, and was associated with a lesser decrease in S6 phosphorylation. PI3K inhibitors reduced cell viability by causing a cell cycle arrest in the G1 phase of the cell cycle, with multi-targeted inhibitors causing the most potent effects. Cells expressing mutant Ras were resistant to the cell cycle effects of PI3K inhibition, which could be reversed using inhibitors of Ras signaling pathways. Taken together our data indicates that these compounds, alone or in suitable combinations, may be useful as breast cancer therapeutics, when used in appropriate genetic contexts. PMID:18498248

  5. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalle, Arunasree M., E-mail: arunasreemk@ilsresearch.org; Mallika, A.; Badiger, Jayasree

    2010-10-08

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistrymore » approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.« less

  6. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    PubMed

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  7. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells.

    PubMed

    Liu, Jie; Malavya, Swati; Wang, Xueqian; Saavedra, Joseph E; Keefer, Larry K; Tokar, Erik; Qu, Wei; Waalkes, Michael P; Shami, Paul J

    2009-07-01

    The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.

  8. Molecular recognition of glyconanoparticles by RCA and E. coli K88 - designing transports for targeted therapy.

    PubMed

    Gallegos-Tabanico, Amed; Sarabia-Sainz, Jose A; Sarabia-Sainz, H Manuel; Carrillo Torres, Roberto; Guzman-Partida, Ana M; Monfort, Gabriela Ramos-Clamont; Silva-Campa, Erika; Burgara-Estrella, Alexel J; Angulo-Molina, Aracely; Acosta-Elias, Mónica; Pedroza-Montero, Martín; Vazquez-Moreno, Luz

    2017-01-01

    The targeted drug delivery has been studied as one of the main methods in medicine to ensure successful treatments of diseases. Pharmaceutical sciences are using micro or nano carriers to obtain a controlled delivery of drugs, able to selectively interact with pathogens, cells or tissues. In this work, we modified bovine serum albumin (BSA) with lactose, obtaining a neoglycan (BSA-Lac). Subsequently, we synthesized glyconanoparticles (NPBSA-Lac) with the premise that it would be recognized by microbial galactose specific lectins. NPBSA-Lac were tested for bio-recognition with adhesins of E. coli K88 and Ricinus communis agglutinin I (RCA). Glycation of BSA with lactose was analyzed by electrophoresis, infrared spectroscopy and fluorescence. Approximately 41 lactoses per BSA molecule were estimated. Nanoparticles were obtained using water in oil emulsion method and spheroid morphology with a range size of 300-500 nm was observed. Specific recognition of NPBSA-Lac by RCA and E. coli K88 was displayed by aggregation of nanoparticles analyzed by dynamic light scattering and atomic force microscopy. The results indicate that the lactosylated nanovectors could be targeted at the E. coli K88 adhesin and potentially could be used as a transporter for an antibacterial drug.

  9. Flow cytometric estimation on cytotoxic activity of leaf extracts from seashore plants in subtropical Japan: isolation, quantification and cytotoxic action of (-)-deoxypodophyllotoxin.

    PubMed

    Masuda, Toshiya; Oyama, Yasuo; Yonemori, Shigetomo; Takeda, Yoshio; Yamazaki, Yuko; Mizuguchi, Shinichi; Nakata, Mami; Tanaka, Tomochika; Chikahisa, Lumi; Inaba, Yuzuru; Okada, Yoshihiko

    2002-06-01

    The cytotoxic activity of methanol extracts of leaves collected from 39 seashore plants in Iriomote Island, subtropical Japan was examined on human leukaemia cells (K562 cells) using a flow cytometer with two fluorescent probes, ethidium bromide and annexin V-FITC. Five extracts (10 microg/mL) from Hernandia nymphaeaefolia, Cerbera manghas, Pongamia pinnata, Morus australis var. glabra and Thespesia populnea greatly inhibited the growth of K562 cells. When the concentration was decreased to 1 microg/mL, only one extract from H. nymphaeaefolia still inhibited the cell growth. A cytotoxic compound was isolated from the leaves by bioassay-guided fractionation and was identified as (-)-deoxypodophyllotoxin (DPT). The fresh leaves of H. nymphaeaefolia contained a remarkably high amount of DPT (0.21 +/- 0.07% of fresh leaf weight), being clarified by a quantitative HPLC analysis. DPT at 70-80 pM started to inhibit the growth of K562 cells in an all-or-none fashion and at 100 pM or more it produced complete inhibition in all cases. Therefore, the slope of the dose-response curve was very steep. DPT at 100 pM or more decreased the cell viability to 50%-60% and increased the number of cells undergoing apoptosis (annexin V-positive cells). The results indicate that DPT contributes to the cytotoxic action of the extract from the leaves of H. nymphaeaefolia on K562 cells. Copyright 2002 John Wiley & Sons, Ltd.

  10. Silibinin-induced glioma cell apoptosis by PI3K-mediated but Akt-independent downregulation of FoxM1 expression.

    PubMed

    Zhang, Mingjie; Liu, Yunhui; Gao, Yun; Li, Shaoyi

    2015-10-15

    The oncogenic transcription factor Forkhead box M1 (FoxM1) is overexpressed in many human tumors, including glioma. As a critical regulator of the cell cycle and apoptosis-related genes, FoxM1 is a potential therapeutic target against human malignant glioma. Silibinin, a flavonoid isolated from Silybum marianum, dose-dependently reduced glioma cell proliferation, promoted apoptosis, and downregulated FoxM1 expression. Knockdown of FoxM1 by small hairpin RNA (shRNA) transfection also promoted glioma cell apoptosis and augmented the antiproliferative and pro-apoptotic properties of silibinin. Moreover, silibinin increased caspase-3 activation, upregulated pro-apoptotic Bax, and suppressed anti-apoptotic Bcl-2 expression, effects enhanced by FoxM1 knockdown. Silibinin treatment suppressed U87 cell PI3K phospho-activation, and simultaneous silibinin exposure, FoxM1 knockdown, and PI3K inhibition additively increased U87 cell apoptosis. Furthermore, PI3K inhibition reduced FoxM1 expression. Akt activity was also suppressed by FoxM1 downregulation but Akt inhibition did not alter FoxM1 expression. Thus, silibinin likely inhibited glioma cell proliferation and induced apoptosis through inactivation of PI3K and FoxM1, leading to activation of the mitochondrial apoptotic pathway. FoxM1 may be a novel target for chemotherapy against human glioma. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Mpl traffics to the cell surface through conventional and unconventional routes.

    PubMed

    Cleyrat, Cédric; Darehshouri, Anza; Steinkamp, Mara P; Vilaine, Mathias; Boassa, Daniela; Ellisman, Mark H; Hermouet, Sylvie; Wilson, Bridget S

    2014-09-01

    Myeloproliferative neoplasms (MPNs) are often characterized by JAK2 or calreticulin (CALR) mutations, indicating aberrant trafficking in pathogenesis. This study focuses on Mpl trafficking and Jak2 association using two model systems: human erythroleukemia cells (HEL; JAK2V617F) and K562 myeloid leukemia cells (JAK2WT). Consistent with a putative chaperone role for Jak2, Mpl and Jak2 associate on both intracellular and plasma membranes (shown by proximity ligation assay) and siRNA-mediated knockdown of Jak2 led to Mpl trapping in the endoplasmic reticulum (ER). Even in Jak2 sufficient cells, Mpl accumulates in punctate structures that partially colocalize with ER-tracker, the ER exit site marker (ERES) Sec31a, the autophagy marker LC3 and LAMP1. Mpl was fused to miniSOG, a genetically encoded tag for correlated light and electron microscopy. Results suggest that a fraction of Mpl is taken up into autophagic structures from the ER and routed to autolyososomes. Surface biotinylation shows that both immature and mature Mpl reach the cell surface; in K562 cells Mpl is also released in exosomes. Both forms rapidly internalize upon ligand addition, while recovery is primarily attributed to immature Mpl. Mpl appears to reach the plasma membrane via both conventional ER-Golgi and autolysosome secretory pathways, as well as recycling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Pharmacological targeting of the PI3K/mTOR pathway alters the release of angioregulatory mediators both from primary human acute myeloid leukemia cells and their neighboring stromal cells.

    PubMed

    Reikvam, Håkon; Nepstad, Ina; Bruserud, Øystein; Hatfield, Kimberley Joanne

    2013-06-01

    Acute myeloid leukemia (AML) is a heterogeneous and aggressive malignancy with poor overall survival. Constitutive as well as cytokine-initiated activation of PI3K/Akt/mTOR signaling is a common feature of AML patients, and inhibition of this pathway is considered as a possible therapeutic strategy in AML. Human AML cells and different stromal cell populations were cultured under highly standardized in vitro conditions. We investigated the effects of mTOR inhibitors (rapamycin and temsirolimus) and PI3K inhibitors (GDC-0941 and 3-methyladenin (3-MA)) on cell proliferation and the constitutive release of angioregulatory mediators by AML and stromal cells. Primary human AML cells were heterogeneous, though most patients showed high CXCL8 levels and detectable release of CXCL10, Ang-1, HGF and MMP-9. Hierarchical clustering analysis showed that disruption of PI3K/Akt/mTOR pathways decreased AML cell release of CXCL8-11 for a large subset of patients, whereas the effects on other mediators were divergent. Various stromal cells (endothelial cells, fibroblasts, cells with osteoblastic phenotype) also showed constitutive release of angioregulatory mediators, and inhibitors of both the PI3K and mTOR pathway had anti-proliferative effects on stromal cells and resulted in decreased release of these angioregulatory mediators. PI3K and mTOR inhibitors can decrease constitutive cytokine release both by AML and stromal cells, suggesting potential direct and indirect antileukemic effects.

  13. Pharmacological targeting of the PI3K/mTOR pathway alters the release of angioregulatory mediators both from primary human acute myeloid leukemia cells and their neighboring stromal cells

    PubMed Central

    Reikvam, Håkon; Nepstad, Ina; Bruserud, Øystein; Hatfield, Kimberley Joanne

    2013-01-01

    Acute myeloid leukemia (AML) is a heterogeneous and aggressive malignancy with poor overall survival. Constitutive as well as cytokine-initiated activation of PI3K/Akt/mTOR signaling is a common feature of AML patients, and inhibition of this pathway is considered as a possible therapeutic strategy in AML. Human AML cells and different stromal cell populations were cultured under highly standardized in vitro conditions. We investigated the effects of mTOR inhibitors (rapamycin and temsirolimus) and PI3K inhibitors (GDC-0941 and 3-methyladenin (3-MA)) on cell proliferation and the constitutive release of angioregulatory mediators by AML and stromal cells. Primary human AML cells were heterogeneous, though most patients showed high CXCL8 levels and detectable release of CXCL10, Ang-1, HGF and MMP-9. Hierarchical clustering analysis showed that disruption of PI3K/Akt/mTOR pathways decreased AML cell release of CXCL8-11 for a large subset of patients, whereas the effects on other mediators were divergent. Various stromal cells (endothelial cells, fibroblasts, cells with osteoblastic phenotype) also showed constitutive release of angioregulatory mediators, and inhibitors of both the PI3K and mTOR pathway had anti-proliferative effects on stromal cells and resulted in decreased release of these angioregulatory mediators. PI3K and mTOR inhibitors can decrease constitutive cytokine release both by AML and stromal cells, suggesting potential direct and indirect antileukemic effects. PMID:23919981

  14. Role of the phosphatidylinositol-3-kinase/Akt/target of rapamycin pathway during ambidensovirus infection of insect cells.

    PubMed

    Salasc, F; Mutuel, D; Debaisieux, S; Perrin, A; Dupressoir, T; Grenet, A-S Gosselin; Ogliastro, M

    2016-01-01

    The phosphatidylinositol-3-kinase (PI3K)/Akt/target of rapamycin (TOR) signalling pathway controls cell growth and survival, and is targeted by a number of viruses at different phases of their infection cycle to control translation. Whether and how insect viruses interact with this pathway remain poorly addressed. Here, we investigated the role of PI3K/Akt/TOR signalling during lethal infection of insect cells with an insect parvovirus. Using Junonia coenia densovirus (JcDV; lepidopteran ambidensovirus 1) and susceptible insect cells as experimental models, we first described JcDV cytopathology, and showed that viral infection affects cell size, cell proliferation and survival. We deciphered the role of PI3K/Akt/TOR signalling in the course of infection and found that non-structural (NS) protein expression correlates with the inhibition of TOR and the shutdown of cellular synthesis, concomitant with the burst of viral protein expression. Together, these results suggest that NS proteins control the cellular translational machinery to favour the translation of viral mRNAs at the expense of cellular mRNAs. As a consequence of TOR inhibition, cell autophagy is activated. These results highlight new functions for NS proteins in the course of multiplication of an insect parvovirus.

  15. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma.

    PubMed

    Chiron, David; Di Liberto, Maurizio; Martin, Peter; Huang, Xiangao; Sharman, Jeff; Blecua, Pedro; Mathew, Susan; Vijay, Priyanka; Eng, Ken; Ali, Siraj; Johnson, Amy; Chang, Betty; Ely, Scott; Elemento, Olivier; Mason, Christopher E; Leonard, John P; Chen-Kiang, Selina

    2014-09-01

    Despite the unprecedented clinical activity of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib in mantle cell lymphoma (MCL), acquired resistance is common. By longitudinal integrative whole-exome and whole-transcriptome sequencing and targeted sequencing, we identified the first relapse-specific C481S mutation at the ibrutinib binding site of BTK in MCL cells at progression following a durable response. This mutation enhanced BTK and AKT activation and tissue-specific proliferation of resistant MCL cells driven by CDK4 activation. It was absent, however, in patients with primary resistance or progression following transient response to ibrutinib, suggesting alternative mechanisms of resistance. Through synergistic induction of PIK3IP1 and inhibition of PI3K-AKT activation, prolonged early G1 arrest induced by PD 0332991 (palbociclib) inhibition of CDK4 sensitized resistant lymphoma cells to ibrutinib killing when BTK was unmutated, and to PI3K inhibitors independent of C481S mutation. These data identify a genomic basis for acquired ibrutinib resistance in MCL and suggest a strategy to override both primary and acquired ibrutinib resistance. We have discovered the first relapse-specific BTK mutation in patients with MCL with acquired resistance, but not primary resistance, to ibrutinib, and demonstrated a rationale for targeting the proliferative resistant MCL cells by inhibiting CDK4 and the cell cycle in combination with ibrutinib in the presence of BTK(WT) or a PI3K inhibitor independent of BTK mutation. As drug resistance remains a major challenge and CDK4 and PI3K are dysregulated at a high frequency in human cancers, targeting CDK4 in genome-based combination therapy represents a novel approach to lymphoma and cancer therapy. Cancer Discov; 4(9); 1022-35. ©2014 AACR. This article is highlighted in the In This Issue feature, p. 973. ©2014 American Association for Cancer Research.

  16. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    PubMed Central

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity. PMID:29584690

  17. Al K x-ray production for incident /sup 16/O ions: The influence of target thickness effects on observed target x-ray yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, T.J.; Richard, P.; Gealy, G.

    1979-04-01

    Thin solid Al targets ranging in thickness from approx. 1 to 30 ..mu..g/cm/sup 2/ were bombarded by /sup 16/O ions wih incident energies from 0.25 to 2.25 MeV/amu. The effects of target thickness on the measured Al K x-ray yield for ions incident without an initial K-shell vacancy were determined. Comparisons of the data for Al K x-ray production in vanishingly thin targets (and 29-..mu..g/cm/sup 2/ targets) were made to perturbed-stationary-state calculations (PSS) for O ions on Al targets. The PSS calculations contained corrections for Coulomb deflection and binding energy (PSS(CB)) and for Coulomb deflection, binding energy, and polarization (PSS(CBP)).more » Further, two different PSS calculation procedures were employed: calculations without radial cutoffs employed in the binding-energy contribution (PSS), and calculations with radial cutoffs employed in the binding-energy correction (NPSS). The PSS(CBP) calculations agree with the measured Al K x-ray production cross section for data taken in the limit of a vanishingly thin target. The NPSS(CBP) calculations agree with the data taken for a 29-..mu..g/cm/sup 2/ Al target. The latter agreement is fortuitous, as the increase observed in the measured target x-ray yield for the 29-..mu..g/cm/sup 2/ target, in comparison to the yield extracted as rhox ..-->.. 0 at each bombarding energy, is due to K-shell--to--K-shell charge exchange. Comparisons are made with previously published data for /sup 16/O ions incident on finite-thickness Al targets.« less

  18. Characterization of LY3023414, a Novel PI3K/mTOR Dual Inhibitor Eliciting Transient Target Modulation to Impede Tumor Growth.

    PubMed

    Smith, Michele C; Mader, Mary M; Cook, James A; Iversen, Philip; Ajamie, Rose; Perkins, Everett; Bloem, Laura; Yip, Yvonne Y; Barda, David A; Waid, Philip P; Zeckner, Douglas J; Young, Debra A; Sanchez-Felix, Manuel; Donoho, Gregory P; Wacheck, Volker

    2016-10-01

    The PI3K/AKT/mTOR pathway is among the most frequently altered pathways in cancer cell growth and survival. LY3023414 is a complex fused imidazoquinolinone with high solubility across a wide pH range designed to inhibit class I PI3K isoforms and mTOR kinase. Here, we describe the in vitro and in vivo activity of LY3023414. LY3023414 was highly soluble at pH 2-7. In biochemical testing against approximately 266 kinases, LY3023414 potently and selectively inhibited class I PI3K isoforms, mTORC1/2, and DNA-PK at low nanomolar concentrations. In vitro, inhibition of PI3K/AKT/mTOR signaling by LY3023414 caused G 1 cell-cycle arrest and resulted in broad antiproliferative activity in cancer cell panel screens. In vivo, LY3023414 demonstrated high bioavailability and dose-dependent dephosphorylation of PI3K/AKT/mTOR pathway downstream substrates such as AKT, S6K, S6RP, and 4E-BP1 for 4 to 6 hours, reflecting the drug's half-life of 2 hours. Of note, equivalent total daily doses of LY3023414 given either once daily or twice daily inhibited tumor growth to similar extents in multiple xenograft models, indicating that intermittent target inhibition is sufficient for antitumor activity. In combination with standard-of-care drugs, LY3023414 demonstrated additive antitumor activity. The novel, orally bioavailable PI3K/mTOR inhibitor LY3023414 is highly soluble and exhibits potent in vivo efficacy via intermittent target inhibition. It is currently being evaluated in phase I and II trials for the treatment of human malignancies. Mol Cancer Ther; 15(10); 2344-56. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Celastrol suppresses tumor cell growth through targeting an AR-ERG-NF-κB pathway in TMPRSS2/ERG fusion gene expressing prostate cancer.

    PubMed

    Shao, Longjiang; Zhou, Zhansong; Cai, Yi; Castro, Patricia; Dakhov, Olga; Shi, Ping; Bai, Yaoxia; Ji, Huixiang; Shen, Wenhao; Wang, Jianghua

    2013-01-01

    The TMPRSS2/ERG (T/E) fusion gene is present in the majority of all prostate cancers (PCa). We have shown previously that NF-kB signaling is highly activated in these T/E fusion expressing cells via phosphorylation of NF-kB p65 Ser536 (p536). We therefore hypothesize that targeting NF-kB signaling may be an efficacious approach for the subgroup of PCas that carry T/E fusions. Celastrol is a well known NF-kB inhibitor, and thus may inhibit T/E fusion expressing PCa cell growth. We therefore evaluated Celastrol's effects in vitro and in vivo in VCaP cells, which express the T/E fusion gene. VCaP cells were treated with different concentrations of Celastrol and growth inhibition and target expression were evaluated. To test its ability to inhibit growth in vivo, 0.5 mg/kg Celastrol was used to treat mice bearing subcutaneous VCaP xenograft tumors. Our results show Celastrol can significantly inhibit the growth of T/E fusion expressing PCa cells both in vitro and in vivo through targeting three critical signaling pathways: AR, ERG and NF-kB in these cells. When mice received 0.5 mg/kg Celastrol for 4 times/week, significant growth inhibition was seen with no obvious toxicity or significant weight loss. Therefore, Celastrol is a promising candidate drug for T/E fusion expressing PCa. Our findings provide a novel strategy for the targeted therapy which may benefit the more than half of PCa patients who have T/E fusion expressing PCas.

  20. The Impact of DIDS-Induced Inhibition of Voltage-Dependent Anion Channels (VDAC) on Cellular Response of Lymphoblastoid Cells to Ionizing Radiation.

    PubMed

    Skonieczna, Magdalena; Cieslar-Pobuda, Artur; Saenko, Yuriy; Foksinski, Marek; Olinski, Ryszard; Rzeszowska-Wolny, Joanna; Wiechec, Emilia

    2017-01-01

    The voltage-dependent anion channels (VDAC) play an essential role in the cross talk between mitochondria and the rest of the cell. Their implication in cell life and cell death has been studied extensively in recent years. In this work we studied the impact of mitochondrial membrane (VDACs) on cell survival and response to X-ionizing radiation (IR) of human lymphoblastoid K562 cells. The inhibition of VDACs was achieved by 4,4`-diisothiocyanostilbene-2,2`-disulfonic acid (DIDS) inhibitor and in vitro experiments including clonogenity assay, UV-visible spectrophotometry, comet assay and FACS analysis were implemented. Inhibition of VDAC led to augmentation of IR-induced apoptosis and ROS production. Additionally, DIDS affected repair of IR-induced DNA strand breaks and was in line with both induction of apoptosis and caspase activity. The IR-induced NO production was potently reduced by inhibition of VDAC. Our results suggest that VDAC control cellular response to ionizing radiation through modulation of the ROS- and NO-dependent signaling pathways. Inhibition of VDAC with DIDS induced apoptosis in irradiated K562 lymphoblastoid cells points at DIDS, as a promising agent to enhance the effectiveness of radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. JS-K, a nitric oxide pro-drug, regulates growth and apoptosis through the ubiquitin-proteasome pathway in prostate cancer cells.

    PubMed

    Tan, Guobin; Qiu, Mingning; Chen, Lieqian; Zhang, Sai; Ke, Longzhi; Liu, Jianjun

    2017-05-26

    In view of the fact that JS-K might regulate ubiquitin E3 ligase and that ubiquitin E3 ligase plays an important role in the mechanism of CRPC formation, the goal was to investigate the probable mechanism by which JS-K regulates prostate cancer cells. Proliferation inhibition by JS-K on prostate cancer cells was examined usingCCK-8 assays. Caspase 3/7 activity assays and flow cytometry were performed to examine whether JS-K induced apoptosis in prostate cancer cells. Western blotting and co-immunoprecipitation analyses investigated JS-K's effects on the associated apoptosis mechanism. Real time-PCR and Western blotting were performed to assess JS-K's effect on transcription of specific AR target genes. Western blotting was also performed to detect Siah2 and AR protein concentrations and co-immunoprecipitation to detect interactions of Siah2 and AR, NCoR1 and AR, and p300 and AR. JS-K inhibited proliferation and induced apoptosis in prostate cancer cells. JS-K increased p53 and Mdm2 concentrations and regulated the caspase cascade reaction-associated protein concentrations. JS-K inhibited transcription of AR target genes and down-regulated PSA protein concentrations. JS-K inhibited Siah2 interactions and also inhibited the ubiquitination of AR. With further investigation, JS-K was found to stabilize AR and NCoR1 interactions and diminish AR and p300 interactions. The present results suggested that JS-K might have been able to inhibit proliferation and induce apoptosis via regulation of the ubiquitin-proteasome degradation pathway, which represented a promising platform for the development of new compounds for PCa treatments.

  2. Leptin modulates dose-dependently the metabolic and cytolytic activities of NK-92 cells.

    PubMed

    Lamas, Bruno; Goncalves-Mendes, Nicolas; Nachat-Kappes, Rachida; Rossary, Adrien; Caldefie-Chezet, Florence; Vasson, Marie-Paule; Farges, Marie-Chantal

    2013-06-01

    Leptin, a hormone-cytokine produced primarily in the adipose tissue, has pleiotropic effects on many biological systems and in several cell types, including immune cells. Hyperleptinemia is associated with immune dysfunction and carcinogenesis. Natural killer (NK) cells are critical mediators of anti-tumor immunity, and leptin receptor deficiency in mice leads to impaired NK function. It was thus decided to explore the in vitro effects of leptin on human NK cell function. NK-92 cells were cultured during 48 h with different leptin concentrations [absence, 10 (physiological), 100 (obesity), or 200 ng/ml (pharmacology)]. Their metabolic activity was assessed using the resazurin test. NK-92 cell cytotoxicity and intracellular IFN-γ production were analyzed by flow cytometry. NK-92 cell mRNA and protein expression levels of cytotoxic effectors were determined by RT-qPCR and Western blot. In our conditions, leptin exerted a dose-dependent stimulatory effect on NK-92 cell metabolic activity. In addition, high leptin concentrations enhanced NK-92 cell cytotoxicity against K562-EGFP and MDA-MB-231-EGFP target cells and inversely reduced cytotoxicity against the MCF-7-EGFP target. At 100 ng/ml, leptin up-regulated both NK cell granzyme B and TRAIL protein expressions and concomitantly down-regulated perforin expression without affecting Fas-L expression. In response to PMA/ionomycin stimulation, the proportion of IFN-γ expressing NK-92 cells increased with 100 and 200 ng/ml of leptin. In conclusion, leptin concentration, at obesity level, variably increased NK-92 cell metabolic activity and modulated NK cell cytotoxicity according to the target cells. The underlying mechanisms are partly due to an up-regulation of TRAIL and IFN-γ expression and a down-regulation of perforin. Copyright © 2012 Wiley Periodicals, Inc.

  3. hnRNP K Coordinates Transcriptional Silencing by SETDB1 in Embryonic Stem Cells

    PubMed Central

    Thompson, Peter J.; Dulberg, Vered; Moon, Kyung-Mee; Foster, Leonard J.; Chen, Carol; Karimi, Mohammad M.; Lorincz, Matthew C.

    2015-01-01

    Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs. PMID:25611934

  4. K-RasG12D–induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to γ-secretase inhibitors

    PubMed Central

    Cornejo, Melanie G.; Scholl, Claudia; Liu, Jianing; Leeman, Dena S.; Haydu, J. Erika; Fröhling, Stefan; Lee, Benjamin H.; Gilliland, D. Gary

    2008-01-01

    To study the impact of oncogenic K-Ras on T-cell leukemia/lymphoma development and progression, we made use of a conditional K-RasG12D murine knockin model, in which oncogenic K-Ras is expressed from its endogenous promoter. Transplantation of whole bone marrow cells that express oncogenic K-Ras into wild-type recipient mice resulted in a highly penetrant, aggressive T-cell leukemia/lymphoma. The lymphoblasts were composed of a CD4/CD8 double-positive population that aberrantly expressed CD44. Thymi of primary donor mice showed reduced cellularity, and immunophenotypic analysis demonstrated a block in differentiation at the double-negative 1 stage. With progression of disease, approximately 50% of mice acquired Notch1 mutations within the PEST domain. Of note, primary lymphoblasts were hypersensitive to γ-secretase inhibitor treatment, which is known to impair Notch signaling. This inhibition was Notch-specific as assessed by down-regulation of Notch1 target genes and intracellular cleaved Notch. We also observed that the oncogenic K-Ras-induced T-cell disease was responsive to rapamycin and inhibitors of the RAS/MAPK pathway. These data indicate that patients with T-cell leukemia with K-Ras mutations may benefit from therapies that target the NOTCH pathway alone or in combination with inhibition of the PI3K/AKT/MTOR and RAS/MAPK pathways. PMID:18663146

  5. Synthesis and in vitro antiproliferative activity of 2-methyl-3-(2-piperazin-1-yl-ethyl)-pyrido[1,2-a]pyrimidin-4-one derivatives against human cancer cell lines.

    PubMed

    Mallesha, Lingappa; Mohana, Kikkeri N; Veeresh, Bantal; Alvala, Ravi; Mallika, Alvala

    2012-01-01

    A series of new 2-methyl-3-(2-piperazin-1-yl-ethyl)-pyrido[1,2-a]pyrimidin-4-one derivatives 6a-j were synthesized by a nucleophilic substitution reaction of 2-methyl-3-(2-piperazin-1-ylethyl)-pyrido[1,2-a]pyrimidin-4-one with various sulfonyl chlorides. The compounds were characterized by different spectral studies. All the compounds were evaluated for their antiproliferative effect using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method against four human cancer cell lines (K562, Colo-205, MDA-MB 231, IMR-32) for the time period of 24 h. Among the series, compounds 6d, 6e and 6i showed good activity on all cell lines except K562, whereas the other compounds in the series exhibited moderate activity. Compound 6d could be a potential anticancer agent and therefore deserves further research.

  6. Chemistry and Selective Tumor Cell Growth Inhibitory Activity of Polyketides from the South China Sea Sponge Plakortis sp.

    PubMed

    Li, Jiao; Li, Cui; Riccio, Raffaele; Lauro, Gianluigi; Bifulco, Giuseppe; Li, Tie-Jun; Tang, Hua; Zhuang, Chun-Lin; Ma, Hao; Sun, Peng; Zhang, Wen

    2017-05-03

    Simplextone E ( 1 ), a new metabolite of polyketide origin, was isolated with eight known analogues ( 2 - 9 ) from the South China Sea sponge Plakortis sp. The relative configuration of the new compound was elucidated by a detailed analysis of the spectroscopic data and quantum mechanical calculation of NMR chemical shifts, aided by the newly reported DP4+ approach. Its absolute configuration was determined by the TDDFT/ECD calculation. Simplextone E ( 1 ) is proven to be one of the isomers of simplextone D. The absolute configuration at C-8 in alkyl chain of plakortone Q ( 2 ) was also assigned based on the NMR calculation. In the preliminary in vitro bioassay, compounds 6 and 7 showed a selective growth inhibitory activity against HCT-116 human colon cancer cells with IC 50 values of 8.3 ± 2.4 and 8.4 ± 2.3 μM, corresponding to that of the positive control, adriamycin (IC 50 4.1 μM). The two compounds also showed selective activities towards MCF-7 human breast cancer and K562 human erythroleukemia cells while compound 3 only displayed weak activity against K562 cells.

  7. Human immune cell targeting of protein nanoparticles - caveospheres

    NASA Astrophysics Data System (ADS)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  8. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuqin; Zheng, Lin; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Aktmore » pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.« less

  9. A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation.

    PubMed

    Sato, Yuko; Kujirai, Tomoya; Arai, Ritsuko; Asakawa, Haruhiko; Ohtsuki, Chizuru; Horikoshi, Naoki; Yamagata, Kazuo; Ueda, Jun; Nagase, Takahiro; Haraguchi, Tokuko; Hiraoka, Yasushi; Kimura, Akatsuki; Kurumizaka, Hitoshi; Kimura, Hiroshi

    2016-10-09

    Eukaryotic gene expression is regulated in the context of chromatin. Dynamic changes in post-translational histone modification are thought to play key roles in fundamental cellular functions such as regulation of the cell cycle, development, and differentiation. To elucidate the relationship between histone modifications and cellular functions, it is important to monitor the dynamics of modifications in single living cells. A genetically encoded probe called mintbody (modification-specific intracellular antibody), which is a single-chain variable fragment tagged with a fluorescent protein, has been proposed as a useful visualization tool. However, the efficacy of intracellular expression of antibody fragments has been limited, in part due to different environmental conditions in the cytoplasm compared to the endoplasmic reticulum where secreted proteins such as antibodies are folded. In this study, we have developed a new mintbody specific for histone H4 Lys20 monomethylation (H4K20me1). The specificity of the H4K20me1-mintbody in living cells was verified using yeast mutants and mammalian cells in which this target modification was diminished. Expression of the H4K20me1-mintbody allowed us to monitor the oscillation of H4K20me1 levels during the cell cycle. Moreover, dosage-compensated X chromosomes were visualized using the H4K20me1-mintbody in mouse and nematode cells. Using X-ray crystallography and mutational analyses, we identified critical amino acids that contributed to stabilization and/or proper folding of the mintbody. Taken together, these data provide important implications for future studies aimed at developing functional intracellular antibodies. Specifically, the H4K20me1-mintbody provides a powerful tool to track this particular histone modification in living cells and organisms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide - polyaniline composite.

    PubMed

    Wang, Jidong; Wang, Xiaoyu; Tang, Hengshan; Gao, Zehua; He, Shengquan; Li, Jian; Han, Shumin

    2018-02-15

    In this work, a novel ultrasensitive electrochemical biosensor was developed for the detection of K562 cell by a signal amplification strategy based on multiple layer CdS QDs functionalized polystyrene microspheres(PS) as bioprobe and graphene oxide(GO) -polyaniline(PANI) composite as modified materials of capture electrode. Due to electrostatic force of different charge, CdS QDs were decorated on the surface of PS by PDDA (poly(diallyldimethyl-ammonium chloride)) through a layer-by-layer(LBL) assemble technology, in which the structure of multiple layer CdS QDs increased the detection signal intensity. Moreover, GO-PANI composite not only enhanced the electron transfer rate, but also increased tumor cells load ratio. The resulting electrochemical biosensor was used to detect K562 cells with a lower detection limit of 3 cellsmL -1 (S/N = 3) and a wider linear range from 10 to 1.0 × 10 7 cellsmL -1 . This sensor was also used for mannosyl groups on HeLa cells and Hct116 cells, which showed high specificity and sensitivity. This signal amplification strategy would provide a novel approach for detection, diagnosis and treatment for tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterization of dengue virus 2 growth in megakaryocyte–erythrocyte progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Kristina B.; Hsiao, Hui-Mien; Bassit, Leda

    Megakaryocyte–erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectiousmore » DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis. - Highlights: • DenV replicates efficiently in undifferentiated megakaryocyte–erythrocyte progenitors. • MEP produced DenV differs in protein content from Vero produced DenV. • MEP produced DenV may be more difficult to neutralize relative to Vero DenV.« less

  12. Spatially correlated phenotyping reveals K5-positive luminal progenitor cells and p63-K5/14-positive stem cell-like cells in human breast epithelium.

    PubMed

    Boecker, Werner; van Horn, Laura; Stenman, Göran; Stürken, Christine; Schumacher, Udo; Loening, Thomas; Liesenfeld, Lukas; Korsching, Eberhard; Gläser, Doreen; Tiemann, Katharina; Buchwalow, Igor

    2018-05-09

    Understanding the mechanisms regulating human mammary epithelium requires knowledge of the cellular constituents of this tissue. Different and partially contradictory definitions and concepts describing the cellular hierarchy of mammary epithelium have been proposed, including our studies of keratins K5 and/or K14 as markers of progenitor cells. Furthermore, we and others have suggested that the p53 homolog p63 is a marker of human breast epithelial stem cells. In this investigation, we expand our previous studies by testing whether immunohistochemical staining with monospecific anti-keratin antibodies in combination with an antibody against the stem cell marker p63 might help refine the different morphologic phenotypes in normal breast epithelium. We used in situ multilabel staining for p63, different keratins, the myoepithelial marker smooth muscle actin (SMA), the estrogen receptor (ER), and Ki67 to dissect and quantify the cellular components of 16 normal pre- and postmenopausal human breast epithelial tissue samples at the single-cell level. Importantly, we confirm the existence of K5+ only cells and suggest that they, in contrast to the current view, are key luminal precursor cells from which K8/18+ progeny cells evolve. These cells are further modified by the expression of ER and Ki67. We have also identified a population of p63+K5+ cells that are only found in nipple ducts. Based on our findings, we propose a new concept of the cellular hierarchy of human breast epithelium, including K5 luminal lineage progenitors throughout the ductal-lobular axis and p63+K5+ progenitors confined to the nipple ducts.

  13. Silencing overexpression of FXYD3 protein in breast cancer cells amplifies effects of doxorubicin and γ-radiation on Na(+)/K(+)-ATPase and cell survival.

    PubMed

    Liu, Chia-Chi; Teh, Rachel; Mozar, Christine A; Baxter, Robert C; Rasmussen, Helge H

    2016-01-01

    FXYD3, also known as mammary tumor protein 8, is overexpressed in several common cancers, including in many breast cancers. We examined if such overexpression might protect Na(+)/K(+)-ATPase and cancer cells against the high levels of oxidative stress characteristic of many tumors and often induced by cancer treatments. We measured FXYD3 expression, Na(+)/K(+)-ATPase activity and glutathionylation of the β1 subunit of Na(+)/K(+)-ATPase, a reversible oxidative modification that inhibits the ATPase, in MCF-7 and MDA-MB-468 cells. Expression of FXYD3 was suppressed by transfection with FXYD3 siRNA. A colorimetric end-point assay was used to estimate cell viability. Apoptosis was estimated by caspase 3/7 (DEVDase) activation using a Caspase fluorogenic substrate kit. Expression of FXYD3 in MCF-7 breast cancer cells was ~eightfold and ~twofold higher than in non-cancer MCF-10A cells and MDA-MB-468 cancer cells, respectively. A ~50 % reduction in FXYD3 expression increased glutathionylation of the β1 Na(+)/K(+)-ATPase subunit and reduced Na(+)/K(+)-ATPase activity by ~50 %, consistent with the role of FXYD3 to facilitate reversal of glutathionylation of the β1 subunit of Na(+)/K(+)-ATPase and glutathionylation-induced inhibition of Na(+)/K(+)-ATPase. Treatment of MCF-7 and MDA-MB- 468 cells with doxorubicin or γ-radiation decreased cell viability and induced apoptosis. The treatments upregulated FXYD3 expression in MCF-7 but not in MDA-MB-468 cells and suppression of FXYD3 in MCF-7 but not in MDA-MB-468 cells amplified effects of treatments on Na(+)/K(+)-ATPase activity and treatment-induced cell death and apoptosis. Overexpression of FXYD3 may be a marker of resistance to cancer treatments and a potentially important therapeutic target.

  14. Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/mTOR pathway.

    PubMed

    Chen, Dongshao; Lin, Xiaoting; Zhang, Cheng; Liu, Zhentao; Chen, Zuhua; Li, Zhongwu; Wang, Jingyuan; Li, Beifang; Hu, Yanting; Dong, Bin; Shen, Lin; Ji, Jiafu; Gao, Jing; Zhang, Xiaotian

    2018-01-26

    Paclitaxel (PTX) is widely used in the front-line chemotherapy for gastric cancer (GC), but resistance limits its use. Due to the lack of proper models, mechanisms underlying PTX resistance in GC were not well studied. Using established PTX-resistant GC cell sublines HGC-27R, we for the first time integrated biological traits and molecular mechanisms of PTX resistance in GC. Data revealed that PTX-resistant GC cells were characterized by microtubular disorders, an EMT phenotype, reduced responses to antimitotic drugs, and resistance to apoptosis (marked by upregulated β-tubulin III, vimentin, attenuated changes in G 2 /M molecules or pro-apoptotic factors in response to antimitotic drugs or apoptotic inducers, respectively). Activation of the phosphoinositide 3-kinase, the serine/threonine kinase Akt and mammalian target of rapamycin (PI3K/Akt/mTOR) and mitogen-activated protein kinase (MAPK) pathways were also observed, which might be the reason for above phenotypic alternations. In vitro data suggested that targeting these pathways were sufficient to elicit antitumor responses in PTX-resistant GC, in which the dual PI3K/mTOR inhibitor BEZ235 displayed higher therapeutic efficiency than the mTOR inhibitor everolimus or the MEK inhibitor AZD6244. Antitumor effects of BEZ235 were also confirmed in mice bearing HGC-27R tumors. Thus, these data suggest that PI3K/Akt/mTOR and MAPK pathway inhibition, especially PI3K/mTOR dual blockade, might be a promising therapeutic strategy against PTX-resistant GC.

  15. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1980-01-01

    Measurements of stack height changes with temperature and cell material characteristics were made. Stack 559 was assembled and components were fabricated for 560, 561, and 562. Stack 425 was transferred from the parallel DOE program and installed in the OS/IES simulation loop for mechanical and electrical testing. Construction and preliminary checkout of the 2 kW test facility was completed and design and procurement of the 8 kW test facility was initiated. The fuel conditioning subsystem design continued to evolve and the state points for the current design were calculated at full and part load conditions. Steam reforming catalyst activity tests were essentially completed and aging tests and CO shift converter tests were initiated.

  16. Role of the p55-gamma subunit of PI3K in ALK-induced cell migration: RNAi-based selection of cell migration regulators.

    PubMed

    Seo, Minchul; Kim, Jong-Heon; Suk, Kyoungho

    2017-05-04

    Recently, unbiased functional genetic selection identified novel cell migration-regulating genes. This RNAi-based functional selection was performed using 63,996 pooled lentiviral shRNAs targeting 21,332 mouse genes. After five rounds of selection using cells with accelerated or impaired migration, shRNAs were retrieved and identified by half-hairpin barcode sequencing using cells with the selected phenotypes. This selection process led to the identification of 29 novel cell migration regulators. One of these candidates, anaplastic lymphoma kinase (ALK), was further investigated. Subsequent studies revealed that ALK promoted cell migration through the PI3K-AKT pathway via the p55γ regulatory subunit of PI3K, rather than more commonly used p85 subunit. Western blot and immunohistochemistry studies using mouse brain tissues revealed similar temporal expression patterns of ALK, phospho-p55γ, and phospho-AKT during different stages of development. These data support an important role for the p55γ subunit of PI3K in ALK-induced cell migration during brain development.

  17. Multiwalled carbon nanotubes effect on the bioavailability of artemisinin and its cytotoxity to cancerous cells

    NASA Astrophysics Data System (ADS)

    Rezaei, Behzad; Majidi, Najmeh; Noori, Shokoofe; Hassan, Zuhair M.

    2011-12-01

    Artemisinin regarded as one of the most promising anticancer drugs can bind to DNA with a binding constant of 1.04 × 104 M-1. The electrochemical experiments indicated that for longer incubation time periods, the reduction peak current of artemisinin on carbon nanotube modified electrode increases. Therefore, the uptake of drug molecules from a solution into CNTs will be achieved automatically by adsorption of 88.7% of artemisinin onto carbon nanotubes surface without alteration in drug properties. Hence, capability of carbon nanotubes to have synergistic effect on the bioavailability of artemisinin was investigated. Experimental tests on K562 cancer cell lines growth by MTT assay proved that multi-walled carbon nanotubes can enhance the cytotoxity of artemisinin to the targeted cancer cells with unprecedented accuracy and efficiency. The IC50 values were 65 and 35 μM for artemisinin and artemisinin loaded on multi-walled carbon nanotubes, respectively; demonstrating that artemisinin loaded on multi-walled carbon nanotubes is more effective in inhibition of cancer cell lines growth.

  18. The Kell protein of the common K2 phenotype is a catalytically active metalloprotease, whereas the rare Kell K1 antigen is inactive. Identification of novel substrates for the Kell protein.

    PubMed

    Clapéron, Audrey; Rose, Christiane; Gane, Pierre; Collec, Emmanuel; Bertrand, Olivier; Ouimet, Tanja

    2005-06-03

    The Kell blood group is a highly polymorphic system containing over 20 different antigens borne by the protein Kell, a 93-kDa type II glycoprotein that displays high sequence homology with members of the M13 family of zinc-dependent metalloproteases whose prototypical member is neprilysin. Kell K1 is an antigen expressed in 9% of the Caucasian population, characterized by a point mutation (T193M) of the Kell K2 antigen, and located within a putative N-glycosylation consensus sequence. Recently, a recombinant, non-physiological, soluble form of Kell was shown to cleave Big ET-3 to produce the mature vasoconstrictive peptide. To better characterize the enzymatic activity of the Kell protein and the possible differences introduced by antigenic point mutations affecting post-translational processing, the membrane-bound forms of the Kell K1 and Kell K2 antigens were expressed either in K562 cells, an erythroid cell line, or in HEK293 cells, a non-erythroid system, and their pharmacological profiles and enzymatic specificities toward synthetic and natural peptides were evaluated. Results presented herein reveal that the two antigens possess considerable differences in their enzymatic activities, although not in their trafficking pattern. Indeed, although both antigens are expressed at the cell surface, Kell K1 protein is shown to be inactive, whereas the Kell K2 antigen binds neprilysin inhibitory compounds such as phosphoramidon and thiorphan with high affinity, cleaves the precursors of the endothelin peptides, and inactivates members of the tachykinin family with enzymatic properties resembling those of other members of the M13 family of metalloproteases to which it belongs.

  19. Cytotoxic Properties of Three Isolated Coumarin-hemiterpene Ether Derivatives from Artemisia armeniaca Lam.

    PubMed

    Mojarrab, Mahdi; Emami, Seyed Ahmad; Delazar, Abbas; Tayarani-Najaran, Zahra

    2017-01-01

    Considering multiple reports on cytotoxic activity of the Artemisia genus and its phytochemicals, in the current study A. armeniaca Lam. and the three components isolated from the plant were subjected to cytotoxic studies. Analytical fractionation of A. armeniaca aerial parts for the first time was directed to the isolation of 7-hydroxy-8-(4-hydroxy-3-methylbutoxy) comarin (armenin), 8-hydroxy-7-(4-hydroxy-3-methylbutoxy) comarin (isoarmenin) and deoxylacarol. Cytotoxicity assessed with alamalBlue® assay and apoptosis was detected by PI staining and western blot analysis of Bax and PARP proteins. Extracts and all compounds exhibited cytotoxic activity against apoptosis-proficient HL-60 and apoptosis-resistant K562 cells, with the lowest cytotoxic activity on J774 cell line as non-malignant cell. Armenin as the most potent component decreased the viability of cell with IC50 of 22.5 and 71.1 µM for K562 and HL-60 cells respectively and selected for further mechanistic study. Armenin increased the sub-G1 peak in flow cytometry histogram of HL-60 and K562 treated cells and increase in the amount of Bax protein and the cleavage of PARP in comparison with the control after treatment for 48 h in K562 treated cells verified the apoptotic activity of the armenin. Taken together, according to the finding of this study armenin was introduced as a novel cytotoxic compound with apoptotic activity, which is encouraging for further mechanistic and clinical studies.

  20. Phloretin increases the anti-tumor efficacy of intratumorally delivered heat-shock protein 70 kDa (HSP70) in a murine model of melanoma.

    PubMed

    Abkin, Sergey V; Ostroumova, Olga S; Komarova, Elena Y; Meshalkina, Darya A; Shevtsov, Maxim A; Margulis, Boris A; Guzhova, Irina V

    2016-01-01

    Recombinant HSP70 chaperone exerts a profound anticancer effect when administered intratumorally. This action is based on the ability of HSP70 to penetrate tumor cells and extract its endogenous homolog. To enhance the efficacy of HSP70 cycling, we employed phloretin, a flavonoid that enhances the pore-forming activity of the chaperone on artificial membranes. Phloretin increased the efficacy of HSP70 penetration in B16 mouse melanoma cells and K-562 human erythroblasts; this was accompanied with increased transport of the endogenous HSP70 to the plasma membrane. Importantly, treatment with HSP70 combined with phloretin led to the elevation of cell sensitivity to cytotoxic lymphocytes by 16-18 % compared to treatment with the chaperone alone. The incubation of K-562 cells with biotinylated HSP70 and phloretin increased the amount of the chaperone released from cells, suggesting that chaperone cycling could trigger a specific anti-tumor response. We studied the effect of the combination of HSP70 and phloretin using B16 melanoma and a novel method of HSP70-gel application. We found that the addition of phloretin to the gel reduced tumor weight almost fivefold compared with untreated mice, while the life span of the animals extended from 25 to 39 days. The increased survival was corroborated by the activation of innate and adaptive immunity; interestingly, HSP70 was more active in induction of CD8+ cell-mediated toxicity and γIFN production while phloretin contributed largely to the CD56+ cell response. In conclusion, the combination of HSP70 with phloretin could be a novel treatment for efficient immunotherapy of intractable cancers such as skin melanoma.

  1. Cell cycle-dependent changes in H3K56ac in human cells

    PubMed Central

    Stejskal, Stanislav; Stepka, Karel; Tesarova, Lenka; Stejskal, Karel; Matejkova, Martina; Simara, Pavel; Zdrahal, Zbynek; Koutna, Irena

    2015-01-01

    The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines. A significant increase in the number of H3K56ac foci, but not in H3K56ac protein levels, was observed during the S and G2 phases in cancer cell lines, but was not observed in embryonic stem cell lines. Despite this increase, the H3K56ac signal was not present in late replication chromatin, and H3K56ac protein levels did not decrease after the inhibition of DNA replication. H3K56ac was not tightly associated with the chromatin and was primarily localized to active chromatin regions. Our results support the role of H3K56ac in transcriptionally active chromatin areas but do not confirm H3K56ac as a marker of newly synthetized nucleosomes in DNA replication. PMID:26645646

  2. 40 CFR 141.562 - My system only has two or fewer filters-is there any special provision regarding individual...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... filters-is there any special provision regarding individual filter turbidity monitoring? 141.562 Section... Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.562 My system only has two or fewer filters—is there any special provision regarding individual filter turbidity monitoring? Yes, if...

  3. 40 CFR 141.562 - My system only has two or fewer filters-is there any special provision regarding individual...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... filters-is there any special provision regarding individual filter turbidity monitoring? 141.562 Section... Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.562 My system only has two or fewer filters—is there any special provision regarding individual filter turbidity monitoring? Yes, if...

  4. 40 CFR 141.562 - My system only has two or fewer filters-is there any special provision regarding individual...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... filters-is there any special provision regarding individual filter turbidity monitoring? 141.562 Section... Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.562 My system only has two or fewer filters—is there any special provision regarding individual filter turbidity monitoring? Yes, if...

  5. 40 CFR 141.562 - My system only has two or fewer filters-is there any special provision regarding individual...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filters-is there any special provision regarding individual filter turbidity monitoring? 141.562 Section... Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.562 My system only has two or fewer filters—is there any special provision regarding individual filter turbidity monitoring? Yes, if...

  6. 40 CFR 141.562 - My system only has two or fewer filters-is there any special provision regarding individual...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filters-is there any special provision regarding individual filter turbidity monitoring? 141.562 Section... Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.562 My system only has two or fewer filters—is there any special provision regarding individual filter turbidity monitoring? Yes, if...

  7. New targeted therapies for indolent B-cell malignancies in older patients.

    PubMed

    Krem, Maxwell M; Gopal, Ajay K

    2015-01-01

    Molecularly targeted agents have become an established component of the treatment of indolent B-cell malignancies (iNHL). iNHL disproportionately affects older adults, so treatments that have excellent tolerability and efficacy across multiple lines of therapy are in demand. The numbers and classes of targeted therapies for iNHL have proliferated rapidly in recent years; classes of agents that show promise for older patients with iNHL include anti-CD20 antibodies, phosphatidyl-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway inhibitors, immunomodulators, proteasome inhibitors, epigenetic modulators, and immunotherapies. Here, we review the proposed mechanisms of action, efficacy, and tolerability of novel agents for iNHL, with an emphasis on their applicability to older patients.

  8. De-Trending K2 Exoplanet Targets for High Spacecraft Motion

    NASA Astrophysics Data System (ADS)

    Saunders, Nicholas; Luger, Rodrigo; Barnes, Rory

    2018-01-01

    After the failure of two reaction wheels, the Kepler space telescope lost its fine pointing ability and entered a new phase of observation, K2. Targets observed by K2 have high motion relative to the detector and K2 light curves have higher noise than Kepler observations. Despite the increased noise, systematics removal pipelines such as K2SFF and EVEREST have enabled continued high-precision transiting planet science with the telescope, resulting in the detection of hundreds of new exoplanets. However, as the spacecraft begins to run out of fuel, sputtering will drive large and random variations in pointing that can prevent detection of exoplanets during the remaining 5 campaigns. In general, higher motion will spread the stellar point spread function (PSF) across more pixels during a campaign, which increases the number of degrees of freedom in the noise component and significantly reduces the de-trending power of traditional systematics removal methods. We use a model of the Kepler CCD combined with pixel-level information of a large number of stars across the detector to improve the performance of the EVEREST pipeline at high motion. We also consider the problem of increased crowding for static apertures in the high-motion regime and develop pixel response function (PRF)-fitting techniques to mitigate contamination and maximize the de-trending power. We assess the performance of our code by simulating sputtering events and assessing exoplanet detection efficiency with transit injection/recovery tests. We find that targets with roll amplitudes of up to 8 pixels, approximately 15 times K2 roll, can be de-trended within 2 to 3 factors of current K2 photometric precision for stars up to 14th magnitude. Achieved recovery precision allows detection of small planets around 11th and 12th magnitude stars. These methods can be applied to the light curves of K2 targets for existing and future campaigns to ensure that precision exoplanet science can still be performed

  9. Phosphatidylinositol 3-Kinase (PI3K) δ blockade increases genomic instability in B cells

    PubMed Central

    Compagno, Mara; Wang, Qi; Pighi, Chiara; Cheong, Taek-Chin; Meng, Fei-Long; Poggio, Teresa; Yeap, Leng-Siew; Karaca, Elif; Blasco, Rafael B.; Langellotto, Fernanda; Ambrogio, Chiara; Voena, Claudia; Wiestner, Adrian; Kasar, Siddha N.; Brown, Jennifer R.; Sun, Jing; Wu, Catherine J.; Gostissa, Monica; Alt, Frederick W.; Chiarle, Roberto

    2017-01-01

    Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients. PMID:28199309

  10. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Liang; Liao, Qi; Tang, Qiang

    2016-02-12

    Accumulating evidence reveals that Id-1 is upregulated and functions as a potential tumor promoter in several human cancer types. However, the role of Id-1 in osteosarcoma (OS) is unknown. In present study, we found that Id-1 expression was elevated in OS tissues than adjacent normal bone tissues. More importantly, we demonstrated that overexpression of Id-1 is significantly correlated with tumor progression and poor survival in OS patients. Furthermore, increased expression of Id-1 was observed in OS cell lines and ectopic expression of Id-1 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas knockdown of Id-1 suppressed OS cellsmore » growth. Moreover, our experimental data revealed that Id-1 promotes cell proliferation by facilitating cell cycle progression and inhibits cell apoptosis. Mechanistically, the effects of Id-1 in OS cells is at least partly through activation of PI3K/Akt signaling pathway. Therefore, we identified a tumorigenic role of Id-1 in OS and suggested a potential therapeutic target for OS patients. - Highlights: • Id-1 expression is positively correlated in OS patients with poor prognosis. • Overexpression of Id-1 promotes OS cell growth in vitro and in vivo. • Id-1induces cell cycle progression and inhibits cell apoptosis. • PI3K/Akt signaling pathway contributed to the oncogenic effects of Id-1 in OS cells.« less

  11. Dissecting the mechanism of histone deacetylase inhibitors to enhance the activity of zinc finger nucleases delivered by integrase-defective lentiviral vectors.

    PubMed

    Joglekar, Alok V; Stein, Libby; Ho, Michelle; Hoban, Megan D; Hollis, Roger P; Kohn, Donald B

    2014-07-01

    Integrase-defective lentiviral vectors (IDLVs) have been of limited success in the delivery of zinc finger nucleases (ZFNs) to human cells, due to low expression. A reason for reduced gene expression has been proposed to involve the epigenetic silencing of vector genomes, carried out primarily by histone deacetylases (HDACs). In this study, we tested valproic acid (VPA), a known HDAC inhibitor (HDACi), for its ability to increase transgene expression from IDLVs, especially in the context of ZFN delivery. Using ZFNs targeting the human adenosine deaminase (ADA) gene in K562 cells, we demonstrated that treatment with VPA enhanced ZFN expression by up to 3-fold, resulting in improved allelic disruption at the ADA locus. Furthermore, three other U.S. Food and Drug Administration-approved HDACis (vorinostat, givinostat, and trichostatin-A) exhibited a similar effect on the activity of ZFN-IDLVs in K562 cells. In primary human CD34(+) cells, VPA- and vorinostat-treated cells showed higher levels of expression of both green fluorescent protein (GFP) as well as ZFNs from IDLVs. A major mechanism for the effects of HDAC inhibitors on improving expression was from their modulation of the cell cycle, and the influence of heterochromatinization was determined to be a lesser contributing factor.

  12. Ellagic Acid Enhances the Efficacy of PI3K Inhibitor GDC-0941 in Breast Cancer Cells.

    PubMed

    Shi, L; Gao, X; Li, X; Jiang, N; Luo, F; Gu, C; Chen, M; Cheng, H; Liu, P

    2015-01-01

    The fact that the phosphatidylinositol 3 kinase (PI3K) signaling pathway is one of the most frequently deregulated signaling networks has triggered intensive efforts in the development of PI3K pathway inhibitors. However, recent clinical trial data have shown only limited activity of PI3K inhibitors at tolerated doses. Thus, there is an urgent need to identify rational combination therapy to improve the efficacy of PI3K-targeted cancer treatment. In this study, we investigated if dietary compound ellagic acid (EA) could improve the therapeutic efficacy of PI3K inhibitor GDC-0941 in breast cancer. Specifically, using a panel of breast cancer cell lines, we showed that combined use of EA and GDC-0941 significantly inhibited cell growth under attached and detached conditions, blocked migration and invasion in vitro as well as tumor initiation and metastasis in vivo. Furthermore, we found that EA promoted apoptosis and further reduced AKT/mTOR activation in GDC-0941- treated breast cancer cells. Together, our data suggest that EA may be a safe and effective agent to boost the efficacy of PI3K-directed breast cancer therapy and that such drug combination may merit further clinical investigation.

  13. Characterization of glial cell K-Cl cotransport.

    PubMed

    Gagnon, Kenneth B E; Adragna, Norma C; Fyffe, Robert E W; Lauf, Peter K

    2007-01-01

    The molecular mechanism of K-Cl cotransport (KCC) consists of at least 4 isoforms, KCC 1, 2, 3, and 4 which, in multiple combinations, exist in most cells, including erythrocytes and neuronal cells. We utilized reverse-transcriptase-polymerase chain reaction (RT-PCR) and ion flux studies to characterize KCC activity in an immortalized in vitro cell model for fibrous astrocytes, the rat C6 glioblastoma cell. Isoform-specific sets of oligonucleotide primers were synthesized for NKCC1, KCC1, KCC2, KCC3, KCC4, and also for NKCC1 and actin. K-Cl cotransport activity was determined by measuring either the furosemide-sensitive, or the Cl(-)-dependent bumetanide-insensitive Rb(+) (a K(+) congener) influx in the presence of the Na/K pump inhibitor ouabain. Rb(+) influx was measured at a fixed external Cl concentrations, [Cl(-)](e), as a function of varying external Rb concentrations, [Rb(+)](e), and at a fixed [Rb(+)](e) as a function of varying [Cl(-)](e), and with equimolar Cl replacement by anions of the chaotropic series. RT-PCR of C6 glioblastoma (C6) cells identified mRNA for three KCC isoforms (1, 3, and 4). NKCC1 mRNA was also detected. The apparent K(m) for KCC-mediated Rb(+) influx was 15 mM [Rb(+)](e), and V(max) 12.5 nmol Rb(+) * mg protein(-1) * minute(-1). The calculated apparent K(m) for external Cl(-) was 13 mM and V(max) 14.4 nmol Rb(+) * mg protein(-1) * minute(-1). The anion selectivity sequence of the furosemide-sensitive Rb(+) influx was Cl(-)>Br-=NO(3)(-)>I(-)=SCN(-)>Sfm(-) (sulfamate). Established activators of K-Cl cotransport, hyposmotic shock and N-ethylmaleimide (NEM) pretreatment, stimulated furosemide-sensitive Rb(+) influx. A ñ50% NEM-induced loss of intracellular K(+) was prevented by furosemide. We have identified by RT-PCR the presence of three distinct KCC isoforms (1, 3, and 4) in rat C6 glioblastoma cells, and functionally characterized the anion selectivity and kinetics of their collective sodium-independent cation-chloride cotransport

  14. Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts.

    PubMed

    Wang, Li-Ping; Wang, Yan; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2013-05-15

    The proliferation of cardiac fibroblasts is implicated in the pathogenesis of myocardial remodeling and fibrosis. Intermediate-conductance calcium-activated K⁺ channels (K(Ca)3.1 channels) have important roles in cell proliferation. However, it is unknown whether angiotensin II (Ang II), a potent profibrotic molecule, would regulate K(Ca)3.1 channels in cardiac fibroblasts and participate in cell proliferation. In the present study, we investigated whether K(Ca)3.1 channels were regulated by Ang II, and how the channel activity mediated cell proliferation in cultured adult rat cardiac fibroblasts using electrophysiology and biochemical approaches. It was found that mRNA, protein, and current density of K(Ca)3.1 channels were greatly enhanced in cultured cardiac fibroblasts treated with 1 μM Ang II, and the effects were countered by the angiotensin type 1 receptor (AT₁R) blocker losartan, the p38-MAPK inhibitor SB203580, the ERK1/2 inhibitor PD98059, and the PI3K/Akt inhibitor LY294002. Ang II stimulated cell proliferation and the effect was antagonized by the K(Ca)3.1 blocker TRAM-34 and siRNA targeting K(Ca)3.1. In addition, Ang II-induced increase of K(Ca)3.1 expression was attenuated by transfection of activator protein-1 (AP-1) decoy oligodeoxynucleotides. These results demonstrate for the first time that Ang II stimulates cell proliferation mediated by upregulating K(Ca)3.1 channels via interacting with the AT₁R and activating AP-1 complex through ERK1/2, p38-MAPK and PI3K/Akt signaling pathways in cultured adult rat cardiac fibroblasts. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  15. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells

    PubMed Central

    Chauveau, Anne; Aucher, Anne; Eissmann, Philipp; Vivier, Eric; Davis, Daniel M.

    2010-01-01

    Membrane nanotubes are membranous tethers that physically link cell bodies over long distances. Here, we present evidence that nanotubes allow human natural killer (NK) cells to interact functionally with target cells over long distances. Nanotubes were formed when NK cells contacted target cells and moved apart. The frequency of nanotube formation was dependent on the number of receptor/ligand interactions and increased on NK cell activation. Most importantly, NK cell nanotubes contained a submicron scale junction where proteins accumulated, including DAP10, the signaling adaptor that associates with the activating receptor NKG2D, and MHC class I chain-related protein A (MICA), a cognate ligand for NKG2D, as occurs at close intercellular synapses between NK cells and target cells. Quantitative live-cell fluorescence imaging suggested that MICA accumulated at small nanotube synapses in sufficient numbers to trigger cell activation. In addition, tyrosine-phosphorylated proteins and Vav-1 accumulated at such junctions. Functionally, nanotubes could aid the lysis of distant target cells either directly or by moving target cells along the nanotube path into close contact for lysis via a conventional immune synapse. Target cells moving along the nanotube path were commonly polarized such that their uropods faced the direction of movement. This is the opposite polarization than for normal cell migration, implying that nanotubes can specifically drive target cell movement. Finally, target cells that remained connected to an NK cell by a nanotube were frequently lysed, whereas removing the nanotube using a micromanipulator reduced lysis of these target cells. PMID:20212116

  16. MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway.

    PubMed

    Long, Zi-Wen; Wu, Jiang-Hong; Hong, Cai-; Wang, Ya-Nong; Zhou, Ye

    2018-06-14

    Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR- 374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR- 374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

  17. Diffusion tensor driven contour closing for cell microinjection targeting.

    PubMed

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2010-01-01

    This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.

  18. Basolateral membrane K+ channels in renal epithelial cells

    PubMed Central

    Devor, Daniel C.

    2012-01-01

    The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K+ channels play critical roles in normal physiology. Over 90 different genes for K+ channels have been identified in the human genome. Epithelial K+ channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K+ channels is to recycle K+ across the basolateral membrane for proper function of the Na+-K+-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K+ channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a “K+ channel gene family” approach in presenting the representative basolateral K+ channels of the nephron. The basolateral K+ channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. PMID:22338089

  19. Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells.

    PubMed

    Shrotriya, Sangeeta; Deep, Gagan; Gu, Mallikarjuna; Kaur, Manjinder; Jain, Anil K; Inturi, Swetha; Agarwal, Rajesh; Agarwal, Chapla

    2012-04-01

    Head and neck squamous cell carcinoma (HNSCC) accounts for 6% of all malignancies in USA and unfortunately the recurrence of secondary primary tumors and resistance against conventional treatments decrease the overall 5 year survival rate in HNSCC patients. Thus, additional approaches are needed to control HNSCC. Here, for the first time, employing human HNSCC Detroit 562 and FaDu cells as well as normal human epidermal keratinocytes, we investigate grape seed extract (GSE) efficacy and associated mechanism in both cell culture and nude mice xenografts. GSE selectively inhibited the growth and caused cell cycle arrest and apoptotic death in both Detroit 562 and FaDu cells by activating DNA damage checkpoint cascade, including ataxia telangiectasia mutated/ataxia telangiectasia-Rad3-related-checkpoint kinase 1/2-cell division cycle 25C as well as caspases 8, 9 and 3. Consistent with these results, GSE treatment resulted in a strong DNA damage and a decrease in the levels of DNA repair molecules breast cancer gene 1 and Rad51 and DNA repair foci. GSE-caused accumulation of intracellular reactive oxygen species was identified as a major mechanism of its effect for growth inhibition, DNA damage and apoptosis, which was remarkably reversed by antioxidant N-acetylcysteine. GSE feeding to nude mice decreased Detroit 562 and FaDu xenograft tumor growth by 67 and 65% (P < 0.001), respectively. In immunohistochemical analysis, xenografts from GSE-fed groups showed decreased proliferation but increased DNA damage and apoptosis. Together, these findings show that GSE targets both DNA damage and repair and provide mechanistic insights for its efficacy selectively against HNSCC both in cell culture and mouse xenograft, supporting its translational potential against HNSCC.

  20. K+ channels of Müller glial cells in retinal disorders.

    PubMed

    Gao, Feng; Xu, Linjie; Zhao, Yuan; Sun, Xinghuai; Wang, Zhongfeng

    2018-02-01

    Müller cell is the major type glial cell in the vertebrate retina. Müller cells express various types of K+ channels, such as inwardly rectifying K+ (Kir) channels, big conductance Ca2+-activated K+ (BKCa) channels, delayed rectifier K+ channels (KDR), and transient A-type K+ channels. These K+ channels play important roles in maintaining physiological functions of Müller cells. Under some retinal pathological conditions, the changed expression and functions of K+ channels may contribute to retinal pathogenesis. In this article, we reviewed the physiological properties of K+ channels in retinal Müller cells and the functional changes of these channels in retinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.