Sample records for ka current pulses

  1. 20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies

    NASA Technical Reports Server (NTRS)

    Posta, S. J.; Michels, C. J.

    1973-01-01

    A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.

  2. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.

    2016-08-15

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  3. A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.

    2016-10-01

    We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.

  4. A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson

    2009-12-01

    Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.

  5. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  6. A Reactor Development Scenario for the FuZE Sheared-Flow Stabilized Z-pinch

    NASA Astrophysics Data System (ADS)

    McLean, Harry S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.

    2017-10-01

    We present a conceptual design, scaling calculations, and development path for a pulsed fusion reactor based on a flow-stabilized Z-pinch. Experiments performed on the ZaP and ZaP-HD devices have largely demonstrated the basic physics of sheared-flow stabilization at pinch currents up to 100 kA. Initial experiments on the FuZE device, a high-power upgrade of ZaP, have achieved 20 usec of stability at pinch current 100-200 kA and pinch diameter few mm for a pinch length of 50 cm. Scaling calculations based on a quasi-steady-state power balance show that extending stable duration to 100 usec at a pinch current of 1.5 MA and pinch length of 50 cm, results in a reactor plant Q 5. Future performance milestones are proposed for pinch currents of: 300 kA, where Te and Ti are calculated to exceed 1-2 keV; 700 kA, where DT fusion power would be expected to exceed pinch input power; and 1 MA, where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPA-E and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734770.

  7. Test results of 12/18 kA ReBCO coated conductor current leads

    NASA Astrophysics Data System (ADS)

    Kovalev, I. A.; Surin, M. I.; Naumov, A. V.; Novikov, M. S.; Novikov, S. I.; Ilin, A. A.; Polyakov, A. V.; Scherbakov, V. I.; Shutova, D. I.

    2017-07-01

    A pair of hybrid current leads (brass + stacked & soldered ReBCO tapes) rated for 12 kA in steady state and for up to 18 kA at pulsed over current conditions was designed, developed and tested at NRC ;Kurchatov Institute; (NRC ;KI;). During the experiment at LN2 temperature, the current leads (CLs) were successfully charged with 18 kA at 100 A/s ramp rate. To date, as far as we know, this is the highest current capacity achieved for 2G HTS current leads. The feasibility of ;stack-and-soldering technique; for 10 kA+ class coated conductor CLs for accelerators and fusion was demonstrated. This paper gives an overview of the leads design and presents the preliminary test results. Detailed studies of magnetic properties and current sharing process for the stacked and staggered HTS joints are also reported.

  8. 100-kA vacuum current breaker of a modular design

    NASA Astrophysics Data System (ADS)

    Ivanov, V. P.; Vozdvijenskii, V. A.; Jagnov, V. A.; Solodovnikov, S. G.; Mazulin, A. V.; Ryjkov, V. M.

    1994-05-01

    Direct current breaker of a modular design is developed for the strong field tokamak power supply system. The power supply system comprises four 800 MW alternative current generators with 4 GJ flywheels, thyristor rectifiers providing inductive stores pumping by a current up to 100 kA for 1 - 4 sec. To form current pulses of various shapes in the tokamak windings current breakers are used with either pneumatic or explosive drive, at a current switching synchronously of not worse than 100 mks. Current breakers of these types require that the current conducting elements be replaced after each shot. For recent years vacuum arc quenching chambers with an axial magnetic field are successfully employed as repetitive performance current breakers, basically for currents up to 40 kA. In the report some results of researches of a vacuum switch modular are presented which we used as prototype switch for currents of the order of 100 kA.

  9. Propagation of current pulses with an amplitude of up to 85 kA in soil over distances of several tens of meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, V. P.; Fortov, V. E.; Bykov, Yu. A.

    Conditions for the propagation in soil of current pulses with an amplitude of up to 85 kA and temporal characteristics typical of a lightning stroke are studied with the help of a specially designed mobile test complex on the basis of a 4-MJ capacitive energy storage with an output voltage of up to 2 MV. In contrast to the conventional opinion that the ionization processes in highly conductive soils are weakly pronounced, a dramatic reduction in the grounding resistance at a resistivity of about 100 Ω m and currents above 10 kA was observed. A time interval in which themore » grounding resistance is determined by the skin effect in soil is revealed. It is shown that the grounding resistance continues to decrease behind the front of the current pulse due to the continuous growth of spark channels in soil. Time variations in the grounding resistance cannot be related to the formation of a continuous ionization zone near the grounding electrodes and are explained only by the simultaneous growth of several long spark channels extending from the grounding device.« less

  10. High current plasma electron emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiksel, G.; Almagri, A.F.; Craig, D.

    1995-07-01

    A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current,more » small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications.« less

  11. A study pertaining to inertial energy storage machine designs for space applications

    NASA Technical Reports Server (NTRS)

    Zowarka, R. C.

    1981-01-01

    The preliminary design of a counterrotating fast discharge homopolar generator (HPG) and a counterrotating active rotary flux compressor (CARFC) for space application is reported. The HPG is a counterrotating spool-type homopolar with superconducting field coil excitation. It delivers a 20-ms, 145-kJ pulse to a magnetoplasmahydrodynamic thruster. The peak output current is 42.7 kA at 240 V. After 20 ms the current is 29.7 kA at 167 V. The CARFC delivers ten 50-kJ, 250 microsecond pulses at 50-ms interval to six Xenon flash lamps pumping an Nd glass laser. The flux compressor is counterrotating for torque compensation. Current is started in the machine with a 5-kV, 5-kJ pulse-charged capacitor. Both designs were based upon demonstrated technology. The sensitivity of the designs to technology that may be available in five to ten years was determined.

  12. Evidence of negative leaders which precede fast rise ICC pulses of upward

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Akita, M.; Morimoto, T.; Ushio, T.; Kawasaki, Z.; Wang, D.; Takagi, N.

    2008-12-01

    During winter thunderstorm season in Japan, a lightning observation campaign was conducted with using a VHF broadband digital interferometer (DITF), a capacitive antenna, and Rogowski coils to study the charge transfer mechanism associated with ICC pulses of upward lightning. All the detection systems recorded one upward negative lightning stroke hitting a lightning protection tower. The upward lightning consists of only the Initial Stage (IS) with one upward positive leader and six ICC pulses. The six ICC pulses are sub-classified clearly into two types according to current pulse shapes. The type 1 ICC pulses have a higher geometric mean (GM) current peak of 17 kA and a shorter GM 10-90% risetime of 8.9 μs, while the type 2 ICC pulses have a lower GM current peak of 0.34 kA and longer GM 10-90% risetime of 55 μs. The type 1 ICC pulses have the preceding negative leaders connecting to the channel of the continuing current, while the type 2 ICC pulses have no clear preceding negative leader. These negative leaders prior to the type 1 ICC pulses probably caused the current increases of the ICC pulses, which means that the negative leaders created the channels for the ICC pulses. The height of the space charge transferred by one of the type 1 ICC pulses was estimated about 700 m above sea level at most. This observation result is the first evidence to show explicitly the existence of the negative leaders prior to the fast rise ICC pulse. Furthermore, the result shows that space charge could exist at a low attitude such as 700 m above sea level. This fact is one of the reasons why upward lightning occurs even from rather low structures during winter thunderstorm season in Japan.

  13. Long pulse EBW start-up experiments in MAST

    DOE PAGES

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; ...

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  14. Long pulse EBW start-up experiments in MAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  15. Long Pulse EBW Start-up Experiments in MAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, V. F.; Bigelow, Tim S; Caughman, J. B. O.

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (0) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  16. Characteristics of NLDN-Reported Radio Frequency Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Nag, A.; Murphy, M. J.; Briggs, M. S.; Dwyer, J. R.; Cramer, E.; Stanbro, M.; Roberts, O. J.; Rassoul, H.

    2017-12-01

    Electric and magnetic field signals in the radio frequency range associated with Terrestrial Gamma-ray Flashes (TGFs) have become important measurements for studying this high-energy atmospheric phenomenon. These signals can be used to geolocate the source of TGFs, but they also provide insights into the TGF production mechanism, and the relationship between particle fluxes and lightning. In this study, we analyze 32 TGFs detected by the Fermi Gamma-ray Burst Monitor (GBM) occurring in 2014-2016 in conjunction with data from the U.S. National Lightning Detection Network (NLDN). We examine the characteristics of magnetic field waveforms measured by NLDN sensors for 48 pulses occurring within 5 ms of the peak-time of the gamma-ray photon flux. The -3 dB bandwidth of the NLDN sensors are from about 400 Hz to 400 KHz. For 15 (out of 32) TGFs, the associated NLDN pulse occurred almost simultaneously with (that is, within 300 μs of) the TGF. It is possible that these near-simultaneous low frequency magnetic field pulses were produced by relativistic electron beams. The median time interval between the beginning of these near-simultaneous NLDN pulses and the peak-times of the TGF flux is 38 μs. 3 out of 16 ( 19%) of these pulses had negative initial polarity. The absolute value of NLDN-estimated peak currents, which can be viewed as a quantity proportional to the peak magnetic radiation field of these pulses, ranges from 17 kA to 166 kA, with the median being 32 kA. Twelve pulses had peak currents less than 50 kA. Additionally, we will compare the characteristics of GBM-reported gamma-ray signatures of the two categories of TGFs, those with a near-simultaneous NLDN-detected pulse and those with no such pulse (but with other pulses detected by the NLDN occurring within 5 ms of the TGF). Also, one of the TGFs occurred within the coverage region of the Kennedy Space Center Lightning Mapping Array (LMA). We will examine in detail the LMA, NLDN, and NEXRAD radar data for this TGF.

  17. A 16 MJ compact pulsed power system for electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  18. A 16 MJ compact pulsed power system for electromagnetic launch.

    PubMed

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  19. Measuring 20-100 T B-fields using Zeeman splitting of sodium emission lines on a 500 kA pulsed power machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banasek, J. T., E-mail: jtb254@cornell.edu; Engelbrecht, J. T.; Pikuz, S. A.

    2016-11-15

    We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with amore » return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.« less

  20. Characteristics of Currents and Electric Fields Associated with the Initial Stage of Upward Lightning

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Nag, A.; Diendorfer, G.; Pichler, H.; Schulz, W.

    2017-12-01

    There is increasing interest in understanding processes associated with the initiation of upward lightning from tall structures. Characterization of such processes is essential for the development of appropriate models. We examine current and electric field waveforms for 15 negative upward flashes occurring in 2007-2009 initiated from the Gaisberg Tower located in Salzburg, Austria. Current was measured at the top of the tower using a 0.25 mΩ shunt. Electric field was measured simultaneously at close (170 m from the tower) and far (79 km from the tower in 2007 and 109 km in 2008-2009) distances. The initial stage (IS) of these flashes comprised of relatively slowly varying "background" current (having durations ranging from 132 to 692 ms), with faster, more impulsive current variations (pulses having durations ranging from 4.7 µs to 22.9 ms) overlaid on this background current. In five of the 15 (33%) flashes, this IS background current was negative while in the other ten (67%) flashes, the current was bipolar (changing between negative and positive values). 150 current pulses occurred during the IS of these 15 flashes, of which 28 (19%) were positive bipolar (positive initial polarity with a negative opposite polarity overshoot), 5 (3.3%) were positive unipolar (positive initial polarity with no opposite polarity overshoot), and 117 (78%) were negative unipolar. No negative bipolar pulses were found. The median peak current and risetime for the 28 bipolar pulses were 0.74 kA and 2.8 µs, respectively, and those for the 122 unipolar pulses were 0.87 kA and 70 µs, respectively. Generally speaking, majority of the pulses occurring at the beginning of the initial stage were lower-amplitude positive bipolar, while higher-amplitude unipolar pulses were more likely to occur at later times. These 150 IS current pulses produced 133 detectable electric field change signatures at the near station and 59 at the far station (all recorded at 79 km in 12 flashes occurring in 2007). We will examine in detail the characteristics of these electric field pulses in order to gain insights into the mechanisms of the underlying processes.

  1. Progress of long pulse operation with high performance plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young; Kstar Team

    2015-11-01

    Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.

  2. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system.

    PubMed

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10 9 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  3. Pulse power applications of silicon diodes in EML capacitive pulsers

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Rolf; McNab, Ian; Dobbie, Clyde; Bernhardt, Tom; Puterbaugh, Robert; Levine, Frank; Coradeschi, Tom; Rinaldi, Vito

    1993-01-01

    Crowbar diodes are used for increasing the energy transfer from capacitive pulse forming networks. They also prevent voltage reversal on the energy storage capacitors. 52 mm diameter diodes with a 5 kV reverse blocking voltage, rated 40 kA were successfully used for the 32 MJ SSG rail gun. An uprated diode with increased current capability and a 15 kV reverse blocking voltage has been developed. Transient thermal analysis has predicted the current ratings for different pulse length. Analysis verification is obtained from destructive testing.

  4. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans.

    PubMed

    Hutchison, William; Fusillo, Raffaella; Pyle, David M; Mather, Tamsin A; Blundy, Jon D; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E; Brooker, Richard A; Barfod, Dan N; Calvert, Andrew T

    2016-10-18

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km 3 ) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

  5. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    PubMed Central

    Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.

    2016-01-01

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations. PMID:27754479

  6. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  7. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  8. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE PAGES

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao; ...

    2018-01-03

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  9. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  10. Solenoid-free plasma startup in NSTX using transient CHI

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Mueller, D.; Nelson, B. A.; Bell, M. G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Maingi, R.; Maqueda, R.; Menard, J.; Nagata, M.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.; Taylor, G.

    2009-06-01

    Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

  11. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.

    PubMed

    Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  12. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltagemore » protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.« less

  13. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  14. Design and Performance Estimates of an Ablative Gallium Electromagnetic Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.

    2012-01-01

    The present study details the high-power condensable propellant research being conducted at NASA Glenn Research Center. The gallium electromagnetic thruster is an ablative coaxial accelerator designed to operate at arc discharge currents in the range of 10-25 kA. The thruster is driven by a four-parallel line pulse forming network capable of producing a 250 microsec pulse with a 60 kA amplitude. A torsional-type thrust stand is used to measure the impulse of a coaxial GEM thruster. Tests are conducted in a vacuum chamber 1.5 m in diameter and 4.5 m long with a background pressure of 2 microtorr. Electromagnetic scaling calculations predict a thruster efficiency of 50% at a specific impulse of 2800 seconds.

  15. Diagnostics for a 1.2 kA, 1 MeV, electron induction injector

    NASA Astrophysics Data System (ADS)

    Houck, T. L.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Lidia, S. M.; Vanecek, D. L.; Westenskow, G. A.; Yu, S. S.

    1998-12-01

    We are constructing a 1.2 kA, 1 MeV, electron induction injector as part of the RTA program, a collaborative effort between LLNL and LBNL to develop relativistic klystrons for Two-Beam Accelerator applications. The RTA injector will also be used in the development of a high-gradient, low-emittance, electron source and beam diagnostics for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility. The electron source will be a 3.5″-diameter, thermionic, flat-surface, m-type cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150 ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Precise measurement of the beam parameters is required so that performance of the RTA injector can be confidently scaled to the 4 kA, 3 MeV, and 2-microsecond pulse parameters of the DARHT injector. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepperpot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.

  16. Atomization and merging of two Al and W wires driven by a 1 kA, 10 ns current pulse

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Xingwen; Lu, Yihan; Lebedev, S. V.; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2016-11-01

    Possibility of preconditioning of wires in wire array Z-pinch loads by an auxiliary low-level current pulse was investigated in experiments with two aluminum or two polyimide-coated tungsten wires. It was found that the application of a 1 kA, 10 ns current pulse could convert all the length of the Al wires (1 cm long, 15 μm diameter) and ˜70% of length of the W wires (1 cm long, 15 μm diameter, 2 μm polyimide coating) into a gaseous state via ohmic heating. The expansion and merging of the wires, positioned at separations of 1-3 mm, were investigated with two-wavelength (532 nm and 1064 nm) laser interferometry. The gasified wire expanded freely in a vacuum and its density distribution at different times could be well described using an analytic model for the expansion of the gas into vacuum. Under an energy deposition around its atomization enthalpy of the wire material, the aluminum vapor column had an expansion velocity of 5-7 km/s, larger than the value of ˜4 km/s from tungsten wires. The dynamic atomic polarizabilities of tungsten for 532 nm and 1064 nm were also estimated.

  17. Ionization of Xenon to the Nickel-Like Stage and Beyond in Micro-Capillary Plasma Columns Heated by Ultrafast Current Pulses

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Grisham, M.; Li, J.; Tomasel, F. G.; Shlyapstsev, V. N.; Busquet, M.; Woolston, M.; Rocca, J. J.

    Homogeneous plasma columns with ionization levels typical of MA discharges were created by rapidly heating gas-filled 520 µm diameter channels with ns rise-time current pulses of unusually low amplitude, 40 kA. These conditions allow the generation of high aspect ratio (eg. > 300:1) plasma columns with very high degrees of ionization (e.g. Ni-like Xenon) of interest for soft x-ray lasers below λ = 10 nm. Spectra and simulations of plasmas generated in 520 µm diameter alumina capillaries driven by 35-40 kA current pulses with 4 ns rise time were obtained for discharges in Xenon and Neon discharges. The first shows the presence of lines corresponding to ionization stages up to Fe-like Xe. The latter show that Al impurities from the walls are ionized to the H-like and He-like stages. He-like Al spectra containing the resonance line significantly broaden by opacity, the intercombination line, and Li-like satellites are analyzed. For Xenon discharges, the spectral lines from the Ni-like transitions the 3d94d (3/2, 3/2)J = 0 to the 3d94p(5/2, 3/2)J = 1 and to 3d94p(3/2, 1/2)J = 1 are observed.

  18. A transportable 50 kA dual mode lightning simulator

    NASA Technical Reports Server (NTRS)

    Salisbury, K.; Lloyd, S.; Chen, Y. G.

    1991-01-01

    A transportable lightning simulator was designed, built and tested, which is capable of delivering more than 50 kA to an 8 micro-H test object. The simulator was designed to be a versatile device in the lightning laboratory while meeting the requirements of MIL-STD-1757A for component E current waveforms. The system is capable of operating in either a ringing mode with a Q greater than 5 and a nominal frequency of 160 kHz, or a unipolar mode with no hardware configuration changes. The ringing mode is obtained by the LCR series circuit formed by the pulse generator and test object. The unipolar mode is obtained by closing an electrically triggered crowbar switch at peak current. The simulator exceeds the peak current requirement and rate of rise requirements for MIL-STD-1757A in both the ringing and unipolar modes. The pulse half width in the unipolar mode is in excess of 50 microsec and the action is in excess of 10(exp 5) A(exp 2)s. The design, component values, and test results are presented.

  19. High Current Systems for HyperV and PLX Plasma Railguns

    NASA Astrophysics Data System (ADS)

    Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.

    2011-10-01

    HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.

  20. Characterization of an electrothermal plasma source for fusion transient simulations

    NASA Astrophysics Data System (ADS)

    Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2018-01-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.

  1. Influence of configuration effects on multiple burst simulation testing

    NASA Technical Reports Server (NTRS)

    Emanuely, J. L.; Cantaloube, M.

    1991-01-01

    During the initial phase of a lightning strike attachment on an aircraft, fast current pulses (rise time approximately 100 ns, I(sub max) approximately few kA) were measured, which can create equipment upsets or disturbances. This threat, made of repetitive pulses and usually called 'multiple bursts', can be reproduced at the equipment interfaces assuming that the transfer function of the structure was determined. The normalized waveform H (10 kA - 100 ns rise time) is the reference for one of these pulses. The importance of the coaxial return path termination for the injection of the wave H is emphasized. According to the constitutive materials of the test bed, and the adaptation of the line, the natural oscillations of the structure and the internal coupling mechanisms can be modified. As a conclusion, various test configurations in relation with the nature of the test bed and the characteristics of the generator are detailed, for a more accurate ground simulation of the attachment phase.

  2. Deuteron flux production in a small high-voltage high-current diode with pulsed magnetic insulation

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Isaev, A. A.; Kozlovskii, K. I.; Shatokhin, V. L.

    2017-06-01

    The results of new studies on the production of accelerated deuteron fluxes in a small ion diode with pulsed magnetic insulation of electrons have been presented. A plasma anode of the diode has been formed under the action of a 1.06 μm laser radiation with a pulse duration of 10 ns, a pulse energy of up to 1 J, and a power density on the target of 5 × 1015 W m-2. An accelerating voltage of up to 300 kV has been created using an Arkad'ev-Marx pulsed voltage generator with a stored energy of 50 J and a repetition rate of 1 Hz. A magnetic field of higher than 0.6 T for insulating electrons has been formed by a current pulse of the first cascade of the generator in a spiral line before a conical cascade. Stable deuteron acceleration to 300 keV with a current of up to 1.5 kA and a pulse duration of 0.3 μs has been achieved.

  3. Preconditioned wire array Z-pinches driven by a double pulse current generator

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Lu, Yihan; Sun, Fengju; Li, Xingwen; Jiang, Xiaofeng; Wang, Zhiguo; Zhang, Daoyuan; Qiu, Aici; Lebedev, Sergey

    2018-07-01

    Suppression of the core-corona structure and wire ablation in wire array Z-pinches is investigated using a novel double pulse current generator ‘Qin-1’ facility. The ‘Qin-1’ facility allows coupling a ∼10 kA 20 ns prepulse generator with a ∼0.8 MA 160 ns main current generator. The tailored prepulse current preheats wires to a gaseous state and the time interval between the prepulse and the main current pulse allows formation of a more uniform mass distribution for the implosion. The implosion of a gasified two aluminum-wire array showed no ablation phase and allowed all array mass to participate in the implosion. The initial perturbations formed from the inhomogeneous ablation were suppressed, however, the magneto Rayleigh–Taylor (MRT) instability during the implosion was still significant and further researches on the generation and development of the MRT instabilities of this gasified wire array are needed.

  4. Test results of a 20 kA high temperature superconductor current lead using REBCO tapes

    NASA Astrophysics Data System (ADS)

    Heller, R.; Fietz, W. H.; Gröner, F.; Heiduk, M.; Hollik, M.; Lange, C.; Lietzow, R.

    2018-05-01

    The Karlsruhe Institute of Technology has developed a 20 kA high temperature superconductor (HTS) current lead (CL) using the second generation material REBCO, as industry worldwide concentrate on the production of this material. The aim was to demonstrate the possibility of replacing the Bi-2223/AgAu tapes by REBCO tapes, while for easy comparison of results, all other components are copies of the 20 kA HTS CL manufactured for the satellite tokamak JT-60SA. After the manufacture of all CL components including the newly developed REBCO module, the assembly of the CL has been executed at KIT and an experiment has been carried out in the CuLTKa test facility where the REBCO CL was installed and connected to a JT-60SA CL via a superconducting bus bar. The experiment covers steady state operation up to 20 kA, pulsed operation, measurement of the heat load at 4.5 K end, loss-of-flow-accident simulations, and quench performance studies. Here the results of these tests are reported and directly compared to those of the JT-60SA CL.

  5. 11.72-sq cm Active-Area Wafer Interconnected PiN Diode Pulsed at 64 kA Dissipates 382 J and Exhibits an Action of 1.7 MA(sup 2)-s

    DTIC Science & Technology

    2012-01-30

    calculated action exceeded 1.7 MA2 -s. Preliminary efforts on high voltage diode interconnection have produced quarter wafer interconnected PiN...was packaged in a “hockey-puck” configuration and pulsed to 64 kA, dissipating 382 J with a calculated action exceeding 1.7 MA2 -s. II. FULL...epitaxial layers are utilized. 11.72-cm2 Active-area Wafer Interconnected PiN Diode pulsed at 64 kA dissipates 382 J and exhibits an action of 1.7 MA2 -s

  6. Behavior of a high-temperature superconducting conductor on a round core cable at current ramp rates as high as 67.8 kA s-1 in background fields of up to 19 T

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Bromberg, L.; van der Laan, D. C.; Noyes, P.; Weijers, H. W.

    2016-04-01

    High temperature superconducting (HTS) conductor-on-round-core (CORC®) cables have been developed for use in power transmission systems and large high-field magnets. The use of high-current conductors for large-scale magnets reduces system inductance and limits the peak voltage needed for ramped field operation. A CORC® cable contains a large number of RE-Ba2Cu3O7-δ (RE = rare earth) (REBCO) coated conductors, helically wound in multiple layers on a thin, round former. Large-scale applications, such as fusion and accelerator magnets, require current ramp rates of several kilo-Amperes per second during pulsed operation. This paper presents results that demonstrate the electromagnetic stability of a CORC® cable during transient conditions. Measurements were performed at 4.2 K using a 1.55 m long CORC® cable in background fields of up to 19 T. Repeated current pulses in a background field of 19 T at current ramp rates of up to 67.8 kA s-1 to approximately 90% of the cable’s quench current at that field, did not show any sign of degradation in cable performance due to excessive ac loss or electromagnetic instability. The very high current ramp rates applied during these tests were used to compensate, to the extent possible, the limited cable length accommodated by the test facility, assuming that the measured results could be extrapolated to longer length cables operated at proportionally lower current ramp rates. No shift of the superconducting transition to lower current was measured when the current ramp rate was increased from 25 A s-1 to 67.8 kA s-1. These results demonstrate the viability of CORC® cables for use in low-inductance magnets that operate at moderate to high current ramp rates.

  7. Experimental launcher facility - ELF-I: Design and operation

    NASA Astrophysics Data System (ADS)

    Deis, D. W.; Ross, D. P.

    1982-01-01

    In order to investigate the general area of ultra-high-current density, high-velocity sliding contacts as applied to electromagnetic launcher armatures, a small experimental launcher, ELF-I, has been developed, and preliminary experiments have been performed. The system uses a 36 kJ, 5 kV capacitor bank as a primary pulse power source. When used in conjunction with a 5-microhenry pulse conditioning coil, a 100-kA peak current and 10-ms-wide pulse is obtained. A three-station 150 kV flash X-ray system is operational for obtaining in-bore photographs of the projectiles. Experimental results obtained for both metal and plasma armatures at sliding velocities of up to 1 km/s are discussed with emphasis on armature-rail interactions.

  8. Current sheet characteristics of a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun

    2018-05-01

    The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.

  9. Ferroelectric switch for a high-power Ka-band active pulse compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, Jay L.

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses couldmore » be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.« less

  10. Characterization of an electrothermal plasma source for fusion transient simulations

    DOE PAGES

    Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen; ...

    2018-01-21

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less

  11. Characterization of an electrothermal plasma source for fusion transient simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less

  12. Vacuum Outgassing Behavior of Carbon Nanotube Cathode with High-Intensity Pulsed Electron Emission

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Zhang, Huang; Xia, Liansheng; Liu, Xingguang; Pan, Haifeng; Lv, Lu; Yang, Anmin; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2015-02-01

    Experimental investigations on the vacuum outgassing of a carbon nanotube (CNT) cathode with high-intensity pulsed electron emission on a 2 MeV linear induction accelerator injector are presented. Under the 1.60 MV diode voltage, the CNT cathode could provide 1.67 kA electron beam with the amount of outgassing of about 0.51 Pa·L. It is found that the amount of outgassing, which determines the cathode emission current, depends on the diode voltage and the vacuum.

  13. High-voltage pulsed generator for dynamic fragmentation of rocks

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  14. Burst mode FEL with the ETA-III induction linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasnier, C.J.; Allen, S.L.; Felker, B.

    1993-05-13

    Pulses of 140 GHz microwaves have been produced at a 2 kHz rate using the ETA-III induction linac and IMP wiggler. The accelerator was run in bursts of up to 50 pulses at 6 MeV and greater than 2 kA peak current. A feedback timing control system was used to synchronize acceleration voltage pulses with the electron beam, resulting in sufficient reduction of the corkscrew and energy sweep for efficient FEL operation. Peak microwave power for short bursts was in the range 0.5--1.1 GW, which is comparable to the single-pulse peak power of 0.75--2 GW. FEL bursts of more thanmore » 25 pulses were obtained.« less

  15. Electrical and hydrodynamic characterization of a high current pulsed arc

    NASA Astrophysics Data System (ADS)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  16. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit

    2016-09-15

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuteriummore » filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.« less

  17. Using a small hybrid pulse power transformer unit as component of a high-current opening switch for a railgun

    NASA Astrophysics Data System (ADS)

    Leung, E. M. W.; Bailey, R. E.; Michels, P. H.

    1989-03-01

    The hybrid pulse power transformer (HPPT) is a unique concept utilizing the ultrafast superconducting-to-normal transition process of a superconductor. When used in the form of a hybrid transformer current-zero switch (HTCS), this creates an approach in which the large, high-power, high-current opening switch in a conventional railgun system can be eliminated. This represents an innovative application of superconductivity to pulsed power conditioning required for the Strategic Defense Initiative (SDI). The authors explain the working principles of a 100-KJ unit capable of switching up to 500 kA at a frequency of 0.5 Hz and with a system efficiency of greater than 90 percent. Circuit analysis using a computer code called SPICE PLUS was used to verify the HTCS concept. This concept can be scaled up to applications in the several mega-ampere levels.

  18. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Sedin, A. A.; Tugushev, V. I.

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  19. A Ka-band chirped-pulse Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.

    2012-10-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.

  20. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    PubMed Central

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  1. Coaxial Helicity Injection experiments in NSTX*

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Gates, D.; Mueller, D.; Schaffer, M. J.; Maqueda, R.; Nelson, B. A.; Menard, J.; Soukhanovskii, V.; Paul, S.; Jardin, S.; Skinner, C. H.; Sabbagh, S.; Paoletti, F.; Stutman, D.; Lao, L.; Nagata, M.

    2001-10-01

    Coaxial helicity injection (CHI) can potentially eliminate inductive startup and thus the induction solenoid in spherical tori (ST), thereby greatly improving the ST fusion concept. CHI experiments on NSTX have produced 360 kA of toroidal current using about 25 kA of injector current. These have been produced in the preferred 'narrow flux foot print' condition in pulses that were sustained for 300 ms. A rotating n=1 mode, previously observed in optimized discharges on smaller STs driven by CHI and deemed necessary for transporting edge driven current to the interior of the discharge, has been observed for the first time in NSTX CHI discharges. The flux utilization efficiency continues to be high, approaching 100%. EFIT and TSC codes are being used to assess flux closure. This work is supported by the US DOE contract numbers: DE-AC02-76CH03073 and DE-AC05-00R22725.

  2. REX, a 5-MV pulsed-power source for driving high-brightness electron beam diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, R.L.; Kauppila, T.J.; Ridlon, R.N.

    1991-01-01

    The Relativistic Electron-beam Experiment, or REX accelerator, is a pulsed-power source capable of driving a 100-ohm load at 5 MV, 50 kA, 45 ns (FWHM) with less than a 10-ns rise and 15-ns fall time. This paper describes the pulsed-power modifications, modelling, and extensive measurements on REX to allow it to drive high impedance (100s of ohms) diode loads with a shaped voltage pulse. A major component of REX is the 1.83-m-diam {times} 25.4-cm-thick Lucite insulator with embedded grading rings that separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. Amore » radially tailored, liquid-based resistor provides a stiff voltage source that is insensitive to small variations of the diode current and, in addition, optimizes the electric field stress across the vacuum side of the insulator. The high-current operation of REX employs both multichannel peaking and point-plane diverter switches. This mode reduces the prepulse to less than 2 kV and the postpulse to less than 5% of the energy delivered to the load. Pulse shaping for the present diode load is done through two L-C transmission line filters and a tapered, glycol-based line adjacent to the water PFL and output switch. This has allowed REX to drive a diode producing a 4-MV, 4.5-kA, 55-ns flat-top electron beam with a normalized Lapostolle emittance of 0.96 mm-rad corresponding to a beam brightness in excess of 4.4 {times} 10{sup 8} A/m{sup 2} {minus}rad{sup 2}. 6 refs., 13 figs.« less

  3. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  4. Multi probes measurements at the PALS Facility Research Centre during high intense laser pulse interactions with various target materials

    NASA Astrophysics Data System (ADS)

    De Marco, Massimo; Krása, Josef; Cikhardt, Jakub; Consoli, Fabrizio; De Angelis, Riccardo; Pfeifer, Miroslav; Krůs, Miroslav; Dostál, Jan; Margarone, Daniele; Picciotto, Antonino; Velyhan, Andriy; Klír, Daniel; Dudžák, Roman; Limpouch, Jiří; Korn, Georg

    2018-01-01

    During the interaction of high intense laser pulse with solid target, a large amount of hot electrons is produced and a giant Electromagnetic Pulse (EMP) is generated due to the current flowing into the system target-target holder, as well as due to the escaping charged particles in vacuum. EMP production for different target materials is investigated inside and outside the target chamber, using monopole antenna, super wide-band microstrip antenna and Moebius antenna. The EMP consists in a fast transient magnetic field lasting hundreds of nanosecond with frequencies ranging from MHz to tens of GHz. Measurements of magnetic field and return target current in the range of kA were carried out by an inductive target probe (Cikhardt J. et al. Rev. Sci. Instrum. 85 (2014) 103507).

  5. Testing of a 1.25-m HTS Cable Made from YBCO Tapes

    NASA Astrophysics Data System (ADS)

    Gouge, M. J.; Lue, J. W.; Demko, J. A.; Duckworth, R. C.; Fisher, P. W.; Daumling, M.; Lindsay, D. T.; Roden, M. L.; Tolbert, J. C.

    2004-06-01

    Ultera and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested a 1.25-m-long, prototype high-temperature superconducting (HTS) power cable made from 1-cm-wide, second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in boiling liquid nitrogen at 77 K. DC testing of the 1.25-m cable included determination of the V-I curve, with a critical current of 4200 A. This was consistent with the properties of the 24 individual YBCO tapes. AC testing of the cable was conducted at currents up to 2500 Arms. The ac losses were measured calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. AC losses of about 2 W/m were measured at a cable ac current of 2000 Arms. Overcurrent testing was conducted at peak current values up to 12 kA for pulse lengths of 0.1-0.2 s. The cable temperature increased to 105 K for a 12 kA, 0.2 s overcurrent pulse, and the cable showed no degradation after the sequence of overcurrent testing. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.

  6. Pencil-like mm-size electron beams produced with linear inductive voltage adders

    NASA Astrophysics Data System (ADS)

    Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.

    1997-02-01

    We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.

  7. Application of magnetically insulated transmission lines for high current, high voltage electron beam accelerators

    NASA Astrophysics Data System (ADS)

    Shope, S. L.; Mazarakis, M. G.; Frost, C. A.; Poukey, J. W.; Turman, B. N.

    Self Magnetically Insulated Transmission Lines (MITL) adders were used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r(sub rho) less than 2 cm), 11 - 15 MeV, 50 - 100-kA beams with a small transverse velocity v(perpendicular)/c = beta(perpendicular) less than or equal to 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30 - 50 ns FWHM output pulse.

  8. Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: a history of the local hydrography and global climate, 20 ka to the present

    USGS Publications Warehouse

    Piper, David Z.; Dean, Walter E.

    2002-01-01

    A sediment core from the Cariaco Basin on the Venezuelan continental shelf, which recovered sediment that has been dated back to 20 ka (thousand years ago), was examined for its major-element-oxide and trace-element composition. Cadmium (Cd), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), vanadium (V), and zinc (Zn) can be partitioned between a siliciclastic, terrigenous-derived fraction and two seawater-derived fractions. The two marine fractions are (1) a biogenic fraction represented by nutrient trace elements taken up mostly in the photic zone by phytoplankton, and (2) a hydrogenous fraction that has been derived from bottom water via adsorption and precipitation reactions. This suite of trace elements contrasts with a second suite of trace elements—barium (Ba), cobalt (Co), gallium (Ga), lithium (Li), the rare-earth elements, thorium (Th), yttrium (Y), and several of the major-element oxides—that has had solely a terrigenous source. The partitioning scheme, coupled with bulk sediment accumulation rates measured by others, allows us to determine the accumulation rate of trace elements in each of the three sediment fractions and of the fractions themselves. The current export of organic matter from the photic zone, redox conditions and advection of bottom water, and flux of terrigenous debris into the basin can be used to calculate independently trace-element depositional rates. The calculated rates show excellent agreement with the measured rates of the surface sediment. This agreement supports a model of trace-element accumulation rates in the subsurface sediment that gives a 20-kyr history of upwelling into the photic zone (that is, primary productivity), bottom-water advection and redox, and provenance. Correspondence of extrema in the geochemical signals with global changes in sea level and climate demonstrates the high degree to which the basin hydrography and provenance have responded to the paleoceanographic and paleoclimatic regimes of the last 20 kyr. The accumulation rate of the marine fraction of Mo increased abruptly at about 14.8 ka (calendar years), from less than 0.5 µg cm-2 yr-1 to greater than 4 µg cm-2 yr-1. Its accumulation rate remained high but variable until 8.6 ka, when it decreased sharply to 1 µg cm-2 yr-1. It continued to decrease to 4.0 ka, to its lowest value for the past 15 kyr, before gradually increasing to the present. Between 14.8 ka and 8.6 ka, its accumulation rate exhibited strong maxima at 14.4, 13.0, and 9.9 ka. The oldest maximum corresponds to melt-water pulse IA into the Gulf of Mexico. A relative minimum, centered at about 11.1 ka, corresponds to melt-water pulse IB; a strong maximum occurs in the immediately overlying sediment. The maximum at 13.0 ka corresponds to onset of the Younger Dryas cold event. This pattern to the accumulation rate of Mo (and V) can be interpreted in terms of its deposition from bottom water of the basin, the hydrogenous fraction, under SO42- -reducing conditions, during times of intense bottom-water advection 14.8 ka to 11.1 ka and significantly less intense bottom-water advection 11 ka to the present. The accumulation rate of Cd shows a pattern that is only slightly different from that of Mo, although its deposition was determined largely by the rain rate of organic matter into the bottom water, a biogenic fraction whose deposition was driven by upwelling of nutrient-enriched water into the photic zone. Its accumulation exhibits only moderately high rates, on average, during both melt-water pulses. Its highest rate, and that of upwelling, occurred during the Younger Dryas, and again following melt-water pulse IB. The marine fractions of Cu, Ni, and Zn also have a strong biogenic signal. The siliciclastic terrigenous debris, however, represents the dominant source, and host, of Cu, Ni, and Zn. All four trace elements have a consid-erably weaker hydrogenous signal than biogenic signal. Accumulation rates of the terrigenous fraction, as reflected by accumulation rates of Th and Ga, show strong maxima at 16.2 and 12.7 ka and minima at 14.1 and 11.1 ka. Co, Li, REE, and Y have a similar distribution. The minima occurred during melt-water pulses IA and IB, the maxima during the Younger Dryas and the rise in sea level following the last glacial maximum.

  9. A pulse-compression-ring circuit for high-efficiency electric propulsion.

    PubMed

    Owens, Thomas L

    2008-03-01

    A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.

  10. Study of the Insulating Magnetic Field in an Accelerating Ion Diode

    NASA Astrophysics Data System (ADS)

    Kozlovsky, K. I.; Martynenko, A. S.; Vovchenko, E. D.; Lisovsky, M. I.; Isaev, A. A.

    2017-12-01

    The results of examination of the insulating magnetic field in an accelerating ion diode are presented. This field is produced in order to suppress the electron current and thus enhance the neutron yield of the D( d, n)3He nuclear reaction. The following two designs are discussed: a gas-filled diode with inertial electrostatic confinement of ions and a vacuum diode with a laser-plasma ion source and pulsed magnetic insulation. Although the insulating field of permanent magnets is highly nonuniform, it made it possible to extend the range of accelerating voltages to U = 200 kV and raise the neutron yield to Q = 107 in the first design. The nonuniform field structure is less prominent in the device with pulsed magnetic insulation, which demonstrated efficient deuteron acceleration with currents up to 1 kA at U = 400 kV. The predicted neutron yield is as high as 109 neutrons/pulse.

  11. Plasma-filled diode based on the coaxial gun

    NASA Astrophysics Data System (ADS)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  12. Plasma-filled diode based on the coaxial gun.

    PubMed

    Zherlitsyn, A A; Kovalchuk, B M; Pedin, N N

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  13. Recent progress of the improved magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Li, Zhi-Qiang; Shu, Ting; Zhang, Jian-De; Liu, Jin-Liang; Yang, Jian-Hua; Zhang, Jun; Yuan, Cheng-Wei; Luo, Ling

    2008-03-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube driven by a 550 kV, 57 kA, 50 ns electron beam. It has allowed us to generate 2.4 GW pulse of 22 ns duration. The recent progress of the improved MILO is presented in this paper. First, a field shaper cathode is introduced into the improved MILO to avoid the cathode flares in the triple point region. The experimental results show that the cathode flares are avoided, so the lifetime of the velvet cathode is longer than that of the taper cathode. Furthermore, the shot-to-shot reproducibility is better than that of the taper cathode. Second, In order to prolong the pulse duration and increase the radiated microwave power, a self-built 600 kV, 10 Omega, 80 ns pulser: SPARK-03 is employed to drive the improved MILO. Simulation and experimental investigation are performed. In simulation, when the improved MILO is driven by a 600 kV, 57 kA electron beam, high-power microwave is generated with output power of 4.15 GW, frequency of 1.76 GHz, and relevant power conversion efficiency of 12.0%. In experiments, when the diode voltage is 550 kV and current is 54 kA, the measured results are that the radiated microwave power is above 3.1 GW, the pulse duration is above 40 ns, the microwave frequency is about 1.755 GHz, and the power conversion efficiency is about 10.4%.

  14. The ETA-2 induction linac as a high average power FEL driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.

    1989-10-16

    The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less

  15. The effects of L-glutamate, AMPA, quisqualate, and kainate on retinal horizontal cells depend on adaptational state: implications for rod-cone interactions.

    PubMed

    Krizaj, D; Akopian, A; Witkovsky, P

    1994-09-01

    We studied the responses of isolated and intact luminosity-type horizontal cells (L-HC) in the Xenopus retina to L-glutamate (L-glu) and its analogs. Isolated L-HCs studied with whole-cell patch clamp responded to L-glu, kainate (KA), AMPA, or quisqualate (quis) with inward currents from a holding potential of -60 mV, associated with a conductance increase. The current elicited by KA was relatively large and sustained, whereas AMPA or quis evoked a desensitizing current. Coapplication of quis and KA resulted in a smaller current and conductance change than that evoked by a pulse of either alone at the same concentration. This finding suggests that the L-HC has a single subtype of glutamate receptor that responds to both quis and KA. Prior exposure to dopamine enhanced the KA-evoked current about twofold. In the superfused eyecup we found that L-HC responses to quinoxalinediones (CNQX or DNQX) and to L-glu, KA, AMPA, and quis varied as a function of adaptational state. When driven exclusively by either cones or by rods, CNQX/DNQX hyperpolarized the L-HC and reduced its light response, without altering response kinetics, indicating that both rods and cones communicate with L-HCs at ionotropic glutamatergic synapses. Under mesopic conditions, however, as CNQX or DNQX reduced cone input, the rod input to the L-HC increased up to fivefold in magnitude and had slowed kinetics. The depolarizing response of the L-HC to L-glu, AMPA, or quis was relatively small and transient under photopic conditions, but was much larger and sustained when the eyecup was dark adapted. The D1 dopamine antagonist SCH 23390 potentiated the response to quis. In contrast, responses to KA were largest in light-adapted eyecups, were potentiated by a D1 dopamine agonist, SKF 38393, and were reduced by SCH 23390. We hypothesize that the segregated populations of glutamate receptors in the L-HC opposite cone and rod synaptic endings can be separately modulated to respond differentially to the native transmitter, glutamate. In photopic and mesopic states the dominant cone input tonically inhibits rod to L-HC communication. This inhibition appears to occur at the postsynaptic membrane and may be mediated by second messengers.

  16. The Lethality Test System

    NASA Astrophysics Data System (ADS)

    Parsons, W. M.; Sims, J. R.; Parker, J. V.

    1986-11-01

    The Lethality Test System (LTS) under construction at Los Alamos is an electromagnetic launcher facility designed to perform impact experiments at velocities up to 15 km/sec. The launcher is a 25 mm round bore, plasma armature railgun 22 m in length. Preinjection is accomplished with a two-stage light gas gun capable of 7 km/sec. The railgun power supply utilizes traction motors, vacuum interrupters, and pulse transformers. An assembly of 28 traction motors, equipped with flywheels, stores approximately 80 MJ at 92 percent of full speed and energizes the primary windings of three pulse transformers at a current of 50 kA. At peak current an array of vacuum interrupters disconnects the transformer primary windings and forces the current to flow in the secondary windings. The secondary windings are connected to the railgun, and by staging the vacuum interrupter openings, a 1-1.3 MA ramped current waveform will be delivered to the railgun.

  17. 20 T portable bipolar magnetic pulser.

    PubMed

    Wolf Cruz, R R; Dias, A L B; Bonfim, M J C

    2010-06-01

    High magnetic fields are required for the study of hard magnetic materials and, in many cases, the reversal of these fields is essential. This paper describes a portable pulse generator capable of producing bipolar magnetic fields up to 20 T into a copper coil. The peak current around 7 kA is achieved by discharging two capacitor banks through a combination of thyristors and fast diodes. Each pulse polarity has a semisinusoidal shape with 18 mus base width. Pulse triggering is computer controlled and magnetic measurements are done by an induction coil or Kerr effect acquired by a sampling oscilloscope. The whole apparatus weighs less than 2 kg. Hysteresis loops of NdFeB magnets were done to demonstrate the viability of the system.

  18. Terahertz generation from laser-driven ultrafast current propagation along a wire target

    NASA Astrophysics Data System (ADS)

    Zhuo, H. B.; Zhang, S. J.; Li, X. H.; Zhou, H. Y.; Li, X. Z.; Zou, D. B.; Yu, M. Y.; Wu, H. C.; Sheng, Z. M.; Zhou, C. T.

    2017-01-01

    Generation of intense coherent THz radiation by obliquely incidenting an intense laser pulse on a wire target is studied using particle-in-cell simulation. The laser-accelerated fast electrons are confined and guided along the surface of the wire, which then acts like a current-carrying line antenna and under appropriate conditions can emit electromagnetic radiation in the THz regime. For a driving laser intensity ˜3 ×1018W /cm2 and pulse duration ˜10 fs, a transient current above 10 KA is produced on the wire surface. The emission-cone angle of the resulting ˜0.15 mJ (˜58 GV/m peak electric field) THz radiation is ˜30∘ . The conversion efficiency of laser-to-THz energy is ˜0.75 % . A simple analytical model that well reproduces the simulated result is presented.

  19. Coupling of an applied field magnetically insulated ion diode to a high power magnetically insulated transmission line system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maenchen, J.E.

    1983-01-01

    The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source.more » A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm/sup 2/ dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current af« less

  20. Time resolved EUV spectra from Zpinching capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  1. Abrupt drying events in the Caribbean related to large Laurentide meltwater pulses during the glacial-to-Holocene transition

    NASA Astrophysics Data System (ADS)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Scholz, Denis; Black, David; Zanchettin, Davide; Miller, Thomas E.

    2017-04-01

    At the end of the last deglaciation North Atlantic meltwater pulses from the retreating Laurentide ice sheet triggered a chain of oceanic and atmospheric responses including temporary slow-down of the thermohaline circulation and hemispheric-scale alterations of the atmospheric circulation. The 8.2 ka event (occurring about 8.2 ka BP) is the most pronounced meltwater pulse during the Holocene and serves as an analogue to understand how North Atlantic fresh water influxes can affect the ocean-atmosphere coupled system on a basin, hemispheric or global scale. This event left strong regional climate imprints, such as abrupt cooling reconstructed over the North Atlantic and Europe lasting 100 to 150 years and drying in the northern hemispheric tropics. However, there is a lack of high resolution proxies to learn about the event's temporal structure especially in the tropics. We present geochemical evidence from a stalagmite indicating sudden climate fluctuations towards drier conditions in the northeastern Caribbean possibly related to rapid cooling in the high northern latitudes and a southward shift of the Inter-Tropical Convergence Zone (ITCZ). Stalagmite PR-PA-1 was collected in Palco cave, Puerto Rico, and it is a remarkable record of the 8.2 ka event because 15 MC-ICPMS 230Th/U-dates produce a precise chronology of its Holocene period growing solely between 9.0 ka BP to 7.5 ka BP. Based on 240 trace element and stable isotope ratio measurement we reconstructed hydrological changes with sub-decadal resolution. Our proxy data show large and rapid climate variations before 8.0 ka. Pronounced peaks in the Mg/Ca and δ13C records indicate three major events of abrupt drying. These fluctuations towards drier conditions took place in less than 10 years and the climate remained drier than the natural range for 10 to 20 years, before it returned to pre-fluctuation conditions again. Our observations confirm previous studies suggesting that repeated meltwater pulses affected the thermohaline circulation leading to the temporal and spatial extension of the 8.2 ka event. Moreover, based on our results we hypothesize that three large meltwater pulses decreased the thermohaline circulation, cooled the North Atlantic region and pushed the region of ITCZ influence further southward leading to decreased rainfall in the northeastern Caribbean.

  2. Experiments Investigating the Generation and Transport of 10--12 MeV, 30-kA, mm-size Electron Beams with Linear Inductive Voltage Adders.

    NASA Astrophysics Data System (ADS)

    Mazarakis, M. G.; Poukey, J. W.; Maenchen, J. E.; Rovang, D. C.; Menge, P. R.; Lash, J. S.; Smith, D. L.; Halbleib, J. A.; Cordova, S. R.; Mikkelson, K.; Gustwiller, J.; Stygar, W. A.; Welch, D. R.; Smith, I.; Corcoran, P.

    1997-05-01

    We present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 8-12 MeV, current 35-50 kA, rms radius 0.5 mm, and pulse duration 30-60 ns FWHM. The accelerators utilized are SABRE and Hermes-III. Both are linear inductive voltage adders (IVA) modified to higher impedance and fitted with magnetically immersed foilless electron diodes. In the strong 20-50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrode and is contained in a similar size envelope by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30 kA, 1.5-2.5 FWHM electron beams, while the Hermes-III experiments are currently under way. Results and analysis of the SABRE experimentation and a progress report on Hermes-III experiments will be presented.

  3. Optimization of Pulsed-DEER Measurements for Gd-Based Labels: Choice of Operational Frequencies, Pulse Durations and Positions, and Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.

    2012-12-29

    In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimalmore » temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.« less

  4. Dynamics of a high-current relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru; Tarakanov, V. P., E-mail: karat@gmail.ru; Ivanov, I. E., E-mail: iei@fpl.gpi.ru

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as themore » electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.« less

  5. Birth of the modern Chesapeake Bay estuary between 7.4 and 8.2 ka and implications for global sea-level rise

    NASA Astrophysics Data System (ADS)

    Bratton, John F.; Colman, Steven M.; Thieler, E. Robert; Seal, Robert R.

    2002-12-01

    Two major pulses of sea-level rise are thought to have taken place since the last glacial maximum — meltwater pulses (mwp) 1A (12 cal ka) and 1B (9.5 cal ka). Between mwp 1B and about 6 cal ka, many of the complex coastal ecosystems which ring the world's oceans began to form. Here we report data for rhenium, carbon isotopes, total organic carbon, and fossil oysters from Chesapeake Bay which span the transition from fresh to brackish water conditions in the bay in the mid-Holocene. These data constrain sea-level change and resulting environmental change in the bay. They indicate that the transition was rapid, and that it was produced by (1) a third pulse of rapid eustatic sea-level rise, or (2) a geometry of the prehistoric Chesapeake Bay basin which predisposed it to a nonlinear response to a steadily rising sea level. Similar nonlinear changes in vulnerable coastal environments are likely to take place in the future due to polar warming, regardless of the timing or rate of sea-level rise.

  6. Birth of the modern Chesapeake Bay estuary between 7.4 and 8.2 ka and implications for global sea-level rise

    USGS Publications Warehouse

    Bratton, John F.; Colman, Steven M.; Thieler, E. Robert; Seal, Robert R.

    2003-01-01

    Two major pulses of sea-level rise are thought to have taken place since the last glacial maximum — meltwater pulses (mwp) 1A (12 cal ka) and 1B (9.5 cal ka). Between mwp 1B and about 6 cal ka, many of the complex coastal ecosystems which ring the world’s oceans began to form. Here we report data for rhenium, carbon isotopes, total organic carbon, and fossil oysters from Chesapeake Bay which span the transition from fresh to brackish water conditions in the bay in the mid-Holocene. These data constrain sea-level change and resulting environmental change in the bay. They indicate that the transition was rapid, and that it was produced by (1) a third pulse of rapid eustatic sea-level rise, or (2) a geometry of the prehistoric Chesapeake Bay basin which predisposed it to a nonlinear response to a steadily rising sea level. Similar nonlinear changes in vulnerable coastal environments are likely to take place in the future due to polar warming, regardless of the timing or rate of sea-level rise.

  7. Pulse generator with intermediate inductive storage as a lightning simulator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zherlytsyn, A. A.; Kumpyak, E. V.; Tsoy, N. V.

    2016-06-01

    Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.

  8. Pulsed Artificial Electrojet Generation

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.

    2008-12-01

    Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.

  9. Stability analysis of ELMs in long-pulse discharges with ELITE code on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Xu, G. S.; Wan, B. N.; Li, G. Q.; Yan, N.; Li, Y. L.; Wang, H. Q.; Peng, Y.-K. Martin; Xia, T. Y.; Ding, S. Y.; Chen, R.; Yang, Q. Q.; Liu, H. Q.; Zang, Q.; Zhang, T.; Lyu, B.; Xu, J. C.; Feng, W.; Wang, L.; Chen, Y. J.; Luo, Z. P.; Hu, G. H.; Zhang, W.; Shao, L. M.; Ye, Y.; Lan, H.; Chen, L.; Li, J.; Zhao, N.; Wang, Q.; Snyder, P. B.; Liang, Y.; Qian, J. P.; Gong, X. Z.; EAST team

    2018-05-01

    One challenge in long-pulse and high performance tokamak operation is to control the edge localized modes (ELMs) to reduce the transient heat load on plasma facing components. Minute-scale discharges in H-mode have been achieved repeatedly on Experimental Advanced Superconducting Tokamak (EAST) since the 2016 campaign and understanding the characteristics of the ELMs in these discharges can be helpful for effective ELM control in long-pulse discharges. The kinetic profile diagnostics recently developed on EAST make it possible to perform the pedestal stability analysis quantitatively. Pedestal stability calculation of a typical long-pulse discharge with ELITE code is presented. The ideal linear stability results show that the ELM is dominated by toroidal mode number n around 10–15 and the most unstable mode structure is mainly localized in the steep pressure gradient region, which is consistent with experimental results. Compared with a typical type-I ELM discharge with larger total plasma current (I p = 600 kA), pedestal in the long-pulse H-mode discharge (I p = 450 kA) is more stable in peeling-ballooning instability and its critical peak pressure gradient is evaluated to be 65% of the former. Two important features of EAST tokamak in the long-pulse discharge are presented by comparison with other tokamaks, including a wider pedestal correlated with the poloidal pedestal beta and a smaller inverse aspect ratio and their effects on the pedestal stability are discussed. The effects of uncertainties in measurements on the linear stability results are also analyzed, including the edge electron density profile position, the separatrix position and the line-averaged effective ion charge {Z}{{e}{{f}}{{f}}} value.

  10. Terahertz generation from laser-driven ultrafast current propagation along a wire target.

    PubMed

    Zhuo, H B; Zhang, S J; Li, X H; Zhou, H Y; Li, X Z; Zou, D B; Yu, M Y; Wu, H C; Sheng, Z M; Zhou, C T

    2017-01-01

    Generation of intense coherent THz radiation by obliquely incidenting an intense laser pulse on a wire target is studied using particle-in-cell simulation. The laser-accelerated fast electrons are confined and guided along the surface of the wire, which then acts like a current-carrying line antenna and under appropriate conditions can emit electromagnetic radiation in the THz regime. For a driving laser intensity ∼3×10^{18}W/cm^{2} and pulse duration ∼10 fs, a transient current above 10 KA is produced on the wire surface. The emission-cone angle of the resulting ∼0.15 mJ (∼58 GV/m peak electric field) THz radiation is ∼30^{∘}. The conversion efficiency of laser-to-THz energy is ∼0.75%. A simple analytical model that well reproduces the simulated result is presented.

  11. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    NASA Astrophysics Data System (ADS)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  12. Neoglacial Antarctic sea-ice expansion driven by mid-Holocene retreat of the Ross Ice Shelf.

    NASA Astrophysics Data System (ADS)

    Bendle, J. A.; Newton, K.; Mckay, R. M.; Crosta, X.; Etourneau, J.; Anya, A. B.; Seki, O.; Golledge, N. R.; Bertler, N. A. N.; Willmott, V.; Schouten, S.; Riesselman, C. R.; Masse, G.; Dunbar, R. B.

    2017-12-01

    Recent decades have seen expanding Antarctic sea-ice coverage, coeval with thinning West Antarctic Ice Sheet (WAIS) ice shelves and the rapid freshening of surface and bottom waters along the Antarctic margin. The mid-Holocene Neoglacial transition represents the last comparable baseline shift in sea-ice behaviour. The drivers and feedbacks involved in both the recent and Holocene events are poorly understood and characterised by large proxy-model mismatches. We present new records of compound specific fatty acid isotope analyses (δ2H-FA), highly-branched isoprenoid alkenes (HBIs) TEX86L temperatures, grain-size, mass accumulations rates (MARs) and image analyses from a 171m Holocene sediment sequence from Site U1357 (IODP leg 318). In combination with published records we reconstruct Holocene changes in glacial meltwater, sedimentary inputs and sea-ice. The early Holocene (11 to 10 ka) is characterised by large fluctuations in inputs of deglacial meltwater and sediments and seismic evidence of downlapping material from the south, suggesting a dominating influence from glacial retreat of the local outlet glaciers. From 10 to 8 ka there is decreasing meltwater inputs, an onlapping drift and advection of material from the east. After ca. 8 ka positively correlated δ2H-FA and MARs infer that pulses of glacial melt correlate to stronger easterly currents, driving erosion of material from upstream banks and that the Ross Ice Shelf (RIS) becomes a major influence. A large mid-Holocene meltwater pulse (preceded by warming TEX86L temperatures) is evident between ca. 6 to 4.5 ka, culminating in a rapid and permanent increase in sea-ice from 4.5 ka. This is coeval with cosmogenic nuclide evidence for a rapid thinning of the Antarctic ice sheet during the mid-Holocene (Hein et al., 2016). We suggest this represents a final major pulse of deglaciation from the Ross Ice Shelf, which initiates the Neoglacial, driving cool surface waters along the coast and greater sea-ice production in the Adélie and more widely. Our work provides a mechanism for rapid expansion of Antarctic sea ice with a background of a warming climate and highlights how better representation of meltwater inputs and sea ice dynamics will be fundamental to improving projections for future climate change in the Antarctic. Hein, et al,. Nat. Comms, 12511, 2016.

  13. Transverse beam motion on the second axis of the dual axis radiographic hydrodynamic test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporaso, G J; Chen, Y J; Fawley, W M

    1999-03-23

    The accelerator on the second-axis of the Dual-Axis Radiographic Hydrodynamic Test (DARHT-II) facility will generate a 20 MeV, 2-4 kA, 2 µs long electron beam with an energy variation {<=} ± 0.5%. Four short current pulses with various lengths will be selected out of this 2 µs long current pulse and delivered to an x-ray converter target. The DARHT-II radiographic resolution requires these electron pulses to be focused to sub-millimeter spots on Bremsstrahlung targets with peak-to-peak transverse beam motion less than a few hundred microns. We have modeled the transverse beam motion, including the beam breakup instability, corkscrew motion, transversemore » resistive wall instability and beam induced transverse deflection in the kicker system, from the DARHT-II injector exit to the x-ray converter target. Simulations show that the transverse motion at the x-ray converters satisfies the DARHT-II radiographic requirements.« less

  14. Experimental Study of Magnetic Field Production and Dielectric Breakdown of Auto-Magnetizing Liners

    NASA Astrophysics Data System (ADS)

    Shipley, Gabriel; Awe, Thomas; Hutchinson, Trevor; Hutsel, Brian; Slutz, Stephen; Lamppa, Derek

    2017-10-01

    AutoMag liners premagnetize the fuel in MagLIF targets and provide enhanced x-ray diagnostic access and increased current delivery without requiring external field coils. AutoMag liners are composite liners made with discrete metallic helical conduction paths separated by insulating material. First, a low dI/dt ``foot'' current pulse (1 MA in 100 ns) premagnetizes the fuel. Next, a higher dI/dt pulse with larger induced electric field initiates breakdown on the composite liner's; surface, switching the current from helical to axial to implode the liner. Experiments on MYKONOS have tested the premagnetization and breakdown phases of AutoMag and demonstrate axial magnetic fields above 90 Tesla for a 550 kA peak current pulse. Electric fields of 17 MV/m have been generated before breakdown. AutoMag may enhance MagLIF performance by increasing the premagnetization strength significantly above 30 T, thus reducing thermal-conduction losses and mitigating anomalous diffusion of magnetic field out of hotter fuel regions, by, for example, the Nernst thermoelectric effect. This project was funded in part by Sandia's Laboratory Directed Research and Development Program (Projects No. 200169 and 195306).

  15. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications

    NASA Astrophysics Data System (ADS)

    Tian, Liqiang; Shi, Wei; Feng, Qingqing

    2011-11-01

    A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.

  16. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility

    NASA Astrophysics Data System (ADS)

    Fiksel, G.; Agliata, A.; Barnak, D.; Brent, G.; Chang, P.-Y.; Folnsbee, L.; Gates, G.; Hasset, D.; Lonobile, D.; Magoon, J.; Mastrosimone, D.; Shoup, M. J.; Betti, R.

    2015-01-01

    An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.

  17. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility.

    PubMed

    Fiksel, G; Agliata, A; Barnak, D; Brent, G; Chang, P-Y; Folnsbee, L; Gates, G; Hasset, D; Lonobile, D; Magoon, J; Mastrosimone, D; Shoup, M J; Betti, R

    2015-01-01

    An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.

  18. Production of high transient heat and particle fluxes in a linear plasma device

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Zielinski, J. J.; van der Meiden, H.; Melissen, W.; Rapp, J.

    2010-08-01

    We report on the generation of high transient heat and particle fluxes in a linear plasma device by pulsed operation of the plasma source. A capacitor bank is discharged into the source to transiently increase the discharge current up to 1.7 kA, allowing peak densities and temperature of 70×1020 m-3 and 6 eV corresponding to a surface power density of about 400 MW m-2.

  19. The timing, two-pulsed nature, and variable climatic expression of the 4.2 ka event: A review and new high-resolution stalagmite data from Namibia

    NASA Astrophysics Data System (ADS)

    Railsback, L. Bruce; Liang, Fuyuan; Brook, G. A.; Voarintsoa, Ny Riavo G.; Sletten, Hillary R.; Marais, Eugene; Hardt, Ben; Cheng, Hai; Edwards, R. Lawrence

    2018-04-01

    The climatic event between 4.2 and 3.9 ka BP known as the "4.2 ka event" is commonly considered to be a synchronous global drought that happened as one pulse. However, careful comparison of records from around the world shows that synchrony is possible only if the published chronologies of the various records are shifted to the extent allowed by the uncertainties of their age data, that several records suggest a two-pulsed event, and that some records suggest a wet rather than dry event. The radiometric ages constraining those records have uncertainties of several decades if not hundreds of years, and in some records the event is represented by only one or two analyses. This paper reports a new record from Stalagmite DP1 from northeastern Namibia in which high 230Th/232Th activity ratios allow small age uncertainties ranging between only 10-28 years, and the event is documented by more than 35 isotopic analyses and by petrographic observation of a surface of dissolution. The ages from Stalagmite DP1 combine with results from 11 other records from around the world to suggest an event centered at about 4.07 ka BP with bracketing ages of 4.15 to 3.93 ka BP. The isotopic and petrographic results suggest a two-pulsed wet event in northeastern Namibia, which is in the Southern Hemisphere's summer rainfall zone where more rain presumably fell with southward migration of the Inter-Tropical Convergence Zone as the result of cooling in the Northern Hemisphere. Comparison with other records from outside the region of dryness from the Mediterranean to eastern Asia suggests that multiple climatic zones similarly moved southward during the event, in some cases bringing wetter conditions that contradict the notion of global drought.

  20. Kainate receptor-mediated depression of glutamatergic transmission involving protein kinase A in the lateral amygdala.

    PubMed

    Negrete-Díaz, José Vicente; Duque-Feria, Paloma; Andrade-Talavera, Yuniesky; Carrión, Miriam; Flores, Gonzalo; Rodríguez-Moreno, Antonio

    2012-04-01

    Kainate receptors (KARs) have been described as modulators of synaptic transmission at different synapses. However, this role of KARs has not been well characterized in the amygdala. We have explored the effect of kainate receptor activation at the synapse established between fibers originating at medial geniculate nucleus and the principal cells in the lateral amygdala. We have observed an inhibition of evoked excitatory postsynaptic currents (eEPSCs) amplitude after a brief application of KARs agonists KA and ATPA. Paired-pulse recordings showed a clear pair pulse facilitation that was enhanced after KA or ATPA application. When postsynaptic cells were loaded with BAPTA, the depression of eEPSC amplitude observed after the perfusion of KAR agonists was not prevented. We have also observed that the inhibition of the eEPSCs by KARs agonists was prevented by protein kinase A but not by protein kinase C inhibitors. Taken together our results indicate that KARs present at this synapse are pre-synaptic and their activation mediate the inhibition of glutamate release through a mechanism that involves the activation of protein kinase A. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  1. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    PubMed

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  2. Small Negative Cloud-to-Ground Lightning Reports at the KSC-ER

    NASA Technical Reports Server (NTRS)

    Wilson, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip

    2009-01-01

    '1he NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the CGLSS and the NLDN, and a volumetric lightning mapping array, LDAR, to monitor and characterize lightning that is potentially hazardous to ground or launch operations. Data obtained from these systems during June-August 2006 have been examined to check the classification of small, negative CGLSS reports that have an estimated peak current, [I(sup p)] less than 7 kA, and to determine the smallest values of I(sup p), that are produced by first strokes, by subsequent strokes that create a new ground contact (NGC), and by subsequent strokes that remain in a pre-existing channel (PEC). The results show that within 20 km of the KSC-ER, 21% of the low-amplitude negative CGLSS reports were produced by first strokes, with a minimum I(sup p) of-2.9 kA; 31% were by NGCs, with a minimum I(sup p) of-2.0 kA; and 14% were by PECs, with a minimum I(sup p) of -2.2 kA. The remaining 34% were produced by cloud pulses or lightning events that we were not able to classify.

  3. Description of an aircraft lightning and simulated nuclear electromagnetic pulse (NEMP) threat based on experimental data

    NASA Technical Reports Server (NTRS)

    Rustan, Pedro L., Jr.

    1987-01-01

    Lightning data obtained by measuring the surface electromagnetic fields on a CV-580 research aircraft during 48 lightning strikes between 1500 and 18,000 feet in central Florida during the summers of 1984 and 1985, and nuclear electromagnetic pulse (NEMP) data obtained by surface electromagnetic field measurements using a 1:74 CV-580 scale model, are presented. From one lightning event, maximum values of 3750 T/s for the time rate of change of the surface magnetic flux density, and 4.7 kA for the peak current, were obtained. From the simulated NEMP test, maximum values of 40,000 T/s for the time rate of change of the surface magnetic flux density, and 90 A/sq m for the total normal current density, were found. The data have application to the development of a military aircraft lightning/NEMP standard.

  4. Evaluation of a 10 kV, 400 kA Si SGTO at High dI/dt

    DTIC Science & Technology

    2006-05-01

    inspection and high-potting of each component module prior to pulsing. The complete unit was then switched in a low inductance RLC circuit to test...during triggering. A ring down RLC circuit (Fig. 3) was designed with minimum inductance to test for peak dI/dt of anode-cathode flowing current. A...single 860 µF capacitor was charged to a chosen high voltage, then the power supply was disconnected and the switch was triggered to rapidly

  5. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility

    DOE PAGES

    Fiksel, G.; Agliata, A.; Barnak, D.; ...

    2015-01-12

    Here, an upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energymore » storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.« less

  6. Simulation of the radiation from the hot spot of an X-pinch

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Artyomov, A. P.; Chaikovsky, S. A.; Oreshkin, E. V.; Rousskikh, A. G.

    2017-01-01

    The results of X-pinch experiments performed using a small-sized pulse generator are analyzed. The generator, capable of producing a 200-kA, 180-ns current, was loaded with an X-pinch made of four 35-μm-diameter aluminum wires. The analysis consists of a one-dimensional radiation magnetohydrodynamic simulation of the formation of a hot spot in an X-pinch, taking into account the outflow of material from the neck region. The radiation loss and the ion species composition of the pinch plasma are calculated based on a stationary collisional-radiative model, including balance equations for the populations of individual levels. With this model, good agreement between simulation predictions and experimental data has been achieved: the experimental and the calculated radiation power and pulse duration differ by no more than twofold. It has been shown that the x-ray pulse is formed in the radiative collapse region, near its boundary.

  7. Observation of emission process in hydrogen-like nitrogen Z-pinch discharge with time integrated soft X-ray spectrum pinhole image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Y.; Kumai, H.; Nakanishi, Y.

    2013-02-15

    The emission spectra of hydrogen-like nitrogen Balmer at the wavelength of 13.4 nm in capillary Z-pinch discharge plasma are experimentally examined. Ionization to fully strip nitrogen at the pinch maximum, and subsequent rapid expansion cooling are required to establish the population inversion between the principal quantum number of n = 2 and n = 3. The ionization and recombination processes with estimated plasma parameters are evaluated by utilizing a time integrated spectrum pinhole image containing radial spatial information. A cylindrical capillary plasma is pinched by a triangular pulsed current with peak amplitude of 50 kA and pulse width of 50more » ns.« less

  8. Field-Distortion Air-Insulated Switches for Next-Generation Pulsed-Power Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisher, Matthew Louis; Johns, Owen M.; Breden, Eric Wayne

    We have developed two advanced designs of a field-distortion air-insulated spark-gap switch that reduce the size of a linear-transformer-driver (LTD) brick. Both designs operate at 200 kV and a peak current of ~50 kA. At these parameters, both achieve a jitter of less than 2 ns and a prefire rate of ~0.1% over 5000 shots. We have reduced the number of switch parts and assembly steps, which has resulted in a more uniform, design-driven assembly process. We will characterize the performance of tungsten-copper and graphite electrodes, and two different electrode geometries. The new switch designs will substantially improve the electricalmore » and operational performance of next-generation pulsed-power accelerators.« less

  9. Demonstration of plasma start-up by Coaxial Helicity Injection

    NASA Astrophysics Data System (ADS)

    Raman, Roger

    2003-10-01

    Experimental results on the first successful transfer of a Coaxial-Helicity-Injection- (CHI)-produced discharge to inductive operation are reported. CHI assisted plasma start-up is more robust than inductive-only operation and reduces volt-seconds consumption. After hand-off for inductive operation, the initial 100 kA of CHI-produced current drops to 44 kA, then ramps up to 180 kA, using only 30 mVs, more than 30induction alone. Coupling a CHI-produced discharge to induction from a pre-charged central solenoid has produced record plasma currents of 265kA in HIT-II. CHI discharges can also be generated while the central transformer is in the process of being pre-charged, during which period it induces a negative loop voltage on the CHI discharge. Such capability is believed to be important for a short pulse burning plasma experiment that could contain a solenoid. In the latest results, which improve upon the earlier work (Raman et. al., Phys. Rev. Lett., 90, (2003) 075005-1), no transient coil currents are necessary for the CHI produced closed flux generation. This is particularly important for a reactor in which the poloidal field coils would be located outside blanket structures. Three important results are reported. First, CHI is shown to produce closed flux plasma. Second, it is shown that electrode-based CHI plasmas can be sufficiently clean for fusion research purposes. Finally, it is shown that CHI discharges, in addition to generating useful startup current, improve the performance of inductive discharges. This work was motivated by earlier experiments on HIT-II and NSTX that showed coupling of the inductive drive to the external CHI power supply circuit, instead of to the main plasma discharge. These important results were obtained on the HIT-II spherical torus experiment (R/a of 0.3/0.2m, elongation of 1.5).

  10. Initiation of long, free-standing z discharges by CO2 laser gas heating

    NASA Astrophysics Data System (ADS)

    Niemann, C.; Tauschwitz, A.; Penache, D.; Neff, S.; Knobloch, R.; Birkner, R.; Presura, R.; Hoffmann, D. H. H.; Yu, S. S.; Sharp, W. M.

    2002-01-01

    High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore, they are considered an interesting solution for final focus and beam transport in a heavy ion beam fusion reactor. At the Gesellschaft für Schwerionenforschung accelerator facility, 50 cm long, free-standing discharge channels were created in a 60 cm diameter metallic chamber. Discharges with currents of 45 kA in 2 to 25 mbar ammonia (NH3) gas are initiated by a CO2 laser pulse along the channel axis before the capacitor bank is triggered. Resonant absorption of the laser, tuned to the v2 vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. The influence of an electric prepulse on the high current discharge was investigated. This article describes the laser-gas interaction and the discharge initiation mechanism. We found that channels are magnetohydrodynamic stable up to currents of 45 kA, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a one-dimensional Lagrangian fluid code (CYCLOPS) and is identified as the dominant initiation mechanism of the discharge.

  11. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak

    DOE PAGES

    Mitarai, O.; Xiao, C.; McColl, D.; ...

    2015-03-24

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less

  12. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitarai, O.; Xiao, C.; McColl, D.

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less

  13. Design and preliminary test results of the 40 MW power supply at the national high magnetic field laboratory

    NASA Astrophysics Data System (ADS)

    Boenig, Heinrich J.; Bogdan, Ferenc; Morris, Gary C.; Ferner, James A.; Schneider-Muntau, Hans J.; Rumrill, Ronald H.; Rumrill, Ronald S.

    1994-07-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 x 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented.

  14. Long pulse high performance plasma scenario development for the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Bell, R. E.; Bell, M. G.; Gates, D. A.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.; Phillips, C. K.; Synakowski, E. J.; Taylor, G.; Wilson, R.; Harvey, R. W.; Mau, T. K.; Ryan, P. M.; Sabbagh, S. A.

    2006-05-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall β limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, κ≈2.5, βN⩽5, β⩽15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high β plasmas can be reached at IP=1.0 MA, BT=0.35 T, κ≈2.5, βN⩽9, β⩽43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  15. Paleoclimate reconstruction in the Levant region from the petrography and the geochemistry of a MIS 5 stalagmite from the Kanaan Cave, Lebanon

    NASA Astrophysics Data System (ADS)

    Nehme, C.; Verheyden, S.; Noble, S. R.; Farrant, A. R.; Delannoy, J. J.; Claeys, P.

    2015-07-01

    Lying at the transition between the temperate Mediterranean domain and subtropical deserts, the Levant is a key area to study the palaeoclimatic response over glacial-interglacial cycles. This paper presents a precisely dated last interglacial (MIS 5) stalagmite (129-84 ka) from the Kanaan Cave, Lebanon. Variations in growth rate and isotopic records indicate a warm humid phase at the onst of the last interglacial at ~129 ka that lasted until ~125 ka. A gradual shift in speleothem isotopic composition (125-122 ka) is driven mainly by the δ18O source effect of the Eastern Mediterranean surface waters during Sapropel S5. The onset of glacial inception began after ~122 ka, interrupted by a short wet pulse during Sapropel S4. Low growth rates and enriched oxygen and carbon values until ~84 ka indicate a transition to drier conditions during Northern Hemisphere glaciation.

  16. Reconstruction of MIS 5 climate in the central Levant using a stalagmite from Kanaan Cave, Lebanon

    NASA Astrophysics Data System (ADS)

    Nehme, C.; Verheyden, S.; Noble, S. R.; Farrant, A. R.; Sahy, D.; Hellstrom, J.; Delannoy, J. J.; Claeys, P.

    2015-12-01

    Lying at the transition between the temperate Mediterranean domain and subtropical deserts, the Levant is a key area to study the palaeoclimatic response over glacial-interglacial cycles. This paper presents a precisely dated last interglacial (MIS 5) stalagmite (129-84 ka) from the Kanaan Cave, Lebanon. Variations in growth rate and isotopic records indicate a warm humid phase at the onset of the last interglacial at ~ 129 ka that lasted until ~ 125 ka. A gradual shift in speleothem isotopic composition (125-122 ka) is driven mainly by the δ18O source effect of the eastern Mediterranean surface waters during sapropel 5 (S5). The onset of glacial inception began after ~ 122 ka, interrupted by a short wet pulse during the sapropel 4 (S4) event. Low growth rates and enriched oxygen and carbon values until ~ 84 ka indicate a transition to drier conditions during Northern Hemisphere glaciation.

  17. Small negative cloud-to-ground lightning reports at the NASA Kennedy Space Center and Air Force Eastern Range

    NASA Astrophysics Data System (ADS)

    Wilson, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip

    2009-12-01

    The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network™ (NLDN), and a volumetric lightning mapping array, the Lightning Detection and Ranging (LDAR) system, to monitor and characterize lightning that is potentially hazardous to launch or ground operations. Data obtained from these systems during June-August 2006 have been examined to check the classification of small, negative CGLSS reports that have an estimated peak current, ∣Ip∣ less than 7 kA, and to determine the smallest values of Ip that are produced by first strokes, by subsequent strokes that create a new ground contact (NGC), and by subsequent strokes that remain in a preexisting channel (PEC). The results show that within 20 km of the KSC-ER, 21% of the low-amplitude negative CGLSS reports were produced by first strokes, with a minimum Ip of -2.9 kA; 31% were by NGCs, with a minimum Ip of -2.0 kA; and 14% were by PECs, with a minimum Ip of -2.2 kA. The remaining 34% were produced by cloud pulses or lightning events that we were not able to classify.

  18. Design of a 9-loop quasi-exponential waveform generator

    NASA Astrophysics Data System (ADS)

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  19. Design of a 9-loop quasi-exponential waveform generator.

    PubMed

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  20. Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, D.; Toker, G. R.; Gurovich, V. Tz.

    2013-05-15

    Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50μm

  1. Design of a Compact Coaxial Magnetized Plasma Gun for Magnetic Bubble Expansion Experiments

    DTIC Science & Technology

    2009-06-01

    a peak a current Igun~ 80 kA and gun voltages Vgun~1 kV utine operation at a bank voltage of 7.5 kV yiel plasm after breakdown. Typical Igun and...and D2 are power electronic diodes, SW is the dump relay and C is the bias flux capacitor bank. The SCR, controlled by a 1 kV Trigger Pulse...capacitor charging circuit is shown in Figure 8. Figure 8. Gas valve capacitor charging circuit diagram 0 kΩ. 1, D2 and D3 are power electronic

  2. Study of the transverse beam motion in the DARHT Phase II accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu-Jiuan; Fawley, W M; Houck, T L

    1998-08-20

    The accelerator for the second-axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will accelerate a 4-kA, 3-MeV, 2--µs long electron current pulse to 20 MeV. The energy variation of the beam within the flat-top portion of the current pulse is (plus or equal to) 0.5%. The performance of the DARHT Phase II radiographic machine requires the transverse beam motion to be much less than the beam spot size which is about 1.5 mm diameter on the x-ray converter. In general, the leading causes of the transverse beam motion in an accelerator are the beam breakup instability (BBU) andmore » the corkscrew motion. We have modeled the transverse beam motion in the DARHT Phase II accelerator with various magnetic tunes and accelerator cell configurations by using the BREAKUP code. The predicted sensitivity of corkscrew motion and BBU growth to different tuning algorithms will be presented.« less

  3. Annular structures formed in a beam of ions during their collective acceleration in a system with dielectric anode

    NASA Astrophysics Data System (ADS)

    Lopatin, V. S.; Remnev, G. E.; Martynenko, A. A.

    2017-05-01

    We have studied the collective acceleration of protons and deuterons in an electron beam emitted from plasma formed at the surface of a dielectric anode insert. The experiments were performed with a pulsed electron accelerator operating at an accelerating voltage up to 1 MV, current amplitude up to 40 kA, and pulse duration of 50 ns. Reduction of the accelerating voltage pulse front width and optimization of the diode unit and drift region ensured the formation of several annular structures in the electron beam. As a result, up to 50% of the radioactivity induced in a copper target was concentrated in a ring with 4.5-cm diameter and 0.2-cm width. The formation of high energy density in these circular traces and the appearance of an axial component of the self-generated magnetic field of the electron beam are related with the increasing efficiency of acceleration of the most intense group of ions.

  4. Schlieren, Phase-Contrast, and Spectroscopy Diagnostics for the LBNL HIF Plasma Channel Experiment

    NASA Astrophysics Data System (ADS)

    Ponce, D. M.; Niemann, C.; Fessenden, T. J.; Leemans, W.; Vandersloot, K.; Dahlbacka, G.; Yu, S. S.; Sharp, W. M.; Tauschwitz, A.

    1999-11-01

    The LBNL Plasma Channel experiment has demonstrated stable 42-cm Z-pinch discharge plasma channels with peak currents in excess of 50 kA for a 7 torr nitrogen, 30 kV discharge. These channels offer the possibility of transporting heavy-ion beams for inertial fusion. We postulate that the stability of these channels resides in the existance of a neutral-gas density depresion created by a pre-pulse discharge before the main capacitor bank discharge is created. Here, we present the results and experimental diagnostics setup used for the study of the pre-pulse and main bank channels. Observation of both the plasma and neutral gas dynamics is achieved. Schlieren, Zernike's phase-contrast, and spectroscopic techniques are used. Preliminary Schlieren results show a gas shockwave moving radially at a rate of ≈ 10^6 mm/sec as a result of the fast and localized deposited energy during the evolution of the pre-pulse channel. This data will be used to validate simulation codes (BUCKY and CYCLOPS).

  5. Development of compact explosively driven ferromagnetic seed source for helical magnetic flux compression generator

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, He; Ma, Shaojie; Shi, Yunlei

    2018-05-01

    A compact explosively driven ferromagnetic generator (FMG) is developed for seed power source of helical magnetic flux compression generator (HMFCG). The mechanism of FMG is studied by establishing a magnetoelectric conversion model. Analytical calculations and numerical simulations are conducted on the magnetostatic field of open-circuit magnet in FMG. The calculation method for the magnet's cross-sectional magnetic flux is obtained. The pulse sources made of different materials and equipped with different initiation modes are experimentally explored. Besides, the dynamic coupling experiments of FMG and HMFCG are carried out. The results show that, N35 single-ended and double-ended initiating FMGs have an energy conversion efficiency ηt not less than 14.6% and 24.4%, respectively; FMG has an output pulse current not less than 4kA and an energy of about 3J on 320nH inductive load; HMFCG experiences energy gains of about 2-3 times. FMG and HMFCG can be coupled to form a full-blast electrical driving pulse source.

  6. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    NASA Astrophysics Data System (ADS)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  7. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips

    PubMed Central

    Feng, Shuang-Tao; Mei, Yun-Hui; Chen, Gang; Li, Xin; Lu, Guo-Quan

    2016-01-01

    Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30–35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future. PMID:28773686

  8. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips.

    PubMed

    Feng, Shuang-Tao; Mei, Yun-Hui; Chen, Gang; Li, Xin; Lu, Guo-Quan

    2016-07-12

    Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30-35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future.

  9. The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos; Cohen, Morris; Arnone, Enrico; Cotts, Benjamin; Dietrich, Stefano

    2013-08-01

    Subionospheric VLF recordings are investigated in relation with intense cloud-to-ground (CG) lightning data. Lightning impacts the lower ionosphere via heating and ionization changes which produce VLF signal perturbations known as early VLF events. Typically, early events recover in about 100 s, but a small subclass does not recover for many minutes, known as long-recovery early events (LORE). In this study, we identify LORE as a distinct category of early VLF events, whose signature may occur either on its own or alongside the short-lived typical early VLF event. Since LORE onsets coincide with powerful lightning strokes of either polarity (±), we infer that they are due to long-lasting ionization changes in the uppermost D region ionosphere caused by electromagnetic pulses emitted by strong ± CG lightning peak currents of typically > 250 kA, which are also known to generate elves. The LORE perturbations are detected when the discharge is located within ~250 km from the great circle path of a VLF transmitter-receiver link. The probability of occurrence increases with stroke intensity and approaches unity for discharges with peak currents ≥ ~300 kA. LOREs are nighttime phenomena that occur preferentially, at least in the present regional data set, during winter when strong ± CG discharges are more frequent and intense. The evidence suggests LORE as a distinct signature representing the VLF fingerprint of elves, a fact which, although was predicted by theory, it escaped identification in the long-going VLF research of lightning effects in the lower ionosphere.

  10. A compact submicrosecond, high current generator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  11. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric

    2013-10-01

    The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.

  12. INPIStron switched pulsed power for dense plasma pinches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.

  13. Radiographic research of the Bi plasma jet formed by the vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Artyomov, A. P.; Rousskikh, A. G.; Fedunin, A. V.; Chaikovsky, S. A.; Zhigalin, A. S.; Oreshkin, V. I.

    2017-05-01

    The results of experiments on a soft x-ray radiography (≈ 1-2 keV) of a bismuth plasma formed by the high-current vacuum arc discharge are represented. The plasma gun with the arc current ≈ 60 kA and the current rise time ≈ 7 μs was used to produce the Bi plasma jet. The compact pulsed radiograph XPG-1 (250 kA, 220 ns) with an X-pinch load consisting of four Mo wires with a diameter 25 μm was used as a source of the soft X-ray radiation. The X-ray backlighting images of the researched plasma jet and the Bi step-wedge with a step thickness of ≈ 100 nm were recorded simultaneously in the course of the experiment. A comparison of the plasma jet x-ray image with the current trace has enabled to estimate dependencies of the linear mass on the arc current. The experiments have shown that when the arc current density reaches ≈ 3·105 A/cm2, the evaporation rate of the electrode material reaches ≈ 100 μg/μs, that under the plasma velocity ≈ 0.5 cm/μs, provides a plasma jet linear mass ≈ 200 μg/cm. At a distance of ≈ 1-2 mm from the arc cathode surface, the sharp increase of the jet linear mass (up to ≈ 500 μg/cm) occurred.

  14. Suppressing Thermal Energy Drift in the LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    DTIC Science & Technology

    2011-06-01

    induction accelerator with a voltage output of 18MeV at a current of 3kA. The electron beam is focused onto a tantalum target to produce X-rays. The... capacitors in each bank, half of which are charged in parallel positively, and the other half are negatively charged in parallel. The charge voltage can...be varied from ±30kV to ±40kV. The Marx capacitors are fired in series into the Blumleins with up to 400kV 2µS output. Figure 1 FXR Pulsed Power

  15. Design of a 2 kA, 30 fs Rf-Photoinjector for Waterbag Compression

    NASA Astrophysics Data System (ADS)

    van der Geer, S. B.; Luiten, O. J.; de Loos, M. J.

    Because uniformly filled ellipsoidal ‘waterbag’ bunches have linear self-fields in all dimensions, they do not suffer from space-charge induced brightness degradation. This in turn allows very efficient longitudinal compression of high-brightness bunches at sub or mildly relativistic energies, a parameter regime inaccessible up to now due to detrimental effects of non-linear space-charge forces. To demonstrate the feasibility of this approach, we investigate ballistic bunching of 1 MeV, 100 pC waterbag electron bunches, created in a half-cell rf-photogun, by means of a two-cell booster-compressor. Detailed GPT simulations of this table-top set-up are presented, including realistic fields, 3D space-charge effects, path-length differences and image charges at the cathode. It is shown that with a single 10MW S-band klystron and fields of 100 MV/m, 2kA peak current is attainable with a pulse duration of only 30 fs at a transverse normalized emittance of 1.5 μm.

  16. Preliminary Development and Testing of a Self-Injecting Gallium MPD Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, Kurt A.

    2008-01-01

    Discharge current and terminal voltage measurements were performed on a gallium electromagnetic thruster at discharge currents in the range of 20-54 kA. It was found that the arc impedance has a value of 6-7 m(Omega) at peak current. The absence of high-frequency oscillations in the terminal voltage trace indicates lack of the "onset" condition often seen in MPD arcs, suggesting that a sufficient number of charge carriers are present for current conduction. The mass ablated per pulse was not measured experimentally; however the mass flow rate was calculated using an ion current assumption and an anode power balance. Measurement of arc impedance predicts a temperature of 3.5 eV which from Saha equilibrium corresponds to Z = 2.0 - 3.5, and assuming Z = 2 yields an Isp of 3000 s and thrust efficiency of 50%.

  17. Towards a Radar/Radiometer Mode on the Dual-Frequency, Dual-Polarized, Doppler Radar (D3R) System

    NASA Technical Reports Server (NTRS)

    Vega, Manuel A.; Chandrasekar, V.

    2016-01-01

    The dual-­frequency, dual-­polarized, Doppler radar (D3R) system was developed in support of the ground validation segment of the Global Precipitation Measurement (GPM) mission. Although its main purpose is to provide active, Ku/Ka­-band, dual­-polarized measurements of precipitation, the design presents an opportunity to study its operation in an active/passive mode. The opportunity arises from use of solid-­state transmitters employing a multi­-frequency waveform and receiving system. Typically, a sequence of three pulses separated in frequency is transmitted to achieve its radar sensitivity and minimum range. However, one of the three pulses can be disabled with a tolerable decrease in sensitivity and its receive channel can be repurposed to support passive measurements. This work focuses on progress in the characterization of the Ku-­band H polarized passive channel operating simultaneously with two active as a step towards the provision of brightness temperatures along with the other radar derived products. The methodology developed will be applied to the V polarized channel and Ka­-band subsystem in the near future. The study consists on the analysis of the antenna performance, receiver architecture, transfer function and achievable number of independent samples, calibration method and preliminary observation analysis. All within the context of the instrument's current configuration and possible future improvements.

  18. Parameters of triggered-lightning flashes in Florida and Alabama

    NASA Astrophysics Data System (ADS)

    Fisher, R. J.; Schnetzer, G. H.; Thottappillil, R.; Rakov, V. A.; Uman, M. A.; Goldberg, J. D.

    1993-12-01

    Channel base currents from triggered lightning were measured at the NASA Kennedy Space Center, Florida, during summer 1990 and at Fort McClellan, Alabama, during summer 1991. Additionally, 16-mm cinematic records with 3- or 5-ms resolution were obtained for all flashes, and streak camera records were obtained for three of the Florida flashes. The 17 flashes analyzed here contained 69 strokes, all lowering negative charge from cloud to ground. Statistics on interstroke interval, no-current interstroke interval, total stroke duration, total stroke charge, total stroke action integral (∫ i2dt), return stroke current wave front characteristics, time to half peak value, and return stroke peak current are presented. Return stroke current pulses, characterized by rise times of the order of a few microseconds or less and peak values in the range of 4 to 38 kA, were found not to occur until after any preceding current at the bottom of the lightning channel fell below the noise level of less than 2 A. Current pulses associated with M components, characterized by slower rise times (typically tens to hundreds of microseconds) and peak values generally smaller than those of the return stroke pulses, occurred during established channel current flow of some tens to some hundreds of amperes. A relatively strong positive correlation was found between return stroke current average rate of rise and current peak. There was essentially no correlation between return stroke current peak and 10-90% rise time or between return stroke peak and the width of the current waveform at half of its peak value. Parameters of the lightning flashes triggered in Florida and Alabama are similar to each other but are different from those of triggered lightning recorded in New Mexico during the 1981 Thunderstorm Research International Program. Continuing currents that follow return stroke current peaks and last for more than 10 ms exhibit a variety of wave shapes that we have subdivided into four categories. All such continuing currents appear to start with a current pulse presumably associated with an M component. A brief summary of lightning parameters important for lightning protection, in a form convenient for practical use, is presented in an appendix.

  19. Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches.

    PubMed

    Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li

    2014-09-01

    A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ~40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.

  20. Acceleration of deuterons with suppression of electronic conductance in a vacuum diode with a laser target on the anode

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2016-12-01

    We report new experimental results on the acceleration of deuterons in a compact coaxial diode with the suppression of electronic conductance by a constant longitudinal magnetic field. Plasma containing deuterons is created on a laser TiD target located on the anode. The pulse of accelerating voltage is formed by means of the Arkad'ev-Marx generator. The cathode symmetrically surrounds the anode and comprises a hollow permanent ring magnet with an inner radius of no more than 0.02 m and an on-axis induction of up to 0.4 T, which provides the magnetic insulation of the accelerating gap. The experiments demonstrate the possibility of obtaining accelerated deuterons with energy of up to 300 keV and a current of up to 0.5 kA with a pulse duration of 0.2 μs.

  1. Collective acceleration of ions in picosecond pinched electron beams

    NASA Astrophysics Data System (ADS)

    Baryshnikov, V. I.; Paperny, V. L.; Shipayev, I. V.

    2017-10-01

    Сharacteristics of intense electron-ion beams emitted by a high-voltage (280 kV) electron accelerator with a pulse duration of 200 ps and current 5 kA are studied. The capture phenomena and the subsequent collective acceleration of multi charged ions of the cathode material by the electric field of the electron beam are observed. It is shown that the electron-ion beam diameter does not exceed 30 µm therein in the case of lighter ions, and the decay of the pinched beam occurs at a shorter distance from the cathode. It is established that the ions of the cathode material Tin+ captured by the electron beam are accelerated up to an energy of  ⩽10 MeV, and the ion fluence reaches 1017 ion cm-2 in the pulse. These ions are effectively embedded into the lattice sites of the irradiated substrate (sapphire crystal), forming the luminescent areas of the micron scale.

  2. Pulsed Power Supply Based on Magnetic Energy Storage for Non-Destructive High Field Magnets

    NASA Astrophysics Data System (ADS)

    Aubert, G.; Defoug, S.; Joss, W.; Sala, P.; Dubois, M.; Kuchinsk, V.

    2004-11-01

    The first test results of a recently built pulsed power supply based on magnetic energy storage will be described. The system consists of the 16 kV shock alternator with a short-circuit power of 3600 MVA of the VOLTA Testing Center of the Schneider Electric SA company, a step-down transformer with a ratio of 1/24, a three-phase diode bridge designed for a current rising exponentially to 120 kA, and a big, 10 ton, heavy, 10 mH aluminum storage coil. The system is designed to store 72 MJ, normal operation will be at 50 MJ, and will work with voltages up to 20 kV. A transfer of 20% of the stored energy into the high field coil should be possible. Special making switches and interrupters have been developed to switch the high currents in a very short time. For safety and redundancy two independent monitoring systems control the energy transfer. A sequencing control system operates the switches on the ac side and protective switches on the dc side, a specially developed real-time control-monitoring system checks several currents and voltages and commands the dc circuit breakers and making switches.

  3. Experimental Investigation of the Electrothermal Instability on Planar Foil Ablation Experiments

    NASA Astrophysics Data System (ADS)

    Steiner, Adam; Patel, Sonal; Yager-Elorriaga, David; Jordan, Nicholas; Gilgenbach, Ronald; Lau, Y. Y.

    2014-10-01

    The electrothermal instability (ETI) is an important early-time physical effect on pulsed power foil ablation experiments due to its ability to seed the destructive magneto-Rayleigh-Taylor (MRT) instability. ETI occurs whenever electrical resistivity has temperature dependence; when resistivity increases with temperature, as with solid metal liners or foils, ETI forms striation structures perpendicular to current flow. These striations provide an initial perturbation for the MRT instability, which is the dominant late-time instability in planar foil ablations. The MAIZE linear transformer driver was used to drive current pulses of approximately 600 kA into 400 nm-thick aluminum foils in order to study ETI in planar geometry. Shadowgraph images of the aluminum plasmas were taken for multiple shots at various times within approximately 50 ns of current start. Fourier analysis extracted the approximate wavelengths of the instability structures on the plasma-vacuum interface. Surface metrology of pre-shot foils was performed to provide a comparison between surface roughness features and resulting plasma structure. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant # DGE 1256260.

  4. Aural Discrimination of Targets by Human Subjects Using Broadband Sonar Pulses

    DTIC Science & Technology

    1982-10-01

    in;’ Animal Sonai Systems: Biology and Bionics. RE Busnell. ed. Laboratoire de Physiologic.I Jouy-en-Josas 78. France, 1967. 6. Au. WW and KJ Snyder...1970. 11. Welton, PJ, Mde Billy. A Hayman and G Quentin, Backscattering of Short Ultrasonic Pulses by Solid Eastic Cylinders at Large /a, J Acoust Soc... G Quentin, Backscattering of Short Ultrasonic Pulses by Solid Elastic Cylinders at Large ka, J Acoust Soc Amer, 67, p 470-476, 1980. 12. Small, AM and

  5. The light ion pulsed power induction accelerator for ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.

    1994-12-31

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The {approximately} 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current permore » module is relatively modest ({approximately}300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source.« less

  6. A vacuum spark ion source: High charge state metal ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less

  7. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Rakhee; Roy, Amitava; Mitra, S.

    2008-10-15

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. Amore » maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.« less

  8. Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.

    2015-11-01

    We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Claudia J; Mcdonald, Eric; Sancho, Carlos

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-}more » 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.« less

  10. Infrared-Vacuum Ultraviolet Pulsed Field Ionization-Photoelectron Study of C₂H₄ + Using a High-Resolution Infrared Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Xi; Reed, Beth; Bahng, Mi-Kyung

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The infrared (IR)-vacuum ultraviolet (VUV)-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectrum for C₂H₄(X 1A g, V 11 = 1, N' Ka' Kc'=3₀₃) in the VUV range of 83 000-84 800 cm -1 obtained using a single mode infrared laser revealed 24 rotationally resolved vibrational bands for the ion C₂H₄ +(X 2B 3u) ground state. The frequencies and symmetry of the vibrational bandsmore » thus determined, together with the anharmonic frequency predictions calculated at the CCSD(T)/aug-cc-pVQZ level, have allowed the unambiguous assignment of these vibrational bands. These bands are mostly combination bands. The measured frequencies of these bands yield the fundamental frequencies for V 8 + ) 1103± ( 10 cm -1 and V 10 + ) 813 ( 10 cm -1 of C₂H₄ +(X 2B 3u), which have not been determined previously. The present IR-VUV-PFI-PE study also provides truly rovibrationally selected and resolved state-to-state cross sections for the photoionization transitions C₂H₄(X~ 1A g; V 11, N' Ka' Kc') → C₂H₄ +(X ~ 2B 3u; V i +, N + Ka + Kc +), where N' Ka' Kc' denotes the rotational level of C₂H₄(X ~ 1Ag; V 11), and V i + and N + Ka + Kc + represent the vibrational and rotational states of the cation.« less

  11. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping

    2013-05-01

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  12. Ka-band monopulse antenna-pointing systems analysis and simulation

    NASA Technical Reports Server (NTRS)

    Lo, V. Y.

    1996-01-01

    NASA 's Deep Space Network (DSN) has been using both 70-m and 34-m reflector antennas to communicate with spacecraft at S-band (2.3 GHz) and X-band (8.45 GHz). To improve the quality of telecommunication and to meet future mission requirements, JPL has been developing 34-m Ka-band (32-GHz) beam waveguide antennas. Presently, antenna pointing operates in either the open-loop mode with blind pointing using navigation predicts or the closed-loop mode with conical scan (conscan). Pointing accuracy under normal conscan operating conditions is in the neighborhood of 5 mdeg. This is acceptable at S- and X-bands, but not enough at Ka-band. Due to the narrow beamwidth at Ka-band, it is important to improve pointing accuracy significantly (approximately 2 mdeg). Monopulse antenna tracking is one scheme being developed to meet the stringent pointing-accuracy requirement at Ka-band. Other advantages of monopulse tracking include low sensitivity to signal amplitude fluctuations as well as single-pulse processing for acquisition and tracking. This article presents system modeling, signal processing, simulation, and implementation of Ka-band monopulse tracking feed for antennas in NASA/DSN ground stations.

  13. Experimental development of rod pinch diode radiographic source using modified KALI 1000 pulsed power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, N.; Basu, Shibaji; Rajawat, R.K., E-mail: satya_3026@yahoo.com

    2014-07-01

    This paper highlights the development of Rod Pinch (RP) diode for flash X-ray generation as intense radiographic source at BARC, Vizag. The typical RP diode employed used a small diameter (1-2 mm) anode rod extended through a cathode circular aperture (5-6 mm inner diameter). The diode chamber is maintained at 10{sup -5} Torr vacuum by a rotary backed diffusion pump. Experiments performed on a modified Kali 1000 Pulsed Power System (300 kV, 30 kA, 100 ns) were aimed at optimizing the source by maximizing the figure of merit (dose @ 1m in rad/spot diameter{sup 2} in mm{sup 2}) with minimizingmore » of the diode impedance. The typical electron beam parameters used in the experiments are 240-270 kV, 20-25 kA, 100 ns, with a few hundreds of kA/cm{sup 2} current density. The optimization resulted in a configuration with tungsten anode rod having dimensions of a 1.6 mm diameter, tapering extension length 5-25 mm beyond the graphite cathode aperture (Cathode disk ID = 5 mm, thickness = 3mm) to produce a radiation dose of 150-200 milli rad at 1 m distance having an estimated spot-size of 1-2 mm. The radiation emitted from a rod-pinch diode is measured using Thermoluminescence dosimeters (TLDs) at an angular interval of 15° on either side of the rod in horizontal and vertical plane. (author)« less

  14. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  15. Broadband VHF Interferometer Observations of an Energetic In-cloud Pulse (EIP)

    NASA Astrophysics Data System (ADS)

    Tilles, J.; Krehbiel, P. R.; Stanley, M. A.; Rison, W.; Lyu, F.; Cummer, S.; Liu, N.; Dwyer, J. R.; Brown, R. G.; Wilson, J. G.

    2017-12-01

    Energetic in-cloud pulses (EIPs) are a little-known in-cloud subprocess of lightning. While they may be best identified by their large peak current (>200 kA) [Lyu et al., Geophys. Res. Lett., 42, 2015], they differ from narrow bipolar events (NBEs) - another type of in-cloud, high peak-current process - in that the sferic of an EIP lasts an order of magnitude longer ( ˜100 us) than that of a typical NBE ( ˜10 us). To further differentiate them from NBEs, EIPs are generally embedded within other electrical activity, whereas NBEs are known to primarily occur in isolation or as a lightning-initiating event [Smith et al., J. Geophys. Res., 104, D4, 4189-4212, 1999; Rison et al., Nat. Commun., 7, 10721, 2016]. Moreover, EIPs may have an intrinsic connection with the production of terrestrial gamma ray flashes (TGFs) [Cummer et al., Geophys. Res. Lett., 41, 8586-8593, 2014].Here we present coincident broadband VHF interferometer (INTF) observations and electric and magnetic field waveforms of an EIP with an associated NLDN peak current of 247 kA. The EIP occurs nearly 4 ms into a normal-polarity intracloud flash as part of the upward extension of the negative-polarity lightning leader. For this reason, we suspect that EIPs are a more energetic version of initial breakdown pulses (IBPs), which accompany the development of negative stepped leaders [e.g. Marshall et al., J. Geophys. Res. Atmos., 119, 445-460, 2014]. In addition, we show similarities with NBE-producing fast breakdown [Rison et al., 2016; Tilles et al., AE12A-03, AGU Fall Meeting, 2016], in that the breakdown accompanying the EIP propagates over a similar vertical extent ( ˜0.5-1 km) and with similar propagation speed ( ˜3×107 m/s). The INTF was developed by New Mexico Tech and has been deployed at Kennedy Space Center since July 2016. It employed three 100-m baselines in 2016, has a bandwidth of 14-88 MHz and samples at 180 MS/s with 16-bit resolution. A synchronously digitized fast antenna (FA), with 100-μ s decay time constant, samples the electric field, and the whole INTF+FA system is automatically triggered on strong VHF radiation. Coincident VLF/ LF (1-300 kHz, sampled at 1 MS/s) observations are made with Duke University's magnetic sensor network.

  16. ECH-assisted startup at KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Y. S.; Jeong, J. H.; Park, S. I.; Cho, M. H.; Namkung, W.; Jackson, G. L.; Joung, M.; Yoon, S. W.; Kim, J. H.; Hahn, S. H.; Kim, W. C.; Yang, H. L.; Oh, Y. K.; Humphreys, D.; Walker, M. L.; Gorelov, Y.; Leuer, J. A.; Hyatt, A. W.; Eidietis, N. W.; Mueller, D.; Bak, J. S.; Kwon, M.

    2009-11-01

    The electron cyclotron heating (ECH)-assisted startup was successful in the Korea Superconducting Tokamak Advanced Research (KSTAR) first plasma campaign completed in June, 2008. It was observed that the second harmonic EC wave of 0.35 MW was sufficient to achieve breakdown in the ECH pre-ionization phase, to allow burn through, and to sustain the plasma during the current ramp with a low loop voltage of 2.0 V. This corresponds to a toroidal electric field of 0.24 Vm-1 at the innermost vacuum vessel wall (R = 1.3 m). Since there is no feedback control of the plasma radial position in the initial phase of the KSTAR first plasma campaign, wall contact caused the plasma current fall to zero soon after the ECH beam was turned off. Extending pulse duration of the ECH power to 190 ms allowed the plasma current to rise up to more than 100 kA with a ramp-up rate of 0.8 MA/s and the pulse duration of 210 ms. Later in the first plasma campaign, the plasma was sustained up to 865 ms with the help of additional heating of 350-ms long ECH beam and with the help of the plasma radial position feedback control. The plasma current in the pre-ionization phase was observed and it is considered to be pressure-driven Pfirsch-Schlüter current.

  17. A design approach for systems based on magnetic pulse compression.

    PubMed

    Kumar, D Durga Praveen; Mitra, S; Senthil, K; Sharma, D K; Rajan, Rehim N; Sharma, Archana; Nagesh, K V; Chakravarthy, D P

    2008-04-01

    A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results.

  18. Development of a 30-kA cable-in-conduit conductor for pulsed poloidal coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takashi, Y.; Dresner, L.; Kato, T.

    1983-05-01

    This paper describes design parameters of a 30-kA cable-in-conduit conductor (JF-30), and the test results of stability margin measured by using a triplex in a conduit. Cross sectional size of JF-30 is 35mm X 35 mm and 567 NbTi-Cu-CuNi strands are in a stainless steel conduit whose thickness is 2 mm. Void fraction is 33 % and the designed stability margin is 270 mJ/cc at 5 atm and 7 T. Stability test by a triplex showed a favorable margin, a few hundreds of mJ at 7 T even without helium flow. In addition, the stability was strongly increased when heliummore » flow up to 0.2 g/s was applied. At around 3 atm, the authors found that the stability margin was more than 2 J/cc which exceeded the present heater capacity. This resulted in an extension of current range, in which the sample is stable, up to 150 to 200 % when compared to the case without helium flow.« less

  19. Pulsed electromagnetic gas acceleration. [magnetohydrodynamics, plasma power sources and plasma propulsion

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with various cathodes and anodes in a high power, quasi-steady magnetoplasmadynamic (MPD) are discussed. The magnitude of the current at the onset of voltage fluctuations is shown to be an increasing function of cathode area and a weaker decreasing function of anode area. Tests with a fluted cathode indicated that the fluctuations originate in the plasma adjacent to the cathode rather than at the cathode surface. Measurements of radiative output from an optical cavity aligned to examine the current-carrying portion of a two-dimensional, 56 kA magnetoplasmadynamic discharge reveal no lasing in that region, consistent with calculations of electron excitation and resonance radiation trapping. A voltage-swept double probe technique allows single-shot determination of electron temperature and electron number density in the recombining MPD exhaust flow. Current distributions within the cavity of MPD hollow cathodes for various static prefills with no injected mass flow are examined.

  20. Pulsed electromagnetic gas accelleration. [incorporation of hollow cathode in plasma discharge and suitability determination of MPD discharge as plasmadynamic laser source

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.

    1973-01-01

    Direct measurement with thermocouples of the power deposited in the anode of a multi-megawatt magnetoplasmadynamic discharge has shown the fractional anode power to decrease from 50% at 200 kW to 10% at 20 MW. Using local measurements of current density, electric potential, and electron temperature, the traditional model for heat conduction to the anode is found to be inadequate. Other experiments in which the voltage-current characteristics and exhaust velocities of MPD arcs using Plexiglas and boron nitride chamber insulators and various mass injection configurations show that ablation can affect nominal accelerator operation in several distinct ways. The incorporation of a hollow cathode in a 7 kA plasma discharge has shown that a stable current attachment can be realized in the cavity without the aid of cathode heaters, keeper electrodes, or emissive coatings.

  1. Age and effects of the Odessa meteorite impact, western Texas, USA

    NASA Astrophysics Data System (ADS)

    Holliday, Vance T.; Kring, David A.; Mayer, James H.; Goble, Ronald J.

    2005-12-01

    The Odessa meteorite craters (Texas, United States) include a main crater (˜160 m diameter, ˜30 m deep) plus four smaller meteorite craters. The main crater was sampled by coring (to 22 m depth) to better understand its origin and history. Dating by optically stimulated luminescence indicates that it was produced immediately prior to ca. 63.5 ± 4.5 ka. Sediment filling the crater includes impact breccias produced at the time of impact; wind-dominated silts with minor amounts of pond sediments deposited ca. 63.5 ka, probably just after the impact, and ca. 53 ± 2 ka; wind-dominated silt ca. 38 ± 1.7 ka; and playa muds with a wind-blown silt component younger than 36 ka. The environment was arid or semiarid at the time of impact based on characteristics of soils on the surrounding landscape. The impact caused severe damage within 2 km and produced >1000 km/hr winds and thermal pulse. Animals within a 1 1.5-km-diameter area were probably killed. This is only the second well-dated Pleistocene hypervelocity impact crater in North America.

  2. An all solid-state, rolled strip pulse forming line with low impedance and compact structure

    NASA Astrophysics Data System (ADS)

    Yang, Shi; Zhong, Hui-Huang; Qian, Bao-Liang; Yang, Han-Wu

    2010-04-01

    An all solid-state and compact pulsed strip pulse forming line (PFL) is investigated both theoretically and experimentally. The electromagnetic field distribution and the pulse formation in the strip PFL are analyzed numerically. Based on the theoretical analysis and numerical results, a rolled strip PFL with output voltage of 20 kV, pulse duration of 230 ns, and characteristic impedance of 0.5 Ω was designed and manufactured. We use the Mylar film and copper as the dielectric and conductor of the strip PFL. The dimension of the strip line is 23 000×400×1.6 mm3 in the case in which the strip line is unrolled, and the strip line is finally rolled into a cylinder of diameter of 311 mm for the experiment. The dimension and weight are about ten times smaller than those of traditional dielectric (oil or pure water) PFL with the same electrical parameters. Two experiments were performed using the strip line. One was for a transmission line experiment, and the other was for a PFL experiment. In the experiment of transmission line, the transmission time of the voltage signal was 115 ns, and the signal had almost no distortion, which verified the design. In the PFL experiment, results gave a 17.8 kV, 270 ns (full width at half maximum) voltage pulse which was a quasisquare wave on the water load of 0.5 Ω. The current going through the load is about 35.6 kA.

  3. Role of A-type potassium currents in excitability, network synchronicity and epilepsy

    PubMed Central

    Fransén, Erik; Tigerholm, Jenny

    2011-01-01

    A range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A-type potassium current (KA). Epileptogenic activity comprises a rich repertoire of characteristics, one of which is synchronized activity of principal cells as revealed by occurrences of for instance fast ripples. Synchronized activity of this kind is particularly efficient in driving target cells into spiking. In the recipient cell, this synchronized input generates large brief compound EPSPs. The fast activation and inactivation of KA lead us to hypothesize a potential role in suppression of such EPSPs. In this work, using computational modeling, we have studied the activation of KA by synaptic inputs of different levels of synchronicity. We find that KA participates particularly in suppressing inputs of high synchronicity. We also show that the selective suppression stems from the current's ability to become activated by potentials with high slopes. We further show that KA suppresses input mimicing the activity of a fast ripple. Finally, we show that the degree of selectivity of KA can be modified by changes to its kinetic parameters, changes of the type that are produced by the modulatory action of KChIPs and DPPs. We suggest that the wealth of modulators affecting KA might be explained by a need to control cellular excitability in general and suppression of responses to synchronicity in particular. We also suggest that compounds changing KA-kinetics may be used to pharmacologically improve epileptic status. PMID:19777555

  4. Measurement of impulse current using polarimetric fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Ginter, Mariusz

    2017-08-01

    In the paper the polarimetric current sensing solution used for measurements of high amplitude currents and short durations is presented. This type of sensor does not introduce additional resistance and inductance into the circuit, which is a desirable phenomenon in this type of measurement. The magneto element is a fiber optic coil made of spun fiber optic. The fiber in which the core is twisted around its axis is characterized by a small effect of interfering magnitudes, ie mechanical vibrations and pressure changes on the polarimeter. The presented polarimetric current sensor is completely fiber optic. Experimental results of a proposed sensor construction solution operating at 1550 nm and methods of elimination of influence values on the fiber optic current sensor were presented. The sensor was used to measure the impulse current. The generated current pulses are characterized by a duration of 23μs and amplitudes ranging from 1 to 3.5 kA. The currents in the discharge circuit are shown. The measurement uncertainty of the amplitude of the electric current in the range of measured impulses was determined and estimated to be no more than 2%.

  5. Ebw Assisted Plasma Current Startup in Mast

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir; Saveliev, Alexander

    2009-04-01

    EBW current drive assisted plasma current start-up has been demonstrated for the first time in a tokamak. It was shown that plasma currents up to 17 kA can be generated non-inductively by 100 kW of RF power injected. With optimized vertical field ramps, plasma currents up to 33 kA have been achieved without the use of solenoid flux. With limited solenoid assist (0.2 V × 20 ms, less than 0.5% of total solenoid flux), plasma currents up to 55 kA have been generated and sustained further non-inductively. Experimentally obtained plasma currents are consistent with Fokker-Planck modelling.

  6. Meta-tools for software development and knowledge acquisition

    NASA Technical Reports Server (NTRS)

    Eriksson, Henrik; Musen, Mark A.

    1992-01-01

    The effectiveness of tools that provide support for software development is highly dependent on the match between the tools and their task. Knowledge-acquisition (KA) tools constitute a class of development tools targeted at knowledge-based systems. Generally, KA tools that are custom-tailored for particular application domains are more effective than are general KA tools that cover a large class of domains. The high cost of custom-tailoring KA tools manually has encouraged researchers to develop meta-tools for KA tools. Current research issues in meta-tools for knowledge acquisition are the specification styles, or meta-views, for target KA tools used, and the relationships between the specification entered in the meta-tool and other specifications for the target program under development. We examine different types of meta-views and meta-tools. Our current project is to provide meta-tools that produce KA tools from multiple specification sources--for instance, from a task analysis of the target application.

  7. Spectroscopic investigation of species separation in opening switch plasmas

    NASA Astrophysics Data System (ADS)

    Jackson, S. L.; Phipps, D. G.; Richardson, A. S.; Commisso, R. J.; Hinshelwood, D. D.; Murphy, D. P.; Schumer, J. W.; Weber, B. V.; Boyer, C. N.; Doron, R.; Biswas, S.; Maron, Y.

    2015-11-01

    Interactions between magnetic fields and current-carrying plasmas that lead to the separation of plasma species in multi-species plasmas are being studied in a plasma opening switch geometry. Several Marshall guns are used to inject single or multi-species plasmas between coaxial conductors connected to the output of the Naval Research Laboratory's Hawk pulsed-power generator. Following injection of the plasma, the generator is used at roughly half power to apply an electrical pulse with a peak current of 450 kA, a peak voltage of 400 kV, and a rise time of 1.2 μs. The resulting magnetic field interacts with the plasma through a combination of field penetration and magnetohydrodynamic (MHD) pushing that is not well understood but can lead to the separation of plasma species in multi-species plasmas. An ICCD-coupled spectrometer has been used in combination with magnetic probes, a ribbon-beam interferometer, and particle-in-cell (PIC) modeling to diagnose and understand conditions in the plasma from the time it is injected until the end of the conduction phase of the opening switch. This work supported by the Naval Research Laboratory Base Program and the Office of Naval Research.

  8. Reaction of ferrate (VI)/ferrate (V) with hydrogen peroxide and superoxide anion--a stopped-flow and premix pulse radiolysis study.

    PubMed

    Rush, J D; Zhao, Z; Bielski, B H

    1996-03-01

    The reduction of ferrate(VI) to ferrate(V) by superoxide ions was studied over the pH range 2.6-13.0 using the premix pulse radiolysis technique. The pH dependence indicates that only the unstable protonated forms of ferrate, H2FeO4 (pKa3.5) and HFeO4- (pKa7.3) are reactive, k(HFeO4(-) + O2) = (1.7 +/- 0.2) x 10(7) M-1 s-1. The stable ferrate ion, FeO4(2-), showed no significant reactivity towards either hydrogen peroxide or superoxide anion. The rate constants for the spontaneous dimerization and decomposition of the protonated ferrates, e.g. k(HFeO4(-) + HFe04) approximately 250 M-1s-1, are orders of magnitude slower than their corresponding reduction reduction by superoxide indicating an outer-sphere mode of electron transfer for the latter process. In contrast the ferrate(VI) species H3FeO4+ (pKa = 1.6 +/- 0.2), H2FeO4, and HFeO4- oxidize hydrogen peroxide, e.g. k(HFeO4(-) + H2O2) = 170 M-1 s-1), at rates which correspond closely to their dimerization rates suggesting an inner-sphere controlled mechanism.

  9. Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode

    NASA Astrophysics Data System (ADS)

    Abdullin, É. N.; Basov, G. F.; Shershnev, S.

    2017-12-01

    A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.

  10. Investigation of a high power electromagnetic pulse source.

    PubMed

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.

  11. Development of a compact 30 T magnetic field system for OMEGA

    NASA Astrophysics Data System (ADS)

    Fiksel, G.; Backhus, R.; McNally, P.; Viges, E.; Villalta, M.; Jacobs-Perkins, D.; Betti, R.

    2017-10-01

    Aiming at conducting studies of magnetized high-energy density plasmas in a high magnetic field, we are developing a compact system capable of creating a pulsed magnetic field of about 30T in a volume of several cubic centimeters. The system prototype will be tested at the University of Michigan and will be adopted afterwards for use at the OMEGA facility of the Laboratory for Laser Energetics (LLE) of the University of Rochester, NY. The system consists of a pulsed power supply situated outside of the Omega vacuum chamber and a magnetic coil inserted into the chamber with a diagnostic inserter. The power supply is based on a 50 μF/20kV storage capacitor and is capable of driving a pulse of current of up to 50kA through the coil. The power supply is connected with the coil via a low-inductive chain of power cables and a strip transmission line. The system electrical, magnetic, and thermal analysis will be presented along with the results of initial testing. This work is supported in part through a DOE-OFES award DE-SC0016258 and a University of Michigan research Grant U051442.

  12. Application of Electron-Beam Controlled Diffuse Discharges to Fast Switching

    DTIC Science & Technology

    1983-06-01

    pressure , switch area and length are estimated self-consistently for a given system efficiency is reviewed, The formalism is used to design a single pulse, 200 kV, 30 kA (6 omega) , 100 ns FWHM inductive storage generator.

  13. A simple device for long-term radar cross section recordings.

    PubMed

    Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni

    2009-05-01

    A sample and hold circuit with settable delay can be used for recording of radar echo amplitude variations having time scales up to 100 s at the selected range bin in systems utilizing short rf pulses. The design is based on two integrated circuits and gives 1% uncertainty for 70 ns pulses. The key benefit is a real-time display of lengthy amplitude variations because the sample rate is defined by the radar pulse repetition frequency. Additionally we get a reduction in file size at least by the inverse of the radar's duty cycle. Examples of 10 and 100 s recordings with a Ka-band short pulse radar are described.

  14. Compact submicrosecond, high current generator for wire explosion experiments

    NASA Astrophysics Data System (ADS)

    Aranchuk, L. E.; Chuvatin, A. S.; Larour, J.

    2004-01-01

    The PIAF generator was designed for low total energy and high energy density experiments with liners, X-pinch or fiber Z-pinch loads. These studies are of interest for such applications as surface and material science, microscopy of biological specimens, lithography of x-ray sensitive resists, and x-ray backlighting of pulsed-power plasmas. The generator is based on an RLC circuit that includes six NWL 180 nF-50 kV capacitors that store up to 1.3 kJ. The capacitors are connected in parallel to a single multispark switch designed to operate at atmospheric pressure. The switch allows reaching a time delay between the trigger pulse and the current pulse of less than 80 ns and has jitter of 6 ns. The total inductance without a load compartment was optimized to be as low as 16 nH, which leads to extremely low impedance of ˜0.12 Ω. A 40 kV initial voltage provides 250 kA maximum current in a 6 nH inductive load with a 180 ns current rise time. PIAF has dimensions of 660×660×490 mm and weight of less than 100 kg, thus manifesting itself as robust, simple to operate, and cost effective. A description of the PIAF generator and the initial experimental results on PIAF with an X-pinch type load are reported. The generator was demonstrated to operate successfully with an X-pinch type load. The experiments first started with investigation of the previously unexplored X-pinch conduction time range, 100 ns-1 μs. A single short radiation pulse was obtained that came from a small, point-like plasma. The following x-ray source characteristics were achieved: typical hot spot size of 50-100 μm, radiation pulse duration of 1.5-2 ns, and radiation yield of about 250-500 mJ in the softer spectral range (hν⩾700 eV) and 50-100 mJ in the harder one (hν⩾1 keV). These results provide the potential for further application of this source, such as use as a backlight diagnostic tool.

  15. 5.8kV SiC PiN Diode for Switching of High-Efficiency Inductive Pulsed Plasma Thruster Circuits

    NASA Technical Reports Server (NTRS)

    Toftul, Alexandra; Polzin, Kurt A.; Hudgins, Jerry L.

    2014-01-01

    Inductive Pulsed Plasma Thruster (IPPT) pulse circuits, such as those needed to operate the Pulsed Inductive Thruster (PIT), are required to quickly switch capacitor banks operating at a period of µs while conducting current at levels on the order of at least 10 kA. [1,2] For all iterations of the PIT to date, spark gaps have been used to discharge the capacitor bank through an inductive coil. Recent availability of fast, high-power solid state switching devices makes it possible to consider the use of semiconductor switches in modern IPPTs. In addition, novel pre-ionization schemes have led to a reduction in discharge energy per pulse for electric thrusters of this type, relaxing the switching requirements for these thrusters. [3,4] Solid state switches offer the advantage of greater controllability and reliability, as well as decreased drive circuit dimensions and mass relative to spark gap switches. The use of solid state devices such as Integrated Gate Bipolar Transistors (IGBTs), Gate Turn-off Thyristors (GTOs) and Silicon-Controlled Rectifiers (SCRs) often involves the use of power diodes. These semiconductor devices may be connected antiparallel to the switch for protection from reverse current, or used to reduce power loss in a circuit by clamping off current ringing. In each case, higher circuit efficiency may be achieved by using a diode that is able to transition, or 'switch,' from the forward conducting state ('on' state) to the reverse blocking state ('off' state) in the shortest amount of time, thereby minimizing current ringing and switching losses. Silicon Carbide (SiC) PiN diodes offer significant advantages to conventional fast-switching Silicon (Si) diodes for high power and fast switching applications. A wider band gap results in a breakdown voltage 10 times that of Si, so that a SiC device may have a thinner drift region for a given blocking voltage. [5] This leads to smaller, lighter devices for high voltage applications, as well as reduced forward conduction losses, faster reverse recovery time (faster turn-off), and lower-magnitude reverse recovery current. In addition, SiC devices have lower leakage current as compared to their Si counterparts, and a high thermal conductivity, potentially allowing the former to operate at higher temperatures with a smaller, lighter heatsink (or no heatsink at all).

  16. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE PAGES

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas; ...

    2018-05-03

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  17. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  18. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    NASA Astrophysics Data System (ADS)

    Shipley, G. A.; Awe, T. J.; Hutsel, B. T.; Slutz, S. A.; Lamppa, D. C.; Greenly, J. B.; Hutchinson, T. M.

    2018-05-01

    Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate d I / d t = 5 k A / n s . After the cold fuel is magnetized, a rapidly rising current ( 200 k A / n s ) generates a calculated electric field of 64 M V / m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. A range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.

  19. Weather Radars and Lidar for Observing the Atmosphere

    NASA Astrophysics Data System (ADS)

    (Vivek) Vivekanandan, J.

    2010-05-01

    The Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado develops and deploys state-of-the-art ground-based radar, airborne radar and lidar instruments to advance scientific understanding of the earth system. The ground-based radar (S-Pol) is equipped with dual-wavelength capability (S-band and Ka-band). S-Pol is the only transportable radar in the world. In order to capture faster moving weather events such as tornadoes and record observations of clouds over rugged mountainous terrain and ocean, an airborne radar (ELDORA) is used. It is the only airborne Doppler meteorological radar that is able to detect motions in the clear air. The EOL is in the process of building the first phase of a three phase dual wavelength W/Ka-band airborne cloud radar to be called the HIAPER Cloud Radar (HCR). This phase is a pod based W-band radar system with scanning capability. The second phase will add pulse compression and polarimetric capability to the W-band system, while the third phase will add complementary Ka-band radar. The pod-based radar is primarily designed to fly on the Gulfstream V (GV) and C-130 aircraft. The envisioned capability of a millimeter wave radar system on GV is enhanced by coordination with microwave radiometer, in situ probes, and especially by the NCAR GV High-Spectral Resolution Lidar (HSRL) which is also under construction. The presentation will describe the capabilities of current instruments and also planned instrumentation development.

  20. The effects of resonant magnetic perturbations on fast ion confinement in the Mega Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Akers, R. J.; Boeglin, W. U.; Cecconello, M.; Keeling, D.; Jones, O. M.; Kirk, A.; Klimek, I.; Perez, R. V.; Shinohara, K.; Tani, K.

    2015-07-01

    The effects of resonant magnetic perturbations (RMPs) on the confinement of energetic (neutral beam) ions in the Mega Amp Spherical Tokamak (MAST) are assessed experimentally using measurements of neutrons, fusion protons and fast ion Dα (FIDA) light emission. In single null-diverted (SND) MAST pulses with relatively low plasma current (400 kA), the total neutron emission dropped by approximately a factor of two when RMPs with toroidal mode number n = 3 were applied. The measured neutron rate during RMPs was much lower than that calculated using the TRANSP plasma simulation code, even when non-classical (but axisymmetric) ad hoc fast ion transport was taken into account in the latter. Sharp drops in spatially-resolved neutron rates, fusion proton rates and FIDA emission were also observed. First principles-based simulations of RMP-induced fast ion transport in MAST, using the F3D-OFMC code, show similar losses for two alternative representations of the MAST first wall, with and without full orbit effects taken into account; for n = 6 RMPs in a 600 kA plasma, the additional loss of beam power due to the RMPs was found in the simulations to be approximately 11%.

  1. Design of A Large Oxide Coated Cathode Plasma Source for Operation in High Magnetic Fields at the New LAPD

    NASA Astrophysics Data System (ADS)

    Leneman, David

    2001-10-01

    We use a Barium Oxide coated cathode to supply accelerated electrons as an energy source to from our plasma. Oxide coated cathodes have been used for decades in vacuum tubes and plasma research. Most of these have been small (1 cm dia.) or designed to operate in a low magnetic field where the J×B \\unboldmath forces on them are negligible. At the new LAPD we will have large diameter plasma sources at both ends of the machine which must operate in a 3.5 kG ambient magnetic field. We have designed and built one such source which is 72 cm in diameter. It will supply up to 20 kA of pulsed beam current and uses a 1 m by 1 m, 2.5 kA (dc), 150 kW heater. Solutions to various engineering issues will be discussed. These pertain to differential thermal expansion over 1 m distances, J×B \\unboldmath forces on the heater and cathode, heat containment and uniformity of the oxide coating and of plasma production. These issues are important to any experimenter who plans to build an oxide coated plasma source.

  2. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with long cathodes in a high power, quasi-steady MPD discharge show that the critical current for the onset of voltage fluctuations, which was previously shown to be a function of cathode area, approaches an asymptote for cathodes of very large surface area. Floating potential measurements and photographs of the discharge luminosity indicate that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance. Photoelectric measurements of particular argon neutral and ion transitions show that the higher electronic states are populated more heavily than would be calculated on the basis of Saha-Boltzmann equilibrium at the local electron temperature and number density. Preliminary optical depth measurements show that for a current of 4 kA and an argon mass flow of 12 g/sec, a population inversion exists between the upper and lower states of the 4880 A argon ion transition.

  3. Investigation of heavy current discharges with high initial gas density

    NASA Astrophysics Data System (ADS)

    Budin, A.; Bogomaz, A.; Kolikov, V.; Kuprin, A.; Leontiev, V.; Rutberg, Ph.; Shirokov, N.

    1996-05-01

    Piezoelectric pressure transducers, with noise immunity and time resolution of 0,5 μs were used to measure pulse pressures of 430 MPa along the axis of an electrical discharge channel. Initial concentration of He was 2,7ṡ1021cm-3, dI/dt=6ṡ1011 A/s, and Imax=560 kA. Shock waves with amplitudes exceeding the pressure along the axis, were detected by a pressure transducer on the wall of the discharge chamber. Typical shock velocities were 2ṡ4 km/s. Average pressure measurements along the discharge axis at different radii were used to estimate the current density distribution along the canal radius. The presence of the shock waves, promoting the additional hydrogen heating in the discharge chamber, has been registered during the discharge in hydrogen for Imax˜1 MA and an initial concentration of 1021cm-3.

  4. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE PAGES

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; ...

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  5. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  6. An university-scale pulsed-power system using a bipolar Marx generator

    NASA Astrophysics Data System (ADS)

    Chang, Po-Yu; Yang, Sheng-Hua; Huang, Mei-Feng; Isaps, Natl Cheng Kung Univ Team

    2017-10-01

    A bipolar Marx generator is being built for x-ray sources or laboratory astrophysics and space research for university-scale laboratory. The system consists of ten stages. In each stage, two 1 μF capacitors connected in series are charged to +/- 30 kV storing 9 kJ of total energy. It delivers a current of 200 kA to the load with a 200 ns rise time during the discharge. It will be used for following three purposes: (1) gas-puff z pinches generating soft x-ray for bio-medical research in the future; (2) generating plasma jets to study interactions between plasma flows and unmagnetized/magnetized obstacles analogous to the interactions between solar winds and planetary magnetic fields or unmagnetized planets; and (3) studying the pinch in a dense plasma focus device. The results of current measurements and circuit characteristics are shown.

  7. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  8. Preliminary results of Linear Induction Accelerator LIA-200

    NASA Astrophysics Data System (ADS)

    Sharma, Archana; Senthil, K.; Praveen Kumar, D. D.; Mitra, S.; Sharma, V.; Patel, A.; Sharma, D. K.; Rehim, R.; Kolge, T. S.; Saroj, P. C.; Acharya, S.; Amitava, Roy; Rakhee, M.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-05-01

    Repetitive Pulsed Power Technology is being developed keeping in mind the potential applications of this technology in material modifications, disinfections of water, timber, and food pasteurization etc. BARC has indigenously developed a Linear Induction Accelerator (LIA-200) rated for 200 kV, 4 kA, 100 ns, 10 Hz. The satisfactory performance of all the sub-systems including solid state power modulator, amorphous core based pulsed transformers, magnetic switches, water capacitors, water pulse- forming line, induction adder and field-emission diode have been demonstrated. This paper presents some design details and operational results of this pulsed power system. It also highlights the need for further research and development to build reliable and economic high-average power systems for industrial applications.

  9. NASA's Evolution to Ka-Band Space Communications for Near-Earth Spacecraft

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin; Stocklin, Frank; Geldzahler, Barry; Friedman, Daniel; Celeste, Peter

    2010-01-01

    This slide presentation reviews the exploration of NASA using a Ka-band system for spacecraft communications in Near-Earth orbits. The reasons for changing to Ka-band are the higher data rates, and the current (X-band spectrum) is becoming crowded. This will require some modification to the current ground station antennas systems. The results of a Request for Information (RFI) are discussed, and the recommended solution is reviewed.

  10. Natural Divertor Spherical Tokamak Plasmas with bean shape and ergodic limiter

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso; Herrera, Julio; Chavez, Esteban; Tritz, Kevin

    2013-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14 m, a < 0.10 m, BT < 0.5T, Ip < 40 kA, 3 ms pulse) is being recommissioned in Costa Rica Institute of Technology. The main objectives of the MEDUSA-CR project are training and to clarify several issues in relevant physics for conventional and mainly STs, including beta studies in bean-shaped ST plasmas, transport, heating and current drive via Alfvén wave, and natural divertor STs with ergodic magnetic limiter. We report here improvements in the self-consistency of these equilibrium comparisons and a preliminary study of their MHD stability beta limits. VIE-ITCR, IAEA-CRP contract 17592, National Instruments of Costa Rica.

  11. Roles of Sea Level and Climate Change in the Development of Holocene Deltaic Sequences in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Liu, J.; Milliman, J. D.

    2002-12-01

    Both post-glacial sea-level and climatic changes are preserved in the the shallow, low gradient, sediment-dominated Yellow Sea. As a result of rapid flooding during melt-water pulse (MWP) 1A, 14.3-14.1 ka BP, sea level reached the southern edge of the North Yellow Sea (NYS), and after MWP-1B (11.6-11.4 ka BP) sea level entered the Bohai Sea. The first major Yellow River-derived deltaic deposit formed in the NYS during decelerated transgression following MWP-1B and increased river discharge in response to re-intensification of the summer monsoon about 11 ka cal BP. A second subaqueous delta formed in the South Yellow Sea about 9-7 ka BP during decelerated transgression after MWP-1C flooding and in response to the southern shift of the Yellow River mouth. The modern subaqueous and subaerial deltas in the west Bahai Gulf and (to a lesser extent) along the Jiangus coast have formed during the modern sea-level highstand. These changing Holocene patterns are most clearly illustrated by a short film clip.

  12. Late Quaternary history of contourite drifts and variations in Labrador Current flow, Flemish Pass, offshore eastern Canada

    NASA Astrophysics Data System (ADS)

    Marshall, Nicole R.; Piper, David J. W.; Saint-Ange, Francky; Campbell, D. Calvin

    2014-10-01

    Contourite drifts of alternating sand and mud, shaped by the Labrador Current, formed during the late Quaternary in Flemish Pass seaward of the Grand Banks of Newfoundland, Canada. The drifts preserve a record of Labrador Current flow variations through the last glacial maximum. A high-resolution seismic profile and a transect of four cores were collected across Beothuk drift on the southeast side of Flemish Pass. Downcore and lateral trends in grain size and sedimentation rate provide evidence that, between 16 and 13 ka, sediment was partitioned across Beothuk drift and the adjacent Flemish Pass floor by a strong current flow but, from 29 to 16 ka, sedimentation was more of a blanketing style, represented by draped reflections interpreted as being due to a weaker current. The data poorly resolve the low sedimentation rates since 13 ka, but the modern Labrador Current in Flemish Pass is the strongest it has been in at least the past 29 ka. Pre-29 ka current flow is interpreted based on reflection architecture in seismic profiles. A prominent drift on the southwestern side of Flemish Pass formed above a mid-Miocene erosion surface, but was buried by a mass-transport deposit after the penultimate glacial maximum and after drift deposition switched to eastern Flemish Pass. These findings illustrate the temporal complexity of drift sedimentation and provide the first detailed proxy for Labrador Current flow since the last glacial maximum.

  13. Application of an impedance matching transformer to a plasma focus.

    PubMed

    Bures, B L; James, C; Krishnan, M; Adler, R

    2011-10-01

    A plasma focus was constructed using an impedance matching transformer to improve power transfer between the pulse power and the dynamic plasma load. The system relied on two switches and twelve transformer cores to produce a 100 kA pulse in short circuit on the secondary at 27 kV on the primary with 110 J stored. With the two transformer systems in parallel, the Thevenin equivalent circuit parameters on the secondary side of the driver are: C = 10.9 μF, V(0) = 4.5 kV, L = 17 nH, and R = 5 mΩ. An equivalent direct drive circuit would require a large number of switches in parallel, to achieve the same Thevenin equivalent. The benefits of this approach are replacement of consumable switches with non-consumable transformer cores, reduction of the driver inductance and resistance as viewed by the dynamic load, and reduction of the stored energy to produce a given peak current. The system is designed to operate at 100 Hz, so minimizing the stored energy results in less load on the thermal management system. When operated at 1 Hz, the neutron yield from the transformer matched plasma focus was similar to the neutron yield from a conventional (directly driven) plasma focus at the same peak current.

  14. Characteristics of soft x-ray spectra from ultra-fast micro-capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Li, Jing; Avaria, Gonzalo; Shlyaptsev, Vyacheslav; Tomasel, Fernando; Grisham, Michael; Dawson, Quincy; Rocca, Jorge; NSF CenterExtreme Ultraviolet Science; Technology Collaboration

    2013-10-01

    The efficient generation of high aspect ratio (e.g. 300:1) plasma columns ionized to very high degrees of ionization (e.g. Ni-like Xenon) by an ultrafast current pulses of moderate amplitude in micro-capillary channels is of interest for fundamental plasma studies and for applications such as the generation of discharge-pumped soft x-ray lasers. Spectra and simulations for plasmas generated in 500 um alumina capillary discharges driven by 35-40 kA current pulses with 4 ns rise time were obtained in Xenon and Neon discharges. The first shows the presence of lines corresponding to ionization stages up to Fe-like Xe. The latter show that Al impurities from the walls and Si (from injected SiH4) are ionized to the H-like and He-like stages. He-like spectra containing the resonance line significantly broaden by opacity, the intercombination line, and Li-like satellites are analyzed and modeled. For Xenon discharges, the spectral lines from the Ni-like transitions the 3d94d(3/2, 3/2)J=0 to the 3d94p(5/2, 3/2)J=1 and to 3d94p(3/2, 1/2)J=1 are observed at gas pressures up to 2.0 Torr. Work supported by NSF Award PHY-1004295.

  15. Utilization of a Vircator to drive a High Power Relativistic Klystron Amplifier

    NASA Astrophysics Data System (ADS)

    Gardelle, J.; Bardy, J.; Cassany, B.; Desanlis, T.; Eyl, P.; Galtié, A.; Modin, P.; Voisin, L.; Balleyguier, P.; Gouard, P.; Donohue, J.

    2002-11-01

    At CESTA, we have been producing electron beams for some fifteen years by using induction accelerators and pulse diodes. First we had performed Frre-Electron Lasers experiments and we are currently studying the production of High-Power microwaves in the S-band. Among the possible sources we have chosen to perform Relativistic Klystron (RK) experiments with a pulse diode capable of generating a 700kV, 15 kA, 100 ns annular electron beam. In an amplifier configuration, we are testing the idea of using a Vircator as the driver for the first cavity of the klystron. This Vircator uses a simple electrical generator (Marx capacitor bank) which operates in the S-band in the GW class. By reducing the power level to about 100 MW, a 200 ns reliable and reproducible input driver pulse is obtained. First, we present the results of a preliminary experiment for which a coaxial cavity has been built in order to be fed by the Vircator emission at 2.45 GHz. Secondly, we give the experimental results in an oscillator configuration which corresponds to the fisrt step of our RK studies. Comparisons with the results of numerical simulations performed with MAGIC and MAFIA will be given for both experiments.

  16. Ultrasound generation with high power and coil only EMAT concepts.

    PubMed

    Rueter, Dirk; Morgenstern, Tino

    2014-12-01

    Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. RLE Progress Report Number 122.

    DTIC Science & Technology

    1980-01-01

    generator capable of delivering 20 kA of current at 1.5 MV. Both the pipe and the diode region are immersed in the uniform axial magnetic field of a...it decays into a slow space-charge wave and a TM wave of the guide. The dispersion PR No. 122 100 I ____ W/Wp (wi,ki) BEAM FRAME (a) .. ( 3, k3) ka ...to regular operation with well-confined plasmas and plasma currents of approximately as high as 300 kA . We recall that the reference design value of

  18. Early Deglaciation of Drangajökull, Vestfirðir, Iceland: Smaller than Present by 9.2 ka

    NASA Astrophysics Data System (ADS)

    Harning, D.; Geirsdottir, A.; Miller, G. H.; Zalzal, K.

    2016-12-01

    The Holocene histories of Iceland's largest ice caps suggest rapid early Holocene deglaciation and disappearance by 9 ka, other than possible small remnants of Vatnajökull. The least documented is Drangajökull, Vestfirðir, NW Iceland, where our team has been working since 2010. A recent study claims Drangajökull behaved differently than the other Iceland ice caps, deglaciating much later, and persisting through the Holocene Thermal Maximum (HTM). We test this postulate through a suite of sediment cores from threshold lakes both proximal and distal to the ice cap's contemporary margin. Distal lakes document rapid early Holocene deglaciation across the southern highland plateau, with the northern margin of the ice cap reaching a size comparable to Drangajökull's contemporary limit by 10.3 ka. A proximal lake to the north records a transient readvance at 9.6 ka, likely in association with meltwater pulses from the disintegrating Laurentide Ice Sheet (LIS). Two other southeastern proximal lakes, whose catchments extend well beneath the modern ice cap, demonstrate that Drangajökull was already smaller than present before 9.2 ka. Supporting evidence for local early Holocene warmth is derived from biological summer temperature proxies in a lake record, with age control (tephra/14C) demonstrating continuous sediment accumulation from 10.3 ka to present. Peak warmth (HTM) inferred from elevated algal productivity occurred between 8.9 and 7.2 ka. The record of terrestrial warmth closely aligns with regional SST and precipitation records that together with lake sediment characteristics provide firm evidence that Drangajökull responded similarly to Iceland's other large ice caps. Drangajökull was smaller than its contemporary margin before 9.2 ka, and likely disappeared entirely during the warmer and drier summers between 9 and 7 ka, reforming in the Late Holocene.

  19. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  20. Magnetic Field Generation by a Laser-Driven Capacitor-Coil Target

    NASA Astrophysics Data System (ADS)

    Cheng, Jessica; Gao, Lan

    2016-10-01

    Magnetic fields generated by currents flowing through a capacitor-coil target were characterized using ultrafast proton radiography at the OMEGA EP Laser System. Two 1.25 kJ, 1-ns laser pulses propagated through the laser entrance holes in one foil of the capacitor, and were focused to the other with an intensity of 3 ×1016 W/cm2. The intense laser-solid interaction induced a high voltage between the foils and generated a large current in the connecting coil. The proton data show tens of kA current producing tens of Tesla magnetic fields at the center of the coil. Theoretical lumped circuit models based on the experimental parameters were developed to simulate the target behavior and calculate the time evolution of the current in the coil. The models take into account important elements such as plasmas conditions for building up the voltage, the capacitance between the gap, the resistive heating and skin effect to gain insights on the field generation mechanism. Applications to other coil geometries and magnetic field configurations will also be described.

  1. Influence of pHo on calcium channel block by amlodipine, a charged dihydropyridine compound. Implications for location of the dihydropyridine receptor

    PubMed Central

    1989-01-01

    We have investigated the modulation of L-type calcium channel currents in isolated ventricular cells by the dihydropyridine derivative amlodipine, a weak base with a pKa of 8.6. Under conditions that favor neutral drug molecules, amlodipine block resembles other, previously described, neutral dihydropyridine derivatives: block is more pronounced at depolarized voltages, repetitive pulsing is not needed to promote block, and recovery is complete at hyperpolarized voltages. When the drug is ionized, depolarized voltages still enhance block, however, the time course is slow and speeded by repetitive pulses that open channels. Recovery from block by ionized drug molecules is very slow and incomplete, but can be rapidly modified by changes in external hydrogen ion concentration. We conclude from these observations that the degree of ionization of the drug molecule can affect access to the dihydropyridine receptor and that external protons can interact with the drug-receptor complex even if channels are blocked and closed. These observations place limitations on the location of this receptor in the ventricular cell membrane. PMID:2549176

  2. PHERMEX, REX, AND THOMSON-GENERATED XUV CALCULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    THOMAS P. HUGHES; RANDY M. CLARK - MISSION RESEARCH CORP. RANDOLPH L. CARLSON; DAVID C. MOIR - LANL

    1993-05-01

    We report on calculations carried out during 1990 in support of on-going and planned beam experiments at M-4. A higher-current injector for PHERMEX is under consideration and we have modeled a REX-like diode geometry which can deliver 1--1.5 kA. A three+coil focusing configuration has been designed to maintain low beam emittance in the diode region. We show that the existing two transport magnets are marginally capable of transporting a 1 kA beam to the a-cavity. This work is described in Sec. 2. In Sec. 3, we look at the possibility of accelerating a 4 kA, 4 MV beam, which couldmore » be provided by the REX machine, through the PHERMEX a cavity. Simulation results indicate that this is feasible. Because of the high cost and limited pulse length of a REX injector, however, a 1-1.5 kA upgrade is a more attractive option at this time. Computations in support of ongoing REX experiments are described in Sec. 4. We have modeled the generation of transverse beam oscillations through the excitation of an electromagnetic dipole mode in the diode cavity. Results show that oscillating magnetic fields on the order of 1--2 gauss are sufficient to cause the oscillation amplitudes observed. A simulation was carried to look at the effect of placing iron rings inside the windings of the REX anode magnet. We conclude that this causes no significant degradation of beam emittance. We have also looked at the focusing produced when the REX beam is injected into a laser-ionized plasma channel. This is a possible alternative to a magnetic lens to obtain a small spot-size. Finally, in Sec. 5, we give results of preliminary calculations of XUV and X-ray photon production through laser backscattering off a relativistic electron beam. There are plans to carry out such an experiment on REX in the near future.« less

  3. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  4. Design and evaluation of 66 kV-class HTS power cable using REBCO wires

    NASA Astrophysics Data System (ADS)

    Ohya, M.; Yumura, H.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Ohkuma, T.

    2011-11-01

    Sumitomo Electric (SEI) has been involved in the development of 66 kV-class HTS cables using REBCO wires. One of the technical targets in this project is to reduce the AC loss to less than 2 W/m/phase at 5 kA. SEI has developed a clad-type of textured metal substrate with lower magnetization loss compared with a conventional NiW substrate. In addition, 30 mm-wide REBCO tapes were slit into 4 mm-wide strips, and these strips were wound spirally on a former with small gaps. The AC loss of a manufactured 4-layer cable conductor was 1.5 W/m at 5 kA at 64 K. Given that the AC loss in a shield layer is supposed to be one-fourth of a whole cable core loss, our cables are expected to achieve the AC loss target of less than 2 W/m/phase at 5 kA. Another important target is to manage a fault current. A cable core was designed and fabricated based on the simulation findings, and over-current tests (max. 31.5 kA, 2 s) were conducted to check its performance. The critical current value of the cable cores were measured before and after the over-current tests and verified its soundness. A 5 kA-class current lead for the cable terminations was also developed. The current loading tests were conducted for the developed current leads. The temperature distribution of the current leads reached to the steady-state within less than 12 h, and it was confirmed that the developed current lead has enough capacity of 5 kA loading.

  5. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.

    2016-06-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  6. Note: Erosion of W-Ni-Fe and W-Cu alloy electrodes in repetitive spark gaps.

    PubMed

    Wu, Jiawei; Han, Ruoyu; Ding, Weidong; Qiu, Aici; Tang, Junping

    2018-02-01

    A pair of W-Ni-Fe and W-Cu electrodes were tested under 100 kA level pulsed currents for 10 000 shots, respectively. Surface roughness and morphology characteristics of the two pairs of electrodes were obtained and compared. Experimental results indicated cracks divided the W-Cu electrode surface to polygons while the W-Ni-Fe electrode surface remained as a whole with pits and protrusions. Accordingly, the surface roughness of W-Ni-Fe electrodes increased to ∼3 μm while that of W-Cu electrodes reached ∼7 μm at the end of the test. The results reveal that the W-Ni-Fe alloy has a better erosion resistance and potential to be further applied in spark gaps.

  7. RADLAC 2 performance summary

    NASA Astrophysics Data System (ADS)

    Shope, S. L.; Mazarakis, M. G.; Frost, C. A.; Crist, C. E.; Poukey, J. W.; Prestwich, K. R.; Turman, B. N.; Struve, K.; Welch, D.

    1991-09-01

    A 12.5-m long Self Magnetically Insulated Transmission LinE (SMILE) that sums the voltages of eight, 2-MV pulse forming lines was installed in the RADLAC-2 linear introduction accelerator. The magnetic insulation criteria were calculated using parapotential flow theory and found to agree with MAGIC simulations. High quality annular beams with a transverse velocity beta (perpendicular) equals v(perpendicular)/c is less than or equal to 0.1 and a radius r(sub b) less than 2 cm were measured for currents of 50 to 100 kA extracted from a magnetic immersed foilless diode. These parameters were achieved with 11 to 15-MV accelerating voltages and 6 to 16-kG diode magnetic fields. The experimental results exceeded our design expectations and are in good agreement with code simulations.

  8. Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean) - A high-resolution biomarker study

    NASA Astrophysics Data System (ADS)

    Hörner, T.; Stein, R.; Fahl, K.; Birgel, D.

    2016-07-01

    Multi-proxy biomarker measurements were applied on two sediment cores (PS51/154, PS51/159) to reconstruct sea ice cover (IP25), biological production (brassicasterol, dinosterol) and river run-off (campesterol, β-sitosterol) in the western Laptev Sea over the last ∼17 ka with unprecedented temporal resolution. The absence of IP25 from 17.2 to 15.5 ka, in combination with minimum concentration of phytoplankton biomarkers, suggests that the western Laptev Sea shelf was mostly covered with permanent sea ice. Very minor river run-off and restricted biological production occurred during this cold interval. From ∼16 ka until 7.5 ka, a long-term decrease of terrigenous (riverine) organic matter and a coeval increase of marine organic matter reflect the gradual establishment of fully marine conditions in the western Laptev Sea, caused by the onset of the post-glacial transgression. Intensified river run-off and reduced sea ice cover characterized the time interval between 15.2 and 12.9 ka, including the Bølling/Allerød warm period (14.7-12.9 ka). Prominent peaks of the DIP25 Index coinciding with maximum abundances of subpolar foraminifers, are interpreted as pulses of Atlantic water inflow on the western Laptev Sea shelf. After the warm period, a sudden return to severe sea ice conditions with strongest ice-coverage between 11.9 and 11 ka coincided with the Younger Dryas (12.9-11.6 ka). At the onset of the Younger Dryas, a distinct alteration of the ecosystem (reflected in a distinct drop in terrigenous and phytoplankton biomarkers) was detected. During the last 7 ka, the sea ice proxies reflect a cooling of the Laptev Sea spring/summer season. This cooling trend was superimposed by a short-term variability in sea ice coverage, probably representing Bond cycles (1500 ± 500 ka) that are related to solar activity changes. Hence, atmospheric circulation changes were apparently able to affect the sea ice conditions on the Laptev Sea shelf under modern sea level conditions.

  9. Defense Waste Processing Facility Canister Closure Weld Current Validation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korinko, P. S.; Maxwell, D. N.

    Two closure welds on filled Defense Waste Processing Facility (DWPF) canisters failed to be within the acceptance criteria in the DWPF operating procedure SW4-15.80-2.3 (1). In one case, the weld heat setting was inadvertently provided to the canister at the value used for test welds (i.e., 72%) and this oversight produced a weld at a current of nominally 210 kA compared to the operating procedure range (i.e., 82%) of 240 kA to 263 kA. The second weld appeared to experience an instrumentation and data acquisition upset. The current for this weld was reported as 191 kA. Review of the datamore » from the Data Acquisition System (DAS) indicated that three of the four current legs were reading the expected values, approximately 62 kA each, and the fourth leg read zero current. Since there is no feasible way by further examination of the process data to ascertain if this weld was actually welded at either the target current or the lower current, a test plan was executed to provide assurance that these Nonconforming Welds (NCWs) meet the requirements for strength and leak tightness. Acceptance of the welds is based on evaluation of Test Nozzle Welds (TNW) made specifically for comparison. The TNW were nondestructively and destructively evaluated for plug height, heat tint, ultrasonic testing (UT) for bond length and ultrasonic volumetric examination for weld defects, burst pressure, fractography, and metallography. The testing was conducted in agreement with a Task Technical and Quality Assurance Plan (TTQAP) (2) and applicable procedures.« less

  10. Long pulse diode experiments

    NASA Astrophysics Data System (ADS)

    McClenahan, Charles R.; Weber, Gerald J.; Omalley, Martin W.; Stewart, Joseph; Rinehart, Larry F.; Buttram, Malcolm T.

    1990-10-01

    A diode employing a thermionic cathode has produced 80 A beams at 200 kV for at least 6 microseconds. Moreover, the diode operates at rates as high as 1 Hz. EGUN simulations of the experimental geometry agree with the experiments. Finally, simulation of a proposed diode geometry predicts a 1 kA, 500 kV beam.

  11. Megavolt, Multi-Kiloamp Ka-Band Gyrotron Oscillator Experiment

    DTIC Science & Technology

    1989-03-15

    pulseline accelerator with 20 K2 output impedance and 55 nsec voltage pulse was used to generate a multi-kiloamp annular electron beam by explosive plasma...Lawrence Livermore National Laboratory P.O. Box 808 Livermore, California 94550 Attn: Dr. D. Prosnitz 1 copy Dr. T.J. Orzechowski 1 copy Dr. J. Chase 1

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wesnousky, Steven G.; Briggs, Richard W.; Caffee, Marc W.

    Deposits near Lamoille in the Ruby Mountains-East Humboldt Range of central Nevada and at Woodfords on the eastern edge of the Sierra Nevada each record two distinct glacial advances. In this paper, we compare independent assessments of terrestrial cosmogenic nuclide (TCN) surface exposure ages for glacial deposits that we have determined to those obtained by others at the two sites. At each site, TCN ages of boulders on moraines of the younger advance are between 15 and 30 ka and may be associated with marine oxygen isotope stage (MIS) 2. At Woodfords, TCN ages of boulders on the moraine ofmore » the older advance are younger than ~ 60 ka and possibly formed during MIS 4, whereas boulders on the correlative outwash surface show ages approaching 140 ka (~ MIS 6). The TCN ages of boulders on older glacial moraine at Woodfords thus appear to severely underestimate the true age of the glacial advance responsible for the deposit. The same is possibly true at Lamoille where clasts sampled from the moraine of the oldest advance have ages ranging between 20 and 40 ka with a single outlier age of ~ 80 ka. The underestimations are attributed to the degradation and denudation of older moraine crests. Noting that boulder ages on the older advances at each site overlap significantly with MIS 2. Finally, we speculate that erosion of the older moraines has been episodic, with a pulse of denudation accompanying the inception of MIS 2 glaciation.« less

  13. Electrode erosion properties of gas spark switches for fast linear transformer drivers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2017-12-01

    Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.

  14. Influence of High-Current-Density Impulses on the Compression Behavior: Experiments with Iron and a Nickel-Based Alloy

    NASA Astrophysics Data System (ADS)

    Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.

    2017-01-01

    Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.

  15. Design and operating experience of a 40 MW, highly-stabilized power supply

    NASA Astrophysics Data System (ADS)

    Boenig, Heinrich J.; Ferner, James A.; Bogdan, Ferenc; Morris, Gary C.; Rumrill, Ron S.

    Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of less than 10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, E.; Myers, C. E.; Edwards, M. R.

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC ringsmore » with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.« less

  17. Microwave Spectrum of the H_2S Dimer: Observation of K_{a}=1 Lines

    NASA Astrophysics Data System (ADS)

    Das, Arijit; Mandal, Pankaj; Lovas, Frank J.; Medcraft, Chris; Arunan, Elangannan

    2017-06-01

    Large amplitude tunneling motions in (H_2S)_{2} complicate the analysis of its microwave spectrum. The previous rotational spectrum of (H_2S)_{2} was observed using the Balle-Flygare pulsed nozzle FT microwave spectrometers at NIST and IISc. For most isotopomers of (H_2S)_{2} a two state pattern of a-type K_{a}=0 transitions had been observed and were interpreted to arise from E_{1}^{+/-} and E_{2}^{+/-} states of the six tunneling states expected for (H_2S)_{2}. K_{a}=0 lines gave us only the distance between the acceptor and donor S atoms. The (B+C)/2 for E_{1} and E_{2} states were found to be 1749.3091(8) MHz and 1748.1090(8) MHz respectively. In this work, we have observed the K_{a}=1 microwave transitions which enable us to determine finer structural details of the dimer. The observation of the K_{a}=1 lines indicate that (H_2S)_{2} is not spherical in nature, their interactions do have some anisotropy. Preliminary assignment of K_{a}=1 lines for the E_{1} state results in B=1752.859 MHz and C=1745.780 MHz. We also report a new progression of lines which probably belongs to the parent isotopomers. F. J. Lovas, P. K. Mandal and E. Arunan, unpublished work P. K. Mandal Ph.D. Dissertation, Indian Institute of Science, (2005) F. J. Lovas, R. D. Suenram, and L. H. Coudert. 43rd Int.Symp. on Molecular Spectroscopy. (1988)

  18. Stratigraphic Evolution of Brazos-Trinity Basin IV, Western Gulf of Mexico: Preliminary Results of IODP Expedition 308

    NASA Astrophysics Data System (ADS)

    Pirmez, C.; Behrmann, J.; Flemings, P. B.; John, C.

    2005-12-01

    IODP Expedition 308 drilled three sites across Brazos-Trinity Basin IV, at the terminal end of a system of four salt-withdrawal intra-slope basins offshore Texas. A 175 m thick succession of sand-rich turbidite fans, mass-transport deposits and hemipelagic sediments was deposited within the last ~120 ka in Basin IV, as recorded at Site U1320. Pre-fan deposits dating back to MIS 6 form a conformable succession of laminated and bioturbated clays, deposited from distal turbidity currents and/or river plumes. The pre-fan succession is capped by a hemipelagic clay interpreted to represent the high stand of sea level during MIS 5e. The basal turbidite deposits in the basin are mud-rich, with the exception of the very first turbidity currents to enter the basin. This initial pulse, possibly derived from failure of older shelf edge deposits, accumulated an ~8 m thick sand-rich interval. A pause in turbidity current influx lasted 30 to 40 kyrs, beginning a few thousand years before ash layer Y8 dated at 84 ka and the Emiliana huxleyi acme. During MIS 3 to MIS 2 sand-rich fans containing 5-25 m thick packets of very fine to lower medium sand beds accumulated up to 130 m of sediments. A 2-3 m thick microfossil-rich clay marks the end of turbidity current influx into the basin during the Holocene. The sedimentary record of Brazos-Trinity Basin IV shows that the accumulation of turbidites in the terminal end of this source to sink depositional system reflects a complex interaction between the availability of material and the initiation of flows at the source near the shelf edge, the interaction of turbidity currents with complex slope topography, and the effects of salt tectonics and flow processes on modifying this topography. The initial results indicate that sealevel changes alone cannot explain the sedimentation patterns observed in the basin.

  19. Deep-Space Ka-Band Flight Experience

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  20. NASA SCaN Overview and Ka-Band Actvities

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Midon, Marco Mario; Davarian, Faramaz; Geldzahler, Barry

    2014-01-01

    The Ka- and Broadband Communications Conference is an international forum attended by worldwide experts in the area of Ka-Band Propagation and satellite communications. Since its inception, NASA has taken the initiative of organizing and leading technical sections on RF Propagation and satellite communications, solidifying its worldwide leadership in the aforementioned areas. Consequently, participation in this conference through the contributions described below will maintain NASA leadership in Ka- and above RF Propagation as it relates to enhancing current and future satellite communication systems supporting space exploration.

  1. Photoelectric return-stroke velocity and peak current estimates in natural and triggered lightning

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    Two-dimensional photoelectric return stroke velocities from 130 strokes are presented, including 86 negative natural, 41 negative triggered, one positive triggered, and two positive natural return strokes. For strokes starting near the ground and exceeding 500 m in length, the average velocity is 1.3 + or - 0.3 X 10 to the 8th m/s for natural return strokes and 1.2 + or - 0.3 X 10 to the 8th m/s for triggered return strokes. For strokes with lengths less than 500 m, the average velocities are slightly higher. Using the transmission line model (TLM), the shortest segment one-dimensional return stroke velocity, and either the maximum or plateau electric field, it is shown that natural strokes have a peak current distribution that is lognormal with a median value of 16 kA (maximum E) or 12 kA (plateau E). Triggered lightning has a medium peak current value of 21 kA (maximum E) or 15 kA (plateau E). Correlations are found between TLM peak currents and velocities for triggered and natural subsequent return strokes, but not between TLM peak currents and natural first return stroke velocities.

  2. Late Quaternary sedimentation on the Leidy Creek fan, Nevada-California: Geomorphic responses to climate change

    USGS Publications Warehouse

    Reheis, M.C.; Slate, J.L.; Throckmorton, C.K.; McGeehin, J.P.; Sarna-Wojcicki, A. M.; Dengler, L.

    1996-01-01

    Well-dated surface and subsurface deposits in semiarid Fish Lake Valley, Nevada and California, demonstrate that alluvial-fan deposition is strongly associated with the warm dry climate of the last two interglacial intervals, and that fans were stable and (or) incised during the last glaciation. Fan deposition was probably triggered by a change from relatively moist to arid conditions causing a decrease in vegetation cover and increases in flash floods and sediment yield. We think that this scenario applies to most of the other valleys in the southern Basin and Range. Radiocarbon, tephra, and a few thermoluminescence and cosmogenic ages from outcrops throughout Fish Lake Valley and from cores on the Leidy Creek fan yield ages of > 100-50 ka and 11-0 ka for the last two periods of alluvial-fan deposition. Mapping, coring and shallow seismic profiling indicate that these periods were synchronous throughout the valley and on the proximal and distal parts of the fans. From 50 to 11 ka, fan deposition ceased, a soil formed on the older alluvium and the axial drainage became active as runoff and stream competence increased. Slow deposition due to sheet flow or aeolian processes locally continued during this interval, producing cumulic soil profiles. The soil was buried by debris-flow sediment beginning at about 11 ka, coincident with the onset of relatively dry and warm conditions in the region. However, ground-water discharge maintained a large freshwater marsh on the valley floor throughout the Holocene. Pulses of deposition during the Holocene are recorded in the marsh and fan deposits; some pulses coincided with periods of or transitions to warm, dry climate indicated by proxy climate records, whereas others may reflect local disturbances associated with volcanism and fires. Within the marsh deposits, much of the clastic material is probably desert loess. In addition, the deposition of coppice dunes within the fan deposits coincides with two dry periods during the late Holocene.

  3. The Rogowski Coil Sensor in High Current Application: A Review

    NASA Astrophysics Data System (ADS)

    Nazmy Nanyan, Ayob; Isa, Muzamir; Hamid, Haziah Abdul; Nur Khairul Hafizi Rohani, Mohamad; Ismail, Baharuddin

    2018-03-01

    Rogowski coil is used for measuring the alternating current (AC) and high-speed current pulses. However, the technology makes the Rogowski coil (RC) come out with more improvement, modification and until today it’s still being studied for the new application. The Rogowski coil has a few advantages compared to the high frequency current transformer (HFCT). A brief review on the basic theory and the application of Rogowski coil as a current sensor measurement that been done by previous researchers are presented and discussed in this paper. Additionally, the review also focused on the capability of Rogowski coil for high current sensor measurement and their application for fault detection, over voltage current sensor, lightning current sensor and high impulse current detection. The experimental set up, techniques and measurement parameters in models also been discussed. Finally, a brief review on the performance analysis of current sensor measurement of Rogowski coil likes sensitivity, the maximum and current detection which could be used as a guideline to another researcher in order to develop an advanced RC as high current sensor in future is presented. This review reveal that the RC has a very good performance in high current sensor detection in term of sensitivity which is up to a few nanosecond, higher bandwidth, excellent in detection of high fault and also could measuring lightning current up to 400kA and has many advantages compare to conventional current transformer(CT).

  4. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  5. Genetic Stratigraphy of Key Demographic Events in Arabia

    PubMed Central

    Fernandes, Verónica; Triska, Petr; Pereira, Joana B.; Alshamali, Farida; Rito, Teresa; Machado, Alison; Fajkošová, Zuzana; Cavadas, Bruno; Černý, Viktor; Soares, Pedro

    2015-01-01

    At the crossroads between Africa and Eurasia, Arabia is necessarily a melting pot, its peoples enriched by successive gene flow over the generations. Estimating the timing and impact of these multiple migrations are important steps in reconstructing the key demographic events in the human history. However, current methods based on genome-wide information identify admixture events inefficiently, tending to estimate only the more recent ages, as here in the case of admixture events across the Red Sea (∼8–37 generations for African input into Arabia, and 30–90 generations for “back-to-Africa” migrations). An mtDNA-based founder analysis, corroborated by detailed analysis of the whole-mtDNA genome, affords an alternative means by which to identify, date and quantify multiple migration events at greater time depths, across the full range of modern human history, albeit for the maternal line of descent only. In Arabia, this approach enables us to infer several major pulses of dispersal between the Near East and Arabia, most likely via the Gulf corridor. Although some relict lineages survive in Arabia from the time of the out-of-Africa dispersal, 60 ka, the major episodes in the peopling of the Peninsula took place from north to south in the Late Glacial and, to a lesser extent, the immediate post-glacial/Neolithic. Exchanges across the Red Sea were mainly due to the Arab slave trade and maritime dominance (from ∼2.5 ka to very recent times), but had already begun by the early Holocene, fuelled by the establishment of maritime networks since ∼8 ka. The main “back-to-Africa” migrations, again undetected by genome-wide dating analyses, occurred in the Late Glacial period for introductions into eastern Africa, whilst the Neolithic was more significant for migrations towards North Africa. PMID:25738654

  6. Genetic stratigraphy of key demographic events in Arabia.

    PubMed

    Fernandes, Verónica; Triska, Petr; Pereira, Joana B; Alshamali, Farida; Rito, Teresa; Machado, Alison; Fajkošová, Zuzana; Cavadas, Bruno; Černý, Viktor; Soares, Pedro; Richards, Martin B; Pereira, Luísa

    2015-01-01

    At the crossroads between Africa and Eurasia, Arabia is necessarily a melting pot, its peoples enriched by successive gene flow over the generations. Estimating the timing and impact of these multiple migrations are important steps in reconstructing the key demographic events in the human history. However, current methods based on genome-wide information identify admixture events inefficiently, tending to estimate only the more recent ages, as here in the case of admixture events across the Red Sea (~8-37 generations for African input into Arabia, and 30-90 generations for "back-to-Africa" migrations). An mtDNA-based founder analysis, corroborated by detailed analysis of the whole-mtDNA genome, affords an alternative means by which to identify, date and quantify multiple migration events at greater time depths, across the full range of modern human history, albeit for the maternal line of descent only. In Arabia, this approach enables us to infer several major pulses of dispersal between the Near East and Arabia, most likely via the Gulf corridor. Although some relict lineages survive in Arabia from the time of the out-of-Africa dispersal, 60 ka, the major episodes in the peopling of the Peninsula took place from north to south in the Late Glacial and, to a lesser extent, the immediate post-glacial/Neolithic. Exchanges across the Red Sea were mainly due to the Arab slave trade and maritime dominance (from ~2.5 ka to very recent times), but had already begun by the early Holocene, fuelled by the establishment of maritime networks since ~8 ka. The main "back-to-Africa" migrations, again undetected by genome-wide dating analyses, occurred in the Late Glacial period for introductions into eastern Africa, whilst the Neolithic was more significant for migrations towards North Africa.

  7. The youngest silicic eruptions from the Valles Caldera and volcanic hazard potential in north-central New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WoldeGabriel, Giday; Kelley, Richard E.; Miller, Elizabeth D.

    Here, sporadic mafic and felsic eruptions, representing at least five major and several smaller pulses of effusive and explosive volcanic products that range in age from 25.5 Ma to 68.3 ka, crop out within the Jemez volcanic field and the surrounding areas in north central New Mexico.

  8. The youngest silicic eruptions from the Valles Caldera and volcanic hazard potential in north-central New Mexico

    DOE PAGES

    WoldeGabriel, Giday; Kelley, Richard E.; Miller, Elizabeth D.; ...

    2016-05-01

    Here, sporadic mafic and felsic eruptions, representing at least five major and several smaller pulses of effusive and explosive volcanic products that range in age from 25.5 Ma to 68.3 ka, crop out within the Jemez volcanic field and the surrounding areas in north central New Mexico.

  9. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  10. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less

  11. Magnetic Mineral diagenesis in changing water environments in the Black Sea since ˜41.6 ka

    NASA Astrophysics Data System (ADS)

    Liu, Jiabo; Nowaczyk, Norbert; Frank, Ute; Arz, Helge

    2017-04-01

    Magnetic mineral diagenesis plays a key role in the global iron cycle. To understand the authigenic magnetic mineral formation by diagenesis is also fundamentally important for the interpretation of environmental magnetic as well as paleomagnetic signals. Core MSM33-55-1, recovered from the SW Black Sea, was subjected to rock-magnetic and SEM studies. The results demonstrate that four different magnetic mineral assemblages associated to specific water conditions can be observed. Between ˜41.6 ka and ˜19 ka, magnetite and greigite are alternatively in dominance in the sediment. Due to low organic matter input during the late MIS 3 and the last glacial maximum (LGM), oxygenated bottom water in the Black Sea was favourable for preserving detrital magnetite. Greigite in this interval have irregular shapes and assemble in spots, which were formed in a micro environment with limited sulfate availability. Between ˜19 ka and ˜16.5 ka, black layers were deposited as a result of organic matter accumulation induced by productivity blooming and riverine discharge soaring after the LGM. Hence less oxygenated bottom water conditions developed, and more fine grained greigite was formed. After melt-water pulse (MWP) events (˜16.5 ka), both primary productivity and the sea level were continuously rising until ˜8.3 ka, leading to the depletion of oxygen in bottom water. In addition to greigite, pyrite was also formed and gradually in dominance as approaching the Holocene. The influx of salt water masses from the Mediterranean Sea after ˜8.3 ka contributed to the establishment of the anoxic Black Sea, which resulted in the formation of ubiquitous frambiods of pyrite. Additionally, bacterial magnetic minerals are likely present in the sediment younger than ˜8.3 ka as indicated by rock magnetic results. In this paper, four different magnetic mineral assemblages, reflecting gradual changes from an oxic to an anoix Black Sea, were identified, yielding insights into the relation between magnetic minerals diagenesis and bottom water conditions.

  12. Attachment process in rocket-triggered lightning strokes

    NASA Astrophysics Data System (ADS)

    Wang, D.; Rakov, V. A.; Uman, M. A.; Takagi, N.; Watanabe, T.; Crawford, D. E.; Rambo, K. J.; Schnetzer, G. H.; Fisher, R. J.; Kawasaki, Z.-I.

    1999-01-01

    In order to study the lightning attachment process, we have obtained highly resolved (about 100 ns time resolution and about 3.6 m spatial resolution) optical images, electric field measurements, and channel-base current recordings for two dart leader/return-stroke sequences in two lightning flashes triggered using the rocket-and-wire technique at Camp Blanding, Florida. One of these two sequences exhibited an optically discernible upward-propagating discharge that occurred in response to the approaching downward-moving dart leader and connected to this descending leader. This observation provides the first direct evidence of the occurrence of upward connecting discharges in triggered lightning strokes, these strokes being similar to subsequent strokes in natural lightning. The observed upward connecting discharge had a light intensity one order of magnitude lower than its associated downward dart leader, a length of 7-11 m, and a duration of several hundred nanoseconds. The speed of the upward connecting discharge was estimated to be about 2 × 107 m/s, which is comparable to that of the downward dart leader. In both dart leader/return-stroke sequences studied, the return stroke was inferred to start at the point of junction between the downward dart leader and the upward connecting discharge and to propagate in both upward and downward directions. This latter inference provides indirect evidence of the occurrence of upward connecting discharges in both dart leader/return-stroke sequences even though one of these sequences did not have a discernible optical image of such a discharge. The length of the upward connecting discharges (observed in one case and inferred from the height of the return-stroke starting point in the other case) is greater for the event that is characterized by the larger leader electric field change and the higher return-stroke peak current. For the two dart leader/return-stroke sequences studied, the upward connecting discharge lengths are estimated to be 7-11 m and 4-7 m, with the corresponding return-stroke peak currents being 21 kA and 12 kA, and the corresponding leader electric field changes 30 m from the rocket launcher being 56 kV/m and 43 kV/m. Additionally, we note that the downward dart leader light pulse generally exhibits little variation in its 10-90% risetime and peak value over some tens of meters above the return-stroke starting point, while the following return-stroke light pulse shows an appreciable increase in risetime and a decrease in peak value while traversing the same section of the lightning channel. Our findings regarding (1) the initially bidirectional development of return-stroke process and (2) the relatively strong attenuation of the upward moving return-stroke light (and by inference current) pulse over the first some tens of meters of the channel may have important implications for return-stroke modeling.

  13. Stimulation of the basal and central amygdala in the mustached bat triggers echolocation and agonistic vocalizations within multimodal output

    PubMed Central

    Ma, Jie; Kanwal, Jagmeet S.

    2014-01-01

    The neural substrate for the perception of vocalizations is relatively well described, but how their timing and specificity are tightly coupled with accompanying physiological changes and context-appropriate behaviors remains unresolved. We hypothesized that temporally integrated vocal and emotive responses, especially the expression of fear, vigilance and aggression, originate within the amygdala. To test this hypothesis, we performed electrical microstimulation at 461 highly restricted loci within the basal and central amygdala in awake mustached bats. At a subset of these sites, high frequency stimulation with weak constant current pulses presented at near-threshold levels triggered vocalization of either echolocation pulses or social calls. At the vast majority of locations, microstimulation produced a constellation of changes in autonomic and somatomotor outputs. These changes included widespread co-activation of significant tachycardia and hyperventilation and/or rhythmic ear pinna movements (PMs). In a few locations, responses were constrained to vocalization and/or PMs despite increases in the intensity of stimulation. The probability of eliciting echolocation pulses vs. social calls decreased in a medial-posterior to anterolateral direction within the centrobasal amygdala. Microinjections of kainic acid (KA) at stimulation sites confirmed the contribution of cellular activity rather than fibers-of-passage in the control of multimodal outputs. The results suggest that localized clusters of neurons may simultaneously modulate the activity of multiple central pattern generators (CPGs) present within the brainstem. PMID:24624089

  14. Stimulation of the basal and central amygdala in the mustached bat triggers echolocation and agonistic vocalizations within multimodal output.

    PubMed

    Ma, Jie; Kanwal, Jagmeet S

    2014-01-01

    The neural substrate for the perception of vocalizations is relatively well described, but how their timing and specificity are tightly coupled with accompanying physiological changes and context-appropriate behaviors remains unresolved. We hypothesized that temporally integrated vocal and emotive responses, especially the expression of fear, vigilance and aggression, originate within the amygdala. To test this hypothesis, we performed electrical microstimulation at 461 highly restricted loci within the basal and central amygdala in awake mustached bats. At a subset of these sites, high frequency stimulation with weak constant current pulses presented at near-threshold levels triggered vocalization of either echolocation pulses or social calls. At the vast majority of locations, microstimulation produced a constellation of changes in autonomic and somatomotor outputs. These changes included widespread co-activation of significant tachycardia and hyperventilation and/or rhythmic ear pinna movements (PMs). In a few locations, responses were constrained to vocalization and/or PMs despite increases in the intensity of stimulation. The probability of eliciting echolocation pulses vs. social calls decreased in a medial-posterior to anterolateral direction within the centrobasal amygdala. Microinjections of kainic acid (KA) at stimulation sites confirmed the contribution of cellular activity rather than fibers-of-passage in the control of multimodal outputs. The results suggest that localized clusters of neurons may simultaneously modulate the activity of multiple central pattern generators (CPGs) present within the brainstem.

  15. Development of a high-power solid-state switch using static induction thyristors for a klystron modulator

    NASA Astrophysics Data System (ADS)

    Tokuchi, Akira; Kamitsukasa, Fumiyoshi; Furukawa, Kazuya; Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Fujimoto, Masaki; Osumi, Hiroki; Funakoshi, Sousuke; Tsutsumi, Ryouta; Suemine, Shoji; Honda, Yoshihide; Isoyama, Goro

    2015-01-01

    We developed a solid-state switch with static induction thyristors for the klystron modulator of the L-band electron linear accelerator (linac) at the Institute of Scientific and Industrial Research, Osaka University. This switch is designed to have maximum specifications of a holding voltage of 25 kV and a current of 6 kA at the repetition frequency of 10 Hz for forced air cooling. The turn-on time of the switch was measured with a matched resistor to be 270 ns, which is sufficiently fast for the klystron modulator. The switch is retrofitted in the modulator to generate 1.3 GHz RF pulses with durations of either 4 or 8 μs using a 30 MW klystron, and the linac is successfully operated under maximum conditions. This finding demonstrates that the switch can be used as a high-power switch for the modulator. Pulse-to-pulse variations of the klystron voltage are measured to be less than 0.015%, and those of RF power and phase are lower than 0.15% and 0.1°, respectively. These values are significantly smaller than those obtained with a thyratron; hence, the stability of the main RF system is improved. The solid-state switch has been used in normal operation of the linac for more than a year without any serious trouble. Thus, we confirmed the switch's robustness and long-term reliability.

  16. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  17. Standard Observing Bands: Is Now the Time to Replace S/X with X/Ka?

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Lanyi, G. E.; Naudet, C. J.

    2004-01-01

    In this paper we will argue that the VLBI community should be developing a road map to transition from S/X to simultaneous X and Ka-band (32 GHz) observations. There are both negative and positive reasons for planning such a transition. On the negative side, we will outline concerns that S-band observations may be headed toward obsolescence. On the positive side, we will refer to evidence that X/Ka has potential for providing a more stable reference frame than S/X. We will propose timetables for a transition to X/Ka observing starting from the current status of X/Ka and plans that are now taking shape. First X/Ka fringes were obtained in 2001 with the Deep Space Network. Future plans will be discussed including a proposed X/Ka-band upgrade to the VLBA. Lastly, we will consider the need for a period of overlap between S/X and X/Ka so that the long and rich history of astrometric and geodetic VLBI is not compromised.

  18. Paleohydrologic record from lake brine on the southern High Plains, Texas

    USGS Publications Warehouse

    Sanford, W.E.; Wood, W.W.

    1995-01-01

    The timing of changes in the stage and salinity of Double Lakes of Lynn County, Texas, was estimated using dissolved-chloride profiles across an underlying shale layer. Lake conditions over the past 30 to 50 ka can be inferred from the chloride profiles by using the advective velocity of the pore water through the shale and an appropriate coefficient of molecular diffusion. The profiles suggest that net-evaporative conditions existed over the southern High Plains for the past 50 ka; a period of increasing salinity in the lake began at ~20 ka and reached current levels at ~5 ka. In addition, deflationary conditions were present for at least 4 ka, and likely began or were accelerated during the most recent altithermal period at ~5 ka. -from Authors

  19. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes.

    PubMed

    Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo

    2013-06-11

    A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20-19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20-19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18-15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3-4 ka.

  20. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes

    PubMed Central

    Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo

    2013-01-01

    A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20–19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20–19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18–15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3–4 ka. PMID:23720306

  1. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  2. Gas spark switches with increased operating life for Marx generator of lightning test complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru

    A new design of gas spark switches with an increased operating life and stable dynamic characteristics for the Marx generator of the lightning test complex has been developed. The switches are characterized by the following parameters in the mode of operation: voltage up to 80 kV, discharge current up to 50 kA, flowing charge up to 3.5 C/pulse. An increased operating life is achieved by using torus-shaped electrodes with increased working surface area and a trigger electrode in the form of a thick disk with a hole located between them. Low breakdown delay time and high stability of breakdown voltagemore » under dynamic conditions are provided by gas preionization in the spark gap using UV radiation of an additional corona discharge in the axial region.« less

  3. A 0.5 MV magnetically self-insulated pulsed transformer

    NASA Astrophysics Data System (ADS)

    Istenic, M.; Novac, B. M.; Luo, J.; Kumar, R.; Smith, I. R.

    2006-11-01

    This paper describes the successful development of a light and compact 0.5 MV spiral-strip transformer, with the secondary winding contained in vacuum and based on magnetic self-insulation. Ensuring trouble-free operation required the use of conductive elastomers in electric field grading techniques and the adoption in the secondary winding of glass/ceramic conductor spacers. It is demonstrated that the primary-current/secondary breakdown-voltage characteristic is a function of the vacuum pressure, with only 52 kA being necessary to produce 0.5 MV at 10-6 Torr. The difficult task of modelling the transformer required 3D electric and magnetic field computation, together with state-of-the-art calculation of the electron flow in the vacuum. Based on the results obtained to date, scaling up to multi-megavolt transformers can readily be envisaged.

  4. Late quaternary temperature record from buried soils of the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.

    2007-01-01

    We present the first comprehensive late Quaternary record of North American Great Plains temperature by assessing the behavior of the stable isotopic composition (δ13C) of buried soils. After examining the relationship between the δ13C of topsoil organic matter and July temperature from 61 native prairies within a latitudinal range of 46°–38°N, we applied the resulting regression equation to 64 published δ13C values from buried soils of the same region to construct a temperature curve for the past 12 k.y. Estimated temperatures from 12 to 10 ka (1 k.y. = 1000 14C yr B.P.) fluctuated with a periodicity of ∼1 k.y. with two cool excursions between −4.5 and −3.5 °C and two warmer excursions between −1 and 0 °C, relative to modern. Early Holocene temperatures from ca. 10–7.5 ka were −1.0 to −2.0 °C before rising to +1.0 °C in the middle Holocene between 6.0 and 4.5 ka. After a cool interlude from 4.2 to 2.6 ka, when temperatures dropped to slightly below modern, another warm interval ensued from 2.6 to 1 ka as temperatures increased to ∼+0.5 °C. A final decline in temperature to below modern occurred beginning ca. 0.5 ka. Cooler than present temperatures in the Great Plains indicate telecommunications with cool-water episodes in the Gulf of Mexico and North Atlantic potentially governed by a combination of glacial meltwater pulses and low solar irradiance.

  5. Generation of flash x-rays using a mercury-anode radiation tube

    NASA Astrophysics Data System (ADS)

    Oizumi, Teiji; Sato, Eiichi; Sagae, Michiaki; Hayasi, Yasuomi; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-02-01

    The constructions and the radiographic characteristics of a flash x-ray generator having a liquid-anode radiation tube are described. This generator consisted of the following essential components: a high-voltage power supply, a combined ceramic condenser of 10.7 nF, an oil- diffusion pump, an oil circulator, a trigger device, and a flash x-ray tube. The x-ray tube was of a triode and was composed of the following major devices: a mercury anode, a rod-shaped graphite cathode, a trigger electrode made from a copper wire, an x-ray window made from a polyethyleneterephthalate film, and a glass tube body. The ceramic condenser was charged from 40 to 60 kV by a power supply, and the electric charges in the condenser were discharged to the x-ray tube after the triggering. The maximum tube voltage was equivalent to the initial charged voltage of the condenser, and the tube current was less than 0.7 kA. The pulse widths of the flash x rays had values of about 1 microsecond(s) , and the time-integrated x-ray intensity was about 2.4 (mu) C/kg at 0.26 m per pulse with a charged voltage of 60 kV.

  6. Holocene beach buildup and coastal aeolian sand incursions off the Nile littoral cell

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Sivan, Dorit; Shtienberg, Gilad; Porat, Naomi; Bookman, Revital

    2017-04-01

    Israel's coastal plain is abundant with sand originating from the Nile littoral cell. The inland windblown loose sand has formed 3-6 km wide lobe-like sand and dune fields currently comprised of foredunes, linear and northeasterly facing transverse and parabolic dunes that are currently stabilized by vegetation. This study reviews the architecture and history of the these dune fields aiming to: (a) Date the timings of beach accretion, and sand and dune incursions. (b) Discriminate between natural and human-induced forcing factors of sand mobilization and stabilization in time and space. (c) Present a model of the dunescape development. (d) Assess scenarios of sand transport in the future charcaterized by intense human impact and climate change. Luminescence ages, radiocarbon dates and relative ages from previously published geological and archaeological reports, historical texts, together with new optically stimulated luminescence (OSL) ages and stratigraphic and sedimentological data are analyzed. The deposition, mobilizations and preservation of the sand bodies, initially induced by the decline in sea level rise at 6-4 ka, were later controlled by historic land-use intensity and modern land-use/negligence practices. At 6 ka, beach sand buildup rapidly started. Where aeolianite ridges bordered the coast, pulses of sand with biogenic carbonate grains unconformably draped the ridges and rapidly consolidated into a distinct sandy calcarenite unit. Further east, sand sheets and low dunes partly pedogenized following their incursion, but did not cement. The water retention capacities of the sand sheets enabled the establishment of a sand-stabilizing vegetation cover that probably became an attractive environment for fuel and grazing. The growing Hellenistic-Roman-Byzantine ( 2.4-1.3 ka) populations probably led to increased consumption and massive destruction of sand stabilizing vegetation, enabling sand erodibility and mobilization during winter storms. The sand gradually expanded to the current limits of today's dune fields. The gradual but unsteady post-Byzantine demographic drop enabled reestablishment of natural vegetation and rapid regosol development. This drop occurred differentially along the coast due to governance and land-use practices. We suggest that dune construction mainly evolved around the 19th century from the existing sand sheets and low dunes that intermittently developed since 6-5 ka. Human (Bedouin grazing influx and ethnic settlements) destruction of vegetation, in conjuction with the rapid 19th-20th century population growth made the sand prone to "in situ" transverse and linear dune formation in response to powerful winds further supported by increased storminess at this time. Inland dune mobilization and the artificial establishment of vegetated foredunes along the coast in the 1930's-1940's partly scalped the sand deposits by the coast.

  7. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.

  8. Use of natural diamonds to monitor 14C AMS instrument backgrounds

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Southon, John

    2007-06-01

    To examine one component of the instrument-based background in the University of California Keck Carbon Cycle AMS spectrometer, we have obtained measurements on a set of natural diamonds pressed into sample holders. Natural diamond samples (N = 14) from different sources within rock formations with geological ages greatly in excess of 100 Ma yielded a range of currents (∼110-250 μA 12C- where filamentous graphite typically yields ∼150 μA 12C-) and apparent 14C ages (64.9 ± 0.4 ka BP [0.00031 ± 0.00002 fm] to 80.0 ± 1.1 ka BP [0.00005 ± 0.00001 fm]). Six fragments cut from a single diamond exhibited essentially identical 14C values - 69.3 ± 0.5 ka-70.6 ± 0.5 ka BP. The oldest 14C age equivalents were measured on natural diamonds which exhibited the highest current yields.

  9. Ca2+ ion permeability properties of (R,S) alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in isolated interneurons from the olfactory bulb of the rat.

    PubMed

    Jardemark, K; Nilsson, M; Muyderman, H; Jacobson, I

    1997-02-01

    The aim of the study was to investigate the divalent cation permeability of native alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors expressed in interneurons of the olfactory bulb. Kainic acid (KA) was used as agonist to activate AMPA-receptor-mediated currents, which were recorded with the use of the patch-clamp technique. In interneurons acutely isolated from the olfactory bulb, the current responses to KA showed linear/outwardly rectifying current-voltage (I-V) relationships with a positive average reversal potential of +7 mV in normal external medium (1 mM Ca2+, 1 mM Mg2+). Raising the external Ca2+ concentration to 10 mM suppressed the amplitude, whereas omission of Ca2+ enhanced the amplitude of the current. Spectral analysis of the increase in current variance produced by KA indicated that the decreased amplitude observed in 10 mM Ca2+ was accompanied by a reduction in the apparent single-channel conductance. Raising the concentration of Mg2+ from 1 to 10 mM had a weak depressant effect on the KA-evoked current amplitude. No shift in the reversal potential was observed when the concentration of Ca2+ or Mg2+ was changed from 1 to 10 mM. Increasing the external medium concentration of Ca2+ to 60 mM not only further depressed the amplitudes of the KA-evoked currents but also gave a pronounced leftward shift in the average reversal potential to -32 +/- 9 (SE) mV (N = 7). For neurons in primary culture, current responses to KA also showed linear/outwardly rectifying I-V relationships with a positive average reversal potential in normal external medium. Substituting N-methylglucamine for Na+ and increasing the Ca2+ concentration to 10 mM gave a leftward shift in the average reversal potential from +9 +/- 3 mV to -47 +/- 4 mV (N = 11) and caused a marked reduction in the amplitude of the KA-evoked currents at negative potentials. The permeability properties of the studied AMPA receptors were well predicted by the Eyring rate model (symmetrical, 2 barriers, 1 site). The model gave a pCa2+/pK+ permeability ratio of 0.06 for acutely isolated interneurons and 0.14 for interneurons in primary culture. The constant field theory, which failed to successfully reproduce all the experimental data, gave corresponding low permeability ratios of 0.18 and 0.40 for acutely isolated cells and cells in primary culture, respectively. Thus it is concluded that interneurons in the olfactory bulb mainly express AMPA receptors with low permeability to Ca2+ ions.

  10. Experimental demonstration of plasma startup by coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Nelson, B. A.; Hamp, W. T.; Izzo, V. A.; O'Neill, R. G.; Redd, A. J.; Sieck, P. E.; Smith, R. J.

    2004-05-01

    Experimental results on the transfer of a coaxial-helicity-injection (CHI) produced discharge to inductive operation are reported. CHI assisted plasma startup is more robust than inductive only operation and reduces volt-seconds consumption. After handoff to inductive operation, the initial 100 kA of CHI produced current drops to 50 kA, then ramps up to 180 kA, using only 30 mVs, about 40% higher than that produced by induction alone. Results show that initiation of CHI discharges at lower densities produce higher levels of coupling current. Coupling a CHI produced discharge to induction from a precharged central solenoid has produced record currents of 290 kA using only 52 mWb of central solenoid flux. CHI discharges can also be generated while the central transformer is in the process of being precharged, during which period it induces a negative loop voltage on the CHI discharge. These significant results were obtained on the Helicity Injected Torus-II (HIT-II) [T.R. Jarboe, Fusion Technol. 15, 7 (1989)] spherical torus experiment (major/minor radius of 0.3/0.2 m and elongation of 1.5).

  11. Different structural requirements for functional ion pore transplantation suggest different gating mechanisms of NMDA and kainate receptors.

    PubMed

    Villmann, Carmen; Hoffmann, Jutta; Werner, Markus; Kott, Sabine; Strutz-Seebohm, Nathalie; Nilsson, Tanja; Hollmann, Michael

    2008-10-01

    Although considerable progress has been made in characterizing the physiological function of the high-affinity kainate (KA) receptor subunits KA1 and KA2, no homomeric ion channel function has been shown. An ion channel transplantation approach was employed in this study to directly test if homomerically expressed KA1 and KA2 pore domains are capable of conducting currents. Transplantation of the ion pore of KA1 or KA2 into GluR6 generated perfectly functional ion channels that allowed characterization of those electrophysiological and pharmacological properties that are determined exclusively by the ion pore of KA1 or KA2. This demonstrates for the first time that KA1 and KA2 ion pore domains are intrinsically capable of conducting ions even in homomeric pore assemblies. NMDA receptors, similar to KA1- or KA2-containing receptors, function only as heteromeric complexes. They are composed of NR1 and NR2 subunits, which both are non-functional when expressed homomerically. In contrast to NR1, the homomeric NR2B ion pore failed to translate ligand binding into pore opening when transplanted into GluR6. Similarly, heteromeric coexpression of the ion channel domains of both NR1 and NR2 inserted into GluR6 failed to produce functional channels. Therefore, we conclude that the mechanism underlying the ion channel opening in the obligatorily heterotetrameric NMDA receptors differs significantly from that in the facultatively heterotetrameric alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and KA receptors.

  12. Overview of recent experimental results from the Aditya tokamak

    NASA Astrophysics Data System (ADS)

    Tanna, R. L.; Ghosh, J.; Chattopadhyay, P. K.; Raj, Harshita; Patel, Sharvil; Dhyani, P.; Gupta, C. N.; Jadeja, K. A.; Patel, K. M.; Bhatt, S. B.; Panchal, V. K.; Patel, N. C.; Chavda, Chhaya; Praveenlal, E. V.; Shah, K. S.; Makawana, M. N.; Jha, S. K.; Gopalkrishana, M. V.; Tahiliani, K.; Sangwan, Deepak; Raju, D.; Nagora, Umesh; Pathak, S. K.; Atrey, P. K.; Purohit, S.; Raval, J.; Joisa, Y. S.; Rao, C. V. S.; Chowdhuri, M. B.; Banerjee, S.; Ramaiya, N.; Manchanda, R.; Thomas, J.; Kumar, Ajai; Ajay, Kumar; Sharma, P. K.; Kulkarni, S. V.; Sathyanarayana, K.; Shukla, B. K.; Das, Amita; Jha, R.; Saxena, Y. C.; Sen, A.; Kaw, P. K.; Bora, D.; the ADITYA Team

    2017-10-01

    Several experiments, related to controlled thermonuclear fusion research and highly relevant for large size tokamaks, including ITER, have been carried out in ADITYA, an ohmically heated circular limiter tokamak. Repeatable plasma discharges of a maximum plasma current of ~160 kA and discharge duration beyond ~250 ms with a plasma current flattop duration of ~140 ms have been obtained for the first time in ADITYA. The reproducibility of the discharge reproducibility has been improved considerably with lithium wall conditioning, and improved plasma discharges are obtained by precisely controlling the position of the plasma. In these discharges, chord-averaged electron density ~3.0-4.0  ×  1019 m-3 using multiple hydrogen gas puffs, with a temperature of the order of ~500-700 eV, have been achieved. Novel experiments related to disruption control are carried out and disruptions, induced by hydrogen gas puffing, are successfully mitigated using the biased electrode and ion cyclotron resonance pulse techniques. Runaway electrons are successfully mitigated by applying a short local vertical field (LVF) pulse. A thorough disruption database has been generated by identifying the different categories of disruption. Detailed analysis of several hundred disrupted discharges showed that the current quench time is inversely proportional to the q edge. Apart from this, for volt-sec recovery during the plasma formation phase, low loop voltage start-up and current ramp-up experiments have been carried out using electron cyclotron resonance heating (ECRH). Successful recovery of volt-sec leads to the achievement of longer plasma discharge durations. In addition, the neon gas puff assisted radiative improved confinement mode has also been achieved in ADITYA. All of the above mentioned experiments will be discussed in this paper.

  13. Quench propagation in the superconducting 6 kA flexible busbars of the LHC

    NASA Astrophysics Data System (ADS)

    Herzog, R.; Calvi, M.; Sonnemann, F.; Pelegrin-Carcelen, J. M.

    2002-05-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components.

  14. Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy

    NASA Astrophysics Data System (ADS)

    Rouchon, V.; Gillot, P. Y.; Quidelleur, X.; Chiesa, S.; Floris, B.

    2008-10-01

    The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma-Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K-Ar geochronological data. The RVC was active from c.a. 550 ka to 150 ka. Its evolution is divided into five stages, defining a volcanic pulse recurrence time of c.a. 90-100 kyr. The two initial stages, consisted in the construction of two successive stratovolcanoes of the tephrite-phonolite, namely "High-K series". The first stage was terminated by a major plinian eruption emplacing the trachytic Rio Rava pumices at 439 ± 9 ka. At the end of the second stage, the last High-K series stratovolcano was destroyed by a large sector collapse and the emplacement of the Brown Leucitic Tuff (BLT) at 353 ± 5 ka. The central caldera of the RVC is the result of the overlapping of the Rio Rava and of the BLT explosions. The plinian eruption of the BLT is related to the emptying of a stratified, deep-seated HKS magma chamber during the upwelling of K series (KS) magma, marking a major geochemical transition and plumbing system re-organization. The following stage was responsible for the emplacement of the Lower White Trachytic Tuff at 331 ± 2 ka, and of basaltic-trachytic effusive products erupted through the main vent. The subsequent activity was mainly restricted to the emplacement of basaltic-shoshonitic parasitic cones and lava flows, and of minor subplinian deposits of the Upper White Trachytic Tuff between 275 and 230 ka. The northern crater is most probably a maar that formed by the phreatomagmatic explosion of the Yellow Trachytic Tuff at 230 ka. The latest stage of activity featured the edification of the central shoshonitic domes at c.a. 150 ka.

  15. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  16. Evidence for a substantial West Antarctic ice sheet contribution to meltwater pulses and abrupt global sea level rise

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Woodward, J.; Winter, K.; van Ommen, T. D.; Moy, A. D.; Curran, M. A.; Rootes, C.; Rivera, A.; Millman, H.

    2015-12-01

    During the last deglaciation (21,000 to 7,000years ago) global sea level rise was punctuated by several abrupt meltwater spikes triggered by the retreat of ice sheets and glaciers world-wide. However, the debate regarding the relative timing, geographical source and the physical mechanisms driving these rapid increases in sea level has catalyzed debate critical to predicting future sea level rise and climate. Here we present a unique record of West Antarctic Ice Sheet elevation change derived from the Patriot Hills blue ice area, located close to the modern day grounding line of the Institute Ice Stream in the Weddell Sea Embayment. Combined isotopic signatures and gas volume analysis from the ice allows us to develop a record of local ice sheet palaeo-altitude that is assessed against independent regional high-resolution ice sheet modeling studies, allowing us to demonstrate that past ice sheet elevations across this sector of the WSE were considerably higher than those suggested by current terrestrial reconstructions. We argue that ice in the WSE had a significant influence on both pre and post LGM sea level rise including MWP-1A (~14.6 ka) and during MWP-1B (11.7-11.6 ka), reconciling past sea level rise and demonstrating for the first time that this sector of the WAIS made a significant and direct contribution to post LGM sea level rise.

  17. Molybdenum accumulation in Cariaco basin sediment over the past 24 k.y.: A record of water-column anoxia and climate

    USGS Publications Warehouse

    Dean, W.E.; Piper, D.Z.; Peterson, L.C.

    1999-01-01

    Molybdenum (Mo) concentrations in a sediment core from the Cariaco basin on the Venezuelan continental shelf can be partitioned between a marine fraction and a terrigenous fraction. The accumulation rate of the marine fraction of Mo increased abruptly 15 000 calendar years ago (15 ka), from 4 ??g ?? cm-2 ?? yr-1, and then decreased abruptly at 9 ka. The accumulation rate remained high throughout this 6 k.y. period, but exhibited maxima at 15-14 and 12.5 ka, corresponding in time to meltwater pulse IA into the Gulf of Mexico and the onset of the Younger Dryas cold event, respectively. The marine fraction of Mo is interpreted in terms of redox conditions of bottom water, as dictated by both the flux of settling organic matter and bottom-water residence time. Correspondence between geochemical extremes in this core with changes in sea level and global climate demonstrates the high degree to which this ocean-margin basin has responded to the paleoceanographic regime throughout the past 24 k.y.

  18. Impacts of post-glacial lake drainage events and revised chronology of the Champlain Sea episode 13-9 ka

    USGS Publications Warehouse

    Cronin, T. M.; Manley, P.L.; Brachfeld, S.; Manley, T.O.; Willard, D.A.; Guilbault, J.-P.; Rayburn, J.A.; Thunell, R.; Berke, M.

    2008-01-01

    Lithologic, CHIRP (Compressed High Intensity Radar Pulse) sonar, paleomagnetic, stable isotopic and micropaleontological analyses of sediment cores from Lake Champlain (New York, Vermont) were used to determine the age of the post-glacial Champlain Sea marine episode, the timing of salinity changes and their relationship to freshwater discharge from mid-continent glacial lakes. Calibrated radiocarbon ages on plant material provide an improved post-glacial chronology overcoming problems from shell ages caused by carbon reservoir effects up to 1500 yr. The final drainage of glacial Lake Vermont and the inception of marine conditions occurred ∼ 13.1–12.8 ka (kiloannum, calendar years) and a sharp decrease in Champlain Sea salinity from ∼ 25 to 7–8 psu (practical salinity units) occurred approximately 11.4–11.2 ka. Reduced salinity was most likely caused by rapid freshwater inflow eastward from glacial Lake Algonquin into the Champlain Basin. The timing of inferred freshwater event coincides with the widespread climatic cooling called the Preboreal Oscillation.

  19. Experience of 12 kA / 16 V SMPS during the HTS Current Leads Test

    NASA Astrophysics Data System (ADS)

    Panchal, P.; Christian, D.; Panchal, R.; Sonara, D.; Purwar, G.; Garg, A.; Nimavat, H.; Singh, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-04-01

    As a part of up gradation plans in SST-1 Tokamak, one pair of 3.3 kA rated prototype hybrid current leads were developed using Di-BSCCO as High Temperature Superconductors (HTS) and the copper heat exchanger. In order to validate the manufacturing procedure prior to go for series production of such current leads, it was recommended to test these current leads using dedicated and very reliable DC switch mode power supply (SMPS). As part of test facility, 12 kA, 16 VDC programmable SMPS was successfully installed, commissioned and tested. This power supply has special features such as modularity, N+1 redundancy, very low ripple voltage, precise current measurements with Direct Current Current Transformer, CC/CV modes with auto-crossover and auto-sequence programming. As a part of acceptance of this converter, A 5.8 mΩ water-cooled resistive dummy load and PLC based SCADA system is designed, developed for commissioning of power supply. The same power supply was used for the testing of the prototype HTS current leads. The paper describes the salient features and experience of state-of-art of power supply and results obtained from this converter during the HTS current leads test.

  20. Terrestrial cosmogenic surface exposure dating of glacial and associated landforms in the Ruby Mountains-East Humboldt Range of central Nevada and along the northeastern flank of the Sierra Nevada

    DOE PAGES

    Wesnousky, Steven G.; Briggs, Richard W.; Caffee, Marc W.; ...

    2016-05-07

    Deposits near Lamoille in the Ruby Mountains-East Humboldt Range of central Nevada and at Woodfords on the eastern edge of the Sierra Nevada each record two distinct glacial advances. In this paper, we compare independent assessments of terrestrial cosmogenic nuclide (TCN) surface exposure ages for glacial deposits that we have determined to those obtained by others at the two sites. At each site, TCN ages of boulders on moraines of the younger advance are between 15 and 30 ka and may be associated with marine oxygen isotope stage (MIS) 2. At Woodfords, TCN ages of boulders on the moraine ofmore » the older advance are younger than ~ 60 ka and possibly formed during MIS 4, whereas boulders on the correlative outwash surface show ages approaching 140 ka (~ MIS 6). The TCN ages of boulders on older glacial moraine at Woodfords thus appear to severely underestimate the true age of the glacial advance responsible for the deposit. The same is possibly true at Lamoille where clasts sampled from the moraine of the oldest advance have ages ranging between 20 and 40 ka with a single outlier age of ~ 80 ka. The underestimations are attributed to the degradation and denudation of older moraine crests. Noting that boulder ages on the older advances at each site overlap significantly with MIS 2. Finally, we speculate that erosion of the older moraines has been episodic, with a pulse of denudation accompanying the inception of MIS 2 glaciation.« less

  1. Terrestrial cosmogenic surface exposure dating of glacial and associated landforms in the Ruby Mountains-East Humboldt Range of central Nevada and along the northeastern flank of the Sierra Nevada

    USGS Publications Warehouse

    Wesnousky, Steven G.; Briggs, Richard; Caffee, Marc W.; Ryerson, Rick J.; Finkel, Robert C.; Owen, Lewis A.

    2016-01-01

    Deposits near Lamoille in the Ruby Mountains-East Humboldt Range of central Nevada and at Woodfords on the eastern edge of the Sierra Nevada each record two distinct glacial advances. We compare independent assessments of terrestrial cosmogenic nuclide (TCN) surface exposure ages for glacial deposits that we have determined to those obtained by others at the two sites. At each site, TCN ages of boulders on moraines of the younger advance are between 15 and 30 ka and may be associated with marine oxygen isotope stage (MIS) 2. At Woodfords, TCN ages of boulders on the moraine of the older advance are younger than ~ 60 ka and possibly formed during MIS 4, whereas boulders on the correlative outwash surface show ages approaching 140 ka (~ MIS 6). The TCN ages of boulders on older glacial moraine at Woodfords thus appear to severely underestimate the true age of the glacial advance responsible for the deposit. The same is possibly true at Lamoille where clasts sampled from the moraine of the oldest advance have ages ranging between 20 and 40 ka with a single outlier age of ~ 80 ka. The underestimations are attributed to the degradation and denudation of older moraine crests. Noting that boulder ages on the older advances at each site overlap significantly with MIS 2. We speculate that erosion of the older moraines has been episodic, with a pulse of denudation accompanying the inception of MIS 2 glaciation.

  2. Modelling of crater formation on anode surface by high-current vacuum arcs

    NASA Astrophysics Data System (ADS)

    Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura

    2016-11-01

    Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.

  3. Deglaciation of the Eurasian ice sheet complex

    NASA Astrophysics Data System (ADS)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.

    2017-08-01

    The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a concerted attempt to model the deglaciation of the EISC honouring these new constraints is conspicuously lacking. Here, we apply a first-order, thermomechanical ice sheet model, validated against a diverse suite of empirical data, to investigate the retreat of the EISC after 23 ka BP, directly extending the work of Patton et al. (2016) who modelled the build-up to its maximum extent. Retreat of the ice sheet complex was highly asynchronous, reflecting contrasting regional sensitivities to climate forcing, oceanic influence, and internal dynamics. Most rapid retreat was experienced across the Barents Sea sector after 17.8 ka BP when this marine-based ice sheet disintegrated at a rate of ∼670 gigatonnes per year (Gt a-1) through enhanced calving and interior dynamic thinning, driven by oceanic/atmospheric warming and exacerbated by eustatic sea-level rise. From 14.9 to 12.9 ka BP the EISC lost on average 750 Gt a-1, peaking at rates >3000 Gt a-1, roughly equally partitioned between surface melt and dynamic losses, and potentially contributing up to 2.5 m to global sea-level rise during Meltwater Pulse 1A. Independent glacio-isostatic modelling constrained by an extensive inventory of relative sea-level change corroborates our ice sheet loading history of the Barents Sea sector. Subglacial conditions were predominately temperate during deglaciation, with over 6000 subglacial lakes predicted along with an extensive subglacial drainage network. Moreover, the maximum EISC and its isostatic footprint had a profound impact on the proglacial hydrological network, forming the Fleuve Manche mega-catchment which had an area of ∼2.5 × 106 km2 and drained the present day Vistula, Elbe, Rhine and Thames rivers through the Seine Estuary. During the Bølling/Allerød oscillation after c. 14.6 ka BP, two major proglacial lakes formed in the Baltic and White seas, buffering meltwater pulses from eastern Fennoscandia through to the Younger Dryas when these massive proglacial freshwater lakes flooded into the North Atlantic Ocean. Deglaciation temporarily abated during the Younger Dryas stadial at 12.9 ka BP, when remnant ice across Svalbard, Franz Josef Land, Novaya Zemlya, Fennoscandia and Scotland experienced a short-lived but dynamic re-advance. The final stage of deglaciation converged on present day ice cover around the Scandes mountains and the Barents Sea by 8.7 ka BP, although the phase-lagged isostatic recovery still continues today.

  4. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  5. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator.

    PubMed

    Li, F; Hua, J F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-07-05

    The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.

  6. X-ray analysis of electron Bernstein wave heating in MST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.

    2016-11-15

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. Thismore » provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.« less

  7. Control and Data Acquisition for the Spherical Tokamak MEDUSA-CR

    NASA Astrophysics Data System (ADS)

    Soto, Christian; Gonzalez, Jeferson; Carvajal, Johan; Ribeiro, Celso

    2013-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14 m, a < 0.10 m, BT < 0.5 T, Ip < 40 kA, 3 ms pulse) is being recommissioned in Costa Rica Institute of Technology. The main objectives of the MEDUSA-CR project are training and to clarify several issues in relevant physics for conventional and mainly STs, including beta studies in bean-shaped ST plasmas, transport, heating and current drive via Alfvén wave, and natural divertor STs with ergodic magnetic limiter. We present here the control and data acquisition systems for MEDUSA-CR device which are based on National Instruments (NI) software (LabView) and hardware on loan to our laboratory via NI-Costa Rica. The interface with the energy, gas fueling, and security systems are also presented. VIE-ITCR, IAEA-CRP contract 17592, National Instruments of Costa Rica.

  8. Energy, Vacuum, Gas Fueling, and Security Systems for the Spherical Tokamak MEDUSA-CR

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jeferson; Soto, Christian; Carvajal, Johan; Ribeiro, Celso

    2013-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14 m, a < 0.10 m, BT < 0.5 T, Ip < 40 kA, 3 ms pulse) is being recommissioned in Costa Rica Institute of Technology. The main objectives of the MEDUSA-CR project are training and to clarify several issues in relevant physics for conventional and mainly STs, including beta studies in bean-shaped ST plasmas, transport, heating and current drive via Alfvén wave, and natural divertor STs with ergodic magnetic limiter. We present here the energy, vacuum, gas fueling, and security systems for MEDUSA-CR device. The interface with the control and data acquisition systems based on National Instruments (NI) software (LabView) and hardware (on loan to our laboratory via NI-Costa Rica) are also presented. VIE-ITCR, IAEA-CRP contract 17592, National Instruments of Costa Rica.

  9. Lightning protection of full authority digital electronic systems

    NASA Astrophysics Data System (ADS)

    Crofts, David

    1991-08-01

    Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.

  10. Lightning protection of full authority digital electronic systems

    NASA Technical Reports Server (NTRS)

    Crofts, David

    1991-01-01

    Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.

  11. An Electrothermal Plasma Source Developed for Simulation of Transient Heat Loads in Future Large Fusion Devices

    NASA Astrophysics Data System (ADS)

    Gebhart, Trey; Baylor, Larry; Winfrey, Leigh

    2016-10-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  12. Electron density and plasma dynamics of a spherical theta pinch

    NASA Astrophysics Data System (ADS)

    Teske, C.; Liu, Y.; Blaes, S.; Jacoby, J.

    2012-03-01

    A spherical theta pinch for plasma stripper applications has been developed and investigated regarding the electron density and the plasma confinement during the pinching sequence. The setup consists of a 6 μH induction coil surrounding a 4000 ml spherical discharge vessel and a capacitor bank with interchangeable capacitors leading to an overall capacitance of 34 μF and 50 μF, respectively. A thyristor switch is used for driving the resonant circuit. Pulsed coil currents reached values of up to 26 kA with maximum induction of 500 mT. Typical gas pressures were 0.7 Pa up to 120 Pa with ArH2 (2.8% H2)-gas as a discharge medium. Stark broadening measurements of the Hβ emission line were carried out in order to evaluate the electron density of the discharge. In accordance with the density measurements, the transfer efficiency was estimated and a scaling law between electron density and discharge energy was established for the current setup. The densities reached values of up to 8 × 1022 m-3 for an energy of 1.6 kJ transferred into the plasma. Further, the pinching of the discharge plasma was documented and the different stages of the pinching process were analyzed. The experimental evidence suggests that concerning the recent setup of the spherical theta pinch, a linear scaling law between the transferred energy and the achievable plasma density can be applied for various applications like plasma strippers and pulsed ion sources.

  13. Improvement of Thermal Interruption Capability in Self-blast Interrupting Chamber for New 245kV-50kA GCB

    NASA Astrophysics Data System (ADS)

    Shinkai, Takeshi; Koshiduka, Tadashi; Mori, Tadashi; Uchii, Toshiyuki; Tanaka, Tsutomu; Ikeda, Hisatoshi

    Current zero measurements are performed for 245kV-50kA-60Hz short line fault (L90) interruption tests with a self-blast interrupting chamber (double volume system) which has the interrupting capability up to 245kV-50kA-50Hz L90. Lower L90 interruption capability is observed for longer arcing time although very high pressure rise is obtained. It may be caused by higher blowing temperature and lower blowing density for longer arcing time. Interruption criteria and a optimization method of the chamber design are discussed to improve L90 interruption capability with it. The new chambers are designed at 245kV-50kA-60Hz to improve gas density in thermal volume for long arcing time. 245kV-50kA-60Hz L90 interruptions are performed with the new chamber. The suggested optimization method is an efficient tool for the self-blast interrupting chamber design although study of computing methods is required to calculate arc conductance around current zero as a direct criterion for L90 interruption capability with higher accuracy.

  14. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  15. HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerlad; Careswell, James; Schaubert, Dan; Creticos, Justin

    2011-01-01

    The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at high-altitudes using low peak power transmitters and pulse compression. The hardware will be described along with the methods and concepts for the system design. Finally, we will present recent preliminary results from flights on the NASA Global Hawk in support of the NASA Genesis and Rapid Intensification Processes (GRIP) field campaign, and on the NASA ER-2 as fixed nadir pointing mode for the NASA Global Precipitation Measurement (GPM) ground validation (GV) mission - Midlatitude Continental Convective Cloud Experiment (MC3E)

  16. The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): Eruption chronology and magma type variation

    NASA Astrophysics Data System (ADS)

    Molnár, Kata; Harangi, Szabolcs; Lukács, Réka; Dunkl, István; Schmitt, Axel K.; Kiss, Balázs; Garamhegyi, Tamás; Seghedi, Ioan

    2018-04-01

    Combined zircon U-Th-Pb and (U-Th)/He dating was applied to refine the eruption chronology of the last 2 Myr for the andesitic and dacitic Pilişca volcano and Ciomadul Volcanic Dome Complex (CVDC), the youngest volcanic area of the Carpathian-Pannonian region, located in the southernmost Harghita, eastern-central Europe. The proposed eruption ages, which are supported also by the youngest zircon crystallization ages, are much younger than the previously determined K/Ar ages. By dating every known eruption center in the CVDC, repose times between eruptive events were also accurately determined. Eruption of the andesite at Murgul Mare (1865 ± 87 ka) and dacite of the Pilişca volcanic complex (1640 ± 37 ka) terminated an earlier pulse of volcanic activity within the southernmost Harghita region, west of the Olt valley. This was followed by the onset of the volcanism in the CVDC, which occurred after several 100s kyr of eruptive quiescence. At ca. 1 Ma a significant change in the composition of erupted magma occurred from medium-K calc-alkaline compositions to high-K dacitic (Baba-Laposa dome at 942 ± 65 ka) and shoshonitic magmas (Malnaş and Bixad domes; 964 ± 46 ka and 907 ± 66 ka, respectively). Noteworthy, eruptions of magmas with distinct chemical compositions occurred within a restricted area, a few km from one another. These oldest lava domes of the CVDC form a NNE-SSW striking tectonic lineament along the Olt valley. Following a brief (ca. 100 kyr) hiatus, extrusion of high-K andesitic magma continued at Dealul Mare (842 ± 53 ka). After another ca. 200 kyr period of quiescence two high-K dacitic lava domes extruded (Puturosul: 642 ± 44 ka and Balvanyos: 583 ± 30 ka). The Turnul Apor lava extrusion occurred after a ca. 200 kyr repose time (at 344 ± 33 ka), whereas formation of the Haramul Mic lava dome (154 ± 16 ka) represents the onset of the development of the prominent Ciomadul volcano. The accurate determination of eruption dates shows that the volcanic eruptions were often separated by prolonged (ca. 100 to 200 kyr) quiescence periods. Demonstration of recurrence of volcanism even after such long dormancy has to be considered in assessing volcanic hazards, particularly in seemingly inactive volcanic areas, where no Holocene eruptions occurred. The term of 'volcanoes with Potentially Active Magma Storage' illustrates the potential of volcanic rejuvenation for such long-dormant volcanoes with the existence of melt-bearing crustal magma body.

  17. Detrital Carbonate Events on the Labrador Shelf, a 13 to 7 kyr Template for Freshwater Forcing From the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Jennings, A. E.; Andrews, J. T.

    2008-12-01

    A complex sequence of abrupt glacial advances and retreats punctuate the late phases of Laurentide Ice Sheet deglaciation. These episodes have been reconstructed from interpretation and mapping of glacial deposits on land and in marine basins proximal to the former ice margins in Hudson Strait, Hudson Bay, and the SE Baffin Island shelf. As these events likely produced pulses of freshwater discharge into the North Altantic, which may be responsible for rapid climate change, their timing and magnitude need to be understood. The timing of these events is well constrained by radiocarbon ages, but the ocean reservoir age in ice proximal areas is subject to very large uncertainties, making it difficult to determine calibrated ages for the glacial events so that they can be compared to other climate records. We suggest that the sequence of high detrital carbonate peaks in Holocene and Late Glacial sediments in the Cartwright Saddle of the Labrador shelf provides a template of the abrupt glacial events of the NE margin of the Laurentide Ice Sheet, particularly events that issued from Hudson Strait and Hudson Bay, but possibly including events in Baffin Bay. Once the Labrador Shelf was deglaciated and the local ice had retreated inland, the Cartwright Saddle was a distal trap for sediments released from Hudson Strait and other ice sheet outlets farther north as their sediments and meltwater were carried southwards by surface currents. Core MD99-2236 contains a sediment record beginning c. 13.9 cal ka. We assume a marine reservoir age for the Cartwright Saddle of 450 yrs, which is reasonable given the ice distal and oceanic position of the site. Carbonate was measured on average at a 30 yr time resolution. Carbonate values are elevated between 11.7 and 7 cal kyr BP, with six spikes exceeding 30 percent. Each spike corresponds to a light isotope spike in foraminifers, suggesting that each major spike is associated with a pulse of glacial meltwater. Elevated IRD counts associated with the carbonate spikes suggest that at least some of the meltwater was released by icebergs. Age estimates of these peaks are: 11.5, 10.6, 9.5, 9.1, 8.7, and 8.2 cal kyr BP, and their duration ranges between 50 and 200 years. A 'red bed' is associated with a subsidiary carbonate spike 8.57 cal ka, very close to the estimated age of the timing of the final outburst drainage of lakes Agassiz and Ojibway: about 8.47 cal ka BP. A lower carbonate spike at 11.1 cal ka is associated with a light isotope event. The carbonate record of MD99-2236 promises to be an important key to the timing and role of deglacial episodes in freshwater forcing on North Altantic climate.

  18. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  19. Performance of a 10 kV, 625 kA, 85 kJ energy discharge module utilizing a solid dielectric switch

    NASA Astrophysics Data System (ADS)

    Richardson, R. A.; Cravey, W. R.; Goerz, D. A.

    We have designed and tested an 87-kJ energy discharge system consisting of two 720-(mu)F, 11-kV capacitors discharged through parallel coaxial cables into a 250 nH load. Data will be presented on the current and voltage waveforms, with calculated values of the system inductance and resistance. The bank uses a solid dielectric switch punctured by an explosive bridge wire (EBW) to initiate the discharge. With the capacitors charged to 9 kV, a 625-kA peak current is sent through the load with a ringing frequency of 6.8 kHz. The coaxial cables used to transmit the current to the load are 3 m in length. Both RG-217 and YK-198 cable types were tested, which have an inductance of 74 nH/ft and 35 nH/ft respectively. Normal operation requires that each cable carry 52 kA. The cables were tested to 100 kA each by connecting fewer cables to the load, and gradually increasing the charge voltage. The solid dielectric switch was chosen for high reliability. Details of the switch will be describes and data on its performance will be presented.

  20. Evolution of the Busbar Structure in Large-Scale Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Liang, Jinding; Li, Jie; Sun, Kena; Xiao, Jin

    2017-02-01

    Studies of magnetic field and magneto-hydro-dynamics are regarded as the foundation for the development of large-scale aluminum reduction cells, while due to the direct relationship between the busbar configuration and magnetic compensation, the actual key content is the configuration of the busbar. As the line current has been increased from 160 kA to 600 kA, the configuration of the busbar was becoming more complex. To summarize and explore the evolution of busbar configuration in aluminum reduction cells, this paper has reviewed various representative large-scale pre-baked aluminum reduction cell busbar structures, such as end-to-end potlines, side-by-side potlines and external compensation current. The advantages and disadvantages in the magnetic distribution or technical specifications have also been introduced separately, especially for the configurations of the mainstream 400-kA potlines. In the end, the development trends of the bus structure configuration were prospected, based on the recent successful applications of super-scale cell busbar structures in China (500-600 kA).

  1. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  2. Holocene record of glacier variability from lake sediments reveals tripartite climate history for Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis

    2016-04-01

    The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold progressively lowered. The forcing behind these advances remains elusive, but their agreement with other glacier reconstructions from the region indicates a North Atlantic signature. Prolonged glacier activity commenced after 0.7 ka BP during the Little Ice Age, in agreement with other evidence from Svalbard. Comparatively high reconstructed temperatures during this timeframe suggest that glacier growth was precipitation-driven. Our findings highlight the sensitivity of small glaciers to climate shifts, demonstrating their potential to resolve centennial-scale perturbations. Moreover, this study underlines the value of lake sediments from glacier-fed lakes in understanding Holocene climate in the Arctic.

  3. Antioxidative properties of hydroxycinnamic acid derivatives and a phenylpropanoid glycoside. A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Lin, Weizhen; Navaratnam, Suppiah; Yao, Side; Lin, Nianyun

    1998-10-01

    Spectral and redox properties of the phenoxyl radicals from hydroxycinnamic acid derivatives and one selected component of phenylpropanoid glycosides, verbascoside, were studied using pulse radiolysis techniques. On the basis of the pH dependence of phenoxyl radical absorptions, the p Ka values for deprotonation of sinapic acid radical and ferulic acid radical are 4.9 and 5.2. The rate constants of one electron oxidation of those antioxidants by azide radical and bromide radical ion were determined at pH 7. The redox potentials of those antioxidants were determined as 0.59-0.71 V vs NHE at pH 7 with reference standard 4-methoxyphenol and resorcinol.

  4. A multi-proxy approach to understanding complex responses of salt-lake catchments to climate variability and human pressure: A Late Quaternary case study from south-eastern, Spain

    NASA Astrophysics Data System (ADS)

    Jones, Samantha Elsie; Burjachs, Francesc; Ferrer-García, Carlos; Giralt, Santiago; Schulte, Lothar; Fernández-López de Pablo, Javier

    2018-03-01

    This article focuses on a former salt lake in the upper Vinalopó Valley in south-eastern Spain. The study spans the Late Pleistocene through to the Late Holocene, although with particular focus on the period between 11 ka cal BP and 3000 ka cal BP (which spans the Mesolithic and part of the Bronze Age). High resolution multi-proxy analysis (including pollen, non pollen palynomorphs, grain size, X-ray fluorescence and X-ray diffraction) was undertaken on the lake sediments. The results show strong sensitivity to both long term and small changes in the evaporation/precipitation ratio, affecting the surrounding vegetation composition, lake-biota and sediment geochemistry. To summarise the key findings the main general trends identified include: 1) Hyper-saline conditions and low lake levels at the end of the Late Glacial 2) Increasing wetness and temperatures which witnessed an expansion of mesophilic woodland taxa, lake infilling and the establishment of a more perennial lake system at the onset of the Holocene 3) An increase in solar insolation after 9 ka cal BP which saw the re-establishment of pine forests 4) A continued trend towards increasing dryness (climatic optimum) at 7 ka cal BP but with continued freshwater input 5) An increase in sclerophyllous open woody vegetation (anthropogenic?), and increasing wetness (climatic?) is represented in the lake record between 5.9 and 3 ka cal BP 6) The Holocene was also punctuated by several aridity pulses, the most prominent corresponding to the 8.2 ka cal BP event. These events, despite a paucity of well dated archaeological sites in the surrounding area, likely altered the carrying capacity of this area both regionally and locally, particularly during the Mesolithic-Neolithic transition, in terms of fresh water supply for human/animal consumption, wild plant food reserves and suitable land for crop growth.

  5. Reaching and abandoning the furthest ice extent during the Last Glacial Maximum in the Alps

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Wirsig, Christian; Zasadni, Jerzy; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian

    2016-04-01

    During the Last Glacial Maximum (LGM) in the European Alps (late Würm) local ice caps and extensive ice fields in the high Alps fed huge outlet glaciers that occupied the main valleys and extended onto the forelands as piedmont lobes. Records from numerous sites suggest advance of glaciers beyond the mountain front by around 30 ka (Ivy-Ochs 2015 and references therein). Reaching of the maximum extent occurred by about 27-26 ka, as exemplified by dates from the Rhein glacier area (Keller and Krayss, 2005). Abandonment of the outermost moraines at sites north and south of the Alps was underway by about 24 ka. In the high Alps, systems of transection glaciers with transfluences over many of the Alpine passes dominated, for example, at Grimsel Pass in the Central Alps (Switzerland). 10Be exposure ages of 23 ± 1 ka for glacially sculpted bedrock located just a few meters below the LGM trimline in the Haslital near Grimsel Pass suggest a pulse of ice surface lowering at about the same time that the foreland moraines were being abandoned (Wirsig et al., 2016). Widespread ice surface lowering in the high Alps was underway by no later than 18 ka. Thereafter, glaciers oscillated at stillstand and minor re-advance positions on the northern forelands for several thousand years forming the LGM stadial moraines. Final recession back within the mountain front took place by 19-18 ka. Recalculation to a common basis of all published 10Be exposure dates for boulders situated on LGM moraines suggests a strong degree of synchrony for the timing of onset of ice decay both north and south of the Alps. Ivy-Ochs, S., 2015, Cuadernos de investigación geográfica 41: 295-315. Keller, O., Krayss, E., 2005, Vierteljahrschr. Naturforsch. Gesell. Zürich 150: 69-85. Wirsig, C. et al., 2016, J. Quat. Sci. 31: 46-59.

  6. Pulse power switch development

    NASA Astrophysics Data System (ADS)

    Harvey, R.; Gallagher, H.; Hansen, S.

    1980-01-01

    The objective of this study program has been to define an optimum technical approach to the longer range goal of achieving practical high repetition rate high power spark gap switches. Requirements and possible means of extending the state of the art of crossed field closing switches, vacuum spark gaps, and pressurized spark gaps are presented with emphasis on reliable, efficient and compact devices operable in burst mode at 250-300 kV, 40-60 kA, =1 kHz with approximately 50 nsec pulses rising in approximately 3 ns. Models of these devices are discussed which are based upon published and generated design data and on underlying physical principles. Based upon its relative advantages, limitations and tradeoffs we conclude that the Hughes Crossatron switch is the nearest term approach to reach the switch goal levels. Theoretical, experimental, and computer simulation models of the plasma show a collective ion acceleration mechanism to be active which is predicted to result in current rise times approaching 10 nsec. A preliminary design concept is presented. For faster rise times we have shown a vacuum surface flashover switch to be an interesting candidate. This device is limited by trigger instabilities and will require further basic development. The problem areas relevant to high pressure spark gaps are reviewed.

  7. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  8. Overview of KSTAR initial operation

    NASA Astrophysics Data System (ADS)

    Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Ahn, J. W.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chang, C. S.; Chang, D. H.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Cho, M. H.; Choe, W.; Choi, J. H.; Chu, Y.; Chung, K. S.; Diamond, P.; Do, H. J.; Eidietis, N.; England, A. C.; Grisham, L.; Hahm, T. S.; Hahn, S. H.; Han, W. S.; Hatae, T.; Hillis, D.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Humphrey, D.; Hwang, Y. S.; Hyatt, A.; In, Y. K.; Jackson, G. L.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jeong, S. H.; Jhang, H. G.; Jin, J. K.; Joung, M.; Ju, J.; Kawahata, K.; Kim, C. H.; Kim, D. H.; Kim, Hee-Su; Kim, H. S.; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. M.; Kim, K. P.; Kim, M. K.; Kim, S. H.; Kim, S. S.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. K.; Kim, Y. O.; Ko, W. H.; Kogi, Y.; Kong, J. D.; Kubo, S.; Kumazawa, R.; Kwak, S. W.; Kwon, J. M.; Kwon, O. J.; LeConte, M.; Lee, D. G.; Lee, D. K.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. G.; Lee, S. H.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. C.; Lee, W. L.; Leur, J.; Lim, D. S.; Lohr, J.; Mase, A.; Mueller, D.; Moon, K. M.; Mutoh, T.; Na, Y. S.; Nagayama, Y.; Nam, Y. U.; Namkung, W.; Oh, B. H.; Oh, S. G.; Oh, S. T.; Park, B. H.; Park, D. S.; Park, H.; Park, H. T.; Park, J. K.; Park, J. S.; Park, K. R.; Park, M. K.; Park, S. H.; Park, S. I.; Park, Y. M.; Park, Y. S.; Patterson, B.; Sabbagh, S.; Saito, K.; Sajjad, S.; Sakamoto, K.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Shi, Y.; Song, N. H.; Sun, H. J.; Terzolo, L.; Walker, M.; Wang, S. J.; Watanabe, K.; Welander, A. S.; Woo, H. J.; Woo, I. S.; Yagi, M.; Yaowei, Y.; Yonekawa, Y.; Yoo, K. I.; Yoo, J. W.; Yoon, G. S.; Yoon, S. W.; KSTAR Team

    2011-09-01

    Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidl, P. A.; Waldron, W.

    This report describes the prototype final focus solenoid (FFS-1G), or 1st generation FFS. In order to limit eddy currents, the solenoid winding consists of Litz wire wound on a non-conductive G-10 tube. For the same reason, the winding pack was inserted into an electrically insulating, but thermally conducting Polypropylene (Cool- Poly© D1202) housing and potted with highly viscous epoxy (to be able to wick the single strands of the Litz wire). The magnet is forced-air cooled through cooling channels. The magnet was designed for water cooling, but he cooling jacket cracked, and therefore cooling (beyond natural conduction and radiation) wasmore » exclusively by forced air. Though the design operating point was 8 Tesla, for the majority of running on NDCX-1 it operated up to about 5 Tesla. This was due mostly from limitations of voltage holding at the leads, where discharges at higher pulsed current damaged the leads. Generation 1 was replaced by the 2nd generation solenoid (FFS-2G) about a year later, which has operated reliably up to 8 Tesla, with a better lead design and utilizes water cooling. At this point, FFS-1G was used for plasma source R&D by LBNL and PPPL. The maximum field for those experiments was reduced to 3 Tesla due to continued difficulty with the leads and because higher field was not essential for those experiments. The pulser for the final focusing solenoid is a SCR-switched capacitor bank which produces a half-sine current waveform. The pulse width is ~800us and a charge voltage of 3kV drives ~20kA through the magnet producing ~8T field.« less

  10. Demonstration of Inductive Flux Saving by Transient CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Raman, Roger

    2010-11-01

    Experiments in NSTX have now demonstrated the saving of central solenoid flux equivalent to 200kA of toroidal plasma current after coupling plasmas produced by Transient Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current [R. Raman, et al., PRL 104, 095003 (2010)]. This is a record for non-inductive plasma startup, and an important step for developing the spherical torus concept. With an injector current of only 4kA and total power supply energy of only 21 kJ, CHI initiated a toroidal current of 250 kA that when coupled to 0.11 Vs of induction ramped up to 525 kA without using any auxiliary heating, whereas an otherwise identical inductive-only discharge ramped to only 325 kA. This flux saving was realized by reducing the influx of low-Z impurities during the start-up phase through the use of electrode conditioning discharges, followed by lithium evaporative coating of the plasma-facing surfaces and reducing parasitic arcs in the upper divertor region through use of additional shaping-field coils. As a result of these improvements, and for the first time in NSTX, the electron temperature during the CHI phase continually increased with input energy, indicating that the additional injected energy was contributing to heating the plasma instead of being lost through impurity line radiation. Simulations with the Tokamak Simulation Code (TSC) show that the observed scaling of CHI start-up current with toroidal field in NSTX is consistent with theory, suggesting that use of CHI on larger machines is quite attractive. These exciting results from NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks. This work supported by U.S. DOE Contracts DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.

  11. Measured close lightning leader-step electric-field-derivative waveforms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Doug M.; Hill, Dustin; Biagi, Christopher J.

    2010-12-01

    We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak andmore » becomes dominant as range decreases. The initial peak is often preceded by a 'slow front,' similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 {micro}s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m{sup -1} {micro}s{sup -1} (standard deviation (S.D.), 3.7 V m{sup -1} {micro}s{sup -1}, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA {micro}s{sup -1}, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of {approx}3 mC. As part of the modeling, those currents were propagated upward at 1.5 x 10{sup 8} m s{sup -1}, with their amplitudes decaying exponentially with a decay height constant of 25 m.« less

  12. Advances in Ka-Band Communication System for CubeSats and SmallSats

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Wong, Yen F.; Altunc, Serhat

    2016-01-01

    A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (>6 dBi) antennas.

  13. Holocene dune formation at Ash Meadows National Wildlife Area, Nevada, USA

    USGS Publications Warehouse

    Lancaster, Nicholas; Mahan, Shannon

    2012-01-01

    Small isolated dune fields in the northern Mojave Desert are important centers of biodiversity and archaeological occupation sites. Currently dunes at Ash Meadows, Nevada, are stabilized by vegetation and are experiencing erosion of their upwind margins, indicating a negative sediment budget. New OSL ages from dunes at Ash Meadows indicate continuous eolian accumulation from 1.5 to 0.8 ka, with further accumulation around 0.2 ka. Prior studies (e.g., Mehringer and Warren, 1976) indicate periods of dune accumulation prior to 3.3 ka; 1.9–1 ka; and after 0.9 ka. These periods of eolian accumulation are largely synchronous with those identified elsewhere in the Mojave Desert. The composition of the Ash Meadows dunes indicates their derivation from regional fluvial sources, most likely during periods when axial washes were active as a result of enhanced winter precipitation.

  14. New insights on water level variability for Lake Turkana for the past 15 ka and at 150 ka from relict beaches

    NASA Astrophysics Data System (ADS)

    Forman, S. L.; Wright, D.

    2015-12-01

    Relict beaches adjacent to Lake Turkana provide a record of water level variability for the Late Quaternary. This study focused on deciphering the geomorphology, sedimentology, stratigraphy and 14C chronology of strand plain sequences in the Kalokol and Lothagam areas. Nine >30 m oscillations in water level were documented between ca. 15 and 4 ka. The earliest oscillation between ca. 14.5 and 13 ka is not well constrained with water level to at least 70 m above the present surface and subsequently fell to at least 50 m. Lake level increased to ~ 90 m between ca. 11.2 and 10.4 ka, post Younger Dryas cooling. Water level fell by >30 m by 10.2 ka, with another potential rise at ca. 8.5 ka to >70 m above current level. Lake level regressed by > 40 m at 8.2 ka coincident with cooling in the equatorial Eastern Atlantic Ocean. Two major >70 m lake level oscillations centered at 6.6 and 5.2 ka may reflect enhanced convection with warmer sea surface temperatures in the Western Indian Ocean. The end of the African Humid Period occurred from ca. 8.0 to 4.5 ka and was characterized by variable lake level (± > 40 m), rather than one monotonic fall in water level. This lake level variability reflects a complex response to variations in the extent and intensity of the East and West African Monsoons near geographic and topographic limits within the catchment of Lake Turkana. Also, for this closed lake basin excess and deficits in water input are amplified with a cascading lake effect in the East Rift Valley and through the Chew Bahir Basin. The final regression from a high stand of > 90 m began at. 5.2 ka and water level was below 20 m by 4.5 ka; and for the remainder of the Holocene. This sustained low stand is associated with weakening of the West African Monsoon, a shift of the mean position of Congo Air Boundary west of the Lake Turkana catchment and with meter-scale variability in lake level linked to Walker circulation across the Indian Ocean. A surprising observation is the presence of older, heavily dissected relict beaches up to 175 m above current lake level, which host beach rock and well developed carbonate rich soils. A preliminary OSL age of 145 ka, indicates that these surface are associated with MOI stage 6 and 5. The higher elevation of these beach either reflect tectonic up-warping, a change in elevation of the outlet to the Blue Nile or combination of these processes.

  15. Knickpoint formation and landscape response following coastal cliff retreat at last-interglacial sea-level highstand: Kaua';i, Hawai';i (Invited)

    NASA Astrophysics Data System (ADS)

    Lamb, M. P.; Mackey, B. H.; Farley, K. A.; Scheingross, J. S.

    2013-12-01

    The upstream propagation of knickpoints is an important mechanism for channel incision and communicates changes in climate, sea level and tectonics throughout a landscape. Here, we use cosmogenic 3He exposure dating to document the retreat rate of a waterfall in Ka'ula'ula Valley, Kaua';i, Hawai';i, an often-used site for knickpoint-erosion modeling. Exposure ages of terraces are oldest near the coast (120 ka) and systematically decrease with upstream distance towards the waterfall (<10 ka) suggesting that the waterfall migrated 4 km over the past 120 ka at an average rate of 33 mm/yr. Upstream of the knickpoint, cosmogenic nuclide concentrations in channel are approximately uniform and indicate steady-state vertical erosion at a rate of ~0.03 mm/yr. Field observations and topographic analyses suggest that waterfall retreat is dominated by block toppling, with sediment transport below the waterfall actively occurring by debris flows. Knickpoint initiation was previously attributed to a submarine landslide ca. 4 Ma; however, our dating results, bathymetric analysis, and landscape-evolution modeling support knickpoint generation by wave-induced seacliff erosion during the last interglacial sea-level high stand. We illustrate that knickpoint generation during sea-level high stands, as opposed to the typical case of sea-level fall, is an important relief-generating mechanism on steep coasts with stable or subsiding coasts, and likely drives transient pulses of significant source-to-sink sediment flux.

  16. Status report on Project Hercules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loree, D.; Giesselmann, M.; Kristiansen, M.

    1993-01-01

    Project Hercules is a project to improve ignitron switches which will then be used on the upgrade of Lawrence Livermore's Nova Laser for their ICF program. The goals of Hercules, which stands for High Energy Research Concerning the Ultimate Lifetime of Experimental Switches, are to lifetime test (up to 10,000 shots) prototype ignitrons or other switches with the required Nova current and coulomb parameters (300 kA, 200 C), recommend design changes, and retest the second generation switches. This report describes the design and construction of the test circuit and necessary diagnostics. The details of the design and construction of themore » test circuit and necessary diagnostics. The details of the design and construction of a 0.5 MJ electrolytic capacitor bank and a semi-automatic diagnostic/control system are described. The required test run data include peak current and corresponding tube voltage for every shot, entire current and voltage waveforms every few shots, and ignitor resistance values every few shots. Additionally, the conversion of a 120 kW, 12 kV constant voltage supply to an 8 A constant current supply with the use of six SCRs and a commercial control board will be described. The final results of this project will be lifetime data at high current and high coulomb for and improvements on some of the best of the new generation of pulsed power switches.« less

  17. NASA's K/Ka-Band Broadband Aeronautical Terminal for Duplex Satellite Video Communications

    NASA Technical Reports Server (NTRS)

    Densmore, A.; Agan, M.

    1994-01-01

    JPL has recently begun the development of a Broadband Aeronautical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS). The BAT system will provide the systems and technology groundwork for an eventual commercial K/Ka-band aeronautical satellite communication system. With industry/government partnerships, three main goals will be addressed by the BAT task: 1) develop, characterize and demonstrate the performance of an ACTS based high data rate aeronautical communications system; 2) assess the performance of current video compression algorithms in an aeronautical satellite communication link; and 3) characterize the propagation effects of the K/Ka-band channel for aeronautical communications.

  18. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  19. A fiber-optic current sensor for lightning measurement applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-05-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  20. Demonstration of Tokamak Ohmic Flux Saving by Transient Coaxial Helicity Injection in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Raman, R.; Mueller, D.; Nelson, B. A.; Jarboe, T. R.; Gerhardt, S.; Kugel, H. W.; Leblanc, B.; Maingi, R.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.

    2010-03-01

    Transient coaxial helicity injection (CHI) started discharges in the National Spherical Torus Experiment (NSTX) have attained peak currents up to 300 kA and when coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/J of capacitor bank energy. In addition, for the first time, the CHI-produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices.

  1. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited).

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Mileham, C; Begishev, I A; Theobald, W; Bromage, J; Regan, S P; Klein, S R; Muñoz-Cordovez, G; Vescovi, M; Valenzuela-Villaseca, V; Veloso, F

    2016-11-01

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  2. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  3. FLASH X-RAY (FXR) LINEAR INDUCTION ACCELERATOR (LIA) OPTIMIZATION Sensor Delay Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, M M; Houck, T L; Kreitzer, B R

    2006-05-01

    The radiographic goal of the FXR Optimization Project is to generate an x-ray pulse with peak energy of 19 MeV, spot-size of 1.5 mm, a dose of 500 rad, and duration of 60 ns. The electrical objectives are to generate a 3 kA electron-beam and refine our 16 MV accelerator so that the voltage does not vary more than 1%-rms. In a multi-cell linear induction accelerator, like FXR, the timing of the acceleration pulses relative to the beam is critical. The pulses must be timed optimally so that a cell is at full voltage before the beam arrives and doesmore » not drop until the beam passes. In order to stay within the energy-variation budget, the synchronization between the cells and beam arrival must be controlled to a couple of nanoseconds. Therefore, temporal measurements must be accurate to a fraction of a nanosecond. FXR Optimization Project developed a one-giga-sample per second (gs/s) data acquisition system to record beam sensor data. Signal processing algorithms were written to determine cell timing with an uncertainty of a fraction of a nanosecond. However, the uncertainty in the sensor delay was still a few nanoseconds. This error had to be reduced if we are to improve the quality of the electron beam. Two types of sensors are used to align the cell voltage pulse against the beam current. The beam current is measured with resistive-wall sensors. The cell voltages are read with capacitive voltage monitors. Sensor delays can be traced to two mechanisms: (1) the sensors are not co-located at the beam and cell interaction points, and (2) the sensors have different length jumper cables and other components that connect them to the standard-length coaxial cables of the data acquisition system. Using the physical locations and dimensions of the sensor components, and the dielectric constant of the materials, delay times were computed. Relative to the cell voltage, the beam current was theoretically reporting late by 7.7 ns. Two experiments were performed to verify and refine the sensor delay correction. In the first experiment, the beam was allowed to drift through a cell that was not pulsed. The beam induces a potential into the cell that is read by the voltage monitor. Analysis of the data indicated that the beam sensor signal was likely 7.1 ns late. In the second experiment, the beam current is calculated from the injector diode voltage that is the sum of the cell voltages. A 7 ns correction produced a very good match between the signals from the two types of sensors. For simplicity, we selected a correction factor that advanced the current signals by 7 ns. This should reduce the uncertainty in the temporal measurements to less than 1 ns.« less

  4. Repetitive flash x-ray generator having a high-durability diode driven by a two-cable-type line pulser

    NASA Astrophysics Data System (ADS)

    Shikoda, A.; Sato, E.; Sagae, M.; Oizumi, T.; Tamakawa, Y.; Yanagisawa, T.

    1994-04-01

    The fundamental studies of a repetitive soft flash x-ray generator having a high-durability diode for high-speed radiography in biomedical and technological fields are described. This generator consisted of the following essential components: a constant negative high-voltage power supply, a line-type high-voltage pulser with two 10 m coaxial-cable condensers, each with a capacity of 1.0 nF, a thyratron pulser as a trigger device, an oil-diffusion pump, and a flash x-ray tube. The x-ray tube was of a diode type which was evacuated by an oil-diffusion pump with a pressure of approximately 6.7×10-3 Pa and was composed of a planar tungsten anode, a planar ferrite cathode, and a polymethylmethacrylate tube body. The space between the anode and cathode electrodes (AC space) could be regulated from the outside of the tube. The two cable condensers were charged from -40 to -60 kV by a power supply, and the output voltage was about -1.5 times the charged voltage. Both the first peak voltage and current increased according to increases in the charged voltage, and the maximum values of the voltage and current were about 90 kV and 0.72 kA, respectively. The pulse widths had values of less than 100 ns, and the maximum x-ray intensity was approximately 1.1 μC/kg at 0.5 m per pulse. The repetition rate was less than 54 Hz, and the maximum focal spot size was about 2.0×2.5 mm.

  5. Overview of Initial NSTX-U Experimental Operations

    NASA Astrophysics Data System (ADS)

    Battaglia, Devon; the NSTX-U Team

    2016-10-01

    Initial operation of the National Spherical Torus Experiment Upgrade (NSTX-U) has satisfied a number of commissioning milestones, including demonstration of discharges that exceed the field and pulse length of NSTX. ELMy H-mode operation at the no-wall βN limit is obtained with Boronized wall conditioning. Peak H-mode parameters include: Ip = 1 MA, BT0 = 0.63 T, WMHD = 330 kJ, βN = 4, βN/li = 6, κ = 2.3, τE , tot >50 ms. Access to high-performance H-mode scenarios with long MHD-quiescent periods is enabled by the resilient timing of the L-H transition via feedback control of the diverting time and shape, and correction of the dominant n =1 error fields during the Ip ramp. Stationary L-mode discharges have been realized up to 1 MA with 2 s discharges achieved at Ip = 650 kA. The long-pulse L-mode discharges enabled by the new central solenoid supported initial experiments on error field measurements and correction, plasma shape control, controlled discharge ramp-down, L-mode transport and fast ion physics. Increased off-axis current drive and reduction of fast ion instabilities has been observed with the new, more tangential neutral beamline. The initial results support that access to increased field, current and heating at low-aspect-ratio expands the regimes available to develop scenarios, diagnostics and predictive models that inform the design and optimization of future burning plasma tokamak devices, including ITER. Work Supported by U.S. DOE Contract No. DE-AC02-09CH11466.

  6. U, Th and Pa insights into sedimentological and paleoceanographic changes off Hudson Strait (Labrador Sea) during the last ∼37 ka with special attention to methodological issues

    NASA Astrophysics Data System (ADS)

    Nuttin, Laurence; Maccali, Jenny; Hillaire-Marcel, Claude

    2015-05-01

    A ∼9 m-long sediment core spanning the last ∼37 ka has been raised from the lower Labrador continental slope, off the Hudson Strait shelf edge. It has been analyzed for its U, Th and Pa isotope contents, along with current sedimentological parameters, as a means to retrieve information about sedimentological changes in response to northeastern Laurentide Ice Sheet (LIS) margin instabilities. The sequence yielded a high-resolution record of subglacial detrital carbonate pulses from Hudson Strait assigned to "Heinrich events" H2 and H1, whereas H0 was missing. Large variations in bulk sediment U- and Th-contents as well as in 234U/238U activity ratio are observed throughout the sequence, leading to large uncertainties when calculating excesses in 231Pa and 230Th (231Paxs and 230Thxs) over their supported and in-growth fractions (i.e., inherited from detrital minerals and produced from authigenic and diagenetic U-uptake). In particular, 234U excesses or deficits vs 238U (-115‰ < δ234U < +126‰) are observed throughout the sequence, suggesting occasional U-uptake from the water column and/or some late diagenetic mobility along discrete redox gradients, despite the overall low and little variable organic carbon content (0.3 ± 0.1%) observed. The above uncertainties in 231Paxs and 230Thxs estimates and the large variability in geochemical and sedimentary fluxes off the northeastern LIS margin, lead us to downgrade the potential paleoceanographic information yielded by these isotopes in such a setting. Nonetheless, the H2 and H1 layers are highlighted by very low initial excesses in both 230Thxs and 231Paxs, indicating their extremely fast deposition. Throughout most of the sedimentary sequence, the calculated initial 230Thxs fluxes are nearly in balance with 230Th production in the overlying water column. Exceptions are the H2 layer, an interval succeeding H1, and the post-glacial sediment. The estimated initial (231Paxs/230Thxs) ratios are generally lower than their production rate in the water column (i.e., 0.092), indicating nearly continuous preferential export of 231Paxs over the last ∼37 cal ka BP, thus the persistence of some deep currents throughout the interval.

  7. Stratigraphy of Late Pleistocene-Holocene pyroclastic deposits of Tacana Volcano, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Macias, J. L.; Arce, J. L.; Garcia-Palomo, A.; Mora, J. C.; Saucedo, R.; Hughes, S.; Scolamacchia, T.

    2005-12-01

    Tacana volcano (4,060 masl), the highest peak of the Tacana Volcanic Complex, is an acitve volcano located on the Mexico-Guatemala border. Tacana resumed phreatic activity in 1950 and again in 1986. After this last event, the volcano became the locus of attention of authorities and local scientists began to study the complex. Tacana's stratigraphic record has been studied using radiocarbon dating and these indicate that the volcano has been very active in the past producing at least 12 explosive eruptions during the last 40 ka years as follow: a) Four partial dome destruction events with the generation of block-and-ash flow deposits at 40, 28, <26, and 16 ka. b) Four small-volume phreatomagmatic events that emplaced dilute density currents at 10.6, 7.5, 6, and 2.5 ka. c) Four eruptions that emplaced pumice-rich fall deposits, three of them widely dispersed towards the NE flank of the volcano in Guatemala and dated at ~32, <24 and <14 ka, and finally a 0.8 ka fall deposit restricted to the crater vicinity that might represent the youngest magmatic eruption of the volcano. Although refining of these stratigraphic sequence is still underway, the eruptive chronology of Tacana volcano cleary indicates that explosive eruptions producing plinian fall and pyroclastic density currents have taken place every 1 to 8 ka years. This record constrasts with the small phreatic eruptions that occur 1-2 per century. So, this indicates that Tacana volcano is more active than previously considered and these results must be considered for future researches on hazards maps and mitigation.

  8. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.

    2011-12-01

    The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  9. Experimental and analytical investigation on metal damage suffered from simulated lightning currents

    NASA Astrophysics Data System (ADS)

    Yakun, LIU; Zhengcai, FU; Quanzhen, LIU; Baoquan, LIU; Anirban, GUHA

    2017-12-01

    The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 kA, 8 kA, 400 A, and 100 kA, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235B, the first return stroke component results in the largest damage area with damage depth 0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.

  10. In-Space Deployable Reflectarray Antenna: Current and Future

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Knarr, Kevin; Quijano, Ubaldo; Huang, John; Thomson, Mark

    2008-01-01

    Technologies associated with a 10-m X/Ka-band dual-frequency reflectarray antenna have been developed for deep space communication applications. The first task is the development of a 3-m diameter X/Ka dual frequency reflectarray which serves as a stepping-stone to the 10-m aperture antenna. The second task is to develop a deployable frame.

  11. Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility

    NASA Astrophysics Data System (ADS)

    Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2016-08-01

    During the first test campaign of the 60 kA HTS cable prototypes in the EDIPO test facility, the feasibility of a novel HTS fusion cable concept proposed at the EPFL Swiss Plasma Center (SPC) was successfully demonstrated. While the measured DC performance of the prototypes at magnetic fields from 8 T to 12 T and for currents from 30 kA to 70 kA was close to the expected one, an initial electromagnetic cycling test (1000 cycles) revealed progressive degradation of the performance in both the SuperPower and SuperOx conductors. Aiming to understand the reasons for the degradation, additional cycling (1000 cycles) and warm up-cool down tests were performed during the second test campaign. I c performance degradation of the SuperOx conductor reached ∼20% after about 2000 cycles, which was reason to continue with a visual inspection of the conductor and further tests at 77 K. AC tests were carried out at 0 and 2 T background fields without transport current and at 10 T/50 kA operating conditions. Results obtained in DC and AC tests of the second test campaign are presented and compared with appropriate data published recently. Concluding the first iteration of the HTS cable development program at SPC, a summary and recommendations for the next activity within the HTS fusion cable project are also reported.

  12. Axis-1 diode simulations I: standard 2-inch cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl

    2011-01-11

    The standard configuration of the DARHT Axis-I diode features a 5.08-cm diameter velvet emitter mounted in the flat surface of the cathode shroud. The surface of the velvet is slightly recessed {approx}2.5 mm. This configuration produces a 1.75 kA beam when a 3.8-MV pulse is applied to the anode-cathode (AK) gap. This note addresses some of the physics of this diode through the use of finite-element simulations.

  13. Development and experimental study of oil-free capacitor module for plasma focus device

    NASA Astrophysics Data System (ADS)

    Sharma, Ravindra Kumar; Sharma, Archana

    2017-03-01

    This development is concerned with the compact capacitor module for a plasma focus device. Oil-free, non-standard geometry capacitors are designed and developed for high current delivery in sub-microseconds time. Metalized dielectric film based pulse capacitor becomes progressively less viable at currents above 10 kA. It is due to reliability and energy scaling difficulties, based on effects such as vaporization, high resistivity, and end connection. Bipolar electrolytic capacitors are also not preferred due to their limited life and comparatively low peak current delivery. Bi-axially oriented polypropylene (BOPP) film with extended aluminum foil is a combination to deliver moderately high power. But, electrically weak points, relative permittivity, and the edge gap margins have made its adoption difficult. A concept has been developed in lab for implementing the above combination in a less complex and costly manner. This paper concerns the development and testing process techniques for quite different hollow cylindrical, oil-free capacitors (4 μ F , 10 kV, 20 nH). Shot life of 1000 has been experimentally performed on the test bed at its rated energy density level. The technological methods and engineering techniques are now available and utilized for manufacturing and testing of BOPP film based oil-free capacitors.

  14. Experimental Investigation of the Effects of an Axial Magnetic Field on the Magneto-Rayleigh-Taylor Instability in Ablating Planar Foils

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Patel, S. G.; Steiner, A. M.; Jordan, N. M.; Weiss, M. R.; Gilgenbach, R. M.; Lau, Y. Y.

    2014-10-01

    Experiments are underway to study the effects an axial magnetic field on the magneto-Rayleigh-Taylor instability (MRT) in ablating planar foils on the 1-MA LTD at the Michigan Accelerator for Inductive Z-pinch Experiments (MAIZE) facility at the University of Michigan. For 600 kA drive current, a 15 T axial magnetic field is produced using helical return current posts. During the current pulse, the magnetic field may diffuse into the foil, creating a sheared magnetic field along with the possibility of shear stabilization of the MRT instability. Theoretical investigation at UM has shown that a sheared azimuthal magnetic field coupled with an axial magnetic field reduces the MRT growth rate in general. In order to study this effect, the amount of magnetic shear is controlled by offsetting the initial position of the foil. A 775 nm Ti:sapphire laser will be used to shadowgraph the foil in order to measure the MRT growth rate. By comparing these results to previous experiments at UM, the effects of magnetic shear and an axial magnetic field will be determined. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager-Elorriaga supported by NSF fellowship Grant DGE 1256260.

  15. Development and experimental study of oil-free capacitor module for plasma focus device.

    PubMed

    Sharma, Ravindra Kumar; Sharma, Archana

    2017-03-01

    This development is concerned with the compact capacitor module for a plasma focus device. Oil-free, non-standard geometry capacitors are designed and developed for high current delivery in sub-microseconds time. Metalized dielectric film based pulse capacitor becomes progressively less viable at currents above 10 kA. It is due to reliability and energy scaling difficulties, based on effects such as vaporization, high resistivity, and end connection. Bipolar electrolytic capacitors are also not preferred due to their limited life and comparatively low peak current delivery. Bi-axially oriented polypropylene (BOPP) film with extended aluminum foil is a combination to deliver moderately high power. But, electrically weak points, relative permittivity, and the edge gap margins have made its adoption difficult. A concept has been developed in lab for implementing the above combination in a less complex and costly manner. This paper concerns the development and testing process techniques for quite different hollow cylindrical, oil-free capacitors (4 μF, 10 kV, 20 nH). Shot life of 1000 has been experimentally performed on the test bed at its rated energy density level. The technological methods and engineering techniques are now available and utilized for manufacturing and testing of BOPP film based oil-free capacitors.

  16. Research of an electromagnetically actuated spark gap switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tianyang; Chen, Dongqun, E-mail: csycdq@163.com; Liu, Jinliang

    2013-11-15

    As an important part of pulsed power systems, high-voltage and high-current triggered spark gap switch and its trigger system are expected to achieve a compact structure. In this paper, a high-voltage, high-current, and compact electromagnetically actuated spark gap switch is put forward, and it can be applied as a part of an intense electron-beam accelerator (IEBA). A 24 V DC power supply is used to trigger the switch. The characteristics of the switch were measured for N{sub 2} when the gas pressure is 0.10–0.30 MPa. The experimental results showed that the voltage/pressure (V/p) curve of the switch was linear relationship.more » The operating ranges of the switch were 21%–96%, 21%–95%, 21%–95%, 19%–95%, 17%–95%, and 16%–96% of the switch's self-breakdown voltage when the gas pressures were 0.10, 0.14, 0.18, 0.22, 0.26, and 0.30 MPa, respectively. The switch and its trigger system worked steadily and reliably with a peak voltage of 30 kV, a peak current of 60 kA in the IEBA when the pressure of N{sub 2} in the switch was 0.30 MPa.« less

  17. Glacial and volcanic evolution on Nevado Coropuna (Tropical Andes) based on cosmogenic 36Cl surface exposure dating

    NASA Astrophysics Data System (ADS)

    Úbeda, J.; Palacios, D.; Vázquez-Selém, L.

    2012-04-01

    We have reconstructed the evolution of the paleo-glaciers of the volcanic complex Nevado Coropuna (15°S, 72°W; 6377 m asl) through the interpretation and dating of geomorphological evidences. Surface exposure dating (SED) based on the accumulation of 36Cl on the surface of moraine boulders, polished bedrock and lava flows allowed: 1) to confirm that the presence of ice masses in the region dates back to >80ka; 2) to produce chronologies of glacial and volcanic phases for the last ~21 ka; and 3) to obtain evidences of the reactivation of volcanic activity after the Last Glacial Maximum. Bromley et al. (2009) presented 3He SED ages of 21 ka for moraine boulders on the Mapa Mayo valley, to the North of Nevado Coropuna. Our 36Cl SED SED for moraine boulders from the valleys on the NE sector of the volcanic complex suggest a maximum initial advance between 20 and 16 ka, followed by another expansion of similar extent at 12-11 ka. On the Southern slope of Nevado Coropuna, the 36Cl ages show a maximum initial advance that reaches to the level of the Altiplano at 14 ka, and a re-advance at ~10-9 ka BP. Other data show minor re-advances at 9 ka on the Northern slope and at 6 ka to the South of the volcanic complex. These minor positive pulses interrupted a fast deglaciation process during the Holocene as shown by two series of 36Cl SED from polished rock surfaces on successively higher altitudes along the valleys of rivers Blanco and Cospanja, to the SW and SE. Despite the global warming occuring since 20 ka, deduced from the record of sea surface paleo-temperature of the Galapago Islands (Lea et al, 2006), the evolution of the fresh-water plankton from Lake Titicaca (Fritz et al, 2007) is consistent with sustained glacial conditions until 10-9 ka as suggested by the present work. Exposure ages of three lava flows indicate a reactivation of the magmatic system as the paleo-glaciers abandonned the slopes. The eruptive activity migrated from the West, where we found a lava flow of 6 ka, to the East, where we dated two units similar to the previous one at 2 and <1ka. Bromley, G.R. et al., 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews, 1-13. Bromley, R.M. et al., 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science, 26 (1): 37-43. Fritz, S.C. et al., 2007. Lake Titicaca 370KYr LT01-2B Sediment Database. Lake Titicaca 370KYr LT01-2B Sediment Data. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 92-008. NOAA/NGDC Paleoclimatology Program. Boulder (EEUU). Lea, D.W. et al., 2006. Galápagos TR163-22 Foraminiferal ^18O and Mg/Ca Data and SST Reconstruction. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2006-090. NOAA/NCDC Paleoclimatology Program, Boulder (EEUU). Research funded by CGL2009-7343 project, Government of Spain.

  18. A Uranium-Lead Chronology of Speleothem Deposition in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gambino, C.; Shakun, J. D.; McGee, D.; Ramezani, J.; Khadivi, S.; Wong, C. I.

    2017-12-01

    The Artic is one of the fastest warming regions on the planet. Currently much of the Arctic is covered by permafrost, which contains approximately 1,700 gigatons of organic carbon. Permafrost thaw could release a substantial amount of this carbon as greenhouse gases into the atmosphere through microbial decomposition, potentially dramatically amplifying anthropogenic warming. However, the risk of permafrost thaw is uncertain, with models exhibiting a wide range of possibilities. Assessing the stability of permafrost during past interglacial periods enables evaluation of the sensitivity of permafrost to warming. Cave mineral deposits (speleothems) in areas currently covered with permafrost can act as a proxy for past permafrost thaw, as liquid water is one criteria of speleothem growth and thus implies thawed ground conditions. Previous uranium-thorium (U-Th) dating of speleothems (n=67) from a wide range of latitudes and permafrost zones across the southern Canadian Rockies, Northwest Territories, and the northern Yukon suggest deposition during Marine Isotope Stage (MIS) 11 and 13. The majority of U-Th dates of these speleothems, however, exceed the U-Th dating limit of 600 ka. In this study, we apply uranium-lead (U-Pb) geochronology to several of these speleothems to extend the records of speleothem growth further back in time. Initial results include a U-Pb age of 428 ± 14 ka that replicates a previous U-Th age of 416.8 ± 7.9 ka, and U-Pb ages on two other speleothems of 870 ± 100 ka and 1502 ± 30 ka. The results of currently in progress U-Pb analyses and a comparison of results with paleo-temperature and ice volume reconstructions will also be presented.

  19. Kv4 channels underlie A-currents with highly variable inactivation time courses but homogeneous other gating properties in the nucleus tractus solitarii.

    PubMed

    Strube, Caroline; Saliba, Layal; Moubarak, Estelle; Penalba, Virginie; Martin-Eauclaire, Marie-France; Tell, Fabien; Clerc, Nadine

    2015-04-01

    In the nucleus of the tractus solitarii (NTS), a large proportion of neurones express transient A-type potassium currents (I KA) having deep influence on the fidelity of the synaptic transmission of the visceral primary afferent inputs to second-order neurones. Up to now, the strong impact of I KA within the NTS was considered to result exclusively from its variation in amplitude, and its molecular correlate(s) remained unknown. In order to identify which Kv channels underlie I KA in NTS neurones, the gating properties and the pharmacology of this current were determined using whole cell patch clamp recordings in slices. Complementary information was brought by immunohistochemistry. Strikingly, two neurone subpopulations characterized by fast or slow inactivation time courses (respectively about 50 and 200 ms) were discriminated. Both characteristics matched those of the Kv4 channel subfamily. The other gating properties, also matching the Kv4 channel ones, were homogeneous through the NTS. The activation and inactivation occurred at membrane potentials around the threshold for generating action potentials, and the time course of recovery from inactivation was rapid. Pharmacologically, I KA in NTS neurones was found to be resistant to tetraethylammonium (TEA), sea anemone toxin blood-depressing substance (BDS) and dendrotoxin (DTX), whereas Androctonus mauretanicus mauretanicus toxin 3 (AmmTX3), a scorpion toxin of the α-KTX 15 family that has been shown to block all the members of the Kv4 family, inhibited 80 % of I KA irrespectively of its inactivation time course. Finally, immunohistochemistry data suggested that, among the Kv4 channel subfamily, Kv4.3 is the prevalent subunit expressed in the NTS.

  20. Anomalous current diffusion and improved confinement in the HT-6M tohamak

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, J. G.; Wan, Y. X.; Huo, Y. P.; Guo, W. K.; Fan, S. P.; Yu, C. X.; Luo, J. R.; Yin, F. X.; Meng, Y. D.; Zheng, L.; Yin, F.; Lin, B. L.; Zhang, S. Y.; Wang, S. Y.; Lu, H. J.; Liu, S. X.; Tong, X. D.; Ding, L. C.; Wu, Z. Y.; Yin, X. J.; Guo, Q. L.; Gong, X. Z.; Wu, X. C.; Zhao, J. Y.; Xi, J. S.

    1994-10-01

    Current diffusion was studied during edge ohmic heating (EOH) experiments in the HT-6M tokamak. The EOH power system makes the plasma current linearly ramp up from an initial steady state ( Ip=55kA) to a second steady state ( Ip=60kA) at a fast ramp rate of 12 MA/s. A stable discharge of an improved confinement was observed experimentally in the HT-6M tokamak after the plasma current was ramped to rise rapidly to a second steady state. The plasma current is ramped up much faster than both the classical skin time and neoclassical skin time. Fast current ramp up increases the anomalous current diffusion. The measured values of {β P+l i}/{2} and the soft X-ray sawtooth inversion radius imply the anomalous current penetration. The mechanism of anomalous penetration and improved confinement is discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A.

    The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30–40 kA and a rise rate of ~10{sup 12} A/s (a fast discharge) through a spherical ceramic (Al{sub 2}O{sub 3}) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 10{sup 18}–10{sup 19} cm{sup –3}. It ismore » shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.« less

  2. Geologic Map of the Craters of the Moon 30' x 60' Quadrangle, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Skipp, Betty; Champion, Duane E.; Gans, Philip B.; VanSistine, D. Paco; Snyders, Scott R.

    2007-01-01

    The Craters of the Moon 30 x 60 minute quadrangle shows the geology of the northern two-thirds of the Craters of the Moon (COM) lava field and volcanic structures of the northern and central parts of the Great Rift volcanic rift zone. The COM lava field is the largest, predominantly Holocene lava field in the conterminous United States. The northwest corner of the map shows older sedimentary, intrusive, and volcanic rocks that range in age from Ordovician to Miocene. These rocks provide evidence of compressional fold and thrust events of the Antler and Sevier orogenies. Compression was followed by voluminous volcanism represented by the Challis Volcanic Group. Basin-and-Range faulting followed in Neogene time. The COM lava field covers about 1,600 square kilometers and contains about 30 cubic kilometers of lava flows and associated vent deposits. Stratigraphic relationships, paleomagnetic studies, and radiocarbon ages indicate that the field formed during eight eruptive periods designated as H, the oldest, to A, the youngest. Each eruptive period was several hundred years or less in duration and separated from other eruptive periods by non-eruptive recurrence intervals of several hundred to about 3,000 years. The first eruptive period began about 15,000 carbon-14 years ago and the latest one ended about 2,100 carbon-14 years ago. All available field, paleomagnetic, radiocarbon, and argon-40/argon-39 data are incorporated in this map and they quantitatively refine the volcanic and paleomagnetic history of the pre-Holocene lava fields and the COM lava field. In a sense, these data determine the 'pulse rate' for Pleistocene and Holocene basaltic volcanism in the area of this map. Twenty-three new argon-40/argon-39 geochronologic data reveal a fairly complete and continuous record of basaltic volcanism in the Craters of the Moon 30 x 60 minute quadrangle for the last 500 ka. The ages cluster into age groupings at ~30 ka, 50-70 ka, 100-125 ka, 260-290 ka, 320-340 ka, and 475 ka. There are apparent periods of ~30 to 60 ka duration when little or no volcanic activity took place between groups. Magnetic polarity and remanent inclination and declination directions for most lava flows in the quadrangle have normal magnetic polarity; they were emplaced during the Brunhes Normal Polarity Chron and are younger than 780,000 years. Directions of remanent magnetization and the new argon-40/argon-39 ages were used to correlate and approximately date lava flows and lava fields for this map.

  3. Hybrid X-pinch Experiments on a MA Linear Transformer Driver

    NASA Astrophysics Data System (ADS)

    Patel, S. G.; Yager-Elorriaga, D. A.; Steiner, A. M.; Gilgenbach, R. M.; Jordan, N. M.; Chalenski, D. A.; Lau, Y. Y.

    2013-10-01

    X-pinch experiments have been conducted on the Linear Transformer Driver (LTD) at the University of Michigan. The x-pinch consists of a single wire separated by conical electrodes between two current return plates. The LTD was charged to +/-70 kV resulting in approximately 0.5 MA passing through a 35 μm Al wire. Multiple, short x-ray bursts were detected over the 400 ns current pulse. Ultimately the x-pinch will be located in parallel with a planar foil in order to backlight the Magneto-Rayleigh-Taylor instability. A smaller 100 kA driver is also in development and may be used to independently energize the x-pinch. The x-pinch chamber has been constructed and the results of these experiments will be presented. This work was supported by DoE award number DE-SC0002590, NSF grant number PHY 0903340, and US DoE through Sandia National Labs award numbers 240985 and 76822 to the U of Michigan. S.G Patel and A.M Steiner are supported by NPSC funded by Sandia National Labs. D.A. Yager-Elorriaga is supported by an NSF fellowship under grant number DGE 1256260.

  4. Magneto Rayleigh-Taylor, Sausage, and Kink Instability Experiments on a MegaAmpere Linear Transformer Driver

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Gilgenbach, R. M.; Lau, Y. Y.; Weis, M. R.; Zhang, P.

    2015-11-01

    At the Michigan Accelerator for Inductive Z-Pinch Experiments (MAIZE) facility, a 1-MA Linear Transformer Driver (LTD) is being used to deliver 500-600 kA to cylindrical liners in order to study the magneto Rayleigh-Taylor (MRT), sausage, and kink instabilities in imploding and exploding Al plasmas. The liners studied in this experiment had thicknesses of 400 nm to 30 μm, heights of 1-2 cm, and diameters of 1-6 mm. The plasmas were imaged using 4-time-frame, laser shadowgraphy and shearing-interferometry at 532 nm. For imploding liners, the measured acceleration was found to be less than predicted from the current pulse, indicating significant diffusion of the azimuthal magnetic field. A simple experimental configuration is presented for ``end-on'' laser probing in the r- θ plane in order to study the interior of the liner. Finally, the effects of axial magnetic fields are determined by modifying the return current posts and incorporating external coils. Experimental growth rates are determined and discussed. This work was supported by DOE award DE-SC0012328. S.G. Patel supported by Sandia National Labs. D.A. Yager was supported by NSF fellowship grant DGE 1256260.

  5. An Overview of NSTX Research Facility and Recent Experimental Results

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    2006-10-01

    The 2006 NSTX experimental campaign yielded significant new experimental results in many areas. Improved plasma control achieved the highest elongation of 2.9 and plasma shape factor q95Ip/aBT = 42 MA/m.T. Active feedback correction of error fields sustained the plasma rotation and increased the pulse length of high beta discharges. Active feedback stabilization of the resistive wall mode in high-beta, low-rotation plasmas was demonstrated for ˜100 resistive wall times. Operation at higher toroidal field showed favorable plasma confinement and HHFW heating efficiency trends with the field. A broader current profile, measured by the 12-channel MSE diagnostic in high beta discharges revealed an outward anomalous diffusivity of energetic ions due to the n=1 MHD modes. A tangential microwave scattering diagnostic measured localized electron gyro-scale fluctuations in L-mode, H-mode and reversed-shear plasmas. Evaporation of lithium onto plasma facing surfaces yielded lower density, higher temperature and improved confinement. A strong dependence of the divertor heat load and ELM behavior on the plasma triangularity was observed. Coaxial helicity injection produced a start-up current of 160 kA on closed flux surfaces.

  6. Integrated Plasma Control for Alternative Plasma Shape on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Bingjia

    2017-10-01

    To support long pulse plasma operation in high performance, a set of plasma control algorithms such as PEFIT real-time equilibrium reconstruction, radiation feedback, Beta and loop voltage feedback and quasi-snowflake shape f control have been implemented on EAST Plasma Control system (PCS) which was adapted from DIII-D PCS. PEFIT is a parallelized version of EFIT by using GPU with highest computation acceleration ratio up to 100 with respect to EFIT. It demonstrated high performance both in DIII-D data analysis and in the real-time shape control on EAST plasma either in normal or quasi-snowflake shape. Loop voltage has been successfully controlled by Low Hybrid Wave (LHW) while the plasma current is maintained by poloidal field coil set. Beta control has been also demonstrated by using LHW and it will be extended to other heating sources because the PCS interface is ready. Radiation feedback control has been achieved by Neon seeding by Super-Sonic Molecular Beam Injection (SMBI). For the plasma operation in quasi-snowflake, we have reached 20 s ELMy free high confinement non-inductive discharges with betap 2, H98 1.1 and plasma current 250 kA. EAST orals.

  7. Time-resolved imaging of the plasma development in a triggered vacuum switch

    NASA Astrophysics Data System (ADS)

    Park, Wung-Hoa; Kim, Moo-Sang; Son, Yoon-Kyoo; Frank, Klaus; Lee, Byung-Joon; Ackerman, Thilo; Iberler, Marcus

    2017-12-01

    Triggered vacuum switches (TVS) are particularly used in pulsed power technology as closing switches for high voltages and high charge transfer. A non-sealed-off prototype was designed with a side-on quartz window to investigate the evolution of the trigger discharge into the main discharge. The image acquisition was done with a fast CCD camera PI-MAX2 from Princeton Instruments. The CCD camera has a maximum exposure time of 2 ns. The electrode configuration of the prototype is a conventional six-rod gap type, a capacitor bank with C = 16.63 μF, which corresponds at 20 kV charging voltage to a total stored charge of 0.3 C or a total energy of 3.3 kJ. The peak current is 88 kA. According to the tremendously highly different light intensities during the trigger and main discharge, the complete discharge is split into three phases: a trigger breakdown phase, an intermediate phase and a main discharge phase. The CCD camera images of the first phase show instabilities of the trigger breakdown, in phase 2 three different discharge modes are observed. After the first current maximum the discharge behavior is reproducible.

  8. Narrow band vacuum ultraviolet radiation, produced by fast conical discharge

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.; Koshelev, K. N.

    2018-04-01

    The article presents the experimental study of discharges in a conical cavity, filled with Ar at pressure 80 Pa. The electrical current driver (inductive storage with plasma erosion opening switch) supplies to the load electrical current pulse with growth rate about 1012 A s‑1 and maximal value 30–40 kA. The convergent conical shock wave starts from the inner surface of the discharge cavity and collapses in ‘zippering’ mode. The pin hole camera imaging with MCP detector (time resolution 5 ns) have demonstrated the appearance of effectively fast moving compact plasma with visible velocity v  =  (1.5  ±  0.14)  ×  107 cm s‑1. Plasma emits narrow band radiation in the spectral range of Rydberg series transitions of Ar VII, Ar VIII with quantum number up to n  =  9 (wavelength about 11 nm). The intensity of radiation is comparable with the total plasma emission in the range 10–50 nm. Charge exchange between multiply charged Ar ions and cold Ar atoms of working gas is proposed as the possible mechanism of the origin of the radiation.

  9. Performance of Superconducting Current Feeder System for SST-1

    NASA Astrophysics Data System (ADS)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  10. Long-lived structural control of Mt. Shasta's plumbing system illuminated by 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.; Christiansen, R. L.

    2013-12-01

    Mt. Shasta is the largest stratovolcano in the Cascade Arc, surpassed in volume only by the large rear-arc Medicine Lake and Newberry composite volcanoes. Including the material in the ~350 ka debris avalanche, it has produced more than 500 km3 of andesite and dacite from several superimposed central vents over its 700-850 kyr history. Earlier, between at least 970 to 1170 ka, the Rainbow Mountain volcano of similar composition and size occupied this latitude of the arc ~20 km further east. This shift of magmatic focus from within the arc axis (as defined by 6 Ma and younger calc-alkaline centers) to the arc front is poorly understood, but the current center's location appears structurally controlled. Most identifiable volcanic vents on Mt. Shasta lie within 1 km of a N-S line through the active summit cone. 40Ar/39Ar ages of map units occupying the vent alignment range from the Holocene (5×1 ka) current summit dome to at least the Middle Pleistocene (464×9 ka McKenzie Butte). The vast majority of eruptions have issued from central vents (Sargents Ridge, 300-135 ka; Misery Hill, 100-15 ka; and Hotlum, <10 ka), each 500 to 1000m north of its predecessor. A central vent for the pre-avalanche edifice is impossible to locate precisely, but was possibly on the same N-S trend and certainly no more than 4 km to the west, likely south of the Sargents Ridge central vent. ~15 of ~25 mapped flank vents lie on the alignment and the other ten lie west of the line. No identified volcanic vents lie east of the line until >12 km from Mt. Shasta (Ash Creek Butte, 227 ka; Basalt of McCloud River, 38 ka; The Whaleback, 102 ka), and monogenetic and polygenetic centers further east and northeast. From these observations we infer that: (1) magmas are localized along a ~20 km, long-lived, N-S trending structure running through the summit; (2) the upper crustal structure appears impermeable to magmas and resistant to dikes on its eastern side; (3) the western half of the area beneath the volcano appears substantially weaker, as dikes have fed flank vents 10-20 km from the summit over the history of the volcano; and (4) the orientation of the WNW-directed debris avalanche, coincident with the greatest concentration of flank vents, may indicate either structural weakness or failure following emplacement of a cryptodome similar to the 1980 events at Mt. St. Helens.

  11. History of Larix decidua Mill. (European larch) since 130 ka

    NASA Astrophysics Data System (ADS)

    Wagner, Stefanie; Litt, Thomas; Sánchez-Goñi, Maria-Fernanda; Petit, Rémy J.

    2015-09-01

    Retrospective studies focussing on forest dynamics using fossil and genetic data can provide important keys to prepare forests for the future. In this study we analyse the impact of past climate and anthropogenic changes on Larix decidua Mill. (European larch) populations based on a new range-wide fossil compilation encompassing the last 130 ka and on recently produced genetic data (nuclear, mitochondrial). Results demonstrate that during the last 130 ka L. decidua persisted close to its current distribution range and colonized vast areas outside this range during the first two early Weichselian interstadials (c. 87-109 ka and c. 83-78 ka), reaching a distributional maxima in the north-central European lowlands. Some fossil sites point to notably rapid responses to some abrupt climate events (Dansgaard-Oeschger cycles and Heinrich Events). Combined fossil and genetic data identify at least six MIS 2 refuges and postglacial recolonization pathways. The establishment of extant L. decidua forests dates back to the first two millennia of the Holocene (c. 11.5-9.5 ka) and the onset of anthropogenic impact was inferred since the late Neolithic (c. 6 ka), with major changes occurring since the Bronze Age (c. 4 ka). During the last 300 years human-induced translocations resulted in recent admixture of populations originating from separate refuges. Altogether, the results of this study provide valuable clues for developing sustainable conservation and management strategies targeting ancient genetic lineages and for studying evolutionary issues.

  12. Source of the Organic Matter and Land-Marine Interaction Phases in Great Rann of Kachch Basin, India

    NASA Astrophysics Data System (ADS)

    Khonde, N. N.; Bhushan, R.; Agnihotri, R.; Maurya, D. M.; Chamyal, L. S.

    2017-12-01

    Using δ13C and C/N ratio of sedimentary organic matter (OM) in 14C AMS dated sediment core from central Great Rann of Kachchh (GRK) basin, we track sediment dispositional history since 18 ka BP. Temporal changes in the δ13C and C/N ratios were inferred in terms of OM source, which could be function of river discharge, relative sea level changes, and also due to land-cover changes in the catchment area. The down core variations in TOC vs TC doesn't show significant correlation suggesting diverse origin of the OM in GRK sediments. Between 18-13 ka BP, pulses of high C/N ratio (18-34) and depleted δ13C (average -23‰; with respect to typical marine -21‰) values hint terrestrially derived OM in rather overall marine environment. High terrestrial OM input from riverine inputs in post glacial period could be relatable to intense monsoonal conditions. Later to this phase, between 14-10 ka BP, C/N ratios show large fluctuations indicating rapidly fluctuating environment, albeit δ13C remains relatively stable at -21‰ typical of marine OM. A significant positive incursion in C/N ratio (45-60) is seen during early-mid Holocene time ( 10-6 ka BP) with and highly depleted δ13C ( -25‰) values indicating enhanced terrestrial OM input. This could be owing to increased riverine fluxes to the basin under intensified monsoonal climate. Between 6-2.5 ka BP during mid-Holocene, C/N ratios shows declining trend with enriched δ13C values, suggesting presence of marine OM source at the core-site. This overlaps with the weaker monsoonal conditions prevailing in the northwest India. Lake records from Rajasthan also support this contention. After 2.5 ka BP, C/N ratios indicate marine OM values, whereas δ13C fluctuates from marine to terrestrial values indicating `mixed-source' of the OM during this period, most likely due to unstable land-marine conditions and large-scale reworking of sediments.

  13. Luminescence chronology of the loess record from the Tönchesberg section - a comparison of using quartz and feldspar as dosimeter to extend the age range beyond the Eemian

    NASA Astrophysics Data System (ADS)

    Dorothe Schmidt, Esther; Frechen, Manfred; Murray, Andrew S.; Tsukamoto, Sumiko

    2010-05-01

    The loess-paleosol sequences of the Tönchesberg section, located in the East Eifel Volcanic field (Germany) provide an excellent climate archive of the late Middle and the Upper Pleistocene in the Middle Rhine area. Loess deposits from the last Glacial (Würmian) and the penultimate Glacial (Rissian) are up to 12 m and 15 m thick, respectively, and intercalated by palaeosols. Optically stimulated luminescence (OSL), thermally transferred optically stimulated luminescence (TT-OSL) and infrared stimulated luminescence (IRSL) measurements were carried out on 14 samples from the Tönchesberg section to determine the deposition age and to set up a more reliable chronological framework for the penultimate and last interglacial-glacial cycle. The fine-grained quartz OSL and polymineral IRSL ages are in good agreement with each other and also with the geologically estimated age, but the quartz TT-OSL ages are overestimated. The OSL and IRSL ages range from 16.8 ± 1.2 to 189 ± 16 ka indicating that the youngest loess and the weakly developed soils were deposited during marine isotope stage (MIS) 2 and 3 and that the two marker loess were most likely accumulated in the transition MIS 4/5. Loess and reworked loess postdating the Eemian soil yield ages of 110-115 ka indicating that these deposits very likely correlate to MIS 5d. Loess deposits taken below the Eemian soil are attributed to the transition MIS 6/7. A weakly developed soil above the Tönchesberg scoria yield an age of 189 ± 16 ka indicating an interstadial soil formation during MIS 7. This is in good agreement with preliminary 40Ar/39Ar-ages for the Tönchesberg scoria and the intercalated tephra layers. Reliable age estimates up to ~70 ka could be obtained using quartz OSL and up to ~190 ka using the pulsed post-IR IR signal from feldspar. Hence the infrared stimulated luminescence (IRSL) is considered as the best approach to date the loess from the Middle Rhine area > 70 ka.

  14. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land thunderstorms, 530 for ocean ESCs, 390 for ocean thunderstorms, and 330 for land ESCs.

  15. Pulse charging of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1980-01-01

    Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.

  16. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, M. P., E-mail: mpvaldivia@pha.jhu.edu; Stutman, D.; Stoeckl, C.

    2016-11-15

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25–29 J, 8–30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  17. Superradiant Ka-band Cherenkov oscillator with 2-GW peak power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Pedos, M. S.

    The generation of a 2-GW microwave superradiance (SR) pulses has been demonstrated at 29-GHz using a single-mode relativistic backward-wave oscillator possessing the beam-to-wave power conversion factor no worse than 100%. A record-breaking radiation power density in the slow-wave structure (SWS) of ∼1.5 GW/cm{sup 2} required the use of high guiding magnetic field (7 T) decreasing the beam losses to the SWS in strong rf fields. Despite the field strength at the SWS wall of 2 MV/cm, a single-pass transmission mode of a short SR pulse in the SWS allows one to obtain extremely high power density in subnanosecond time scale due tomore » time delay in the development of the breakdown phenomena.« less

  18. Switching for electric rail guns

    NASA Astrophysics Data System (ADS)

    Barber, J. P.; Bauer, D. P.

    1984-03-01

    The switching requirements of single-stage electric railguns powered by inductive energy stores are analyzed, and the design of a 500-kA commutation switch is shown. The closed, commutation, and off states of the switch and the reclosure function at the end of the projectile acceleration are discussed in general terms, and the specific requirements of the railgun facility at Australian National University are listed. The switch designed is essentially a railgun mounted perpendicular to the breech of the electric railgun, with the armature accelerating down copper rails at closing speeds from 50 m/sec at 100 kA to 300 m/sec at 500 kA to commutate current to the railgun. Commutation time and maximum voltage during 200 shots at 400 kA were found to be 50 microsec and 100 V; commutation inductance was 18-20 nH.

  19. Divertor Coil Design and Implementation on Pegasus

    NASA Astrophysics Data System (ADS)

    Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.

    2012-10-01

    An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.

  20. Intense Electron Beam Cyclotron Masers with Microsecond Pulselengths

    DTIC Science & Technology

    1991-12-20

    wavooscmaw experiments to produce high power (tube power of - 1 - 8 MW), long-pulse (0.3 - 1.2 ps) micrwaves at hA cuen (0.1- 2 kA) and high voltns...the high frequency band (f > 14.05 GHz) is increased by more than 6 dB, compared with the power measured from the 80 hole apertured mask- anode . Ibis... anode where we observed high power microwave emission in the 2.1 - 6.6 GHz band. 5. Summary and conclusions Experiments have been performed to

  1. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints.

    PubMed

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-09-15

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.

  2. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints

    PubMed Central

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-01-01

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding. PMID:28914825

  3. ODP Site 1063 (Bermuda Rise) revisited: Oxygen isotopes, excursions and paleointensity in the Brunhes Chron

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; Hodell, D. A.; Curtis, J. H.

    2012-02-01

    An age model for the Brunhes Chron of Ocean Drilling Program (ODP) Site 1063 (Bermuda Rise) is constructed by tandem correlation of oxygen isotope and relative paleointensity data to calibrated reference templates. Four intervals in the Brunhes Chron where paleomagnetic inclinations are negative for both u-channel samples and discrete samples are correlated to the following magnetic excursions with Site 1063 ages in brackets: Laschamp (41 ka), Blake (116 ka), Iceland Basin (190 ka), Pringle Falls (239 ka). These ages are consistent with current age estimates for three of these excursions, but not for "Pringle Falls" which has an apparent age older than a recently published estimate by ˜28 kyr. For each of these excursions (termed Category 1 excursions), virtual geomagnetic poles (VGPs) reach high southerly latitudes implying paired polarity reversals of the Earth's main dipole field, that apparently occurred in a brief time span (<2 kyr in each case), several times shorter than the apparent duration of regular polarity transitions. In addition, several intervals of low paleomagnetic inclination (low and negative in one case) are observed both in u-channel and discrete samples at ˜318 ka (MIS 9), ˜412 ka (MIS 11) and in the 500-600 ka interval (MIS 14-15). These "Category 2" excursions may constitute inadequately recorded (Category 1) excursions, or high amplitude secular variation.

  4. Impacts of past climate and sea level change on Everglades wetlands: placing a century of anthropogenic change into a late-Holocene context

    USGS Publications Warehouse

    Willard, D.A.; Bernhardt, C.E.

    2011-01-01

    We synthesize existing evidence on the ecological history of the Florida Everglades since its inception ~7 ka (calibrated kiloannum) and evaluate the relative impacts of sea level rise, climate variability, and human alteration of Everglades hydrology on wetland plant communities. Initial freshwater peat accumulation began between 6 and 7 ka on the platform underlying modern Florida Bay when sea level was ~6.2 m below its current position. By 5 ka, sawgrass and waterlily peats covered the area bounded by Lake Okeechobee to the north and the Florida Keys to the south. Slower rates of relative sea level rise ~3 ka stabilized the south Florida coastline and initiated transitions from freshwater to mangrove peats near the coast. Hydrologic changes in freshwater marshes also are indicated ~3 ka. During the last ~2 ka, the Everglades wetland was affected by a series of hydrologic fluctuations related to regional to global-scale fluctuations in climate and sea level. Pollen evidence indicates that regional-scale droughts lasting two to four centuries occurred ~1 ka and ~0.4 ka, altering wetland community composition and triggering development of characteristic Everglades habitats such as sawgrass ridges and tree islands. Intercalation of mangrove peats with estuarine muds ~1 ka indicates a temporary slowing or stillstand of sea level. Although sustained droughts and Holocene sea level rise played large roles in structuring the greater Everglades ecosystem, twentieth century reductions in freshwater flow, compartmentalization of the wetland, and accelerated rates of sea level rise had unprecedented impacts on oxidation and subsidence of organic soils, changes/loss of key Everglades habitats, and altered distribution of coastal vegetation.

  5. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    NASA Astrophysics Data System (ADS)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-02-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.

  6. Episodic Sediment Failure in Northern Flemish Pass, Eastern Canadian Margin: Interplay of Seismicity, Contour Current Winnowing, and Excess Pore Pressures

    NASA Astrophysics Data System (ADS)

    Piper, D.

    2015-12-01

    Episodic sediment failures are recognised on continental slopes around Flemish Pass and Orphan Basin from multibeam bathymetry, seismic reflection profiles and piston cores. Seismic stratigraphy is tied to published long cores with O-isotope data back to before MIS 6 and carbonate rich Heinrich layers in places produce marker reflections in high-resolution sparker profiles. Heinrich layers, radiocarbon dates and peaks in diatom abundance provide core chronology. Slope sedimentation was strongly influenced by the Labrador Current and the silty muds show architecture characteristic of contourites. Variation in Labrador Current strength is known from the sortable silt proxy over the past 125 ka. Large slope failures were mapped from seismic reflection profiles and their age estimated from seismic stratigraphy (3-5 ka resolution) and in some cases refined from cores (1-3 ka resolution). Large slope failures occurred apparently synchronously over margin lengths of 50-350 km. Such failures were earthquake triggered: other mechanisms for producing laterally extensive synchronous failure do not apply. Triaxial shear measurements show a Su/σ' ratio of typical slope sediment of 0.48, implying considerable stability. However, some silty muds have Atterberg limits that suggest susceptibility to liquefaction under cyclic loading, particularly in Holocene deposits and by analogy those of past full interglacials. Basal failure planes of some large failures correspond with either the last interglacial or the MIS 6 glacial maximum. Comparison with seismological models suggests that the observed slope failures represent earthquakes ranging from Mw ~5.6 to ~7.6. Mean recurrence interval of M = 7 earthquakes at any point on the margin is estimated at 30 ka from seismological models and 40 ka from the sediment failure record. In northern Flemish Pass, a spatial cluster of several failures over 30 ka preceded by a long interval with no failures suggests that some other mechanism has preconditioned the slope for earthquake triggering. There is circumstantial evidence that such preconditioning is related to excess pore pressures, released by fluid drainage at head scarps.

  7. Transport properties of kA class QMG current limiting elements

    NASA Astrophysics Data System (ADS)

    Morita, M.; Miura, O.; Ito, D.

    2001-09-01

    In order to estimate the feasibility of a resistive type fault current limiter made of QMG, transport properties of QMG current limiting elements which can transport about 1 kA continuously in a superconducting state were studied. QMG is a rare earth based bulk superconductor that has high Jc properties and relatively high electrical resistivity in a normal state. Because of these properties, QMG is a promising bulk material for superconducting fault current limiter applications. A bar-shaped sample in which the cross-section and the effective length were 2.2×0.8 mm2 and 30 mm, respectively, was prepared. Bypass resistance of 7 mΩ was connected in parallel with the sample. A field assist mechanism that can apply a magnetic field of about 0.9 T to the sample was installed. A half cycle of AC current up to about 3 kA was applied to the samples at 77 K. In the case when applied current ( I) was less than 1000 A in a self-field, flux flow voltage was less than 0.5 mV. The n-value was about 6. In the applied field of 0.9 T, a rapid increase of voltage (quench) was observed around I=1820 A. The quench phenomena reproduced without degradation in the case of I>1820 A. From these results, it was found that QMG fault current elements can endure the thermal shock of the quench by the optimization of bypass resistance and the applied field.

  8. Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo (1989) and Jerry (1989)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsury, C.E.; Orville, R.E.

    1994-08-01

    Cloud-to-ground lightning characteristics of two Atlantic tropical cyclones of 1989, Hurricanes Hugo and Jerry, are presented. Statistics on the number of flashes, location, polarity, peak currents, and multiplicity (number of strokes per flash) are examined in an 18-h period divided into prelandfall and postlandfall categories. Land-based and aircraft lower fuselage radar data are also analyzed to determine the nature of the precipitation in which lightning is detected. Jerry is found to be more electrically active than Hugo, with 691 flashes detected compared with 33 flashes for Hugo. The majority of these flashes, regardless of the polarity, are located in themore » right front and right rear quadrants of the hurricanes, almost exclusively in outer convective rainbands. One reason for the large difference in the number of flashes between the two storms is the presence of many convective rainbands in Jerry, compared to only a few in Hugo. More than 20% of the flashes in each storm have a positive polarity. Median negative peak currents of the first return strokes are 49 kA in Hugo and 40 kA in Jerry. Median positive peak currents are 65 kA in Hugo and 52 kA in Jerry. The mean multiplicity of the negative flashes is 1.7 in Hugo and 2.6 in Jerry. Twenty percent of the negative flashes detected in Jerry have a multiplicity of 4 or higher.« less

  9. Irradiation of orderly multiline spectra from linear plasma formed by vacuum discharge capillary

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2005-03-01

    The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate intense soft x rays. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbomolecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -11.5 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 μm aluminum filter were less than 30 μs. In the spectrum measurement, we observed orderly multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. The line number decreased with corresponding decreases in the capillary length.

  10. Influence of shock waves from plasma actuators on transonic and supersonic airflow

    NASA Astrophysics Data System (ADS)

    Mursenkova, I. V.; Znamenskaya, I. A.; Lutsky, A. E.

    2018-03-01

    This paper presents experimental and numerical investigations of high-current sliding surface discharges of nanosecond duration and their effect on high-speed flow as plasma actuators in a shock tube. This study deals with the effectiveness of a sliding surface discharge at low and medium air pressure. Results cover the electrical characteristics of the discharge and optical visualization of the discharge and high-speed post-discharge flow. A sliding surface discharge is first studied in quiescent air conditions and then in high-speed flow, being initiated in the boundary layer at a transverse flow velocity of 50-950 m s-1 behind a flat shock wave in air of density 0.04-0.45 kg m-3. The discharge is powered by a pulse voltage of 25-30 kV and the electric current is ~0.5 kA. Shadow imaging and particle image velocimetry (PIV) are used to measure the flow field parameters after the pulse surface discharge. Shadow imaging reveals shock waves originating from the channels of the discharge configurations. PIV is used to measure the velocity field resulting from the discharge in quiescent air and to determine the homogeneity of energy release along the sliding discharge channel. Semicylindrical shock waves from the channels of the sliding discharge have an initial velocity of more than 600 m s-1. The shock-wave configuration floats in the flow along the streamlined surface. Numerical simulation based on the equations of hydrodynamics matched with the experiment showed that 25%-50% of the discharge energy is instantly transformed into heat energy in a high-speed airflow, leading to the formation of shock waves. This energy is comparable to the flow enthalpy and can result in significant modification of the boundary layer and the entire flow.

  11. Protons at the speed of sound: Predicting specific biological signaling from physics.

    PubMed

    Fichtl, Bernhard; Shrivastava, Shamit; Schneider, Matthias F

    2016-05-24

    Local changes in pH are known to significantly alter the state and activity of proteins and enzymes. pH variations induced by pulses propagating along soft interfaces (e.g. membranes) would therefore constitute an important pillar towards a physical mechanism of biological signaling. Here we investigate the pH-induced physical perturbation of a lipid interface and the physicochemical nature of the subsequent acoustic propagation. Pulses are stimulated by local acidification and propagate - in analogy to sound - at velocities controlled by the interface's compressibility. With transient local pH changes of 0.6 directly observed at the interface and velocities up to 1.4 m/s this represents hitherto the fastest protonic communication observed. Furthermore simultaneously propagating mechanical and electrical changes in the lipid interface are detected, exposing the thermodynamic nature of these pulses. Finally, these pulses are excitable only beyond a threshold for protonation, determined by the pKa of the lipid head groups. This protonation-transition plus the existence of an enzymatic pH-optimum offer a physical basis for intra- and intercellular signaling via sound waves at interfaces, where not molecular structure and mechano-enyzmatic couplings, but interface thermodynamics and thermodynamic transitions are the origin of the observations.

  12. Simulation results of corkscrew motion in DARHT-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.

    2003-01-01

    DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignmentsmore » of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.« less

  13. Development of Methods for the Determination of pKa Values

    PubMed Central

    Reijenga, Jetse; van Hoof, Arno; van Loon, Antonie; Teunissen, Bram

    2013-01-01

    The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field. PMID:23997574

  14. A superconducting direct-current limiter with a power of up to 8 MVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, L. M.; Alferov, D. F., E-mail: DFAlferov@niitfa.ru; Akhmetgareev, M. R.

    2016-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel–series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current atmore » a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.« less

  15. A superconducting direct-current limiter with a power of up to 8 MVA

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2016-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel-series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.

  16. Early Holocene deglaciation of Drangajökull, Vestfirðir, Iceland

    NASA Astrophysics Data System (ADS)

    Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.; Zalzal, Kate

    2016-12-01

    The status of Icelandic ice caps during the early Holocene provides important constraints on North Atlantic climate and the mechanisms behind natural climate variability. A recent study postulates that Drangajökull on Vestfirðir, Iceland, persisted through the Holocene Thermal Maximum (HTM, 7.9-5.5 ka) and may be a relic from the last glacial period. We test this hypothesis with a suite of sediment cores from threshold lakes both proximal and distal to the ice cap's modern margin. Distal lakes document rapid early Holocene deglaciation from the coast and across the highlands south of the glacier. Sediment from Skorarvatn, a lake to the north of Drangajökull, shows that the northern margin of the ice cap reached a size comparable to its contemporary limit by ∼10.3 ka. Two southeastern lakes with catchments extending well beneath modern Drangajökull confirm that by ∼9.2 ka, the ice cap was reduced to ∼20% of its current area. A continuous 10.3ka record of biological productivity from Skorarvatn's sediment indicates local peak warmth occurred between 9 and 6.9 ka. The combination of warm and dry summers on Vestfirðir suggests that Drangajökull very likely melted completely shortly after 9.2 ka, similar to most other Icelandic ice caps.

  17. Impact of diagenesis on the environmental magnetic record from a Holocene sedimentary sequence from the Chukchi-Alaskan margin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Brachfeld, Stefanie; Barletta, Francesco; St-Onge, Guillaume; Darby, Dennis; Ortiz, Joseph D.

    2009-07-01

    We present a high-resolution Holocene sedimentary record of environmental variability from the eastern Chukchi Sea. An ice-rafted debris bearing silty-clay marks the deglacial to post-glacial Holocene transition at this site and is dated at 9.7 ka. An interval of oscillating magnetic parameters from 9.5 to 8.7 ka coincides with the Holocene Thermal Maximum in the western Arctic, and is manifested at the study area as pulses of fine-grained magnetite input every 180-230 years, possibly from increased river discharge or stronger currents flowing over the core site. The magnetic mineral assemblage is very uniform over the last 8.2 ka and consists of a mixture of magnetite, titanomagnetite, and a magnetic phase that we tentatively identify as the magnetic iron sulfide greigite. The amount of magnetic iron sulfides increases up through the Holocene, a trend that is controlled by the amount of marine organic matter available to fuel bacterial sulfate reduction. The median destructive field of the Natural Remanent Magnetization (MDF NRM) displays centennial to millennial scale cycles with significant variance at periods of 900-1300 and 1700-2700 years, with intervals of high MDF NRM values coinciding with indicators of greater sea ice cover [McKay, J., de Vernal, A., Hillaire-Marcel, C., Not, C., Polyak, L., Darby, D., 2008. Holocene fluctuations in Arctic sea-ice cover: Dinocyst-based reconstructions for the eastern Chukchi Sea. Can. J. Earth Sci. 45, 1399-1415]. The MDF NRM is controlled by the variable abundance of iron sulfides formed during early diagenesis. We interpret intervals of high MDF NRM values as times of stronger water column stratification, during which the pyritization process was interrupted by the lack of marine organic matter and lack of reactive iron. Intervals of low MDF NRM values, which coincide with indicators of reduced sea ice cover, are interpreted as times of stronger vertical mixing of the water column, which allows fresh marine organic matter and reactive iron to reach the seafloor, driving the pyritization process to completion.

  18. Earth's magnetic field is probably not reversing.

    PubMed

    Brown, Maxwell; Korte, Monika; Holme, Richard; Wardinski, Ingo; Gunnarson, Sydney

    2018-05-15

    The geomagnetic field has been decaying at a rate of ∼5% per century from at least 1840, with indirect observations suggesting a decay since 1600 or even earlier. This has led to the assertion that the geomagnetic field may be undergoing a reversal or an excursion. We have derived a model of the geomagnetic field spanning 30-50 ka, constructed to study the behavior of the two most recent excursions: the Laschamp and Mono Lake, centered at 41 and 34 ka, respectively. Here, we show that neither excursion demonstrates field evolution similar to current changes in the geomagnetic field. At earlier times, centered at 49 and 46 ka, the field is comparable to today's field, with an intensity structure similar to today's South Atlantic Anomaly (SAA); however, neither of these SAA-like fields develop into an excursion or reversal. This suggests that the current weakened field will also recover without an extreme event such as an excursion or reversal. The SAA-like field structure at 46 ka appears to be coeval with published increases in geomagnetically modulated beryllium and chlorine nuclide production, despite the global dipole field not weakening significantly in our model during this time. This agreement suggests a greater complexity in the relationship between cosmogenic nuclide production and the geomagnetic field than is commonly assumed.

  19. Test of 60 kA coated conductor cable prototypes for fusion magnets

    NASA Astrophysics Data System (ADS)

    Uglietti, D.; Bykovsky, N.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2015-12-01

    Coated conductors could be promising materials for the fabrication of the large magnet systems of future fusion devices. Two prototype conductors (flat cables in steel conduits), each about 2 m long, were manufactured using coated conductor tapes (4 mm wide) from Super Power and SuperOx, with a total tape length of 1.6 km. Each flat cable is assembled from 20 strands, each strand consisting of a stack of 16 tapes surrounded by two half circular copper profiles, twisted and soldered. The tapes were measured at 12 T and 4.2 K and the results of the measurements were used for the assessment of the conductor electromagnetic properties at low temperature and high field. The two conductors were assembled together in a sample that was tested in the European Dipole (EDIPO) facility. The current sharing temperatures of the two conductors were measured at background fields from 8 T up to 12 T and for currents from 30 kA up to 70 kA: the measured values are within a few percent of the values expected from the measurements on tapes (short samples). After electromagnetic cycling, T cs at 12 T and 50 kA decreased from about 12 K to 11 K (about 10%), corresponding to less than 3% of I c.

  20. Humans permanently occupied the Andean highlands by at least 7 ka

    PubMed Central

    Stefanescu, Ioana C.; Garcia-Putnam, Alexander; Aldenderfer, Mark S.; Clementz, Mark T.; Murphy, Melissa S.; Llave, Carlos Viviano; Watson, James T.

    2017-01-01

    High-elevation environments above 2500 metres above sea level (m.a.s.l.) were among the planet's last frontiers of human colonization. Research on the speed and tempo of this colonization process is active and holds implications for understanding rates of genetic, physiological and cultural adaptation in our species. Permanent occupation of high-elevation environments in the Andes Mountains of South America tentatively began with hunter–gatherers around 9 ka according to current archaeological estimates, though the timing is currently debated. Recent observations on the archaeological site of Soro Mik'aya Patjxa (8.0–6.5 ka), located at 3800 m.a.s.l. in the Andean Altiplano, offer an opportunity to independently test hypotheses for early permanent use of the region. This study observes low oxygen (δ18O) and high carbon (δ13C) isotope values in human bone, long travel distances to low-elevation zones, variable age and sex structure in the human population and an absence of non-local lithic materials. These independent lines of evidence converge to support a model of permanent occupation of high elevations and refute logistical and seasonal use models. The results constitute the strongest empirical support to date for permanent human occupation of the Andean highlands by hunter–gatherers before 7 ka. PMID:28680685

  1. Microwave Frequency Multiplier

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing concerns. We present a theoretical analysis for the beam-wave interactions in the MFM's input and output cavities. We show the conditions required for successful frequency multiplication inside the output cavity. Computer simulations using the plasma physics code MAGIC show that 100 kW of Ka-band (32-GHz) output power can be produced using an 80-kW X-band (8-GHz) signal at the MFM's input. The associated MFM efficiency - from beam power to Ka-band power - is 83 percent. Thus, the overall klystron-MFM efficiency is 42 percent - assuming that a klystron with an efficiency of 50 percent delivers the input signal.

  2. The Use of a 28 GHz Gyrotron for EBW Startup Experiments on MAST

    NASA Astrophysics Data System (ADS)

    Caughman, J. B.; Bigelow, T. S.; Diem, S. J.; Peng, Y. K. M.; Rasmussen, D. A.; Shevchenko, V.; Hawes, J.; Lloyd, B.

    2009-11-01

    The use of electron Bernstein waves for non-inductive plasma current startup in MAST has recently been demonstrated [1]. The injection of 100 kW at 28 GHz generated plasma currents of up to 33 kA without the use of solenoid flux, and limited solenoid assist resulted in up to 55 kA of plasma current. A higher power 28 GHz gyrotron, with power levels of up to 300 kW for 0.5 seconds, is currently being commissioned. It is being used to investigate the scaling of startup current with microwave power and power profile as a function of time. Power modulation experiments are also being explored. Gyrotron performance and experimental results will be presented. [4pt] [1] V. Shevchenko, et al., Proceedings of the 15^th Joint Workshop on ECE and ECRH, Yosimite, USA, p. 68 (2009)

  3. Towards a 20 kA high temperature superconductor current lead module using REBCO tapes

    NASA Astrophysics Data System (ADS)

    Heller, R.; Bagrets, N.; Fietz, W. H.; Gröner, F.; Kienzler, A.; Lange, C.; Wolf, M. J.

    2018-01-01

    Most of the large fusion devices presently under construction or in operation consisting of superconducting magnets like EAST, Wendelstein 7-X (W7-X), JT-60SA, and ITER, use high temperature superconductor (HTS) current leads (CL) to reduce the cryogenic load and operational cost. In all cases, the 1st generation HTS material Bi-2223 is used which is embedded in a low-conductivity matrix of AgAu. In the meantime, industry worldwide concentrates on the production of the 2nd generation HTS REBCO material because of the better field performance in particular at higher temperature. As the new material can only be produced in a multilayer thin-film structure rather than as a multi-filamentary tape, the technology developed for Bi-2223-based current leads cannot be transferred directly to REBCO. Therefore, several laboratories are presently investigating the design of high current HTS current leads made of REBCO. Karlsruhe Institute of Technology is developing a 20 kA HTS current lead using brass-stabilized REBCO tapes—as a further development to the Bi-2223 design used in the JT-60SA current leads. The same copper heat exchanger module as in the 20 kA JT-60SA current lead will be used for simplicity, which will allow a comparison of the newly developed REBCO CL with the earlier produced and investigated CL for JT-60SA. The present paper discusses the design and accompanying test of single tape and stack REBCO mock-ups. Finally, the fabrication of the HTS module using REBCO stacks is described.

  4. X-ray imaging of fibers

    NASA Astrophysics Data System (ADS)

    Moosman, B.; Song, Y.; Weathers, L.; Wessel, F.

    1996-11-01

    A pulsed x-ray backlighter was developed to image exploding wires and cryogenic fibers. The x-ray pulse width is between 10-20 ns, with an output of 100-150 mJ, mostly in the Al k-shell (1.486 keV). The backlighter is located 50 cm from the 20-50 micron diameter target (typically, a copper wire). A 15 micron Al filter eliminates UV emission from the backlighter and target. It is placed 3 cm from the target with SB-5 film directly behind it. From the optical density of the film, target absorption and density can be calculated. The spatial resolution of this system is better than 40 microns. The wire is exploded using a 10 kA, 1 microsecond pulser. Analysis with simultaneous Moire imaging will also be presented. Supported by Los Alamos National Laboratories

  5. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records

    NASA Astrophysics Data System (ADS)

    Jakobsson, Martin; Pearce, Christof; Cronin, Thomas M.; Backman, Jan; Anderson, Leif G.; Barrientos, Natalia; Björk, Göran; Coxall, Helen; de Boer, Agatha; Mayer, Larry A.; Mörth, Carl-Magnus; Nilsson, Johan; Rattray, Jayne E.; Stranne, Christian; Semiletov, Igor; O'Regan, Matt

    2017-08-01

    The Bering Strait connects the Arctic and Pacific oceans and separates the North American and Asian landmasses. The presently shallow ( ˜ 53 m) strait was exposed during the sea level lowstand of the last glacial period, which permitted human migration across a land bridge today referred to as the Bering Land Bridge. Proxy studies (stable isotope composition of foraminifera, whale migration into the Arctic Ocean, mollusc and insect fossils and paleobotanical data) have suggested a range of ages for the Bering Strait reopening, mainly falling within the Younger Dryas stadial (12.9-11.7 cal ka BP). Here we provide new information on the deglacial and post-glacial evolution of the Arctic-Pacific connection through the Bering Strait based on analyses of geological and geophysical data from Herald Canyon, located north of the Bering Strait on the Chukchi Sea shelf region in the western Arctic Ocean. Our results suggest an initial opening at about 11 cal ka BP in the earliest Holocene, which is later than in several previous studies. Our key evidence is based on a well-dated core from Herald Canyon, in which a shift from a near-shore environment to a Pacific-influenced open marine setting at around 11 cal ka BP is observed. The shift corresponds to meltwater pulse 1b (MWP1b) and is interpreted to signify relatively rapid breaching of the Bering Strait and the submergence of the large Bering Land Bridge. Although the precise rates of sea level rise cannot be quantified, our new results suggest that the late deglacial sea level rise was rapid and occurred after the end of the Younger Dryas stadial.

  6. EUReKA! A Conceptual Model of Emotion Understanding

    PubMed Central

    Castro, Vanessa L.; Cheng, Yanhua; Halberstadt, Amy G.; Grühn, Daniel

    2015-01-01

    The field of emotion understanding is replete with measures, yet lacks an integrated conceptual organizing structure. To identify and organize skills associated with the recognition and knowledge of emotions, and to highlight the focus of emotion understanding as localized in the self, in specific others, and in generalized others, we introduce the conceptual framework of Emotion Understanding in Recognition and Knowledge Abilities (EUReKA). We then categorize fifty-six existing methods of emotion understanding within this framework to highlight current gaps and future opportunities in assessing emotion understanding across the lifespan. We hope the EUReKA model provides a systematic and integrated framework for conceptualizing and measuring emotion understanding for future research. PMID:27594904

  7. Numerical analysis of modified Central Solenoid insert design

    DOE PAGES

    Khodak, Andrei; Martovetsky, Nicolai; Smirnov, Aleksandre; ...

    2015-06-21

    The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design we performed three-dimensional numerical simulations using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagneticmore » simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4K, no current, (3) temperature 4K, current 60 kA direct charge, and (4) temperature 4K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4K, no current, and temperature 4K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Lastly, special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor material. Published by Elsevier B.V.« less

  8. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.

    2017-12-01

    Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.

  9. Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses.

    PubMed

    Ruiz, Arnaud; Sachidhanandam, Shankar; Utvik, Jo Kristian; Coussen, Françoise; Mulle, Christophe

    2005-12-14

    Heteromeric kainate receptors (KARs) containing both glutamate receptor 6 (GluR6) and KA2 subunits are involved in KAR-mediated EPSCs at mossy fiber synapses in CA3 pyramidal cells. We report that endogenous glutamate, by activating KARs, reversibly inhibits the slow Ca2+-activated K+ current I(sAHP) and increases neuronal excitability through a G-protein-coupled mechanism. Using KAR knockout mice, we show that KA2 is essential for the inhibition of I(sAHP) in CA3 pyramidal cells by low nanomolar concentrations of kainate, in addition to GluR6. In GluR6(-/-) mice, both ionotropic synaptic transmission and inhibition of I(sAHP) by endogenous glutamate released from mossy fibers was lost. In contrast, inhibition of I(sAHP) was absent in KA2(-/-) mice despite the preservation of KAR-mediated EPSCs. These data indicate that the metabotropic action of KARs did not rely on the activation of a KAR-mediated inward current. Biochemical analysis of knock-out mice revealed that KA2 was required for the interaction of KARs with Galpha(q/11)-proteins known to be involved in I(sAHP) modulation. Finally, the ionotropic and metabotropic actions of KARs at mossy fiber synapses were differentially sensitive to the competitive glutamate receptor ligands kainate (5 nM) and kynurenate (1 mM). We propose a model in which KARs could operate in two modes at mossy fiber synapses: through a direct ionotropic action of GluR6, and through an indirect G-protein-coupled mechanism requiring the binding of glutamate to KA2.

  10. Non-solenoidal Plasma Startup in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Sontag, Aaron

    2008-11-01

    Non-solenoidal (NS) startup will simplify the design of future tokamaks by eliminating need for a central solenoid and is required for an ST based CTF. In Pegasus, washer-stack current sources (plasma guns) are used to initiate NS discharges via point-source DC helicity injection. Current injected parallel to the helical vacuum field can relax into a tokamak-like configuration with toroidally-averaged closed flux and tokamak-like confinement. This requires no modification of the vacuum vessel and is scalable to fusion grade systems with proper geometry. Guns in the divertor region create discharges with Ip up to 50 kA, 3 times the vacuum windup. Nonlinear 3D simulation with NIMROD shows excitation of a line-tied kink, producing poloidal flux amplification. Evidence of flux amplification includes: reversal of edge poloidal magnetic flux; Ip increase over vacuum geometric windup; plasma position subject to radial force balance; and persistence of Ip after gun shut-off. Equilibria show high edge current (li = 0.2) and elevated q (qmin> 6), allowing access to high IN (IN> 12). Guns at the outboard midplane produce Ip up to 7 times the vacuum windup with large n=1 activity when edge q passes through rational surfaces. Line averaged density up to 2x10^19 m-3 after relaxation shows an increase in particle confinement over non-relaxed cases. Maximum Ip is determined by helicity and radial force balance, tokamak stability, and Taylor relaxation. Coupling midplane gun discharges to other CD is straightforward due to Ip decay times >3 ms. Poloidal field induction has been used to create NS discharges up to 80 kA and gun plasmas with Ip of 60 kA have been ramped to over 100 kA by including OH drive. Present research is aimed at understanding the physics of this technique in order to form NS targets in excess of 200 kA and design NS startup systems for larger devices.

  11. Flash water-window x-ray generator with a ferrite capillary

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sagae, Michiaki; Ichimaru, Toshio; Takayama, Kazuyoshi; Sakamaki, Kimio; Tamakawa, Yoshiharu

    1997-12-01

    The fundamental study on a flash water-window x-ray generator is described. This generator is composed of a high-voltage power supply, a polarity-inversion high-voltage pulser, a krytron pulser as a trigger device, an oil-diffusion pump, and a vacuum chamber with a capillary. A combined ceramic condenser of about 5 nF in the pulser is charged up to 70 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing a gap switch by the krytron pulser. In the present work, the chamber is evacuated by the pump with a pressure of about 1 by 10-3 Pa, and the titanium anode and cathode electrodes are employed to produce L-series characteristic x rays in the water-window range. The diameter and the length of the ferrite capillary are 2.0 and 30 mm, respectively. Both the cathode voltage and the discharge current displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were minus 24 kV and 2.8 kA, respectively. The pulse durations of the water-window x-rays were nearly equivalent to those of the damped oscillations of the voltage and current, and their values were less than 10 microseconds.

  12. Intrinsic Flow and Momentum Transport during Improved Confinement in MST

    NASA Astrophysics Data System (ADS)

    Craig, D.; Tan, E.; Schott, B.; Anderson, J. K.; Boguski, J.; Nornberg, M. D.; Xing, Z. A.

    2017-10-01

    Progress in absolute wavelength calibration of the Charge Exchange Recombination Spectroscopy (CHERS) system on MST has enabled new observations and analysis of intrinsic flow and momentum transport. Localized toroidal and poloidal flow measurements with systematic accuracy of +/- 3 km/s have been obtained during improved confinement Pulsed Parallel Current Drive (PPCD) plasmas at high plasma current (400-500 kA). The magnetic activity prior to and during the transition to improved confinement tends to increase the flow and sets the initial condition for the momentum profile evolution during improved confinement where intrinsic flow drive appears to weaken. Inboard flows change in time during PPCD, consistent with changes in the core-resonant m =1, n =6 tearing mode phase velocity. Outboard flows near the magnetic axis are time-independent, resulting in the development of a strongly sheared toroidal flow in the core and asymmetry in the poloidal flow profile. The deceleration of the n =6 mode during the period of improved confinement correlates well with the n =6 mode amplitude and is roughly consistent with the expected torque from eddy currents in the conducting shell. The level of Dα emission and secondary mode amplitudes (n =7-10) do not correlate with the mode deceleration suggesting that the momentum loss from charge exchange with neutrals and diffusion due to residual magnetic stochasticity are not significant in PPCD. This work has been supported by the U.S.D.O.E.

  13. Long-delayed bright dancing sprite with large Horizontal displacement from its parent flash

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Lu, Gaopeng; Lee, Li-Jou; Feng, Guili

    2015-07-01

    We reported in this paper the observation of a very bright long-delayed dancing sprite with distinct horizontal displacement from its parent stroke. The dancing sprite lasted only 60 ms, and the morphology consisted of three fields with two slim dim sprite elements in the first two fields and a very bright large element in the third field, different from other observations where the dancing sprites usually contained multiple elements over a longer time interval, and the sprite shape and brightness in the video field are often similar to the previous fields. The bright sprite was displaced at least 38 km from its parent cloud-to-ground (CG) stroke and occurred over comparatively higher cloud top region. The parent flash of this compact dancing sprite was of positive polarity, with only one return stroke (approximately +24 kA) and obvious continuing current process, and the charge moment change of stroke was small (barely above the threshold for sprite production). All the sprite elements occurred during the continuing current stage, and the bright long-delayed sprite element induced a considerable current pulse. The dancing feature of this sprite may be linked to the electrical charge structure, dynamics and microphysics of parent storm, and the inferred development of parent CG flash was consistent with previous very high-frequency (VHF) observations of lightning in the same region.

  14. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    NASA Astrophysics Data System (ADS)

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-03-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change.

  15. Substituent Effects on the Coordination Chemistry of Metal-Binding Pharmacophores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Whitney R.; Baker, Tessa W.; Marts, Amy R.

    2017-09-12

    A combination of XAS, UV–vis, NMR, and EPR was used to examine the binding of a series of α-hydroxythiones to CoCA. All three appear to bind preferentially in their neutral, protonated forms. Two of the three clearly bind in a monodentate fashion, through the thione sulfur alone. Thiomaltol (TM) appears to show some orientational preference, on the basis of the NMR, while it appears that thiopyromeconic acid (TPMA) retains rotational freedom. In contrast, allothiomaltol (ATM), after initially binding in its neutral form, presumably through the thione sulfur, forms a final complex that is five-coordinate via bidentate coordination of ATM. Onmore » the basis of optical titrations, we speculate that this may be due to the lower initial pKa of ATM (8.3) relative to those of TM (9.0) and TPMA (9.5). Binding through the thione is shown to reduce the hydroxyl pKa by ~0.7 pH unit on metal binding, bringing only ATM’s pKa close to the pH of the experiment, facilitating deprotonation and subsequent coordination of the hydroxyl. The data predict the presence of a solvent-exchangeable proton on TM and TPMA, and Q-band 2-pulse ESEEM experiments on CoCA + TM suggest that the proton is present. ESE-detected EPR also showed a surprising frequency dependence, giving only a subset of the expected resonances at X-band.« less

  16. Short-lived eruptive episodes during the construction of a Na-alkalic basaltic field (Perşani Mountains, SE Transylvania, Romania)

    NASA Astrophysics Data System (ADS)

    Seghedi, Ioan; Popa, Răzvan-Gabriel; Panaiotu, Cristian G.; Szakács, Alexandru; Pécskay, Zoltán

    2016-10-01

    The Perşani Mts. basaltic field covers >176 km2 (~22 × 8 km) and is one of the youngest and biggest monogenetic volcanic fields in Southeastern Europe. It consists of 21 monogenetic volcanic centers, most of which were built on a basement of Miocene rhyolitic tuffs and Mesozoic sedimentary rocks. 40Ar/39Ar dating shows that the eruptions took place in five episodes: 1220, 1142, 1060, 800, and 683 ka. An additional undated episode at 1060-800 ka has been identified using volcanological observations. Initial phreatomagmatic activity was commonly followed by explosive Strombolian/Hawaiian phases that deposited agglutinated spatter around the vents along with massive-to-bedded unconsolidated scoria and lapilli. Some volcanoes lack evidence for magmatic explosive activity, while others lack evidence for the initial phreatomagmatic phase. During most eruptions, the final activity was the effusion of lava flows that in some cases deformed (or partially destroyed) the volcanic edifices. The erupted volumes varied greatly from one episode to other, without showing any pattern: the highest volumes are recorded in deposits from the third pulse (1060 ka). The volcanoes are located close to faults and always on their footwall blocks, and it is inferred that the regional tectonic stress regime controlled both the timing and spacing of volcanic activity in the volcanic field.

  17. Performance Study of Earth Networks Total Lightning Network using Rocket-Triggered Lightning Data in 2014

    NASA Astrophysics Data System (ADS)

    Heckman, S.

    2015-12-01

    Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.

  18. Final report on COOMET.EM-S11: Supplementary bilateral comparison of the measurement of current transformers between UNIIM and PTB

    NASA Astrophysics Data System (ADS)

    Mohns, Enrico; Sychev, Y.; Roeissle, G.

    2014-01-01

    A bilateral comparison of the measurement of current transformers was carried out between UNIIM (Russia) and PTB (Germany). For all of the current ratio error measurements and the phase displacement measurements there is a close agreement between PTB and UNIIM. Extensive measurements with the travelling standards were carried out at 18 different current ratios and at 5 different test points (1%, 5%, 20%, 100% and 120%) each. The range of tested primary currents was from 10 mA to 60 kA. It can therefore be concluded that the results of each laboratory agree very well within the calculated measurement uncertainties. No outliers were observed. Considering especially the En factors, the calculated uncertainties seem to be too conservative to some extent. Here there is the possibility to slightly improve the uncertainty budgets in the future if there is a need. The worst En factors are within ±0.6 at 1 kA/5 A and ±0.8 at 3 kA. The current comparator 'IW 32' from PTB may have caused that. This was subsequently confirmed. The primary current induced a small voltage in the compensation winding. This problem has now been solved. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    PubMed

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  20. The last glacial inception in continental northwestern Europe: characterization and timing of the Late Eemian Aridity Pulse (LEAP) recorded in multiple Belgian speleothems.

    NASA Astrophysics Data System (ADS)

    Vansteenberge, Stef; Verheyden, Sophie; Quinif, Yves; Genty, Dominique; Blamart, Dominique; Deprez, Maxim; Van Stappen, Jeroen; Cnudde, Veerle; Cheng, Hai; Edwards, R. Lawrence; Claeys, Philippe

    2017-04-01

    Interglacial-glacial transitions represent important turnovers in the climate system. In contrast with glacial terminations, they are described as a more gradual cooling. So far, the last interglacial has yielded a wealth of knowledge regarding climate dynamics during past warm periods. On top of the assumed gradual temperature drop starting at 119 ka, evidence for the presence of a drastic drying/cooling event in northern Europe has been observed. In lake records from Germany, a distinct shift in pollen assembly at 117.5 ka is interpreted as the consequence of a short dry event lasting 470 years, defined as the Late Eemian Aridity Pulse (LEAP, Sirocko et al., 2005). In a Belgian stalagmite from Han-sur-Lesse Cave, the LEAP is characterized by a 5‰ increase in δ13C occurring in just 200 years. The δ13C enrichment is dated at 117.5 ka and associated with a vegetation change above the cave, induced by a drying and/or cooling event (Vansteenberge et al., 2016). Also, within North Atlantic sediment cores, an increase in ice rafted debris was linked to the occurrence of a colder period at 117 ka (Irvali et al., 2016). Its coevality with the LEAP indicates a likely more regional extent than previously thought. Up to now, no independent chronology exists and little is known about the continental climatic expression of the LEAP. This study aims at 1) constructing an improved and independent chronology for the LEAP event, 2) characterizing this event in terms of its climatic expression and 3) placing the LEAP within the context of an interglacial-glacial transition. For this, two additional speleothems (Han-8, RSM-17) from two different Belgian caves (Han-sur-Lesse, Remouchamps) are added to the existing Han-9 dataset. Exceptionally high growth rates (0.5 mm yr-1) and a presumed annual layering of the RSM-17 sample enable an annual to decadal resolution to investigate the LEAP. U-Th age models covering the glacial inception are constructed with 25 dates on the three speleothems. All samples are investigated through a multiproxy approach consisting of growth rate, stable isotopes (δ13C and δ18O) and trace elements (Mg, Sr, Ba, Zn, Pb, U). Furthermore, µCT scans with a resolution down to 10µm characterize pronounced changes in speleothem morphology. First results show the presence of similar δ13C excursions in the two newly analyzed speleothems. The plenitude of U-Th dates now confirms the timing of the LEAP at 117.5 ka, as determined from Han-9 but significantly reduce the age error to 0.4 ka. Also, the various proxies demonstrate that pre-LEAP climate conditions were not reestablished after the event, indicating that, at least in Belgium, the LEAP may have had a more severe impact than previously thought. This study shows that events such as the LEAP are an important feature within the gradual cooling occurring during glacial inceptions, and they contribute to a better understanding of the dynamics of an interglacial-glacial transition. References: Irvali, N., et al., 2016, Quaternary Science Reviews, 150, 184-199. Sirocko, F., et al., 2005, Nature, 436, 833-836. Vansteenberge, S., et al., 2016, Climate of the Past., 12, 1445-1458.

  1. High-power, high-brightness pseudospark-produced electron beam driven by improved pulse line accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junbino Zhu; Mingchang Wang; Zhijiang Wang

    1995-12-31

    A high power (200KV), intense current density, low emittance (71mmmrad), high brightness (8x10{sup 10}A/m rad) electron beam was generated in the 10cm long, high-voltage-resistive multi-gap hollow cathode pseudospark chamber filled with 15pa nitrogen and driven by an improved pulse line accelerator. The beam was ejected with the 1mm diameter, the 2.2KA beam current, and the 400ns pulse length, and could propagated 20cm in the drift tube. At a distance of 5cm from the anode it penetrated consecutively an acid-sensitive discoloring film and a 0.05mm-thick copper foil both stuck closely, left 0.6mm and 0.3mm holes on them, respectively. That 10 shotsmore » on an acid-sensitive film produced a hole of 1.6mm at 7cm downstream of anode showed its good repeatability. After 60 shots the pseudospark discharge chamber was disassembled and observed that almost no destructive damage traces left on the surfaces of its various electrodes and insulators. But on almost all the surfaces of changeable central hole parts installed on intermediate electrodes there are traces of electron emission from the sides facing the anode and of bombardment on the sides facing the cathode, in contrast with which on the front- and back-surfaces of hollow cathode no visible traces of electron emission from then was observed. In addition, there were different tints, strip-like regions on the side of anode facing the cathode. Another interesting phenomenon was that there were a set of concentric circular or elliptical ring pattern on the acid-sensitive discoloring film got at 5cm from the anode and observed tinder a metallograph. It seems that the pseudospark electron beam is Laminar beam i.e, being possessed of a multi-layer structure, at least in the case of multi-gap pseudospark discharge chamber. It was found experimentally that the quality of pseudospark electron beam is much better than that of the cold-cathode electron beam.« less

  2. Very low protein diets supplemented with keto-analogues in ESRD predialysis patients and its effect on vascular stiffness and AVF Maturation.

    PubMed

    David, Cristiana; Peride, Ileana; Niculae, Andrei; Constantin, Alexandra Maria; Checherita, Ionel Alexandru

    2016-09-20

    Native arteriovenous fistula (AVF) is the most appropriate type of vascular access for chronic dialysis. Its patency rates depend on vascular wall characteristics. Ketoacid analogues of essential amino acids (KA/EAA) are prescribed in end-stage renal disease (ESRD) pre-dialysis patients to lower toxic metabolic products generation and improve nutritional status. We hypothesized that very-low protein diet (VLPD) supplemented with KA/EAA may influence arterial wall stiffness and affect AVF maturation rates and duration in pre-dialysis ESRD patients. In a prospective, cohort, 3 years study we enrolled 67 consecutive non-diabetic early referral ESRD patients that underwent AVF creation in our hospital. Patients were divided in two groups based on their regimen 12 months prior to surgery: a VLPD supplemented with KA/EAA study group versus a low protein diet non-KA/EAA-supplemented control group. For each patient we performed serum analysis for the parameters of bone mineral disease, inflammation and nutritional status, one pulse wave velocity (PWV) measurement and one Doppler ultrasound (US) determination prior the surgery, followed by consequent Doppler US assessments at 4, 6, 8 and 12 weeks after it. Rates and duration of mature AVF achievement were noted. We used logistic regression to analyze the association between AVF maturation and KA/EAA administration, by comparing rates and durations between groups, unadjusted and adjusted for systolic blood pressure, C-reactive protein, PWV, phosphorus values. All parameters in the logistic model were transformed in binary variables. A p-value < α = 0.05 was considered significant; data were processed using SPSS 16 software and Excel. In the study group (n = 28, aged 57 ± 12.35, 13 females) we registered better serum phosphate (p = 0.022) and C-reactive protein control (p = 0.021), lower PWV (p = 0.007) and a higher percent of AVF creation success (33.3 % versus 17.8 %, p < 0.05). AVF maturation duration was lower in study group (5.91 versus 7.15 weeks, p < 0.001). VLPD supplemented with KA/EAA appear to improve the native AVF primary outcome, decreasing the initial vascular stiffness, possible by preserving vascular wall quality in CKD patients through a better serum phosphate levels control and the limitation of inflammatory response.

  3. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    USGS Publications Warehouse

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate of island-wide isostatic subsidence, indicate that Mauna Loa is no longer growing vigorously or even maintaining its size above sea level.

  4. a KA-BAND Chirped-Pulse Fourier Transform Microwave Spectrometer.

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matthew T.; Pate, Brooks H.; Carroll, P. Brandon; Weaver, Susanna L. Widicus

    2010-06-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25-40 GHz will be discussed. A 10.5-3 GHz linear frequency sweep, generated by a 24 GS/s arbitrary waveform generator, is upconverted by a 23.00 GHz phase-locked oscillator, then fed into an active doubler to create a 25-40 GHz chirped pulse. After amplification with a 60-80 W pulsed traveling wave tube amplifier, the pulse is broadcast across a molecular beam chamber where it interacts with a molecular sample. The molecular FID signal is downconverted with the 23 GHz oscillator so that it can be digitized on a 50 GS/s oscilloscope with 16 GHz hardware bandwidth. The sensitivity and phase stability of this spectrometer is comparable to that of the previously reported 6.5-18.5 CP-FTMW spectrometer. On propyne (μ=0.78 D), a single-shot signal to noise ratio of approximately 200:1 is observed on the J=2-1 rotational transition at 34183 MHz when the full bandwidth is swept; optimal excitation is observed for this transition with a 250 MHz bandwidth sweep. The emission has a T_2 lifetime of 4 μs. Early results from this spectrometer, particularly in the study of species of astrochemical interest, will be presented. G.G. Brown et al., Rev. Sci. Instrum. 79 (2008) 053103.

  5. Performance and lifetime assessment of MPD arc thruster technology

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Mantenieks, Maris A.

    1988-01-01

    A summary of performance and lifetime characteristics of pulsed and steady-state magnetoplasmadynamic (MPD) thrusters is presented. The technical focus is on cargo vehicle propulsion for exploration-class missions to the Moon and Mars. Relatively high MPD thruster efficiencies of 0.43 and 0.69 have been reported at about 5000 s specific impulse using hydrogen and lithium, respectively. Efficiencies of 0.10 to 0.35 in the 1000 to 4500 s specific impulse range have been obtained with other propellants (e.g., Ar, NH3, N2). Thermal efficiency data in excess of 0.80 at MW power levels using pulsed thrusters indicate the potential of high MPD thruster performance. Extended tests of pulsed and steady-state MPD thrusters yield total impulses at least two to three orders of magnitude below that necessary for cargo vehicle propulsion. Performance tests and diagnostics for life-limiting mechanisms of megawatt-class thrusters will require high fidelity test stands which handle in excess of 10 kA and a vacuum facility whose operational pressure is less than 3 x 10 to the -4 torr.

  6. Flash x-ray generator having a liquid-anode diode

    NASA Astrophysics Data System (ADS)

    Oizumi, Teiji; Sato, Eiichi; Shikoda, Arimitsu; Sagae, Michiaki; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru; Ojima, Hidenori; Takayama, Kazuyoshi; Fujiwara, Akihiro; Mitoya, Kanji

    1995-05-01

    The constructions and the fundamental studies of a flash x-ray generator having a liquid-anode diode are described. This flash x-ray generator consisted of the following essential components: a high-voltage power supply, a high-voltage pulser, a thyratron pulser as a trigger device, an oil diffusion pump, and a flash x-ray tube. The main condenser was negatively charged from 50 to 70 kV by the power supply, and the electric charges in the condenser were discharged to the x-ray tube after closing a gap switch by using the thyratron pulser. The flash x- ray tube was of a diode type having a mercury anode and a ferrite cathode. The pressure of the tube was primarily determined by the steam pressure of mercury as a function of temperature. The maximum output voltage from the pulser was about -1 times the charged voltage. The maximum tube voltage and current were approximately 60 kV and 3 kA, respectively, with a charged voltage of -60 kV and a space between the anode and cathode electrodes (AC space) of 2.0 mm. The pulse widths of flash x rays were about 50 ns, and the x-ray intensity measured by a thermoluminescence dosimeter had a value of about 2.5 (mu) C/kg at 0.3 m per pulse with a charged voltage of -70 kV and an AC space of 1.0 mm.

  7. Pulsed x-ray generator for commercial gas lasers

    NASA Astrophysics Data System (ADS)

    Bollanti, S.; Bonfigli, F.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Murra, D.; Schina, G.; Zheng, C. E.

    2001-10-01

    We have designed and tested a 1-m-long x-ray diode based on innovative plasma cathodes, which exploit commercial spark plugs as electron emitters. Based on the results of a numerical study, we optimized both diode geometry (e.g., the angle between anode and cathode surfaces, the thickness of the Al window) and electrical circuitry (e.g., the capacitance in series to each spark plug, the peak voltage of the anode) of our x-ray generator. The overall result is a simple and efficient circuitry, giving a total diode current in excess of 2.1 kA with a breakdown voltage of 70 kV, which generates a 50 ns rise-time x-ray pulse with a spatially averaged dosage of up to 6×10-4 Gy when using a Pb-wrapped anode. The double-diode x-ray generator was operated for 1.5×106 shots at a repetition rate of up to 30 Hz, and the lifetime test was interrupted without any fault. During the lifetime test, it was not necessary to adjust any working parameter. At the end of the lifetime test, the x-ray emission uniformity was better than 80% along the longitudinal axis. This x-ray generator has a lifetime, reliability, and cost fitting the requirements of industrial users. Among the broad range of potential applications, this x-ray generator is particularly suitable to ionize discharge pumped gas lasers, like TEA CO2 and excimer lasers, including those operated by x-ray triggered discharges.

  8. A 10(9) neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit.

    PubMed

    Niranjan, Ram; Rout, R K; Srivastava, R; Kaushik, T C; Gupta, Satish C

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 10(8) neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.

  9. Atomic Processes in a Plasma Opening Switch.

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Moschella, J. J.; Hazelton, R. C.; Yadlowsky, E. J.; Maron, Y.

    1998-11-01

    Detailed measurements of carbon emission have been carried out in a Plasma Opening Switch (POS) with a planar geometry, in order to characterize the plasma conditions and the ionization process in the POS. Emission from various transitions of C^circ to C^3+ has been measured as a function of time from several viewing chords. For these experiments, the POS was operated with a shorted load at 130kA and with a ~700ns conduction time. A single-chord, heterodyne interferometer measured the electron density evolution along a chord coincident with one of the spectroscopic views. The passage of the ionization front across the line of sight is witnessed by both diagnostics. The data are interpreted by analyzing the time-dependent atomic processes. The measured ne rises from 1.5×10^15 to 3×10^15cm-3 as the current crosses the view. An initial electron temperature in the 1.3-2 eV range is obtained from the ratio of the C II 4267 Åand 6578 Ålines. The time dependent line emission of the various charge states shows that Te rises to a few tens of eV at the peak current. The charge state distribution during the pulse will be discussed.

  10. LETTER: ECH pre-ionization and assisted startup in the fully superconducting KSTAR tokamak using second harmonic

    NASA Astrophysics Data System (ADS)

    Bae, Y. S.; Jeong, J. H.; Park, S. I.; Joung, M.; Kim, J. H.; Hahn, S. H.; Yoon, S. W.; Yang, H. L.; Kim, W. C.; Oh, Y. K.; England, A. C.; Namkung, W.; Cho, M. H.; Jackson, G. L.; Bak, J. S.; KSTAR Team

    2009-02-01

    This letter reports on the successful demonstration of the second harmonic electron cyclotron heating (ECH)-assisted startup in the first plasma experiments recently completed in the fully superconducting Korea Superconducting Tokamak Advanced Research (KSTAR) device whose major and minor radii are 1.8 m and 0.5 m, respectively. For the second harmonic ECH-assisted startup, an 84 GHz EC wave at 0.35 MW was launched before the onset of the toroidal electric field of the Ohmic system. And it was observed that this was sufficient to achieve breakdown in the ECH pre-ionization phase, allow burn-through and sustain the plasma during the current ramp with a low loop voltage of 2.0 V and a corresponding toroidal electric field of 0.24 V m-1at the innermost vacuum vessel wall (R = 1.3 m). This is a lower value than 0.3 Vm-1 which is the maximum electric field in ITER. Due to the limited volt-seconds and the loop voltage of the Ohmic power system, the extended pulse duration of the ECH power up to 180 ms allowed the plasma current to rise up to more than 100 kA with a ramp-up rate of 0.8 MA s-1.

  11. Modelling of the test of the JT-60SA HTS current leads

    NASA Astrophysics Data System (ADS)

    Zappatore, A.; Heller, R.; Savoldi, L.; Zanino, R.

    2017-07-01

    The CURLEAD code, which was developed at the Karlsruhe Institute of Technology (KIT), implements an integrated 1D transient model of a high temperature superconducting (HTS) current lead (CL) including the room termination (RT), the meander-flow type heat exchanger (HX), and the HTS module. CURLEAD was successfully used for the design of the 70 kA ITER demonstrator and of the W7-X and JT-60SA CLs. Recently the code was successfully applied to the prediction and analysis of steady state operation of the ITER correction coils (CC) HTS CL. Here the steady state and pulsed operation of the JT-60SA HTS CLs are analysed, which requires also the modelling of the HX shell and of the vacuum shell, which was not present in the ITER CC. The CURLEAD model extension is presented and the capability of the new version of CURLEAD to reproduce the transient experimental data of the JT-60SA HTS CL is shown. The results obtained provide a better understanding of key parameters of the CL, among which the temperature evolution at the HX-HTS interface, the GHe mass flow rate needed in the HX to achieve the target temperature at that location and the heat load at the cold end.

  12. Experimental results of 40-kA Nb[sub 3]Al cable-in-conduit conductor for fusion machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y.; Sugimoto, M.; Isono, T.

    1994-07-01

    A 40-kA Nb[sub 3]Al cable-in-conduit conductor has been developed for the toroidal field coils of fusion reactors, because Nb[sub 3]Al has excellent mechanical performance. This conductor consists of 405 copper-stabilized multifilamentary strands inserted into a CuNi case circular conduit. The Nb[sub 3]Al strands are fabricated by the Jelly-roll process with a diameter of 1.22 mm. This conductor could be operated up to a current of 46 kA at an external field of 11.2 T. Accordingly, Nb[sub 3]Al promises to soon become a useful superconductor for large-scale high-field applications, such as fusion machines.

  13. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  14. Holocene deglacial history of the northeast Antarctic Peninsula - A review and new chronological constraints

    NASA Astrophysics Data System (ADS)

    Johnson, Joanne S.; Bentley, Michael J.; Roberts, Stephen J.; Binnie, Steven A.; Freeman, Stewart P. H. T.

    2011-12-01

    The northeast Antarctic Peninsula (NEAP) region is currently showing signs of significant environmental change, evidenced by acceleration of glacial retreat and collapse of both Larsen-A and -B ice shelves within the past 15 years. However, data on the past extent of the eastern margin of the Antarctic Peninsula Ice Sheet (APIS) and its Holocene retreat history are sparse, and hence we cannot yet put the recent changes into a long-term context. In order to investigate the timing of deglaciation, we present 16 new cosmogenic 10Be surface exposure ages from sites on northern James Ross Island (Cape Lachman, Johnson Mesa and Terrapin Hill) and Seymour Island. The majority of the ages cluster around 6-10 ka, with three significantly older (25-31 ka). We combine these ages with existing terrestrial and marine radiocarbon deglaciation ages, and a compilation of existing swath bathymetry data, to quantify the temporal and spatial character of the regional glacial history. Ice had begun to retreat from the outer shelf by 18.3 ka, reaching Seymour Island by ˜8 ka. Northern James Ross Island began to deglaciate around the time of the Early Holocene Climatic Optimum (c. 11-9.5 ka). Deglaciation continued, and a transition from grounded to floating ice in Prince Gustav Channel occurred around 8 ka, separating the James Ross Island ice cap from the APIS. This occurred shortly before Prince Gustav Channel ice shelf began to disintegrate at 6.2 ka. Our results suggest there may be a bathymetric control on the spatial pattern of deglaciation in the NEAP.

  15. Diode magnetic-field influence on radiographic spot size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl A. Jr.

    2012-09-04

    Flash radiography of hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories. The Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos was developed for flash radiography of large hydrodynamic experiments. Two linear induction accelerators (LIAs) produce the bremsstrahlung radiographic source spots for orthogonal views of each experiment ('hydrotest'). The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. For time resolution of the hydrotest dynamics, the 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by slicing them out of a longer pulse that has a 1.6-{micro}s flattop. Bothmore » axes now routinely produce radiographic source spot sizes having full-width at half-maximum (FWHM) less than 1 mm. To further improve on the radiographic resolution, one must consider the major factors influencing the spot size: (1) Beam convergence at the final focus; (2) Beam emittance; (3) Beam canonical angular momentum; (4) Beam-motion blur; and (5) Beam-target interactions. Beam emittance growth and motion in the accelerators have been addressed by careful tuning. Defocusing by beam-target interactions has been minimized through tuning of the final focus solenoid for optimum convergence and other means. Finally, the beam canonical angular momentum is minimized by using a 'shielded source' of electrons. An ideal shielded source creates the beam in a region where the axial magnetic field is zero, thus the canonical momentum zero, since the beam is born with no mechanical angular momentum. It then follows from Busch's conservation theorem that the canonical angular momentum is minimized at the target, at least in principal. In the DARHT accelerators, the axial magnetic field at the cathode is minmized by using a 'bucking coil' solenoid with reverse polarity to cancel out whatever solenoidal beam transport field exists there. This is imperfect in practice, because of radial variation of the total field across the cathode surface, solenoid misalignments, and long-term variability of solenoid fields for given currents. Therefore, it is useful to quantify the relative importance of canonical momentum in determining the focal spot, and to establish a systematic methodology for tuning the bucking coils for minimum spot size. That is the purpose of this article. Section II provides a theoretical foundation for understanding the relative importance of the canonical momentum. Section III describes the results of simulations used to quantify beam parameters, including the momentum, for each of the accelerators. Section IV compares the two accelerators, especially with respect to mis-tuned bucking coils. Finally, Section IV concludes with a methodology for optimizing the bucking coil settings.« less

  16. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors.

    PubMed

    Jiang, L; Kang, D; Kang, J

    2015-07-09

    Presynaptic kainate-type glutamate ionotropic receptors (KARs) that mediate either the depression or the facilitation of GABA release have been intensively studied. Little attention has been given to the modulation of GABAA receptors (GABAARs) by postsynaptic KARs. Recent studies suggest that two GABAAR populations, synaptic (sGABAAR) and extrasynaptic (eGABAAR) GABAARs, mediate phasic and tonic forms of inhibition, respectively. Tonic inhibition plays an important role in the excitability of neuronal circuits and the occurrence of epileptic seizures. For this study, we are the first to report that the activation of postsynaptic KARs by the KAR agonist, Kainic acid (KA, 5 μM), enhanced tonic inhibition by potentiating eGABAARs. KA enhanced THIP-induced eGABAAR currents and prolonged the rise and decay time of muscimol-induced sGABAAR/eGABAAR currents, but also depressed the amplitude of evoked inhibitory postsynaptic currents (IPSCs), unitary IPSCs (uIPSCs), and muscimol-induced sGABAAR/eGABAAR currents. The PKC inhibitor, staurosporine (1 μM), in the patch pipette solution fully blocked the KA-induced potentiation of tonic inhibition, suggesting the involvement of an intracellular PKC pathway. Our study suggests that the activation of postsynaptic KARs potentiates eGABAARs but depresses sGABAARs. By activating postsynaptic KARs, synaptically released glutamate depresses phasic inhibition to facilitate neuronal plasticity, but potentiates tonic inhibition to protect neurons from over-excitation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, Michael G.; Kiefer, Mark L.; Leckbee, Joshua J.

    This paper describes our effort to measure the back-streaming ions emitted from the target x-ray convertor and thus estimate the ion contribution to the A-K gap bipolar current flow. Knowing the ion contribution is quite important in order to calculate the expected x-ray dose and compare it with the actual measurements. Our plans were first to measure the total ion current using B-dot monitors, Rogowski coils, and Faraday cups and then to utilize filtered Faraday cups and time of flight techniques to identify and measure the various ionic species. The kinetic energy (velocities) of the ions should help evaluate themore » actual voltage applied at the anode-cathode (A-K) gap. LSP simulations found that the most prominent ions are protons and carbon single plus (C+). For an 8-MV A-K voltage, the estimated proton current back-streaming through an 1 cm in diameter hollow cathode tip was on the average 3 kA and the carbon current 0.7 kA. Since only a small fraction of the ions will make it through the cylindrical aperture, the corresponding total currents were calculated to be respectively 25kA for proton and 7 kA for carbon ions, a quite substantial contribution to the total bipolar beam current. Hence, approximately only 10% of the total back-streaming ionic currents could make it through the hollow cathode tip aperture. Unfortunately the diagnostic cables connecting the Faraday cup and the B-dot monitors to the screen room scopes experienced a large amount of charge pick-up that obliterated our effort to directly measure those relatively small currents. However, we succeeded in measuring those currents indirectly with activation techniques [Contribution of the back-streaming ions to the self-magnetic pinch (SMP) diode Current., M. G. Mazarakis, M. G. Mazarakis, M. E. Cuneo, S. D. Fournier, M. D. Johnston, M. L. Kiefer, J. J. Leckbee, D. S. Nielsen, B.V.Oliver, M. E. Sceiford, S. C. Simpson, T. J. Renk, C. L. Ruiz, T. J. Webb, and D. Ziska. Subitted for publication.]. In the following sections we present some typical cable pick-up results and also our efforts to verify that the observed “current” scope traces were indeed not ion currents but instead cable charge pic-up. Interestingly enough we also discovered that the appearance of those “currents” are in synchronism with the A-K gap impedance variation (decrease) and the MITL sheath current re-trapping. Hence those B-dots or Faraday cups could be utilized as diode behavior diagnostics.« less

  18. Generation of extreme state of water by spherical wire array underwater electrical explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, O.; Gilburd, L.; Efimov, S.

    2012-10-15

    The results of the first experiments on the underwater electrical explosion of a spherical wire array generating a converging strong shock wave are reported. Using a moderate pulse power generator with a stored energy of {<=}6 kJ and discharge current of {<=}500 kA with a rise-time of {approx}300 ns, explosions of Cu and Al wire arrays of different diameters and with a different number and diameter of wires were tested. Electrical, optical, and destruction diagnostics were used to determine the energy deposited into the array, the time-of-flight of the shock wave to the origin of the implosion, and the parametersmore » of water at that location. The experimental and numerical simulation results indicate that the convergence of the shock wave leads to the formation of an extreme state of water in the vicinity of the implosion origin that is characterized by pressure, temperature, and compression factors of (2 {+-} 0.2) Multiplication-Sign 10{sup 12} Pa, 8 {+-} 0.5 eV, and 7 {+-} 0.5, respectively.« less

  19. Characterization of a medium-sized washer-gun for an axisymmetric mirror

    NASA Astrophysics Data System (ADS)

    Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan

    2018-04-01

    A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.

  20. The Spherical Tokamak MEDUSA for Mexico

    NASA Astrophysics Data System (ADS)

    Ribeiro, C.; Salvador, M.; Gonzalez, J.; Munoz, O.; Tapia, A.; Arredondo, V.; Chavez, R.; Nieto, A.; Gonzalez, J.; Garza, A.; Estrada, I.; Jasso, E.; Acosta, C.; Briones, C.; Cavazos, G.; Martinez, J.; Morones, J.; Almaguer, J.; Fonck, R.

    2011-10-01

    The former spherical tokamak MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14m, a < 0.10m, BT < 0.5T, Ip < 40kA, 3ms pulse) is currently being recomissioned at the Universidad Autónoma de Nuevo León, Mexico, as part of an agreement between the Faculties of Mech.-Elect. Eng. and Phy. Sci.-Maths. The main objective for having MEDUSA is to train students in plasma physics & technical related issues, aiming a full design of a medium size device (e.g. Tokamak-T). Details of technical modifications and a preliminary scientific programme will be presented. MEDUSA-MX will also benefit any developments in the existing Mexican Fusion Network. Strong liaison within national and international plasma physics communities is expected. New activities on plasma & engineering modeling are expected to be developed in parallel by using the existing facilities such as a multi-platform computer (Silicon Graphics Altix XE250, 128G RAM, 3.7TB HD, 2.7GHz, quad-core processor), ancillary graph system (NVIDIA Quadro FE 2000/1GB GDDR-5 PCI X16 128, 3.2GHz), and COMSOL Multiphysics-Solid Works programs.

  1. Characterization of a medium-sized washer-gun for an axisymmetric mirror.

    PubMed

    Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan

    2018-04-01

    A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.

  2. Back-streaming ion emission and beam focusing on high power linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Chen, Nan; Yu, Haijun; Jiang, Xiaoguo; Wang, Yuan; Dai, Wenhua; Gao, Feng; Wang, Minhong; Li, Jin; Shi, Jinshui

    2011-08-01

    Ions released from target surfaces by impact of a high intensity and current electron beam can be accelerated and trapped in the beam potential, and further destroy the beam focus. By solving the 2D Poisson equation, we found that the charge neutralization factor of the ions to the beam under space charge limited condition is 1/3, which is large enough to disrupt the spot size. Therefore, the ion emission at the target in a single-pulse beam/target system must be source limited. Experimental results on the time-resolved beam profile measurement have also proven that. A new focus scheme is proposed in this paper to focus the beam to a small spot size with the existence of back-streaming ions. We found that the focal spot will move upstream as the charge neutralization factor increases. By comparing the theoretical and experimental focal length of the Dragon-I accelerator (20 MeV, 2.5 kA, 60 ns flattop), we found that the average neutralization factor is about 5% in the beam/target system.

  3. Soft X-ray Spectrometer for Characterization of Electron Beam Driven WDM

    NASA Astrophysics Data System (ADS)

    Ramey, Nicholas; Coleman, Joshua; Perry, John

    2017-10-01

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated by an intense, relativistic electron beam interacting with a thin, low-Z metal foil. A 100-ns-long electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into the thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. A proof-of-principle Bragg-type spectrometer has been built to measure the Ti K- α and K- β lines. The goal of the spectrometer is to measure the temperature and density of this warm dense plasma for the first time with this heating technique. This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  4. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less

  5. Mars Reconnaissance Orbiter Ka-band (32 GHz) Demonstration: Cruise Phase Operations

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Morabito, David; Border, James S.; Davarian, Faramaz; Lee, Dennis; Mendoza, Ricardo; Britcliffe, Michael; Weinreb, Sander

    2006-01-01

    The X-band (8.41 GHz) frequency currently used for deep space telecommunications is too narrow (50 MHz) to support future high rate missions. Because of this NASA has decided to transition to Ka-band (32 GHz) frequencies. As weather effects cause much larger fluctuations on Ka-band than on X-band, the traditional method of using a few dBs of margin to cover these fluctuations is wasteful of power for Ka-band; therefore, a different operations concept is needed for Ka-band links. As part of the development of the operations concept for Ka-band, NASA has implemented a fully functioning Ka-band communications suite on its Mars Reconnaissance Orbiter (MRO). This suite will be used during the primary science phase to develop and refine the Ka-band operations concept for deep space missions. In order to test the functional readiness of the spacecraft and the Deep Space Network's (DSN) readiness to support the demonstration activities a series of passes over DSN 34-m Beam Waveguide (BWG) antennas were scheduled during the cruise phase of the mission. MRO was launched on August 12, 2005 from Kennedy Space Center, Cape Canaveral, Florida, USA and went into Mars Orbit on March 10, 2006. A total of ten telemetry demonstration and one high gain antenna (HGA) calibration passes were allocated to the Ka-band demonstration. Furthermore, a number of "shadow" passes were also scheduled where, during a regular MRO track over a Ka-band capable antenna, Ka-band was identically configured as the X-band and tracked by the station. In addition, nine Ka-band delta differential one way ranging ((delta)DOR) passes were scheduled. During these passes, the spacecraft and the ground system were put through their respective paces. Among the highlights of these was setting a single day record for data return from a deep space spacecraft (133 Gbits) achieved during one 10-hour pass; achieving the highest data rate ever from a planetary mission (6 Mbps) and successfully demonstrating Ka-band DDOR. In addition, DSN performed well. However, there are concerns with the active pointing of the Ka-band antennas as well as delivery of the monitor data from the stations. The spacecraft also presented challenges not normally associated with planetary missions mostly because of its very high equivalent isotropic radiated power (EIRP). This caused problems in accurately evaluating the in-flight EIRP of the spacecraft which led to difficulties evaluating the quality of the HGA calibration data. These led to the development of additional measurement techniques that could be used for future high-power deep space missions.

  6. A two-stage series diode for intense large-area moderate pulsed X rays production.

    PubMed

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang

    2017-01-01

    This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm 2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.

  7. Experiments Using Local Helicity Injectors in the Lower Divertor Region as the Majority Current Drive in a Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Perry, Justin M.

    Local helicity injection (LHI) is a non-solenoidal current drive capable of achieving high-Ip tokamak startup with a relatively compact and non-invasive array of current injectors in the plasma scrape-off layer. The choice of injector location within the edge region is flexible, but has a profound influence on the nature of the current drive in LHI discharges. Past experiments on the Pegasus ST with injection on the low-field-side near the outboard midplane produced plasmas dominated by inductive drive resulting primarily from plasma geometry evolution over the discharge. Recent experiments with injection on the high-field- side in the lower divertor region produce plasmas dominated by helicity injection current drive, with relatively static plasma geometry, and thus negligible inductive drive. Plasma current up to 200 kA is driven with helicity injection as the dominant current drive using a pair of 4 cm2 area injectors sourcing 8 kA of total injected current. Steady sustainment with LHI current drive alone is demonstrated, with 100 kA sustained for 18 ms. Maximum achievable plasma current is found to scale approximately linearly with a plasma-geometry- normalized form of the effective loop voltage from LHI, Vnorm = AinjVinj/Rinj, where A inj is the total injector area, Vinj is the injector bias voltage, and Rinj is the major radius of the injectors. A newly-discovered MHD regime for LHI-driven plasmas is described, in which the large-amplitude n = 1 fluctuations at 20-50 kHz which are generally dominant during LHI are abruptly reduced by an order of magnitude on the outboard side. High frequency fluctuations ( f > 400 kHz) increase inside the plasma edge at the same time. This regime results in improved plasma current and pervasive changes to plasma behavior, and may suggest short wavelength turbulence as a current drive mechanism during LHI.

  8. Application of pulsed field gradient NMR techniques for investigating binding of flavor compounds to macromolecules.

    PubMed

    Jung, Da-Mi; De Ropp, Jeffrey S; Ebeler, Susan E

    2002-07-17

    Two diffusion-based NMR techniques are presented and used to investigate the binding of selected flavor compounds to macromolecules. A pulsed field gradient NMR (PFG-NMR) method was applied to measure the apparent diffusion coefficients of four alkanone compounds as they associated with bovine serum albumin (BSA). The change in the apparent diffusion coefficient as a function of the BSA/alkanone ratio was fitted to yield binding constants (K(a)()) and binding stoichiometry (n) for each alkanone. The results showed that the apparent diffusion coefficients of alkanones increased with a decrease in the BSA/alkanone ratios, and the measured values of K(a)() and n were comparable with those obtained with other methods and depended on the alkanone structure. A diffusion-based nuclear Overhauser effect (called diffusion NOE pumping) method was also applied to screen mixtures of flavor compounds and identify those that have a binding affinity to complex macromolecules. Using this technique benzaldehyde and vanillin were observed to bind with bovine serum albumin, whereas 2-phenylethanol was identified as a nonbinding or weakly binding ligand with BSA. The diffusion NOE pumping method was also applied to a hydro alcoholic solution of cacao bean tannin extracts to which a mixture of ethylbenzoate, benzaldehyde, and 2-phenylethanol was added. The diffusion NOE pumping technique clearly indicated that ethylbenzoate had a stronger binding affinity to the polymeric (-)-epicatechin units of the cacao bean tannin extracts than the other two flavor compounds. The results successfully demonstrate the potential applications of diffusion-based NMR techniques for studying flavors and nonvolatile food matrix interactions.

  9. Electromagnetic earthquake triggering phenomena: State-of-the-art research and future developments

    NASA Astrophysics Data System (ADS)

    Zeigarnik, Vladimir; Novikov, Victor

    2014-05-01

    Developed in the 70s of the last century in Russia unique pulsed power systems based on solid propellant magneto-hydrodynamic (MHD) generators with an output of 10-500 MW and operation duration of 10 to 15 s were applied for an active electromagnetic monitoring of the Earth's crust to explore its deep structure, oil and gas electrical prospecting, and geophysical studies for earthquake prediction due to their high specific power parameters, portability, and a capability of operation under harsh climatic conditions. The most interesting and promising results were obtained during geophysical experiments at the test sites located at Pamir and Northern Tien Shan mountains, when after 1.5-2.5 kA electric current injection into the Earth crust through an 4 km-length emitting dipole the regional seismicity variations were observed (increase of number of weak earthquakes within a week). Laboratory experiments performed by different teams of the Institute of Physics of the Earth, Joint Institute for High Temperatures, and Research Station of Russian Academy of Sciences on observation of acoustic emission behavior of stressed rock samples during their processing by electric pulses demonstrated similar patterns - a burst of acoustic emission (formation of cracks) after application of current pulse to the sample. Based on the field and laboratory studies it was supposed that a new kind of earthquake triggering - electromagnetic initiation of weak seismic events has been observed, which may be used for the man-made electromagnetic safe release of accumulated tectonic stresses and, consequently, for earthquake hazard mitigation. For verification of this hypothesis some additional field experiments were carried out at the Bishkek geodynamic proving ground with application of pulsed ERGU-600 facility, which provides 600 A electric current in the emitting dipole. An analysis of spatio-temporal redistribution of weak regional seismicity after ERGU-600 pulses, as well as a response of geoacoustic emission recorded in the wells at a distance of 7-12 km from the emitting dipole to the ERGU-600 pulses confirmed the effects of an influence of electromagnetic field on the deformation processes in the Earth crust and the real existence of electromagnetic triggering phenomena. For verification of results of field observations laboratory studies of behavior of rock samples under critical stress-strain state and external electric actions were carried out at the spring and lever presses, as well as at the stick-slip models simulated the seismic cycle (stress accumulation and discharge) in the seismogenic geological fault. Various possible mechanisms of weak electrical stimulation (electric current density 10-7-10-8 mA/cm2 at a depth of earthquake epicenters of 5 to10 km) of deformation processes in the Earth crust, including increased fluid pore pressure, electrokinetic phenomena, magnetostriction, electrical stimulation of fluid migration into the fault area are considered. However, the mechanism of electromagnetic earthquake triggering phenomena is still open. Based on the field observations of electromagnetic triggering of weak seismicity resulting in a partial safe release of stresses in the Earth crust a possibility of control of seismic process is considered for risk reduction of catastrophic earthquakes. The results obtained from field and laboratory experiments on electromagnetic initiation of seismic events allow to consider a problem of lithosphere-ionosphere relations from another point of view. Keeping in mind that the current density generated in the Earth crust by artificial electric source is comparable with the density of telluric currents induced during severe ionospheric disturbances (e.g., magnetic storms) it may be possible under certain favorable conditions in lithosphere to initiate earthquakes by electromagnetic disturbances in ionosphere. A possibility of application of these triggering phenomena for short-term earthquake prediction is discussed.

  10. Coherent changes in relative C4 plant productivity and climate during the late Quaternary in the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.; Tubbs, J.

    2008-01-01

    Evolution of the mixed and shortgrass prairie of the North American Great Plains is poorly understood because of limited proxies available for environmental interpretations. Buried soils in the Great Plains provide a solution to the problem because they are widespread both spatially and temporally with their organic reservoirs serving as a link to the plants than once grew on them. Through stable carbon isotopic analysis of soil organic carbon (??13C), the percent carbon from C4 plants (%C4) can be ascertained. Because C4 plants are primarily warm season grasses responding positively to summer temperature, their representation has the added advantage of serving as a climate indicator. To better understand grassland and climate dynamics in the Great Plains during the last 12 ka (ka=1000 radiocarbon years) we developed an isotopic standardization technique by: determining the difference in buried soil ??13C and modern soil ??13C expected for that latitude (????13C), and transferring the ????13C to ??%C4 (% C4) using mass balance calculations. Our analysis reveals two isotopic stages in the mixed and shortgrass prairie of the Great Plains based on trends in ??%C4. In response to orbital forcing mechanisms, ??%C4 was persistently below modern in the Great Plains between 12 and 6.7 ka (isotopic stage II) evidently because of the cooling effect of the Laurentide ice sheet and proglacial lakes in northern latitudes, and glacial meltwater pulses cooling the Gulf of Mexico and North Atlantic Ocean. The ??%C4 after 6.7 ka (isotopic stage I) increased to modern levels as conditioned by the outflow of warm, moist air from the Gulf of Mexico and dry incursions from the west that produced periodic drought. At the millennial-scale, time series analysis demonstrates that ??%C4 oscillated with 0.6 and 1.8 ka periodicities, possibly governed by variations in solar irradiance. Our buried soil isotopic record correlates well with other environmental proxy from the Great Plains and surrounding regions. ?? 2008 Elsevier Ltd.

  11. Development of 66 kV class REBCO superconducting cable

    NASA Astrophysics Data System (ADS)

    Ohya, M.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Ohkuma, T.

    Sumitomo Electric Industries (SEI) has been involved in the development of 66 kV/5 kA-class HTS cables using REBCO wires. One of the technical targets was to reduce the AC loss to less than 2 W/m/phase at 5 kA. SEI developed a clad-type textured metal substrate with lower magnetization loss than NiW substrates. REBCO wires of 30 mm wide were slit into 4 mm-wide strips, and these strips were wound spirally on a former with small gaps. The measured AC loss of the manufactured cable was 1.8 W/m/phase at 5 kA, achieving the AC loss goal. Another important target was to manage fault current. The copper protection layers were designed based on simulation findings. Fault current tests (max. 31.5 kA, 2 sec) showed that the designed HTS cable has the required withstanding performance. The development of the elemental technologies was finished on schedule, and a 15 m-long HTS cable system will be constructed to demonstrate that it meets all the required specifications.

  12. Saturation of subjective reward magnitude as a function of current and pulse frequency.

    PubMed

    Simmons, J M; Gallistel, C R

    1994-02-01

    In rats with electrodes in the medial forebrain bundle, the upper portion of the function relating the experienced magnitude of the reward to pulse frequency was determined at currents ranging from 100 to 1,000 microA. The pulse frequency required to produce an asymptotic level of reward was inversely proportional to current except at the lowest currents and highest pulse frequencies. At a given current, the subjective reward magnitude functions decelerated to an asymptote over an interval in which the pulse frequency doubled or tripled. The asymptotic level of reward was approximately constant for currents between 200 and 1,000 microA but declined substantially at currents at or below 100 microA and pulse frequencies at or above 250 to 400 pulses per second. The results are consistent with the hypothesis that the magnitude of the experienced reward depends only on the number of action potentials generated by the train of pulses in the bundle of reward-relevant axons.

  13. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaotong; Zhao, Meixun; Knudsen, Karen Luise; Sha, Longbin; Eiríksson, Jón; Gudmundsdóttir, Esther; Jiang, Hui; Guo, Zhigang

    2017-08-01

    Sea-ice conditions on the North Icelandic shelf constitute a key component for the study of the climatic gradients between the Arctic and the North Atlantic Oceans at the Polar Front between the cold East Icelandic Current delivering Polar surface water and the relatively warm Irminger Current derived from the North Atlantic Current. The variability of sea ice contributes to heat reduction (albedo) and gas exchange between the ocean and the atmosphere, and further affects the deep-water formation. However, lack of long-term and high-resolution sea-ice records in the region hinders the understanding of palaeoceanographic change mechanisms during the last glacial-interglacial cycle. Here, we present a sea-ice record back to 15 ka (cal. ka BP) based on the sea-ice biomarker IP25, phytoplankton biomarker brassicasterol and terrestrial biomarker long-chain n-alkanols in piston core MD99-2272 from the North Icelandic shelf. During the Bølling/Allerød (14.7-12.9 ka), the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence, as well as strong meltwater input in the area. This pattern showed an anti-phase relationship with the ice-free/less ice conditions in marginal areas of the eastern Nordic Seas, where the Atlantic Water inflow was strong, and contributed to an enhanced deep-water formation. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas (12.9-11.7 ka) interrupted by a brief interval of enhanced Irminger Current and deposition of the Vedde Ash, as opposed to abruptly increased sea-ice conditions in the eastern Nordic Seas. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Ice-free conditions and sea surface warming were observed for the Early Holocene, followed by expansion of sea ice during the Mid-Holocene.

  14. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U–Pb and 40Ar/39Ar age determinations

    USGS Publications Warehouse

    Wilson, Colin J. N.; Stelten, Mark; Lowenstern, Jacob B.

    2018-01-01

    The youngest major caldera-forming event at Yellowstone was the ~ 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the ~ 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U–Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, ~ 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (< ~ 3 km) for some of the tuffs and that the Yellowstone Caldera boundary in this area could be reconsidered.

  15. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U-Pb and 40Ar/39Ar age determinations

    NASA Astrophysics Data System (ADS)

    Wilson, Colin J. N.; Stelten, Mark E.; Lowenstern, Jacob B.

    2018-06-01

    The youngest major caldera-forming event at Yellowstone was the 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U-Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (< 3 km) for some of the tuffs and that the Yellowstone Caldera boundary in this area could be reconsidered.

  16. Comparison between Trichel pulse in negative corona and self-pulsing in other configurations

    NASA Astrophysics Data System (ADS)

    Xia, Qing; Zhang, Yu; He, Feng; Qin, Yu; Jiang, Zhaorui; Ouyang, Jiting

    2018-02-01

    We present here a comparison study on self-pulsing phenomena in negative corona, hollow cathode discharges (HCD) and parallel-plate discharge in air. The voltage-current (V-I) curve, the waveforms of self-pulsed currents, and the time-resolved images of the pulsed discharge are measured under various operating conditions. It is experimentally evidenced that the Trichel pulse in a negative corona and the self-pulsing in HCD and/or parallel-plate discharge have similar features as well as spatial-temporal developing process. It is suggested that they should have a similar mechanism that the pulsing reflects the mode transition of discharge between the low-current Townsend and the high-current normal glow. The pulse rising corresponds to the breakdown and formation of temporal glow discharge in a background of low-current Townsend discharge, while the decay edge relates to the transition back to Townsend discharge. The pulse interval is the re-building process of the space charge layer of high density to ensure the glow breakdown.

  17. Detection and Characterization of the Stannylene (SnH_{2} ) Radical in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Smith, Tony; Clouthier, Dennis

    2017-06-01

    The electronic spectrum of the jet-cooled SnH_{2} radical has been detected by LIF spectroscopy. The radical was produced in a pulsed electric discharge through a precursor mixture of SnH_{4} in argon. Each band in the LIF spectrum consists of a small number of rovibronic transitions to the lowest energy (K_{a} = 0, J = 0,1,2,3) rotational levels in the excited state. High resolution spectra of the ^{p}P_{1}(1) line of the 2^{2}_{0} band show 7 components whose relative intensities are characteristic of the tin major isotopic abundances. The emission spectra are also consistent with assigning the spectrum as due to SnH_{2}. The fluorescence lifetimes of the upper state rotational levels decrease with increasing J', indicative of a rotationally dependent predissociation process in the excited state, similar to that previously observed in SiH_{2} and GeH_{2}. Fluorescence hole burning experiments have located the upper state K_{a} = 2 levels which allow a determination of the molecular structure.

  18. Model Sensitivity to North Atlantic Freshwater Forcing at 8.2 Ka

    NASA Technical Reports Server (NTRS)

    Morrill, Carrie; Legrande, Allegra Nicole; Renssen, H.; Bakker, P.; Otto-Bliesner, B. L.

    2013-01-01

    We compared four simulations of the 8.2 ka event to assess climate model sensitivity and skill in responding to North Atlantic freshwater perturbations. All of the simulations used the same freshwater forcing, 2.5 Sv for one year, applied to either the Hudson Bay (northeastern Canada) or Labrador Sea (between Canada's Labrador coast and Greenland). This freshwater pulse induced a decadal-mean slowdown of 10-25%in the Atlantic Meridional Overturning Circulation (AMOC) of the models and caused a large-scale pattern of climate anomalies that matched proxy evidence for cooling in the Northern Hemisphere and a southward shift of the Intertropical Convergence Zone. The multi-model ensemble generated temperature anomalies that were just half as large as those from quantitative proxy reconstructions, however. Also, the duration of AMOC and climate anomalies in three of the simulations was only several decades, significantly shorter than the duration of approx.150 yr in the paleoclimate record. Possible reasons for these discrepancies include incorrect representation of the early Holocene climate and ocean state in the North Atlantic and uncertainties in the freshwater forcing estimates.

  19. The electro-thermal stability of tantalum relative to aluminum and titanium in cylindrical liner ablation experiments at 550 kA

    NASA Astrophysics Data System (ADS)

    Steiner, Adam M.; Campbell, Paul C.; Yager-Elorriaga, David A.; Cochrane, Kyle R.; Mattsson, Thomas R.; Jordan, Nicholas M.; McBride, Ryan D.; Lau, Y. Y.; Gilgenbach, Ronald M.

    2018-03-01

    Presented are the results from the liner ablation experiments conducted at 550 kA on the Michigan Accelerator for Inductive Z-Pinch Experiments. These experiments were performed to evaluate a hypothesis that the electrothermal instability (ETI) is responsible for the seeding of magnetohydrodynamic instabilities and that the cumulative growth of ETI is primarily dependent on the material-specific ratio of critical temperature to melting temperature. This ratio is lower in refractory metals (e.g., tantalum) than in non-refractory metals (e.g., aluminum or titanium). The experimental observations presented herein reveal that the plasma-vacuum interface is remarkably stable in tantalum liner ablations. This stability is particularly evident when contrasted with the observations from aluminum and titanium experiments. These results are important to various programs in pulsed-power-driven plasma physics that depend on liner implosion stability. Examples include the magnetized liner inertial fusion (MagLIF) program and the cylindrical dynamic material properties program at Sandia National Laboratories, where liner experiments are conducted on the 27-MA Z facility.

  20. A Storegga age turbidite at Eirik Drift, South Greenland: evidence for synchronous turbidite deposition at 8.2 ka BP in the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Watts, Millie; Taylor, Vicki; Talling, Peter; Hunt, James; Stanford, Jennifer

    2016-04-01

    Eirik Drift contains a high-resolution record of climatic and oceanic variability. In addition, it records several submarine landslides throughout the Holocene. Submarine landslides and associated tsunamis are potentially damaging, and have the potential to travel significant distances across the North Atlantic. Two cores taken from Eirik Drift (D298-P2) show an expanded Holocene section of hemipelagite and contain a fine grained turbidite dated to 8.17 ka BP (+/- 200 years). This event is coincident with both the 8.2 ka BP climatic anomaly, and the Storegga Slide. Paleoenvironmental proxies suggest this 8.2 ka BP turbidite was deposited during the coldest part of the 8.2 ka BP event, interpreted here as a longer duration cooling. This Holocene Storegga Slide triggered a major tsunami, evidence of which has been found across Northern European coastlines and the East Greenland coast. Here we show that the 8.2 ka BP turbidite has a different provenance both to other turbidites within the D298 core, and the main body of the Storegga Slide turbidite, and is unique within the Eirik Drift sequence. We interpret this event within the core as a distal deposit of a turbidite transported within the Western boundary Under Current, potentially related to a more northerly Greenland impact of the Storegga Tsunami. The fine-grained nature of the deposit suggests significant transport, supporting the hypothesis this event relates to a Greenland impact of the Storegga Tsunami.

  1. Preliminary Results from NASA/GSFC Ka-Band High Rate Demonstration for Near-Earth Communications

    NASA Technical Reports Server (NTRS)

    Wong, Yen; Gioannini, Bryan; Bundick, Steven N.; Miller, David T.

    2004-01-01

    In early 2000, the National Aeronautics and Space Administration (NASA) commenced the Ka-Band Transition Project (KaTP) as another step towards satisfying wideband communication requirements of the space research and earth exploration-satellite services. The KaTP team upgraded the ground segment portion of NASA's Space Network (SN) in order to enable high data rate space science and earth science services communications. The SN ground segment is located at the White Sands Complex (WSC) in New Mexico. NASA conducted the SN ground segment upgrades in conjunction with space segment upgrades implemented via the Tracking and Data Relay Satellite (TDRS)-HIJ project. The three new geostationary data relay satellites developed under the TDRS-HIJ project support the use of the inter-satellite service (ISS) allocation in the 25.25-27.5 GHz band (the 26 GHz band) to receive high speed data from low earth-orbiting customer spacecraft. The TDRS H spacecraft (designated TDRS-8) is currently operational at a 171 degrees west longitude. TDRS I and J spacecraft on-orbit testing has been completed. These spacecraft support 650 MHz-wide Ka-band telemetry links that are referred to as return links. The 650 MHz-wide Ka-band telemetry links have the capability to support data rates up to at least 1.2 Gbps. Therefore, the TDRS-HIJ spacecraft will significantly enhance the existing data rate elements of the NASA Space Network that operate at S-band and Ku-band.

  2. Evidence of resilience to past climate change in Southwest Asia: Early farming communities and the 9.2 and 8.2 ka events

    NASA Astrophysics Data System (ADS)

    Flohr, Pascal; Fleitmann, Dominik; Matthews, Roger; Matthews, Wendy; Black, Stuart

    2016-03-01

    Climate change is often cited as a major factor in social change. The so-called 8.2 ka event was one of the most pronounced and abrupt Holocene cold and arid events. The 9.2 ka event was similar, albeit of a smaller magnitude. Both events affected the Northern Hemisphere climate and caused cooling and aridification in Southwest Asia. Yet, the impacts of the 8.2 and 9.2 ka events on early farming communities in this region are not well understood. Current hypotheses for an effect of the 8.2 ka event vary from large-scale site abandonment and migration (including the Neolithisation of Europe) to continuation of occupation and local adaptation, while impacts of the 9.2 ka have not previously been systematically studied. In this paper, we present a thorough assessment of available, quality-checked radiocarbon (14C) dates for sites from Southwest Asia covering the time interval between 9500 and 7500 cal BP, which we interpret in combination with archaeological evidence. In this way, the synchronicity between changes observed in the archaeological record and the rapid climate events is tested. It is shown that there is no evidence for a simultaneous and widespread collapse, large-scale site abandonment, or migration at the time of the events. However, there are indications for local adaptation. We conclude that early farming communities were resilient to the abrupt, severe climate changes at 9250 and 8200 cal BP.

  3. 8.2 ky event associated with high precipitation in the eastern Caribbean

    NASA Astrophysics Data System (ADS)

    Winter, A.; Vieten, R.; Miller, T.; Mangini, A.; Scholz, D.

    2013-12-01

    We present data from speleothems collected in Venezuela and Puerto Rico showing that the eastern Caribbean was anomalously moist during the 8.2ka event. Evidence from high-resolution analyses of Greenland ice core (GISP2) shows that at the same time northern Europe and the north Atlantic were cooler by 3 - 6° C. The trigger for the 8.2ka event is thought to be pulsed meltwater discharges from a multi-event drainage of proglacial lakes associated with the decaying Laurentide Ice Sheet margin. The meltwater apparently slowed the thermohaline circulation decreasing warmth to northern Europe. At the same time moisture transfer to the northern latitudes may have slowed resulting in the observed lower latitude precipitation patterns. The eastern Caribbean seems to be especially sensitive to the changes in the strength of the Atlantic meridional overturning circulation (AMOC). Higher precipitation values may also have increased lowland flooding along the coastal areas of north eastern South America, already affected by early Holocene sea-level change, and are linked to social territory reshuffling which stimulated the earliest migrations into the Caribbean Archipelago shortly afterwards. Our age models based on precise MC-ICPMS 230Th/U-dating indicate that the eastern Caribbean stalagmites all grew at about the same rate of 15 cm through the 8.2 ka event, much faster than during any other growth period, except today when they are also growing at an accelerated rate.

  4. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    PubMed Central

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-01-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change. PMID:28303943

  5. Geology and 40Ar/39Ar geochronology of the medium- to high-K Tanaga volcanic cluster, western Aleutians

    USGS Publications Warehouse

    Jicha, Brian R.; Coombs, Michelle L.; Calvert, Andrew T.; Singer, Brad S.

    2012-01-01

    We used geologic mapping and geochemical data augmented by 40Ar/39Ar dating to establish an eruptive chronology for the Tanaga volcanic cluster in the western Aleutian arc. The Tanaga volcanic cluster is unique in comparison to other central and western Aleutian volcanoes in that it consists of three closely spaced, active, volumetrically significant edifices (Sajaka, Tanaga, and Takawangha), the eruptive products of which have unusually high K2O contents. Thirty-five new 40Ar/39Ar ages obtained in two different laboratories constrain the duration of Pleistocene–Holocene subaerial volcanism to younger than 295 ka. The eruptive activity has been mostly continuous for the last 150 k.y., unlike most other well-characterized arc volcanoes, which tend to grow in discrete pulses. More than half of the analyzed Tanaga volcanic cluster lavas are basalts that have erupted throughout the lifetime of the cluster, although a considerable amount of basaltic andesite and basaltic trachyandesite has also been produced since 200 ka. Major- and trace-element variations suggest that magmas from Sajaka and Tanaga volcanoes are likely to have crystallized pyroxene and/or amphibole at greater depths than the older Takawangha magmas, which experienced a larger percentage of plagioclase-dominated fractionation at shallower depths. Magma output from Takawangha has declined over the last 86 k.y. At ca. 19 ka, the focus of magma flux shifted to the west beneath Tanaga and Sajaka volcanoes, where hotter, more mafic magma erupted.

  6. A MIS 15-MIS 12 record of environmental changes and Lower Palaeolithic occupation from Valle Giumentina, central Italy

    NASA Astrophysics Data System (ADS)

    Villa, Valentina; Pereira, Alison; Chaussé, Christine; Nomade, Sébastien; Giaccio, Biagio; Limondin-Lozouet, Nicole; Fusco, Fabio; Regattieri, Eleonora; Degeai, Jean-Philippe; Robert, Vincent; Kuzucuoglu, Catherine; Boschian, Giovanni; Agostini, Silvano; Aureli, Daniele; Pagli, Marina; Bahain, Jean Jacques; Nicoud, Elisa

    2016-11-01

    An integrated geological study, including sedimentology, stable isotope analysis (δ18O, δ13C), geochemistry, micromorphology, biomarker analysis, 40Ar/39Ar geochronology and tephrochronology, was undertaken on the Quaternary infill of the Valle Giumentina basin in Central Italy, which also includes an outstanding archaeological succession, composed of nine human occupation levels ascribed to the Lower and Middle Palaeolithic. 40Ar/39Ar dating, and other palaeoenvironmental and tephrochronological data, constrain the sedimentary history of the whole succession to the MIS 15-MIS 12 interval, between 618 ± 13 ka and 456 ± 2 ka. Palaeoenvironmental proxies suggest that over this time interval of about 150 ka, sedimentary and pedogenic processes were mainly influenced by climatic changes, in particular by the pulsing of local mountain glaciers of the Majella massif. Specifically, the Valle Giumentina succession records glacio-fluvial and lacustrine sedimentation during the colder glacial periods and pedogenesis and/or alluvial sedimentation during the warmer interglacial and/or interstadial periods. During this interval, tectonics played a negligible role as a driving factor of local morphogenesis and sedimentation, whereas the general regional uplift experienced in the Middle Pleistocene led to capture of the basin and its definitive extinction after MIS 12. These data substantially improve previous knowledge of the chronology and sedimentary evolution of the succession, providing for the first time, a well constrained chronological and palaeoenvironmental framework for the archaeological and human palaeoecological record of Valle Giumentina.

  7. Highstand fans in the California borderland: the overlooked deep-water depositional systems

    USGS Publications Warehouse

    Covault, Jacob A.; Normark, William R.; Romans, Brian W.; Graham, Stephan A.

    2007-01-01

    Contrary to widely used sequence-stratigraphic models, lowstand fans are only part of the turbidite depositional record; our analysis reveals that a comparable volume of coarse-grained sediment has been deposited in California borderland deep-water basins regardless of sea level. Sedimentation rates and periods of active sediment transport have been determined for deep-water canyon-channel systems contributing to the southeastern Gulf of Santa Catalina and San Diego Trough since 40 ka using an extensive grid of high-resolution and deep-penetration seismic-reflection data. A regional seismic-reflection horizon (40 ka) has been correlated across the study area using radiocarbon age dates from the Mohole borehole and U.S. Geological Survey piston cores. This study focused on the submarine fans fed by the Oceanside, Carlsbad, and La Jolla Canyons, all of which head within the length of the Ocean-side littoral cell. The Oceanside Canyon–channel system was active from 45 to 13 ka, and the Carlsbad system was active from 50 (or earlier) to 10 ka. The La Jolla system was active over two periods, from 50 (or earlier) to 40 ka, and from 13 ka to the present. One or more of these canyon-channel systems have been active regardless of sea level. During sea-level fluctuation, shelf width between the canyon head and the littoral zone is the primary control on canyon-channel system activity. Highstand fan deposition occurs when a majority of the sediment within the Oceanside littoral cell is intercepted by one of the canyon heads, currently La Jolla Canyon. Since 40 ka, the sedimentation rate on the La Jolla highstand fan has been >2 times the combined rates on the Oceanside and Carlsbad lowstand fans.

  8. Low-protein diet supplemented with ketoacids ameliorates proteinuria in 3/4 nephrectomised rats by directly inhibiting the intrarenal renin-angiotensin system.

    PubMed

    Zhang, Jia-Ying; Yin, Ying; Ni, Li; Long, Quan; You, Li; Zhang, Qian; Lin, Shan-Yan; Chen, Jing

    2016-11-01

    Low-protein diet plus ketoacids (LPD+KA) has been reported to decrease proteinuria in patients with chronic kidney diseases (CKD). However, the mechanisms have not been clarified. As over-activation of intrarenal renin-angiotensin system (RAS) has been shown to play a key role in the progression of CKD, the current study was performed to investigate the direct effects of LPD+KA on intrarenal RAS, independently of renal haemodynamics. In this study, 3/4 subtotal renal ablated rats were fed 18 % normal-protein diet (Nx-NPD), 6 % low-protein diet (Nx-LPD) or 5 % low-protein diet plus 1 % ketoacids (Nx-LPD+KA) for 12 weeks. Sham-operated rats fed NPD served as controls. The level of proteinuria and expression of renin, angiotensin II (AngII) and its type 1 receptors (AT1R) in the renal cortex were markedly higher in Nx-NPD group than in the sham group. LPD+KA significantly decreased the proteinuria and inhibited intrarenal RAS activation. To exclude renal haemodynamic impact on intrarenal RAS, the serum samples derived from the different groups were added to the culture medium of mesangial cells. It showed that the serum from Nx-NPD directly induced higher expression of AngII, AT1R, fibronectin and transforming growth factor-β1 in the mesangial cells than in the control group. Nx-LPD+KA serum significantly inhibited these abnormalities. Then, proteomics and biochemical detection suggested that the mechanisms underlying these beneficial effects of LPD+KA might be amelioration of the nutritional metabolic disorders and oxidative stress. In conclusion, LPD+KA could directly inhibit the intrarenal RAS activation, independently of renal haemodynamics, thus attenuating the proteinuria in CKD rats.

  9. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants.

    PubMed

    Farias, Davi F; Peijnenburg, Ad A C M; Grossi-de-Sá, Maria F; Carvalho, Ana F U

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL) than that of the original protein (Cry8Ka1). Cry8Ka5 has been used in breeding programs in order to obtain coleopteran-resistant cotton plants. Nevertheless, there is some concern in relation to the food safety of transgenic crops, especially to the heterologously expressed proteins. In this context, our research group has performed risk assessment studies on Cry8Ka5, using the tests recommended by Codex as well as tests that we proposed as alternative and/or complementary approaches. Our results on the risk analysis of Cry8Ka5 taken together with those of other Cry proteins, point out that there is a high degree of certainty on their food safety. It is reasonable to emphasize that most safety studies on Cry proteins have essentially used the Codex approach. However, other methodologies would potentially provide additional information such as studies on the effects of Cry proteins and derived peptides on the indigenous gastrointestinal microbiota and on intestinal epithelial cells of humans. Additionally, emerging technologies such as toxicogenomics potentially will offer sensitive alternatives for some current approaches or methods.

  10. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants

    PubMed Central

    Farias, Davi F; Peijnenburg, Ad A C M; Grossi-de-Sá, Maria F; Carvalho, Ana F U

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL) than that of the original protein (Cry8Ka1). Cry8Ka5 has been used in breeding programs in order to obtain coleopteran-resistant cotton plants. Nevertheless, there is some concern in relation to the food safety of transgenic crops, especially to the heterologously expressed proteins. In this context, our research group has performed risk assessment studies on Cry8Ka5, using the tests recommended by Codex as well as tests that we proposed as alternative and/or complementary approaches. Our results on the risk analysis of Cry8Ka5 taken together with those of other Cry proteins, point out that there is a high degree of certainty on their food safety. It is reasonable to emphasize that most safety studies on Cry proteins have essentially used the Codex approach. However, other methodologies would potentially provide additional information such as studies on the effects of Cry proteins and derived peptides on the indigenous gastrointestinal microbiota and on intestinal epithelial cells of humans. Additionally, emerging technologies such as toxicogenomics potentially will offer sensitive alternatives for some current approaches or methods. PMID:26513483

  11. High Resolution Radar for NASA and Space Situational Awareness for Observation and Monitoring

    NASA Astrophysics Data System (ADS)

    Geldzahler, B.; D'Addario, L.; Ott, M.; Birr, R.; Woods, G.; Miller, M.

    2014-09-01

    NASA has embarked on a series of demonstrations that will enable the implementation of a high power, high resolution X/Ka-band radar system using a phased array of widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. Ka band can provide 5cm ranging resolution, and, with arrays in the western United States and Australia used in an astrometric mode, ? 10 cm resolution at GEO. Here we report the results of a successful X-band demonstration of coherent uplink arraying with real time compensation for atmospheric phase fluctuations at the Kennedy Space Center (KSC) using a system simplified from work previously undertaken. The X-band system is a prelude to the Ka-band work currently underway. The target satellites were components of the DSCS and WGS systems. KSC was chosen for the demonstration site because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka-band friendly), and [c] some of the test satellites have low elevations thereby adding more attenuation and turbulence to the demonstration. When Ka-band coherent uplink arraying is demonstrated to work at KSC, it will work and can be deployed anywhere.

  12. Cloud-to-ground lightning flash characteristics from June 1984 through May 1985

    NASA Technical Reports Server (NTRS)

    Orville, Richard E.; Weisman, Robert A.; Pyle, Richard B.; Henderson, Ronald W.; Orville, Richard E., Jr.

    1987-01-01

    A magnetic direction-finding network for the detection of lightning cloud-to-ground strikes has been installed along the east coast of the United States. Time, location, flash polarity, stroke count, and peak signal amplitude are recorded in real time. The data were recorded from Maine to North Carolina and as far west as Ohio; analyses were restricted to flashes within 300 km of a direction finder. Measurements of peak signal strength have been obtained from 720,284 first return strokes lowering negative charge. The resulting distribution indicates that few negative strokes have peak currents exceeding 100 kA. Measurements have also been obtained of peak signal strength from 17,694 first return strokes lowering positive charge. These strokes have a median peak current of 45 kA, with some peak currents reaching 300-400 kA. The median peak signal strength and the peak current, double from summer to winter for both negative and positive first return strokes. The polarity of ground flashes is observed to be less than 5 percent positive throughout the summer and early fall, then increases to over 50 percent during the winter, and returns to less than 10 percent in early spring. The percent of positive flashes with one stroke is observed to be approximately 90 percent throughout the year. The percent of negative flashes with one stroke is observed to increase from 40 percent in the summer to approximately 80 percent in January, returning to less than 50 percent in the spring.

  13. ACTS broadband aeronautical experiment

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Jedrey, Thomas C.; Estabrook, Polly; Agan, Martin J.

    1993-01-01

    In the last decade, the demand for reliable data, voice, and video satellite communication links between aircraft and ground to improve air traffic control, airline management, and to meet the growing demand for passenger communications has increased significantly. It is expected that in the near future, the spectrum required for aeronautical communication services will grow significantly beyond that currently available at L-band. In anticipation of this, JPL is developing an experimental broadband aeronautical satellite communications system that will utilize NASA's Advanced Communications Technology Satellite (ACTS) as a satellite of opportunity and the technology developed under JPL's ACTS Mobile Terminal (AMT) Task to evaluate the feasibility of using K/Ka-band for these applications. The application of K/Ka-band for aeronautical satellite communications at cruise altitudes is particularly promising for several reasons: (1) the minimal amount of signal attenuation due to rain; (2) the reduced drag due to the smaller K/Ka-band antennas (as compared to the current L-band systems); and (3) the large amount of available bandwidth. The increased bandwidth available at these frequencies is expected to lead to significantly improved passenger communications - including full-duplex compressed video and multiple channel voice. A description of the proposed broadband experimental system will be presented including: (1) applications of K/Ka-band aeronautical satellite technology to U.S. industry; (2) the experiment objectives; (3) the experiment set-up; (4) experimental equipment description; and (5) industrial participation in the experiment and the benefits.

  14. Probing RFP Density Limits and the Interaction of Pellet Fueling and NBI Heating on MST

    NASA Astrophysics Data System (ADS)

    Caspary, K. J.; Chapman, B. E.; Anderson, J. K.; Limbach, S. T.; Oliva, S. P.; Sarff, J. S.; Waksman, J.; Combs, S. K.; Foust, C. R.

    2013-10-01

    Pellet fueling on MST has previously achieved Greenwald fractions of up to 1.5 in 200 kA improved confinement discharges. Additionally, pellet fueling to densities above the Greenwald limit in 200 kA standard discharges resulted in early termination of the plasma, but pellet size was insufficient to exceed the limit for higher current discharges. To this end, the pellet injector on MST has been upgraded to increase the maximum fueling capability by increasing the size of the pellet guide tubes, which constrain the lateral motion of the pellet in flight, to accommodate pellets of up to 4.0 mm in diameter. These 4.0 mm pellets are capable of triggering density limit terminations for MST's peak current of 600 kA. An unexpected improvement in the pellet speed and mass control was also observed compared to the smaller diameter pellets. Exploring the effect of increased density on NBI particle and heat deposition shows that for MST's 1 MW tangential NBI, core deposition of 25 keV neutrals is optimized for densities of 2-3 × 1019 m-3. This is key for beta limit studies in pellet fueled discharges with improved confinement where maximum NBI heating is desired. An observed toroidal deflection of pellets injected into NBI heated discharges is consistent with asymmetric ablation due to the fast ion population. In 200 kA improved confinement plasmas with NBI heating, pellet fueling has achieved a Greenwald fraction of 2.0. Work supported by US DoE.

  15. Contribution for Iron Vapor and Radiation Distribution Affected by Current Frequency of Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Shimokura, Takuya; Mori, Yusuke; Iwao, Toru; Yumoto, Motoshige

    Pulsed GTA welding has been used for improvement of stability, weld speed, and heat input control. However, the temperature and radiation power of the pulsed arc have not been elucidated. Furthermore, arc contamination by metal vapor changes the arc characteristics, e.g. by increasing radiation power. In this case, the metal vapor in pulsed GTA welding changes the distribution of temperature and radiation power as a function of time. This paper presents the relation between metal vapor and radiation power at different pulse frequencies. We calculate the Fe vapor distribution of the pulsed current. Results show that the Fe vapor is transported at fast arc velocity during the peak current period. During the base current period, the Fe vapor concentration is low and distribution is diffuse. The transition of Fe vapor distribution does not follow the pulsed current; the radiation power density distribution differs for high frequencies and low frequencies. In addition, the Fe vapor and radiation distribution are affected by the pulsed arc current frequency.

  16. Spatial and temporal deformation along the northern San Jacinto fault, southern California: Implications for slip rates

    USGS Publications Warehouse

    Kendrick, K.J.; Morton, D.M.; Wells, S.G.; Simpson, R.W.

    2002-01-01

    The San Timoteo badlands is an area of uplift and erosional dissection that has formed as a result of late Quaternary uplift along a restraining bend in the San Jacinto fault, of the San Andreas fault system in southern California. This bend currently is located in a region where late Quaternary deposits and associated surfaces have formed in lower San Timoteo Canyon. We have used morphometric analysis of these surfaces, in conjunction with computer modeling of deformational patterns along the San Jacinto fault, to reconstruct spatial and temporal variations in uplift along the bend. Morphometric techniques used include envelope/subenvelope mapping, a gradient-length index along channels, and denudation values. Age control is determined using a combination of thermoluminescence (TL) and near infrared optical simulation luminescence dating (IROSL) and correlation of soil-development indices. These approaches are combined with an elastic half-space model used to determine the deformation associated with the fault bend. The region of modeled uplift has a similar distribution as that determined by morphometric techniques. Luminescence dates and soil-correlation age estimates generally agree. Based on soil development, surfaces within the study area were stabilized at approximately 300-700 ka for Q3, 43-67 ka for Q2, and 27.5-67 ka for Q1. Luminescence ages (both TL and IROSL) for the formation of the younger two surfaces are 58 to 94 ka for Q2 and 37 to 62 ka for Q1 (ages reported to 1?? uncertainty). Periods of uplift were determined for the surfaces in the study area, resulting in approximate uplift rates of 0.34 to 0.84 m/ka for the past 100 ka and 0.13 to 1.00 m/ka for the past 66 ka. Comparison of these rates of uplift to those generated by the model support a higher rate of lateral slip along the San Jacinto fault than commonly assumed (greater than 20 mm/yr, as compared to 8-12 mm/yr commonly cited). This higher slip rate supports the proposal that a greater amount of slip has transferred from the San Andreas fault to the San Jacinto fault than generally held. The San Jacinto fault may have accommodated a significant portion of the plate boundary slip during the past 100 ka.

  17. Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition technology

    NASA Astrophysics Data System (ADS)

    Xia, Fafeng; Xu, Huibin; Liu, Chao; Wang, Jinwu; Ding, Junjie; Ma, Chunhua

    2013-04-01

    Ni-AlN composite coating was fabricated onto the surface of steel substrates by using pulse electrodeposition (PED) technique in this work. The effect of pulse current on the nucleation and growth of grains was investigated using transmission electronic microscopy (TEM), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The results show that the contents of AlN nanoparticles increase with density of pulse current and on-duty ratio of pulse current increasing. Whereas the size of nickel grains decreases with density of pulse current increasing and on-duty ratio of pulse current decreasing. Ni-AlN composite coating consists of crystalline nickel (˜68 nm) and AlN particles (˜38 nm). SEM and AFM observations show that the composite coatings obtained by PED showed more compact surfaces and less grain sizes, whereas those obtained by direct current electrodepositing have rougher surfaces and bigger grain sizes.

  18. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight, complex shapes, large structure dimension, large current, and low frequency capabilities are important considerations.

  19. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  20. Characterization of vertical electric fields 500 m and 30 m from triggered lightning

    NASA Astrophysics Data System (ADS)

    Rubenstein, M.; Rachidi, F.; Uman, M. A.; Thottappillil, R.; Rakov, V. A.; Nucci, C. A.

    1995-05-01

    Vertical electric field waveforms of leader-return stroke sequences measured 500 m and 30 m from rocket-triggered lightning are presented. The 500-m data were recorded during the summer of 1986, the 30-m data during the summer of 1991, both at the NASA Kennedy Space Center, Florida. The 40 leader-return stroke field waveforms at 500 m and the 8 waveforms at 30 m all appear as asymmetrical V-shaped pulses, the bottom of the V being associated with the transition from the leader to the return stroke. Only two waveforms at 30 m were suitable for quantitative analysis. The widths of the V at half of peak value for these are 1.8 and 5.0 μs, while for the 500-m data they are 1 to 2 orders of magnitude greater, with a median value of 100 μs. Applying a widely used and simple leader model to the measured leader electric fields at 500 m, we infer, for the bottom kilometer or so of the leader channel, leader speeds between 2×106 and 2×107 m/s and leader charges per unit length of 0.02×10-3 to 0.08×10-3 C/m. From the two measured leader electric field changes at 30 m we infer, using the same leader model, for the bottom 100 meters or so of the leader channel, speeds of 3×107 and 1×107 m/s (the corresponding measured waveform half widths are 1.8 μs and 5.0 μs) and charges per unit length of 0.14×10-3 and 0.02×10-3 C/m (the corresponding measured leader field changes are 81 kV/m and 12 kV/m). The corresponding measured return stroke peak currents for the above two cases are 40 kA and 7 kA, respectively. A positive correlation is observed between the magnitude of the leader field change at 500 m and the ensuing return stroke current peak.

  1. High speed, high current pulsed driver circuit

    DOEpatents

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  2. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  3. The first experiments in SST-1

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Khan, Z.; Tanna, V. L.; Sharma, A. N.; Doshi, K. J.; Prasad, U.; Masand, H.; Kumar, Aveg; Patel, K. B.; Bhandarkar, M. K.; Dhongde, J. R.; Shukla, B. K.; Mansuri, I. A.; Varadarajulu, A.; Khristi, Y. S.; Biswas, P.; Gupta, C. N.; Sharma, D. K.; Raval, D. C.; Srinivasan, R.; Pandya, S. P.; Atrey, P. K.; Sharma, P. K.; Patel, P. J.; Patel, H. S.; Santra, P.; Parekh, T. J.; Dhanani, K. R.; Paravastu, Y.; Pathan, F. S.; Chauhan, P. K.; Khan, M. S.; Tank, J. K.; Panchal, P. N.; Panchal, R. N.; Patel, R. J.; George, S.; Semwal, P.; Gupta, P.; Mahesuriya, G. I.; Sonara, D. P.; Jayswal, S. P.; Sharma, M.; Patel, J. C.; Varmora, P. P.; Patel, D. J.; Srikanth, G. L. N.; Christian, D. R.; Garg, A.; Bairagi, N.; Babu, G. R.; Panchal, A. G.; Vora, M. M.; Singh, A. K.; Sharma, R.; Raju, D.; Kulkarni, S. V.; Kumar, M.; Manchanda, R.; Joisa, S.; Tahiliani, K.; Pathak, S. K.; Patel, K. M.; Nimavat, H. D.; Shah, P. R.; Chudasma, H. H.; Raval, T. Y.; Sharma, A. L.; Ojha, A.; Parghi, B. R.; Banaudha, M.; Makwana, A. R.; Chowdhuri, M. B.; Ramaiya, N.; kumar, A.; Raval, J. V.; Gupta, S.; Purohit, S.; Kaur, R.; Adhiya, A. N.; Jha, R.; Kumar, S.; Nagora, U. C.; Siju, V.; Thomas, J.; Chaudhari, V. R.; Patel, K. G.; Ambulkar, K. K.; Dalakoti, S.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Das, A.; Bora, D.; the SST-1 Team

    2015-10-01

    A steady state superconducting tokamak (SST-1) has been commissioned after the successful experimental and engineering validations of its critical sub-systems. During the ‘engineering validation phase’ of SST-1; the cryostat was demonstrated to be leak-tight in all operational scenarios, 80 K thermal shields were demonstrated to be uniformly cooled without regions of ‘thermal runaway and hot spots’, the superconducting toroidal field magnets were demonstrated to be cooled to their nominal operational conditions and charged up to 1.5 T of the field at the major radius. The engineering validations further demonstrated the assembled SST-1 machine shell to be a graded, stress-strain optimized and distributed thermo-mechanical device, apart from the integrated vacuum vessel being validated to be UHV compatible etc. Subsequently, ‘field error components’ in SST-1 were measured to be acceptable towards plasma discharges. A successful breakdown in SST-1 was obtained in SST-1 in June 2013 assisted with electron cyclotron pre-ionization in the second harmonic mode, thus marking the ‘first plasma’ in SST-1 and the arrival of SST-1 into the league of contemporary steady state devices. Subsequent to the first plasma, successful repeatable plasma start-ups with E ˜ 0.4 V m-1, and plasma current in excess of 70 kA for 400 ms assisted with electron cyclotron heating pre-ionization at a field of 1.5 T have so far been achieved in SST-1. Lengthening the plasma pulse duration with lower hybrid current drive, confinement and transport in SST-1 plasmas and magnetohydrodynamic activities typical to large aspect ratio SST-1 discharges are presently being investigated in SST-1. In parallel, SST-1 has uniquely demonstrated reliable cryo-stable high field operation of superconducting TF magnets in the two-phase cooling mode, operation of vapour-cooled current leads with cold gas instead of liquid helium and an order less dc joint resistance in superconducting magnet winding packs with high transport currents. In parallel, SST-1 is also continually getting up-graded with first wall integration, superconducting central solenoid installation and over-loaded MgB2-brass based current leads etc. Phase-1 of SST-1 up-gradation is scheduled by the first half of 2015, after which long pulse plasma experiments in both circular and elongated configurations have been planned in SST-1.

  4. Coral reef evolution on rapidly subsiding margins

    USGS Publications Warehouse

    Webster, J.M.; Braga, J.C.; Clague, D.A.; Gallup, C.; Hein, J.R.; Potts, D.C.; Renema, W.; Riding, R.; Riker-Coleman, K.; Silver, E.; Wallace, L.M.

    2009-01-01

    A series of well-developed submerged coral reefs are preserved in the Huon Gulf (Papua New Guinea) and around Hawaii. Despite different tectonics settings, both regions have experienced rapid subsidence (2-6??m/ka) over the last 500??ka. Rapid subsidence, combined with eustatic sea-level changes, is responsible for repeated drowning and backstepping of coral reefs over this period. Because we can place quantitative constraints on these systems (i.e., reef drowning age, eustatic sea-level changes, subsidence rates, accretion rates, basement substrates, and paleobathymetry), these areas represent unique natural laboratories for exploring the roles of tectonics, reef accretion, and eustatic sea-level changes in controlling the evolution of individual reefs, as well as backstepping of the entire system. A review of new and existing bathymetric, radiometric, sedimentary facies and numerical modeling data indicate that these reefs have had long, complex growth histories and that they are highly sensitive, recording drowning not only during major deglaciations, but also during high-frequency, small-amplitude interstadial and deglacial meltwater pulse events. Analysis of five generalized sedimentary facies shows that reef drowning is characterized by a distinct biological and sedimentary sequence. Observational and numerical modeling data indicate that on precessional (20??ka) and sub-orbital timescales, the rate and amplitude of eustatic sea-level changes are critical in controlling initiation, growth, drowning or sub-aerial exposure, subsequent re-initiation, and final drowning. However, over longer timescales (> 100-500??ka) continued tectonic subsidence and basement substrate morphology influence broad scale reef morphology and backstepping geometries. Drilling of these reefs will yield greatly expanded stratigraphic sections compared with similar reefs on slowly subsiding, stable and uplifting margins, and thus they represent a unique archive of sea-level and climate changes, as well as a record of the response of coral reefs to these changes over the last six glacial cycles. ?? 2008 Elsevier B.V. All rights reserved.

  5. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung

    2010-06-01

    The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.

  6. Process for applying control variables having fractal structures

    DOEpatents

    Bullock, IV, Jonathan S.; Lawson, Roger L.

    1996-01-01

    A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.

  7. Process for applying control variables having fractal structures

    DOEpatents

    Bullock, J.S. IV; Lawson, R.L.

    1996-01-23

    A process and apparatus are disclosed for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform. 3 figs.

  8. Featuring of transient tunneling current by voltage pulse and application to an electrochemical biosensor

    NASA Astrophysics Data System (ADS)

    Yun, Jun Yeon; Lee, Won Cheol; Choi, Seong Wook; Park, Young June

    2018-03-01

    We suggest a voltage pulse method for detecting the transient tunneling current component (faradaic current component) in a metal/redox-active monolayer/electrolyte system. After applying the pulse to the metal electrode, the capacitive current prevails; therefore, it is difficult to extract the tunneling current, which carries information on the biochemical reactions occurring between the biomarkers in the electrolyte and the self-assembled monolayer (SAM) as the probe peptide system. Instead of waiting until the capacitive current diminishes, and thereby, the tunneling current also decreases, we try to extract the tunneling current in an early stage of the pulse. The method is based on the observation that the capacitive current becomes symmetrized in the positive and negative pulses after introducing the SAM on the metal electrode. When the energy level of the redox molecule is higher than the Fermi level of the metal under zero-bias condition, the tunneling current in the negative pulse can be extracted by subtracting the capacitive current obtained from the positive pulse, where the tunneling current is neglected. The experiment conducted for detecting trypsin as a biomarker shows that the method enhances the sensitivity and the specific-to-nonspecific ratio of the sensor device in the case of the nonspecific protein-abundant electrolyte solution, as evinced by cyclic voltammetry measurements in comparison.

  9. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.

    PubMed

    Serša, Igor; Kranjc, Matej; Miklavčič, Damijan

    2015-01-01

    Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.

  10. Characteristics of a large vacuum wave precursor on the SABRE voltage adder MITL and extraction ion diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Hanson, D.L.; Menge, P.R.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, andmore » beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( {approx} 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models.« less

  11. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-01

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J ×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH2 with 2.8% H2 served as the discharge medium. H2 was chosen in order to observe the broadening of the Hβ emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 1016 cm-3 . Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  12. A 10{sup 9} neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niranjan, Ram, E-mail: niranjan@barc.gov.in; Rout, R. K.; Srivastava, R.

    2016-03-15

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silvermore » activation detector in the radial direction is (7.1 ± 1.4) × 10{sup 8} neutrons/shot over 4π sr at 5 mbar optimum D{sub 2} pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.« less

  13. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yu; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081; Xie, Kan, E-mail: xiekan@bit.edu.cn

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation ofmore » positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.« less

  14. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad

    PubMed Central

    Armitage, Simon J.; Bristow, Charlie S.; Drake, Nick A.

    2015-01-01

    From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world’s greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent. PMID:26124133

  15. The 8.2 ka cooling event caused by Laurentide ice saddle collapse

    NASA Astrophysics Data System (ADS)

    Matero, I. S. O.; Gregoire, L. J.; Ivanovic, R. F.; Tindall, J. C.; Haywood, A. M.

    2017-09-01

    The 8.2 ka event was a period of abrupt cooling of 1-3 °C across large parts of the Northern Hemisphere, which lasted for about 160 yr. The original hypothesis for the cause of this event has been the outburst of the proglacial Lakes Agassiz and Ojibway. These drained into the Labrador Sea in ∼0.5-5 yr and slowed the Atlantic Meridional Overturning Circulation, thus cooling the North Atlantic region. However, climate models have not been able to reproduce the duration and magnitude of the cooling with this forcing without including additional centennial-length freshwater forcings, such as rerouting of continental runoff and ice sheet melt in combination with the lake release. Here, we show that instead of being caused by the lake outburst, the event could have been caused by accelerated melt from the collapsing ice saddle that linked domes over Hudson Bay in North America. We forced a General Circulation Model with time varying meltwater pulses (100-300 yr) that match observed sea level change, designed to represent the Hudson Bay ice saddle collapse. A 100 yr long pulse with a peak of 0.6 Sv produces a cooling in central Greenland that matches the 160 yr duration and 3 °C amplitude of the event recorded in ice cores. The simulation also reproduces the cooling pattern, amplitude and duration recorded in European Lake and North Atlantic sediment records. Such abrupt acceleration in ice melt would have been caused by surface melt feedbacks and marine ice sheet instability. These new realistic forcing scenarios provide a means to reconcile longstanding mismatches between proxy data and models, allowing for a better understanding of both the sensitivity of the climate models and processes and feedbacks in motion during the disintegration of continental ice sheets.

  16. Upgrades to the LLNL flash x-ray induction linear accelerator (FXR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpetti, R. D., LLNL

    1997-06-30

    The FXR is an induction linear accelerator used for flash radiography at the Lawrence Livermore National Laboratory's Site 300 Test Facility. The FXR was originally completed in 1982 and has been in continuous use as a radiographic tool. At that time the FXR produced a 17MeV, 2.2 kA burst of electrons for a duration of 65 ns. An upgrade of the FXR was recently completed. The purpose of this upgrade was to improve the performance of the FXR by increasing the energy of the electron injector from 1.2 MeV to 2.5 MeV and the beam current from 2.2 kA tomore » 3 kA, improving the magnetic transport system by redesigning the solenoidal transport focus coils, reducing the rf coupling of the electron beam to the accelerator cells, and by adding additional beam diagnostics. We will describe the injector upgrades and performance as well as our efforts to tune the accelerator by minimizing beam corkscrew motion and the impact of Beam Breakup Instability on beam centroid motion throughout the beam line as the current is increased to 3 kA.« less

  17. Absorber arc mitigation during CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Bell, M. G.; Roquemore, A. L.; Raman, R.; Nelson, B. A.; Jarboe, T. R.

    2009-11-01

    A method of non-inductive startup, referred to as transient coaxial helicity injection (CHI), was successfully developed on the Helicity Injected Torus (HIT-II) experiment and employed on the National Spherical Torus Experiment (NSTX). This technique has produced 160 kA of plasma current on closed flux surfaces. Over 100 kA of the CHI current has been coupled to inductively driven current ramp-up. In transient CHI, a voltage is applied across the insulating gap separating the inner and outer vacuum vessel and gas is introduced at the lower gap (the injector). The resulting current in the injector follows the helical magnetic field connecting the electrodes, forms a toroidal current and expands into the vacuum vessel. At higher CHI current, the poloidal field due to the plasma can connect the inner and outer vessels at the insulating gap at the top (called the absorber) of NSTX and lower the impedance there. This results in arcs in the absorber which are a source of impurities and which reduce the desired current in the injector. Two coils installed in the absorber will be used to reduce the magnetic field across the absorber gap and mitigate the absorber arcs.

  18. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  19. Current achievements and challenges of a multiple dating approach (14C, 230Th/U and 36Cl) to infer tsunami transport age(s) of reef-top boulders on Bonaire (Leeward Antilles)

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; May, Simon Matthias; Engel, Max; Mechernich, Silke; Schroeder-Ritzrau, Andrea; Frank, Norbert; Fohlmeister, Jens; Boulvain, Frédéric; Dunai, Tibor; Brückner, Helmut

    2017-04-01

    The deposition of supratidal coarse-clast deposits is difficult to date, limiting their value for inferring frequency-magnitude patterns of high-energy wave events. On Bonaire (Leeward Antilles, Caribbean), these deposits form prominent landforms, and transport by one or several Holocene tsunamis is assumed at least for the largest clasts. Although a large dataset of 14C and electron spin resonance (ESR) ages is available for major coral rubble ridges and ramparts, it is still debated whether these data reflect the timing of major events, and how these datasets are biased by the reworking of coral fragments. As an attempt to overcome the current challenges for dating the dislocation of singular boulders, three distinct dating methods are implemented and compared: (i) 14C dating of boring bivalves attached to the boulders; (ii) 230Th/U dating of post-depositional, secondary calcite flowstone and subaerial microbialites at the underside of the boulders; and (iii) surface exposure dating of overturned boulders via 36Cl concentration measurements in corals. Approaches (ii) and (iii) have never been applied to coastal boulder deposits so far. The three 14C age estimates are older than 37 ka, i.e. most probably beyond the applicability of the method, which is attributed to post-depositional diagenetic processes, shedding doubt on the usefulness of this method in the local context. The remarkably convergent 230Th/U ages, all pointing to the Late Holocene period (1.0-1.6 ka), are minimum ages for the transport event(s). The microbialite sample yields an age of 1.23±0.23 ka and both flowstone samples are in stratigraphic order: the older (onset of carbonate precipitation) and younger flowstone layers yield ages of 1.59±0.03 and 1.23±0.03 ka, respectively. Four coral samples collected from the topside of overturned boulders yielded similar 36Cl concentration measurements. However, the computed ages are affected by large uncertainties, mostly due to the high natural chlorine concentration resulting in low AMS ratios. After correction for the inherited component and chemical denudation since platform emergence (inducing additional uncertainty), the calculated 36Cl ages cluster between 2.5±1.3 and 3.0±1.3 ka for three of four boulders whilst the fourth one yields an age of 6.1±1.8 ka, probably related to a higher inheritance. These 230Th/U and 36Cl age estimates are coherent with a suggested tsunami age of <3.3 ka obtained from the investigation of allochthonous shell horizons in sediment cores of northwestern Bonaire. While 230Th/U dating of post-depositional calcite flowstone appears to be the most robust and/or accurate approach, these results illustrate the potential and current limitations of the applied methods for dating the dislocation of supralittoral boulders in carbonate-reef settings.

  20. AN ENGINEERING SOLUTION TO THE RHIC BEAM ABORT KICKER UPGRADE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.ROSER,T.SANDBERG,J.TAN,Y.ET AL.

    2004-05-23

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is the world largest superconducting accelerator for nuclear energy research. Particle beams traveling in opposite directions in two accelerator rings, Blue and Yellow, collide at six interaction regions to create phenomena of the early universe. There are more than 1700 superconducting magnets and very sophisticate and delicate large detectors inside the RHIC tunnel. With high beam intensity and ultra high beam energy, an inadvertent loss of beam can result severe damage to the superconducting magnets and detectors. Beam abort kickers are used to remove beam safely from the ring. Themore » large inductive load, high current capability, short beam gap, and high reliability are the challenging issues of this system design. With high intensity and high momentum beam operation, it is desirable to have all high voltage modulators located outside of RHIC tunnel. However, to generate 22 kA output current per modulator with fast rise time, a conventional low impedance PFN and matched transmission cable design can push the operation voltage easily into 100 kV range. The large quantity of high voltage pulse transmission cables required by conventional design is another difficult issue. Therefore, the existing system has all ten high voltage modulators located inside RHIC tunnel. More than a hundred plastic packaged mineral oil filled high voltage capacitors raise serious concerns of fire and smoking threats. Other issues, such as kicker misfire, device availability in the future, and inaccessibility during operation, also demand an engineering solution for the future upgrade. In this paper, we investigate an unconventional approach to meet the technical challenges of RHIC beam abort system. The proposed design has all modulators outside of the RHIC tunnel. It will transmit output pulse through high voltage cables. The modulators will utilize solid-state switches, and operate at a maximum voltage in 30 to 50 kV range.« less

  1. Development of a hybrid mode linear transformer driver stage

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Wang, Meng; Zhou, Liangji; Tian, Qing; Guo, Fan; Wang, Lingyun; Qing, Yanling; Zhao, Yue; Dai, Yingmin; Han, Wenhui; Chen, Lin; Xie, Weiping

    2018-02-01

    At present, the mainstream technologies of primary power sources of large pulse power devices adopt Marx or linear transformer driver (LTD) designs. Based on the analysis of the characteristics of these two types of circuit topologies, the concept of a hybrid mode LTD stage based on Marx branches is proposed. The analysis shows that the hybrid mode LTD stage can realize the following goals: (a) to reduce the energy and power handled by the basic components (switch and capacitor) to lengthen their lifetime; (b) to reduce the requirements of the multipath synchronous trigger system; and (c) to improve the maintainability of the LTD stage by using independent Marx generators instead of "traditional LTD bricks." To verify the technique, a hybrid mode LTD stage consisting of 50 branches (four-stage compact Marx generators) was designed, manufactured and tested. The stage has a radius of about 3.3 m and a height of 0.6 m. The single Marx circuit's load current is about 21 kA, with a rise time of ˜90 ns (10%-90%), under the conditions of capacitors charged to ±40 kV and a 6.9 Ω matched load. The whole stage's load current is ˜1 MA , with a rise time of ˜112 ns (10%-90%), when the capacitors are charged to ±45 kV and the matched load is 0.14 Ω .

  2. Optical progression characteristics of an interesting natural downward bipolar lightning flash

    NASA Astrophysics Data System (ADS)

    Chen, Luwen; Lu, Weitao; Zhang, Yijun; Wang, Daohong

    2015-01-01

    high-speed cameras, Lightning Attachment Process Observation Systems, and fast and slow electrical antennas, we documented a downward bipolar lightning flash that contained one first positive stroke with a peak current of 142 kA and five subsequent negative strokes hitting on a 90 m tall structure on 29 July 2010 in Guangzhou City, China. All the six strokes propagated along the same viewed channel established by the first positive return stroke. The leader which preceded the positive return stroke propagated downward without any branches at a two-dimensional (2-D) speed of 2.5 × 106 m/s. An upward connecting leader with a length of about 80 m was observed in response to the downward positive leader. The 10-90% risetimes of the return strokes' optical pulses ranged from 2.2 µs to 3.2 µs, while the widths from the 10% wavefront to the 50% wave tail ranged from 56.5 µs to 83.1 µs, and the half peak widths ranged from 53.4 µs to 81.6 µs. All the return strokes exhibited similar speeds, ranging from 1.0 × 108 m/s to 1.3 × 108 m/s. Each of the return strokes was followed by a continuing current stage (CC). The first positive stroke CC lasted more than 150 ms, much larger than all the subsequent negative stroke CC, ranging from 13 ms to 70 ms.

  3. Plasma current ramp-up by lower hybrid wave using innovative antennas on TST-2

    NASA Astrophysics Data System (ADS)

    Takase, Yuichi; Ejiri, Akira; Moeller, Charles; Roidl, Benedikt; Shinya, Takahiro; Tsujii, Naoto; Yajima, Satoru; Yamazaki, Hibiki; Kitayama, Akichika; Matsumoto, Naoki; Sato, Akito; Sonehara, Masateru; Takahashi, Wataru; Tajiri, Yoshiyuki; Takei, Yuki; Togashi, Hiro; Toida, Kazuya; Yoshida, Yusuke

    2016-10-01

    Non-inductive plasma current (Ip) ramp-up by RF power in the lower hybrid frequency range is being studied on the TST-2 spherical tokamak (R = 0.36 m, a = 0.23 m, Bt = 0.3 T, Ip = 0.1 MA). Up to 400 kW of RF power is available at a frequency of 200 MHz. An innovative antenna called the capacitively-coupled combline (CCC) antenna was developed to excite a sharp, highly directional traveling wave with the electric field polarized in the toroidal direction. It is an array of resonant circuit elements made of capacitance and inductance, coupled to neighboring elements by mutual capacitance. Two CCC antennas are installed in TST-2, a 13-element outboard-launch antenna and a 6-element top-launch antenna. The latter was installed in March 2016 to improve accessibility to the core and to achieve single-pass damping. The suspected wave power loss in the scrape-off layer plasma should also be avoided. Ip ramp-up to 25 kA has been achieved so far. An upgrade of the Bt power supply is planned to take advantage of the observed improvement of Ip ramp-up with Bt. Higher Bt for longer pulses should improve the Ip ramp-up efficiency by improving wave accessibility and by reducing prompt orbit losses of energetic electrons.

  4. Classification of Small Negative Lightning Reports at the KSC-ER

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Cummins, Kenneth L.; Krider, Philip

    2008-01-01

    The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) operate an extensive suite of lightning sensors because Florida experiences the highest area density of ground strikes in the United States, with area densities approaching 16 fl/sq km/yr when accumulated in 10x10 km (100 sq km) grids. The KSC-ER use data derived from two cloud-to-ground (CG) lightning detection networks, the "Cloud-to-Ground Lightning Surveillance System" (CGLSS) and the U.S. National Lightning Detection Network (TradeMark) (NLDN) plus a 3-dimensional lightning mapping system, the Lightning Detection and Ranging (LDAR) system, to provide warnings for ground operations and to insure mission safety during space launches. For operational applications at the KSC-ER it is important to understand the performance of each lightning detection system in considerable detail. In this work we examine a specific subset of the CGLSS stroke reports that have low values of the negative inferred peak current, Ip, i.e. values between 0 and -7 kA, and were thought to produce a new ground contact (NGC). When possible, the NLDN and LDAR systems were used to validate the CGLSS classification and to determine how many of these reported strokes were first strokes, subsequent strokes in a pre-existing channel (PEC), or cloud pulses that the CGLSS misclassified as CG strokes. It is scientifically important to determine the smallest current that can reach the ground either in the form of a first stroke or by way of a subsequent stroke that creates a new ground contact. In Biagi et al (2007), 52 low amplitude, negative return strokes ([Ip] < or = 10 kA) were evaluated in southern Arizona, northern Texas, and southern Oklahoma. The authors found that 50-87% of the small NLDN reports could be classified as CG (either first or subsequent strokes) on the basis of video and waveform recordings. Low amplitude return strokes are interesting because they are usually difficult to detect, and they are thought to bypass conventional lightning protection that relies on a sufficient attractive radius to prevent "shielding failure" (Golde, 1977). They also have larger location errors compared to the larger current events. In this study, we use the estimated peak current provided by the CGLSS and the results of our classification to determine the minimum Ip for each category of CG stroke and its probability of occurrence. Where possible, these results are compared to the findings in the literature.

  5. The origin and nature of thermal evolution during Granite emplacement and differentiation and its influence on upper crustal dynamics.

    NASA Astrophysics Data System (ADS)

    Buchwaldt, R.; Toulkeridis, T.; Todt, W.

    2014-12-01

    Structural geological, geochemical and geochronological data were compiled with the purpose to exercise models for the construction of upper crustal batholith. Models for pulsed intrusion of small magma batches over long timescales versus transfer of larger magma bodies on a shorter time scales are able to predict a different thermal, metamorphic, and rheological state of the crust. For this purpose we have applied the chronostratigraphic framework for magma differentiation on three granite complexes namely the St. Francois Mountain granite pluton (Precambrian), the Galway granite (Cambrian), and the Sithonia Plutonic Complex (Eocene). These plutons have similar sizes and range in composition from quartz diorites through granodiorites and granites to alkali granites, indicating multiple intrusive episodes. Thermobarometric calculations imply an upper crustal emplacement. Geochemical, isotopic and petrological data indicate a variety of pulses from each pluton allowing to be related through their liquid line of decent, which is supported by fractional crystallization of predominantly plagioclase, K-feldspar, biotite, hornblende and some minor accessory mineral phases, magma mingling and mixing as well as crustal contamination. To obtain the temporal relationship we carried out high-precision CA-TIMS zircon geochronology on selected samples along the liquid line of decent. The obtained data indicate a wide range of rates: such as different pulses evolved on timescales of about only 10-30ka, although, the construction time of the different complexes ranges from millions of years with prolonged tectonically inactive phases to relatively short lived time ranges of about ~300 ka. For a better understanding how these new data were used and evaluated in order to reconstruct constraints on the dynamics of the magmatic plumbing system, we integrated the short-lived, elevated heat production, due to latent heat of crystallization, into a 2D numerical model of the thermal evolution of segments of continental crust. Our model indicates that during the stage of enhanced fractional crystallization, the crustal viscosity decreases by several orders of magnitude, playing hereby a fundamental role in the thermal, magmatic, and tectonic evolution of the studied areas and most probably in similar regions too.

  6. Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1981-01-01

    The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.

  7. Constraining Seasonal and Vertical Distributions of Planktonic Foraminifera for Paleoclimate Reconstruction Since MIS3 at the Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Chen, S. L.; Ravelo, A. C.; Clague, D. A.

    2015-12-01

    The California Current is an upwelling region with dynamic interactions between circulation, biological productivity and ecology. A 77 cm piston push core was taken from the Juan de Fuca Ridge Axial Seamount using a Remotely Operated Vehicle (ROV) (2213m, 45.55º N, 130.08º W), an active submarine volcano ~480 km off Oregon's coast. Five radiocarbon dates indicate that the sediment ranges from 42.6 ka at 77 cm to 17.6 ka at 15 cm, with an average sediment accumulation rate of 2.47 cm/ka from 77-15 cm, and an average rate of 0.85 cm/ka during the postglacial period (<17.6 ka). Multiple species of planktic foraminifera from the core representing subtropical, subartic, and arctic fauna have been used to constrain changes in vertical and seasonal temperature since Marine Isotope Stage 3 (MIS3). Measurements of δ18O of the upwelling species Globigerina bulloides, the thermocline dwelling species Neogloboquadrina dutertrei, and the warm mixed-layer species Orbulina universa are offset from each other, reflecting vertical and seasonal variation among the planktonic foraminifera. Of the three species, G. bulloides shows the least variation in δ18O, possibly indicating that marked changes in temperature are masking changes in the δ18O of seawater due to global ice volume changes. G. bulloides and O. universa δ18O values are similar in MIS 3 and diverge with time, indicating the development of strong seasonal succession of species, since the last glacial maximum. Bulk nitrogen isotopes and nitrogen flux provide additional constraints on upwelling strength and insight into local biological productivity and nutrient dynamics. Obtaining Mg/Ca data will clarify the δ 18O interpretation except deep in the core where metal-bearing authigenic precipitates affect Mg concentrations. These climatic proxies together provide insight into how global climate change and local seamount volcanism impacts regional productivity in the California Current.

  8. Investigation on Microstructure and Mechanical Properties of Continuous and Pulsed Current Gas Tungsten Arc Welded alloy 600

    NASA Astrophysics Data System (ADS)

    Srikanth, A.; Manikandan, M.

    2018-02-01

    The present study investigates the microstructure and mechanical properties of joints fabricated by Continuous and pulsed current gas tungsten arc welded alloy 600. Welding was done by autogenous mode. The macro examination was carried out to evaluate the welding defects in the weld joints. Optical and Scanning Electron Microscope (SEM) were performed to assess the microstructural changes in the fusion zone. Energy Dispersive Spectroscopy (EDS) analysis was carried to evaluate the microsegregation of alloying elements in the fusion zone. The tensile test was conducted to assess the strength of the weld joints. The results show that no welding defects were observed in the fusion zones of Continuous and Pulsed current Gas Tungsten Arc Welding. The refined microstructure was found in the pulsed current compared to continuous current mode. Microsegregation was not noticed in the weld grain boundary of continuous and pulsed current mode. The pulsed current shows improved mechanical properties compared to the continuous current mode.

  9. Bayesian model aggregation for ensemble-based estimates of protein pKa values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosink, Luke J.; Hogan, Emilie A.; Pulsipher, Trenton C.

    2014-03-01

    This paper investigates an ensemble-based technique called Bayesian Model Averaging (BMA) to improve the performance of protein amino acid pmore » $$K_a$$ predictions. Structure-based p$$K_a$$ calculations play an important role in the mechanistic interpretation of protein structure and are also used to determine a wide range of protein properties. A diverse set of methods currently exist for p$$K_a$$ prediction, ranging from empirical statistical models to {\\it ab initio} quantum mechanical approaches. However, each of these methods are based on a set of assumptions that have inherent bias and sensitivities that can effect a model's accuracy and generalizability for p$$K_a$$ prediction in complicated biomolecular systems. We use BMA to combine eleven diverse prediction methods that each estimate pKa values of amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa Cooperative and the pKa measurements are based on experimental work conducted by the Garc{\\'i}a-Moreno lab. Our study demonstrates that the aggregated estimate obtained from BMA outperforms all individual prediction methods in our cross-validation study with improvements from 40-70\\% over other method classes. This work illustrates a new possible mechanism for improving the accuracy of p$$K_a$$ prediction and lays the foundation for future work on aggregate models that balance computational cost with prediction accuracy.« less

  10. Experiment of low resistance joints for the ITER correction coil.

    PubMed

    Liu, Huajun; Wu, Yu; Wu, Weiyue; Liu, Bo; Shi, Yi; Guo, Shuai

    2013-01-01

    A test method was designed and performed to measure joint resistance of the ITER correction coil (CC) in liquid helium (LHe) temperature. A 10 kA superconducting transformer was manufactured to provide the joints current. The transformer consisted of two concentric layer-wound superconducting solenoids. NbTi superconducting wire was wound in the primary coil and the ITER CC conductor was wound in the secondary coil. The primary and the secondary coils were both immersed in liquid helium of a 300 mm useful bore diameter cryostat. Two ITER CC joints were assembled in the secondary loop and tested. The current of the secondary loop was ramped to 9 kA in several steps. The two joint resistances were measured to be 1.2 nΩ and 1.65 nΩ, respectively.

  11. Last glacial to Holocene productivity and oxygen changes based on benthic foraminiferal assemblages from the western Alboran Sea

    NASA Astrophysics Data System (ADS)

    Pérez-Asensio, José N.; Cacho, Isabel; Frigola, Jaime; Pena, Leopoldo D.; Asioli, Alessandra; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    Late glacial to Holocene productivity and oxygen changes in the Alboran Sea were investigated analyzing benthic foraminiferal assemblages from the marine sediment core HER-GC-UB06. This 255 cm-long core was recovered at 946 m water depth in the Alboran Sea (western Mediterranean Sea) and includes homogeneous greyish clays from the last 23 ka. Nowadays, the core site is bathed by the Western Mediterranean Deep Water (WMDW) and near the overlying Levantine Intermediate Water (LIW). Benthic foraminifera from the size fraction >63 μm were identified at species level and counted until reaching at least 300 individuals. Q-mode principal component analyses (PCA) was performed to establish benthic foraminiferal assemblages. In addition, benthic foraminifera were classified according to their microhabitat preferences. Diversity was assessed with several diversity indices. Four benthic foraminiferal assemblages have been identified along the core. The distribution of these assemblages records changes in productivity and oxygen conditions during the last 23 ka. The last glacial and deglaciation interval, 23-12.5 ka, shows low diversity and is characterized by the Nonionella iridea assemblage, which includes Cassidulina laevigata, Bolivina dilatata, Nonionoides turgida and Cibicides pachyderma as secondary taxa. This assemblage can be interpreted as a moderately oxygenated mesotrophic environment with episodic pulses of fresh organic matter. Although general mesotrophic conditions prevail, the Last Glacial Maximum shows a more oligotrophic and better oxygenated setting as suggested by higher abundance of epifaunal-shallow infaunal taxa. In contrast, along the Bølling-Allerød eutrophic conditions with higher productivity and lower oxygenation are recorded by a deep infaunal taxa maximum. During the Younger Dryas (YD) and the earliest Holocene (12.5-10.5 ka), the Bolivina dilatata assemblage dominates coinciding with a lower diversity, especially during the YD. This species and the additional taxa of the assemblage (Bolivina spathulata, Bolivina subspinescens, Bulimina marginata, Bolivina variabilis and Uvigerina peregrina) also thrive in mesotrophic environments with fresh organic matter supply and moderate oxygen content. The lower part of the early Holocene (10.5-7.3 ka) is dominated by the Cassidulina obtusa assemblage including Bolivina subspinescens, Bolivina variabilis, Bulimina marginata, Gyroidina altiformis, Nonionella iridea and Quinqueloculina sp. as associated taxa. A highly diverse mesotrophic setting with slightly higher oxygenation can be inferred for this assemblage. This is supported by the higher abundance of epifaunal-shallow infaunal taxa and the presence of G. altiformis and Quinqueloculina sp. Finally, the highly diverse Alabaminella weddellensis assemblage occurs along the upper part of the core (7.3-0 ka) encompassing the upper early Holocene and late Holocene. Additional species of this assemblages are Uvigerina mediterranea, Melonis barleeanus, Cassidulina laevigata, Cassidulina obtusa and Uvigerina peregrina. This assemblage suggests mesotrophic conditions with a more continuous organic matter supply as pointed out by the occurrence of U. mediterranea and the intermediate infaunal M. barleeanus that can feed from more degraded organic matter. The onset of this assemblage around 7.3 ka might be related to the establishment of the semi-permanent productive 'Malaga cell" dated at 7.7 ka.

  12. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must bemore » brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single-turn, magnetic field coils this fall, with 200 T experiments on the Texas Petawatt laser in the spring of 2012.« less

  13. Influence of waveform and current direction on short-interval intracortical facilitation: a paired-pulse TMS study.

    PubMed

    Delvendahl, Igor; Lindemann, Hannes; Jung, Nikolai H; Pechmann, Astrid; Siebner, Hartwig R; Mall, Volker

    2014-01-01

    Transcranial magnetic stimulation (TMS) of the human primary motor hand area (M1-HAND) can produce multiple descending volleys in fast-conducting corticospinal neurons, especially so-called indirect waves (I-waves) resulting from trans-synaptic excitation. Facilitatory interaction between these I-waves can be studied non-invasively using a paired-pulse paradigm referred to as short-interval intracortical facilitation (SICF). We examined whether SICF depends on waveform and current direction of the TMS pulses. In young healthy volunteers, we applied single- and paired-pulse TMS to M1-HAND. We probed SICF by pairs of monophasic or half-sine pulses at suprathreshold stimulation intensity and inter-stimulus intervals (ISIs) between 1.0 and 5.0 ms. For monophasic paired-pulse stimulation, both pulses had either a posterior-anterior (PA) or anterior-posterior (AP) current direction (AP-AP or PA-PA), whereas current direction was reversed between first and second pulse for half-sine paired-pulse stimulation (PA-AP and AP-PA). Monophasic AP-AP stimulation resulted in stronger early SICF at 1.4 ms relative to late SICF at 2.8 and 4.4 ms, whereas monophasic PA-PA stimulation produced SICF of comparable size at all three peaks. With half-sine stimulation the third SICF peak was reduced for PA-AP current orientation compared with AP-PA. SICF elicited using monophasic as well as half-sine pulses is affected by current direction at clearly suprathreshold intensities. The impact of current orientation is stronger for monophasic compared with half-sine pulses. The direction-specific effect of paired-pulse TMS on the strength of early versus late SICF shows that different cortical circuits mediate early and late SICF. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Late-Pleistocene evolution of the East Mediterranean shallow continental shelf of north-central Israel

    NASA Astrophysics Data System (ADS)

    Shtienberg, Gilad; Dix, Justin; Waldmann, Nicolas; Makovsky, Yizhaq; Bookman, Revital; Roskin, Joel; Bialik, Or; Golan, Arik; Sivan, Dorit

    2016-04-01

    Sea-level fluctuations are a dominant and dynamic mechanism that control coastal environmental through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on an integrated high-resolution marine and terrestrial litho-stratigraphic and geophysical framework of the north-central Mediterranean coastal zone of Israel. The interpretation enabled the reconstruction of the coastal evolution over the last ˜130 ka. A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, detailed lithological borehole data-sets, a dense 110 km long sub-bottom geophysical survey and seven continuous boreholes sediment records. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. Meanwhile, the chronostratigraphy of the terrestrial side was constructed through integration of magnetic susceptibility, sedimentological and geochemical analysis with 17 new OSL ages. The seismic units were correlated with the available terrestrial borehole data and then associated to the retrieved terrestrial chronostratigraphy to produce a 4D reconstruction model of the paleo-landscape. The entire unconsolidated sequence overlies a calcareous aeolianite (locally named Kurkar unit) dated from ˜131 - ˜104 ka, which represents the top of the last interglacial cycle dune sediments. The lower unconsolidated unit consists of a red silty loam dated to ˜71 ka. This Red-Paleosol unit is overlaid by a dark brown clayey silty loam This Brown-Paleosol unit dates to ˜58 - ˜36 ka and is overlaid by a dark silty clay wetland deposit dated to ˜21 - ˜10 ka. The wetland unit is topped by a quartz sand dated to ˜6.6 - 0.1 ka. This approach allowed us to investigate the relationship between the lithological units and sea-level change and thus enable the reconstruction of the coastal evolution over the last ˜130 ka. This reconstruction suggests that the stratigraphy is dominated by a sea level lowstand during which aeolian, fluvial and paleosol sediments were deposited in a terrestrial environment. The coastal-terrestrial landscape was flooded by the early to middle Holocene transgression. The results of this study provide a valuable framework for future national strategic shallow-water infrastructure construction and also for the possible locations of past human settlements in relation to coastal evolution through time.

  15. A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Houard, A.; Brelet, Y.; Carbonnel, J.; Larour, J.; André, Y.-B.; Mysyrowicz, A.

    2013-04-01

    We describe a simple, sturdy, and reliable spark gap operating with air at atmospheric pressure and able to switch currents in excess of 10 kA with sub-nanosecond jitter. The spark gap is remotely triggered by a femtosecond laser filament.

  16. Structure, distribution, and evolution history of the Early Holocene erosional mud ridge system on the inner East China Sea shelf near the Yangtze River estuary

    NASA Astrophysics Data System (ADS)

    Feng, Zhibing; Liu, Baohua; Zhao, Yuexia; Li, Xishuang; Dada, Olusegun A.; Jiang, Li; Si, Shaokun

    2017-04-01

    Utilizing the collected high-resolution seismic dataset and accompanying borehole and bathymetric data, we systematically evaluated the morphology, architecture, sedimentology, and evolution of erosional mud ridges within the inner East China Sea (ECS) shelf. We identified 20 mud ridges, i.e., seismic reflection profile crossings of exposed or buried mud ridges, which are 3.0-30.1 km in width and 2.5-17.3 m in height. The mud ridges are composed predominantly of gray clayey silt, and on seismic profiles contain parallel to subparallel reflectors. They formed around 10-12 ka BP within an estuarine environment. Scouring features of some mud ridges on the eastern part of the study area can be recognized. Consideration of the relative positions of mud ridges, together with the topographical features, enables us to map four linear mud ridges (LMRs). The SE-NW oriented LMRs are > 50 km in length, 3.0-9.5 km in width and running parallel to each other. They also display asymmetric shapes, with steeper slopes to the SW. The eastern segments of some LMRs are exposed on the present seafloor whereas other segments are mainly overlain by the mid- and late Holocene strata. Since the LMRs share similarities with the modern tidal sand ridges in shape and orientation, we hypothesize that they are formed under a uniform tidal current. Seismic data highlight that the internal reflectors of sand ridges consist of dipping clinoforms and are significantly different from LMRs, a feature which is largely due to the difference in grain-size composition of sediments between the inner and mid-outer ECS shelf. The mid- to outer ECS shelf is capped by coarser-grained sediments (i.e., medium to fine-grained), which were reworked and deposited at locations near the erosional areas under a polycyclic tidal current, thus forming multiphase sand ridges. However, fine-grained sediments (i.e., silty clay and clayey silt) overlain on the inner ECS shelf with light mass were carried far away from the erosional areas by the tidal currents, and the relict mud ridges were built. Evidence shows that the LMRs were formed by the early Holocene strata being scoured by a persistent southeasterly flowing current during 8-10 ka BP. The evolution of the LMRs occurred in three stages: (a) formation of the transgressional strata at 10-12 ka BP, (b) strong trough erosion at 8-10 ka BP, and (c) local adjustment (i.e., local erosion slightly and preservation) after 8 ka BP.

  17. The Physics of Local Helicity Injection Non-Solenoidal Tokamak Startup

    NASA Astrophysics Data System (ADS)

    Redd, A. J.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Jardin, S.

    2013-10-01

    Non-solenoidal startup via Local Helicity Injection (LHI) uses compact current injectors to produce toroidal plasma current Ip up to 170 kA in the PEGASUS Toroidal Experiment, driven by 4-8 kA injector current on timescales of 5-20 milliseconds. Increasing the Ip buildup duration enables experimental demonstration of plasma position control on timescales relevant for high-current startup. LHI-driven discharges exhibit bursty MHD activity, apparently line-tied kinking of LHI-driven field lines, with the bursts correlating with rapid equilibrium changes, sharp Ip rises, and sharp drops in the injector impedance. Preliminary NIMROD results suggest that helical LHI-driven current channels remain coherent, with Ip increases due to reconnection between adjacent helical turns forming axisymmetric plasmoids, and corresponding sharp drops in the bias circuit impedance. The DC injector impedance is consistent with a space charge limit at low bias current and a magnetic limit at high bias current. Internal measurements show the current density profile starts strongly hollow and rapidly fills in during Ip buildup. Simulations of LHI discharges using the Tokamak Simulation Code (TSC) will provide insight into the detailed current drive mechanism and guide experiments on PEFASUS and NSTX-U. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  18. Ka-band SAR interferometry studies for the SWOT mission

    NASA Astrophysics Data System (ADS)

    Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.

    2008-12-01

    The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.

  19. Why was there increased moisture in the eastern Caribbean when Europe was cold? Evidence from Speleothems

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Vieten, Rolf-martin; Miller, Thomas; Mangini, Augusto; Scholz, Denis; Kushnir, Yochanan; Black, David

    2014-05-01

    We present evidence for the last 10,000 years from speleothems collected from the eastern Caribbean showing that this region was anomalously moist at the same time that Europe and the north Atlantic were unusually cold. The most noticeable period for this association was during the 8.2ka event when Greenland ice cores (GISP2) show that northern Europe and the north Atlantic were cooler by 3 - 6 deg C. The trigger for the 8.2ka event is thought to be pulsed melt water discharges from a multi-event drainage of proglacial lakes associated with the decaying Laurentide Ice Sheet margin. The melt water apparently slowed the thermohaline circulation decreasing warmth to northern Europe. At the same time moisture transfer to the northern latitudes may have slowed resulting in the observed lower latitude precipitation patterns. The eastern Caribbean seems to be especially sensitive to the changes in the strength of the Atlantic meridional overturning circulation (AMOC). Higher precipitation values may also have increased lowland flooding along the coastal areas of north eastern South America, already affected by early Holocene sea-level change, and are linked to social territory reshuffling which stimulated the earliest migrations into the Caribbean Archipelago shortly afterwards. Our age models based on precise MC ICPMS 230ThU dating indicate that the eastern Caribbean stalagmites all grew at about the same rate of 15 cm through the 8.2ka event, much faster than during any other growth period, except today when they are also growing at an accelerated rate.

  20. Magnetization and anisotropy of cobalt ferrite thin films

    NASA Astrophysics Data System (ADS)

    Eskandari, F.; Porter, S. B.; Venkatesan, M.; Kameli, P.; Rode, K.; Coey, J. M. D.

    2017-12-01

    The magnetization of thin films of cobalt ferrite frequently falls far below the bulk value of 455 kA m-1 , which corresponds to an inverse cation distribution in the spinel structure with a significant orbital moment of about 0.6 μB that is associated with the octahedrally coordinated Co2+ ions. The orbital moment is responsible for the magnetostriction and magnetocrystalline anisotropy and its sensitivity to imposed strain. We have systematically investigated the structure and magnetism of films produced by pulsed-laser deposition on different substrates (Ti O2 , MgO, MgA l2O4 , SrTi O3 , LSAT, LaAl O3 ) and as a function of temperature (500 -700 °C) and oxygen pressure (10-4-10 Pa ) . Magnetization at room-temperature ranges from 60 to 440 kA m-1 , and uniaxial substrate-induced anisotropy ranges from +220 kJ m-3 for films on deposited on MgO (100) to -2100 kJ m-3 for films deposited on MgA l2O4 (100), where the room-temperature anisotropy field reaches 14 T. No rearrangement of high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+ and low-spin Co3+ on octahedral sites will reduce the low-temperature magnetization to 120 kA m-1 , and a consequent reduction of Curie temperature can bring the room-temperature value to near zero. Possible reasons for the appearance of low-spin cobalt in the thin films are discussed.

  1. Climate Forcing of Ripple Migration and Crest Alignment in the Last 400 kyr in Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Fenton, Lori K.; Carson, Helen C.; Michaels, Timothy I.

    2018-04-01

    The plains ripples of Meridiani Planum are the first paleo-aeolian bedforms on Mars to have had their last migration episode constrained in time (to 50-200 ka). Here we test how variations in orbital configuration, air pressure, and atmospheric dust loading over the past 400 kyr affect bedform mobility and crest alignment. Using the National Aeronautics and Space Administration Ames Mars Global Climate Model, we ran a series of sensitivity tests under a number of different conditions, seeking changes in wind patterns relative to those modeled for present-day conditions. Results indicate that enhanced sand drift potential in Meridiani Planum correlates with (1) high axial obliquity, (2) a longitude of perihelion (Lp) near southern summer solstice, and (3) a greater air pressure. The last pulse of westward plains ripple migration likely occurred during the most recent obliquity (relative) maximum, from 111 to 86 ka. At Lp coinciding with southern summer solstice, the Mars Global Climate Model produced a westward resultant drift direction, consistent with the observed north-south plains ripple crest alignment. However, smaller superposed ripples, aligned NNE-SSW, are consistent with a strengthened northern summer Hadley return flow, occurring when Lp coincided with northern summer solstice. The superposed NNE-SSW ripples likely formed as the axial obliquity decreased during the last relative maximum and Lp swung toward northern summer, from 86 to 72 ka. The timeline of bedform activity supports the proposed sequence of CO2 sequestration in the south polar residual cap over the past 400 kyr.

  2. Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Kano, Ryota; Mitubori, Hironori; Iwao, Toru

    2015-11-01

    Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.

  3. A comparison of Holocene fluctuations of the eastern and western margins of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.

    2013-12-01

    Determining how the Greenland Ice Sheet (GrIS) responded to past temperature fluctuations is important for assessing its future stability in a changing climate. We present a record of the Holocene extents of the western GrIS margin near Kangerlussuaq (67.0°N, 50.7°W) and compare this with the past fluctuations of Bregne ice cap (71°N, 25.6° W), a small ice cap in the Scoresby Sund region 90 km from the eastern GrIS margin, to examine the mechanisms that influenced past ice margin fluctuations. The past extents of the Bregne ice cap are a proxy for the climatic conditions that influenced the nearby GrIS margin. We used glacial geomorphic mapping, 10Be dating of boulders and bedrock, and sediment cores from proglacial and non-glacial lakes. In western Greenland, 10Be ages on the Keglen moraines, 13 km west of the current GrIS margin and the Ørkendalen moraines, ≤2 km west of the current ice margin date to 7.3 × 0.1 ka (n=6) and 6.8 × 0.3 ka (n=9), respectively. Fresh moraines, ≤50 m from the current ice margin date to AD 1830-1950 and are likely associated with advances during the Little Ice Age (LIA). In some areas, the LIA moraines lie stratigraphically above the Ørkendalen moraines, indicating the GrIS was inboard of the Ørkendalen limit from 6.8 ka to the 20th century. In eastern Greenland, 10Be ages show that Bregne ice cap retreated within its late Holocene limit by 10.7 ka. A lack of clastic sediment in a proglacial lake suggests the ice cap was smaller or completely absent from ~10-2.6 ka. A snowline analysis indicates that temperatures ~0.5°C warmer than present would render the entire ice cap into an ablation zone. Glacial silts in the proglacial lake at ~2.6 and ~1.9 cal kyr BP to present indicate advances of Bregne ice cap. Fresh moraines ≤200 m of Bregne ice cap were deposited ≤2.6 cal kyr BP and mark the largest advance of the Holocene. Both the western GrIS margin and Bregne ice cap were influenced by Northern Hemisphere summer insolation during the Holocene. The western GrIS margin retreated significantly and Bregne ice cap likely disappeared during the warm early to middle Holocene. 10Be ages (10.7 ka) outboard of the late Holocene moraines at Bregne ice cap compared to those outside of the LIA moraines near Kangerlussuaq (6.8 ka) differ by ~4 kyr. This disparity in ages may have been caused by a large late Holocene advance in eastern Greenland, or perhaps the western GrIS margin retreated farther inland during the middle Holocene. Decreasing Northern Hemisphere summer insolation during the late Holocene, combined with a strong, cold East Greenland Current near Scoresby Sund may have influenced a significant ice cap advance. The temporal pattern of the responses of the eastern and western ice margins to Holocene climate changes may be indicative of how the GrIS will respond to future changes.

  4. A Ka-band radial relativistic backward wave oscillator with GW-class output power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao

    A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less

  5. Ka-band and X-band observations of the solar corona acquired during the Cassini 2001 superior conjunction

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.

    2002-01-01

    Simultaneous dual-frequency Ka-band (32 GHz) and X-band (8.4 GHz) carrier signal data have been acquired during the superior conjunction of the Cassini spacecraft June 2001, using the NASA Deep Space Network's facilities located in Goldstone, California. The solar elongation angle of the observations varied from -4.1 degrees (-16 solar radii) to -0.6 degrees (-2.3 solar radii). The observed coronal and solar effects on the signals include spectral broadening, amplitude scintillation, phase scintillation, and increased noise. The measurements were generally consistent with existing solar models, except during solar transient events when the signatures of the measurements were observed to increase significantly above the quiet background levels. This is the second solar conjunction of Cassini for which simultaneous X/Ka data were acquired. Both solar conjunctions, conducted in May 2000 and June 2001, occurred near the peak of the current 11 year solar cycle.

  6. Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm-2 niobium fabrication process

    NASA Astrophysics Data System (ADS)

    Takeuchi, Naoki; Nagasawa, Shuichi; China, Fumihiro; Ando, Takumi; Hidaka, Mutsuo; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-01

    Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power consumption and very small switching energy. In this paper, we report a new AQFP cell library designed using the AIST 10 kA cm-2 Nb high-speed standard process (HSTP), which is a high-critical-current-density version of the AIST 2.5 kA cm-2 Nb standard process (STP2). Since the intrinsic damping of the Josephson junction (JJ) of HSTP is relatively strong, shunt resistors for JJs were removed and the energy efficiency improved significantly. Also, excitation transformers in the new cells were redesigned so that the cells can operate in a four-phase excitation mode. We described the detail of HSTP and the AQFP cell library designed using HSTP, and showed experimental results of cell test circuits.

  7. Pulse radiolysis studies of mangiferin: A C- glycosyl xanthone isolated from Mangifera indica

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Priyadarsini, K. Indira; Sudheerkumar, M.; Unnikrishhnan, M. K.; Mohan, H.

    2006-01-01

    Pulse radiolysis technique has been employed to study the reaction of different oxidizing and reducing radicals with mangiferin. The reaction of rad OH radical showed the formation of transient species absorbing in 380-390 and 470-480 nm region. The reaction with specific one-electron oxidants (N 3rad , CCl 3O 2rad ) also showed the formation of similar transient absorption bands and is assigned to phenoxyl radicals. The p Ka values of the transient species have been determined to be 6.3 and 11.9. One-electron oxidation potential of mangiferin at pH 9 has been found to be 0.62 V vs. NHE. The reaction of e aq- showed the formation of transient species with λmax at 340 nm, which is assigned to the ketyl anion radical formed on addition of e aq- at carbonyl site. Reactions of one-electron oxidised mangiferin radicals with ascorbic acid have also been studied.

  8. Holocene water mass history off NE Greenland - A first high-resolution sediment record from the western Fram Strait

    NASA Astrophysics Data System (ADS)

    Zehnich, Marc; Palme, Tina; Spielhagen, Robert F.; Hass, H. Christian; Bauch, Henning A.

    2017-04-01

    While the Holocene history of the eastern Fram Strait seems well investigated, no high-resolution paleoenvironmental records were available from the western Fram Strait so far. A new sedimentary record, obtained during expedition PS93.1 (2015) of RV Polarstern on the outermost NE Greenland shelf, allows for the first time to reconstruct Holocene changes in near-surface salinities, temperature, stratification and water masses (polar waters vs. Atlantic Water), potentially related to variations of the freshwater and sea ice export from the Arctic Ocean. The 260 cm long sedimentary record from site PS93/025 (80.5°N, 8.5°W) was investigated for sediment composition, foraminifer contents, grain size variations (sortable silt) and the isotopic composition of planktic foraminifers. Radiocarbon datings reveal an age of 10.2 cal-ka for the core base and continuous sedimentation throughout most of the Holocene. The sediments are generally very fine-grained (<2% sand). The grain size record reveals a fining-upwards trend and sediments from <6.5 cal-ka consist of <0.5% coarse fraction. A comparison of foraminifer and coarse fraction abundances shows strong similarities. Apparently the contribution of coarse terrestrial material from iceberg transport was extremely low throughout the last 10.2 cal-ka. Foraminifer abundances (both planktic and benthic) are high in Early Holocene sediments until ca. 7 cal-ka and decrease rapidly thereafter. This is interpreted to reflect a relatively strong advection of Atlantic Water to the NW Fram Strait, which correlates well with similar findings on the eastern side of the Arctic Gateway. Sortable silt grain sizes are high (27-32 µm) in the older part of the record and gradually decrease between 7 cal-ka and 4 cal-ka. After ca. 4 cal-ka, sortable silt shows values of 20-22 µm and little variation. Considering also the grain-size distribution curves, we propose a decline of bottom current velocities on the outer NE Greenland shelf after 7 cal-ka, related to a decrease of Atlantic Water advection. These preliminary results reveal a strong coupling of Holocene environments on both sides of the Fram Strait.

  9. The Alleret Maar lacustrine sequence (French Massif Central): a 150 ka long early-middle Pleistocene continental paleoenvironmental record.

    NASA Astrophysics Data System (ADS)

    Nomade, S.; Pastre, J.; Guillou, H.; Gauthier, A.; Scaillet, S.

    2008-12-01

    Lacustrine maar sequences of the French Massif Central are of great interest for paleoclimatic and paleoenvironmental reconstructions of mid-latitudes Quaternary continental environments. In particular, the western Velay region yields exceptional sequences spanning the last 450 ka (Reille et al., J. Quat. Sci. 2000). However, older sequences remain largely unknown despite the presence of interbedded alkaline tephras allowing precise absolute radiochronological control of many lacustrine squences. The Alleret maar is a 1500 m wide phreatomagmatic crater that provides a long lacustrine sequence (41 m). The upper part of this sequence (AL2 core, 14.6 m) was studied between 2005 and 2006 (Pastre et al., C. R. Acad Sci, 2007). A 39Ar/40Ar date (557 ± 5ka) obtained from an interbedded tephra layer located at 7m as well as the associated pollen data attribute the beginning of this sequence to the MIS 15. Thanks to the AL3 core recovered in 2005 (40.6 m, CNRS Meudon) several new tephra layers were discovered in the bottom part of this lacustrine sequence. Three new 39Ar/40Ar ages (single crystal analyses) from trachytic tephra layers were obtained at the LSCE Argon Laboratory (France). These layers are located at -30.2, -36.2 and -39.2m. Ages obtained relative to the ACR-2 flux standard (1,201Ma, Kuiper et al., Science, 2008) range from 692 ± 6 ka (MSWD: 2.3, n=18) for the youngest (-30.2m) to 726 ± 9Ka Ka (MSWD: 2.2, n=12) for the lowest tephra located at -39.2m. These new dates indicate a relatively homogeneous deposition rate of 3.5cm/ka and that the last 10 meters cover the MIS 17-MIS18 period. According to these current radiochronological data the complete lacustrine sequence last more than 150ka. Ongoing sedimentary and pollen studies will allow to extend the paleoenvironmental and paleoclimatic records of the French Massif Central towards the beginning of the early middle Pleistocene.

  10. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  11. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    PubMed

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  12. Geomagnetic excursions in the Brunhes and Matuyama Chrons: Do they come in bunches?

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2012-04-01

    Geomagnetic excursions, defined here as brief directional aberrations of the main dipole field outside the range of expected secular variation, remain controversial. Poorly-correlated records of apparent excursions from lavas and sediments can often be assigned to sampling artifacts, sedimentological phenomena, volcanic terrane effects, or local secular variation, rather than behavior of the main dipole field. Although records of magnetic excursions date from the 1960s, the number of Brunhes excursions in recent reviews of the subject have reached the 12-17 range, of which only about ~7 are adequately and/or consistently recorded. For the Matuyama Chron, the current inventory of excursions stands at about 10. The better quality excursion records, with reasonable age control, imply millennial-scale or even sub-millennial-scale durations. When "adequately" recorded, excursions are manifest as paired polarity reversals flanking virtual geomagnetic poles (VGPs) that reach high latitudes in the opposite hemisphere. At the young end of the excursion record, the Mono Lake (~33 ka) and Laschamp (~41 ka) excursions are well documented, although records of the former are not widely distributed. Several excursions younger than the Mono Lake excursion (at 17 ka and 25 ka) have recently been recorded in lavas and sediments, respectively. Is the 17-41 ka interval characterized by multiple excursions? Similarly, multiple excursions have been recorded in the 188-238 ka interval that encompasses records of the Iceland Basin excursion (~188 ka) and the Pringle Falls (PF) excursion. The PF excursion has been assigned ages in the 211-238 ka range. Does this mean that this interval is also characterized by several discrete excursions? The 500-600 ka interval incorporates not only the Big Lost excursion at ~565 ka, but also anomalous magnetization directions from lava flows, particularly in the West Eifel volcanics that yield mid-latitude northern-hemisphere VGPs with a range of Ar/Ar ages. The key question is whether such intervals of mid-latitude VGPs denote high-amplitude secular variation or inadequately recorded magnetic excursions. We propose that excursions characterized by high VGP latitudes in the opposite hemisphere should be termed Category 1 excursions, and those manifest by low/mid-latitude VGPs should be termed Category 2 excursions. In the future, improved records may "elevate" Category 2 excursions to Category 1. We do not view this subdivision of Category 1 and Category 2 excursions as necessarily a geomagnetic distinction, but possibly a distinction based on recording fidelity.

  13. Plasma Experiments on an Internal Coil Device with an High Temperature Superconductor

    NASA Astrophysics Data System (ADS)

    Yuichi, Ogawa; Junji, Morikawa; Kotaro, Ohkuni; Dan, Hori; Shigeo, Yamakosi; Nagato, Yanagi; Toshiyuki, Mito; Masataka, Iwakuma; Toshio, Uede

    2003-10-01

    An internal coil device would be expected for exploring high beta plasmas based on plasma relaxation process. Prof. A. Hasegawa proposed an advanced fusion reactor with a dipole configuration, and Mahajan and Yoshida developed a new high beta state based on two-fluid relaxation theory. To study these high beta plasmas, we have constructed an internal coil device with a high temperature superconductor. The major radius of the internal coil is 15 cm, and the coil current is 50 kA. Three different types of Ag-sheathed Bi-2223 tapes are employed; i.e., a high critical current tape with a low silver ratio for the main HTS coil, a 0.3wt3atprovided by a GM refrigerator and supplied to the coil through a check valve, and the coil current is directly excited with the external power supply through removable electrodes. It took about 11 hours to cool the coil down to 21 K from the room temperature, and the nominal cable current of 118 A (overall coil current: 50 kA) has been achieved. A decay time constant of the persistent current is a few tens of hours. Plasma experiments in a dipole configuration have been initiated.

  14. Late Quaternary stream piracy and strath terrace formation along the Belle Fourche and lower Cheyenne Rivers, South Dakota and Wyoming

    USGS Publications Warehouse

    Stamm, John F.; Hendricks, Robert R.; Sawyer, J. Foster; Mahan, Shannon; Zaprowski, Brent J.; Geibel, Nicholas M.; Azzolini, David C.

    2013-01-01

    Stream piracy substantially affected the geomorphic evolution of the Missouri River watershed and drainages within, including the Little Missouri, Cheyenne, Belle Fourche, Bad, and White Rivers. The ancestral Cheyenne River eroded headward in an annular pattern around the eastern and southern Black Hills and pirated the headwaters of the ancestral Bad and White Rivers after ~ 660 ka. The headwaters of the ancestral Little Missouri River were pirated by the ancestral Belle Fourche River, a tributary to the Cheyenne River that currently drains much of the northern Black Hills. Optically stimulated luminescence (OSL) dating techniques were used to estimate the timing of this piracy event at ~ 22–21 ka. The geomorphic evolution of the Cheyenne and Belle Fourche Rivers is also expressed by regionally recognized strath terraces that include (from oldest to youngest) the Sturgis, Bear Butte, and Farmingdale terraces. Radiocarbon and OSL dates from fluvial deposits on these terraces indicate incision to the level of the Bear Butte terrace by ~ 63 ka, incision to the level of the Farmingdale terrace at ~ 40 ka, and incision to the level of the modern channel after ~ 12–9 ka. Similar dates of terrace incision have been reported for the Laramie and Wind River Ranges. Hypothesized causes of incision are the onset of colder climate during the middle Wisconsinan and the transition to the full-glacial climate of the late-Wisconsinan/Pinedale glaciation. Incision during the Holocene of the lower Cheyenne River is as much as ~ 80 m and is 3 to 4 times the magnitude of incision at ~ 63 ka and ~ 40 ka. The magnitude of incision during the Holocene might be due to a combined effect of three geomorphic processes acting in concert: glacial isostatic rebound in lower reaches (~ 40 m), a change from glacial to interglacial climate, and adjustments to increased watershed area resulting from piracy of the ancestral headwaters of the Little Missouri River.

  15. Late Quaternary stream piracy and strath terrace formation along the Belle Fourche and lower Cheyenne Rivers, South Dakota and Wyoming

    NASA Astrophysics Data System (ADS)

    Stamm, John F.; Hendricks, Robert R.; Sawyer, J. Foster; Mahan, Shannon A.; Zaprowski, Brent J.; Geibel, Nicholas M.; Azzolini, David C.

    2013-09-01

    Stream piracy substantially affected the geomorphic evolution of the Missouri River watershed and drainages within, including the Little Missouri, Cheyenne, Belle Fourche, Bad, and White Rivers. The ancestral Cheyenne River eroded headward in an annular pattern around the eastern and southern Black Hills and pirated the headwaters of the ancestral Bad and White Rivers after ~ 660 ka. The headwaters of the ancestral Little Missouri River were pirated by the ancestral Belle Fourche River, a tributary to the Cheyenne River that currently drains much of the northern Black Hills. Optically stimulated luminescence (OSL) dating techniques were used to estimate the timing of this piracy event at ~ 22-21 ka. The geomorphic evolution of the Cheyenne and Belle Fourche Rivers is also expressed by regionally recognized strath terraces that include (from oldest to youngest) the Sturgis, Bear Butte, and Farmingdale terraces. Radiocarbon and OSL dates from fluvial deposits on these terraces indicate incision to the level of the Bear Butte terrace by ~ 63 ka, incision to the level of the Farmingdale terrace at ~ 40 ka, and incision to the level of the modern channel after ~ 12-9 ka. Similar dates of terrace incision have been reported for the Laramie and Wind River Ranges. Hypothesized causes of incision are the onset of colder climate during the middle Wisconsinan and the transition to the full-glacial climate of the late-Wisconsinan/Pinedale glaciation. Incision during the Holocene of the lower Cheyenne River is as much as ~ 80 m and is 3 to 4 times the magnitude of incision at ~ 63 ka and ~ 40 ka. The magnitude of incision during the Holocene might be due to a combined effect of three geomorphic processes acting in concert: glacial isostatic rebound in lower reaches (~ 40 m), a change from glacial to interglacial climate, and adjustments to increased watershed area resulting from piracy of the ancestral headwaters of the Little Missouri River.

  16. Transformer miniaturization for transcutaneous current/voltage pulse applications.

    PubMed

    Kolen, P T

    1999-05-01

    A general procedure for the design of a miniaturized step up transformer to be used in the context of surface electrode based current/voltage pulse generation is presented. It has been shown that the optimum secondary current pulse width is 4.5 tau, where tau is the time constant associated with the pulse forming network associated with the transformer/electrode interaction. This criteria has been shown to produce the highest peak to average current ratio for the secondary current pulse. The design procedure allows for the calculation of the optimum turns ratio, primary turns, and secondary turns for a given electrode load/tissue and magnetic core parameters. Two design examples for transformer optimization are presented.

  17. Stabilization of the vertical instability by non-axisymmetric coils

    DOE PAGES

    Turnbull, A. D.; Reiman, A. H.; Lao, L. L.; ...

    2016-07-05

    In a published Physical Review Letter [A. Reiman, Physical Review Letters, 99, 135007 (2007)], it was shown that axisymmetric (or vertical) stability can be improved by placing a set of parallelogram coils above and below the plasma oriented at an angle to the constant toroidal planes. The physics of this stabilization can be understood as providing an effective additional positive stability index. The original work was based on a simplified model of a straight tokamak and is not straightforwardly applicable to a finite aspect ratio, strongly shaped plasma such as in DIII-D. Numerical calculations were performed to provide a proofmore » of principal that 3-D fields can, in fact raise the elongation limits as predicted, in a real DIII-D-like configuration. A four field period trapezoid-shaped coil set was developed in toroidal geometry and 3-D equilibria were computed using trapezium coil currents of ,10kA, 100kA, and 500kA. The ideal magnetohydrodynamics growth rates were computed as a function of the conformal wall position for the n=0 symmetry-preserving family. The results show an insignificant relative improvement in the stabilizing wall location for the two lower coil current cases, of the order of 10 -3 and less. In contrast, the marginal wall position is increased by 7% as the coil current is increased to 500kA, confirming the main prediction from the original study in a real geometry case. In DIII-D the shift in marginal wall position of 7% would correspond to being able to move the existing wall outward by 5 to 10 cm. While the predicted effect on the axisymmetric stability is real, it appears to require higher coil currents than could be provided in an upgrade to existing facilities. Lastly, additional optimization over the pitch of the coils, the number of field periods and the coil positions, as well as plasma parameters, such as the internal inductivity l iβ, and q 95 would mitigate this but seem unlikely to change the conclusion.« less

  18. Stabilization of the vertical instability by non-axisymmetric coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnbull, A. D.; Reiman, A. H.; Lao, L. L.

    In a published Physical Review Letter [A. Reiman, Physical Review Letters, 99, 135007 (2007)], it was shown that axisymmetric (or vertical) stability can be improved by placing a set of parallelogram coils above and below the plasma oriented at an angle to the constant toroidal planes. The physics of this stabilization can be understood as providing an effective additional positive stability index. The original work was based on a simplified model of a straight tokamak and is not straightforwardly applicable to a finite aspect ratio, strongly shaped plasma such as in DIII-D. Numerical calculations were performed to provide a proofmore » of principal that 3-D fields can, in fact raise the elongation limits as predicted, in a real DIII-D-like configuration. A four field period trapezoid-shaped coil set was developed in toroidal geometry and 3-D equilibria were computed using trapezium coil currents of ,10kA, 100kA, and 500kA. The ideal magnetohydrodynamics growth rates were computed as a function of the conformal wall position for the n=0 symmetry-preserving family. The results show an insignificant relative improvement in the stabilizing wall location for the two lower coil current cases, of the order of 10 -3 and less. In contrast, the marginal wall position is increased by 7% as the coil current is increased to 500kA, confirming the main prediction from the original study in a real geometry case. In DIII-D the shift in marginal wall position of 7% would correspond to being able to move the existing wall outward by 5 to 10 cm. While the predicted effect on the axisymmetric stability is real, it appears to require higher coil currents than could be provided in an upgrade to existing facilities. Lastly, additional optimization over the pitch of the coils, the number of field periods and the coil positions, as well as plasma parameters, such as the internal inductivity l iβ, and q 95 would mitigate this but seem unlikely to change the conclusion.« less

  19. Stabilization of the vertical instability by non-axisymmetric coils

    NASA Astrophysics Data System (ADS)

    Turnbull, A. D.; Reiman, A. H.; Lao, L. L.; Cooper, W. A.; Ferraro, N. M.; Buttery, R. J.

    2016-08-01

    In a published Physical Review Letter (Reiman 2007 Phys. Rev. Lett. 99 135007), it was shown that axisymmetric (or vertical) stability can be improved by placing a set of parallelogram coils above and below the plasma oriented at an angle to the constant toroidal planes. The physics of this stabilization can be understood as providing an effective additional positive stability index. The original work was based on a simplified model of a straight tokamak and is not straightforwardly applicable to a finite aspect ratio, strongly shaped plasma such as in DIII-D. Numerical calculations were performed in a real DIII-D -like configuration to provide a proof of principal that 3-D fields can, in fact raise the elongation limits as predicted. A four field period trapezioid-shaped coil set was developed in toroidal geometry and 3D equilibria were computed using trapezium coil currents of 10 kA , 100 kA , and 500 kA . The ideal magnetohydrodynamics growth rates were computed as a function of the conformal wall position for the n = 0 symmetry-preserving family. The results show an insignificant relative improvement in the stabilizing wall location for the two lower coil current cases, of the order of 10-3 and less. In contrast, the marginal wall position is increased by 7% as the coil current is increased to 500 kA , confirming the main prediction from the original study in a real geometry case. In DIII-D the shift in marginal wall position of 7% would correspond to being able to move the existing wall outward by 5 to 10 cm. While the predicted effect on the axisymmetric stability is real, it appears to require higher coil currents than could be provided in an upgrade to existing facilities. Additional optimization over the pitch of the coils, the number of field periods and the coil positions, as well as plasma parameters, such as the internal inductivity {{\\ell}\\text{i}} , β , and {{q}95} would mitigate this but seem unlikely to change the conclusion.

  20. Optimization of Experimental Conditions of the Pulsed Current GTAW Parameters for Mechanical Properties of SDSS UNS S32760 Welds Based on the Taguchi Design Method

    NASA Astrophysics Data System (ADS)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2012-09-01

    Taguchi design method with L9 orthogonal array was implemented to optimize the pulsed current gas tungsten arc welding parameters for the hardness and the toughness of super duplex stainless steel (SDSS, UNS S32760) welds. In this regard, the hardness and the toughness were considered as performance characteristics. Pulse current, background current, % on time, and pulse frequency were chosen as main parameters. Each parameter was varied at three different levels. As a result of pooled analysis of variance, the pulse current is found to be the most significant factor for both the hardness and the toughness of SDSS welds by percentage contribution of 71.81 for hardness and 78.18 for toughness. The % on time (21.99%) and the background current (17.81%) had also the next most significant effect on the hardness and the toughness, respectively. The optimum conditions within the selected parameter values for hardness were found as the first level of pulse current (100 A), third level of background current (70 A), first level of % on time (40%), and first level of pulse frequency (1 Hz), while they were found as the second level of pulse current (120 A), second level of background current (60 A), second level of % on time (60%), and third level of pulse frequency (5 Hz) for toughness. The Taguchi method was found to be a promising tool to obtain the optimum conditions for such studies. Finally, in order to verify experimental results, confirmation tests were carried out at optimum working conditions. Under these conditions, there were good agreements between the predicted and the experimental results for the both hardness and toughness.

Top