Sample records for ka-band space traveling-wave

  1. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  2. High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard; Wilson, Jeffrey; Simons, Rainee; Williams, Wallace; Bhasin, Kul; Robbins, Neal; Dibb, Daniel; Menninger, William; Zhai, Xiaoling; Benton, Robert; hide

    2007-01-01

    The L-3 Communications Model 999H traveling-wave tube (TWT) has been demonstrated to generate an output power of 144 W at 60-percent overall efficiency in continuous-wave operation over the frequency band from 31.8 to 32.3 GHz. The best TWT heretofore commercially available for operation in the affected frequency band is characterized by an output power of only 35 W and an efficiency of 50 percent. Moreover, whereas prior TWTs are limited to single output power levels, it has been shown that the output power of the Model 999H can be varied from 54 to 144 W. A TWT is a vacuum electronic device used to amplify microwave signals. TWTs are typically used in free-space communication systems because they are capable of operating at power and efficiency levels significantly higher than those of solid-state devices. In a TWT, an electron beam is generated by an electron gun consisting of a cathode, focusing electrodes, and an anode. The electrons pass through a hole in the anode and are focused into a cylindrical beam by a stack of periodic permanent magnets and travel along the axis of an electrically conductive helix, along which propagates an electromagnetic wave that has been launched by an input signal that is to be amplified. The beam travels within the helix at a velocity close to the phase velocity of the electromagnetic wave. The electromagnetic field decelerates some of the electrons and accelerates others, causing the beam to become formed into electron bunches, which further interact with the electromagnetic wave in such a manner as to surrender kinetic energy to the wave, thereby amplifying the wave. The net result is to amplify the input signal by a factor of about 100,000. After the electrons have passed along the helix, they impinge on electrodes in a collector. The collector decelerates the electrons in such a manner as to recover most of the remaining kinetic energy and thereby significantly increase the power efficiency of the TWT.

  3. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  4. Space-Qualified Traveling-Wave Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Krawczyk, Richard; Simons, Rainee N.; Williams, Wallace D.; Robbins, Neal R.; Dibb, Daniel R.; Menninger, William L.; Zhai, Xiaoling; Benton, Robert T.

    2010-01-01

    The L-3 Communications Electron Technologies, Inc. Model 999HA traveling-wave tube (TWT), was developed for use as a high-power microwave amplifier for high-rate transmission of data and video signals from deep space to Earth (see figure). The 999HA is a successor to the 999H a non-space qualified TWT described in High-Power, High-Efficiency Ka-Band Traveling-Wave Tube (LEW-17900-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 32. Operating in the 31.8-to-32.3 GHz frequency band, the 999HA has been shown to generate 252 W of continuous- wave output power at 62 percent overall power efficiency a 75-percent increase in output power over the 999H. The mass of the 999HA is 35 percent less than that of the 999H. Moreover, taking account of the elimination of a Faraday cage that is necessary for operation of the 999H but is obviated by a redesign of high-voltage feed-throughs for the 999HA, the overall reduction in mass becomes 57 percent with an 82 percent reduction in volume. Through a series of rigorous tests, the 999HA has been qualified for operation aboard spacecraft with a lifetime exceeding seven years. Offspring of the 999HA will fly on the Kepler and Lunar Reconnaissance Orbiter missions.

  5. High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wilson, Jeffrey D.; Force, Dale A.

    2008-01-01

    Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.

  6. Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Reinhart, Richard C.; Kacpura, Thomas

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing.

  7. Deep-Space Ka-Band Flight Experience

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  8. K-Band Traveling-Wave Tube Amplifier

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Simons, Rainee N.; Peterson, Todd T.; Spitsen, Paul C.

    2010-01-01

    A new space-qualified, high-power, high-efficiency, K-band traveling-wave tube amplifier (TWTA) will provide high-rate, high-capacity, direct-to-Earth communications for science data and video gathered by the Lunar Reconnaissance Orbiter (LRO) during its mission. Several technological advances were responsible for the successful demonstration of the K-band TWTA.

  9. Computer Aided Design of Ka-Band Waveguide Power Combining Architectures for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Vaden, Karl R.

    2006-01-01

    Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.

  10. Waveguide Multimode Directional Coupler for Harvesting Harmonic Power from the Output of Traveling-Wave Tube Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2017-01-01

    This paper presents the design, fabrication, and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from dissimilar frequency band waveguides, is capable of isolating power at the 2nd harmonic frequency from the fundamental power at the output port of traveling-wave tube amplifiers. Test results from proof-of-concept demonstrations are presented for Ku/Ka-band and Ka/E-band MDCs, which demonstrate sufficient power in the 2nd harmonic for a space borne beacon source for mm-wave atmospheric propagation studies.

  11. Ka-Band, Multi-Gigabit-Per-Second Transceiver

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.; Smith, Francis J.; Harris, Johnny M.; Landon, David G.; Haddadin, Osama S.; McIntire, William K.; Sun, June Y.

    2011-01-01

    A document discusses a multi-Gigabit-per-second, Ka-band transceiver with a software-defined modem (SDM) capable of digitally encoding/decoding data and compensating for linear and nonlinear distortions in the end-to-end system, including the traveling-wave tube amplifier (TWTA). This innovation can increase data rates of space-to-ground communication links, and has potential application to NASA s future spacebased Earth observation system. The SDM incorporates an extended version of the industry-standard DVB-S2, and LDPC rate 9/10 FEC codec. The SDM supports a suite of waveforms, including QPSK, 8-PSK, 16-APSK, 32- APSK, 64-APSK, and 128-QAM. The Ka-band and TWTA deliver an output power on the order of 200 W with efficiency greater than 60%, and a passband of at least 3 GHz. The modem and the TWTA together enable a data rate of 20 Gbps with a low bit error rate (BER). The payload data rates for spacecraft in NASA s integrated space communications network can be increased by an order of magnitude (>10 ) over current state-of-practice. This innovation enhances the data rate by using bandwidth-efficient modulation techniques, which transmit a higher number of bits per Hertz of bandwidth than the currently used quadrature phase shift keying (QPSK) waveforms.

  12. Performance of a Ka-band transponder breadboard for deep-space applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Lane, J. P.; Kayalar, S.; Kermode, A. W.

    1995-01-01

    This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results.

  13. Ka Band Objects: Observation and Monitoring (KaBOOM)

    NASA Astrophysics Data System (ADS)

    Geldzahler, B.

    2012-09-01

    NASA has embarked on a path that will enable the implementation of a high power, high resolution X/Ka band radar system using widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. We shall demonstrate Ka band coherent uplink arraying with real-time atmospheric compensation using three 12m antennas at the Kennedy Space Center (KSC). Our proposed radar system can complement and supplement the activities of the Space Fence. The proposed radar array has the advantages of filling the gap between dusk and dawn and offers the possibility of high range resolution (4 cm) and high spatial resolution (?10 cm at GEO) when used in a VLBI mode. KSC was chosen because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka band friendly), and [c] the test satellites have a low elevation adding more attenuation and turbulence to the demonstration. If Ka band coherent uplink arraying can be made to work at KSC, it will work anywhere. We expect to rebaseline X-band in 2013, and demonstrate Ka band uplink arraying in 2014.

  14. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  15. Ultra High Power and Efficiency Space Traveling-Wave Tube Amplifier Power Combiner with Reduced Size and Mass for NASA Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.; Wilson, Jeffrey D.; Force, Dale A.

    2009-01-01

    In the 2008 International Microwave Symposium (IMS) Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT, has improved by a factor of ten over the previous generation Ka-Band devices. In this extended paper, a high power, high efficiency Ka-band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90 percent. In addition, at the design frequency of 32.05 GHz, error-free uncoded BPSK/QPSK data transmission at 8 megabits per second (Mbps), which is typical for deep space communications is demonstrated. Furthermore, QPSK data transmission at 622 Mbps is demonstrated with a low bit error rate of 2.4x10(exp -8), which exceeds the deep space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher.

  16. Ka-band study: 1988

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Horttor, R. L.; Clauss, R. C.; Wilcher, J. H.; Wallace, R. J.; Mudgway, D. J.

    1989-01-01

    The Ka-band study team was chartered in late 1987 to bring together all the planning elements for establishing 32 GHz (Ka-band) as the primary downlink frequency for deep-space operation, and to provide a stable baseline from which to pursue that development. This article summarizes the results of that study at its conclusion in mid-1988, and corresponds to material presented to NASA's Office of Space Operations on July 14, 1988. For a variety of reasons, Ka-band is the right next major step in deep-space communications. It offers improved radio metric accuracy through reduced plasma sensitivity and increased bandwidth. Because of these improvements, it offers the opportunity to reduce costs in the flight radio system or in the DSN by allocating part of the overall benefits of Ka-band to this cost reduction. A mission scenario is being planned that can drive at least two and possibly all three of the DSN subnets to provide a Ka-band downlink capability by the turn of the century. The implementation scenario devised by the study team is believed to be feasible within reasonable resource expectations, and capable of providing the needed upgrade as a natural follow-on to the technology development which is already underway.

  17. A Ka-band radial relativistic backward wave oscillator with GW-class output power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao

    A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less

  18. Deep Space Ka-band Link Management and the MRO Demonstration: Long-term Weather Statistics Versus Forecasting

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Shambayati, Shervin; Slobin, Stephen

    2004-01-01

    During the last 40 years, deep space radio communication systems have experienced a move toward shorter wavelengths. In the 1960s a transition from L- to S-band occurred which was followed by a transition from S- to X-band in the 1970s. Both these transitions provided deep space links with wider bandwidths and improved radio metrics capability. Now, in the 2000s, a new change is taking place, namely a move to the Ka-band region of the radio frequency spectrum. Ka-band will soon replace X-band as the frequency of choice for deep space communications providing ample spectrum for the high data rate requirements of future missions. The low-noise receivers of deep space networks have a great need for link management techniques that can mitigate weather effects. In this paper, three approaches for managing Ka-band Earth-space links are investigated. The first approach uses aggregate annual statistics, the second one uses monthly statistics, and the third is based on the short-term forecasting of the local weather. An example of weather forecasting for Ka-band link performance prediction is presented. Furthermore, spacecraft commanding schemes suitable for Ka-band link management are investigated. Theses schemes will be demonstrated using NASA's Mars Reconnaissance Orbiter (MRO) spacecraft in the 2007 to 2008 time period, and the demonstration findings will be reported in a future publication.

  19. The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II)

    NASA Astrophysics Data System (ADS)

    Morabito, D.; Butman, S.; Shambayati, S.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4-GHz) downlink. The signals are simultaneously transmitted from a 1.5-m-diameter parabolic antenna on MGS and received by a beam-waveguide (BWG) research and development (R&D) 34-meter a ntenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link experiment (KaBLE-II) allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked during the past 2 years. This article presents carrier-signal-level data (P_c/N_o) for both X-band and Ka-band acquired over a wide range of station elevation angles, weather conditions, and solar elongation angles. The cruise phase of the mission covered the period from launch (November 7, 1996) to Mars orbit capture (September 12, 1997). Since September 12, 1997, MGS has been in orbit around Mars. The measurements confirm that Ka-band could increase data capacity by at least a factor of three (5 dB) as compared with X-band. During May 1998, the solar corona experiment, in which the effects of solar plasma on the X-band and Ka-band links were studied, was conducted. In addition, frequency and difference frequency (f_x - f_(Ka)/3.8), ranging, and telemetry data results are presented. MGS/KaBLE-II measured signal strengths (for 54 percent of the experiments conducted) that were in reasonable agreement with predicted values based on preflight knowledge, and frequency residuals that agreed between bands and whose statistics were consistent with expected noise sources. For passes in which measured signal strengths disagreed with predicted values, the problems were traced to known deficiencies, for example, equipment operating under certain conditions, such as a cold Ka-band solid-state power amplifier (SSPA

  20. The Mars Observer Ka-band link experiment

    NASA Technical Reports Server (NTRS)

    Rebold, T. A.; Kwok, A.; Wood, G. E.; Butman, S.

    1994-01-01

    The Ka-Band Link Experiment was the first demonstration of a deep-space communications link in the 32- to 35-GHz band (Ka-band). It was carried out using the Mars Observer spacecraft while the spacecraft was in the cruise phase of its mission and using a 34-meter beam-waveguide research and development antenna at the Goldstone complex of the DSN. The DSN has been investigating the performance benefits of a shift from X-band (8.4 GHz) to Ka-band (32 GHz) for deep-space communications. The fourfold increase in frequency is expected to offer a factor of 3 to 10 improvement (5 to 10 dB) in signal strength for a given spacecraft transmitter power and antenna size. Until recently, the expected benefits were based on performance studies, with an eye to implementing such a link, but theory was transformed to reality when a 33.7-GHz Ka-band signal was received from the spacecraft by DSS 13. This article describes the design and implementation of the Ka-Band Link Experiment from the spacecraft to the DSS-13 system, as well as results from the Ka-band telemetry demonstration, ranging demonstration, and long-term tracking experiment. Finally, a preliminary analysis of comparative X- and Ka-band tracking results is included. These results show a 4- to 7-dB advantage for Ka-band using the system at DSS 13, assuming such obstacles as antenna pointing loss and power conversion loss are overcome.

  1. Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  2. The Status of Ka-Band Communications for Future Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Edwards, C.; Deutsch, L.; Gatti, M.; Layland, J.; Perret, J.; Stelzried, C.

    1997-01-01

    Over the past decade, the Jet Propulsion Laboratory's Telecommunications and Mission Operations Directorate has invested in a variety of technologies, targeted at both the flight and ground sides of the communications link, with the goal of developing a Ka-band (32 GHz) communications capability for future deep space missions.

  3. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.

    2016-08-15

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  4. Mars Reconnaissance Orbiter Ka-band (32 GHz) Demonstration: Cruise Phase Operations

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Morabito, David; Border, James S.; Davarian, Faramaz; Lee, Dennis; Mendoza, Ricardo; Britcliffe, Michael; Weinreb, Sander

    2006-01-01

    The X-band (8.41 GHz) frequency currently used for deep space telecommunications is too narrow (50 MHz) to support future high rate missions. Because of this NASA has decided to transition to Ka-band (32 GHz) frequencies. As weather effects cause much larger fluctuations on Ka-band than on X-band, the traditional method of using a few dBs of margin to cover these fluctuations is wasteful of power for Ka-band; therefore, a different operations concept is needed for Ka-band links. As part of the development of the operations concept for Ka-band, NASA has implemented a fully functioning Ka-band communications suite on its Mars Reconnaissance Orbiter (MRO). This suite will be used during the primary science phase to develop and refine the Ka-band operations concept for deep space missions. In order to test the functional readiness of the spacecraft and the Deep Space Network's (DSN) readiness to support the demonstration activities a series of passes over DSN 34-m Beam Waveguide (BWG) antennas were scheduled during the cruise phase of the mission. MRO was launched on August 12, 2005 from Kennedy Space Center, Cape Canaveral, Florida, USA and went into Mars Orbit on March 10, 2006. A total of ten telemetry demonstration and one high gain antenna (HGA) calibration passes were allocated to the Ka-band demonstration. Furthermore, a number of "shadow" passes were also scheduled where, during a regular MRO track over a Ka-band capable antenna, Ka-band was identically configured as the X-band and tracked by the station. In addition, nine Ka-band delta differential one way ranging ((delta)DOR) passes were scheduled. During these passes, the spacecraft and the ground system were put through their respective paces. Among the highlights of these was setting a single day record for data return from a deep space spacecraft (133 Gbits) achieved during one 10-hour pass; achieving the highest data rate ever from a planetary mission (6 Mbps) and successfully demonstrating Ka-band DDOR

  5. Ka-Band Transponder for Deep-Space Radio Science

    NASA Technical Reports Server (NTRS)

    Dennis, Matthew S.; Mysoor, Narayan R.; Folkner, William M.; Mendoza, Ricardo; Venkatesan, Jaikrishna

    2008-01-01

    A one-page document describes a Ka-band transponder being developed for use in deep-space radio science. The transponder receives in the Deep Space Network (DSN) uplink frequency band of 34.2 to 34.7 GHz, transmits in the 31.8- to 32.3 GHz DSN downlink band, and performs regenerative ranging on a DSN standard 4-MHz ranging tone subcarrier phase-modulated onto the uplink carrier signal. A primary consideration in this development is reduction in size, relative to other such transponders. The transponder design is all-analog, chosen to minimize not only the size but also the number of parts and the design time and, thus, the cost. The receiver features two stages of frequency down-conversion. The receiver locks onto the uplink carrier signal. The exciter signal for the transmitter is derived from the same source as that used to generate the first-stage local-oscillator signal. The ranging-tone subcarrier is down-converted along with the carrier to the second intermediate frequency, where the 4-MHz tone is demodulated from the composite signal and fed into a ranging-tone-tracking loop, which regenerates the tone. The regenerated tone is linearly phase-modulated onto the downlink carrier.

  6. Travelling wave effects in large space structures

    NASA Technical Reports Server (NTRS)

    Vonflotow, A.

    1983-01-01

    Several aspects of travelling waves in Large Space Structures(LSS) are discussed. The dynamic similarity among LSS's, electric power systems, microwave circuits and communications network is noted. The existence of time lag between actuation and response is illuminated with the aid of simple examples, and their prediction is demonstrated. To prevent echoes, communications lines have matched terminations; this idea is applied to the design of dampers of one dimensional structures. Periodic structures act as mechanical band pass filters. Implications of this behavior are examined on a simple example. It is noted that the implication is twofold; continuum models of periodic lattice structures may err considerably; on the other hand, it is possible to design favorable transmission (and resonance) characteristics into the structure.

  7. A wave-bending structure at Ka-band using 3D-printed metamaterial

    NASA Astrophysics Data System (ADS)

    Wu, Junqiang; Liang, Min; Xin, Hao

    2018-03-01

    Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.

  8. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Reinhart, Richard; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Mike

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASAs Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  9. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Reinhart, Richard C.; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Michael

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASA's Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  10. Assessment of the Atmospheric Channel for Short (Ka-Band and Optical) Wavelengths

    NASA Technical Reports Server (NTRS)

    Piazzolla, Sabino

    2007-01-01

    Atmospheric turbulence under clear sky conditions is an impairment of the atmospheric channel that greatly affects propagation of optical signal in the troposphere. The turbulence manifests itself in a number of forms within the optical domain, from the twinkling of a star in a clear night, to resolution degradation in a large aperture telescope. Therefore, a body of analytical, numerical, and experimental tools has been developed in optics to study, simulate, and control effects of atmospheric turbulence on an optical signal. Incidentally, there has been an increasing demand for high data rate returns from NASA missions which has led to envision utilizing a carrier signal in the Ka-Band range. The impact of atmospheric turbulence effects must be evaluated and considered for this frequency domain. The purpose of this work is to show that when the turbulence strength from the optical case to the KaBand ease is properly scaled, one can apply the same mathematical simulation developed for optical to predict turbulence effects within the Ka-Band domain. As a demonstration of this principle, we present how the scintillations of a Ka-Band downlink return of a deep space signal was successfully reproduced through wave-optics simulation.

  11. Dichroic Filter for Separating W-Band and Ka-Band

    NASA Technical Reports Server (NTRS)

    Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.

    2012-01-01

    The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.

  12. A High Efficiency, Miniaturized Ka Band Traveling Wave Tube Based on a Novel Finned Ladder RF Circuit Design

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Wilson, J. D.; Vaden, K. R.; Force, D. A.; Freeman, J. C.; Lesny, G. G.; Kory, C. L.; Chevalier, C. T.; Ebihara, B.; Dayton, J. A.; hide

    2001-01-01

    Space communications architectures are being planned to meet the high rate data distribution requirements of future NASA Enterprise missions. These will require the use of traveling wave tube amplifiers (TWTAs) to provide the high frequency, RF (radio frequency) power and efficiency needed for many of the communications links. A program addressing these requirements is currently underway at NASA Glenn Research Center (GRC) for the development of a high efficiency, 20 watt, 32 GHz TWT of reduced size and weight that is based on a novel high gain n circuit design, termed the 'finned ladder'.

  13. NASA's Evolution to Ka-Band Space Communications for Near-Earth Spacecraft

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin; Stocklin, Frank; Geldzahler, Barry; Friedman, Daniel; Celeste, Peter

    2010-01-01

    This slide presentation reviews the exploration of NASA using a Ka-band system for spacecraft communications in Near-Earth orbits. The reasons for changing to Ka-band are the higher data rates, and the current (X-band spectrum) is becoming crowded. This will require some modification to the current ground station antennas systems. The results of a Request for Information (RFI) are discussed, and the recommended solution is reviewed.

  14. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    NASA Technical Reports Server (NTRS)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  15. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottenger, Warren

    1995-01-01

    The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.

  16. Mars Global Surveyor Ka-Band Frequency Data Analysis

    NASA Astrophysics Data System (ADS)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment

  17. Ka-band monopulse antenna-pointing systems analysis and simulation

    NASA Technical Reports Server (NTRS)

    Lo, V. Y.

    1996-01-01

    NASA 's Deep Space Network (DSN) has been using both 70-m and 34-m reflector antennas to communicate with spacecraft at S-band (2.3 GHz) and X-band (8.45 GHz). To improve the quality of telecommunication and to meet future mission requirements, JPL has been developing 34-m Ka-band (32-GHz) beam waveguide antennas. Presently, antenna pointing operates in either the open-loop mode with blind pointing using navigation predicts or the closed-loop mode with conical scan (conscan). Pointing accuracy under normal conscan operating conditions is in the neighborhood of 5 mdeg. This is acceptable at S- and X-bands, but not enough at Ka-band. Due to the narrow beamwidth at Ka-band, it is important to improve pointing accuracy significantly (approximately 2 mdeg). Monopulse antenna tracking is one scheme being developed to meet the stringent pointing-accuracy requirement at Ka-band. Other advantages of monopulse tracking include low sensitivity to signal amplitude fluctuations as well as single-pulse processing for acquisition and tracking. This article presents system modeling, signal processing, simulation, and implementation of Ka-band monopulse tracking feed for antennas in NASA/DSN ground stations.

  18. Electronic Power Conditioner for Ku-band Travelling Wave Tube

    NASA Astrophysics Data System (ADS)

    Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.

    2017-04-01

    A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.

  19. High-Efficiency K-Band Space Traveling-Wave Tube Amplifier for Near-Earth High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Force, Dale A.; Spitsen, Paul C.; Menninger, William L.; Robbins, Neal R.; Dibb, Daniel R.; Todd, Phillip

    2010-01-01

    The RF performance of a new K-Band helix conduction cooled traveling-wave tube amplifier (TWTA) is presented in this paper. A total of three such units were manufactured, tested and delivered. The first unit is currently flying onboard NASA s Lunar Reconnaissance Orbiter (LRO) spacecraft and has flawlessly completed over 2000 orbits around the Moon. The second unit is a proto-flight model. The third unit will fly onboard NASA s International Space Station (ISS) as a very compact and lightweight transmitter package for the Communications, Navigation and Networking Reconfigurable Testbed (CoNNeCT), which is scheduled for launch in 2011. These TWTAs were characterized over the frequencies 25.5 to 25.8 GHz. The saturated RF output power is >40 W and the saturated RF gain is >46 dB. The saturated AM-to- PM conversion is 3.5 /dB and the small signal gain ripple is 0.46 dB peak-to-peak. The overall efficiency of the TWTA, including that of the electronic power conditioner (EPC) is as high as 45 percent.

  20. High-Efficiency K-Band Space Traveling-Wave Tube Amplifier for Near-Earth High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Force, Dale A.; Spitsen, Paul C.; Menninger, William L.; Robbins, Neal R.; Dibb, Daniel R.; Todd, Phillip C.

    2010-01-01

    The RF performance of a new K-Band helix conduction cooled traveling-wave tube amplifier (TWTA), is presented in this paper. A total of three such units were manufactured, tested and delivered. The first unit is currently flying onboard NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft and has flawlessly completed over 2000 orbits around the Moon. The second unit is a proto-flight model. The third unit will fly onboard NASA's International Space Station (ISS) as a very compact and lightweight transmitter package for the Communications, Navigation and Networking Reconfigurable Testbed (CoNNeCT), which is scheduled for launch in 2011. These TWTAs were characterized over the frequencies 25.5 to 25.8 GHz. The saturated RF output power is greater than 40 W and the saturated RF gain is greater than 46 dB. The saturated AM-to-PM conversion is 3.5 /dB and the small signal gain ripple is 0.46 dB peak-to-peak. The overall efficiency of the TWTA, including that of the electronic power conditioner (EPC) is as high as 45%.

  1. The Potential for a Ka-band (32 GHz) Worldwide VLBI Network

    NASA Astrophysics Data System (ADS)

    Jacobs, C. S.; Bach, U.; Colomer, F.; Garcá-Miró, C.; Gómez-González, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; López-Fernández, J. A.; Lovell, J.; Majid, W.; T; Natusch; Neidhardt, A.; Phillips, C.; Porcas, R.; Romero-Wolf, A.; Saldana, L.; Schreiber, U.; Sotuela, I.; Takeuchi, H.; Trinh, J.; Tzioumis, A.; de Vincente, P.; Zharov, V.

    2012-12-01

    Ka-band (32 GHz, 9 mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level (100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years.

  2. The Potential for a Ka-band (32 GHz) Worldwide VLBI Network

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Bach, U.; Colomer, F.; Garcia-Miro, C.; Gomez-Gonzalez, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; hide

    2012-01-01

    Ka-band (32 GHz, 9mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level ( 100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years!

  3. A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer

    NASA Technical Reports Server (NTRS)

    Riley, A. L.; Hansen, D. M.; Mileant, A.; Hartop, R. W.

    1987-01-01

    A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz).

  4. High Efficiency Power Combining of Ka-Band TWTs for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Simons, R. N.; Vaden, K. R.; Lesny, G. G.; Glass, J. L.

    2006-01-01

    Future NASA deep space exploration missions are expected in some cases to require telecommunication systems capable of operating at very high data rates (potentially 1 Gbps or more) for the transmission back to Earth of large volumes of scientific data, which means high frequency transmitters with large bandwidth. Among the Ka band frequencies of interest are the present 500 MHz Deep Space Network (DSN) band of 31.8 to 32.3 GHz and a broader band at 37-38 GHz allocated for space science [1]. The large distances and use of practical antenna sizes dictate the need for high transmitter power of up to 1 kW or more. High electrical efficiency is also a requirement. The approach investigated by NASA GRC is a novel wave guide power combiner architecture based on a hybrid magic-T junction for combining the power output from multiple TWTs [1,2]. This architecture was successfully demonstrated and is capable of both high efficiency (90-95%, depending on frequency) and high data rate transmission (up to 622 Mbps) in a two-way power combiner circuit for two different pairs of Ka band TWTs at two different frequency bands. One pair of TWTs, tested over a frequency range of 29.1 to 29.6 GHz, consisted of two 110-115W TWTs previously used in uplink data transmission evaluation terminals in the NASA Advanced Communications Technology Satellite (ACTS) program [1,2]. The second pair was two 100W TWTs (Boeing 999H) designed for high efficiency operation (greater than 55%) over the DSN frequency band of 31.8 to 32.3 GHz [3]. The presentation will provide a qualitative description of the wave guide circuit, results for power combining and data transmission measurements, and results of computer modeling of the magic-T and alternative hybrid junctions for improvements in efficiency and power handling capability. The power combiner results presented here are relevant not only to NASA deep space exploration missions, but also to other U.S. Government agency programs.

  5. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  6. Preliminary Results from NASA/GSFC Ka-Band High Rate Demonstration for Near-Earth Communications

    NASA Technical Reports Server (NTRS)

    Wong, Yen; Gioannini, Bryan; Bundick, Steven N.; Miller, David T.

    2004-01-01

    In early 2000, the National Aeronautics and Space Administration (NASA) commenced the Ka-Band Transition Project (KaTP) as another step towards satisfying wideband communication requirements of the space research and earth exploration-satellite services. The KaTP team upgraded the ground segment portion of NASA's Space Network (SN) in order to enable high data rate space science and earth science services communications. The SN ground segment is located at the White Sands Complex (WSC) in New Mexico. NASA conducted the SN ground segment upgrades in conjunction with space segment upgrades implemented via the Tracking and Data Relay Satellite (TDRS)-HIJ project. The three new geostationary data relay satellites developed under the TDRS-HIJ project support the use of the inter-satellite service (ISS) allocation in the 25.25-27.5 GHz band (the 26 GHz band) to receive high speed data from low earth-orbiting customer spacecraft. The TDRS H spacecraft (designated TDRS-8) is currently operational at a 171 degrees west longitude. TDRS I and J spacecraft on-orbit testing has been completed. These spacecraft support 650 MHz-wide Ka-band telemetry links that are referred to as return links. The 650 MHz-wide Ka-band telemetry links have the capability to support data rates up to at least 1.2 Gbps. Therefore, the TDRS-HIJ spacecraft will significantly enhance the existing data rate elements of the NASA Space Network that operate at S-band and Ku-band.

  7. Ultra-Compact Ka-Band Parabolic Deployable Antenna for RADAR and Interplanetary CubeSats

    NASA Technical Reports Server (NTRS)

    Sauder, Jonathan; Chahat, Nacer; Thomson, Mark; Hodges, Richard; Peral, Eva; Rahmat-Samii, Yahya

    2015-01-01

    Over the past several years, technology and launch opportunities for CubeSats have exploded, enabling a wide variety of missions. However, as instruments become more complex and CubeSats travel deeper into space, data communication rates become an issue. To solve this challenge, JPL has initiated a research and technology development effort to design a 0.5 meter Ka-band parabolic deployable antenna (KaPDA) which would stow in 1.5U (10 x 10 x 15 cu cm) and provide 42dB of gain (50% efficiency). A folding rib architecture and dual reflector Cassegrainian design was selected as it best balances RF gain and stowed size. The design implements an innovative telescoping waveguide and gas powered deployment. RF simulations show that after losses, the antenna would have over 42 dB gain, supported by preliminary test results. KaPDA would create opportunities for a host of new CubeSat missions by allowing high data rate communication which would enable using high fidelity instruments or venturing further into deep space, including potential interplanetary missions. Additionally KaPDA would provide a solution for other small antenna needs and the opportunity to obtain Earth science data. This paper discusses the design challenges encountered, the architecture of the solution, and the antennas expected performance capabilities.

  8. Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  9. NASA SCaN Overview and Ka-Band Actvities

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Midon, Marco Mario; Davarian, Faramaz; Geldzahler, Barry

    2014-01-01

    The Ka- and Broadband Communications Conference is an international forum attended by worldwide experts in the area of Ka-Band Propagation and satellite communications. Since its inception, NASA has taken the initiative of organizing and leading technical sections on RF Propagation and satellite communications, solidifying its worldwide leadership in the aforementioned areas. Consequently, participation in this conference through the contributions described below will maintain NASA leadership in Ka- and above RF Propagation as it relates to enhancing current and future satellite communication systems supporting space exploration.

  10. Fade Mitigation Techniques at Ka-Band

    NASA Technical Reports Server (NTRS)

    Dissanayake, Asoka (Editor)

    1996-01-01

    Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.

  11. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  12. Ka-band (32 GHz) allocations for deep space

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1987-01-01

    At the 1979 World Administrative Conference, two new bands were allocated for deep space telecommunications: 31.8 to 32.3 GHz, space-to-Earth, and 34.2 to 34.7 GHz, Earth-to-space. These bands provide opportunity for further development of the Deep Space Network and its support of deep space research. The history of the process by which JPL/NASA developed the rationale, technical background, and statement of requirement for the bands are discussed. Based on this work, United States proposals to the conference included the bands, and subsequent U.S. and NASA participation in the conference led to successful allocations for deep space telecommunications in the 30 GHz region of the spectrum. A detailed description of the allocations is included.

  13. On-Orbit Performance Verification and End-to-End Characterization of the TDRS-H Ka-Band Communications Payload

    NASA Technical Reports Server (NTRS)

    Toral, Marco; Wesdock, John; Kassa, Abby; Pogorelc, Patsy; Jenkens, Robert (Technical Monitor)

    2002-01-01

    In June 2000, NASA launched the first of three next generation Tracking and Data Relay Satellites (TDRS-H) equipped with a Ka-band forward and return service capability. This Ka-band service supports forward data rates up to 25 Mb/sec using the 22.55 - 23.55 GHz space-to-space allocation. Return services are supported via channel bandwidths of 225 and 650 MHz for data rates up to 800 Mb/sec (QPSK) using the 25.25 - 27.5 GHz space-to-space allocation. As part of NASA's acceptance of the TDRS-H spacecraft, an extensive on-orbit calibration, verification and characterization effort was performed to ensure that on-orbit spacecraft performance is within specified limits. This process verified the compliance of the Ka-band communications payload with all performance specifications and demonstrated an end-to-end Ka-band service capability. This paper summarizes the results of the TDRS-H Ka-band communications payload on-orbit performance verification and end-to-end service characterization. Performance parameters addressed include Effective Isotropically Radiated Power (EIRP), antenna Gain-to-System Noise Temperature (G/T), antenna gain pattern, frequency tunability and accuracy, channel magnitude response, and Ka-band service Bit-Error-Rate (BER) performance.

  14. On-Orbit Performance Verification and End-To-End Characterization of the TDRS-H Ka-band Communications Payload

    NASA Technical Reports Server (NTRS)

    Toral, Marco; Wesdock, John; Kassa, Abby; Pogorelc, Patsy; Jenkens, Robert (Technical Monitor)

    2002-01-01

    In June 2000, NASA launched the first of three next generation Tracking and Data Relay Satellites (TDRS-H) equipped with a Ka-band forward and return service capability. This Ka-band service supports forward data rates of up to 25 Mb/sec using the 22.55-23.55 GHz space-to-space allocation. Return services are supported via channel bandwidths of 225 and 650 MHz for data rates up to at least 800 Mb/sec using the 25.25 - 27.5 GHz space-to-space allocation. As part of NASA's acceptance of the TDRS-H spacecraft, an extensive on-orbit calibration, verification and characterization effort was performed to ensure that on-orbit spacecraft performance is within specified limits. This process verified the compliance of the Ka-band communications payload with all performance specifications, and demonstrated an end-to-end Ka-band service capability. This paper summarizes the results of the TDRS-H Ka-band communications payload on-orbit performance verification and end-to-end service characterization. Performance parameters addressed include antenna gain pattern, antenna Gain-to-System Noise Temperature (G/T), Effective Isotropically Radiated Power (EIRP), antenna pointing accuracy, frequency tunability, channel magnitude response, and Ka-band service Bit-Error-Rate (BER) performance.

  15. Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Morabito, David; Hastrup, Rolf

    2004-01-01

    This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.

  16. High-Efficiency Ka-Band Waveguide Two-Way Asymmetric Power Combiner

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Simons, R. N.; Freeman, J. C.; Chevalier, C. T.

    2011-01-01

    NASA is planning a number of Space Exploration, Earth Observation and Space Science missions where Ka-band solid-state power amplifiers (SSPAs) could have a role. Monolithic microwave integrated circuit (MMIC) based SSPAs with output powers on the order of 10 W at Ka-band frequencies would be adequate to satisfy the data transmission rate requirements at the distances involved. MMICs are a type of integrated circuit fabricated on a GaAs wafer, which operates at micro wave frequencies and performs the function of signal amplification. The highest power Ka-band (31.8 to 32.3 GHz) SSPA to have flown in space had an output power of 2.6 W with an overall efficiency of 14.3 percent. This SSPA was built around discrete GaAs pHEMT (high electron mobility transistor) devices and flew aboard the Deep Space One spacecraft. State-of-the-art GaAs pHEMT-based MMIC power amplifiers (PAs) can deliver RF power at Ka-band frequencies anywhere from 3 W with a power added efficiency (PAE) of 32 percent to 6 W with a PAE of 26 percent. However, to achieve power levels higher than 6 W, the output of several MMIC PAs would need to be combined using a high-efficiency power combiner. Conventional binary waveguide power combiners, based on short-slot and magic-T circuits, require MMIC PAs with identical amplitude and phase characteristics for high combining efficiency. However, due to manufacturing process variations, the output powers of the MMIC PAs tend to be unequal, and hence the need to develop unequal power combiners. A two-way asymmetric magic-T based power combiner for MMIC power amplifiers, which can take in unequal inputs, has been successfully designed, fabricated, and characterized over NASA s Deep Space Network (DSN) frequency range of 31.8 to 32.3 GHz. The figure is a transparent view of the a sym - metric combiner that shows the 4-port configuration and the internal structure. The rod, post, and iris are positioned by design to achieve the desired asymmetric power ratio

  17. Traveling-Wave Tube Efficiency Enhancement

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    2011-01-01

    Traveling-wave tubes (TWT's) are used to amplify microwave communication signals on virtually all NASA and commercial spacecraft. Because TWT's are a primary power user, increasing their power efficiency is important for reducing spacecraft weight and cost. NASA Glenn Research Center has played a major role in increasing TWT efficiency over the last thirty years. In particular, two types of efficiency optimization algorithms have been developed for coupled-cavity TWT's. The first is the phase-adjusted taper which was used to increase the RF power from 420 to 1000 watts and the RF efficiency from 9.6% to 22.6% for a Ka-band (29.5 GHz) TWT. This was a record efficiency at this frequency level. The second is an optimization algorithm based on simulated annealing. This improved algorithm is more general and can be used to optimize efficiency over a frequency bandwidth and to provide a robust design for very high frequency TWT's in which dimensional tolerance variations are significant.

  18. CFDP Performance over Weather-dependent Ka-band Channel

    NASA Technical Reports Server (NTRS)

    Sung, I. U.; Gao, Jay L.

    2006-01-01

    This study presents an analysis of the delay performance of the CCSDS File Delivery Protocol (CFDP) over weather-dependent Ka-band channel. The Ka-band channel condition is determined by the strength of the atmospheric noise temperature, which is weather dependent. Noise temperature data collected from the Deep Space Network (DSN) Madrid site is used to characterize the correlations between good and bad channel states in a two-state Markov model. Specifically, the probability distribution of file delivery latency using the CFDP deferred Negative Acknowledgement (NAK) mode is derived and quantified. Deep space communication scenarios with different file sizes and bit error rates (BERs) are studied and compared. Furthermore, we also examine the sensitivity of our analysis with respect to different data sampling methods. Our analysis shows that while the weather-dependent channel only results in fairly small increases in the average number of CFDP retransmissions required, the maximum number of transmissions required to complete 99 percentile, on the other hand, is significantly larger for the weather-dependent channel due to the significant correlation of poor weather states.

  19. CFDP Performance over Weather-Dependent Ka-Band Channel

    NASA Technical Reports Server (NTRS)

    U, Sung I.; Gao, Jay L.

    2006-01-01

    This study presents an analysis of the delay performance of the CCSDS File Delivery Protocol (CFDP) over weather-dependent Ka-band channel. The Ka-band channel condition is determined by the strength of the atmospheric noise temperature, which is weather dependent. Noise temperature data collected from the Deep Space Network (DSN) Madrid site is used to characterize the correlations between good and bad channel states in a two-state Markov model. Specifically, the probability distribution of file delivery latency using the CFDP deferred Negative Acknowledgement (NAK) mode is derived and quantified. Deep space communication scenarios with different file sizes and bit error rates (BERs) are studied and compared. Furthermore, we also examine the sensitivity of our analysis with respect to different data sampling methods. Our analysis shows that while the weather-dependent channel only results in fairly small increases in the average number of CFDP retransmissions required, the maximum number of transmissions required to complete 99 percentile, on the other hand, is significantly larger for the weather-dependent channel due to the significant correlation of poor weather states.

  20. The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.

    2011-01-01

    A celestial reference frame at X/Ka-band (8.4/32 GHz) has been constructed using fifty-one 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec in a cos delta and 290 micro-arcsec in delta. There is evidence for zonal errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.

  1. Impedance of strip-traveling waves on an elastic half space - Asymptotic solution

    NASA Technical Reports Server (NTRS)

    Crandall, S. H.; Nigam, A. K.

    1973-01-01

    The dynamic normal-load distribution across a strip that is required to maintain a plane progressive wave along its length is studied for the case where the strip is of infinite length and lies on the surface of a homogeneous isotropic elastic half space. This configuration is proposed as a preliminary idealized model for analyzing the dynamic interaction between soils and flexible foundations. The surface load distribution across the strip and the motion of the strip are related by a pair of dual integral equations. An asymptotic solution is obtained for the limiting case of small wavelength. The nature of this solution depends importantly on the propagation velocity of the strip-traveling wave in comparison with the Rayleigh wave speed, the shear wave speed and the dilatational wave speed. When the strip-traveling wave propagates faster than the Rayleigh wave speed, a pattern of trailing Rayleigh waves is shed from the strip. The limiting amplitude of the trailing waves is provided by the asymptotic solution.

  2. Amplitude Scintillation due to Atmospheric Turbulence for the Deep Space Network Ka-Band Downlink

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wheelon, A.

    2004-01-01

    Fast amplitude variations due to atmospheric scintillation are the main concerns for the Deep Space Network (DSN) Ka-band downlink under clear weather conditions. A theoretical study of the amplitude scintillation variances for a finite aperture antenna is presented. Amplitude variances for weak scattering scenarios are examined using turbulence theory to describe atmospheric irregularities. We first apply the Kolmogorov turbulent spectrum to a point receiver for three different turbulent profile models, especially for an exponential model varying with altitude. These analytic solutions then are extended to a receiver with a finite aperture antenna for the three profile models. Smoothing effects of antenna aperture are expressed by gain factors. A group of scaling factor relations is derived to show the dependences of amplitude variances on signal wavelength, antenna size, and elevation angle. Finally, we use these analytic solutions to estimate the scintillation intensity for a DSN Goldstone 34-m receiving station. We find that the (rms) amplitude fluctuation is 0.13 dB at 20-deg elevation angle for an exponential model, while the fluctuation is 0.05 dB at 90 deg. These results will aid us in telecommunication system design and signal-fading prediction. They also provide a theoretical basis for further comparison with other measurements at Ka-band.

  3. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  4. Standard Observing Bands: Is Now the Time to Replace S/X with X/Ka?

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Lanyi, G. E.; Naudet, C. J.

    2004-01-01

    In this paper we will argue that the VLBI community should be developing a road map to transition from S/X to simultaneous X and Ka-band (32 GHz) observations. There are both negative and positive reasons for planning such a transition. On the negative side, we will outline concerns that S-band observations may be headed toward obsolescence. On the positive side, we will refer to evidence that X/Ka has potential for providing a more stable reference frame than S/X. We will propose timetables for a transition to X/Ka observing starting from the current status of X/Ka and plans that are now taking shape. First X/Ka fringes were obtained in 2001 with the Deep Space Network. Future plans will be discussed including a proposed X/Ka-band upgrade to the VLBA. Lastly, we will consider the need for a period of overlap between S/X and X/Ka so that the long and rich history of astrometric and geodetic VLBI is not compromised.

  5. Ferroelectric switch for a high-power Ka-band active pulse compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, Jay L.

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses couldmore » be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.« less

  6. Ka-Band Multibeam Aperture Phased Array Being Developed

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements

  7. Design and cold test of period-tapered double-ridge-loaded folded waveguide slow wave structure for Ka band TWTs

    NASA Astrophysics Data System (ADS)

    Lu, Zhigang; Su, Zhicheng; Wei, Yanyu

    2018-05-01

    A double-ridge-loaded folded waveguide (DRL-FW) travelling wave tube (TWT) based on period-tapered structure is proposed. Through analysing the dispersion characteristics of the DRL-FW slow wave structure (SWS), the physical mechanism of the band-edge oscillation is obtained. Period-tapered SWS is proposed and analysed for verifying the feasibility in suppressing upper-band-edge oscillation and increasing the output power. Then the electromagnetic characteristics and the beam-wave interaction of TWT based on the period-tapered DRL-FW SWS are investigated. The calculation results predict that it potentially could provide continuous wave power over 600W from 29 GHz to 32 GHz without upper-band-edge oscillation. The bandwidth expands from 29-31GHz to 29-32GHz and electron efficiency is increased from more than 8.3% to more than 11%, while the range of operating voltage expands from 22kV-22.5kV to 22kV-24kV. The corresponding saturated gain can reach over 36.8 dB. In addition, we have carried out experimental tests on the transmission characteristics of period-tapered DRL-FW SWS. The cold test results show that the voltage stand-wave ratio (VSWR) is below 1.8 in the range of 29-32GHz. Good transmission characteristics greatly reduce the risk of reflection wave oscillation, thus improving the stability of DRL-FW TWT.

  8. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  9. Transmission characteristic of graphene/TiO2 paper measured at Ka-band

    NASA Astrophysics Data System (ADS)

    Agusu, La; Mitsudo, Seitaro; Ahmad, La Ode; Herdianto, Fujii, Yutaka; Ishikawa, Yuya; Furuya, Takahashi; Ramadhan, La Ode Ahmad Nur

    2017-01-01

    The commercial telecommunication system in future would explore the electromagnetic spectrum with higher frequency than used now, because it requires higher speed of transmission data. Using the millimeter waves (mmW) with frequency ranging from 30 to 300 GHz, such requirement could be fulfilled. The upcoming 5G cellular technology is expected to use frequency 30 GHz or higher. Then materials with a specific characteristic at the mmW range are interesting to be explored and investigated. Here, we report the synthesis process of graphene/TiO2 deposited on paper and their transmission characteristics to the electromagnetic energy at frequency 27-40 GHz (Ka-Band). The reduced graphene oxide (rGO) was synthesized by a modified Hummers method with introduction of microwave irradiation in the process. rGO and TiO2 were mixed in ethanol solution and deposited on the paper by a spraying technique. Transmission coefficient of electromagnetic wave energy at Ka-Band was measured by using the millimeter vector network analyzer. Conductivity of rGO is 1.89 Scm-1 and for the graphene/TiO2 with TiO2 content is up to 50%, conductivity is down to Scm-1 Graphene/TiO2 layer with thickness of 60).lm and TiO2 loading up to 25% can has the transmission coefficient of -4 dB at the middle frequency of 31 GHz and bandwidth of 2.2 GHz. This can be useful as the electromagnetic interference shielding material at Ka-band.

  10. Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide

    NASA Astrophysics Data System (ADS)

    Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu

    2018-05-01

    A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.

  11. A New Blind Pointing Model Improves Large Reflector Antennas Precision Pointing at Ka-Band (32 GHz)

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.

    2009-01-01

    The National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory (JPL)-Deep Space Network (DSN) subnet of 34-m Beam Waveguide (BWG) Antennas was recently upgraded with Ka-Band (32-GHz) frequency feeds for space research and communication. For normal telemetry tracking a Ka-Band monopulse system is used, which typically yields 1.6-mdeg mean radial error (MRE) pointing accuracy on the 34-m diameter antennas. However, for the monopulse to be able to acquire and lock, for special radio science applications where monopulse cannot be used, or as a back-up for the monopulse, high-precision open-loop blind pointing is required. This paper describes a new 4th order pointing model and calibration technique, which was developed and applied to the DSN 34-m BWG antennas yielding 1.8 to 3.0-mdeg MRE pointing accuracy and amplitude stability of 0.2 dB, at Ka-Band, and successfully used for the CASSINI spacecraft occultation experiment at Saturn and Titan. In addition, the new 4th order pointing model was used during a telemetry experiment at Ka-Band (32 GHz) utilizing the Mars Reconnaissance Orbiter (MRO) spacecraft while at a distance of 0.225 astronomical units (AU) from Earth and communicating with a DSN 34-m BWG antenna at a record high rate of 6-megabits per second (Mb/s).

  12. Linearized traveling wave amplifier with hard limiter characteristics

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1986-01-01

    A dynamic velocity taper is provided for a traveling wave tube with increased linearity to avoid intermodulation of signals being amplified. In a traveling wave tube, the slow wave structure is a helix including a sever. A dynamic velocity taper is provided by gradually reducing the spacing between the repeating elements of the slow wave structure which are the windings of the helix. The reduction which takes place coincides with the ouput point of helix. The spacing between the repeating elements of the slow wave structure is ideally at an exponential rate because the curve increases the point of maximum efficiency and power, at an exponential rate. A coupled cavity traveling wave tube having cavities is shown. The space between apertured discs is gradually reduced from 0.1% to 5% at an exponential rate. Output power (or efficiency) versus input power for a commercial tube is shown.

  13. Progress towards 3-cell superconducting traveling wave cavity cryogenic test

    NASA Astrophysics Data System (ADS)

    Kostin, R.; Avrakhov, P.; Kanareykin, A.; Yakovlev, V.; Solyak, N.

    2017-12-01

    This paper describes a superconducting L-band travelling wave cavity for electron linacs as an alternative to the 9-cell superconducting standing wave Tesla type cavity. A superconducting travelling wave cavity may provide 20-40% higher accelerating gradient by comparison with conventional cavities. This feature arises from an opportunity to use a smaller phase advance per cell which increases the transit time factor and affords the opportunity to use longer cavities because of its significantly smaller sensitivity to manufacturing errors. Two prototype superconducting travelling wave cavities were designed and manufactured for a high gradient travelling wave demonstration at cryogenic temperature. This paper presents the main milestones achieved towards this test.

  14. Equatorial Precession in the Control Software of the Ka-Band Object Observation and Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Jakeman, Hali L.

    2013-01-01

    The Ka-Band Object Observation and Monitoring, or KaBOOM, project is designed mainly to track and characterize near Earth objects. However, a smaller goal of the project would be to monitor pulsars and study their radio frequency signals for use as a clock in interstellar travel. The use of pulsars and their timing accuracy has been studied for decades, but never in the Ka-band of the radio frequency spectrum. In order to begin the use of KaBOOM for this research, the control systems need to be analyzed to ensure its capability. Flaws in the control documentation leave it unclear as to whether the control software processes coordinates from the J200 epoch. This experiment will examine the control software of the Intertronic 12m antennas used for the KaBOOM project and detail its capabilities in its "equatorial mode." The antennas will be pointed at 4 chosen points in the sky on several days while probing the virtual azimuth and elevation (horizon coordinate) registers. The input right ascension and declination coordinates will then be converted separately from the control software to horizontal coordinates and compared, thus determining the ability of the control software to process equatorial coordinates.

  15. Ka-Band Waveguide Three-Way Serial Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Freeman, Jon C.; Chevalier, Christine T.

    2012-01-01

    In this innovation, the three-way combiner consists internally of two branch-line hybrids that are connected in series by a short length of waveguide. Each branch-line hybrid is designed to combine input signals that are in phase with an amplitude ratio of two. The combiner is constructed in an E-plane split-block arrangement and is precision machined from blocks of aluminum with standard WR-28 waveguide ports. The port impedances of the combiner are matched to that of a standard WR-28 waveguide. The component parts include the power combiner and the MMIC (monolithic microwave integrated circuit) power amplifiers (PAs). The three-way series power combiner is a six-port device. For basic operation, power that enters ports 3, 5, and 6 is combined in phase and appears at port 1. Ports 2 and 4 are isolated ports. The application of the three-way combiner for combining three PAs with unequal output powers was demonstrated. NASA requires narrow-band solid-state power amplifiers (SSPAs) at Ka-band frequencies with output power in the range of 3 to 5 W for radio or gravity science experiments. In addition, NASA also requires wideband, high-efficiency SSPAs at Ka-band frequencies with output power in the range of 5 to 15 W for high-data-rate communications from deep space to Earth. The three-way power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA s deep-space frequency band.

  16. Silicon-Germanium Films Grown on Sapphire for Ka-Band Communications Applications

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.

    2004-01-01

    NASA's vision in the space communications area is to develop a broadband data network in which there is a high degree of interconnectivity among the various satellite systems, ground stations, and wired systems. To accomplish this goal, we will need complex electronic circuits integrating analog and digital data handling at the Ka-band (26 to 40 GHz). The purpose of this project is to show the feasibility of a new technology for Ka-band communications applications, namely silicon germanium (SiGe) on sapphire. This new technology will have several advantages in comparison to the existing silicon-substrate- based circuits. The main advantages are extremely low parasitic reactances that enable much higher quality active and passive components, better device isolation, higher radiation tolerance, and the integration of digital and analog circuitry on a single chip.

  17. Channel characterisation for future Ka-band Mobile Satellite Systems and preliminary results

    NASA Technical Reports Server (NTRS)

    Sforza, Mario; Buonomo, Sergio; Arbesser-Rastburg, Bertram

    1994-01-01

    Mobile satellite systems (MSS) are presently designed or planned to operate, with the exception of OMNITRACKS, in the lower part of the frequency spectrum (UHF to S-bands). The decisions taken at the last World Administrative Radio Conference in 1992 to increase the allocated L- and S-bands for MSS services will only partly alleviate the problem of system capacity. In addition the use of L-and S-band frequencies generally requires large antenna apertures on board the satellite terminal side. The idea of exploiting the large spectrum resources available at higher frequencies (20-30 GHz) and the perspective of reducing user terminal size (and possibly price too) have spurred the interest of systems designers and planners. On the other hand, Ka-band frequencies suffer from increased slant path losses due to atmospheric attenuation phenomena. The European Space Agency (ESA) has recently embarked on a number of activities aimed at studying the effect of the typical mobile propagation impairments at Ka-band. This paper briefly summarizes ESA efforts in this field of research and presents preliminary experimental results.

  18. Ka-Band MMIC Subarray Technology Program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottinger, W.

    1995-01-01

    Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.

  19. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion.

    PubMed

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

  20. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    PubMed Central

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838

  1. The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.

    2010-01-01

    A celestial reference frame at X/Kaband (8.4/32 GHz) has been constructed using fiftyone 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec ( mu as) in alpha cos delta and 290 mu as in delta. There is evidence for zonal errors at the 100 mu as level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.

  2. Bandwidth Efficient Modulation and Coding Techniques for NASA's Existing Ku/Ka-Band 225 MHz Wide Service

    NASA Technical Reports Server (NTRS)

    Gioannini, Bryan; Wong, Yen; Wesdock, John

    2005-01-01

    The National Aeronautics and Space Administration (NASA) has recently established the Tracking and Data Relay Satellite System (TDRSS) K-band Upgrade Project (TKUP), a project intended to enhance the TDRSS Ku-band and Ka-band Single Access Return 225 MHz (Ku/KaSAR-225) data service by adding the capability to process bandwidth efficient signal design and to replace the White Sand Complex (WSC) KSAR high data rate ground equipment and high rate switches which are nearing obsolescence. As a precursor to this project, a modulation and coding study was performed to identify signal structures which maximized the data rate through the Ku/KaSAR-225 channel, minimized the required customer EIRP and ensured acceptable hardware complexity on the customer platform. This paper presents the results and conclusions of the TKUP modulation and coding study.

  3. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  4. Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, C. L.; Lian, Y. H.; Cheng, N. H.

    2012-11-15

    The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages.more » Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.« less

  5. Ka-band and X-band observations of the solar corona acquired during the Cassini 2001 superior conjunction

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.

    2002-01-01

    Simultaneous dual-frequency Ka-band (32 GHz) and X-band (8.4 GHz) carrier signal data have been acquired during the superior conjunction of the Cassini spacecraft June 2001, using the NASA Deep Space Network's facilities located in Goldstone, California. The solar elongation angle of the observations varied from -4.1 degrees (-16 solar radii) to -0.6 degrees (-2.3 solar radii). The observed coronal and solar effects on the signals include spectral broadening, amplitude scintillation, phase scintillation, and increased noise. The measurements were generally consistent with existing solar models, except during solar transient events when the signatures of the measurements were observed to increase significantly above the quiet background levels. This is the second solar conjunction of Cassini for which simultaneous X/Ka data were acquired. Both solar conjunctions, conducted in May 2000 and June 2001, occurred near the peak of the current 11 year solar cycle.

  6. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and V/W-band (71 to 76 GHz) satellite-to-ground signals.

  7. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  8. Rain Fade Compensation Alternatives for Ka Band Communication Satellites

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    1997-01-01

    Future satellite communications systems operating in Ka-band frequency band are subject to degradation produced by the troposphere which is much more severe than those found at lower frequency bands. These impairments include signal absorption by rain, clouds and gases, and amplitude scintillation's arising from refractive index irregularities. For example, rain attenuation at 20 GHz is almost three times that at 11 GHz. Although some of these impairments can be overcome by oversizing the ground station antennas and high power amplifiers, the current trend is using small (less than 20 inches apertures), low-cost ground stations (less than $1000) that can be easily deployed at user premises. As a consequence, most Ka-band systems are expected to employ different forms of fade mitigation that can be implemented relatively easily and at modest cost. The rain fade mitigation approaches are defined by three types of Ka-band communications systems - a low service rate (less than 1.5 Mb/s), a moderate service rate (1.5 to 6 Mb/s) system and a high service rate (greater than 43 Mb/s) system. The ACTS VSAT network, which includes an adaptive rain fade technique, is an example of a moderate service rate.

  9. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a novel waveguide multimode directional coupler for a CW millimeter-wave satellite beacon source are presented. The coupler separates the second harmonic power from the fundamental output power of a traveling-wave tube amplifier. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and VW-band (71 to 76 GHz) satellite-to-ground signals.

  10. Satellite Ka-band propagation measurements in Florida

    NASA Technical Reports Server (NTRS)

    Helmken, Henry; Henning, Rudolf

    1995-01-01

    Commercial growth of interactive, high data rate communication systems is expected to focus on the use of the Ka-band (20/30 GHz) radio spectrum. The ability to form narrow spot beams and the attendant small diameter antennas are attractive features to designers of mobile aeronautical and ground based satellite communication systems. However, Ka-band is strongly affected by weather, particularly rain, and hence systems designs may require a significant link margin for reliable operations. Perhaps the most stressing area in North America, weatherwise, is the Florida sub-tropical climatic region. As part of the NASA Advanced Communications Technology Satellite (ACTS) propagation measurements program, beacon and radiometer data have been recorded since December 1993 at the University of South Florida (USF), Tampa, Florida.

  11. The new wave-ring helical (WRH) slow-wave structure for traveling wave tube amplifiers

    NASA Astrophysics Data System (ADS)

    Panahi, Nasser; Saviz, S.; Ghorannevis, M.

    2017-12-01

    In this paper, the new slow-wave structure called wave-ring helix to enhance the power of the traveling wave tubes is introduced. In this new structure, without increasing the length and radius of the helix, the wave motion path can be increased to radiofrequency wave in phase with the electron beam. The results show that in the special frequency range the output power and gain are greater than conventional helix. In this paper, optimization results are presented in cold and hot tests on the new structure. The software CST is used in S-band frequency range.

  12. Ku/Ka band observations over polar ice sheets

    NASA Astrophysics Data System (ADS)

    Thibaut, Pierre; Lasne, Yannick; Guillot, Amandine; Picot, Nicolas; Rémy, Frédérique

    2015-04-01

    For the first time, comparisons between Ku and Ka altimeter measurements are possible thanks to the new AltiKa instrument embarked onboard the Saral mission launched on February 25, 2013. This comparison is of particular interest when dealing with ice sheet observations because both frequencies have different penetration characteristics. We propose in this paper to revisit the estimation of the ice sheet topography (and other related parameters) with altimeter systems and to present illustrations of the differences observed in Ku and Ka bands using AltiKa, Envisat/RA-2 but also Cryosat-2 measurements. Working on AltiKa waveforms in the frame of the PEACHI project has allowed us to better understand the impact of the penetration depth on the echo shape, to improve the estimation algorithm and to compare its output with historical results obtained on Envisat and ERS missions. In particular, analyses at cross-overs of the Cryosat-2 and Saral data will be presented. Sentinel-3 mission should be launch during 2015. Operating in Ku band and in delay/doppler mode, it will be crucial to account for penetration effects in order to accurately derive the ice sheet heights and trends. The results of the work presented here, will benefit to the Sentinel-3 mission.

  13. Traveling-wave photodetector

    DOEpatents

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  14. Traveling-wave photodetector

    DOEpatents

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  15. James Webb Space Telescope Ka-Band Trade

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Luers, Ed

    2004-01-01

    In August 2003 James Webb Space Telescope (JWST) had its Initial Review Confirmation Assessment Briefing with NASA HQ management. This is a major milestone as the project was approved to proceed from Phase A to B, and NASA will commit funds for the project towards meeting its science goals from the Earth-Sun s Lagrange 2 (L2) environment. At this briefing, the Project was asked, "to take another look" into using, the JPL s Deep Space Network (DSN) as the provider of ground stations and evaluate other ground station options. The current operations concept assumes S-band and X-band communications with a daily &hour contact using the DSN with the goal of transmitting over 250 Gigabit (Gb) of data to the ground. The Project has initiated a trade study to look at this activity, and we would like to share the result of the trade in the conference. Early concept trades tends to focus on the "normal" operation mode of supporting telemetry (science and engineering), command and radio metrics. Entering the design phase, we find that we have the unique ranging requirement for our L2 orbit using alternating ground stations located in different hemispheres. The trade must also address emergency operations (which are covered when using the DSN). This paper describes the issues confronting this Project and how the DSN and the JWST Project are working together to find an optimized approach for meeting these issues. We believe this trade is of major interest for future Code S and other L2 missions in that JWST will set the standard.

  16. High Efficiency Ka-Band Solid State Power Amplifier Waveguide Power Combiner

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Chevalier, Christine T.; Freeman, Jon C.

    2010-01-01

    A novel Ka-band high efficiency asymmetric waveguide four-port combiner for coherent combining of two Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPAs) having unequal outputs has been successfully designed, fabricated and characterized over the NASA deep space frequency band from 31.8 to 32.3 GHz. The measured combiner efficiency is greater than 90 percent, the return loss greater than 18 dB and input port isolation greater than 22 dB. The manufactured combiner was designed for an input power ratio of 2:1 but can be custom designed for any arbitrary power ratio. Applications considered are NASA s space communications systems needing 6 to 10 W of radio frequency (RF) power. This Technical Memorandum (TM) is an expanded version of the article recently published in Institute of Engineering and Technology (IET) Electronics Letters.

  17. Oversized 250 GHz Traveling Wave Tube with a Photonic Band-Gap Structure

    NASA Astrophysics Data System (ADS)

    Rosenzweig, Guy; Shapiro, Michael A.; Temkin, Richard J.

    2017-10-01

    The challenge in manufacturing traveling wave tubes (TWTs) at high frequencies is that the sizes of the structures scale with, and are much smaller than, the wavelength. We have designed and are building a 250 GHz TWT that uses an oversized structure to overcome fabrication and power handling issues that result from the small dimensions. Using a photonic band-gap (PBG) structure, we succeeded to design the TWT with a beam tunnel diameter of 0.72 mm. The circuit consists of metal plates with the beam tunnel drilled down their center. Twelve posts are protruding on one side of each plate in a triangular array and corresponding sockets are drilled on the other side. The posts of each plate are inserted into the sockets of an adjacent plate, forming a PBG lattice. The vacuum spacing between adjacent plates forms the `PBG cavity''. The full structure is a series of PBG coupled cavities, with microwave power coupling through the beam tunnel. The PBG lattice provides confinement of microwave power in each of the cavities and can be tuned to give the right amount of diffraction per cavity so that no sever is needed to suppress oscillations in the operating mode. CST PIC simulations predict over 38 dB gain with 67 W peak power, using a 30 kV, 310 mA electron beam, 0.6 mm in diameter. Research supported by the AFOSR Program on Plasma and Electro-Energetic Physics and by the NIH National Institute of Biomedical Imaging and Bioengineering.

  18. Ka-Band Propagation Studies using the ACTS Propagation Terminal and the CSU-CHILL Multiparameter Radar

    NASA Technical Reports Server (NTRS)

    Bringi, V. N.; Beaver, John

    1996-01-01

    One of the first experimental communications satellites using Ka-band technology is the NASA Advanced Communications Technology Satellite (ACTS). In September 1993, ACTS was deployed into a geostationary orbit near 100 degrees W longitude by the space shuttle Discovery. The ACTS system supports both communication and propagation experiments at the 20/30 GHz frequency bands. The propagation experiment involves multi-year attenuation measurements along the satellite-Earth slant path.

  19. Advances in Ka-Band Communication System for CubeSats and SmallSats

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Wong, Yen F.; Altunc, Serhat

    2016-01-01

    A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (>6 dBi) antennas.

  20. Ka-Band Site Characterization of the NASA Near Earth Network in Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Morse, J.; Nessel, J.; Zemba, M.; Tuttle, K.; Caroglanian, A.; Younes, B.; Pedersen, Sten-Chirstian

    2011-01-01

    Critical to NASA s rapid migration toward Ka-Band is the comprehensive characterization of the communication channels at NASA's ground sites to determine the effects of the atmosphere on signal propagation and the network's ability to support various classes of users in different orbits. Accordingly, NASA has initiated a number of studies involving the ground sites of its Near Earth and Deep Space Networks. Recently, NASA concluded a memorandum of agreement (MOA) with the Norwegian Space Centre of the Kingdom of Norway and began a joint site characterization study to determine the atmospheric effects on Ka-Band links at the Svalbard Satellite Station in Norway, which remains a critical component of NASA s Near Earth Communication Network (NEN). System planning and design for Ka-band links at the Svalbard site cannot be optimally achieved unless measured attenuation statistics (e.g. cumulative distribution functions (CDF)) are obtained. In general, the CDF will determine the necessary system margin and overall system availability due to the atmospheric effects. To statistically characterize the attenuation statistics at the Svalbard site, NASA has constructed a ground-based monitoring station consisting of a multi-channel total power radiometer (25.5 - 26.5 GHz) and a weather monitoring station to continuously measure (at 1 second intervals) attenuation and excess noise (brightness temperature). These instruments have been tested in a laboratory environment as well as in an analogous outdoor climate (i.e. winter in Northeast Ohio), and the station was deployed in Svalbard, Norway in May 2011. The measurement campaign is planned to last a minimum of 3 years but not exceeding a maximum of 5 years.

  1. Link Design and Planning for Mars Reconnaissance Orbiter (MRO) Ka-band (32 GHz) Telecom Demonstration

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Davarian, Faramaz; Morabito, David

    2004-01-01

    NASA is planning an engineering telemetry demonstration with Mars Reconnaissance Orbiter (MRO). Capabilities of Ka-band (32 GHz) for use with deep space mission are demonstrated using the link optimization algorithms and weather forecasting. Furthermore, based on the performance of previous deep space missions with Ka-band downlink capabilities, experiment plans are developed for telemetry operations during superior solar conjunction. A general overview of the demonstration is given followed by a description of the mission planning during cruise, the primary science mission and superior conjunction. As part of the primary science mission planning the expected data return for various data optimization methods is calculated. These results indicate that, given MRO's data rates, a link optimized to use of at most two data rates, subject to a minimum availability of 90%, performs almost as well as a link with no limits on the number of data rates subject to the same minimum availability.

  2. ACTS propagation experiment discussion: Ka-band propagation measurements using the ACTS propagation terminal and the CSU-CHILL and Space Communications Technology Center Florida propagation program

    NASA Technical Reports Server (NTRS)

    Bringi, V. N.; Chandrasekar, V.; Mueller, Eugene A.; Turk, Joseph; Beaver, John; Helmken, Henry F.; Henning, Rudy

    1993-01-01

    Papers on Ka-band propagation measurements using the ACTS propagation terminal and the Colorado State University CHILL multiparameter radar and on Space Communications Technology Center Florida Propagation Program are discussed. Topics covered include: microwave radiative transfer and propagation models; NASA propagation terminal status; ACTS channel characteristics; FAU receive only terminal; FAU terminal status; and propagation testbed.

  3. Experiments for Ka-band mobile applications: The ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Dessouky, Khaled; Jedrey, Thomas

    1990-01-01

    To explore the potential of Ka-band to support mobile satellite services, the Jet Propulsion Laboratory (JPL) has initiated the design and development of a Ka-band land-mobile terminal to be used with the Advanced Communications Technology Satellite (ACTS). The planned experimental setup with ACTS is described. Brief functional descriptions of the mobile and fixed terminals are provided. The inputs required from the propagation community to support the design activities and the planned experiments are also discussed.

  4. Millimeter-wave pseudomorphic HEMT MMIC phased array components for space communications

    NASA Technical Reports Server (NTRS)

    Lan, G. L.; Pao, C. K.; Wu, C. S.; Mandolia, G.; Hu, M.; Yuan, S.; Leonard, Regis

    1991-01-01

    Recent advances in pseudomorphic HEMT MMIC (PMHEMT/MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. This paper describes the development of PMHEMT/MMIC components at Ka-band and V-band. Specifically, the following PMHEMT/MMIC components will be described: power amplifiers at Ka-band; power amplifiers at V-band; and four-bit phase shifters at V-band. For the Ka-band amplifier, 125 mW output power with 5.5 dB gain and 21 percent power added efficiency at 2 dB compression point has been achieved. For the V-band amplifier, 112 mW output power with 6 dB gain and 26 percent power added efficiency has been achieved. And, for the V-band phase shifter, four-bit (45 deg steps) phase shifters with less than 8 dB insertion loss from 61 GHz to 63 GHz will be described.

  5. 200 MW S-band traveling wave resonant ring development at IHEP

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-Sheng; Chi, Yun-Long; Git, Meng-Ping; Pei, Guo-Xi

    2010-03-01

    The resonant-ring is a traveling wave circuit, which is used to produce high peak power with comparatively smaller stored energy. The application to be considered is its use as a high power simulator mainly for testing the klystron ceramic output window, as well as for high power microwave transmission devices. This paper describes the principle of a resonant ring and introduces the structure and property of the newly constructed traveling wave resonant ring at IHEP. Our goal is to produce a 200 MW class resonant ring at 2.856 GHz with a pulse length of 2 μs and repetition rate of 25 Hz. The installation, commissioning and testing of the ring have been completed and a peak power of 200 MW at 3 μs has been achieved. The conditioning results show that all the parameters of the resonant ring reach the design goals.

  6. Existence and exponential stability of traveling waves for delayed reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng; Yu, Zhixian

    2018-03-01

    The purpose of this work is to investigate the existence and exponential stability of traveling wave solutions for general delayed multi-component reaction-diffusion systems. Following the monotone iteration scheme via an explicit construction of a pair of upper and lower solutions, we first obtain the existence of monostable traveling wave solutions connecting two different equilibria. Then, applying the techniques of weighted energy method and comparison principle, we show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave solutions provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.

  7. G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA.more » An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.« less

  8. Design and Validation of High Date Rate Ka-Band Software Defined Radio for Small Satellite

    NASA Technical Reports Server (NTRS)

    Xia, Tian

    2016-01-01

    The Design and Validation of High Date Rate Ka- Band Software Defined Radio for Small Satellite project will develop a novel Ka-band software defined radio (SDR) that is capable of establishing high data rate inter-satellite links with a throughput of 500 megabits per second (Mb/s) and providing millimeter ranging precision. The system will be designed to operate with high performance and reliability that is robust against various interference effects and network anomalies. The Ka-band radio resulting from this work will improve upon state of the art Ka-band radios in terms of dimensional size, mass and power dissipation, which limit their use in small satellites.

  9. Four-Way Ka-Band Power Combiner

    NASA Technical Reports Server (NTRS)

    Perez, Raul; Li, Samuel

    2007-01-01

    A waveguide structure for combining the outputs of four amplifiers operating at 35 GHz (Ka band) is based on a similar prior structure used in the X band. The structure is designed to function with low combining loss and low total reflected power at a center frequency of 35 GHz with a 160 MHz bandwidth. The structure (see figure) comprises mainly a junction of five rectangular waveguides in a radial waveguide. The outputs of the four amplifiers can be coupled in through any four of the five waveguide ports. Provided that these four signals are properly phased, they combine and come out through the fifth waveguide port.

  10. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).

  11. Ka-band MMIC arrays for ACTS Aero Terminal Experiment

    NASA Technical Reports Server (NTRS)

    Raquet, C.; Zakrajsek, R.; Lee, R.; Turtle, J.

    1992-01-01

    An antenna system consisting of three experimental Ka-band active arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification is presented. The MMIC arrays are to be demonstrated in the ACTS Aeronautical Terminal Experiment, planned for early 1994. The experiment is outlined, with emphasis on a description of the antenna system. Attention is given to the way in which proof-of-concept MMIC arrays featuring three different state-of-the-art approaches to Ka-band MMIC insertion are being incorporated into an experimental aircraft terminal for the demonstration of an aircraft-to-satellite link, providing a basis for follow-on MMIC array development.

  12. NASA's K/Ka-Band Broadband Aeronautical Terminal for Duplex Satellite Video Communications

    NASA Technical Reports Server (NTRS)

    Densmore, A.; Agan, M.

    1994-01-01

    JPL has recently begun the development of a Broadband Aeronautical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS). The BAT system will provide the systems and technology groundwork for an eventual commercial K/Ka-band aeronautical satellite communication system. With industry/government partnerships, three main goals will be addressed by the BAT task: 1) develop, characterize and demonstrate the performance of an ACTS based high data rate aeronautical communications system; 2) assess the performance of current video compression algorithms in an aeronautical satellite communication link; and 3) characterize the propagation effects of the K/Ka-band channel for aeronautical communications.

  13. An integrated Ka/Ku-band payload for personal, mobile and private business communications

    NASA Technical Reports Server (NTRS)

    Hayes, Edward J.; Keelty, J. Malcolm

    1991-01-01

    The Canadian Department of Communications has been studying options for a government-sponsored demonstration payload to be launched before the end of the century. A summary of the proposed system concepts and network architectures for providing an advanced private business network service at Ku-band and personal and mobile communications at Ka-band is presented. The system aspects addressed include coverage patterns, traffic capacity, and grade of service, multiple access options as well as special problems, such as Doppler in mobile applications. Earth terminal types and the advanced payload concept proposed in a feasibility study for the demonstration mission are described. This concept is a combined Ka-band/Ku-band payload which incorporates a number of advanced satellite technologies including a group demodulator to convert single-channel-per-carrier frequency division multiple access uplink signals to a time division multiplex downlink, on-board signal regeneration, and baseband switching to support packet switched data operation. The on-board processing capability of the payload provides a hubless VSAT architecture which permits single-hop full mesh interconnectivity. The Ka-band and Ku-band portions of the payload are fully integrated through an on-board switch, thereby providing the capability for fully integrated services, such as using the Ku-band VSAT terminals as gateway stations for the Ka-band personal and mobile communications services.

  14. Results from Three Years of Ka-Band Propagation Characterization at Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Nessel, James; Zemba, Michael; Morse, Jacquelynne

    2015-01-01

    Over the next several years, NASA plans to launch several earth science missions which are expected to achieve data throughputs of 5-40 terabits per day transmitted from low earth orbiting spacecraft to ground stations. The current S-band and X-band frequency allocations in use by NASA, however, are incapable of supporting the data rates required to meet this demand. As such, NASA is in the planning stages to upgrade its existing Near Earth Network (NEN) polar ground stations to support Ka-band (25.5-27 GHz) operations. Consequently, it installed and operated a Ka-band radiometer at the Svalbard site. Svalbard was chosen as the appropriate site for two primary reasons: (1) Svalbard will be the first site to be upgraded to Ka-band operations within the NEN Polar Network enhancement plan, and (2) there exists a complete lack of Ka-band propagation data at this site (as opposed to the Fairbanks, AK NEN site, which has 5 years of characterization collected during the Advanced Communications Technology becomes imperative that characterization of propagation effects at these NEN sites is conducted to determine expected system Satellite (ACTS) campaign). processing and provide the Herein, we discuss the data three-year measurement results performance, particularly at low elevation angles ((is) less than 10 deg) from the ongoing Ka-band propagation characterization where spacecraft signal acquisition typically occurs. Since May 2011, NASA Glenn Research Center has installed and operated a Ka-band radiometer at the NEN site located in Svalbard, Norway. The Ka-band radiometer monitors the water vapor line, as well as 4 frequencies around 26.5 GHz at a fixed 10 deg elevation angle. Three-year data collection results indicate good campaign at Svalbard, Norway. Comparison of these results with the ITU models and existing ERA profile data indicates very good agreement when the 2010 rain maps and cloud statistics are used. Finally, the Svalbard data is used to derive the expected

  15. Results from Three Years of Ka-band Propagation Characterization at Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zemba, Michael; Morse, Jacquelynne

    2015-01-01

    Over the next several years, NASA plans to launch several earth science missions which are expected to achieve data throughputs of 5-40 terabits per day transmitted from low earth orbiting spacecraft to ground stations. The current S-band and X-band frequency allocations in use by NASA, however, are incapable of supporting the data rates required to meet this demand. As such, NASA is in the planning stages to upgrade its existing Near Earth Network (NEN) polar ground stations to support Ka-band (25.5-27 GHz) operations. Consequently, it installed and operated a Ka-band radiometer at the Svalbard site. Svalbard was chosen as the appropriate site for two primary reasons: (1) Svalbard will be the first site to be upgraded to Ka-band operations within the NEN Polar Network enhancement plan, and (2) there exists a complete lack of Ka-band propagation data at this site (as opposed to the Fairbanks, AK NEN site, which has 5 years of characterization collected during the Advanced Communications Technology becomes imperative that characterization of propagation effects at these NEN sites is conducted to determine expected system Satellite (ACTS) campaign). processing and provide the Herein, we discuss the data three-year measurement results performance, particularly at low elevation angles ((is) less than 10 deg) from the ongoing Ka-band propagation characterization where spacecraft signal acquisition typically occurs. Since May 2011, NASA Glenn Research Center has installed and operated a Ka-band radiometer at the NEN site located in Svalbard, Norway. The Ka-band radiometer monitors the water vapor line, as well as 4 frequencies around 26.5 GHz at a fixed 10 deg elevation angle. Three-year data collection results indicate good campaign at Svalbard, Norway. Comparison of these results with the ITU models and existing ERA profile data indicates very good agreement when the 2010 rain maps and cloud statistics are used. Finally, the Svalbard data is used to derive the expected

  16. Microvibrations in a 20 M Long Ka-Band SAR Interferometer

    NASA Astrophysics Data System (ADS)

    Rodriques, G.; Ludwig, M.; Santiago-Prowald, J.

    2014-06-01

    Interferometric SAR operating at Ka-band has the potential for offering high-resolution 3D images of the surface of the Earth taken from a single-platform.The stability of the mechanical baseline of such an instrument has been considered as a key critical area for the feasibility of the concept.This paper is devoted to the analysis of the micro- vibrations in a 20-m long Ka-band SAR interferometer arising during typical attitude changing manoeuvers and the mechanical noise transmitted from reaction wheels. It is preliminarily concluded that the expected microvibration levels are within the requirements of the instrument.

  17. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground

  18. Results from Two Years of Ka-Band Propagation Characterization at Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Morse, Jacquelynne Rose; Zemba, Michael

    2014-01-01

    Over the several years, NASA plans to launch several earth science missions which are expected to achieve data throughputs of 5-40 terabits per day transmitted from low earth orbiting spacecraft to ground stations. The current S-band and X-band frequency allocations in use by NASA, however, are incapable of supporting the data rates required to meet this demand. As such, NASA is in the planning stages to upgrade its existing Near Earth Network (NEN) Polar ground stations to support Ka-band (25.5-27 GHz) operations. Consequently, it becomes imperative that characterization of propagation effects at these NEN sites is conducted to determine expected system performance, particularly at low elevation angles ((is) less than 10 deg) where spacecraft signal acquisition typically occurs. Since May 2011, NASA Glenn Research Center has installed and operated a Ka-band radiometer at the NEN site located in Svalbard, Norway. The Ka-band radiometer monitors the water vapor line, as well as 6 frequencies around 26.5 GHz at multiple elevation angles: 45 deg, 20 deg, and 10 deg. Two year data collection results indicate comparable performance to previously characterized northern latitude sites in the United States, i.e., Fairbanks, Alaska. It is observed that cloud cover at the Svalbard site remains the dominant loss mechanism for Ka-band links, resulting in a margin requirement of 4.1 dB to maintain link availability of 99% at 10 deg elevation.

  19. X/X/Ka-band prime focus feed antenna for the Mars Observer beacon spacecraft

    NASA Technical Reports Server (NTRS)

    Stanton, P.; Reilly, H.; Esquivel, M.

    1988-01-01

    The results of an X/X/Ka-band feed design concept demonstration are presented. The purpose is to show the feasibility of adding a Ka-band beacon to the Mars Observer spacecraft. Scale model radiation patterns were made and analyzed.

  20. Alternative beam configuration for a Canadian Ka-band satellite system

    NASA Technical Reports Server (NTRS)

    Hindson, Daniel J.; Caron, Mario

    1995-01-01

    Satellite systems operating in the Ka-band have been proposed to offer wide band personal communications services to fixed earth terminals employing small aperture antennas as well as to mobile terminals. This requirement to service a small aperture antenna leads to a satellite system utilizing small spot beams. The traditional approach is to cover the service area with uniform spot beams which have been sized to provide a given grade of service at the worst location over the service area and to place them in a honeycomb pattern. In the lower frequency bands this approach leads to a fairly uniform grade of service over the service area due to the minimal effects of rain on the signals. At Ka-band, however, the effects of rain are quite significant. Using this approach over a large service area (e.g. Canada) where the geographic distribution of rain impairment varies significantly yields an inefficient use of satellite resources to provide a uniform grade of service. An alternative approach is to cover the service area using more than one spot beam size in effect linking the spot beam size to the severity of the rain effects in a region. This paper demonstrates how for a Canadian Ka-band satellite system, that the use of two spot beam sizes can provide a more uniform grade of service across the country as well as reduce the satellite payload complexity over a design utilizing a single spot beam size.

  1. A Ka-band chirped-pulse Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.

    2012-10-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.

  2. Weather related continuity and completeness on Deep Space Ka-band links: statistics and forecasting

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin

    2006-01-01

    In this paper the concept of link 'stability' as means of measuring the continuity of the link is introduced and through it, along with the distributions of 'good' periods and 'bad' periods, the performance of the proposed Ka-band link design method using both forecasting and long-term statistics has been analyzed. The results indicate that the proposed link design method has relatively good continuity and completeness characteristics even when only long-term statistics are used and that the continuity performance further improves when forecasting is employed. .

  3. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  4. Propagation experiment of COMETS Ka/Q-band communication link for future satellite cellular system

    NASA Technical Reports Server (NTRS)

    Hase, Yoshihiro

    1995-01-01

    Mobile/Personal Satellite Communication Systems in L/S-bands are going into the operational phase. In the future, they will be operated in much higher frequency bands, for example in Ka-band, because the available bandwidth in L-band is limited. Systems with large on-board antennas in higher frequencies allow the same configuration as terrestrial cellular radio systems, since the on-board antennas will have many small spot beams. This may be true especially in a low earth orbit system such as Teledesic, which will use Ka-band. The most important parameter of Satellite Cellular may be cell size, that is, a diameter of the spot beam. A system designer needs the local correlation data in a cell and the size of the correlative area. On the other hand, the most significant difficulty of Ka and higher band systems is the countermeasure to rain attenuation. Many-cell systems can manage the limited power of on-board transponders by controlling output power of each beam depending on the rain attenuation of each cell. If the cell size is equal to the correlative area, the system can probably achieve the maximum performance. Propagation data of Ka and higher band obtained in the past shows a long term cumulative feature and link availability, but do not indicate the correlative area. The Japanese COMETS satellite, which will be launched in February 1997, has transponders in Ka and Q-band. The CRL is planning to measure the correlative area using 21 GHz and 44 GHz CW transmissions from the COMETS.

  5. Simulation and development of novel slow-wave structures for miniaturized THz-band vacuum-tube devices

    NASA Astrophysics Data System (ADS)

    Benedik, Andrey I.; Karetnikova, Tatiana A.; Torgashov, Roman A.; Terentyuk, Artem G.; Rozhnev, Andrey G.; Torgashov, Gennadiy V.; Ryskin, Nikita M.

    2018-04-01

    Microfabricated vacuum-tube millimeter- and THz-band sources are of great interest for numerous applications such as communications, radar, sensors, imaging, etc. Recently, miniaturized sheet-beam traveling-wave tubes for sub-THz and THz operation have attracted a considerable interest. In this paper, we present the results of modeling and development of slow-wave structures (SWS) for medium power (10-100 W) traveling-wave tube (TWT) amplifiers and backwardwave oscillators (BWO) in near-THz frequency band. Different types of SWSs are considered, such as double-vane SWS for TWT with a sheet electron beam, a folded-waveguide SWS, and novel planar SWSs on dielectric substrates.

  6. NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin P.; Stocklin, Frank J.; Geldzahler, Barry J.; Friedman, Daniel E.; Celeste, Peter B.

    2010-01-01

    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future needs

  7. A circularly polarized Ka-band stacked patch antenna with increased gain

    NASA Technical Reports Server (NTRS)

    Zawadzki, M.

    2002-01-01

    Stacking layers of microstrip patches is a technique often used to improve the bandwidth of a patch antenna, but rarely used to increase its gain. The work presented here scales the three-layer S-band work done in to Ka-band.

  8. Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex.

    PubMed

    Zhang, Honghui; Watrous, Andrew J; Patel, Ansh; Jacobs, Joshua

    2018-06-01

    Human cognition requires the coordination of neural activity across widespread brain networks. Here, we describe a new mechanism for large-scale coordination in the human brain: traveling waves of theta and alpha oscillations. Examining direct brain recordings from neurosurgical patients performing a memory task, we found contiguous clusters of cortex in individual patients with oscillations at specific frequencies within 2 to 15 Hz. These oscillatory clusters displayed spatial phase gradients, indicating that they formed traveling waves that propagated at ∼0.25-0.75 m/s. Traveling waves were relevant behaviorally because their propagation correlated with task events and was more consistent when subjects performed the task well. Human traveling theta and alpha waves can be modeled by a network of coupled oscillators because the direction of wave propagation correlated with the spatial orientation of local frequency gradients. Our findings suggest that oscillations support brain connectivity by organizing neural processes across space and time. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Traveling waves in discretized Balitsky Kovchegov evolution

    NASA Astrophysics Data System (ADS)

    Marquet, C.; Peschanski, R.; Soyez, G.; Bialas, A.

    2006-02-01

    We study the asymptotic solutions of a version of the Balitsky-Kovchegov evolution with discrete steps in rapidity. We derive a closed iterative equation in momentum space. We show that it possesses traveling-wave solutions and extract their properties. We find no evidence for chaotic behaviour due to discretization.

  10. Ka-Band Autonomous Formation Flying Sensor

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey; Purcell, George, Jr.; Srinivasan, Jeffrey; Ciminera, Michael; Srinivasan, Meera; Meehan, Thomas; Young, Lawrence; Aung, MiMi; Amaro, Luis; Chong, Yong; hide

    2004-01-01

    Ka-band integrated range and bearing-angle formation sensor called the Autonomous Formation Flying (AFF) Sensor has been developed to enable deep-space formation flying of multiple spacecraft. The AFF Sensor concept is similar to that of the Global Positioning System (GPS), but the AFF Sensor would not use the GPS. The AFF Sensor would reside in radio transceivers and signal-processing subsystems aboard the formation-flying spacecraft. A version of the AFF Sensor has been developed for initial application to the two-spacecraft StarLight optical-interferometry mission, and several design investigations have been performed. From the prototype development, it has been concluded that the AFF Sensor can be expected to measure distances and directions with standard deviations of 2 cm and 1 arc minute, respectively, for spacecraft separations ranging up to about 1 km. It has also been concluded that it is necessary to optimize performance of the overall mission through design trade-offs among the performance of the AFF Sensor, the field of view of the AFF Sensor, the designs of the spacecraft and the scientific instruments that they will carry, the spacecraft maneuvers required for formation flying, and the design of a formation-control system.

  11. Mars Telecommunications Orbiter Ka-band system design and operations

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; Komarek, Tomas; Diehl, Roger; Shambayati, Shervin; Breidenthal, Julian; Lopez, Saturnino; Jordan, Frank

    2003-01-01

    NASA's Mars Telecommunications Orbiter (MTO) will relay broadband communications from landers, rovers and spacecraft in the vicinity of Mars to Earth. This paper describes the MTO communications system and how the MTO Ka-band system will be operated.

  12. ACTS Ka-band Propagation Research in a Spatially Diversified Network with Two USAT Ground Stations

    NASA Technical Reports Server (NTRS)

    Kalu, Alex; Acousta, R.; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.

    1999-01-01

    Congestion in the radio spectrum below 18 GHz is stimulating greater interest in the Ka (20/30 GHz) frequency band. Transmission at these shorter wavelengths is greatly influenced by rain resulting in signal attenuation and decreased link availability. The size and projected cost of Ultra Small Aperture Terminals (USATS) make site diversity methodology attractive for rain fade compensation. Separation distances between terminals must be small to be of interest commercially. This study measures diversity gain at a separation distance <5 km and investigates utilization of S-band weather radar reflectivity in predicting diversity gain. Two USAT ground stations, separated by 2.43 km for spatial diversity, received a continuous Ka-band tone sent from NASA Glenn Research Center via the Advanced Communications Technology Satellite (ACTS) steerable antenna beam. Received signal power and rainfall were measured, and Weather Surveillance Radar-1998 Doppler (WSR-88D) data were obtained as a measure of precipitation along the USAT-to-ACTS slant path. Signal attenuation was compared for the two sites, and diversity gain was calculated for fades measured on eleven days. Correlation of WSR-88D S-band reflectivity with measured Ka-band attenuation consisted of locating radar volume elements along each slant path, converting reflectivity to Ka-band attenuation with rain rate calculation as an intermediate step. Specific attenuation for each associated path segment was summed, resulting in total attenuation along the slant path. Derived Ka-band attenuation did not correlate closely with empirical data (r = 0.239), but a measured signal fade could be matched with an increase in radar reflectivity in all fade events. Applying a low pass filter to radar reflectivity prior to deriving Ka-band attenuation improved the correlation between measured and derived signal attenuation (r = 0.733). Results indicate that site diversity at small separation distances is a viable means of rain fade

  13. Spaceflight Ka-Band High-Rate Radiation-Hard Modulator

    NASA Technical Reports Server (NTRS)

    Jaso, Jeffery M.

    2011-01-01

    A document discusses the creation of a Ka-band modulator developed specifically for the NASA/GSFC Solar Dynamics Observatory (SDO). This flight design consists of a high-bandwidth, Quadriphase Shift Keying (QPSK) vector modulator with radiation-hardened, high-rate driver circuitry that receives I and Q channel data. The radiationhard design enables SDO fs Ka-band communications downlink system to transmit 130 Mbps (300 Msps after data encoding) of science instrument data to the ground system continuously throughout the mission fs minimum life of five years. The low error vector magnitude (EVM) of the modulator lowers the implementation loss of the transmitter in which it is used, thereby increasing the overall communication system link margin. The modulator comprises a component within the SDO transmitter, and meets the following specifications over a 0 to 40 C operational temperature range: QPSK/OQPSK modulator, 300-Msps symbol rate, 26.5-GHz center frequency, error vector magnitude less than or equal to 10 percent rms, and compliance with the NTIA (National Telecommunications and Information Administration) spectral mask.

  14. K/Ka-band Antenna for Broadband Aeronautical Mobile Application

    NASA Technical Reports Server (NTRS)

    Densmore, A.

    1994-01-01

    The Jet Propulsion Laboratory (JPL) has recently begun the development of a Broadband Aeronauical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS).

  15. Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2010-01-01

    The design, simulation, and characterization of a novel Ka-band (32.05 0.25 GHz) rectangular waveguide two-way branch-line hybrid unequal power combiner (with port impedances matched to that of a standard WR-28 waveguide) has been created to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The measured combining efficiency is 92.9 percent at the center frequency of 32.05 GHz. This circuit is efficacious in combining the unequal output power from two Ka-band GaAs pseudomorphic high electron mobility transistor (pHEMT) monolithic microwave integrated circuit (MMIC) power amplifiers (PAs) with high efficiency. The component parts include the branch-line hybrid-based power combiner and the MMIC-based PAs. A two-way branch-line hybrid is a four-port device with all ports matched; power entering port 1 is divided in phase, and into the ratio 2:1 between ports 3 and 4. No power is coupled to port 2. MMICs are a type of integrated circuit fabricated on GaAs that operates at microwave frequencies, and performs the function of signal amplification. The power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA's deep space frequency band. The power combiner would have an output return loss better than 20 dB. Isolation between the output port and the isolated port is greater than 25 dB. Isolation between the two input ports is greater than 25 dB. The combining efficiency would be greater than 90 percent when the ratio of the two input power levels is two. The power combiner is machined from aluminum with E-plane split-block arrangement, and has excellent reliability. The flexibility of this design allows the combiner to be customized for combining the power from MMIC PAs with an arbitrary power output ratio. In addition, it allows combining a low-power GaAs MMIC with a high-power GaN MMIC. The arbitrary

  16. On the Performance of Adaptive Data Rate over Deep Space Ka-Bank Link: Case Study Using Kepler Data

    NASA Technical Reports Server (NTRS)

    Gao, Jay L.

    2016-01-01

    Future missions envisioned for both human and robotic exploration demand increasing communication capacity through the use of Ka-band communications. The Ka-band channel, being more sensitive to weather impairments, presents a unique trade-offs between data storage, latency, data volume and reliability. While there are many possible techniques for optimizing Ka-band operations such as adaptive modulation and coding and site-diversity, this study focus exclusively on the use of adaptive data rate (ADR) to achieve significant improvement in the data volume-availability tradeoff over a wide range of link distances for near Earth and Mars exploration. Four years of Kepler Ka-band downlink symbol signal-to-noise (SNR) data reported by the Deep Space Network were utilized to characterize the Ka-band channel statistics at each site and conduct various what-if performance analysis for different link distances. We model a notional closed-loop adaptive data rate system in which an algorithm predicts the channel condition two-way light time (TWLT) into the future using symbol SNR reported in near-real time by the ground receiver and determines the best data rate to use. Fixed and adaptive margins were used to mitigate errors in channel prediction. The performance of this closed-loop adaptive data rate approach is quantified in terms of data volume and availability and compared to the actual mission configuration and a hypothetical, optimized single rate configuration assuming full a priori channel knowledge.

  17. Ka-band SAR interferometry studies for the SWOT mission

    NASA Astrophysics Data System (ADS)

    Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.

    2008-12-01

    The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.

  18. MEMS, Ka-Band Single-Pole Double-Throw (SPDT) Switch for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.

    2002-01-01

    Ka-band MEMS doubly anchored cantilever beam capacitive shunt devices are used to demonstrate a MEMS SPDT switch fabricated on high resistivity silicon (HRS) utilizing finite ground coplanar waveguide (FGC) transmission lines. The SPDT switch has an insertion loss (IL), return loss (RL), and isolation of 0.3dB, 40dB, and 30 dB, respectively at Ka-band.

  19. Superconducting traveling wave accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, Z.D.

    1984-11-01

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 10/sup 6/ in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 10/sup 3/, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRAmore » reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table.« less

  20. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  1. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  2. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  3. A Gigabit-per-Second Ka-Band Demonstration Using a Reconfigurable FPGA Modulator

    NASA Technical Reports Server (NTRS)

    Lee, Dennis; Gray, Andrew A.; Kang, Edward C.; Tsou, Haiping; Lay, Norman E.; Fong, Wai; Fisher, Dave; Hoy, Scott

    2005-01-01

    Gigabit-per-second communications have been a desired target for future NASA Earth science missions, and for potential manned lunar missions. Frequency bandwidth at S-band and X-band is typically insufficient to support missions at these high data rates. In this paper, we present the results of a 1 Gbps 32-QAM end-to-end experiment at Ka-band using a reconfigurable Field Programmable Gate Array (FPGA) baseband modulator board. Bit error rate measurements of the received signal using a software receiver demonstrate the feasibility of using ultra-high data rates at Ka-band, although results indicate that error correcting coding and/or modulator predistortion must be implemented in addition. Also, results of the demonstration validate the low-cost, MOS-based reconfigurable modulator approach taken to development of a high rate modulator, as opposed to more expensive ASIC or pure analog approaches.

  4. Full Ka Band Waveguide-to-Microstrip Inline Transition Design

    NASA Astrophysics Data System (ADS)

    Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue

    2018-05-01

    In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.

  5. Miniaturized Ka-Band Dual-Channel Radar

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian

    2011-01-01

    Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.

  6. Validation Studies for CHRISTINE-CC Using a Ka-Band Coupled-Cavity TWT

    DTIC Science & Technology

    2006-04-01

    Cavity TWT for 29-31 GHz Figure 3: Output power vs. input power at f=30.0 Communications Systems," I Ith Ka and Broadband GHz for the VTA-6430A1 Ka...Coupled-Cavity TWT DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: 2006 IEEE...Studies for CHRISTINE-CC Using a Ka-Band Coupled-Cavity TWT * D. Chernin, D. Dialetis, T. M. Antonsen, Jr.t, Science Applications International Corp McLean

  7. Self-consistent inclusion of space-charge in the traveling wave tube

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    1987-01-01

    It is shown how the complete field of the electron beam may be incorporated into the transmission line model theory of the traveling wave tube (TWT). The fact that the longitudinal component of the field due to the bunched beam is not used when formulating the beam-to-circuit coupling equation is not well-known. The fundamental partial differential equation for the traveling wave field is developed and compared with the older (now standard) one. The equation can be solved numerically using the same algorithms, but now the coefficients can be updated continuously as the calculation proceeds down the tube. The coefficients in the older equations are primarily derived from preliminary measurements and some trial and error. The newer coefficients can be found by a recursive method, since each has a well defined physical interpretation and can be calculated once a reasonable first trial solution is postulated. The results of the new expression were compared with those of the older forms, as well as to a field theory model to show the ease in which a reasonable fit to the field prediction is obtained. A complete summary of the existing transmission line modeling of the TWT is given to explain the somewhat vague ideas and techniques in the general area of drifting carrier-traveling circuit wave interactions. The basic assumptions and inconsistencies of the existing theory and areas of confusion in the general literature are examined and hopefully cleared up.

  8. Ka-Band Atmospheric Phase Stability Measurements in Goldstone, CA; White Sands, NM; and Guam

    NASA Technical Reports Server (NTRS)

    Zemba, Michael J.; Morse, Jacquelynne Rose; Nessel, James A.

    2014-01-01

    As spacecraft communication links are driven to higher frequencies (e.g. Ka-band) both by spectrum congestion and the appeal of higher data rates, the propagation phenomena at these frequencies must be well characterized for effective system design. In particular, the phase stability of a site at a given frequency will govern whether or not the site is a practical location for an antenna array, particularly if uplink capabilities are desired. Propagation studies to characterize such phenomena must be done on a site-by-site basis due to the wide variety of climates and weather conditions at each ground terminal. Accordingly, in order to statistically characterize the atmospheric effects on Ka-Band links, site test interferometers (STIs) have been deployed at three of NASA's operational sites to directly measure each site's tropospheric phase stability. Using three years of results from these experiments, this paper will statistically characterize the simultaneous atmospheric phase noise measurements recorded by the STIs deployed at the following ground station sites: the Goldstone Deep Space Communications Complex near Barstow, CA; the White Sands Ground Terminal near Las Cruces, NM; and the Guam Remote Ground Terminal on the island of Guam.

  9. Ka-Band Parabolic Deployable Antenna (KaPDA) Enabling High Speed Data Communication for CubeSats

    NASA Technical Reports Server (NTRS)

    Sauder, Jonathan F.; Chahat, Nacer; Hodges, Richard; Thomson, Mark W.; Rahmat-Samii, Yahya

    2015-01-01

    CubeSats are at a very exciting point as their mission capabilities and launch opportunities are increasing. But as instruments become more advanced and operational distances between CubeSats and earth increase communication data rate becomes a mission-limiting factor. Improving data rate has become critical enough for NASA to sponsor the Cube Quest Centennial Challenge when: one of the key metrics is transmitting as much data as possible from the moon and beyond Currently, many CubeSats communicate on UHF bands and those that have high data rate abilities use S-band or X-band patch antennas. The CubeSat Aneas, which was launched in September 2012, pushed the envelope with a half-meter S-band dish which could achieve 100x the data rate of patch antennas. A half-meter parabolic antenna operating at Ka-band would increase data rates by over 100x that of the AMOS antenM and 10,000 that of X-band patch antennas.

  10. Development of an engineering model traveling wave tube amplifier for space communication systems

    NASA Technical Reports Server (NTRS)

    Eallonardo, C. M.; Songli, J.; Basiulis, A.

    1972-01-01

    A design has been made of a 100 watt traveling-wave tube amplifier for use in space communication applications. The features of very high overall efficiency and heat rejection of waste heat at low thermal densities were predominant in the design concept. The design concept was proven by building a series of tubes, operating at efficiencies up to 50%. These tubes utilized heat pipe cooling and heat distribution such that 150 watts of waste heat was rejected at a density of less than 1.5 watts per square inch. A power supply to convert a 28 volt primary line of the needs of the TWT was built and operated at 85% efficiency.

  11. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOEpatents

    Möbius, Arnold; Ives, Robert Lawrence

    2005-07-19

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  12. Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon

    2013-01-01

    As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.

  13. Synergistic Measurement of Ice Cloud Microphysics using C- and Ka-Band Radars

    NASA Astrophysics Data System (ADS)

    Ewald, F.; Gross, S.; Hagen, M.; Li, Q.; Zinner, T.

    2017-12-01

    Ice clouds play an essential role in the climate system since they have a large effect on the Earth's radiation budget. Uncertainties associated with their spatial and temporal distribution as well as their optical and microphysical properties still account for large uncertainties in climate change predictions. Substantial improvement of our understanding of ice clouds was achieved with the advent of cloud radars into the field of ice cloud remote sensing. Here, highly variable ice crystal size distributions are one of the key issues remaining to be resolved. With radar reflectivity scaling with the sixth moment of the particle size, the assumed ice crystal size distribution has a large impact on the results of microphysical retrievals. Different ice crystal sizes distributions can, however, be distinguished, when cloud radars of different wavelength are used simultaneously.For this study, synchronous RHI scans were performed for a common measurement range of about 30 km between two radar instruments using different wavelengths: the dual-polarization C-band radar POLDIRAD operated at DLR and the Mira-36 Ka-band cloud radar operated at the University of Munich. For a measurement period over several months, the overlapping region for ice clouds turned out to be quite large. This gives evidence on the presence of moderate-sized ice crystals for which the backscatter is sufficient high to be visible in the C-band as well. In the range between -10 to +10 dBz, reflectivity measurements from both radars agreed quite well indicating the absence of large ice crystals. For reflectivities above +10 dBz, we observed differences with smaller values at the Ka-band due to Mie scattering effects at larger ice crystals.In this presentation, we will show how this differential reflectivity can be used to gain insight into ice cloud microphysics on the basis of electromagnetic scattering calculations. We will further explore ice cloud microphysics using the full polarization agility

  14. Satellite Communications for Unmanned Aircraft C2 Links: C-Band, Ku-Band and Ka-Band

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    Unmanned aircraft (UA) that require access to controlled (or non-segregated) airspace require a highly reliable and robust command and control (C2) link, operating over protected aviation spectrum. While operating within radio line-of-sight (LOS) UA can make use of air-to-ground C2 links to terrestrial stations. When operating beyond LOS (BLOS) where a group of networked terrestrial stations does not exist to provide effective BLOS coverage, a satellite communications link is required. Protected aviation spectrum for satellite C2 links has only recently been allocated in bands where operational satellites exist. A previously existing C-Band allocation covers a bands where there are currently no operational satellites. The new allocations, within the Fixed Satellite Service bands at Ku and Ka-Bands will not be finalized until 2023 due to the need for the development of standards and technical decisions on the operation of UA satellite C2 links within these bands. This paper provides an overview of BLOS satellite C2 links, some of the conditions which will need to be met for the operation of such links, and a look at some aspects of spectrum sharing which may constrain these operations.

  15. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket

    NASA Astrophysics Data System (ADS)

    Lin, Charles C. H.; Shen, Ming-Hsueh; Chou, Min-Yang; Chen, Chia-Hung; Yue, Jia; Chen, Po-Cheng; Matsumura, Mitsuru

    2017-08-01

    We report the first observation of concentric traveling ionospheric disturbances (CTIDs) triggered by the launch of a SpaceX Falcon 9 rocket on 17 January 2016. The rocket-triggered ionospheric disturbances show shock acoustic wave signature in the time rate change (time derivative) of total electron content (TEC), followed by CTIDs in the 8-15 min band-pass filtering of TEC. The CTIDs propagated northward with phase velocity of 241-617 m/s and reached distances more than 1000 km away from the source on the rocket trajectory. The wave characteristics of CTIDs with periods of 10.5-12.7 min and wavelength 200-400 km agree well with the gravity wave dispersion relation. The optimal wave source searching and gravity wave ray tracing technique suggested that the CTIDs have multiple sources which are originated from 38-120 km altitude before and after the ignition of the second-stage rocket, 200 s after the rocket was launched.

  16. Internal waves, Andaman Sea

    NASA Image and Video Library

    1994-09-30

    STS068-236-044 (30 September-11 October 1994) --- These internal waves in the Andaman Sea, west of Burma, were photographed from 115 nautical miles above Earth by the crew of the Space Shuttle Endeavour during the Space Radar Laboratory 2 (SRL-2) mission. The internal waves smooth out some of the capillary waves at the surface in bands and travel along the density discontinuity at the bottom of the mixed layer depth. There is little evidence of the internal waves at the surface. They are visible in the Space Shuttle photography because of sunglint, which reflects off the water.

  17. Deep Space Network Radiometric Remote Sensing Program

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  18. High Rate User Ka-Band Phased Array Antenna Test Results

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  19. Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth

    1994-01-01

    Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.

  20. High Power High Efficiency Ka-Band Power Combiners for Solid-State Devices

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.; Wintucky, Edwin G.; Chevalier, Christine T.

    2006-01-01

    Wide-band power combining units for Ka-band are simulated for use as MMIC amplifier applications. Short-slot couplers as well as magic-tees are the basic elements for the combiners. Wide bandwidth (5 GHz) and low insertion (approx.0.2 dB) and high combining efficiencies (approx.90 percent) are obtained.

  1. The variability, structure and energy conversion of the northern hemisphere traveling waves simulated in a Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Toigo, Anthony D.

    2016-06-01

    Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.

  2. High Power RF Testing of A 3-Cell Superconducting Traveling Wave Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Kostin, Romna; Avrakhov, Pavel

    Euclid Techlabs has completed the Phase II SBIR project, entitled “High Power RF Testing of a 3-Cell Superconducting Traveling Wave Accelerating Structure” under Grant #DE-SC0006300. In this final technical report, we summarize the major achievements of Phase I of the project and review the details of Phase II of the project. The accelerating gradient in a superconducting structure is limited mainly by quenching, i.e., by the maximum surface RF magnetic field. Various techniques have been developed to increase the gradient. A traveling wave accelerating SC structure with a feedback waveguide was suggested to allow an increased transit time factor andmore » ultimately, a maximum gradient that is 22%-24% higher than in the best of the time standing wave SRF cavity solution. The proposed structure has an additional benefit in that it can be fabricated much longer than the standing wave ones that are limited by the field flatness factor. Taken together, all of these factors will result in a significant overall length and, correspondingly cost reduction of the SRF based linear collider ILC or SRF technology based FELs. In Phase I of this project, a 3-cell L-band SC traveling wave cavity was designed. Cavity shape, surface field ratios, inter-cell coupling coefficients, accelerating field flatness have been reviewed with the analysis of tuning issues. Moreover, the technological aspects of SC traveling wave accelerating structure fabrication have been studied. As the next step in the project, the Phase II experimental program included engineering design, manufacturing, surface processing and high gradient testing. Euclid Techlabs, LLC contracted AES, Inc. to manufacture two niobium cavities. Euclid Techlabs cold tested traveling wave regime in the cavity, and the results showed very good agreement with mathematical model specially developed for superconducting traveling wave cavity performance analysis. Traveling wave regime was adjusted by amplitude and phase

  3. Traveling-Wave Membrane Photomixers

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Martin, S. C.; Nakamura, B. J.; Neto, A.; Pasqualini, D.; Siegel, P. H.; Kadow, C.; Gossard, A. C.

    2001-01-01

    Traveling-wave photomixers have superior performance when compared with lumped area photomixers in the 1 to 3 THz frequency range. Their large active area and distributed gain mechanism assure high thermal damage threshold and elimination of the capacitive frequency roll-off. However, the losses experienced by the radio frequency wave traveling along the coplanar strips waveguide (due to underlying semi-infinite GaAs substrate) were a serious drawback. In this paper we present device designs and an experimental setup that make possible the realization of photomixers on membranes which eliminate the losses.

  4. Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier

    NASA Astrophysics Data System (ADS)

    Erickson, R. P.; Pappas, D. P.

    2017-03-01

    We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).

  5. X-band preamplifier filter

    NASA Technical Reports Server (NTRS)

    Manshadi, F.

    1986-01-01

    A low-loss bandstop filter designed and developed for the Deep Space Network's 34-meter high-efficiency antennas is described. The filter is used for protection of the X-band traveling wave masers from the 20-kW transmitter signal. A combination of empirical and theoretical techniques was employed as well as computer simulation to verify the design before fabrication.

  6. Metastable state en route to traveling-wave synchronization state

    NASA Astrophysics Data System (ADS)

    Park, Jinha; Kahng, B.

    2018-02-01

    The Kuramoto model with mixed signs of couplings is known to produce a traveling-wave synchronized state. Here, we consider an abrupt synchronization transition from the incoherent state to the traveling-wave state through a long-lasting metastable state with large fluctuations. Our explanation of the metastability is that the dynamic flow remains within a limited region of phase space and circulates through a few active states bounded by saddle and stable fixed points. This complex flow generates a long-lasting critical behavior, a signature of a hybrid phase transition. We show that the long-lasting period can be controlled by varying the density of inhibitory/excitatory interactions. We discuss a potential application of this transition behavior to the recovery process of human consciousness.

  7. Ka-band propagation studies using the ACTS propagation terminal and the CSU-CHILL multiparameter, Doppler radar

    NASA Technical Reports Server (NTRS)

    Beaver, J.; Turk, J.; Bringi, V. N.

    1995-01-01

    An increase in the demand for satellite communications has led to an overcrowding of the current spectrums being used - mainly at C and Ku bands. To alleviate this overcrowding, new technology is being developed to open up the Ka-band for communications use. One of the first experimental communications satellites using this technology is NASA's Advanced Communications Technology Satellite (ACTS). In Sept. 1993, ACTS was deployed into a geostationary orbit near 100 deg W longitude. The ACTS system employs two Ka-band beacons for propagation experiments, one at 20.185 GHz and another at 27.505 GHz. Attenuation due to rain and tropospheric scintillations will adversely affect new technologies proposed for this spectrum. Therefore, before being used commercially, propagation effects at Ka-band must be studied. Colorado State University is one of eight sites across the United States and Canada conducting propagations studies; each site is equipped with the ACTS propagation terminal (APT). With each site located in a different climatic zone, the main objective of the propagation experiment is to obtain monthly and yearly attenuation statistics. Each site also has secondary objectives that are site dependent. At CSU, the CSU-CHILL radar facility is being used to obtain polarimetric radar data along the ACTS propagation path. During the expected two to four year period of the project, it is hoped to study several significant weather events. The S-band radar will be used to obtain Ka-band attenuation estimates and to initialize propagation models that have been developed, to help classify propagation events measured by the APT. Preliminary attenuation estimates for two attenuation events will be shown here - a bright band case that occurred on 13 May 1994 and a convective case that occurred on 20 Jun. 1994. The computations used to obtain Ka-band attenuation estimates from S-band radar data are detailed. Results from the two events are shown.

  8. Development of a 75-watt 60-GHz traveling-wave tube for intersatellite communications

    NASA Technical Reports Server (NTRS)

    Rousseau, A. L.; Tammaru, I.; Vaszari, J. P.

    1988-01-01

    This program covers the initial design and development of a 75 watt, 60 GHz traveling-wave tube for intersatellite communications. The objective frequency band was 59 to 64 GHz, with a minimum tube gain of 35 dB. The objective overall efficiency at saturation was 40 percent. The tube, designated the 961H, used a coupled-cavity interaction circuit with periodic permanent magnet beam focusing to minimize the weight. For efficiency enhancement, it incorporated a four-stage depressed collector capable of radiation cooling in space. The electron gun had a low-temperature (type-M) cathode and an isolated anode. Two tubes were built and tested; one feasibility model with a single-stage collector and one experimental model that incorporated the multistage collector.

  9. Real-Time Atmospheric Phase Fluctuation Correction Using a Phased Array of Widely Separated Antennas: X-Band Results and Ka-Band Progress

    NASA Astrophysics Data System (ADS)

    Geldzahler, B.; Birr, R.; Brown, R.; Grant, K.; Hoblitzell, R.; Miller, M.; Woods, G.; Argueta, A.; Ciminera, M.; Cornish, T.; D'Addario, L.; Davarian, F.; Kocz, J.; Lee, D.; Morabito, D.; Tsao, P.; Jakeman-Flores, H.; Ott, M.; Soloff, J.; Denn, G.; Church, K.; Deffenbaugh, P.

    2016-09-01

    NASA is pursuing a demonstration of coherent uplink arraying at 7.145-7.190 GHz (X-band) and 30-31 GHz (Kaband) using three 12m diameter COTS antennas separated by 60m at the Kennedy Space Center in Florida. In addition, we have used up to three 34m antennas separated by 250m at the Goldstone Deep Space Communication Complex in California at X-band 7.1 GHz incorporating real-time correction for tropospheric phase fluctuations. Such a demonstration can enable NASA to design and establish a high power, high resolution, 24/7 availability radar system for (a) tracking and characterizing observations of Near Earth Objects (NEOs), (b) tracking, characterizing and determining the statistics of small-scale (≤10cm) orbital debris, (c) incorporating the capability into its space communication and navigation tracking stations for emergency spacecraft commanding in the Ka band era which NASA is entering, and (d) fielding capabilities of interest to other US government agencies. We present herein the results of our phased array uplink combining at near 7.17 and 8.3 GHz using widely separated antennas demonstrations at both locales, the results of a study to upgrade from a communication to a radar system, and our vision for going forward in implementing a high performance, low lifecycle cost multi-element radar array.

  10. Availability analysis of the traveling-wave maser amplifiers in the deep space network. Part 1: The 70-meter antennas

    NASA Technical Reports Server (NTRS)

    Issa, T. N.

    1992-01-01

    The results of the reliability and availability analyses of the individual S- and X-band traveling-wave maser (TWM) assemblies and their operational configurations in the 70-meter antennas of NASA's Deep Space Network (DSN) are described. For the period 1990 through 1991, the TWM availability parameters for the Telemetry Data System are: mean time between failures (MTBF), 930 hr; mean time to restore services (MTTRS), 1.4 hr; and the average availability, 99.85 percent. In previously published articles, the performance analysis of the TWM assemblies was confined to the determination of the parameters specified above. However, as the mean down time (MDT) for the repair of TWM's increases, the levels of the TWM operational availabilities and MTTRS are adversely affected. A more comprehensive TWM availability analysis is presented to permit evaluation of both MTBF and MDT effects. Performance analysis of the TWM assemblies, based on their station monthly failure reports, indicates that the TWM's required MTBF and MDT levels of 3000 hr and 36 to 48 hr, respectively, have been achieved by the TWM's only at the Canberra Deep Space Station (DSS 43). The Markov Process technique is employed to develop suitable availability measures for the S- and X-band TWM configurations when each is operated in a two-assembly standby mode. The derived stochastic expressions allow for the evaluation of those configurations' simultaneous availability for the Antenna Microwave Subsystem. The application of these expressions to demonstrate the impact of various levels of TWM maintainability (or MDT) on their configurations' operational availabilities is presented for each of the 70-m antenna stations.

  11. Millimeter Wave Detection of Localized Anomalies in the Space Shuttle External Fuel Tank Insulating Foam and Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, F.

    2005-01-01

    The Space Shuttle Columbia's catastrophic accident emphasizes the growing need for developing and applying effective, robust and life-cycle oriented nondestructive testing (NDT) methods for inspecting the shuttle external fuel tank spray on foam insulation (SOFI) and its protective acreage heat tiles. Millimeter wave NDT techniques were one of the methods chosen for evaluating their potential for inspecting these structures. Several panels with embedded anomalies (mainly voids) were produced and tested for this purpose. Near-field and far-field millimeter wave NDT methods were used for producing millimeter wave images of the anomalies in SOFI panel and heat tiles. This paper presents the results of an investigation for the purpose of detecting localized anomalies in two SOFI panels and a set of heat tiles. To this end, reflectometers at a relatively wide range of frequencies (Ka-band (26.5 - 40 GHz) to W-band (75 - 110 GHz)) and utilizing different types of radiators were employed. The results clearly illustrate the utility of these methods for this purpose.

  12. Design of a Ka-Band Propagation Terminal for Atmospheric Measurements in Polar Regions

    NASA Technical Reports Server (NTRS)

    Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.

    2016-01-01

    This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer [2] located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation [3] receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.

  13. Design of a Ka-band Propagation Terminal for Atmospheric Measurements in Polar Regions

    NASA Technical Reports Server (NTRS)

    Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.

    2016-01-01

    This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.

  14. The noisy edge of traveling waves

    PubMed Central

    Hallatschek, Oskar

    2011-01-01

    Traveling waves are ubiquitous in nature and control the speed of many important dynamical processes, including chemical reactions, epidemic outbreaks, and biological evolution. Despite their fundamental role in complex systems, traveling waves remain elusive because they are often dominated by rare fluctuations in the wave tip, which have defied any rigorous analysis so far. Here, we show that by adjusting nonlinear model details, noisy traveling waves can be solved exactly. The moment equations of these tuned models are closed and have a simple analytical structure resembling the deterministic approximation supplemented by a nonlocal cutoff term. The peculiar form of the cutoff shapes the noisy edge of traveling waves and is critical for the correct prediction of the wave speed and its fluctuations. Our approach is illustrated and benchmarked using the example of fitness waves arising in simple models of microbial evolution, which are highly sensitive to number fluctuations. We demonstrate explicitly how these models can be tuned to account for finite population sizes and determine how quickly populations adapt as a function of population size and mutation rates. More generally, our method is shown to apply to a broad class of models, in which number fluctuations are generated by branching processes. Because of this versatility, the method of model tuning may serve as a promising route toward unraveling universal properties of complex discrete particle systems. PMID:21187435

  15. Ultra Small Aperture Terminal for Ka-Band SATCOM

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto; Reinhart, Richard; Lee, Richard; Simons, Rainee

    1997-01-01

    An ultra small aperture terminal (USAT) at Ka-band frequency has been developed by Lewis Research Center (LeRC) for data rates up to 1.5 Mbps in the transmit mode and 40 Mbps in receive mode. The terminal consists of a 35 cm diameter offset-fed parabolic antenna which is attached to a solid state power amplifier and low noise amplifier. A single down converter is used to convert the Ka-band frequency to 70 MHz intermediate frequency (IF). A variable rate (9.6 Kbps to 10 Mbps) commercial modem with a standard RS-449/RS-232 interface is used to provide point-to-point digital services. The terminal has been demonstrated numerous times using the Advanced Communications Technology Satellite (ACTS) and the 4.5 in Link Evaluation Terminal (LET) in Cleveland. A conceptual design for an advanced terminal has also been developed. This advanced USAT utilizes Microwave Monolithic Integrated Circuit (MMIC) and flat plate array technologies. This terminal will be self contained in a single package which will include a 1 watt solid state amplifier (SSPA), low noise amplifier (LNA) and a modem card located behind the aperture of the array. The advanced USAT will be light weight, transportable, low cost and easy to point to the satellite. This paper will introduce designs for the reflector based and array based USAT's.

  16. Cortical travelling waves: mechanisms and computational principles

    PubMed Central

    Muller, Lyle; Chavane, Frédéric; Reynolds, John

    2018-01-01

    Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex. PMID:29563572

  17. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  18. Retrieval of Snow Properties for Ku- and Ka-band Dual-Frequency Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tokay, Ali; Bliven, Larry F.

    2016-01-01

    The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro/macro-physical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager Particle Image Probe (SVIPIP) duringthe winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

  19. Retrieval of Snow Properties for Ku- and Ka-Band Dual-Frequency Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tokay, Ali; Bliven, Larry F.

    2016-01-01

    The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro-macrophysical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow-scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager Particle Image Probe (SVIPIP) during the winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

  20. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  1. The Direct Digital Modulation of Traveling Wave Tubes

    NASA Technical Reports Server (NTRS)

    Radhamohan, Ranjan S.

    2004-01-01

    Traveling wave tube (TWT) technology, first described by Rudolf Kompfner in the early 1940s, has been a key component of space missions from the earliest communication satellites in the 1960s to the Cassini probe today. TWTs are essentially signal amplifiers that have the special capability of operating at microwave frequencies. The microwave frequency range, which spans from approximately 500 MHz to 300 GHz, is shared by many technologies including cellular phones, satellite television, space communication, and radar. TWT devices are superior in reliability, weight, and efficiency to solid-state amplifiers at the high power and frequency levels required for most space missions. TWTs have three main components -an electron gun, slow wave structure, and collector. The electron gun generates an electron beam that moves along the length of the tube axis, inside of the slow wave circuit. At the same time, the inputted signal is slowed by its travel through the coils of the helical slow wave circuit. The interaction of the electron beam and this slowed signal produces a transfer of kinetic energy to the signal, and in turn, amplification. At the end of its travel, the spent electron beam moves into the collector where its remaining energy is dissipated as heat or harnessed for reuse. TWTs can easily produce gains in the tens of decibels, numbers that are suitable for space missions. To date, however, TWTs have typically operated at fixed levels of gain. This gain is determined by various, unchanging, physical factors of the tube. Traditionally, to achieve varying gain, an input signal s amplitude has had to first be modulated by a separate device before being fed into the TWT. This is not always desirable, as significant distortion can occur in certain situations. My mentor, Mr. Dale Force, has proposed an innovative solution to this problem called direct digital modulation . The testing and implementation of this solution is the focus of my summer internship. The

  2. Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps

    NASA Astrophysics Data System (ADS)

    Yi, Taishan; Chen, Yuming

    2017-12-01

    In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.

  3. Traveling Theta Waves in the Human Hippocampus

    PubMed Central

    Zhang, Honghui

    2015-01-01

    The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. SIGNIFICANCE STATEMENT We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior–anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915

  4. A Model for Measured Traveling Waves at End-Diastole in Human Heart Wall by Ultrasonic Imaging Method

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Shintani, Seine A.; Ishiwata, Shin'ichi; Kanai, Hiroshi

    2016-04-01

    We observe traveling waves, measured by the ultrasonic noninvasive imaging method, in a longitudinal beam direction from the apex to the base side on the interventricular septum (IVS) during the period from the end-diastole to the beginning of systole for a healthy human heart wall. We present a possible phenomenological model to explain part of one-dimensional cardiac behaviors for the observed traveling waves around the time of R-wave of echocardiography (ECG) in the human heart. Although the observed two-dimensional patterns of traveling waves are extremely complex and no one knows yet the exact solutions for the traveling homoclinic plane wave in the one-dimensional complex Ginzburg-Landau equation (CGLE), we numerically find that part of the one-dimensional homoclinic dynamics of the phase and amplitude patterns in the observed traveling waves is similar to that of the numerical homoclinic plane-wave solutions in the CGLE with periodic boundary condition in a certain parameter space. It is suggested that part of the cardiac dynamics of the traveling waves on the IVS can be qualitatively described by the CGLE model as a paradigm for understanding biophysical nonlinear phenomena.

  5. A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; He, Jun-Tao; Zhang, Jian-De; Li, Zhi-Qiang; Ling, Jun-Pu

    2016-12-01

    In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode. Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

  6. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  7. Dual traveling wave rotary ultrasonic motor with single active vibrator

    NASA Astrophysics Data System (ADS)

    An, Dawei; Yang, Ming; Zhuang, Xiaoqi; Yang, Tianyue; Meng, Fan; Dong, Zhaopeng

    2017-04-01

    Traveling wave rotary ultrasonic motor with double vibrators can improve the output performance effectively. However, the rotor has to be energized through a slip ring, which increases the complexity and reduces the reliability. Inheriting the concept of two traveling waves propagating in the stator and rotor, a dual traveling wave rotary ultrasonic motor energized only in the stator is proposed. By analyzing the oscillatory differential equation and the contact particles motion, a traveling wave is found in the rotor and the drive mechanism of dual traveling wave is studied. With the resonant rotor adopted, the consistent eigenfrequencies are calculated by finite element method and verified by an impedance analyzer. The performance experiment presents that the dual traveling wave rotary ultrasonic motor is superior to the motor with single traveling wave. The no-load speed is 60 rpm and the stalling torque is 0.85 Nm. Additionally, compared with a reported motor with double vibrators, the proposed motor presents the better output performance and the simpler design.

  8. (abstract) Deep Space Network Radiometric Remote Sensing Program

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  9. Large Ka-Band Slot Array for Digital Beam-Forming Applications

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam; Zawadzki, Mark S.; Hodges, Richard E.

    2011-01-01

    This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall

  10. Technique Developed for Optimizing Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    1999-01-01

    A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT s are critical components in deep-space probes, geosynchronous communication satellites, and high-power radar systems. Power efficiency is of paramount importance for TWT s employed in deep-space probes and communications satellites. Consequently, increasing the power efficiency of TWT s has been the primary goal of the TWT group at the NASA Lewis Research Center over the last 25 years. An in-house effort produced a technique (ref. 1) to design TWT's for optimized power efficiency. This technique is based on simulated annealing, which has an advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 2). A simulated annealing algorithm was created and integrated into the NASA TWT computer model (ref. 3). The new technique almost doubled the computed conversion power efficiency of a TWT from 7.1 to 13.5 percent (ref. 1).

  11. A class of traveling wave solutions for space-time fractional biological population model in mathematical physics

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Batool, Fiza

    2017-10-01

    The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.

  12. Traveling waves and their tails in locally resonant granular systems

    DOE PAGES

    Xu, H.; Kevrekidis, P. G.; Stefanov, A.

    2015-04-22

    In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less

  13. Traveling waves and their tails in locally resonant granular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H.; Kevrekidis, P. G.; Stefanov, A.

    In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less

  14. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  15. Design and Performance of Ka-Band Fiber-Optic Delay Lines

    DTIC Science & Technology

    2012-12-28

    Approved for public release; distribution is unlimited. Vincent J. Urick Joseph M. singley christopher e. sUnderMan John F. diehl keith J...PAGES 17. LIMITATION OF ABSTRACT Design and Performance of Ka-Band Fiber-Optic Delay Lines Vincent J. Urick , Joseph M. Singley, Christopher E...Approved for public release; distribution is unlimited. Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 64 Vincent J. Urick (202

  16. Computer program for analysis of coupled-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Omalley, T. A.

    1977-01-01

    A flexible, accurate, large signal computer program was developed for the design of coupled cavity traveling wave tubes. The program is written in FORTRAN IV for an IBM 360/67 time sharing system. The beam is described by a disk model and the slow wave structure by a sequence of cavities, or cells. The computational approach is arranged so that each cavity may have geometrical or electrical parameters different from those of its neighbors. This allows the program user to simulate a tube of almost arbitrary complexity. Input and output couplers, severs, complicated velocity tapers, and other features peculiar to one or a few cavities may be modeled by a correct choice of input data. The beam-wave interaction is handled by an approach in which the radio frequency fields are expanded in solutions to the transverse magnetic wave equation. All significant space harmonics are retained. The program was used to perform a design study of the traveling-wave tube developed for the Communications Technology Satellite. Good agreement was obtained between the predictions of the program and the measured performance of the flight tube.

  17. Ka-Band Link Study and Analysis for a Mars Hybrid RF/Optical Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Zeleznikar, Daniel J.; Nappier, Jennifer M.; Downey, Joseph A.

    2014-01-01

    The integrated radio and optical communications (iROC) project at the NASA Glenn Research Center (GRC) is investigating the feasibility of a hybrid RF and optical communication subsystem for future deep space missions. The hybrid communications subsystem enables the advancement of optical communications while simultaneously mitigating the risk of infusion by combining an experimental optical transmitter and telescope with a reliable Ka-band RF transmitter and antenna. The iROC communications subsystem seeks to maximize the total data return over the course of a potential 2-year mission in Mars orbit beginning in 2021. Although optical communication by itself offers potential for greater data return over RF, the reliable Ka-band link is also being designed for high data return capability in this hybrid system. A daily analysis of the RF link budget over the 2-year span is performed to optimize and provide detailed estimates of the RF data return. In particular, the bandwidth dependence of these data return estimates is analyzed for candidate waveforms. In this effort, a data return modeling tool was created to analyze candidate RF modulation and coding schemes with respect to their spectral efficiency, amplifier output power back-off, required digital to analog conversion (DAC) sampling rates, and support by ground receivers. A set of RF waveforms is recommended for use on the iROC platform.

  18. A dual-cavity ruby maser for the Ka-band link experiment

    NASA Technical Reports Server (NTRS)

    Shell, J.; Quinn, R. B.

    1994-01-01

    A 33.68-GHz dual-cavity ruby maser was built to support the Ka-Band Link Experiment (KABLE) conducted with the Mars Observer spacecraft. It has 25 dB of net gain and a 3-dB bandwidth of 85 MHz. Its noise temperature in reference to the cooled feedhorn aperture is 5 K.

  19. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  20. A low-power, high-efficiency Ka-band TWTA

    NASA Astrophysics Data System (ADS)

    Curren, Arthur N.; Dayton, James A., Jr.; Palmer, Raymond W.; Force, Dale A.; Tamashiro, Rodney N.; Wilson, John F.; Dombro, Louis; Harvey, Wayne L.

    1992-03-01

    NASA has developed a new class of Ka-band TWT amplifiers (TWTAs) which achieve their high efficiency/low power performance goals by means of an advanced dynamic velocity taper (DVT). The DVT is characterized by a continuous, nonlinear reduction in helix pitch from its initial synchronous value in the output section of the TWT to near the end of the helix. Another efficiency-maximizing feature is the inclusion of a multistage depressed collector employing oxygen-free, high-conductivity Cu electrodes treated for secondary electron emission suppression by means of ion bombardment. An efficiency of 43 percent is expected to be reached.

  1. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  2. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2015-01-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb ground-based observatories. This poster will discuss a possible mission concept, Space-based Gravitational-wave Observatory (SGO-Mid) developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  3. Highly Efficient Amplifier for Ka-Band Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An amplifier developed under a Small Business Innovation Research (SBIR) contract will have applications for both satellite and terrestrial communications. This power amplifier uses an innovative series bias arrangement of active devices to achieve over 40-percent efficiency at Ka-band frequencies with an output power of 0.66 W. The amplifier is fabricated on a 2.0- by 3.8-square millimeter chip through the use of Monolithic Microwave Integrated Circuit (MMIC) technology, and it uses state-of-the-art, Pseudomorphic High-Electron-Mobility Transistor (PHEMT) devices. Although the performance of the MMIC chip depends on these high-performance devices, the real innovations here are a unique series bias scheme, which results in a high-voltage chip supply, and careful design of the on-chip planar output stage combiner. This design concept has ramifications beyond the chip itself because it opens up the possibility of operation directly from a satellite power bus (usually 28 V) without a dc-dc converter. This will dramatically increase the overall system efficiency. Conventional microwave power amplifier designs utilize many devices all connected in parallel from the bias supply. This results in a low-bias voltage, typically 5 V, and a high bias current. With this configuration, substantial I(sup 2) R losses (current squared times resistance) may arise in the system bias-distribution network. By placing the devices in a series bias configuration, the total current is reduced, leading to reduced distribution losses. Careful design of the on-chip planar output stage power combiner is also important in minimizing losses. Using these concepts, a two-stage amplifier was designed for operation at 33 GHz and fabricated in a standard MMIC foundry process with 0.20-m PHEMT devices. Using a 20-V bias supply, the amplifier achieved efficiencies of over 40 percent with an output power of 0.66 W and a 16-dB gain over a 2-GHz bandwidth centered at 33 GHz. With a 28-V bias, a power

  4. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations

    PubMed Central

    May, Jody C.; McLean, John A.

    2013-01-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124

  5. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations.

    PubMed

    May, Jody C; McLean, John A

    2003-06-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.

  6. A Ka-Band Wide-Bandgap Solid-State Power Amplifier: Architecture Performance Estimates

    NASA Technical Reports Server (NTRS)

    Epp, L.; Khan, P.; Silva, A.

    2005-01-01

    Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solidstate power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents the results of a study to investigate power-combining technology and SSPA architectures that can enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results of the study indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. The proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This corresponds to MMIC requirements of 5- to 10-W output power and >48 percent PAE. For the three proposed architectures [1], detailed analysis and design of the power combiner are presented. The first architecture studied is based on a 16-way septum combiner that offers low loss and high isolation over the design band of 31 to 36 GHz. Analysis of a 2-way prototype septum combiner had an input match >25 dB, output match >30 dB, insertion loss <0.02 dB, and isolation >30 dB over the design band. A 16-way design, based on cascading this combiner in a binary fashion, is documented. The second architecture is based on a 24-way waveguide radial combiner. A prototype 24-way radial base was analyzed to have an input match >30 dB (under equal excitation of all input ports). The match of the mode transducer that forms the output of a radial combiner was found to be >27 dB. The functional bandwidth of the radial base and mode transducer, which together will form a radial combiner/divider, exceeded the design band. The third architecture employs a 32-way, parallel-plate radial combiner. Simulation results indicated an input match >24 dB, output match >22 dB, insertion loss <0.23 dB, and adjacent port isolation >20 dB over the design band. All

  7. Full Spectrum Conversion Using Traveling Pulse Wave Quantization

    DTIC Science & Technology

    2017-03-01

    Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a

  8. Donders is dead: cortical traveling waves and the limits of mental chronometry in cognitive neuroscience.

    PubMed

    Alexander, David M; Trengove, Chris; van Leeuwen, Cees

    2015-11-01

    An assumption nearly all researchers in cognitive neuroscience tacitly adhere to is that of space-time separability. Historically, it forms the basis of Donders' difference method, and to date, it underwrites all difference imaging and trial-averaging of cortical activity, including the customary techniques for analyzing fMRI and EEG/MEG data. We describe the assumption and how it licenses common methods in cognitive neuroscience; in particular, we show how it plays out in signal differencing and averaging, and how it misleads us into seeing the brain as a set of static activity sources. In fact, rather than being static, the domains of cortical activity change from moment to moment: Recent research has suggested the importance of traveling waves of activation in the cortex. Traveling waves have been described at a range of different spatial scales in the cortex; they explain a large proportion of the variance in phase measurements of EEG, MEG and ECoG, and are important for understanding cortical function. Critically, traveling waves are not space-time separable. Their prominence suggests that the correct frame of reference for analyzing cortical activity is the dynamical trajectory of the system, rather than the time and space coordinates of measurements. We illustrate what the failure of space-time separability implies for cortical activation, and what consequences this should have for cognitive neuroscience.

  9. Comparison of AltiKa and CryoSat-2 Elevation and Elevation Rates over the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Otosaka, I.; Shepherd, A.; Hogg, A.

    2017-12-01

    Altimeters have been successfully used for more than two decades to observe changes in the ice sheet surface and to estimate the contribution of ice sheets to sea level rise. The Satellite for Argos and AltiKa (SARAL) was launched in February 2013 as a joint mission between the French space agency (CNES) and the Indian Space Research Organisation (ISRO). While the altimeters previously launched into space are operating at Ku-band (13.6 GHz), the altimeter on board SARAL, AltiKa, is the first instrument to operate at Ka-band (36.8 GHz). The higher frequency of AltiKa is expected to lead to reduced penetration of the radar signal into the snowpack, compared to Ku-band. A comparison of ice sheet elevation measurements recorded at the two frequencies may therefore provide useful information on surface and its scattering properties. In this study, we compare elevation and elevation rates recorded by AltiKa and CryoSat-2 between March 2013 and April 2017 over the Amundsen Sea Sector (ASS), one of the most rapidly changing sectors of West Antarctica. Elevation and elevation rates are computed within 5 km grid cells using a plane fit method, taking into account the contributions of topography and fluctuations in elevation and backscatter. The drifting orbit and imaging modes of CryoSat-2 result in 78,7 % sampling of the study area, whereas AltiKa samples 39,7 % due to its sparser orbit pattern and due to loss of signal in steeply sloping coastal margins. Over the study period, the root mean square difference between elevation and elevation change recorded at Ka-band and Ku-band were 40.3 m and 0.54 m/yr, respectively. While the broad spatial pattern of elevation change is well resolved by both satellites, data gaps along the Getz coastline may be partly responsible for the lower elevation change rate observed at Ka-band. We also compared CryoSat-2 and AltiKa to coincident airborne data from NASA's Operation IceBridge (OIB). The mean difference of elevation rate between

  10. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of

  12. Major dust storms and westward traveling waves on Mars

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun

    2017-04-01

    Westward traveling waves are observed during major dust storm periods in northern fall and winter. The close correlation in timing makes westward traveling wave one of the signature responses of the Martian atmosphere to major dust storms. Westward traveling waves are dominated by zonal wave number m = 1 in the middle atmosphere and are typically characterized by long wave period. They are associated with significant temperature perturbations near the edge of the north polar vortex. Their wind signals extend to the low latitudes and the southern hemisphere. Their eddy momentum and heat fluxes exhibit complex patterns on a global scale in the middle atmosphere.

  13. Space Traveler Project.

    ERIC Educational Resources Information Center

    Instructor, 1981

    1981-01-01

    Describes the winners of the Space Traveler Project, a contest jointly sponsored by Rockwell International, NASA, and this magazine to identify worthwhile elementary science programs relating to the Space Shuttle. (SJL)

  14. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results

  15. Elimination of the asymmetric modes in a Ka-band super overmoded coaxial Cerenkov oscillator

    NASA Astrophysics Data System (ADS)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang; Zhao, Xuelong; Yang, Fuxiang

    2017-12-01

    The issue of asymmetric modes output of a Ka-band super overmoded coaxial Cerenkov oscillator is analyzed in this paper. Due to serious passband overlapping in a super overmoded coaxial slow wave structure (SWS), the asymmetric competition mode EH11 can hardly be suppressed thoroughly by the methods adopted in moderately overmoded devices, especially in the startup of oscillation. If the output structures reflect the asymmetric modes, the asymmetric mode competition in SWS will be aggravated and the normal operation state will be destroyed. In order to solve this problem, a taper waveguide is inserted at a specific position to achieve the destructive interference of the reflected TM11, and a special support structure is designed to avoid reflection of TE11. With these methods, asymmetric mode competition can be successfully eliminated, and the oscillator is capable of achieving a steady fundamental mode operation performance.

  16. Controlling spiral waves and turbulent states in cardiac tissue by traveling wave perturbations

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Ye; Xie, Ping

    2000-03-01

    We propose a traveling wave perturbation method to control the spatiotemporal dynamics in cardiac tissue. With a two-variable model we demonstrate that the method can successfully suppress the wave instability (alternans in action potential duration) in the one-dimensional case and convert spiral waves and turbulent states to the normal traveling wave state in the two-dimensional case. An experimental scheme is suggested which may provide a new design for a cardiac defibrillator.

  17. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard

    1991-01-01

    Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.

  18. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.

    1992-01-01

    Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.

  19. Revisiting the difference between traveling-wave and standing-wave thermoacoustic engines - A simple analytical model for the standing-wave one

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi

    2015-11-01

    There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.

  20. rf traveling-wave electron gun for photoinjectors

    NASA Astrophysics Data System (ADS)

    Schaer, Mattia; Citterio, Alessandro; Craievich, Paolo; Reiche, Sven; Stingelin, Lukas; Zennaro, Riccardo

    2016-07-01

    The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL) machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least) double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.

  1. Mechanism of travelling-wave transport of particles

    NASA Astrophysics Data System (ADS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-03-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency.

  2. Cloud-based design of high average power traveling wave linacs

    NASA Astrophysics Data System (ADS)

    Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.

    2017-12-01

    The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.

  3. Stability of post-fertilization traveling waves

    NASA Astrophysics Data System (ADS)

    Flores, Gilberto; Plaza, Ramón G.

    This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.

  4. Lateralization of Travelling Wave Response in the Hearing Organ of Bushcrickets

    PubMed Central

    Palghat Udayashankar, Arun; Kössl, Manfred; Nowotny, Manuela

    2014-01-01

    Travelling waves are the physical basis of frequency discrimination in many vertebrate and invertebrate taxa, including mammals, birds, and some insects. In bushcrickets (Tettigoniidae), the crista acustica is the hearing organ that has been shown to use sound-induced travelling waves. Up to now, data on mechanical characteristics of sound-induced travelling waves were only available along the longitudinal (proximal-distal) direction. In this study, we use laser Doppler vibrometry to investigate in-vivo radial (anterior-posterior) features of travelling waves in the tropical bushcricket Mecopoda elongata. Our results demonstrate that the maximum of sound-induced travelling wave amplitude response is always shifted towards the anterior part of the crista acustica. This lateralization of the travelling wave response induces a tilt in the motion of the crista acustica, which presumably optimizes sensory transduction by exerting a shear motion on the sensory cilia in this hearing organ. PMID:24465889

  5. Microwave Frequency Multiplier

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  6. Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2001-01-01

    A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64

  7. Coupled Transmission Line Based Slow Wave Structures for Traveling Wave Tubes Applications

    NASA Astrophysics Data System (ADS)

    Zuboraj, Md. Rashedul Alam

    High power microwave devices especially Traveling Wave Tubes (TWTs) and Backward Wave Oscillators (BWOs) are largely dependent on Slow Wave Structures for efficient beam to RF coupling. In this work, a novel approach of analyzing SWSs is proposed and investigated. Specifically, a rigorous study of helical geometries is carried out and a novel SWS "Half-Ring-Helix" is designed. This Half-Ring-Helix circuit achieves 27% miniaturization and delivers 10dB more gain than conventional helices. A generalization of the helix structures is also proposed in the form of Coupled Transmission Line (CTL). It is demonstrated that control of coupling among the CTLs leads to new propagation properties. With this in mind, a novel geometry referred to as "Curved Ring-Bar" is introduced. This geometry is shown to deliver 1MW power across a 33% bandwidth. Notably, this is the first demonstration of MW power TWT across large bandwidth. The CTL is further expanded to enable engineered propagation characteristics. This is done by introducing CTLs having non-identical transmission lines and CTLs with as many as four transmission lines in the same slow wave structure circuit. These non-identical CTLs are demonstrated to generate fourth order dispersion curves. Building on the property of CTLs, a `butterfly' slow wave structure is developed and demonstrated to provide degenerate band edge (DBE) mode. This mode are known to provide large feld enhancement that can be exploited to design high power backward wave oscillators.

  8. Traveling-wave induction launchers

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1989-01-01

    An analysis of traveling-wave induction launchers shows that induction is a feasible method of producing armature current and that efficient accelerators can be built without sliding contacts or arcs. In a traveling-wave induction launcher the armature current is induced by a slip speed between the armature and a traveling magnetic field. At 9 m/s slip speed a 9 kg projectile with an aluminum armature weighing 25 percent of the total mass can be accelerated to 3000 m/s in a 5 m-long barrel with a total ohmic loss in the barrel coils and armature of 4 percent of the launch kinetic energy and with an average armature temperature rise of 220 deg C, but a peak excitation frequency of 8600 Hz is required. With a 2 kg launch mass the ohmic loss is 7 percent. A launcher system optimized for rotating generators would have a peak frequency of 4850 Hz; with an aluminum armature weighing 33 percent of the launch mass and a slip speed of 30 m/s the total ohmic loss in the generators, cables, and accelerator would be 43 percent of the launch kinetic energy, and the average armature temperature rise would be 510 deg C.

  9. Enhancing Variable Friction Tactile Display Using an Ultrasonic Travelling Wave.

    PubMed

    Ghenna, Sofiane; Vezzoli, Eric; Giraud-Audine, Christophe; Giraud, Frederic; Amberg, Michel; Lemaire-Semail, Betty

    2017-01-01

    In Variable Friction Tactile Displays, an ultrasonic standing wave can be used to reduce the friction coefficient between a user's finger sliding and a vibrating surface. However, by principle, the effect is limited by a saturation due to the contact mechanics, and very low friction levels require very high vibration amplitudes. Besides, to be effective, the user's finger has to move. We present a device which uses a travelling wave rather than a standing wave. We present a control that allows to realize such a travelling wave in a robust way, and thus can be implemented on various plane surfaces. We show experimentally that the force produced by the travelling wave has two superimposed contributions. The first one is equal to the friction reduction produced by a standing of the same vibration amplitude. The second produces a driving force in the opposite direction of the travelling wave. As a result, the modulation range of the tangential force on the finger can be extended to zero and even negative values. Moreover, the effect is dependant on the relative direction of exploration with regards to the travelling wave, which is perceivable and confirmed by a psycho-physical study.

  10. Assessment of virtual towers performed with scanning wind lidars and Ka-band radars during the XPIA experiment

    DOE PAGES

    Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan; ...

    2017-03-29

    During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less

  11. Quantum information processing with a travelling wave of light

    NASA Astrophysics Data System (ADS)

    Serikawa, Takahiro; Shiozawa, Yu; Ogawa, Hisashi; Takanashi, Naoto; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira

    2018-02-01

    We exploit quantum information processing on a traveling wave of light, expecting emancipation from thermal noise, easy coupling to fiber communication, and potentially high operation speed. Although optical memories are technically challenging, we have an alternative approach to apply multi-step operations on traveling light, that is, continuous-variable one-way computation. So far our achievement includes generation of a one-million-mode entangled chain in time-domain, mode engineering of nonlinear resource states, and real-time nonlinear feedforward. Although they are implemented with free space optics, we are also investigating photonic integration and performed quantum teleportation with a passive liner waveguide chip as a demonstration of entangling, measurement, and feedforward. We also suggest a loop-based architecture as another model of continuous-variable computing.

  12. Reconfigurable phased antenna array for extending cubesat operations to Ka-band: Design and feasibility

    NASA Astrophysics Data System (ADS)

    Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Vincenti Gatti, R.

    2017-08-01

    Started as educational tools, CubeSats have immediately encountered the favor of the scientific community, subsequently becoming viable platforms for research and commercial applications. To ensure competitive data rates, some pioneers have started to explore the usage of the Ka-band beside the conventional amateur radio frequencies. In this context, this study proposes a phased antenna array design for Ka-band downlink operations consisting of 8×8 circularly polarized subarrays of microstrip patches filling one face of a single CubeSat unit. The conceived structure is developed to support 1.5 GHz bandwidth and dual-task missions, whose feasibility is verified by proper link budgets. The dual-task operations are enabled by a low-complexity phase-only control algorithm that provides pattern reconfigurability in order to satisfy both orbiting and intersatellite missions, while remaining adherent to the cost-effective CubeSat paradigm.

  13. Sequentially pulsed traveling wave accelerator

    DOEpatents

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  14. Statistical and Prediction modeling of the Ka Band Using Experimental Results from ACTS Propagation Terminals at 20.185 and 27.505 GHZ

    NASA Technical Reports Server (NTRS)

    Ogunwuyi, Oluwatosin O.

    2004-01-01

    With the increase in demand for wireless communication services, most of the operating frequency bands have become very congested. The increase of wireless costumers is only fractional contribution to this phenomenon. The demand for more services such as video streams and internet explorer which require a lot of band width has been a more significant contributor to the congestion in a communication system. One way to increase the amount of information or data per unit of time transmitted with in a wireless communication system is to use a higher radio frequency. However in spite the advantage available in the using higher frequency bands such as, the Ka-band, higher frequencies also implies short wavelengths. And shorter wavelengths are more susceptible to rain attenuation. Until the Advanced Communication Technology Satellite (ACTS) was launched, the Ka- band frequency was virtually unused - the majority of communication satellites operated in lower frequency bands called the C- and Ku- bands. Ka-band is desirable because its higher frequency allows wide bandwidth applications, smaller spacecraft and ground terminal components, and stronger signal strength. Since the Ka-band is a high frequency band, the millimeter wavelengths of the signals are easily degraded by rain. This problem known as rain fade or rain attenuation The Advanced Communication Technology Satellite (ACTS) propagation experiment has collected 5 years of Radio Frequency (RF) attenuation data from December 1993 to November 1997. The objective of my summer work is to help develop the statistics and prediction techniques that will help to better characterize the Ka Frequency band. The statistical analysis consists of seasonal and cumulative five-year attenuation statistics for the 20.2 and 27.5 GHz. The cumulative five-year results give the link outage that occurs for a given link margin. The experiment has seven ground station terminals that can be attributed to a unique rain zone climate. The

  15. Global calibration/validation of 2 years of SARAL/AltiKa data

    NASA Astrophysics Data System (ADS)

    Scharroo, Remko; Lillibridge, John; Leuliette, Eric; Bonekamp, Hans

    2015-04-01

    The AltiKa altimeter flying onboard the French/Indian SARAL satellite provides the first opportunity to examine Ka-band measurements of sea surface height, significant wave height and ocean surface wind speed. In this presentation we provide the results from our global calibration/validation analysis of the AltiKa measurements, with an emphasis on near real-time applications of interest to both EUMETSAT and NOAA. Traditional along-track SSHA, and single as well as dual-satellite crossover assessments of the AltiKa performance are be provided. Unique aspects of the AltiKa mission such as improved along-track resolution, reduced ionospheric path delay corrections, mission-specific wind speed and sea state bias corrections, and sensitivity to liquid moisture and rain are also explored. In February 2014, a major update to the ground processing was introduced. "Patch-2" improved the way wind speed was derived from altimeter backscatter, as suggested by Lillibridge et al. (1). The backscatter attenuation is now derived from the radiometer measurements via neural network algorithms, which also determine the wet tropospheric correction. We emphasize these improvements in our analysis. After 2 years in flight, SARAL/AltiKa is already providing a significant contribution to the constellation of operational radar altimetry missions, demonstrating the large benefits of high-rate Ka-band altimetry. (1) Lillibridge, John, Remko Scharroo, Saleh Abdalla, Doug Vandemark, 2014: One- and Two-Dimensional Wind Speed Models for Ka-Band Altimetry. J. Atmos. Oceanic Technol., 31, 630-638. doi: http://dx.doi.org/10.1175/JTECH-D-13-00167.1

  16. A growth path for deep space communications

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Smith, J. G.

    1987-01-01

    Increased Deep Space Network (DPN) receiving capability far beyond that now available for Voyager is achievable through a mix of increased antenna aperture and increased frequency of operation. In this note a sequence of options are considered: adding midsized antennas for arraying with the existing network at X-band; converting to Ka-band and adding array elements; augmenting the DSN with an orbiting Ka-band station; and augmenting the DSN with an optical receiving capability, either on the ground or in space. Costs of these options are compared as means of achieving significantly increased receiving capability. The envelope of lowest costs projects a possible path for moving from X-band to Ka-band and thence to optical frequencies, and potentially for moving from ground-based to space-based apertures. The move to Ka-band is clearly of value now, with development of optical communications technology a good investment for the future.

  17. The existence of minimum speed of traveling wave solutions to a non-KPP isothermal diffusion system

    NASA Astrophysics Data System (ADS)

    Chen, Xinfu; Liu, Guirong; Qi, Yuanwei

    2017-08-01

    The reaction-diffusion system at =axx - abn ,bt = Dbxx + abn, where n ≥ 1 and D > 0, arises from many real-world chemical reactions. Whereas n = 1 is the KPP type nonlinearity, which is much studied and very important results obtained in literature not only in one dimensional spatial domains, but also multi-dimensional spaces, but n > 1 proves to be much harder. One of the interesting features of the system is the existence of traveling wave solutions. In particular, for the traveling wave solution a (x , t) = a (x - vt), b (x , t) = b (x - vt), where v > 0, if we fix lim x → - ∞ ⁡ (a , b) = (0 , 1) it was proved by many authors with different bounds v* (n , D) > 0 such that a traveling wave solution exists for any v ≥v* when n > 1. For the latest progress, see [7]. That is, the traveling wave problem exhibits the mono-stable phenomenon for traveling wave of scalar equation ut =uxx + f (u) with f (0) = f (1) = 0, f (u) > 0 in (0 , 1) and, u = 0 is unstable and u = 1 is stable. A natural and significant question is whether, like the scalar case, there exists a minimum speed. That is, whether there exists a minimum speed vmin > 0 such that traveling wave solution of speed v exists iff v ≥vmin? This is an open question, in spite of many works on traveling wave of the system in last thirty years. This is duo to the reason, unlike the KPP case, the minimum speed cannot be obtained through linear analysis at equilibrium points (a , b) = (0 , 1) and (a , b) = (1 , 0). In this work, we give an affirmative answer to this question.

  18. Traveling-wave synchronous coil gun

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    An outline is presented of the coilgun concept, excitation, switching, brush commutation, power supply, and performance. It is shown that a traveling-wave synchronous coilgun permits independent adjustment of the magnetic field and armature current for high velocity at low armature mass fraction. Magnetic field energy is transferred from the rear of the wave to the front without passing through the power supply. Elaborate switching is required.

  19. Orbital stability of periodic traveling-wave solutions for the log-KdV equation

    NASA Astrophysics Data System (ADS)

    Natali, Fábio; Pastor, Ademir; Cristófani, Fabrício

    2017-09-01

    In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.

  20. Vacillations induced by interference of stationary and traveling planetary waves

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.; Garcia, Rolando R.

    1987-01-01

    The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.

  1. Superconducting magnets for traveling-wave maser application. Technical documentary report, Oct 1960--Mar 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okwit, S.; Siegel, K.; Smith, J.G.

    1962-09-01

    Results of an investigation to determine the feasibility of incorporating superconducting magnet techniques in the design of traveling-wave maser systems are reported. Several different types of magnet configurations were investigated: isomagnets, Helmholtz coils, modified Helmholtz coils, air-core solenoids, and magnetic end-loaded air-core solenoids. The magnetic end-loaded air-core solenoid was found to be the best configuration for the S-band maser under consideration. This technique yielded relatively large regions of field homogeneity with relatively small aspect ratios (length of solenoid/diameter of solenoid). Several small-scale models of full-length superconducting magnets and foreshortened end-loaded superconducting magnets were constructed using un-annealed niobium wire. Measurements havemore » shown that these magnets were adequate for traveling-wave maser applications that require magnetic fields up to 2,200 G and marginal for magnetic fields up to 2,500 G.« less

  2. Ka-Band, RF MEMS Switches on CMOS Grade Silicon with a Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Varaljay, Nicholas C.; Papapolymerou, John

    2003-01-01

    For the first time, RF MEMS switcbes on CMOS grade Si witb a polyimide interface layer are fabricated and characterized. At Ka-Band (36.6 GHz), an insertion loss of 0.52 dB and an isolation of 20 dB is obtained.

  3. A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves.

    PubMed

    Choi, Sun-Ho; Kim, Yong-Jung

    2017-02-01

    We introduce a mesoscopic scale chemotaxis model for traveling wave phenomena which is induced by food metric. The organisms of this simplified kinetic model have two discrete velocity modes, [Formula: see text] and a constant tumbling rate. The main feature of the model is that the speed of organisms is constant [Formula: see text] with respect to the food metric, not the Euclidean metric. The uniqueness and the existence of the traveling wave solution of the model are obtained. Unlike the classical logarithmic model case there exist traveling waves under super-linear consumption rates and infinite population pulse-type traveling waves are obtained. Numerical simulations are also provided.

  4. Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.

    2017-12-01

    In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.

  5. A Low Cost Traveling Wave Tube for Wireless Communications

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard Kenneth; Wintucky, Edwin G.; Williams, W. D. (Technical Monitor)

    2002-01-01

    Demand for high data rate wireless communications is pushing up amplifier power, bandwidth and frequency requirements. Some systems are using vacuum electron devices again because solid-state power amplifiers are not able to efficiently meet the new requirements. The traveling wave tube is the VED of choice because of its excellent broadband capability as well as high power efficiency and frequency. But TWTs are very expensive on a per watt basis below about 200 watts of output power. We propose a new traveling wave tube that utilizes cathode ray tube construction technology and electrostatic focusing. We believe the tube can be built in quantity for under $1,000 each. We discuss several traveling wave tube slow wave circuits that lend themselves to the new construction. We will present modeling results and data on prototype devices.

  6. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    PubMed

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  7. Design Methodology and Experimental Verification of Serpentine/Folded Waveguide TWTs

    DTIC Science & Technology

    2016-03-17

    FW), oscillation, serpentine, stopband, traveling -wave tube (TWT), vacuum electronics. I. INTRODUCTION DEVELOPMENT of high-power broadband vacuum elec...tron devices (VEDs) beyond Ka-band using conventional coupled-cavity and helix traveling -wave tube (TWT) RF cir- cuit fabrication techniques is...between the two positions is simply ks times the relative distance along the waveguide axis. However, from the beam–wave interaction standpoint, the

  8. Ka-Band Wide-Bandgap Solid-State Power Amplifier: Hardware Validation

    NASA Technical Reports Server (NTRS)

    Epp, L.; Khan, P.; Silva, A.

    2005-01-01

    Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solid-state power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents proof-of-concept hardware used to validate power-combining technologies that may enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results in previous articles [1-3] indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. Previous architecture performance analyses and estimates indicate that the proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This combining efficiency would correspond to MMIC requirements of 5- to 10-W output power and >48 percent PAE. In order to validate the performance estimates of the three proposed architectures, measurements of proof-of-concept hardware are reported here.

  9. Control of spiral waves and turbulent states in a cardiac model by travelling-wave perturbations

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Ye; Xie, Ping; Yin, Hua-Wei

    2003-06-01

    We propose a travelling-wave perturbation method to control the spatiotemporal dynamics in a cardiac model. It is numerically demonstrated that the method can successfully suppress the wave instability (alternans in action potential duration) in the one-dimensional case and convert spiral waves and turbulent states to the normal travelling wave states in the two-dimensional case. An experimental scheme is suggested which may provide a new design for a cardiac defibrillator.

  10. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.

    PubMed

    Shera, Christopher A; Cooper, Nigel P

    2013-04-01

    At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.

  11. Body-wave traveltime and amplitude shifts from asymptotic travelling wave coupling

    USGS Publications Warehouse

    Pollitz, F.

    2006-01-01

    We explore the sensitivity of finite-frequency body-wave traveltimes and amplitudes to perturbations in 3-D seismic velocity structure relative to a spherically symmetric model. Using the approach of coupled travelling wave theory, we consider the effect of a structural perturbation on an isolated portion of the seismogram. By convolving the spectrum of the differential seismogram with the spectrum of a narrow window taper, and using a Taylor's series expansion for wavenumber as a function of frequency on a mode dispersion branch, we derive semi-analytic expressions for the sensitivity kernels. Far-field effects of wave interactions with the free surface or internal discontinuities are implicitly included, as are wave conversions upon scattering. The kernels may be computed rapidly for the purpose of structural inversions. We give examples of traveltime sensitivity kernels for regional wave propagation at 1 Hz. For the direct SV wave in a simple crustal velocity model, they are generally complicated because of interfering waves generated by interactions with the free surface and the Mohorovic??ic?? discontinuity. A large part of the interference effects may be eliminated by restricting the travelling wave basis set to those waves within a certain range of horizontal phase velocity. ?? Journal compilation ?? 2006 RAS.

  12. W/V-Band RF Propagation Experiment Design

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Nessel, James A.; Simons, Rainee N.; Zemba, Michael J.; Morse, Jacquelynne Rose; Budinger, James M.

    2012-01-01

    The utilization of frequency spectrum for space-to-ground communications applications has generally progressed from the lowest available bands capable of supporting transmission through the atmosphere to the higher bands, which have required research and technological advancement to implement. As communications needs increase and the available spectrum in the microwave frequency bands (3 30 GHz) becomes congested globally, future systems will move into the millimeter wave (mm-wave) range (30 300 GHz). While current systems are operating in the Ka-band (20 30 GHz), systems planned for the coming decades will initiate operations in the Q-Band (33 50 GHz), V-Band (50 75 GHz) and W Band (75 110 GHz) of the spectrum. These bands offer extremely broadband capabilities (contiguous allocations of 500 MHz to 1GHz or more) and an uncluttered spectrum for a wide range of applications. NASA, DoD and commercial missions that can benefit from moving into the mm-wave bands include data relay and near-Earth data communications, unmanned aircraft communications, NASA science missions, and commercial broadcast/internet services, all able to be implemented via very small terminals. NASA Glenn Research Center has a long history of performing the inherently governmental function of opening new frequency spectrum by characterizing atmospheric effects on electromagnetic propagation and collaborating with the satellite communication industry to develop specific communications technologies for use by NASA and the nation. Along these lines, there are critical issues related to W/V-band propagation that need to be thoroughly understood before design of any operational system can commence. These issues arise primarily due to the limitations imposed on W/V-band signal propagation by the Earth s atmosphere, and to the fundamental lack of understanding of these effects with regards to proper system design and fade mitigation. In this paper, The GRC RF propagation team recommends measurements

  13. The Science of Gravitational Waves with Space Observatories

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2013-01-01

    After decades of effort, direct detection of gravitational waves from astrophysical sources is on the horizon. Aside from teaching us about gravity itself, gravitational waves hold immense promise as a tool for general astrophysics. In this talk I will provide an overview of the science enabled by a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band including the nature and evolution of massive black holes and their host galaxies, the demographics of stellar remnant compact objects in the Milky Way, and the behavior of gravity in the strong-field regime. I will also summarize the current status of efforts in the US and Europe to implement a space-based gravitational wave observatory.

  14. Microfabricated Millimeter-Wave High-Power Vacuum Electronic Amplifiers

    DTIC Science & Technology

    2015-01-01

    Applications filed 2012). In spite of the challenges, high power sources of electromagnetic radiation are needed in the mmW bands for advanced DoD...Research Laboratory is demonstrating and developing millimeter-wave vacuum electronic traveling wave tube amplifiers at W- and G- band in the 10’ s to 100... s of watts power range at several percent instantaneous bandwidth. Keywords: Traveling wave tube; millimeter wave; vacuum electron device

  15. Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wheelon, A.

    2004-01-01

    Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0

  16. Traveling waves in an optimal velocity model of freeway traffic.

    PubMed

    Berg, P; Woods, A

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  17. Traveling waves in an optimal velocity model of freeway traffic

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  18. Asymptotic traveling wave solution for a credit rating migration problem

    NASA Astrophysics Data System (ADS)

    Liang, Jin; Wu, Yuan; Hu, Bei

    2016-07-01

    In this paper, an asymptotic traveling wave solution of a free boundary model for pricing a corporate bond with credit rating migration risk is studied. This is the first study to associate the asymptotic traveling wave solution to the credit rating migration problem. The pricing problem with credit rating migration risk is modeled by a free boundary problem. The existence, uniqueness and regularity of the solution are obtained. Under some condition, we proved that the solution of our credit rating problem is convergent to a traveling wave solution, which has an explicit form. Furthermore, numerical examples are presented.

  19. Suppressing wall turbulence by means of a transverse traveling wave

    PubMed

    Du; Karniadakis

    2000-05-19

    Direct numerical simulations of wall-bounded flow reveal that turbulence production can be suppressed by a transverse traveling wave. Flow visualizations show that the near-wall streaks are eliminated, in contrast to other turbulence-control techniques, leading to a large shear stress reduction. The traveling wave can be induced by a spanwise force that is confined within the viscous sublayer; it has its maximum at the wall and decays exponentially away from it. We demonstrate the application of this approach in salt water, using arrays of electromagnetic tiles that produce the required traveling wave excitation at a high efficiency.

  20. Traveling waves in a spring-block chain sliding down a slope

    NASA Astrophysics Data System (ADS)

    Morales, J. E.; James, G.; Tonnelier, A.

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  1. Traveling waves in a spring-block chain sliding down a slope.

    PubMed

    Morales, J E; James, G; Tonnelier, A

    2017-07-01

    Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.

  2. Traveling waves and chaos in thermosolutal convection

    NASA Technical Reports Server (NTRS)

    Deane, A. E.; Toomre, J.; Knobloch, E.

    1987-01-01

    Numerical experiments on two-dimensional thermosolutal convection reveal oscillations in the form of traveling, standing, modulated, and chaotic waves. Transitions between these wave forms and steady convection are investigated and compared with theory. Such rich nonlinear behavior is possible in fluid layers of wide horizontal extent, and provides an explanation for waves observed in recent laboratory experiments with binary fluid mixtures.

  3. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipton, Robert, E-mail: lipton@math.lsu.edu; Polizzi, Anthony, E-mail: polizzi@math.lsu.edu

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  4. Tympanal travelling waves in migratory locusts.

    PubMed

    Windmill, James F C; Göpfert, Martin C; Robert, Daniel

    2005-01-01

    Hearing animals, including many vertebrates and insects, have the capacity to analyse the frequency composition of sound. In mammals, frequency analysis relies on the mechanical response of the basilar membrane in the cochlear duct. These vibrations take the form of a slow vibrational wave propagating along the basilar membrane from base to apex. Known as von Békésy's travelling wave, this wave displays amplitude maxima at frequency-specific locations along the basilar membrane, providing a spatial map of the frequency of sound--a tonotopy. In their structure, insect auditory systems may not be as sophisticated at those of mammals, yet some are known to perform sound frequency analysis. In the desert locust, this analysis arises from the mechanical properties of the tympanal membrane. In effect, the spatial decomposition of incident sound into discrete frequency components involves a tympanal travelling wave that funnels mechanical energy to specific tympanal locations, where distinct groups of mechanoreceptor neurones project. Notably, observed tympanal deflections differ from those predicted by drum theory. Although phenomenologically equivalent, von Békésy's and the locust's waves differ in their physical implementation. von Békésy's wave is born from interactions between the anisotropic basilar membrane and the surrounding incompressible fluids, whereas the locust's wave rides on an anisotropic membrane suspended in air. The locust's ear thus combines in one structure the functions of sound reception and frequency decomposition.

  5. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation

  6. Correlation of S-Band Weather Radar Reflectivity and ACTS Propagation Data in Florida

    NASA Technical Reports Server (NTRS)

    Wolfe, Eric E.; Flikkema, Paul G.; Henning, Rudolf E.

    1997-01-01

    Previous work has shown that Ka-band attenuation due to rainfall and corresponding S-band reflectivity are highly correlated. This paper reports on work whose goal is to determine the feasibility of estimation and, by extension, prediction of one parameter from the other using the Florida ACTS propagation terminal (APT) and the nearby WSR-88D S-band Doppler weather radar facility operated by the National Weather Service. This work is distinguished from previous efforts in this area by (1) the use of a single-polarized radar, preventing estimation of the drop size distribution (e.g., with dual polarization) and (2) the fact that the radar and APT sites are not co-located. Our approach consists of locating the radar volume elements along the satellite slant path and then, from measured reflectivity, estimating the specific attenuation for each associated path segment. The sum of these contributions yields an estimation of the millimeter-wave attenuation on the space-ground link. Seven days of data from both systems are analyzed using this procedure. The results indicate that definite correlation of S-band reflectivity and Ka-band attenuation exists even under the restriciton of this experiment. Based on these results, it appears possible to estimate Ka-band attenuation using widely available operational weather radar data. Conversely, it may be possible to augment current radar reflectivity data and coverage with low-cost attenuation or sky temperature data to improve the estimation of rain rates.

  7. Characteristics of a KA-band third-harmonic peniotron driven by a high-quality linear axis-encircling electron beam

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyun; Tuo, Xianguo; Ge, Qing; Peng, Ying

    2017-12-01

    We employ a high-quality linear axis-encircling electron beam generated by a Cuccia coupler to drive a Ka-band third-harmonic peniotron and develop a self-consistent nonlinear calculation code to numerically analyze the characteristics of the designed peniotron. It is demonstrated that through a Cuccia coupler, a 6 kV, 0.5 A pencil beam and an input microwave power of 16 kW at 10 GHz can generate a 37 kV, 0.5 A linear axis-encircling beam, and it is characterized by a very low velocity spread. Moreover, the electron beam guiding center deviation can be adjusted easily. Driven by such a beam, a 30 GHz, Ka-band third-harmonic peniotron is predicted to achieve a conversion efficiency of 51.0% and a microwave output power of 9.44 kW; the results are in good agreement with the Magic3D simulation. Using this code, we studied the factors influencing the peniotron performance, and it can provide some guidelines for the design of a Ka-band third-harmonic peniotron driven by a linear electron beam and can promote the application of high-harmonic peniotrons in practice.

  8. Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto; Morse, Jacquelynne; Zemba, Michael; Nessel, James; Morabito, David; Caroglanian, Armen

    2011-01-01

    To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band.

  9. Travelling waves and spatial hierarchies in measles epidemics

    NASA Astrophysics Data System (ADS)

    Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.

    2001-12-01

    Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.

  10. Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain

    NASA Astrophysics Data System (ADS)

    Chae, Myeongju; Choi, Kyudong; Kang, Kyungkeun; Lee, Jihoon

    2018-07-01

    We consider a simplified model of tumor angiogenesis, described by a Keller-Segel equation on the two dimensional domain (x , y) ∈ R ×Sλ where Sλ is the circle of perimeter λ. It is known that the system allows planar traveling wave solutions of an invading type. In case that λ is sufficiently small, we establish the nonlinear stability of traveling wave solutions in the absence of chemical diffusion if the initial perturbation is sufficiently small in some weighted Sobolev space. When chemical diffusion is present, it can be shown that the system is linearly stable. Lastly, we prove that any solution with our front condition eventually becomes planar under certain regularity conditions.

  11. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadesse, Semere A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455; Li, Huan

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Ourmore » system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.« less

  12. HiRadProp: High-Frequency Modeling and Prediction of Tropospheric Radiopropagation Parameters from Ground-Based-Multi-Channel Radiometric Measurements between Ka and W Band

    DTIC Science & Technology

    2016-05-11

    new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric data...of new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric...the medium behavior at these frequency bands from both a physical and a statistical point of view (e.g., [5]-[7]). However, these campaigns are

  13. Acceleration of ions and neutrals by a traveling electrostatic wave

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Lee, L. C.; Wong, A. Y.

    2018-02-01

    We propose a new scheme for accelerating a weakly ionized gas by externally imposing a sinusoidal electrostatic (ES) potential in a tubular system. The weakly ionized gas consists of three fluid components: neutral hydrogen fluid ( H ), positively charged fluid ( H + ), and negatively charged fluids ( H - and/or e - ), as an example. The sinusoidal ES potential is imposed on a series of conductive meshes in the tubular system, and its phase varies with time and space to mimic a traveling ES wave. The charged fluids are trapped and accelerated by the sinusoidal ES potential, while the neutral fluid is accelerated through neutral-ion collisions. The neutral fluid can be accelerated to the wave phase velocity in a few neutral-ion collision times. The whole device remains charge-neutral, and there is no build-up of space charge. The acceleration scheme can be applied to, for example, the propulsion of glider in the air, partially ionized plasma in a chamber, spacecraft, and wind tunnel.

  14. Contribution of X/Ka VLBI to Multi-Wavelength Celestial Frame Studies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Sotuela, I.

    2011-01-01

    This paper is an update of Sotuela et al. (2011) which improves their simulated Gaia frame tie precision by approximately 10% by adding three additional VLBI observing sessions. Astrometry at X/Ka-band (8.4/32 GHz) using NASAs Deep Space Network has detected 466 quasars with accuracies of 200-300 micro-arc seconds. A program is underway to reduce errors by a factor of 2-3. From our sample, 245 sources have optical magnitudes V less than 20 and should also be detectable by Gaia. A covariance study using existing X/Ka data and simulated Gaia uncertainties for the 345 objects yields a frame tie precision of 10-15 micro-arc seconds (1 - sigma). The characterization of wavelength dependent systematic from extended source morphology and core shift should benefit greatly from adding X/Ka-band measurements to S/X-band (2.3/8.4 GHz) measurements thus helping to constrain astrophysical models of the wavelength dependence of positions.

  15. A direct current rectification scheme for microwave space power conversion using traveling wave electron acceleration

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1993-01-01

    The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.

  16. Traveling waves in a spatially-distributed Wilson-Cowan model of cortex: From fronts to pulses

    NASA Astrophysics Data System (ADS)

    Harris, Jeremy D.; Ermentrout, Bard

    2018-04-01

    Wave propagation in excitable media has been studied in various biological, chemical, and physical systems. Waves are among the most common evoked and spontaneous organized activity seen in cortical networks. In this paper, we study traveling fronts and pulses in a spatially-extended version of the Wilson-Cowan equations, a neural firing rate model of sensory cortex having two population types: Excitatory and inhibitory. We are primarily interested in the case when the local or space-clamped dynamics has three fixed points: (1) a stable down state; (2) a saddle point with stable manifold that acts as a threshold for firing; (3) an up state having stability that depends on the time scale of the inhibition. In the case when the up state is stable, we look for wave fronts, which transition the media from a down to up state, and when the up state is unstable, we are interested in pulses, a transient increase in firing that returns to the down state. We explore the behavior of these waves as the time and space scales of the inhibitory population vary. Some interesting findings include bistability between a traveling front and pulse, fronts that join the down state to an oscillation or spatiotemporal pattern, and pulses which go through an oscillatory instability.

  17. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  18. NASA Researcher Adjusts a Travelling Magnetic Wave Plasma Engine

    NASA Image and Video Library

    1964-02-21

    Raymond Palmer, of the Electromagnetic Propulsion Division’s Plasma Flow Section, adjusts the traveling magnetic wave plasma engine being operated in the Electric Power Conversion at the National Aeronautics and Space Administration (NASA) Lewis Research Center. During the 1960s Lewis researchers were exploring several different methods of creating electric propulsion systems, including the traveling magnetic wave plasma engine. The device operated similarly to alternating-current motors, except that a gas, not a solid, was used to conduct the electricity. A magnetic wave induced a current as it passed through the plasma. The current and magnetic field pushed the plasma in one direction. Palmer and colleague Robert Jones explored a variety of engine configurations in the Electric Propulsion Research Building. The engine is seen here mounted externally on the facility’s 5-foot diameter and 16-foot long vacuum tank. The four magnetic coils are seen on the left end of the engine. The researchers conducted two-minute test runs with varying configurations and used of both argon and xenon as the propellant. The Electric Propulsion Research Building was built in 1942 as the Engine Propeller Research Building, often called the Prop House. It contained four test cells to study large reciprocating engines with their propellers. After World War II, the facility was modified to study turbojet engines. By the 1960s, the facility was modified again for electric propulsion research and given its current name.

  19. Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere

    NASA Astrophysics Data System (ADS)

    Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.

    2012-02-01

    Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi

  20. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2015-01-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb groundbased observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  1. Calibration of the KA Band Tracking of the Bepi-Colombo Spacecraft (more Experiment)

    NASA Astrophysics Data System (ADS)

    Barriot, J.; Serafini, J.; Sichoix, L.

    2013-12-01

    The radiosciences Bepi-Colombo MORE experiment will use X/X, X/Ka and Ka/Ka band radio links to make accurate measurements of the spacecraft range and range rate. Tropospheric zenith wet delays range from 1.5 cm to 10 cm, with high variability (less than 1000 s) and will impair these accurate measurements. Conditions vary from summer (worse) to winter (better), from day (worse) to night (better). These wet delays cannot be estimated from ground weather measurements and alternative calibration methods should be used in order to cope with the MORE requirements (no more than 3 mm at 1000 s). Due to the Mercury orbit, MORE measurements will be performed by daylight and more frequently in summer than in winter (from Northern hemisphere). Two systems have been considered to calibrate this wet delay: Water Vapor Radiometers (WVRs) and GPS receivers. The Jet Propulsion Laboratory has developed a new class of WVRs reaching a 5 percent accuracy for the wet delay calibration (0.75 mm to 5 mm), but these WVRs are expensive to build and operate. GPS receivers are also routinely used for the calibration of data from NASA Deep Space probes, but several studies have shown that GPS receivers can give good calibration (through wet delay mapping functions) for long time variations, but are not accurate enough for short time variations (100 to 1000 s), and that WVRs must be used to efficiently calibrate the wet troposphere delays over such time spans. We think that such a calibration could be done by assimilating data from all the GNSS constellations (GPS, GLONASS, Galileo, Beidou and IRNSS) that will be available at the time of the Bepi-Colombo arrival at Mercury (2021), provided that the underlying physics of the turbulent atmosphere and evapotranspiration processes are properly taken into account at such time scales. This implies to do a tomographic image of the troposphere overlying each Deep Space tracking station at time scales of less than 1000 s. For this purpose, we have

  2. Demonstration of Multi-Gbps Data Rates at Ka-Band Using Software-Defined Modem and Broadband High Power Amplifier for Space Communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.; Landon, David G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    The paper presents the first ever research and experimental results regarding the combination of a software-defined multi-Gbps modem and a broadband high power space amplifier when tested with an extended form of the industry standard DVB-S2 and LDPC rate 9/10 FEC codec. The modem supports waveforms including QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK, and 128-QAM. The broadband high power amplifier is a space qualified traveling-wave tube (TWT), which has a passband greater than 3 GHz at 33 GHz, output power of 200 W and efficiency greater than 60 percent. The modem and the TWTA together enabled an unprecedented data rate at 20 Gbps with low BER of 10(exp -9). The presented results include a plot of the received waveform constellation, BER vs. E(sub b)/N(sub 0) and implementation loss for each of the modulation types tested. The above results when included in an RF link budget analysis show that NASA s payload data rate can be increased by at least an order of magnitude (greater than 10X) over current state-of-practice, limited only by the spacecraft EIRP, ground receiver G/T, range, and available spectrum or bandwidth.

  3. Space-Based Gravitational-wave Mission Concept Studies

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).

  4. Apparatus and method for measuring and imaging traveling waves

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2001-01-01

    An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

  5. Bistable traveling waves for a competitive-cooperative system with nonlocal delays

    NASA Astrophysics Data System (ADS)

    Tian, Yanling; Zhao, Xiao-Qiang

    2018-04-01

    This paper is devoted to the study of bistable traveling waves for a competitive-cooperative reaction and diffusion system with nonlocal time delays. The existence of bistable waves is established by appealing to the theory of monotone semiflows and the finite-delay approximations. Then the global stability of such traveling waves is obtained via a squeezing technique and a dynamical systems approach.

  6. Three-dimensional simulation of helix traveling-wave tube cold-test characteristics using MAFIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kory, C.L.

    1996-12-31

    A critically important step in the traveling-wave tube (TWT) design process is the cold-testing of the slow-wave circuit for dispersion, beam interaction impedance and RF losses. Experimental cold-tests can be very time-consuming and expensive, thus limiting the freedom to examine numerous variations to the test circuit. This makes the need for computational methods crucial as they can lower cost, reduce tube development time and allow the freedom to introduce novel and improved designs. The cold-test parameters have been calculated for a C-Band Northrop-Grumman helix TWT slow-wave circuit using MAFIA, the three-dimensional electromagnetic finite-integration computer code. Measured and simulated cold-test datamore » for the Northrop-Grumman helix TWT including dispersion, impedance and attenuation will be presented. Close agreement between simulated and measured values of the dispersion, impedance and attenuation has been obtained.« less

  7. Multiple access capacity trade-offs for a Ka-band personal access satellite system

    NASA Technical Reports Server (NTRS)

    Dessouky, Khaled; Motamedi, Masoud

    1990-01-01

    System capability is critical to the economic viability of a personal satellite communication system. Ka band has significant potential to support a high capacity multiple access system because of the availability of bandwidth. System design tradeoffs are performed and multiple access schemes are compared with the design goal of achieving the highest capacity and efficiency. Conclusions regarding the efficiency of the different schemes and the achievable capacities are given.

  8. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  9. A satellite system for multimedia personal communications at Ka-band and beyond

    NASA Technical Reports Server (NTRS)

    Vatalaro, F.; Losquadro, G.

    1995-01-01

    The main characteristics of the satellite extremely high frequency (EHF) communication of multimedia mobile services (SECOMS) system are given and the results of the preliminary analysis are included. The SECOMS provides a first generation Ka band system with coverage over Western Europe, in order to satisfy business user needs of very large bandwidths and terminal mobility. The satellite system also provides a second generation EHF enhanced system with increased capacity and enlarged coverage, to serve all of Europe and the nearby countries.

  10. Miniature traveling wave tube and method of making

    NASA Technical Reports Server (NTRS)

    Kosmahl, Henry G. (Inventor)

    1989-01-01

    It is an object of the invention to provide a miniature traveling wave tube which will have most of the advantages of solid state circuitry but with higher efficiency and without being highly sensitive to temperature and various types of electromagnetic radiation and subatomic particles as are solid state devices. The traveling wave tube which is about 2.5 cm in length includes a slow wave circuit (SWS) comprising apertured fins with a top cover which is insulated from the fins by strips or rungs of electrically insulating, dielectric material. Another object of the invention is to construct a SWS of extremely small size by employing various grooving or etching methods and by providing insulating strips or rungs by various deposition and masking techniques.

  11. Parallel traveling-wave MRI: a feasibility study.

    PubMed

    Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-04-01

    Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.

  12. Propagation Effects of Importance to the NASA/JPL Deep Space Network (DSN)

    NASA Technical Reports Server (NTRS)

    Slobin, Steve

    1999-01-01

    This paper presents Propagation Effects of Importance To The NASA/JPL Deep Space Network (DSN). The topics include: 1) DSN Antennas; 2) Deep Space Telecom Link Basics; 3) DSN Propagation Region of Interest; 4) Ka-Band Weather Effects Models and Examples; 5) Existing Goldstone Ka-Band Atmosphere Attenuation Model; 6) Existing Goldstone Atmosphere Noise Temperature Model; and 7) Ka-Band delta (G/T) Relative to Vacuum Condition. This paper summarizes the topics above.

  13. Skin friction drag reduction in turbulent flow using spanwise traveling surface waves

    NASA Astrophysics Data System (ADS)

    Musgrave, Patrick F.; Tarazaga, Pablo A.

    2017-04-01

    A major technological driver in current aircraft and other vehicles is the improvement of fuel efficiency. One way to increase the efficiency is to reduce the skin friction drag on these vehicles. This experimental study presents an active drag reduction technique which decreases the skin friction using spanwise traveling waves. A novel method is introduced for generating traveling waves which is low-profile, non-intrusive, and operates under various flow conditions. This wave generation method is discussed and the resulting traveling waves are presented. These waves are then tested in a low-speed wind tunnel to determine their drag reduction potential. To calculate the drag reduction, the momentum integral method is applied to turbulent boundary layer data collected using a pitot tube and traversing system. The skin friction coefficients are then calculated and the drag reduction determined. Preliminary results yielded a drag reduction of ≍ 5% for 244Hz traveling waves. Thus, this novel wave generation method possesses the potential to yield an easily implementable, non-invasive drag reduction technology.

  14. A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed

    NASA Technical Reports Server (NTRS)

    Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.

    2017-01-01

    A Ka-band (26 GHz) 2x2 array consisting of square-shaped microstrip patch antenna elements with two truncated corners for circular polarization (CP) is presented. The array is being developed for satellite communications.

  15. X/Ka Celestial Frame Improvements: Vision to Reality

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Bagri, D. S.; Britcliffe, M. J.; Clark, J. E.; Franco, M. M.; Garcia-Miro, C.; Goodhart, C. E.; Horiuchi, S.; Lowe, S. T.; Moll, V. E.; hide

    2010-01-01

    In order to extend the International Celestial Reference Frame from its S/X-band (2.3/8.4 GHz) basis to a complementary frame at X/Ka-band (8.4/32 GHz), we began in mid-2005 an ongoing series of X/Ka observations using NASA s Deep Space Network (DSN) radio telescopes. Over the course of 47 sessions, we have detected 351 extra-galactic radio sources covering the full 24 hours of right ascension and declinations down to -45 degrees. Angular source position accuracy is at the part-per-billion level. We developed an error budget which shows that the main errors arise from limited sensitivity, mismodeling of the troposphere, uncalibrated instrumental effects, and the lack of a southern baseline. Recent work has improved sensitivity by improving pointing calibrations and by increasing the data rate four-fold. Troposphere calibration has been demonstrated at the mm-level. Construction of instrumental phase calibrators and new digital baseband filtering electronics began in recent months. We will discuss the expected effect of these improvements on the X/Ka frame.

  16. Wide Band Gyrotron Traveling Wave Amplifier Analysis.

    DTIC Science & Technology

    1987-12-01

    phase versus frequency characteristics. It is in these aspects that the gyrotron amplifier effort has been less than successful. A C-band gyro- TWT ...proposals were made several years ago, no experimental results have yet been reported. Another concept for increasing the bandwidth of the gyro- TWT is to...including dielectric loading of the waveguide [24], helix loaded waveguide (25]-[26], and disc-loaded waveguide [26]-(27). No experimental results on

  17. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    NASA Astrophysics Data System (ADS)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  18. Gravitational wave detection in space

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    Gravitational Wave (GW) detection in space is aimed at low frequency band (100nHz-100mHz) and middle frequency band (100mHz-10Hz). The science goals are the detection of GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries and (v) Relic GW Background. In this paper, we present an overview on the sensitivity, orbit design, basic orbit configuration, angular resolution, orbit optimization, deployment, time-delay interferometry (TDI) and payload concept of the current proposed GW detectors in space under study. The detector proposals under study have arm length ranging from 1000km to 1.3 × 109km (8.6AU) including (a) Solar orbiting detectors — (ASTROD Astrodynamical Space Test of Relativity using Optical Devices (ASTROD-GW) optimized for GW detection), Big Bang Observer (BBO), DECi-hertz Interferometer GW Observatory (DECIGO), evolved LISA (e-LISA), Laser Interferometer Space Antenna (LISA), other LISA-type detectors such as ALIA, TAIJI etc. (in Earthlike solar orbits), and Super-ASTROD (in Jupiterlike solar orbits); and (b) Earth orbiting detectors — ASTROD-EM/LAGRANGE, GADFLI/GEOGRAWI/g-LISA, OMEGA and TIANQIN.

  19. Photonically enabled Ka-band radar and infrared sensor subscale testbed

    NASA Astrophysics Data System (ADS)

    Lohr, Michele B.; Sova, Raymond M.; Funk, Kevin B.; Airola, Marc B.; Dennis, Michael L.; Pavek, Richard E.; Hollenbeck, Jennifer S.; Garrison, Sean K.; Conard, Steven J.; Terry, David H.

    2014-10-01

    A subscale radio frequency (RF) and infrared (IR) testbed using novel RF-photonics techniques for generating radar waveforms is currently under development at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to study target scenarios in a laboratory setting. The linearity of Maxwell's equations allows the use of millimeter wavelengths and scaled-down target models to emulate full-scale RF scene effects. Coupled with passive IR and visible sensors, target motions and heating, and a processing and algorithm development environment, this testbed provides a means to flexibly and cost-effectively generate and analyze multi-modal data for a variety of applications, including verification of digital model hypotheses, investigation of correlated phenomenology, and aiding system capabilities assessment. In this work, concept feasibility is demonstrated for simultaneous RF, IR, and visible sensor measurements of heated, precessing, conical targets and of a calibration cylinder. Initial proof-of-principle results are shown of the Ka-band subscale radar, which models S-band for 1/10th scale targets, using stretch processing and Xpatch models.

  20. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Y. S.; Guo, Y. W.; Kao, B. H.

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competingmore » modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.« less

  1. Traveling waves in a magnetized Taylor-Couette flow.

    PubMed

    Liu, Wei; Goodman, Jeremy; Ji, Hantao

    2007-07-01

    We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes.

  2. Aging and space travel

    NASA Technical Reports Server (NTRS)

    Mohler, S. R.

    1982-01-01

    The matter of aging and its relation to space vehicle crewmembers undertaking prolonged space missions is addressed. The capabilities of the older space traveler to recover from bone demineralization and muscle atrophy are discussed. Certain advantages of the older person are noted, for example, a greater tolerance of monotony and repetitious activities. Additional parameters are delineated including the cardiovascular system, the reproductive system, ionizing radiation, performance, and group dynamics.

  3. Concepts for a Space-Based Gravitational-Wave Observatory (SGO)

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2012-01-01

    The low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum has the most interesting astrophysical sources. It is only accessible from space. The Laser Interferometer Space Antenna (LISA) concept has been the leading contender for a space-based detector in this band. Despite a strong recommendation from Astro2010, constrained budgets motivate the search for a less expensive concept, even at the loss of some science. We have explored the range of lower cost mission concepts derived from two decades of studying the LISA concept We describe LlSA-like concepts that span the range of affordable and scientifically worthwhile missions, and summarize the analyses behind them.

  4. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; Vainchtein, A.; Rubin, J. E.

    2016-06-01

    Motivated by earlier studies of artificial perceptions of light called phosphenes, we analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolution and stability of planar fronts. Our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.

  5. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE PAGES

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; ...

    2016-02-27

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  6. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  7. Improved Design/Reduction of Manufacturing Costs of Space-Traveling Wave Tiube Amplifiers Final Report CRADA No. TC-0461-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.; Drasco, M.

    The purpose of the CRADA was to develop new microwave codes for analyzing both slow-,vave structures and beam-wave interactions of traveling wave tube amplifiers (TWTA), the microwave power source for satellite and radar communication systems. The scope of work also included testing and improving power modules through measurements and simulation.

  8. Decomposing variations of geopotential height in the troposphere and stratosphere into stationary and travelling waves

    NASA Astrophysics Data System (ADS)

    Guryanov, Vladimir; Eliseev, Alexey

    2016-07-01

    The ERA-Interim geopotential height in the Northern Hemisphere from November to March, 1992-2015 in the layer from between pressure levels 1000 mb and 1 mb is expanded into stationary and travelling zonal waves with zonal wavenumbers, k, from 1 to 10, and with periods, T, from 2 to 156 days (the so called Hayashi spectra). Among the studied waves, the largest amplitude is attained by the stationary and travelling waves with zonal wavenumber k=1 and with periods from 3 to 4 weeks in the upper stratosphere over the latitudinal belt 60-70oN. The stationary waves with k from 1 to 3 and with T from 2 to 3 weeks are most pronounced in the stratosphere. In turn, the largest amplitudes of the travelling waves with zonal wavenumbers k ≥ 5 are found in the troposphere. The dominant periods of the latter waves are about 1 week or slightly higher, and this dominant period basically decrease with increasing wavenumber. In the upper stratosphere, the eastward travelling waves generally dominate over westward ones. The only exception is the longest zonal mode with k=1, for which the amplitude of the westward travelling wave is larger than that for the eastward one. The period of the travelling waves dominating in the upper stratosphere is close to 3 weeks. In the upper troposphere, the amplitudes of the eastward waves with k from 4 to 10 is several-fold larger than those for their westward counterparts. The latter is reflected in the larger average wavenumber of the eastward travelling wave in comparison to that of the westarward one. The period of the gravest of the dominant travelling waves in the upper troposphere is close to one week, and it decreases to 2-4 days for the dominant travelling waves with k=8-10.

  9. Snakes mimic earthworms: propulsion using rectilinear travelling waves

    PubMed Central

    Marvi, Hamidreza; Bridges, Jacob; Hu, David L.

    2013-01-01

    In rectilinear locomotion, snakes propel themselves using unidirectional travelling waves of muscular contraction, in a style similar to earthworms. In this combined experimental and theoretical study, we film rectilinear locomotion of three species of snakes, including red-tailed boa constrictors, Dumeril's boas and Gaboon vipers. The kinematics of a snake's extension–contraction travelling wave are characterized by wave frequency, amplitude and speed. We find wave frequency increases with increasing body size, an opposite trend than that for legged animals. We predict body speed with 73–97% accuracy using a mathematical model of a one-dimensional n-linked crawler that uses friction as the dominant propulsive force. We apply our model to show snakes have optimal wave frequencies: higher values increase Froude number causing the snake to slip; smaller values decrease thrust and so body speed. Other choices of kinematic variables, such as wave amplitude, are suboptimal and appear to be limited by anatomical constraints. Our model also shows that local body lifting increases a snake's speed by 31 per cent, demonstrating that rectilinear locomotion benefits from vertical motion similar to walking. PMID:23635494

  10. Existence and numerical simulation of periodic traveling wave solutions to the Casimir equation for the Ito system

    NASA Astrophysics Data System (ADS)

    Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.

    2015-10-01

    We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.

  11. Multiple branches of travelling waves for the Gross–Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Chiron, David; Scheid, Claire

    2018-06-01

    Explicit solitary waves are known to exist for the Kadomtsev–Petviashvili-I (KP-I) equation in dimension 2. We first address numerically the question of their Morse index. The results confirm that the lump solitary wave has Morse index one and that the other explicit solutions correspond to excited states. We then turn to the 2D Gross–Pitaevskii (GP) equation, which in some long wave regime converges to the KP-I equation. Numerical simulations have already shown that a branch of travelling waves of GP converges to a ground state of KP-I, expected to be the lump. In this work, we perform numerical simulations showing that other explicit solitary waves solutions to the KP-I equation give rise to new branches of travelling waves of GP corresponding to excited states.

  12. The modification of X and L band radar signals by monomolecular sea slicks

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.

    1983-01-01

    One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.

  13. Ka-band Ga-As FET noise receiver/device development

    NASA Technical Reports Server (NTRS)

    Schellenberg, J. M.; Feng, M.; Hackett, L. H.; Watkins, E. T.; Yamasaki, H.

    1982-01-01

    The development of technology for a 30 GHz low noise receiver utilizing GaAs FET devices exclusively is discussed. This program required single and dual-gate FET devices, low noise FET amplifiers, dual-gate FET mixers, and FET oscillators operating at Ka-band frequencies. A 0.25 micrometer gate FET device, developed with a minimum noise figure of 3.3 dB at 29 GHz and an associated gain of 7.4 dB, was used to fabricate a 3-stage amplifier with a minimum noise figure and associated gain of 4.4 dB and 17 dB, respectively. The 1-dB gain bandwidth of this amplifier extended from below 26.5 GHz to 30.5 GHz. A dual-gate mixer with a 2 dB conversion loss and a minimum noise figure of 10 dB at 29 GHz as well as a dielectric resonator stabilized FET oscillator at 25 GHz for the receiver L0. From these components, a hybrid microwave integrated circuit receiver was constructed which demonstrates a minimum single-side band noise figure of 4.6 dB at 29 GHz with a conversion gain of 17 dB. The output power at the 1-dB gain compression point was -5 dBm.

  14. Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay

    2017-01-01

    We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.

  15. Sensitivity enhancement of traveling wave MRI using free local resonators: an experimental demonstration.

    PubMed

    Zhang, Xiaoliang

    2017-04-01

    Traveling wave MR uses the far fields in signal excitation and reception, therefore its acquisition efficiency is low in contrast to the conventional near field magnetic resonance (MR). Here we show a simple and efficient method based on the local resonator to improving sensitivity of traveling wave MR technique. The proposed method utilizes a standalone or free local resonator to amplify the radio frequency magnetic fields in the interested target. The resonators have no wire connections to the MR system and thus can be conveniently placed to any place around imaging simples. A rectangular loop L/C resonator to be used as the free local resonator was tuned to the proton Larmor frequency at 7T. Traveling wave MR experiments with and without the wireless free local resonator were performed on a living rat using a 7T whole body MR scanner. The signal-to-noise ratio (SNR) or sensitivity of the images acquired was compared and evaluated. In vivo 7T imaging results show that traveling wave MR with a wireless free local resonator placed near the head of a living rat achieves at least 10-fold SNR gain over the images acquired on the same rat using conventional traveling wave MR method, i.e. imaging with no free local resonators. The proposed free local resonator technique is able to enhance the MR sensitivity and acquisition efficiency of traveling wave MR at ultrahigh fields in vivo . This method can be a simple solution to alleviating low sensitivity problem of traveling wave MRI.

  16. Development of a W-band Serpentine Waveguide Amplifier based on a UV-LIGA Microfabricated Copper Circuit

    DTIC Science & Technology

    2013-03-01

    beam tunnel [5,6] for a high - power , wideband W- band traveling-wave tube (TWT) amplifier. UV-LIGA is also a promising technique at higher...wide- band , high - power operation of the amplifier [7, 8]. The interaction circuit consists of two traveling-wave stages separated by a power ...technique produces monolithic all-copper circuits, integrated with electron beam tunnel, suitable for high - power continuous-wave operation [1]. We

  17. Internal Waves, Western Indian Ocean

    NASA Image and Video Library

    1991-12-01

    STS044-79-077 (24 Nov.-1 Dec. 1991) --- This photograph, captured from the Earth-orbiting Space Shuttle Atlantis, shows sunglint pattern in the western tropical Indian Ocean. Several large internal waves reflect around a shallow area on the sea floor. NASA scientists studying the STS-44 photography believe the shallow area to be a sediment (a submerged mountain) on top of the Mascarene Plateau, located northeast of Madagascar at approximately 5.6 degrees south latitude and 55.7 degrees east longitude. Internal waves are similar to surface ocean waves, except that they travel inside the water column along the boundary between water layers of different density. At the surface, their passage is marked on the sea surface by bands of smooth and rough water. These bands appear in the sunglint pattern as areas of brighter or darker water. NASA scientists point out that, when the waves encounter an obstacle, such as a near-surface seamount, they bend or refract around the obstacle in the same manner as surface waves bend around an island or headland.

  18. Toward Improving Ice Water Content and Snow Rate Retrievals from Spaceborne Radars, Emphasizing Ku and Ka-Bands

    NASA Astrophysics Data System (ADS)

    Heymsfield, A.; Bansemer, A.; Tanelli, S.; Poellot, M.

    2015-12-01

    This study uses a data set from either overflying aircraft or ground-based radars operating at Ku and Ka bands, combined with in-situ microphysical measurements to develop radar reflectivity (Ze)-ice water content (IWC) and Ze-snowfall rate (S) relationships that are suited for retrieval of snowfall rate from the GPM radars. During GCPEX, the NASA DC-8 aircraft, carrying the JPL APR-2 KU and KA band radars overflew the UND Citation aircraft, making microphysical measurements in the ice clouds below. On two days, 19 and 28 January 2011, there are a total of almost 7000 1-sec colocations of the aircraft, where a collocation was defined as having a combination of a spatial separation of less than 3 km and a time separation of less than 10 minutes. During the NASA GPM Mid-latitude Continental Convective Cloud Experiment (MC3E), the Citation aircraft made in-situ observations over Oklahoma in 2011. We evaluated the data from two types of collocations. First, there were two Citation spirals on 27 April 2011, over the NPOL radar. At the same time, the UHF-band KUZR radar was collecting data in a vertically-pointing mode. Also, the Ka band KAZR Doppler radar was operating in a zenith orientation. Reflectivities and Doppler velocities, without and with appreciable Mie-scattering effects of the hydrometers (for KUZR and KAZR, respectively), are thus available during the spirals. Also during MC3E, six deep convective clouds with a total of more than 5000 5-sec samples and a range of temperatures from -40 to 0C were sampled by the Citation at the same time that NEXRAD reflectivities were measured at about the same position. These data allows us to evaluate various backscatter models and to develop multi-wavelength Z-IWC and Z-S relationships. We will present the results of this study.

  19. Banded whistlers observed on OGO-4

    NASA Technical Reports Server (NTRS)

    Paymar, E. M.

    1972-01-01

    Inspection of broadband VLF records from OGO-4 shows that some whistlers exhibit a banded structure in which one or more bands of frequencies are missing from the whistler's spectrum. The phenomenon is commonly observed by satellites on midlatitude field lines at all local times and at various longitudes around the world. The dispersion of banded whistlers (BW) is of several tens of sec to the 1/2 power, indicating that they originated in the opposite hemisphere and are propagating downward at the satellite. BW are generally spread in time (tenths of seconds) rather than sharply defined and tend to occur at random. The frequency spacing of the bands may be either uniform or irregular, and may vary radically between successive events. Several possible explanations for BW are considered. In particular, an analysis of the interaction of plane electromagnetic waves traveling in an anisotropic plasma with a field aligned slab of enhanced ionization is presented with promising results.

  20. An Improved X-Band Maser System for Deep Space Network Applications

    NASA Astrophysics Data System (ADS)

    Britcliffe, M.; Hanson, T.; Fernandez, J.

    2000-01-01

    An 8450-MHz (X-band) maser system utilizing a commercial Gifford--McMahon (GM) closed-cycle cryocooler (CCR) was designed, fabricated, and demonstrated. The CCR system was used to cool a maser operating at 8450 MHz. The prototype GM CCR system meets or exceeds all Deep Space Network requirements for maser performance. The two-stage GM CCR operates at 4.2 K; for comparison, the DSN's current three-stage cryocooler, which uses a Joule--Thompson cooling stage in addition to GM cooling, operates at 4.5 K. The new CCR withstands heat loads of 1.5 W at 4.2 K as compared to 1 W at 4.5 K for the existing DSN cryocooler used for cooling masers. The measured noise temperature, T_e, of the maser used for these tests is defined at the ambient connection to the antenna feed system. The T_e measured 5.0 K at a CCR temperature of 4.5 K, about 1.5 K higher than the noise temperature of a typical DSN Block II-A X-band traveling-wave maser (TWM). Reducing the temperature of the CCR significantly lowers the maser noise temperature and increases maser gain and bandwidth. The new GM CCR gives future maser systems significant operational advantages, including reduced maintenance time and logistics requirements. The results of a demonstration of this new system are presented. Advantages of using a GM-cooled maser and the effects of the reduced CCR temperature on maser performance are discussed.

  1. Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers With Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2009-01-01

    The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branch-line hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two MMIC power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is approximately 93 percent over the above frequency band.

  2. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  3. Q/V-band communications and propagation experiments using ALPHASAT

    NASA Astrophysics Data System (ADS)

    Koudelka, O.

    2011-12-01

    The lower satellite frequency bands become more and more congested; therefore it will be necessary to exploit higher frequencies for satellite communications. New broadband applications (e.g. 3D-TV, fast Internet access) will require additional spectrum in the future. The Ku-band is highly utilised nowadays and Ka-band systems, which have been extensively studied in the 1990s, are already in commercial use. The next frontier is the Q/V-band. At millimetre waves the propagation effects are significant. The traditional approach of implementing large fade margins is impractical, since this leads to high EIRP and G/ T figures for the ground stations, resulting in unacceptable costs. Fade mitigation techniques by adaptive coding and modulation (ACM) offer a cost-effective solution to this problem. ESA will launch the ALPHASAT satellite in 2012. It will carry experimental Ka- and Q/V-band propagation and communications payloads, enabling propagation measurements throughout Europe and communications experiments. Three communications spot beams will be covering Northern Italy, Southern Italy and Austria with some overlap. Joanneum Research and Graz University of Technology are preparing for communications and propagation experiments using these new payloads of ALPHASAT in close cooperation with ESA, the Italian Space Agency ASI, Politecnico di Milano and Università Tor Vergata. The main focus of the communications experiments is on ACM techniques. The paper describes the design of the planned Q/V-band ground station with the planned ACM tests and investigations as well as the architecture of the communications terminal, based on a versatile software-defined radio platform.

  4. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  5. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventionalmore » Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.« less

  6. Traveling wave tube and method of manufacture

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K. (Inventor)

    2004-01-01

    A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.

  7. Vision-21: Space Travel for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Editor)

    1990-01-01

    The papers from this symposium, that was held at the NASA Lewis Research Center on April 3-4, 1990, are presented. The theme selected for the symposium was space travel for the next millennium. It was hoped that the participants would allow their focus to consider possible advances in technologies for space travel not just for currently envisioned projects, but for possibilities beyond the next generation and the next thousand years. About half of the contributed papers focussed on propulsion and the other half on other issues related to space travel.

  8. Traveling wave in a three-dimensional array of conformist and contrarian oscillators

    NASA Astrophysics Data System (ADS)

    Hoang, Danh-Tai; Jo, Junghyo; Hong, Hyunsuk

    2015-03-01

    We consider a system of conformist and contrarian oscillators coupled locally in a three-dimensional cubic lattice and explore collective behavior of the system. The conformist oscillators attractively interact with the neighbor oscillators and therefore tend to be aligned with the neighbors' phase. The contrarian oscillators interact repulsively with the neighbors and therefore tend to be out of phase with them. In this paper, we investigate whether many peculiar dynamics that have been observed in the mean-field system with global coupling can emerge even with local coupling. In particular, we pay attention to the possibility that a traveling wave may arise. We find that the traveling wave occurs due to coupling asymmetry and not by global coupling; this observation confirms that the global coupling is not essential to the occurrence of a traveling wave in the system. The traveling wave can be a mechanism for the coherent rhythm generation of the circadian clock or of hormone secretion in biological systems under local coupling.

  9. Crosstalk effect and its mitigation in Aqua MODIS middle wave infrared bands

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Madhavan, Sriharsha; Wang, Menghua

    2017-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. A follow on MODIS was launched on an afternoon orbit in 2002 and is aboard the Aqua spacecraft. Both MODIS instruments are very akin, has 36 bands, among which bands 20 to 25 are Middle Wave Infrared (MWIR) bands covering a wavelength range from approximately 3.750 μm to 4.515 μm. It was found that there was severe contamination in these bands early in mission but the effect has not been characterized and mitigated at the time. The crosstalk effect induces strong striping in the Earth View (EV) images and causes significant retrieval errors in the EV Brightness Temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect and successfully applied to mitigate the effect in both Terra and Aqua MODIS Long Wave Infrared (LWIR) Photovoltaic (PV) bands. In this paper, the crosstalk effect in the Aqua MWIR bands is investigated and characterized by deriving the crosstalk coefficients using the scheduled Aqua MODIS lunar observations for the MWIR bands. It is shown that there are strong crosstalk contaminations among the five MWIR bands and they also have significant crosstalk contaminations from Short Wave Infrared (SWIR) bands. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in these bands. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and improves the accuracy of the EV BT in the five bands as was done similarly for LWIR PV bands. The crosstalk correction algorithm should thus be applied to improve both the image quality and radiometric accuracy of the Aqua MODIS MWIR bands Level 1B (L1B) products.

  10. The sleep slow oscillation as a traveling wave.

    PubMed

    Massimini, Marcello; Huber, Reto; Ferrarelli, Fabio; Hill, Sean; Tononi, Giulio

    2004-08-04

    During much of sleep, virtually all cortical neurons undergo a slow oscillation (<1 Hz) in membrane potential, cycling from a hyperpolarized state of silence to a depolarized state of intense firing. This slow oscillation is the fundamental cellular phenomenon that organizes other sleep rhythms such as spindles and slow waves. Using high-density electroencephalogram recordings in humans, we show here that each cycle of the slow oscillation is a traveling wave. Each wave originates at a definite site and travels over the scalp at an estimated speed of 1.2-7.0 m/sec. Waves originate more frequently in prefrontal-orbitofrontal regions and propagate in an anteroposterior direction. Their rate of occurrence increases progressively reaching almost once per second as sleep deepens. The pattern of origin and propagation of sleep slow oscillations is reproducible across nights and subjects and provides a blueprint of cortical excitability and connectivity. The orderly propagation of correlated activity along connected pathways may play a role in spike timing-dependent synaptic plasticity during sleep.

  11. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  12. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  13. Input and output compensation for the cochlear traveling wave delay in wide-band ABR recordings: implications for small acoustic tumor detection.

    PubMed

    Don, Manuel; Elberling, Claus; Maloff, Erin

    2009-02-01

    The Stacked ABR (auditory brainstem response) attempts at the output of the auditory periphery to compensate for the temporal dispersion of neural activation caused by the cochlear traveling wave in response to click stimulation. Compensation can also be made at the input by using a chirp stimulus. It has been demonstrated that the Stacked ABR is sensitive to small tumors that are often missed by standard ABR latency measures. Because a chirp stimulus requires only a single data acquisition run whereas the Stacked ABR requires six, we try to evaluate some indirect evidence justifying the use of a chirp for small tumor detection. We compared the sensitivity and specificity of different Stacked ABRs formed by aligning the derived-band ABRs according to (1) the individual's peak latencies, (2) the group mean latencies, and (3) the modeled latencies used to develop a chirp. For tumor detection with a chosen sensitivity of 95%, a relatively high specificity of 85% may be achieved with a chirp. It appears worthwhile to explore the actual use of a chirp because significantly shorter test and analysis times might be possible.

  14. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  15. Plans for a Next Generation Space-Based Gravitational-Wave Observatory (NGO)

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Stebbins, Robin T.; Jennrich, Oliver

    2012-01-01

    The European Space Agency (ESA) is currently in the process of selecting a mission for the Cosmic Visions Program. A space-based gravitational wave observatory in the low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum is one of the leading contenders. This low frequency band has a rich spectrum of astrophysical sources, and the LISA concept has been the key mission to cover this science for over twenty years. Tight budgets have recently forced ESA to consider a reformulation of the LISA mission concept that wi" allow the Cosmic Visions Program to proceed on schedule either with the US as a minority participant, or independently of the US altogether. We report on the status of these reformulation efforts.

  16. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation.

    PubMed

    Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus

    2014-01-01

    Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.

  17. A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net; Institute of Electronics, University of Chinese Academy of Sciences, Beijing 100190

    A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effectmore » is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics.« less

  18. A dual frequency microstrip antenna for Ka band

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Baddour, M. F.

    1985-01-01

    For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.

  19. Traveling waves in the discrete fast buffered bistable system.

    PubMed

    Tsai, Je-Chiang; Sneyd, James

    2007-11-01

    We study the existence and uniqueness of traveling wave solutions of the discrete buffered bistable equation. Buffered excitable systems are used to model, among other things, the propagation of waves of increased calcium concentration, and discrete models are often used to describe the propagation of such waves across multiple cells. We derive necessary conditions for the existence of waves, and, under some restrictive technical assumptions, we derive sufficient conditions. When the wave exists it is unique and stable.

  20. Orbital stability of periodic traveling wave solutions for the Kawahara equation

    NASA Astrophysics Data System (ADS)

    de Andrade, Thiago Pinguello; Cristófani, Fabrício; Natali, Fábio

    2017-05-01

    In this paper, we investigate the orbital stability of periodic traveling waves for the Kawahara equation. We prove that the periodic traveling wave, under certain conditions, minimizes a convenient functional by using an adaptation of the method developed by Grillakis et al. [J. Funct. Anal. 74, 160-197 (1987)]. The required spectral properties to ensure the orbital stability are obtained by knowing the positiveness of the Fourier transform of the associated periodic wave established by Angulo and Natali [SIAM J. Math. Anal. 40, 1123-1151 (2008)].

  1. Installing the earth station of Ka-band satellite frequency in Malaysia: conceptual framework for site decision

    NASA Astrophysics Data System (ADS)

    Mahmud, M. R.; Reba, M. N. M.; Jaw, S. W.; Arsyad, A.; Ibrahim, M. A. M.

    2017-05-01

    This paper developed a conceptual framework in determining the suitable location in installing the earth station for Ka-band satellite communication in Malaysia. This current evolution of high throughput satellites experienced major challenge due to Malaysian climate. Because Ka-band frequency is highly attenuated by the rainfall; it is an enormous challenge to define the most appropriate site for the static communication. Site diversity, a measure to anticipate this conflict by choosing less attenuated region and geographically change the transmission strategy on season basis require accurate spatio-temporal information on the geographical, environmental and hydro-climatology at local scale. Prior to that request, this study developed a conceptual framework to cater the needs. By using the digital spatial data, acquired from site measurement and remote sensing, the proposed framework applied a multiple criteria analysis to perform the tasks of site selection. With the advancement of high resolution remotely sensed data, site determination can be conducted as in Malaysia; accommodating a new, fast, and effective satellite communication. The output of this study is one of the pioneer contributions to create a high tech-society.

  2. Discrete-State Simulated Annealing For Traveling-Wave Tube Slow-Wave Circuit Optimization

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Bulson, Brian A.; Kory, Carol L.; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Algorithms based on the global optimization technique of simulated annealing (SA) have proven useful in designing traveling-wave tube (TWT) slow-wave circuits for high RF power efficiency. The characteristic of SA that enables it to determine a globally optimized solution is its ability to accept non-improving moves in a controlled manner. In the initial stages of the optimization, the algorithm moves freely through configuration space, accepting most of the proposed designs. This freedom of movement allows non-intuitive designs to be explored rather than restricting the optimization to local improvement upon the initial configuration. As the optimization proceeds, the rate of acceptance of non-improving moves is gradually reduced until the algorithm converges to the optimized solution. The rate at which the freedom of movement is decreased is known as the annealing or cooling schedule of the SA algorithm. The main disadvantage of SA is that there is not a rigorous theoretical foundation for determining the parameters of the cooling schedule. The choice of these parameters is highly problem dependent and the designer needs to experiment in order to determine values that will provide a good optimization in a reasonable amount of computational time. This experimentation can absorb a large amount of time especially when the algorithm is being applied to a new type of design. In order to eliminate this disadvantage, a variation of SA known as discrete-state simulated annealing (DSSA), was recently developed. DSSA provides the theoretical foundation for a generic cooling schedule which is problem independent, Results of similar quality to SA can be obtained, but without the extra computational time required to tune the cooling parameters. Two algorithm variations based on DSSA were developed and programmed into a Microsoft Excel spreadsheet graphical user interface (GUI) to the two-dimensional nonlinear multisignal helix traveling-wave amplifier analysis program TWA3

  3. An Investigation of Traveling-Wave Electrophoresis using a Trigonometric Potential

    NASA Astrophysics Data System (ADS)

    Vopal, James

    Traveling-wave electrophoresis, a technique for microfluidic separations in lab-on-achip devices, is investigated using a trigonometric model that naturally incorporates the spatial periodicity of the device. Traveling-wave electrophoresis can be used to separate high-mobility ions from low-mobility ions in forensic and medical applications, with a separation threshold that can be tuned for specific applications by simply choosing the traveling wave frequency. Our simulations predict plateaus in the average ion velocity verses the mobility, plateaus that correspond to Farey fractions and yield Devil's staircases for non-zero discreteness values. The plateaus indicate that ions with different mobilities can travel with the same average velocity. To determine the conditions for chaos, Lyapunov exponents and contact maps are employed. Through the use of contact maps, the chaotic trajectories are determined to be either narrowband or broadband. Narrowband chaotic trajectories are exhibited in the plateaus of the average velocity, while broadband chaotic trajectories are exhibited where the average velocity varies nonmonotonically with the mobility. Narrowband chaos will be investigated in future work incorporating the role of diffusion. The results of this and future work can be used to develop new tools for electrophoretic separation.

  4. Emergence of traveling waves in the spreading of dengue fever

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Faatz, Andrea; Cummings, Derek; Shaw, Leah

    2010-03-01

    Dengue fever is a multistrain mosquito-borne subtropical disease that exhibits complex oscillatory outbreaks. Epidemiological data from Thailand displays traveling waves of infection originating in Bangkok, the largest population center (Cummings et al., Nature 427: 344, 2004). We present a multistrain metapopulation model in which traveling wave like behavior results from migration coupling between heterogeneous regions. The region with the highest effective person-to-person contact rate leads the dynamics. A stochastic version of the model will also be presented.

  5. Traveling wave to a reaction-hyperbolic system for axonal transport

    NASA Astrophysics Data System (ADS)

    Huang, Feimin; Li, Xing; Zhang, Yinglong

    2017-07-01

    In this paper, we study a class of nonlinear reaction-hyperbolic systems modeling the neuronal signal transfer in neuroscience. This reaction-hyperbolic system can be regarded as n × n (n ≥ 2) hyperbolic system with relaxation. We first prove the existence of traveling wave by Gershgorin circle theorem and mathematically describe the neuronal signal transport. Then for a special case n = 2, we show the traveling wave is nonlinearly stable, and obtain the convergence rate simultaneously by a weighted estimate.

  6. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  7. Application of magnetoelastic materials in spatiotemporally modulated phononic crystals for nonreciprocal wave propagation

    NASA Astrophysics Data System (ADS)

    Ansari, M. H.; Attarzadeh, M. A.; Nouh, M.; Karami, M. Amin

    2018-01-01

    In this paper, a physical platform is proposed to change the properties of phononic crystals in space and time in order to achieve nonreciprocal wave transmission. The utilization of magnetoelastic materials in elastic phononic systems is studied. Material properties of magnetoelastic materials change significantly with an external magnetic field. This property is used to design systems with a desired wave propagation pattern. The properties of the magnetoelastic medium are changed in a traveling wave pattern, which changes in both space and time. A phononic crystal with such a modulation exhibits one-way wave propagation behavior. An extended transfer matrix method (TMM) is developed to model a system with time varying properties. The stop band and the pass band of a reciprocal and a nonreciprocal bar are found using this method. The TMM is used to find the transfer function of a magnetoelastic bar. The obtained results match those obtained via the theoretical Floquet-Bloch approach and numerical simulations. It is shown that the stop band in the transfer function of a system with temporal varying property for the forward wave propagation is different from the same in the backward wave propagation. The proposed configuration enables the physical realization of a class of smart structures that incorporates nonreciprocal wave propagation.

  8. International Safety Regulation and Standards for Space Travel and Commerce

    NASA Astrophysics Data System (ADS)

    Pelton, J. N.; Jakhu, R.

    The evolution of air travel has led to the adoption of the 1944 Chicago Convention that created the International Civil Aviation Organization (ICAO), headquartered in Montreal, Canada, and the propagation of aviation safety standards. Today, ICAO standardizes and harmonizes commercial air safety worldwide. Space travel and space safety are still at an early stage of development, and the adoption of international space safety standards and regulation still remains largely at the national level. This paper explores the international treaties and conventions that govern space travel, applications and exploration today and analyzes current efforts to create space safety standards and regulations at the national, regional and global level. Recent efforts to create a commercial space travel industry and to license commercial space ports are foreseen as means to hasten a space safety regulatory process.

  9. High Resolution Radar for NASA and Space Situational Awareness for Observation and Monitoring

    NASA Astrophysics Data System (ADS)

    Geldzahler, B.; D'Addario, L.; Ott, M.; Birr, R.; Woods, G.; Miller, M.

    2014-09-01

    NASA has embarked on a series of demonstrations that will enable the implementation of a high power, high resolution X/Ka-band radar system using a phased array of widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. Ka band can provide 5cm ranging resolution, and, with arrays in the western United States and Australia used in an astrometric mode, ? 10 cm resolution at GEO. Here we report the results of a successful X-band demonstration of coherent uplink arraying with real time compensation for atmospheric phase fluctuations at the Kennedy Space Center (KSC) using a system simplified from work previously undertaken. The X-band system is a prelude to the Ka-band work currently underway. The target satellites were components of the DSCS and WGS systems. KSC was chosen for the demonstration site because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka-band friendly), and [c] some of the test satellites have low elevations thereby adding more attenuation and turbulence to the demonstration. When Ka-band coherent uplink arraying is demonstrated to work at KSC, it will work and can be deployed anywhere.

  10. Traveling wave solutions to a reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.

    2009-07-01

    In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.

  11. Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Wu, Yupan; Wang, Chunhui; Ding, Haitao; Jiang, Hongyuan; Ding, Yucheng

    2016-09-01

    Traveling-wave electroosmotic (TWEO) pumping arises from the action of an imposed traveling-wave (TW) electric field on its own induced charge in the diffuse double layer, which is formed on top of an electrode array immersed in electrolyte solutions. Such a traveling field can be merely realized in practice by a discrete electrode array upon which the corresponding voltages of correct phase are imposed. By employing the theory of linear and weakly nonlinear double-layer charging dynamics, a physical model incorporating both the nonlinear surface capacitance of diffuse layer and Faradaic current injection is developed herein in order to quantify the changes in TWEO pumping performance from a single-mode TW to discrete electrode configuration. Benefiting from the linear analysis, we investigate the influence of using discrete electrode array to create the TW signal on the resulting fluid motion, and several approaches are suggested to improve the pumping performance. In the nonlinear regime, our full numerical analysis considering the intervening isolation spacing indicates that a practical four-phase discrete electrode configuration of equal electrode and gap width exhibits stronger nonlinearity than expected from the idealized pump applied with a single-mode TW in terms of voltage-dependence of the ideal pumping frequency and peak flow rate, though it has a much lower pumping performance. For model validation, pumping of electrolytes by TWEO is achieved over a confocal spiral four-phase electrode array covered by an insulating microchannel; measurement of flow velocity indicates the modified nonlinear theory considering moderate Faradaic conductance is indeed a more accurate physical description of TWEO. These results offer useful guidelines for designing high-performance TWEO microfluidic pumps with discrete electrode array.

  12. Design, construction and evaluation of a 12.2 GHz, 4.0 kW-CW coupled-cavity traveling wave tube

    NASA Technical Reports Server (NTRS)

    Ayers, W. R.; Harman, W. A.

    1973-01-01

    An analytical and experimental program to study design techniques and to utilize these techniques to optimize the performance of an X-band 4 kW, CW traveling wave tube ultimately intended for satellite-borne television broadcast transmitters is described. The design is based on the coupled-cavity slow-wave circuit with velocity resynchronization to maximize the conversion efficiency. The design incorporates a collector which is demountable from the tube. This was done to facilitate multistage depressed collector experiments employing a NASA designed axisymmetric, electrostatic collector for linear beam microwave tubes after shipment of the tubes to NASA.

  13. Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Li, Panxiao; Wu, Shi-Liang

    2018-04-01

    This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.

  14. Synchronization of Large Josephson-Junction Arrays by Traveling Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Galin, M. A.; Borodianskyi, E. A.; Kurin, V. V.; Shereshevskiy, I. A.; Vdovicheva, N. K.; Krasnov, V. M.; Klushin, A. M.

    2018-05-01

    Mutual synchronization of many Josephson junctions is required for superradiant enhancement of the emission power. However, the larger the junction array is, the more difficult is the synchronization, especially when the array size becomes much larger than the emitted wavelength. Here, we study experimentally Josephson emission from such larger-than-the-wavelength Nb /NbSi /Nb junction arrays. For one of the arrays we observe a clear superradiant enhancement of emission above a threshold number of active junctions. The arrays exhibit strong geometrical resonances, seen as steps in current-voltage characteristics. However, radiation patterns of the arrays have forward-backward asymmetry, which is inconsistent with the solely geometrical resonance (standing-wave) mechanism of synchronization. We argue that the asymmetry provides evidence for an alternative mechanism of synchronization mediated by unidirectional traveling-wave propagation along the array (such as a surface plasmon). In this case, emission occurs predominantly in the direction of propagation of the traveling wave. Our conclusions are supported by numerical modeling of Josephson traveling-wave antenna. We argue that such a nonresonant mechanism of synchronization opens a possibility for phase locking of very large arrays of oscillators.

  15. The occurrence and wave properties of H+-, He+-, and O+-band EMIC waves observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Saikin, A. A.; Zhang, J.-C.; Allen, R. C.; Smith, C. W.; Kistler, L. M.; Spence, H. E.; Torbert, R. B.; Kletzing, C. A.; Jordanova, V. K.

    2015-09-01

    We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H+, He+, and O+ bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H+-band events, 438 He+-band events, and 68 O+-band events). EMIC wave events are observed between L = 2-8, with over 140 EMIC wave events observed below L = 4. Results show that H+-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: prenoon (09:00 < MLT ≤ 12:00) and afternoon (15:00 < MLT ≤ 17:00) sectors. He+-band EMIC waves feature an overall stronger dayside occurrence. O+-band EMIC waves have one peak region located in the morning sector at lower L shells (L < 4). He+-band EMIC waves average the highest wave power overall (>0.1 nT2/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.

  16. Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior

    NASA Astrophysics Data System (ADS)

    Girardin, Léo

    2018-01-01

    This paper is concerned with non-cooperative parabolic reaction-diffusion systems which share structural similarities with the scalar Fisher-KPP equation. These similarities make it possible to prove, among other results, an extinction and persistence dichotomy and, when persistence occurs, the existence of a positive steady state, the existence of traveling waves with a half-line of possible speeds and a positive minimal speed and the equality between this minimal speed and the spreading speed for the Cauchy problem. Non-cooperative KPP systems can model various phenomena where the following three mechanisms occur: local diffusion in space, linear cooperation and superlinear competition.

  17. Users' manual for computer program for three-dimensional analysis of coupler-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.

    1984-01-01

    The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. A flexible, three dimensional, axially symmetric, large signal computer program was developed for use on the IBM 370 time sharing system. A users' manual for this program is included.

  18. Approximation of traveling wave solutions in wall-bounded flows using resolvent modes

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley; Graham, Michael; Moarref, Rashad; Park, Jae Sung; Sharma, Ati; Willis, Ashley

    2014-11-01

    Significant recent attention has been devoted to computing and understanding exact traveling wave solutions of the Navier-Stokes equations. These solutions can be interpreted as the state-space skeleton of turbulence and are attractive benchmarks for studying low-order models of wall turbulence. Here, we project such solutions onto the velocity response (or resolvent) modes supplied by the gain-based resolvent analysis outlined by McKeon & Sharma (JFM, 2010). We demonstrate that in both pipe (Pringle et al., Phil. Trans. R. Soc. A, 2009) and channel (Waleffe, JFM, 2001) flows, the solutions can be well-described by a small number of resolvent modes. Analysis of the nonlinear forcing modes sustaining these solutions reveals the importance of small amplitude forcing, consistent with the large amplifications admitted by the resolvent operator. We investigate the use of resolvent modes as computationally cheap ``seeds'' for the identification of further traveling wave solutions. The support of AFOSR under Grants FA9550-09-1-0701, FA9550-12-1-0469, FA9550-11-1-0094 and FA9550-14-1-0042 (program managers Rengasamy Ponnappan, Doug Smith and Gregg Abate) is gratefully acknowledged.

  19. Analysis of Fade Detection and Compensation Experimental Results in a Ka-Band Satellite System. Degree awarded by Akron Univ., May 2000

    NASA Technical Reports Server (NTRS)

    Johnson, Sandra

    2001-01-01

    The frequency bands being used for new satellite communication systems are constantly increasing to accommodate the requirements for additional capacity. At these higher frequencies, propagation impairments that did not significantly affect the signal at lower frequencies begin to have considerable impact. In Ka-band, the next logical commercial frequency band to be used for satellite communication, attenuation of the signal due to rain is a primary concern. An experimental satellite built by NASA, the Advanced Communication Technology Satellite (ACTS), launched in September 1993, is the first US communication satellite operating in the Ka-band. In addition to higher carrier frequencies, a number of other new technologies, including onboard baseband processing, multiple beam antennas, and rain fade detection and compensation techniques, were designed into the ACTS. Verification experiments have been conducted since the launch to characterize the new technologies. The focus of this thesis is to describe and validate the method used by the ACTS Very Small Aperture Terminal (VSAT) ground stations in detecting the presence of fade in the communication signal and to adaptively compensate for it by the addition of burst rate reduction and forward error correction. Measured data obtained from the ACTS program is used to validate the compensation technique. In this thesis, models in MATLAB are developed to statistically characterize the increased availability achieved by the compensation techniques in terms of the bit error rate time enhancement factor. Several improvements to the ACTS technique are discussed and possible implementations for future Ka-band systems are also presented.

  20. LISA Pathfinder: First steps to observing gravitational waves from space

    NASA Astrophysics Data System (ADS)

    McNamara, Paul; LISA Pathfinder Collaboration

    2017-01-01

    With the first direct detection of gravitational waves a little over a year ago, the gravitational window to the Universe has been opened. The gravitational wave spectrum spans many orders of magnitude in frequency, with several of the most interesting astronomical sources emitting gravitational waves at frequencies only observable from space The European Space Agency (ESA) has been active in the field of space-borne gravitational wave detection for many years, and in 2013 selected the Gravitational Universe as the science theme for the third large class mission in the Cosmic Vision science programme. In addition, ESA took the step of developing the LISA Pathfinder mission to demonstrate the critical technologies required for a future mission. The goal of the LISA Pathfinder mission is to place a test body in free fall such that any external forces (acceleration) are reduced to levels lower than those expected from the passage of a gravitational wave LISA Pathfinder was launched on the 3rd December 2015 from the European Spaceport in Kourou, French Guiana. After a series of 6 apogee raising manoeuvres, the satellite left earth orbit, and travelled to its final science orbit around the first Sun-Earth Lagrange point (L1). Following a relatively short commissioning phase, science operations began on 1st March 2016. In the following 3 months over 100 experiments and over 1500hours of noise measurements have been performed, demonstrating that the observation of gravitational waves from space can be realised.

  1. Cassini RSS occultation observations of density waves in Saturn's rings

    NASA Astrophysics Data System (ADS)

    McGhee, C. A.; French, R. G.; Marouf, E. A.; Rappaport, N. J.; Schinder, P. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.

    2005-08-01

    On May 3, 2005, the first of a series of eight nearly diametric occultations by Saturn's rings and atmosphere took place, observed by the Cassini Radio Science (RSS) team. Simultaneous high SNR measurements at the Deep Space Network (DSN) at S, X, and Ka bands (λ = 13, 3.6, and 0.9 cm) have provided a remarkably detailed look at the radial structure and particle scattering behavior of the rings. By virtue of the relatively large ring opening angle (B=-23.6o), the slant path optical depth of the rings was much lower than during the Voyager epoch (B=5.9o), making it possible to detect many density waves and other ring features in the Cassini RSS data that were lost in the noise in the Voyager RSS experiment. Ultimately, diffraction correction of the ring optical depth profiles will yield radial resolution as small as tens of meters for the highest SNR data. At Ka band, the Fresnel scale is only 1--1.5 km, and thus even without diffraction correction, the ring profiles show a stunning array of density waves. The A ring is replete with dozens of Pandora and Prometheus inner Lindblad resonance features, and the Janus 2:1 density wave in the B ring is revealed with exceptional clarity for the first time at radio wavelengths. Weaker waves are abundant as well, and multiple occultation chords sample a variety of wave phases. We estimate the surface mass density of the rings from linear density wave models of the weaker waves. For stronger waves, non-linear models are required, providing more accurate estimates of the wave dispersion relation, the ring surface mass density, and the angular momentum exchange between the rings and satellite. We thank the DSN staff for their superb support of these complex observations.

  2. Waveguide Multimode Directional Coupler for Harvesting Harmonic Power from the Output of Traveling-Wave Tube Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2017-01-01

    The paper presents the design, fabrication, and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from dissimilar frequency band waveguides, is capable of isolating power at the 2nd harmonic frequency from the fundamental power at the output port of a high power traveling-wave tube amplifier. The major advantage of the MDC is significantly lower insertion loss compared to a diplexer. The presentation slides for the paper that was approved is attached. The tracking number for the paper that was approved is TN 37015.

  3. Generation of Highly Oblique Lower Band Chorus Via Nonlinear Three-Wave Resonance

    DOE PAGES

    Fu, Xiangrong; Gary, Stephen Peter; Reeves, Geoffrey D.; ...

    2017-09-05

    Chorus in the inner magnetosphere has been observed frequently at geomagnetically active times, typically exhibiting a two-band structure with a quasi-parallel lower band and an upper band with a broad range of wave normal angles. But recent observations by Van Allen Probes confirm another type of lower band chorus, which has a large wave normal angle close to the resonance cone angle. It has been proposed that these waves could be generated by a low-energy beam-like electron component or by temperature anisotropy of keV electrons in the presence of a low-energy plateau-like electron component. This paper, however, presents an alternativemore » mechanism for generation of this highly oblique lower band chorus. Through a nonlinear three-wave resonance, a quasi-parallel lower band chorus wave can interact with a mildly oblique upper band chorus wave, producing a highly oblique quasi-electrostatic lower band chorus wave. This theoretical analysis is confirmed by 2-D electromagnetic particle-in-cell simulations. Furthermore, as the newly generated waves propagate away from the equator, their wave normal angle can further increase and they are able to scatter low-energy electrons to form a plateau-like structure in the parallel velocity distribution. As a result, the three-wave resonance mechanism may also explain the generation of quasi-parallel upper band chorus which has also been observed in the magnetosphere.« less

  4. Fully- and weakly-nonlinear biperiodic traveling waves in shallow water

    NASA Astrophysics Data System (ADS)

    Hirakawa, Tomoaki; Okamura, Makoto

    2018-04-01

    We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.

  5. Recent developments in guided wave travel time tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zon, Tim van; Volker, Arno

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improvemore » the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.« less

  6. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Cao, Xianyong; Dallmeyer, Anne; Zhao, Yan; Ni, Jian; Herzschuh, Ulrike

    2017-01-01

    Temporal and spatial stability of the vegetation-climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (Pann) and mean temperature of the warmest month (Mtwa) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen-climate relationships. Our analyses suggest that the importance of Pann compared with Mtwa for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of Pann for Picea and Pinus increases and has become the main determinant. This change in the climate-tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation-climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen-climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation-climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially.

  7. PZT Thin Film Piezoelectric Traveling Wave Motor

    NASA Technical Reports Server (NTRS)

    Shen, Dexin; Zhang, Baoan; Yang, Genqing; Jiao, Jiwei; Lu, Jianguo; Wang, Weiyuan

    1995-01-01

    With the development of micro-electro-mechanical systems (MEMS), its various applications are attracting more and more attention. Among MEMS, micro motors, electrostatic and electromagnetic, are the typical and important ones. As an alternative approach, the piezoelectric traveling wave micro motor, based on thin film material and integrated circuit technologies, circumvents many of the drawbacks of the above mentioned two types of motors and displays distinct advantages. In this paper we report on a lead-zirconate-titanate (PZT) piezoelectric thin film traveling wave motor. The PZT film with a thickness of 150 micrometers and a diameter of 8 mm was first deposited onto a metal substrate as the stator material. Then, eight sections were patterned to form the stator electrodes. The rotor had an 8 kHz frequency power supply. The rotation speed of the motor is 100 rpm. The relationship of the friction between the stator and the rotor and the structure of the rotor on rotation were also studied.

  8. Space Based Gravitational Wave Observatories (SGOs)

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2014-01-01

    Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.

  9. Rain Fade Compensation for Ka-Band Communications Satellites

    NASA Technical Reports Server (NTRS)

    Mitchell, W. Carl; Nguyen, Lan; Dissanayake, Asoka; Markey, Brian; Le, Anh

    1997-01-01

    This report provides a review and evaluation of rain fade measurement and compensation techniques for Ka-band satellite systems. This report includes a description of and cost estimates for performing three rain fade measurement and compensation experiments. The first experiment deals with rain fade measurement techniques while the second one covers the rain fade compensation techniques. The third experiment addresses a feedback flow control technique for the ABR service (for ATM-based traffic). The following conclusions were observed in this report; a sufficient system signal margin should be allocated for all carriers in a network, that is a fixed clear-sky margin should be typically in the range of 4-5 dB and should be more like 15 dB in the up link for moderate and heavy rain zones; to obtain a higher system margin it is desirable to combine the uplink power control technique with the technique that implements the source information rate and FEC code rate changes resulting in a 4-5 dB increase in the dynamic part of the system margin. The experiments would assess the feasibility of the fade measurements and compensation techniques, and ABR feedback control technique.

  10. Coupled effects of chemotaxis and growth on traveling bacterial waves.

    PubMed

    Yan, Zhifeng; Bouwer, Edward J; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Traveling-wave piezoelectric linear motor part II: experiment and performance evaluation.

    PubMed

    Ting, Yung; Li, Chun-Chung; Chen, Liang-Chiang; Yang, Chieh-Min

    2007-04-01

    This article continues the discussion of a traveling-wave piezoelectric linear motor. Part I of this article dealt with the design and analysis of the stator of a traveling-wave piezoelectric linear motor. In this part, the discussion focuses on the structure and modeling of the contact layer and the carriage. In addition, the performance analysis and evaluation of the linear motor also are dealt with in this study. The traveling wave is created by stator, which is constructed by a series of bimorph actuators arranged in a line and connected to form a meander-line structure. Analytical and experimental results of the performance are presented and shown to be almost in agreement. Power losses due to friction and transmission are studied and found to be significant. Compared with other types of linear motors, the motor in this study is capable of supporting heavier loads and provides a larger thrust force.

  12. Users' manual for computer program for one-dimensional analysis of coupled-cavity traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.; Connolly, D. J.

    1977-01-01

    The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. To analyze these methods, a flexible, large signal computer program for use on the IBM 360/67 time-sharing system has been developed. The present report is a users' manual for this program.

  13. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    PubMed

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  14. Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.

    PubMed

    Feng, Peihua; Zhang, Jiazhong; Wang, Wei

    2016-06-01

    Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.

  15. Long-range traveling waves of activity triggered by local dichoptic stimulation in V1 of behaving monkeys

    PubMed Central

    Yang, Zhiyong; Heeger, David J.; Blake, Randolph

    2014-01-01

    Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation. PMID:25343785

  16. The Laser Interferometer Space Antenna: A space-based Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    Thorpe, James Ira; McNamara, Paul

    2018-01-01

    After decades of persistence, scientists have recently developed facilities which can measure the vibrations of spacetime caused by astrophysical cataclysms such as the mergers of black holes and neutron stars. The first few detections have presented some interesting astrophysical questions and it is clear that with an increase in the number and capability of ground-based facilities, gravitational waves will become an important tool for astronomy. A space-based observatory will complement these efforts by providing access to the milliHertz gravitational wave band, which is expected to be rich in both number and variety of sources. The European Space Agency (ESA) has recently selected the Laser Interferometer Space Antenna (LISA) as a Large-Class mission in its Cosmic Visions Programme. The modern LISA retains the basic design features of previous incarnations and, like its predecessors is expected to be a collaboration between ESA, NASA, and a number of European States. In this poster, we present an overview of the current LISA design, its scientific capabilities, and the timeline to launch.

  17. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping

    2018-05-01

    We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  18. A 200 Watt Traveling Wave-Tube for the Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Jones, C. L.

    1976-01-01

    This final report presents the results of the design, development, and test of experimental and production units of a PPM focused traveling wave tube (L-5394) that produces 225 watts of CW RF power over 85 MHz centered at 12.080 GHz. The tube uses a coupled cavity RF circuit with a velocity taper for greater than 26 percent basic efficiency. Overall efficiency of 50 percent is achieved by the incorporation of a multistage depressed collector designed at NASA Lewis Research Center. The collector is cooled by direct radiation to deep space. The tube was designed to be used for broadcasting power transmission from a satellite.

  19. Conjugate observations of electromagnetic ion cyclotron waves associated with traveling convection vortex events

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua

    2017-07-01

    We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.

  20. Low-Profile Multiband and Flush-Mountable Wideband Antennas for HF/VHF and K/Ka Band Applications

    NASA Astrophysics Data System (ADS)

    Garrido Lopez, David

    emissions are planned. Following the same trend of antenna system size reduction with extension of capabilities in a congested spectral environment, the millimeter wave spectrum is explored next. Specifically, antenna systems for wideband amplitude only (AO) direction finding (DF) are thoroughly considered. Theory and design considerations are developed to fill gaps in open literature. Typical sources of errors are theoretically analyzed, and a discussion on limitations and advantages of different AO DF architectures is given. Practical millimeter wave realizations of AO DF antenna front-ends in the K/Ka/Q bands (18-45 GHz) are developed using two different architectures: a passive phased-array and a squinted antenna system. For the former, a tightly coupled two-element tapered slot antenna (TSA) array with a stacked arrangement is developed. A novel enclosure of the array inside an absorbing cavity is proposed and improved system performance with flush mounted configuration is demonstrated. The squinted antenna system avoids the use of a beamformer, therefore reducing insertion loss and amplitude/phase imbalances to reduce DF errors. For design robustness, the same TSA element used in the phased-array configuration is used. A novel tapered cavity is also developed to stabilize H-plane radiation patterns and suppress sidelobes. It is seen that the squinted antenna AO DF front-end has better performance than the phased-array antenna system at the expense of larger size.

  1. Traveling wave solutions of the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-10-01

    In this paper, we investigate the traveling soliton and the periodic wave solutions of the nonlinear Schrödinger equation (NLSE) with generalized nonlinear functionality. We also explore the underlying close connection between the well-known KdV equation and the NLSE. It is remarked that both one-dimensional KdV and NLSE models share the same pseudoenergy spectrum. We also derive the traveling wave solutions for two cases of weakly nonlinear mathematical models, namely, the Helmholtz and the Duffing oscillators' potentials. It is found that these models only allow gray-type NLSE solitary propagations. It is also found that the pseudofrequency ratio for the Helmholtz potential between the nonlinear periodic carrier and the modulated sinusoidal waves is always in the range 0.5 ≤ Ω/ω ≤ 0.537285 regardless of the potential parameter values. The values of Ω/ω = {0.5, 0.537285} correspond to the cnoidal waves modulus of m = {0, 1} for soliton and sinusoidal limits and m = 0.5, respectively. Moreover, the current NLSE model is extended to fully NLSE (FNLSE) situation for Sagdeev oscillator pseudopotential which can be derived using a closed set of hydrodynamic fluid equations with a fully integrable Hamiltonian system. The generalized quasi-three-dimensional traveling wave solution is also derived. The current simple hydrodynamic plasma model may also be generalized to two dimensions and other complex situations including different charged species and cases with magnetic or gravitational field effects.

  2. Applications of exact traveling wave solutions of Modified Liouville and the Symmetric Regularized Long Wave equations via two new techniques

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.

  3. Phase transition of traveling waves in bacterial colony pattern

    NASA Astrophysics Data System (ADS)

    Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio

    2004-05-01

    Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.

  4. Optimal Design of a Traveling-Wave Kinetic Inductance Amplifier Operated in Three-Wave Mixing Mode

    NASA Astrophysics Data System (ADS)

    Erickson, Robert; Bal, Mustafa; Ku, Ksiang-Sheng; Wu, Xian; Pappas, David

    In the presence of a DC bias, an injected pump, of frequency fP, and a signal, of frequency fS, undergo parametric three-way mixing (3WM) within a traveling-wave kinetic inductance (KIT) amplifier, producing an idler product of frequency fI =fP -fS . Periodic frequency stops are engineered into the coplanar waveguide of the device to enhance signal amplification. With fP placed just above the first frequency stop gap, 3WM broadband signal gain is achieved with maximum gain at fS =fP / 2 . Within a theory of the dispersion of traveling waves in the presence of these engineered loadings, which accounts for this broadband signal gain, we show how an optimal frequency-stop design may be constructed to achieve maximum signal amplification. The optimization approach we describe can be applied to the design of other nonlinear traveling-wave parametric amplifiers. This work was supported by the Army Research Office and the Laboratory for Physical Sciences under EAO221146, EAO241777, and the NIST Quantum Initiative. RPE acknowledges Grant 60NANB14D024 from the US Department of Commerce, NIST.

  5. Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion

    PubMed Central

    Zhao, Guangyu; Ruan, Shigui

    2011-01-01

    We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c* such that for each wave speed c ≤ c*, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c < c* are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c > c*. PMID:21572575

  6. Study of rain attenuation in Ka band for satellite communication in South Korea

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Choi, Dong-You

    2016-10-01

    The important factor to be considered in the link budget estimation for satellite communication systems, operating at frequencies above 10 GHz is the rain attenuation. Scattering and absorption are the main concern for system designers at these frequency bands. This has resulted in the need for suitable prediction models that can best provide estimates of attenuation due to rain with available information of rain attenuation data. Researchers have developed models that can be used to estimate 1-min rainfall attenuation distribution for earth space link but there is still some confusion with regard to choosing the right model to predict attenuation for the location of interest. In this context, the existing prediction models need to be tested against the measured results. This paper presents studies on rain attenuation at 19.8 GHz, which specifies the performance parameters for Ka-Band under earth space communication system. It presents the experimental result of rain rates and rain-induced attenuation in 19.8 and 20.73 GHz for vertical and circular polarization respectively. The received signal data for rain attenuation and rain rate were collected at 10 s intervals over a three year periods from 2013 to 2015. The data highlights the impact of clear air variation and rain fade loss. Rain rate data was measured through OTT Parsivel. During the observation period, rain rates of about 50 mm/h and attenuation values of 11.6 dB for 0.01% of the time were noted. The experimental link was set up at Korea Radio Promotion Association, Mokdong, Seoul. Out of several models, this paper present discussion and comparison of ITU-R P.618-12, Unified Method, Dissanayake Allnutt and Haidara (DAH), Simple Attenuation (SAM), Crane Global and Ramachandran and Kumar models. The relative error margin of 27.51, 89.84,72.46% and 67.24, 130.84, 166.48% are obtained for 0.1%, 0.01% and 0.001% of the time for 19.8 and 20.73 GHz under vertical and circular polarization respectively from ITU

  7. General Public Space Travel and Tourism. Volume 2; Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    ONeil, D. (Compiler); Mankins, J. (Editor); Bekey, I. (Editor); Rogers, T. (Editor); Stallmer, E. (Editor); Piland, W. (Editor)

    1999-01-01

    The Space Transportation Association and NASA conducted a General Public Space Travel study between 1996 and 1998. During the study, a workshop was held at Georgetown University. Participants included representatives from the travel, aerospace, and construction industries. This report is the proceedings from that workshop. Sections include infrastructure needs, travel packages, policy related issues, and potential near-term activities.

  8. Parametric traveling wave amplifier with a low pump frequency

    NASA Astrophysics Data System (ADS)

    Marchenko, V. F.; Streltsov, A. M.; Zhmurov, S. E.

    1983-01-01

    Consideration is given to the model of a parametric traveling wave amplifier with a cubic nonlinearity in the form of an LF filter with MOS varactors. The operation of the amplifier is analyzed with allowance for wave damping and nonlinearity saturation, and the nonlinear mode of operation is examined. Experimental results are discussed, with emphasis on the amplitude-frequency response characteristics.

  9. Numerical Study of Periodic Traveling Wave Solutions for the Predator-Prey Model with Landscape Features

    NASA Astrophysics Data System (ADS)

    Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok

    We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.

  10. Proposal for a Joint NASA/KSAT Ka-band RF Propagation Terminal at Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Volosin, Jeffrey; Acosta, Roberto; Nessel, James; McCarthy, Kevin; Caroglanian, Armen

    2010-01-01

    This slide presentation discusses the placement of a Ka-band RF Propagation Terminal at Svalbard, Norway. The Near Earth Network (NEN) station would be managed by Kongsberg Satellite Services (KSAT) and would benefit NASA and KSAT. There are details of the proposed NASA/KSAT campaign, and the responsibilities each would agree to. There are several reasons for the placement, a primary reason is comparison with the Alaska site, Based on climatological similarities/differences with Alaska, Svalbard site expected to have good radiometer/beacon agreement approximately 99% of time.

  11. High-frequency homogenization for travelling waves in periodic media.

    PubMed

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  12. Flow control by means of a traveling curvature wave in fishlike escape responses.

    PubMed

    Liu, Geng; Yu, Yong-Liang; Tong, Bing-Gang

    2011-11-01

    Fish usually bend their bodies into a ''C'' shape and then beat their tails one or more times to escape from predators (in nature) or stimuli (in experiments). The maneuvering behavior, i.e., the C-shape bending and the return flapping, is called C-start. In this paper, the escaping performance of fishlike C-start motions has been numerically investigated for a flow physics study by the use of a two-dimensional deformable foil bending and stretching quickly. The C-start motions, performed in the quiescent water and based on prescribed deforming modes, are predicted by a numerical method coupling the two-dimensional incompressible Navier-Stokes equations and the deforming body dynamic equations. It has been found earlier that a typical C-start motion consists of (1) a main C-shape bending and (2) a rearward travelling curvature wave which was seldom mentioned in previous studies. In order to reveal the flow control mechanism of the traveling curvature wave in a fish's C-start motion, two kinds of C-start flows with different deforming modes, namely the integrated mode (IM, a C-shape bending plus a travelling curvature wave) and the basic mode (BM, a C-shape bending only) are analyzed and compared in detail. According to the numerical results, it shows that if proper values of the travelling curvature wave parameters are chosen, the foil's escaping maneuverability presented in the IM is much better than that in the BM, i.e. the turn angle and the speed of the center of mass at the end of a C-start in the IM is almost twice as large as those in the BM. Further study shows that the travelling curvature wave not only can enhance the thrust and the centripetal force but also increase the propulsive efficiency. These results suggest that an efficient travelling curvature wave is of great significance in the flow control of a C-start motion. Finally, a parametric study finds that the phase difference between the C-shape bending and the travelling curvature wave (i.e., the

  13. StatisticAl Characteristics of Cloud over Beijing, China Obtained FRom Ka band Doppler Radar Observation

    NASA Astrophysics Data System (ADS)

    LIU, J.; Bi, Y.; Duan, S.; Lu, D.

    2017-12-01

    It is well-known that cloud characteristics, such as top and base heights and their layering structure of micro-physical parameters, spatial coverage and temporal duration are very important factors influencing both radiation budget and its vertical partitioning as well as hydrological cycle through precipitation data. Also, cloud structure and their statistical distribution and typical values will have respective characteristics with geographical and seasonal variation. Ka band radar is a powerful tool to obtain above parameters around the world, such as ARM cloud radar at the Oklahoma US, Since 2006, Cloudsat is one of NASA's A-Train satellite constellation, continuously observe the cloud structure with global coverage, but only twice a day it monitor clouds over same local site at same local time.By using IAP Ka band Doppler radar which has been operating continuously since early 2013 over the roof of IAP building in Beijing, we obtained the statistical characteristic of clouds, including cloud layering, cloud top and base heights, as well as the thickness of each cloud layer and their distribution, and were analyzed monthly and seasonal and diurnal variation, statistical analysis of cloud reflectivity profiles is also made. The analysis covers both non-precipitating clouds and precipitating clouds. Also, some preliminary comparison of the results with Cloudsat/Calipso products for same period and same area are made.

  14. Numerical modeling of space-time wave extremes using WAVEWATCH III

    NASA Astrophysics Data System (ADS)

    Barbariol, Francesco; Alves, Jose-Henrique G. M.; Benetazzo, Alvise; Bergamasco, Filippo; Bertotti, Luciana; Carniel, Sandro; Cavaleri, Luigi; Y. Chao, Yung; Chawla, Arun; Ricchi, Antonio; Sclavo, Mauro; Tolman, Hendrik

    2017-04-01

    A novel implementation of parameters estimating the space-time wave extremes within the spectral wave model WAVEWATCH III (WW3) is presented. The new output parameters, available in WW3 version 5.16, rely on the theoretical model of Fedele (J Phys Oceanogr 42(9):1601-1615, 2012) extended by Benetazzo et al. (J Phys Oceanogr 45(9):2261-2275, 2015) to estimate the maximum second-order nonlinear crest height over a given space-time region. In order to assess the wave height associated to the maximum crest height and the maximum wave height (generally different in a broad-band stormy sea state), the linear quasi-determinism theory of Boccotti (2000) is considered. The new WW3 implementation is tested by simulating sea states and space-time extremes over the Mediterranean Sea (forced by the wind fields produced by the COSMO-ME atmospheric model). Model simulations are compared to space-time wave maxima observed on March 10th, 2014, in the northern Adriatic Sea (Italy), by a stereo camera system installed on-board the "Acqua Alta" oceanographic tower. Results show that modeled space-time extremes are in general agreement with observations. Differences are mostly ascribed to the accuracy of the wind forcing and, to a lesser extent, to the approximations introduced in the space-time extremes parameterizations. Model estimates are expected to be even more accurate over areas larger than the mean wavelength (for instance, the model grid size).

  15. Radiation Risk Projections for Space Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis

    2003-01-01

    Space travelers are exposed to solar and galactic cosmic rays comprised of protons and heavy ions moving with velocities close to the speed of light. Cosmic ray heavy ions are known to produce more severe types of biomolecular damage in comparison to terrestrial forms of radiation, however the relationship between such damage and disease has not been fully elucidated. On Earth, we are protected from cosmic rays by atmospheric and magnetic shielding, and only the remnants of cosmic rays in the form of ground level muons and other secondary radiations are present. Because human epidemiology data is lacking for cosmic rays, risk projection must rely on theoretical understanding and data from experimental models exposed to space radiation using charged particle accelerators to simulate space radiation. Although the risks of cancer and other late effects from cosmic rays are currently believed to present a severe challenge to space travel, this challenge is centered on our lack of confidence in risk projections methodologies. We review biophysics and radiobiology data on the effects of the cosmic ray heavy ions, and the current methods used to project radiation risks . Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Risk projections for space travel are described using Monte-Carlo sampling from subjective error di stributions that represent the lack of knowledge in each factor that contributes to the projection model in order to quantify the overall uncertainty in risk projections. This analysis is applied to space mi ssion scenarios including lunar colony, deep space outpost, and a Mars mission. Results suggest that the number of days in space where cancer mortality risks can be assured at a 95% confidence level to be below the maximum acceptable risk for radi ation workers on Earth or the International Space Station is only on the order

  16. Theory of a Traveling Wave Feed for a Planar Slot Array Antenna

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2012-01-01

    Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an

  17. [Mental Space Navigation and Mental Time Travel].

    PubMed

    Kawamura, Mitsuru

    2017-11-01

    We examined patients with mental space navigation or mental time travel disorder to identify regions in the brain that may play a critical role in mental time travel in terms of clinical neuropsychology. These regions included the precneus, posterior cingulate gyrus, retrosplenial cortex, and hippocampus, as well as the orbitofrontal cortex: the anterior and posterior medial areas were both shown to be important in this process. Further studies are required to define whether these form a network for mental time travel.

  18. Space Travel is Utter Bilge: Early Ideas on Interplanetary Exploration

    NASA Astrophysics Data System (ADS)

    Yeomans, D. K.

    2003-12-01

    Until a few decades ago, interplanetary travel was the stuff of dreams but the dreamers often turned out to be farsighted while the predictions of some eminent scientists were far too conservative. The prescient dreamers include the Russian schoolteacher, Konstanin Tsiolkovsky who, in 1883, was the first to note that only rockets could serve the needs of space travel. In 1923, Herman Oberth published a treatise discussing various aspects of interplanetary travel including the impulse necessary to escape the Earth's gravitational pull. In his spare time, a German civil engineer, Walter Hohmann, established in 1925 that the optimal energy transfer orbit between planets is an ellipse that is tangent to the orbits of both bodies. Four year later, an Austrian army officer, Hermann Potocnik outlined the benefits of space stations including those in geosynchronous orbits. Whereas Tsiolkovsky, Oberth, Hohmann, and Potocnik provided ideas and theories, the American, Robert H. Goddard, was testing liquid fueled rockets by as early as 1925. By the time he was finished in 1941, Goddard flew liquid fueled rockets that reached speeds of 700 mph and altitudes above 8,000 feet. In direct contrast to the advances by these mostly amateur engineers, many respected authorities scoffed at space travel because of the insurmountable technological difficulties. One year prior to the launch of Sputnik, the British Astronomer Royal, Sir Richard Wooley, declared, "space travel is utter bilge." While the theories of space travel were well developed by the late 1920's, space travel technology was still a poorly funded, mostly amateur, endeavor until the German army hired Oberth's student, Werner von Braun, and others to develop long range rockets for military purposes. In the early 1940's, Von Braun's team developed the rocket propulsion and guidance systems that would one day form the basis of the American space program.

  19. Stable operating regime for traveling wave devices

    DOEpatents

    Carlsten, Bruce E.

    2000-01-01

    Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

  20. A high-performance wave guide cryogenic thermal break

    NASA Astrophysics Data System (ADS)

    Melhuish, S. J.; McCulloch, M. A.; Piccirillo, L.; Stott, C.

    2016-10-01

    We describe a high-performance wave guide cryogenic thermal break. This has been constructed both for Ka band, using WR28 wave guide, and Q band, using WR22 wave guide. The mechanical structure consists of a hexapod (Stewart platform) made from pultruded carbon fibre tubing. We present a tentative examination of the cryogenic Young's modulus of this material. The thermal conductivity is measured at temperatures above the range explored by Runyan and Jones, resulting in predicted conductive loads through our thermal breaks of 3.7 mW to 3 K and 17 μK to 1 K.

  1. Preliminary Analysis of X-Band and Ka-Band Radar for Use in the Detection of Icing Conditions Aloft

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2004-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. Radar has been identified as a strong tool for this work. However, since the remote detection of icing conditions with the intent to identify areas of icing hazard is a new and evolving capability, there are no set requirements for radar sensitivity. This work is an initial attempt to quantify, through analysis, the sensitivity requirements for an icing remote sensing radar. The primary radar of interest for cloud measurements is Ka-band, however, since NASA is currently using an X-band unit, this frequency is also examined. Several aspects of radar signal analysis were examined. Cloud reflectivity was calculated for several forms of cloud using two different techniques. The Air Force Geophysical Laboratory (AFGL) cloud models, with different drop spectra represented by a modified gamma distribution, were utilized to examine several categories of cloud formation. Also a fundamental methods approach was used to allow manipulation of the cloud droplet size spectra. And an analytical icing radar simulator was developed to examine the complete radar system response to a configurable multi-layer cloud environment. Also discussed is the NASA vertical pointing X-band radar. The radar and its data system are described, and several summer weather events are reviewed.

  2. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    NASA Astrophysics Data System (ADS)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  3. Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence

    NASA Astrophysics Data System (ADS)

    Zhang, Shou-Peng; Yang, Yun-Rui; Zhou, Yong-Hui

    2018-01-01

    This paper is concerned with traveling waves of a delayed SIR model with nonlocal dispersal and a general nonlinear incidence. The existence and nonexistence of traveling waves of the system are established respectively by Schauder's fixed point theorem and two-sided Laplace transform. It is also shown that the spread speed c is influenced by the dispersal rate of the infected individuals and the delay τ.

  4. A Medium-Scale Traveling Ionospheric Disturbance Observed from the Ground and from Space

    NASA Astrophysics Data System (ADS)

    Watts, C.; Dymond, K. F.; Coker, C.; Budzien, S.; Bernhardt, P.; Kassim, N.; Lazio, J.; Cohen, A.; Weiler, K.; Crane, P.; Clarke, T.; Rickard, L. J.; Taylor, G. B.; Schinzel, F.; Philstrom, Y.; Kuniyoshi, M.; Close, S.; Colestock, P.; Myers, S.; Datta, A.

    2008-12-01

    We report the first optical observations from space of a Medium-scale Traveling Ionospheric Disturbance (MSTID) of the Traveling Wave Packet type. The observations were made during the Combined Radio Interferometry and COSMIC Experiment in Tomography Campaign (CRICKET) held on September 15, 2007 at ~0830 UT. The experiment used a Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC also known as FORMOSAT-3) satellite in conjunction with the Very Large Array (VLA) radio telescope, located near Socorro, NM, to study the ionosphere from the global scale down to the regional scale while the TIDs propagated through it. The COSMIC/FORMOSAT-3 satellite measured the ionosphere both horizontally and with altitude while the VLA measured the directions and speed of the TIDs. Our observations provide new information on this poorly understood class of TID

  5. Flow control by means of a traveling curvature wave in fishlike escape responses

    NASA Astrophysics Data System (ADS)

    Liu, Geng; Yu, Yong-Liang; Tong, Bing-Gang

    2011-11-01

    Fish usually bend their bodies into a ‘‘C’’ shape and then beat their tails one or more times to escape from predators (in nature) or stimuli (in experiments). The maneuvering behavior, i.e., the C-shape bending and the return flapping, is called C-start. In this paper, the escaping performance of fishlike C-start motions has been numerically investigated for a flow physics study by the use of a two-dimensional deformable foil bending and stretching quickly. The C-start motions, performed in the quiescent water and based on prescribed deforming modes, are predicted by a numerical method coupling the two-dimensional incompressible Navier-Stokes equations and the deforming body dynamic equations. It has been found earlier that a typical C-start motion consists of (1) a main C-shape bending and (2) a rearward travelling curvature wave which was seldom mentioned in previous studies. In order to reveal the flow control mechanism of the traveling curvature wave in a fish's C-start motion, two kinds of C-start flows with different deforming modes, namely the integrated mode (IM, a C-shape bending plus a travelling curvature wave) and the basic mode (BM, a C-shape bending only) are analyzed and compared in detail. According to the numerical results, it shows that if proper values of the travelling curvature wave parameters are chosen, the foil's escaping maneuverability presented in the IM is much better than that in the BM, i.e. the turn angle and the speed of the center of mass at the end of a C-start in the IM is almost twice as large as those in the BM. Further study shows that the travelling curvature wave not only can enhance the thrust and the centripetal force but also increase the propulsive efficiency. These results suggest that an efficient travelling curvature wave is of great significance in the flow control of a C-start motion. Finally, a parametric study finds that the phase difference between the C-shape bending and the travelling curvature wave (i

  6. Traveling waves in a continuum model of 1D schools

    NASA Astrophysics Data System (ADS)

    Oza, Anand; Kanso, Eva; Shelley, Michael

    2017-11-01

    We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.

  7. Exact traveling wave solutions for system of nonlinear evolution equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.

  8. On Traveling Waves in Lattices: The Case of Riccati Lattices

    NASA Astrophysics Data System (ADS)

    Dimitrova, Zlatinka

    2012-09-01

    The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

  9. Range-dependence of acoustic channel with traveling sinusoidal surface wave.

    PubMed

    Choo, Youngmin; Seong, Woojae; Lee, Keunhwa

    2014-04-01

    Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.

  10. A mass filter based on an accelerating traveling wave.

    PubMed

    Wiedenbeck, Michael; Kasemset, Bodin; Kasper, Manfred

    2008-01-01

    We describe a novel mass filtering concept based on the acceleration of a pulsed ion beam through a stack of electrostatic plates. A precisely controlled traveling wave generated within such an ion guide will induce a mass-selective ion acceleration, with mass separation ultimately accomplished via a simple energy-filtering system. Crucial for successful filtering is that the velocity with which the traveling wave passes through the ion guide must be dynamically controlled in order to accommodate the acceleration of the target ion species. Mass selection is determined by the velocity and acceleration with which the wave traverses the ion guide, whereby the target species will acquire a higher kinetic energy than all other lighter as well as heaver species. Finite element simulations of this design demonstrate that for small masses a mass resolution M/DeltaM approximately 1000 can be achieved within an electrode stack containing as few as 20 plates. Some of the possible advantages and drawbacks which distinguish this concept from established mass spectrometric technologies are discussed.

  11. Comparison of actinide production in traveling wave and pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, A.G.; Smith, T.A.; Deinert, M.R.

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactormore » cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)« less

  12. Satellite Broadband Revolution: How Latest Ka-Band Systems Will Change the Rules of the Industry. An Interpretation of the Technological Trajectory

    NASA Astrophysics Data System (ADS)

    Valle, Fabio

    The paper analyzes the satellite broadband systems for consumer from the perspective of technological innovation. The suggested interpretation relies upon such concepts as technological paradigm, technological trajectory and salient points. Satellite technology for broadband is a complex system on which each component (i.e. the satellite, the end-user equipment, the on-ground systems and related infrastructure) develops at different speed. Innovation in this industry concentrates recently on satellite space aircraft that seemed to be the component with the highest perceived opportunity for improvement. The industry has designed recently satellite systems with continuous dimensional increase of capacity available, suggesting that there is a technological trajectory in this area, similar to Moore’s law in the computer industry. The implications for industry players, Ka-band systems, and growth of future applications are also examined.

  13. Commercial Space Travel, Ethics and Society

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.

    2002-01-01

    For the past two decades interest in the possibilities of commercial (manned) space travel or space tourism has increased among engineers, scientists, entrepreneurs and also citizens. A continuously growing collection of papers is being published on space tourism itself and associated subjects, like new reusable launch vehicles, space habitats, space entertainment and corresponding law and regulation. Market research promises sufficient interest in tourist space travel to take off and develop into a multi billion-dollar business. The basic engineering knowledge and expertise is available to start development and designing of safe and affordable reusable vertical lift off and landing vehicles, like the Kankoh-Maru. However, many issues remain fairly untouched in literature. These include, for example, regulations, law, international agreement on space traffic control and also insurance policy. One important topic however has been barely touched upon. This concerns the ethical issues in commercial (manned) space travel, which need to be considered thoroughly, preferably before actual take off of the first regular space tourist services. The answer to the latter question comprises the major part of the paper. First, the paper deals with the issue of who wants, needs and will go to space at what stage in the development of the space tourism industry. A schematic pyramid differentiating between several community groups is made. Secondly, it discusses the way we can and should deal with our environment. Space is still fairly unspoiled, although there is a lot of (government) debris out there. Rules of the space tourist game need to be established. A few general directions are presented, for example on debris cleaning and garbage disposal. Also our right to exploit the asteroids and the moon for material is discussed. In the last part of this paper, the risks involved with the harsh environment of space are considered. Is it safe and responsible to eject people into outer

  14. The occurrence, spatial distribution, and wave properties of hydrogen-, helium-, and oxygen-band EMIC waves observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Saikin, A.; Zhang, J.; Allen, R. C.; Smith, C. W.; Kistler, L. M.; Spence, H. E.; Torbert, R. B.; Kletzing, C.; Jordanova, V.

    2014-12-01

    Electromagnetic ion cyclotron (EMIC) waves play an important role in the overall dynamics of the Earth's magnetosphere, including the energization and loss of particles. We perform a statistical study of EMIC waves detected by the Van Allen Probes mission to investigate their occurrence, spatial distribution, and properties (e.g., wave power, normal angle, and ellipticity). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard Van Allen Probes are used to identify EMIC wave events from the beginning of the mission (September, 2012) to the present. EMIC waves are examined in hydrogen, helium and oxygen bands. So far, about 280 EMIC wave events have been identified over the three different bands. Preliminary results show that hydrogen-band EMIC waves have been primarily observed in the dusk sector, while helium-band EMIC waves have been observed in all Magnetic Local Times (MLTs). Particularly, the Van Allen Probes provide a better resolution of lower frequencies (0.2-0.9 Hz), within which oxygen-band EMIC waves can occur in the inner magnetosphere. This allows us to obtain better insight into the characteristics of this previously largely unavailable band of EMIC waves, and allows for comparisons amongst EMIC waves in different bands.

  15. Spatiotemporal chaos involving wave instability.

    PubMed

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  16. Spatiotemporal chaos involving wave instability

    NASA Astrophysics Data System (ADS)

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  17. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  18. Weierstrass traveling wave solutions for dissipative Benjamin, Bona, and Mahony (BBM) equation

    NASA Astrophysics Data System (ADS)

    Mancas, Stefan C.; Spradlin, Greg; Khanal, Harihar

    2013-08-01

    In this paper the effect of a small dissipation on waves is included to find exact solutions to the modified Benjamin, Bona, and Mahony (BBM) equation by viscosity. Using Lyapunov functions and dynamical systems theory, we prove that when viscosity is added to the BBM equation, in certain regions there still exist bounded traveling wave solutions in the form of solitary waves, periodic, and elliptic functions. By using the canonical form of Abel equation, the polynomial Appell invariant makes the equation integrable in terms of Weierstrass ℘ functions. We will use a general formalism based on Ince's transformation to write the general solution of dissipative BBM in terms of ℘ functions, from which all the other known solutions can be obtained via simplifying assumptions. Using ODE (ordinary differential equations) analysis we show that the traveling wave speed is a bifurcation parameter that makes transition between different classes of waves.

  19. Space-Based Gravitational-Wave Observatory (SGO) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey; McNamara, Paul; Jennrich, Oliver

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a space-based gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return.

  20. Ka-Band TWT High-Efficiency Power Combiner for High-Rate Data Transmission

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee; Vaden, Karl R.; Lesny, Gary G.; Glass, Jeffrey L.

    2007-01-01

    A four-port magic-T hybrid waveguide junction serves as the central component of a high-efficiency two-way power combiner circuit for transmitting a high-rate phase-modulated digital signal at a carrier frequency in the Ka-band (between 27 and 40 GHz). This power combiner was developed to satisfy a specific requirement to efficiently combine the coherent outputs of two traveling-wavetube (TWT) amplifiers that are typically characterized by power levels on the order of 100 W or more. In this application, the use of a waveguide-based power combiner (instead of a coaxial-cable- or microstrip-based power combiner, for example) is dictated by requirements for low loss, high power-handling capability, and broadband response. Combiner efficiencies were typically 90 percent or more over both the linear and saturated output power regions of operation of the TWTs . Figure 1 depicts the basic configuration of the magic-T hybrid junction. The coherent outputs of the two TWTs enter through ports 1 and 4. As a result of the orientations of the electromagnetic fields, which also provides a needed high port-to-port isolation, of these two input signals and the interior design of the magic-T junction, the input powers are divided so as to add in phase at one output port (port 2), and to be opposite in phase and hence cancel each other at the opposite coplanar output port (port 3). The net result is that the output power at port 2 is essentially double that of the output of one TWT, minus the power lost in the magic-T hybrid junction. Optimum performance as a high-efficiency power combiner thus requires a balance of both power and phase at the input ports of the magic-T. Replicas of this two-way combiner can be arranged in a binary configuration to obtain a 2n-way (where n is an integer) combiner. For example, Figure 2 illustrates the use of three two-way combiners to combine the outputs of four TWTs.

  1. Extraction of body waves from seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Kim, Eun Mi; Kang, Tae Seob; Kim, Tae Sung

    2014-05-01

    Ambient noise cross-correlation is used in seismology to obtain the part of the surface waves and applied to the theoretical researches and various experiments. Obtaining the part of body waves from the ambient noise correlation is difficult to recognize because of the feature decreasing body waves along the travel path. However, the travel times of body waves detected from temporal and spacial events occurrence involve uncertainty of the epicenter and accompany temporal-spacial restriction. On the other hand, ambient noise is always occurred and is obtained at the all stations. So it can be applied to research of the internal earth when the case of extracting the body waves using the cross-correlation is possible. This study shows that body waves can be observed by analyzing the ambient noise recorded seismic data in South Korea. Using 42 broad-band three components stations located on the South Korea. The data removed the mean and trend are filtered high-frequency band(0.5-2Hz). The noise correlations were calculated for all combinations of radial, transverse and veltical components, which required rotation of the horizontal components for each station pair according to the azimuth at each station of the great-circle between the two stations. Removing the part of broad-band signals effected by occurring event, the part of standard deviations more than three times are removed. And it applied spectral whitening to reduce effects of the surface waves. After data processing, all ambient noise signals are cross-correlated and temporal stacked. We found the signals propagating from one station to another station, this signals can be interpreted as the body waves distinguished surface travel-time in high-frequency band.From this analysis, we can extract the body waves using ambient noise cross correlation of continuous data at the stations.

  2. Simulation studies on the standing and traveling wave thermoacoustic prime movers

    NASA Astrophysics Data System (ADS)

    Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra

    2014-01-01

    Thermoacoustic systems have been a focus of recent research due to its structural simplicity, high reliability due to absence of moving parts, and can be driven by low grade energy such as fuel, gas, solar energy, waste heat etc. There has been extensive research on both standing wave and traveling wave systems. Towards the development of such systems, simulations can be carried out by several methods such as (a) solving the energy equation, (b) enthalpy flow model, (c) DeltaEC, a free software available from LANL, USA (d) Computational Fluid Dynamics (CFD) etc. We present here the simulation studies of standing wave and traveling wave thermoacoustic prime movers using CFD and DeltaEC. The CFD analysis is carried out using Fluent 6.3.26, incorporating the necessary boundary conditions with different working fluids at different operating pressures. The results obtained by CFD are compared with those obtained using DeltaEC. Also, the CFD simulation of the thermoacoustically driven refrigerator is presented.

  3. Simulation studies on the standing and traveling wave thermoacoustic prime movers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.

    Thermoacoustic systems have been a focus of recent research due to its structural simplicity, high reliability due to absence of moving parts, and can be driven by low grade energy such as fuel, gas, solar energy, waste heat etc. There has been extensive research on both standing wave and traveling wave systems. Towards the development of such systems, simulations can be carried out by several methods such as (a) solving the energy equation, (b) enthalpy flow model, (c) DeltaEC, a free software available from LANL, USA (d) Computational Fluid Dynamics (CFD) etc. We present here the simulation studies of standingmore » wave and traveling wave thermoacoustic prime movers using CFD and DeltaEC. The CFD analysis is carried out using Fluent 6.3.26, incorporating the necessary boundary conditions with different working fluids at different operating pressures. The results obtained by CFD are compared with those obtained using DeltaEC. Also, the CFD simulation of the thermoacoustically driven refrigerator is presented.« less

  4. Evans function computation for the stability of travelling waves

    NASA Astrophysics Data System (ADS)

    Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J.

    2018-04-01

    In recent years, the Evans function has become an important tool for the determination of stability of travelling waves. This function, a Wronskian of decaying solutions of the eigenvalue equation, is useful both analytically and computationally for the spectral analysis of the linearized operator about the wave. In particular, Evans-function computation allows one to locate any unstable eigenvalues of the linear operator (if they exist); this allows one to establish spectral stability of a given wave and identify bifurcation points (loss of stability) as model parameters vary. In this paper, we review computational aspects of the Evans function and apply it to multidimensional detonation waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  5. High power broadband millimeter wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1999-05-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems

  6. Space gravitational wave antenna DECIGO and B-DECIGO

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru

    2017-12-01

    Since the direct detection of gravitational wave will give us a fruitful insight about the early universe or life of stars, laser interferometric gravitational wave detectors with the strain sensitivity of higher than 10-22 have been developed. In Japan, the space gravitational wave detector project named DECi-hertz Gravitational wave Observatory (DECIGO) has been promoted which consists of three satellites forming equilateral triangle-shaped Fabry-Perot laser interferometer with the arm length of 1000 km. The designed strain sensitivity of DECIGO is 2 × 10-24/√Hz around 0.1 Hz whose targets are gravitational waves originated from the inspiral and the merger of black hole or neutron star binaries and from the inflation at the early universe, and no ground-based gravitational wave detector can access this observation band. Before launching DECIGO in 2030s, a milestone mission named B-DECIGO is planned which is a downsized mission of DECIGO. B-DECIGO also has its own scientific targets in addition to the feasibility test for DECIGO. In the present paper, DECIGO and B-DECIGO projects are reviewed.

  7. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  8. Progress Towards the Development of a Traveling Wave Direct Energy Converter for Aneutronic Fusion Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.

    2015-01-01

    A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.

  9. Band structure analysis of leaky Bloch waves in 2D phononic crystal plates.

    PubMed

    Mazzotti, Matteo; Miniaci, Marco; Bartoli, Ivan

    2017-02-01

    A hybrid Finite Element-Plane Wave Expansion method is presented for the band structure analysis of phononic crystal plates with two dimensional lattice that are in contact with acoustic half-spaces. The method enables the computation of both real (propagative) and imaginary (attenuation) components of the Bloch wavenumber at any given frequency. Three numerical applications are presented: a benchmark dispersion analysis for an oil-loaded Titanium isotropic plate, the band structure analysis of a water-loaded Tungsten slab with square cylindrical cavities and a phononic crystal plate composed of Aurum cylinders embedded in an epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The occurrence and wave properties of H⁺-, He⁺-, and O⁺-band EMIC waves observed by the Van Allen Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikin, A. A.; Zhang, J. -C.; Allen, R. C.

    2015-09-26

    We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H⁺-,more » He⁺-, and O⁺-bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H⁺-band events, 438 He⁺-band events, and 68 O⁺-band events). EMIC wave events are observed between L = 2 – 8, with over 140 EMIC wave events observed below L = 4. The results show that H⁺-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: pre-noon (09:00 < MLT ≤ 12:00) and afternoon (15:00 < MLT ≤ 17:00) sectors. He⁺-band EMIC waves feature an overall stronger dayside occurrence. O⁺-band EMIC waves have one peak region located in the morning sector at lower L shells (L < 4). He⁺-band EMIC waves average the highest wave power overall (>0.1 nT²/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.« less

  11. Critical Points and Traveling Wave in Locomotion: Experimental Evidence and Some Theoretical Considerations.

    PubMed

    Saltiel, Philippe; d'Avella, Andrea; Tresch, Matthew C; Wyler, Kuno; Bizzi, Emilio

    2017-01-01

    The central pattern generator (CPG) architecture for rhythm generation remains partly elusive. We compare cat and frog locomotion results, where the component unrelated to pattern formation appears as a temporal grid, and traveling wave respectively. Frog spinal cord microstimulation with N-methyl-D-Aspartate (NMDA), a CPG activator, produced a limited set of force directions, sometimes tonic, but more often alternating between directions similar to the tonic forces. The tonic forces were topographically organized, and sites evoking rhythms with different force subsets were located close to the constituent tonic force regions. Thus CPGs consist of topographically organized modules. Modularity was also identified as a limited set of muscle synergies whose combinations reconstructed the EMGs. The cat CPG was investigated using proprioceptive inputs during fictive locomotion. Critical points identified both as abrupt transitions in the effect of phasic perturbations, and burst shape transitions, had biomechanical correlates in intact locomotion. During tonic proprioceptive perturbations, discrete shifts between these critical points explained the burst durations changes, and amplitude changes occurred at one of these points. Besides confirming CPG modularity, these results suggest a fixed temporal grid of anchoring points, to shift modules onsets and offsets. Frog locomotion, reconstructed with the NMDA synergies, showed a partially overlapping synergy activation sequence. Using the early synergy output evoked by NMDA at different spinal sites, revealed a rostrocaudal topographic organization, where each synergy is preferentially evoked from a few, albeit overlapping, cord regions. Comparing the locomotor synergy sequence with this topography suggests that a rostrocaudal traveling wave would activate the synergies in the proper sequence for locomotion. This output was reproduced in a two-layer model using this topography and a traveling wave. Together our results

  12. Breathers, quasi-periodic and travelling waves for a generalized ?-dimensional Yu-Toda-Sasa-Fukayama equation in fluids

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Qiang; Gao, Yi-Tian; Zhao, Chen; Jia, Shu-Liang; Lan, Zhong-Zhou

    2017-07-01

    Under investigation in this paper is a generalized ?-dimensional Yu-Toda-Sasa-Fukayama equation for the interfacial wave in a two-layer fluid or the elastic quasi-plane wave in a liquid lattice. By virtue of the binary Bell polynomials, bilinear form of this equation is obtained. With the help of the bilinear form, N-soliton solutions are obtained via the Hirota method, and a bilinear Bäcklund transformation is derived to verify the integrability. Homoclinic breather waves are obtained according to the homoclinic test approach, which is not only the space-periodic breather but also the time-periodic breather via the graphic analysis. Via the Riemann theta function, quasi one-periodic waves are constructed, which can be viewed as a superposition of the overlapping solitary waves, placed one period apart. Finally, soliton-like, periodical triangle-type, rational-type and solitary bell-type travelling waves are obtained by means of the polynomial expansion method.

  13. Simulation of Noise in a Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Verboncoeur, J. P.; Christenson, P. J.; Smith, H. B.

    1999-11-01

    Low frequency noise, manifested as close-in sidebands, has long been a significant limit to the performance of many traveling wave tubes. In this study, we investigate oscillations in the gun region due to the presence of plasma formed by electron-impact ionization of a background gas. The gun region of a coupled-cavity traveling wave tube is modeled using the two-dimensional XOOPIC particle-in-cell Monte Carlo collision code (J. P. Verboncoeur et al. Comput. Phys. Comm.) 87, 199-211 (1995). (available via the web: http://ptsg.eecs.berkeley.edu). The beam is 20.5 kV, 2.8 A, in near-confined flow in a solenoidal magnetic field with peak axial value of 0.263 T. Beam scalloping leads to trapping of plasma generated via electron-impact ionization of a background gas. The trapped plasma periodically leaves the system rapidly, and the density begins regenerating at a slow rate, leading to characteristic sawtooth oscillations. Plasma electrons are observed to exit the system axially about 20 ns before the ions exit primarily radially.

  14. On traveling waves in beams

    NASA Technical Reports Server (NTRS)

    Leonard, Robert W; Budiansky, Bernard

    1954-01-01

    The basic equations of Timoshenko for the motion of vibrating nonuniform beams, which allow for effects of transverse shear deformation and rotary inertia, are presented in several forms, including one in which the equations are written in the directions of the characteristics. The propagation of discontinuities in moment and shear, as governed by these equations, is discussed. Numerical traveling-wave solutions are obtained for some elementary problems of finite uniform beams for which the propagation velocities of bending and shear discontinuities are taken to be equal. These solutions are compared with modal solutions of Timoshenko's equations and, in some cases, with exact closed solutions. (author)

  15. Extended interaction oversized coaxial relativistic klystron amplifier with gigawatt-level output at Ka band

    NASA Astrophysics Data System (ADS)

    Li, Shifeng; Duan, Zhaoyun; Huang, Hua; Liu, Zhenbang; He, Hu; Wang, Fei; Wang, Zhanliang; Gong, Yubin

    2018-04-01

    In this paper, an extended interaction oversized coaxial relativistic klystron amplifier (EIOC-RKA) with Gigawatt-level output at Ka band is proposed. We introduce the oversized coaxial and multi-gap resonant cavities to increase the power capacity and investigate a non-uniform extended interaction output cavity to improve the electronic efficiency of the EIOC-RKA. We develop a high order mode gap in the input and output cavities to easily design and fabricate the input and output couplers. Meanwhile, we design the EIOC-RKA by using the particle-in-cell simulation. In the simulations, we use an electron beam with a current of 6 kA and a voltage of 525 kV, which is focused by a low focusing magnetic flux intensity of 0.5 T. The simulation results demonstrate that the saturated output power is 1.17 GW, the electronic efficiency is 37.1%, and the saturated gain is 57 dB at 30 GHz. The self-oscillation is suppressed by adopting the absorbing materials. The proposed EIOC-RKA has plenty of advantages such as large power capacity, high electronic efficiency, low focusing magnetic, high gain, and simple structure.

  16. Study of 42 and 85 GHz coupled cavity traveling-wave tubes for space use

    NASA Technical Reports Server (NTRS)

    Kennedy, J. B.; Tammaru, I.; Wolcott, P. S.

    1977-01-01

    Designs were formulated for four CW, millimeter wavelength traveling-wave tubes having high efficiency and long life. Three of these tubes, in the 42 to 44 GHz frequency region, develop power outputs of 100 to 300 watts with overall efficiencies of typically 45 percent. Another tube, which covers the frequency range of 84 to 86 GHz, provides a power output of 200 watts at 25 percent efficiency. The cathode current density in each design was 1A/sq cm. Each tube includes: metal-ceramic construction, periodic permanent magnet focusing, a two step velocity taper, an electron beam refocusing section, and a radiation cooled three-stage depressed collector. The electrical and mechanical design for each tube type is discussed in detail. The results of thermal and mechanical analyses are presented.

  17. Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

    DOE PAGES

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; ...

    2017-05-22

    Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less

  18. Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang

    Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less

  19. Participation in the scientific activities of the Waves in Space Plasma (WISP) project

    NASA Technical Reports Server (NTRS)

    Alpert, Yakov L.; Grossi, Mario D.

    1994-01-01

    This is the Final Report for Contract NAG5-1925, that consisted of experiment design, for possible use by the space science mission called WISP (Waves in Space Plasma). This mission is under study by the Canadian Space Agency and by NASA. Two WISP configurations are contemplated, under the name of BICEPS: one is called BOLAS, and the other WISPRS. Both these configurations are meant to perform bistatic sounding of the ionosphere, at a height close to F(sub 2) H(sub max) (about 350 Km), with a pair of satellites, either tethered or in free flight. Investigation A (with Y.L. Alpert as P.I.) addresses the subject of parametric decay effects, expected to arise in a magnetoplasma under the influence of high-intensity HF fields. Criteria were formulated that could be used in searching for parametric instabilities and of electric fields in the ionosphere and magnetosphere, by in-situ satellites, such as the BICEPS Pair. Investigation B (with M.D.Grossi as P.I.) addressed the bistatic measurement, by the BICEPS pair,of ionospheric features, such as large-scale and small-scale disturbances, travelling ionospheric disturbances, electron density irregularities, spread-F phenomena, etc. These measurements by BICEPS could be correlated with the waveform distortion and degradation experienced by microwave links from geosynchronous height to ground, such as the ACTS satellite, expected to radiate pulses as short as 1 nanosecond in the band 20 to 30 GHz. These links are transionospheric and propagate e.m. waves in the volume of the ionosphere where BICEPS operates. It will be possible, therefore, to correlate the two classes of measurements, and learn the causative mechanisms that are responsible for the time-spread and frequency-spread nature of communications waveforms at microwave, in geosynchronous height to ground paths.

  20. Ferruleless coupled-cavity traveling-wave tube cold-test characteristics simulated with micro-SOS

    NASA Technical Reports Server (NTRS)

    Schroeder, Dana L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive and time consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion and beam interaction impedance characteristics of a ferruleless coupled-cavity traveling-wave tube slow-wave circuit were simulated using the code. Computer results agree closely with experimental data. Variations in the cavity geometry dimensions of period length and gap-to-period ratio were modeled. These variations can be used in velocity taper designs to reduce the radiofrequency (RF) phase velocity in synchronism with the decelerating electron beam. Such circuit designs can result in enhanced TWT power and efficiency.

  1. Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min, E-mail: yshin@niu.edu

    2015-09-15

    The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidthmore » of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory.« less

  2. Electron wind in strong wave guide fields

    NASA Astrophysics Data System (ADS)

    Krienen, F.

    1985-03-01

    The X-ray activity observed near highly powered waveguide structures is usually caused by local electric discharges originating from discontinuities such as couplers, tuners or bends. In traveling waves electrons move in the direction of the power flow. Seed electrons can multipactor in a traveling wave, the moving charge pattern is different from the multipactor in a resonant structure and is self-extinguishing. The charge density in the wave guide will modify impedance and propagation constant of the wave guide. The radiation level inside the output wave guide of the SLAC, 50 MW, S-band, klystron is estimated. Possible contributions of radiation to window failure are discussed.

  3. On a `time' reparametrization in relativistic electrodynamics with travelling waves

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano

    2018-01-01

    We briefly report on our method [23] of simplifying the equations of motion of charged particles in an electromagnetic (EM) field that is the sum of a plane travelling wave and a static part; it is based on changes of the dependent variables and the independent one (light-like coordinate ξ instead of time t). We sketch its application to a few cases of extreme laser-induced accelerations, both in vacuum and in plane problems at the vacuum-plasma interface, where we are able to reduce the system of the (Lorentz-Maxwell and continuity) partial differential equations into a family of decoupled systems of Hamilton equations in 1 dimension. Since Fourier analysis plays no role, the method can be applied to all kind of travelling waves, ranging from almost monochromatic to socalled "impulses".

  4. Boundary mediated position control of traveling waves

    NASA Astrophysics Data System (ADS)

    Martens, Steffen; Ziepke, Alexander; Engel, Harald

    Reaction control is an essential task in biological systems and chemical process industry. Often, the excitable medium supporting wave propagation exhibits an irregular shape and/or is limited in size. In particular, the analytic treatment of wave phenomena is notoriously difficult due to the spatial modulation of the domain's. Recently, we have provided a first systematic treatment by applying asymptotic perturbation analysis leading to an approximate description that involves a reduction of dimensionality; the 3D RD equation with spatially dependent NFBCs on the reactants reduces to a 1D reaction-diffusion-advection equation. Here, we present a novel method to control the position ϕ (t) of traveling waves in modulated domains according to a prespecified protocol of motion. Given this protocol, the ``optimal'' geometry of reactive domains Q (x) is found as the solution of the perturbatively derived equation of motion. Noteworthy, such a boundary control can be expressed in terms of the uncontrolled wave profile and its propagation velocity, rendering detailed knowledge of the reaction kinetics unnecessary. German Science Foundation DFG through the SFB 910 ''Control of Self-Organizing Nonlinear Systems''.

  5. A high frequency GaAlAs travelling wave electro-optic modulator at 0.82 micrometers

    NASA Technical Reports Server (NTRS)

    Chorey, Christopher M.; Ferendeci, Altan; Bhasin, Kul B.

    1988-01-01

    Experimental GaAlAs modulators operating at 0.82 micrometers using a Mach-Zehnder interferometer configuration were designed and fabricated. Coplanar 50 ohm travelling wave microwave electrodes were used to obtain a bandwidth length product of 11.95 GHz-cm. The design, fabrication and dc performance of the GaAlAs travelling wave modulator is presented.

  6. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    PubMed

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Tunnel pressure waves - A smartphone inquiry on rail travel

    NASA Astrophysics Data System (ADS)

    Müller, Andreas; Hirth, Michael; Kuhn, Jochen

    2016-02-01

    When traveling by rail, you might have experienced the following phenomenon: The train enters a tunnel, and after some seconds a noticeable pressure change occurs, as perceived by your ears or even by a rapid wobbling of the train windows. The basic physics is that pressure waves created by the train travel down the tunnel, are reflected at its other end, and travel back until they meet the train again. Here we will show (i) how this effect can be well understood as a kind of large-scale outdoor case of a textbook paradigm, and (ii) how, e.g., a prediction of the tunnel length from the inside of a moving train on the basis of this model can be validated by means of a mobile phone measurement.

  8. RF breakdown in "cold" slow wave structures operating at travelling wave mode of TM01

    NASA Astrophysics Data System (ADS)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Bai, Zhen; Zhu, Danni

    2018-01-01

    RF breakdown experiments and simulations in "cold" slow wave structures (SWSs) are executed. All the SWSs are designed as traveling wave structures, which operate at the π/2 mode of TM01 waves. The experimental results indicate that the input microwave energy is mainly absorbed, not reflected by the RF breakdown process in traveling wave SWSs. Both larger magnitude of Es-max and more numbers of periods of SWSs aggravate the microwave absorption in the breakdown process and bring about a shorter transmission pulse width. We think that the critical surface E-field of the multi-period SWSs is 1 MV/cm. However, little correlation between RF breakdown effects and Bext is observed in the experiments. The simulation conditions are coincident with the experimental setup. Explosive emissions of electrons in the rounded corner of SWSs together with the ionization of the gas layer close to it supply the breakdown plasma. The gas layer consists of water vapor and hydrogen gas and has a pressure of 1 Pa. Different kinds of circumstances of SWSs are simulated. We mainly concern about the characteristic of the plasma and its influence on microwave power. Comprehensive simulation results are obtained. The simulation results match the experimental results basically and are helpful in explaining the RF breakdown phenomenon physically.

  9. A rod type linear ultrasonic motor utilizing longitudinal traveling waves: proof of concept

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Wielert, Tim; Twiefel, Jens; Jin, Jiamei; Wallaschek, Jörg

    2017-08-01

    This paper proposes a non-resonant linear ultrasonic motor utilizing longitudinal traveling waves. The longitudinal traveling waves in the rod type stator are generated by inducing longitudinal vibrations at one end of the waveguide and eliminating reflections at the opposite end by a passive damper. Considering the Poisson’s effect, the stator surface points move on elliptic trajectories and the slider is driven forward by friction. In contrast to many other flexural traveling wave linear ultrasonic motors, the driving direction of the proposed motor is identical to the wave propagation direction. The feasibility of the motor concept is demonstrated theoretically and experimentally. First, the design and operation principle of the motor are presented in detail. Then, the stator is modeled utilizing the transfer matrix method and verified by experimental studies. In addition, experimental parameter studies are carried out to identify the motor characteristics. Finally, the performance of the proposed motor is investigated. Overall, the results indicate very dynamic drive characteristics. The motor prototype achieves a maximum mean velocity of 115 mm s-1 and a maximum load of 0.25 N. Thereby, the start-up and shutdown times from the maximum speed are lower than 5 ms.

  10. Rotary Motors Actuated by Traveling Ultrasonic Flexural Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-01-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 C to -90 C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  11. Measuring the band structures of periodic beams using the wave superposition method

    NASA Astrophysics Data System (ADS)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in

  12. Synthesis, growth and characterization of ZnO microtubes using a traveling-wave mode microwave system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Wang, Han

    Highlights: • ZnO microtubes were successfully synthesized within 15 min. • Introducing a design of a traveling-wave mode microwave system. • Growth temperature of ZnO microtubes becomes predominant between 1350 °C and 1400 °C. • ZnO microtube showed a strong ultraviolet and a weak and broad green emission. • ZnO microtube is composed only of ZnO with high crystallinity. - Abstract: Field emission scanning electron microscopy (FESEM) investigation reveals that zinc oxide (ZnO) microtubes have been successfully synthesized via a traveling-wave mode microwave system. These products are hexagonal tubular crystals with an average diameter of 60 μm and 250 μmmore » in length, having a well faceted end and side surfaces. The wall thickness of the ZnO tubes is about 3–5 μm. The influence of reaction temperature on the formation of crystalline ZnO hexagonal tubes is studied. Room temperature photoluminescence (PL) spectra have also been examined to explore the optical property which exhibits strong ultraviolet emission at 377.422 nm and a weak and broad green emission band at 587.548 nm. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) show that the product is composed only of ZnO with high crystallinity. The presented synthesis method possesses several advantages, which would be significant to the deeper study and wide applications of ZnO tubes in the future.« less

  13. Kinetic Monte Carlo simulations of travelling pulses and spiral waves in the lattice Lotka-Volterra model.

    PubMed

    Makeev, Alexei G; Kurkina, Elena S; Kevrekidis, Ioannis G

    2012-06-01

    Kinetic Monte Carlo simulations are used to study the stochastic two-species Lotka-Volterra model on a square lattice. For certain values of the model parameters, the system constitutes an excitable medium: travelling pulses and rotating spiral waves can be excited. Stable solitary pulses travel with constant (modulo stochastic fluctuations) shape and speed along a periodic lattice. The spiral waves observed persist sometimes for hundreds of rotations, but they are ultimately unstable and break-up (because of fluctuations and interactions between neighboring fronts) giving rise to complex dynamic behavior in which numerous small spiral waves rotate and interact with each other. It is interesting that travelling pulses and spiral waves can be exhibited by the model even for completely immobile species, due to the non-local reaction kinetics.

  14. Nonlinear travelling waves in rotating Hagen–Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Pier, Benoît; Govindarajan, Rama

    2018-03-01

    The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.

  15. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  16. A novel traveling wave piezoelectric actuated tracked mobile robot utilizing friction effect

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Shu, Chengyou; Jin, Jiamei; Zhang, Jianhui

    2017-03-01

    A novel traveling wave piezoelectric-actuated tracked mobile robot with potential application to robotic rovers was proposed and investigated in this study. The proposed tracked mobile robot is composed of a parallelogram-frame-structure piezoelectric transducer with four rings and a metal track. Utilizing the converse piezoelectric and friction effects, traveling waves were propagated in the rings and then the metal track was actuated by the piezoelectric transducer. Compared with traditional tracked mechanisms, the proposed tracked mobile robot has a simpler and more compact structure without lubricant, which eliminates the problem of lubricant volatilization and deflation, thus, it could be operated in the vacuum environment. Dynamic characteristics were simulated and measured to reveal the mechanism of actuating track of the piezoelectric transducer. Experimental investigations of the traveling wave piezoelectric-actuated tracked mobile robot were then carried out, and the results indicated that the robot prototype with a pair of exciting voltages of 460 Vpp is able to achieve a maximum velocity of 57 mm s-1 moving on the foam plate and possesses the obstacle crossing capability with a maximum height of 27 mm. The proposed tracked mobile robot exhibits potential to be the driving system of robotic rovers.

  17. An active K/Ka-band antenna array for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.

    1993-01-01

    An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.

  18. SPREADING SPEEDS AND TRAVELING WAVES FOR NON-COOPERATIVE INTEGRO-DIFFERENCE SYSTEMS

    PubMed Central

    Wang, Haiyan; Castillo-Chavez, Carlos

    2014-01-01

    The study of spatially explicit integro-difference systems when the local population dynamics are given in terms of discrete-time generations models has gained considerable attention over the past two decades. These nonlinear systems arise naturally in the study of the spatial dispersal of organisms. The brunt of the mathematical research on these systems, particularly, when dealing with cooperative systems, has focused on the study of the existence of traveling wave solutions and the characterization of their spreading speed. Here, we characterize the minimum propagation (spreading) speed, via the convergence of initial data to wave solutions, for a large class of non cooperative nonlinear systems of integro-difference equations. The spreading speed turns out to be the slowest speed from a family of non-constant traveling wave solutions. The applicability of these theoretical results is illustrated through the explicit study of an integro-difference system with local population dynamics governed by Hassell and Comins’ non-cooperative competition model (1976). The corresponding integro-difference nonlinear systems that results from the redistribution of individuals via a dispersal kernel is shown to satisfy conditions that guarantee the existence of minimum speeds and traveling waves. This paper is dedicated to Avner Friedman as we celebrate his immense contributions to the fields of partial differential equations, integral equations, mathematical biology, industrial mathematics and applied mathematics in general. His leadership in the mathematical sciences and his mentorship of students and friends over several decades has made a huge difference in the personal and professional lives of many, including both of us. PMID:24899868

  19. Excitation of O+ Band EMIC Waves Through H+ Ring Velocity Distributions: Van Allen Probe Observations

    NASA Astrophysics Data System (ADS)

    Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Yao, Fei; Wang, Dedong; Funsten, Herbert O.; Wygant, John R.

    2018-02-01

    A typical case of electromagnetic ion cyclotron (EMIC) emissions with both He+ band and O+ band waves was observed by Van Allen Probe A on 14 July 2014. These emissions occurred in the morning sector on the equator inside the plasmasphere, in which region O+ band EMIC waves prefer to appear. Through property analysis of these emissions, it is found that the He+ band EMIC waves are linearly polarized and propagating quasi-parallelly along the background magnetic field, while the O+ band ones are of linear and left-hand polarization and propagating obliquely with respect to the background magnetic field. Using the in situ observations of plasma environment and particle data, excitation of these O+ band EMIC waves has been investigated with the linear growth theory. The calculated linear growth rate shows that these O+ band EMIC waves can be locally excited by ring current protons with ring velocity distributions. The comparison of the observed wave spectral intensity and the calculated growth rate suggests that the density of H+ rings providing the free energy for the instability has decreased after the wave grows. Therefore, this paper provides a direct observational evidence to the excitation mechanism of O+ band EMIC waves: ring current protons with ring distributions provide the free energy supporting the instability in the presence of rich O+ in the plasmasphere.

  20. One-dimensional kinetic description of nonlinear traveling-pulse and traveling-wave disturbances in long coasting charged particle beams

    DOE PAGES

    Davidson, Ronald C.; Qin, Hong

    2015-09-21

    This study makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius r w. The average axial electric field is expressed as < E z >=-(∂/∂z)=-e bg 0∂λ b/∂z-e bg 2r 2 w∂ 3λ b/∂z 3, where g 0 and g 2 are constant geometric factors, λ b(z,t)=∫dp zF b(z,p z,t) is the line density of beam particles, and F b(z,p z,t) satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (soliton) solutions with time-stationary waveform are examined for amore » wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (i) the nonlinear waterbag distribution, where F b=const in a bounded region of p z-space; and (ii) nonlinear Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field < E z >.« less

  1. One-dimensional kinetic description of nonlinear traveling-pulse and traveling-wave disturbances in long coasting charged particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Ronald C.; Qin, Hong

    This study makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius r w. The average axial electric field is expressed as < E z >=-(∂/∂z)=-e bg 0∂λ b/∂z-e bg 2r 2 w∂ 3λ b/∂z 3, where g 0 and g 2 are constant geometric factors, λ b(z,t)=∫dp zF b(z,p z,t) is the line density of beam particles, and F b(z,p z,t) satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (soliton) solutions with time-stationary waveform are examined for amore » wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (i) the nonlinear waterbag distribution, where F b=const in a bounded region of p z-space; and (ii) nonlinear Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field < E z >.« less

  2. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    DOE PAGES

    Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...

    2017-01-17

    Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less

  3. Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sándor, Csand; Libál, Andras; Reichhardt, Charles

    Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less

  4. Analytical approximation and numerical simulations for periodic travelling water waves

    NASA Astrophysics Data System (ADS)

    Kalimeris, Konstantinos

    2017-12-01

    We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.

  5. Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers with Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2009-01-01

    The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branchline hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are nearly in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two monolithic microwave integrated circuit (MMIC) power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is 92.9% at the center frequency of 32.05 GHz.

  6. K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Densmore, Art; Jamnejad, Vahraz; Wu, T. K.; Woo, Ken

    1993-01-01

    This paper describes the development of the K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellites. The AMT project will make the first experimental use of ACTS soon after the satellite is operational, to demonstrate mobile communications via the satellite from a van on the road. The AMT antenna system consists of a mechanically steered small reflector antenna, using a shared aperture for both frequency bands and fitting under a radome of 23 cm diameter and 10 cm height, and a microprocessor controlled antenna controller that tracks the satellite as the vehicle moves about. The RF and mechanical characteristics of the antenna and the antenna tracking control system are discussed. Measurements of the antenna performance are presented.

  7. Neurology of microgravity and space travel

    NASA Technical Reports Server (NTRS)

    Fujii, M. D.; Patten, B. M.

    1992-01-01

    Exposure to microgravity and space travel produce several neurologic changes, including SAS, ataxia, postural disturbances, perceptual illusions, neuromuscular weakness, and fatigue. Inflight SAS, perceptual illusions, and ocular changes are of more importance. After landing, however, ataxia, perceptual illusions, neuromuscular weakness, and fatigue play greater roles in astronaut health and readaptation to a terrestrial environment. Cardiovascular adjustments to microgravity, bone demineralization, and possible decompression sickness and excessive radiation exposure contribute further to medical problems of astronauts in space. A better understanding of the mechanisms by which microgravity adversely affects the nervous system and more effective treatments will provide healthier, happier, and longer stays in space on the space station Freedom and during the mission to Mars.

  8. Modulation of Precipitation in the Olympic Mountains by Trapped Gravity Waves

    NASA Astrophysics Data System (ADS)

    Heymsfield, G. M.; Tian, L.; Grecu, M.; McLinden, M.; Li, L.

    2017-12-01

    Precipitation over the Olympic Mountains was studied intensely with multiple aircraft and ground-based measurements during the Olympic Mountains Experiment (OLYMPEX) during the fall-winter season 2015-2016 as part of validation for the Global Precipitation Mission (GPM) (Houze et al. 2017) and the Radar Definition Experiment (RADEX) supported by the Aerosol Chemistry, Ecosystem (ACE) NASA Decadal Mission. This presentation focuses on observations of a broad frontal cloud system with strong flow over the mountains on 5 December 2015. Unique observations of trapped waves were obtained with in the three Goddard Space Flight Center nadir-looking, X- through W-band, Doppler radars on the NASA high-altitude ER-2: the High-altitude Wind and Rain Airborne Profiler (HIWRAP) at Ku and Ka-band, the W-band Cloud Radar System (CRS), and the ER-2 X-band Radar (EXRAD). Analysis of the aircraft measurements showed the presence of deep, trapped gravity waves on a scale ranging from 10-25 km in the nadir-looking Doppler and reflectivity observations. These waves cause localized vertical up/down motions on the order of 1-2 ms-1 and they are superimposed on the widespread south-southwest flow over the Olympic Mountains. While much of this widespread flow over the mountains produces copious amounts of snowfall, the gravity waves play an important role in modulating this precipitation indirectly through microphysical processes in the ice region. We will describe analyses of the interactions between the air motions and precipitation structure for this case and other cases we observed similar waves. We will present preliminary results from precipitation retrievals based on optimal estimation (Grecu et al. 2011).

  9. Pulsed Traveling-wave Quadrature Squeezing Using Quasi-phase Matched Lithium Niobate Crystals

    NASA Astrophysics Data System (ADS)

    Chen, Chao-Hsiang

    Interests in generating higher quantum noise squeezing in order to develop methods to enhance optical measurement below the shot-noise limit in various applications has grown in recent years. The noise suppression from squeezing can improve the SNR in coherent optical systems when the returning signal power is weak, such as optical coherence tomography, LADAR, confocal microscopy and low-light coherent imaging. Unlike the generation of squeezing with a continuous wave, which is currently developed mainly for gravitational wave detection in LIGO project, the study of pulsed-traveling waves is focused on industrial, medical and other commercial interests. This dissertation presents the experimental results of pulsed traveling wave squeezing. The intention of the study is to explore the possibility of using quasi-phase matched crystals to generate the highest possible degree of quadrature squeezing. In order to achieve this goal, efforts to test the various effects from spatial Gaussian modes and relative beam waist placement for the second-harmonic pump were carried out in order to further the understanding of limiting factors to pulsed traveling wave squeezing. 20mm and 30mm-long periodically poled lithium noibate (PPLN) crystals were used in the experiment to generate a squeezed vacuum state. A maximum of 4.2+/-0.2dB quadrature squeezing has been observed, and the measured anti-squeezing exceeds 20dB.The phase sensitive amplification (PSA) gain and de-gain performance were also measured to compare the results of measured squeezing. The PPLN crystals can produce high conversion efficiency of second-harmonic generation (SHG) without a cavity. When a long PPLN crystal is used in a squeezer, the beam propagation in the nonlinear medium does not follow the characteristics in thin crystals. Instead, it is operated under the long-crystal criteria, which the crystal length is multiple times longer than the Rayleigh range of the injected beam i n the crystals. Quasi

  10. The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu

    2017-12-01

    Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.

  11. Development of a 39.5 GHz Karp traveling wave tube for use in space

    NASA Technical Reports Server (NTRS)

    Jacquez, A.; Wilson, D.

    1988-01-01

    A millimeter-wave TWT was developed using a dispersive, high-impedance forward wave interaction structure based on a ladder, with non-space-harmonic interaction, for a tube with high gain per inch and high efficiency. The 'Tunneladder' interaction structure combines ladder properties modified to accommodate Pierce gun beam optics on a radially magnetized PM focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to each ridge of a double ridged waveguide. Cold-test data are presented, representing the omega-Beta and impedance characteristics of the modified ladder circuit These results were used in small and large-signal computer programs to predict TWT gain and efficiency. A laboratory model tube was designed and fabricated, including all major subassemblies.

  12. Observations of Radar Backscatter at Ku and C Bands in the Presence of Large Waves during the Surface Wave Dynamics Experiment

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, Fuk K.; Lou, Shu-Hsiang; Neumann, Gregory; McIntosh, Robert E.; Carson, Steven C.; Carswell, James R.; Walsh, Edward J.; Donelan, Mark A.; Drennan, William M.

    1995-01-01

    Ocean radar backscatter in the presence of large waves is investigated using data acquired with the Jet Propulsion Laboratory NUSCAT radar at Ku band for horizontal and vertical polarizations and the University of Massachusetts CSCAT radar at C band for vertical polarization during the Surface Wave Dynamics Experiment. Off-nadir backscatter data of ocean surfaces were obtained in the presence of large waves with significant wave height up to 5.6 m. In moderate-wind cases, effects of large waves are not detectable within the measurement uncertainty and no noticeable correlation between backscatter coefficients and wave height is found. Under high-wave light-wind conditions, backscatter is enhanced significantly at large incidence angles with a weaker effect at small incidence angles. Backscatter coefficients in the wind speed range under consideration are compared with SASS-2 (Ku band), CMOD3-H1 (C band), and Plant's model results which confirm the experimental observations. Variations of the friction velocity, which can give rise to the observed backscatter behaviors in the presence of large waves, are presented.

  13. Designing broad phononic band gaps for in-plane modes

    NASA Astrophysics Data System (ADS)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  14. Giant Linear Nonreciprocity, Zero Reflection, and Zero Band Gap in Equilibrated Space-Time-Varying Media

    NASA Astrophysics Data System (ADS)

    Taravati, Sajjad

    2018-06-01

    This article presents a class of space-time-varying media with giant linear nonreciprocity, zero space-time local reflections, and zero photonic band gap. This is achieved via equilibrium in the electric and magnetic properties of unidirectionally space-time-modulated media. The enhanced nonreciprocity is accompanied by a larger sonic regime interval which provides extra design freedom for achieving strong nonreciprocity by a weak pumping strength. We show that the width of photonic band gaps in general periodic space-time permittivity- and permeability-modulated media is proportional to the absolute difference between the electric and magnetic pumping strengths. We derive a rigorous analytical solution for investigation of wave propagation and scattering from general periodic space-time permittivity- and permeability-modulated media. In contrast with weak photonic transitions, from the excited mode to its two adjacent modes, in conventional space-time permittivity-modulated media, in an equilibrated space-time-varying medium, strong photonic transitions occur from the excited mode to its four adjacent modes. We study the enhanced nonreciprocity and zero band gap in equilibrated space-time-modulated media by analysis of their dispersion diagrams. In contrast to conventional space-time permittivity-modulated media, equilibrated space-time media exhibit different phase and group velocities for forward and backward harmonics. Furthermore, the numerical simulation scheme of general space-time permittivity- and permeability-modulated media is presented, which is based on the finite-difference time-domain technique. Our analytical and numerical results provide insights into general space-time refractive-index-modulated media, paving the way toward optimal isolators, nonreciprocal integrated systems, and subharmonic frequency generators.

  15. A Cascaded Self-Similar Rat-Race Hybrid Coupler Architecture and its Compact Ka-Band Implementation

    DTIC Science & Technology

    2017-03-01

    real-estate and limit the system-level performance, including bandwidth, gain, and energy - efficiency. These many challenges are positioning passive...and are used in numerous RF/mm-wave systems for radar and wireless communications. Although a Marchand balun covers a large bandwidth, it is...requires multiple λ/4 transmission lines (t-lines), making its on-chip designs very costly even for RF/mm-wave bands. Reported miniaturized rat-race

  16. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms.

    PubMed

    Zhang, Bei; Sodickson, Daniel K; Lattanzi, Riccardo; Duan, Qi; Stoeckel, Bernd; Wiggins, Graham C

    2012-04-01

    In 7 T traveling wave imaging, waveguide modes supported by the scanner radiofrequency shield are used to excite an MR signal in samples or tissue which may be several meters away from the antenna used to drive radiofrequency power into the system. To explore the potential merits of traveling wave excitation for whole-body imaging at 7 T, we compare numerical simulations of traveling wave and TEM systems, and juxtapose full-wave electrodynamic simulations using a human body model with in vivo human traveling wave imaging at multiple stations covering the entire body. The simulated and in vivo traveling wave results correspond well, with strong signal at the periphery of the body and weak signal deep in the torso. These numerical results also illustrate the complicated wave behavior that emerges when a body is present. The TEM resonator simulation allowed comparison of traveling wave excitation with standard quadrature excitation, showing that while the traveling wave B +1 per unit drive voltage is much less than that of the TEM system, the square of the average B +1 compared to peak specific absorption rate (SAR) values can be comparable in certain imaging planes. Both systems produce highly inhomogeneous excitation of MR signal in the torso, suggesting that B(1) shimming or other parallel transmission methods are necessary for 7 T whole body imaging. Copyright © 2011 Wiley-Liss, Inc.

  17. Some Thoughts on the Implications of Faster-Than-Light Interstellar Space Travel

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.

    1995-09-01

    There are reasons for believing that faster-than-light (FTL) interstellar space travel may be consistent with the laws of physics, and a brief review of various FTL travel concepts is presented. It is argued that FTL travel would revolutionise the scientific exploration of the Universe, but would only significantly shorten the Galactic colonisation timescale from the 106 years estimated on the assumption of sub-light interstellar travel if the mass-production of FTL space vehicles proves to be practical. FTL travel would permit the development of interstellar social and political institutions which would probably be impossible otherwise, and may therefore strengthen the 'zoo hypothesis' as an explanation for the apparent absence of extraterrestrial beings in the Solar System.

  18. Traveling wave solution of driven nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-09-01

    The traveling solitary and cnoidal wave solutions of the one dimensional driven nonlinear Schrödinger equation with a generalized form of nonlinearity are presented in this paper. We examine the modulation of nonlinear solitary excitations in two known weakly nonlinear models of classic oscillators, namely, the Helmholtz and Duffing oscillators and envelope structure formations for different oscillator and driver parameters. It is shown that two distinct regimes of subcritical and supercritical modulations may occur for nonlinear excitations with propagation speeds v <√{4 F0 } and v >√{4 F0 } , respectively, in which F0 is the driver force strength. The envelope soliton and cnoidal waves in these regimes are observed to be fundamentally different. The effect of pseudoenergy on the structure of the modulated envelope excitations is studied in detail for both sub- and supercritical modulation types. The current model for traveling envelope excitations may be easily extended to pseudopotentials with full nonlinearity relevant to more realistic gases, fluids, and plasmas.

  19. One-dimensional nonlinear theory for rectangular helix traveling-wave tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong

    A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numericallymore » using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.« less

  20. Lexical access and evoked traveling alpha waves

    PubMed Central

    Zauner, Andrea; Gruber, Walter; Himmelstoß, Nicole Alexandra; Lechinger, Julia; Klimesch, Wolfgang

    2014-01-01

    Retrieval from semantic memory is usually considered within a time window around 300–600 ms. Here we suggest that lexical access already occurs at around 100 ms. This interpretation is based on the finding that semantically rich and frequent words exhibit a significantly shorter topographical latency difference between the site with the shortest P1 latency (leading site) and that with the longest P1 latency (trailing site). This latency difference can be described in terms of an evoked traveling alpha wave as was already shown in earlier studies. PMID:24486978

  1. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    PubMed

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  2. In-Space Deployable Reflectarray Antenna: Current and Future

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Knarr, Kevin; Quijano, Ubaldo; Huang, John; Thomson, Mark

    2008-01-01

    Technologies associated with a 10-m X/Ka-band dual-frequency reflectarray antenna have been developed for deep space communication applications. The first task is the development of a 3-m diameter X/Ka dual frequency reflectarray which serves as a stepping-stone to the 10-m aperture antenna. The second task is to develop a deployable frame.

  3. Kinetic energy and angular momentum of free particles in the gyratonic pp-waves space-times

    NASA Astrophysics Data System (ADS)

    Maluf, J. W.; da Rocha-Neto, J. F.; Ulhoa, S. C.; Carneiro, F. L.

    2018-06-01

    Gyratonic pp-waves are exact solutions of Einstein’s equations that represent non-linear gravitational waves endowed with angular momentum. We consider gyratonic pp-waves that travel in the z direction and whose time dependence on the variable is given by Gaussians, so that the waves represent short bursts of gravitational radiation propagating in the z direction. We evaluate numerically the geodesics and velocities of free particles in the space-time of these waves, and find that after the passage of the waves both the kinetic energy and the angular momentum per unit mass of the particles are changed. Therefore there is a transfer of energy and angular momentum between the gravitational field and the free particles, so that the final values of the energy and angular momentum of the free particles may be smaller or larger in magnitude than the initial values.

  4. Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves.

    PubMed

    Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R

    2015-01-07

    We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.

  5. Reconfigurable wave band structure of an artificial square ice

    DOE PAGES

    lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; ...

    2016-04-18

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less

  6. Reconfigurable wave band structure of an artificial square ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less

  7. Low-Frequency Waves in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery

    2016-02-01

    Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.

  8. Lamb wave band gaps in a double-sided phononic plate

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng

    2013-02-01

    In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.

  9. Nonlinear Bloch waves in metallic photonic band-gap filaments

    NASA Astrophysics Data System (ADS)

    Kaso, Artan; John, Sajeev

    2007-11-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

  10. Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models

    NASA Astrophysics Data System (ADS)

    Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui

    2010-01-01

    Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.

  11. Factors influencing the temporal growth rate of the high order TM{sub 0n} modes in the Ka-band overmoded Cherenkov oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dapeng, E-mail: vipbenjamin@163.com; Shu, Ting; Ju, Jinchuan

    2015-06-15

    When the wavelength of overmoded Cherenkov oscillator goes into Ka-band, power handling capacity becomes an essential issue. Using the TM{sub 02} mode or higher order TM{sub 0n} modes as the operating mode is a potential solution. This paper is aimed to find some proper parameters to make the temporal growth rate of the TM{sub 02} mode higher in our previously studied Gigawatt (GW)-class Ka band oscillator. An accurate and fast calculation method of the “hot” dispersion equation is derived for rectangular corrugated SWSs, which are widely used in the high frequency Cherenkov devices. Then, factors that affect the temporal growthmore » rate of the high order TM{sub 0n} modes are analyzed, including the depth of corrugation, the radius of drift tube, and the diode voltage. Results show that, when parameters are chosen properly, the temporal growth rate of the TM{sub 02} mode can be as high as 0.3 ns{sup −1}.« less

  12. Students Celebrate Space Days with NASA and the Traveling Space Museum (Reporter Package)

    NASA Image and Video Library

    2012-06-04

    NASA Ames Research Center partnered with the Traveling Space Museum to bring NASA Space Days to schools in California. Students visited 14 interactive stations that demonstrated concepts such as living in space, physics, aeronautics and Earth Science. During the Space Days at the Ronald McNair Academy in East Palo Alto, Calif., Cheryl McNair, the widow of the fallen astronaut, was a guest of honor who spoke to inspire the students.

  13. Expression for time travel based on diffusive wave theory: applicability and considerations

    NASA Astrophysics Data System (ADS)

    Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.

    2017-12-01

    Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the

  14. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    NASA Astrophysics Data System (ADS)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.

    2016-01-01

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  15. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approachesmore » the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.« less

  16. Evolution of a Reconfigurable Processing Platform for a Next Generation Space Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Downey, Joseph A.; Anderson, Keffery R.; Baldwin, Keith

    2014-01-01

    The National Aeronautics and Space Administration (NASA)Harris Ka-Band Software Defined Radio (SDR) is the first, fully reprogrammable space-qualified SDR operating in the Ka-Band frequency range. Providing exceptionally higher data communication rates than previously possible, this SDR offers in-orbit reconfiguration, multi-waveform operation, and fast deployment due to its highly modular hardware and software architecture. Currently in operation on the International Space Station (ISS), this new paradigm of reconfigurable technology is enabling experimenters to investigate navigation and networking in the space environment.The modular SDR and the NASA developed Space Telecommunications Radio System (STRS) architecture standard are the basis for Harris reusable, digital signal processing space platform trademarked as AppSTAR. As a result, two new space radio products are a synthetic aperture radar payload and an Automatic Detection Surveillance Broadcast (ADS-B) receiver. In addition, Harris is currently developing many new products similar to the Ka-Band software defined radio for other applications. For NASAs next generation flight Ka-Band radio development, leveraging these advancements could lead to a more robust and more capable software defined radio.The space environment has special considerations different from terrestrial applications that must be considered for any system operated in space. Each space mission has unique requirements that can make these systems unique. These unique requirements can make products that are expensive and limited in reuse. Space systems put a premium on size, weight and power. A key trade is the amount of reconfigurability in a space system. The more reconfigurable the hardware platform, the easier it is to adapt to the platform to the next mission, and this reduces the amount of non-recurring engineering costs. However, the more reconfigurable platforms often use more spacecraft resources. Software has similar considerations

  17. Frequency modulation and compression of optical pulses in an optical fibre with a travelling refractive-index wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotovskii, I O; Lapin, V A; Sementsov, D I

    2016-01-31

    We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)

  18. Performances estimation of a rotary traveling wave ultrasonic motor based on two-dimension analytical model.

    PubMed

    Ming, Y; Peiwen, Q

    2001-03-01

    The understanding of ultrasonic motor performances as a function of input parameters, such as the voltage amplitude, driving frequency, the preload on the rotor, is a key to many applications and control of ultrasonic motor. This paper presents performances estimation of the piezoelectric rotary traveling wave ultrasonic motor as a function of input voltage amplitude and driving frequency and preload. The Love equation is used to derive the traveling wave amplitude on the stator surface. With the contact model of the distributed spring-rigid body between the stator and rotor, a two-dimension analytical model of the rotary traveling wave ultrasonic motor is constructed. Then the performances of stead rotation speed and stall torque are deduced. With MATLAB computational language and iteration algorithm, we estimate the performances of rotation speed and stall torque versus input parameters respectively. The same experiments are completed with the optoelectronic tachometer and stand weight. Both estimation and experiment results reveal the pattern of performance variation as a function of its input parameters.

  19. Validation of SARAL/AltiKa data in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Santos da Silva, Joecila; Calmant, Stephane; Medeiros Moreira, Daniel; Oliveira, Robson; Conchy, Taina; Gennero, Marie-Claude; Seyler, Frederique

    2015-04-01

    SARAL/AltiKa is a link between past missions (since it flies on the ERS-ENVISAT orbit with Ku band nadir altimeters in LRM) and future missions such as SWOT's Ka band interferometry swaths. In the present study, we compare the capability of its altimeter AltiKa to that of previous missions working in the Ku band such as ENVISAT and Jason-2 in retrieving water levels over the Amazon basin. Same as for the aforementioned preceding missions, the best results were obtained with the ICE-1 retracking algorithm. We qualitatively analyze the impact of rainfalls in the loss of measurements. Since making long -multi mission- time series is of major importance either for hydro-climatic studies or for basin management, we also present an estimate of the altimeter bias in order that the SARAL series of water level can be appended to those of these previous missions.

  20. Banded vs Bonded Space Maintainers: Finding Better Way Out.

    PubMed

    Setia, Vikas; Kumar Pandit, Inder; Srivastava, Nikhil; Gugnani, Neeraj; Gupta, Monika

    2014-05-01

    Of this in vivo study was to evaluate various space maintainers in terms of survival rate, gingival health and presence of caries. A total of 60 extraction sites in the age group of 4 to 9 years were divided into four groups and different space maintainers were placed in them viz (conventional band and loop, prefabricated band with custom made loop, Ribbond, Super splint). Prefabricated bands with custom made loop showed maximum success rates (84.6%), while super splint (33.33%) was found to be least successful. In terms of gingival health, prefabricated band with custom made loop reported minimum cases with poor gingival health (27.2%), while maximum cases with poor gingival health (50%) were reported with Super splint. None of the space maintainers developed caries at the end of 9 months. How to cite this article: Setia v, Pandit IK, Srivastava N, Gugnani N, Gupta M. Banded vs Bonded Space Maintainers: Finding Better Way Out. Int J Clin Pediatr Dent 2014;7(2):97-104.